Lab 4 - Sampling, Aliasing, FIR Filtering

This is a software lab. In your report, please include all Matlab code, numerical results, plots, and your explanations of the theoretical questions. The due date is one week from assignment.

4.1. Sampling and Aliasing - Sinusoids

The aim of this lab is to demonstrate the effects of aliasing arising from improper sampling. A given analog signal $x(t)$ is sampled at a rate f_{s}, the resulting samples $x(n T)$ are then reconstructed by an ideal reconstructor into the analog signal $x_{a}(t)$. Improper choice of f_{s} will result in a different signal, $x_{a}(t) \neq x(t)$, even though the two agree at their sample values, that is, $x_{a}(n T)=x(n T)$. The procedure is illustrated in the following figure:

Lab Procedure

a. Consider an analog signal $x(t)$ consisting of three sinusoids of frequencies of $1 \mathrm{kHz}, 4 \mathrm{kHz}$, and 6 kHz:

$$
x(t)=\sin (2 \pi t)+2 \sin (8 \pi t)+3 \sin (12 \pi t)
$$

where t is in milliseconds. Show that if this signal is sampled at a rate of $f_{s}=5 \mathrm{kHz}$, it will be aliased with the following signal, in the sense that their sample values will be the same:

$$
x_{a}(t)=2 \sin (2 \pi t)
$$

On the same graph, plot the two signals $x(t)$ and $x_{a}(t)$ versus t in the range $0 \leq t \leq 2$ msec. To this plot, add the time samples $x\left(t_{n}\right)$ and verify that $x(t)$ and $x_{a}(t)$ intersect precisely at these samples.
b. Repeat part (a) with $f_{s}=10 \mathrm{kHz}$. In this case, determine the signal $x_{a}(t)$ with which $x(t)$ is aliased. Plot both $x(t)$ and $x_{a}(t)$ on the same graph over the same range $0 \leq t \leq 2 \mathrm{msec}$. Verify again that the two signals agree at the sampling instants, $x_{a}(n T)=x(n T)$. See example graphs at the end.

4.2. Sampling and Aliasing - Square Wave

Consider a periodic pulse wave $x(t)$ with period $T_{0}=1 \mathrm{sec}$, as shown below. Let $p(t)$ denote one basic period of $x(t)$ defined over the time interval $0 \leq t \leq 1$:

$$
p(t)=\left\{\begin{align*}
1, & \text { if } 0.125<t<0.375 \tag{4.1}\\
-1, & \text { if } 0.625<t<0.875 \\
0.5, & \text { if } t=0.125 \quad \text { or } t=0.375 \\
-0.5, & \text { if } t=0.625 \text { or } t=0.875 \\
0, & \text { otherwise }
\end{align*}\right.
$$

This periodic signal admits a Fourier series expansion containing only sine terms with odd harmonics of the basic period $f_{0}=1 / T_{0}=1 \mathrm{~Hz}$, that is, the frequencies $f_{m}=m f_{0}, m=1,3,5, \ldots \mathrm{~Hz}$:

$$
\begin{equation*}
x(t)=\sum_{m=1,3,5, \ldots} b_{m} \sin (2 \pi m t)=b_{1} \sin (2 \pi t)+b_{3} \sin (6 \pi t)+b_{5} \sin (10 \pi t)+\cdots \tag{4.2}
\end{equation*}
$$

The Fourier series coefficients are given as follows, for $m=1,3,5,7, \ldots$

$$
b_{m}=\frac{\cos (\pi m / 4)-\cos (3 \pi m / 4)-\cos (5 \pi m / 4)+\cos (7 \pi m / 4)}{\pi m}
$$

The reason why the signal $x(t)$ was defined to have the values ± 0.5 at the discontinuity points is a consequence of a theorem that states that any finite sum of Fourier series terms will always pass through the mid-points of discontinuities.

Lab Procedure

a. Define the function of Eq. (4.1) in MATLAB using a one-line anonymous function definition of the form:

$$
p=@(t) \ldots \quad \% \text { one period of the square wave }
$$

using vectorized relational operations, such as, ($0.125<t$ \& $t<0.375$).
b. To understand the nature of the approximation of the square wave by the Fourier series sum, truncate the sum to a finite number of terms, that is, with M odd,

$$
\begin{equation*}
x_{M}(t)=\sum_{m=1,3,5, \ldots}^{M} b_{m} \sin (2 \pi m t)=b_{1} \sin (2 \pi t)+b_{3} \sin (6 \pi t)+\cdots+b_{M} \sin (2 \pi M t) \tag{4.3}
\end{equation*}
$$

Evaluate and plot $x(t)$ and $x_{M}(t)$ over one period $0 \leq t \leq 1$, for $M=21$ and $M=41$.
c. The pulse waveform $x(t)$ is now sampled at the rate of $f_{s}=8 \mathrm{~Hz}$ and the resulting samples $x(n T)$ are reconstructed by an ideal reconstructor resulting into the aliased analog signal $x_{a}(t)$.
The spectrum of the sampled signal consists of the periodic replication of the harmonics of $x(t)$ at multiples of f_{s}. Because $f_{s} / f_{0}=8$ is an even integer, all the odd harmonics that lie outside the Nyquist interval, $[-4,4] \mathrm{Hz}$, will be wrapped onto the odd harmonics that lie inside this interval, that is, onto $\pm 1, \pm 3 \mathrm{~Hz}$. This can be verified by listing a few of the odd harmonics of $x(t)$ and the corresponding wrapped ones modulo f_{s} that lie within the Nyquist interval:

1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	\ldots
1	3	-3	-1	1	3	-3	-1	1	3	-3	-1	1	3	-3	\ldots

where the bottom row is obtained by subtracting enough multiples of $f_{s}=8$ from each harmonic until it is brought to lie within the interval $[-4,4] \mathrm{Hz}$. This means then that the aliased signal will consist only of sinusoids of frequencies $f_{1}=1$ and $f_{3}=3 \mathrm{~Hz}$,

$$
\begin{equation*}
x_{a}(t)=A \sin (2 \pi t)+B \sin (6 \pi t) \tag{4.4}
\end{equation*}
$$

Determine the coefficients A, B by setting up two equations in the two unknowns A, B by enforcing the matching equations $x_{a}(n T)=x(n T)$ at the two sampling instants $n=1,2$.

On the same graph, plot one period of the pulse wave $x(t)$ together with $x_{a}(t)$. Verify that they agree at the eight sampling time instants that lie within this period. Because of the sharp transitions of the square wave, you must use a very dense time vector, for example,

```
t = linspace(0,1,4097);
```

Also, if you wish, you may do part (c) and part (d), as special cases of part (e).
d. Assume, next, that the pulse waveform $x(t)$ is sampled at the rate of $f_{s}=16 \mathrm{~Hz}$. By considering how the out-of band harmonics wrap into the Nyquist interval $[-8,8] \mathrm{Hz}$, show that now the aliased signal $x_{a}(t)$ will have the form:

$$
x_{a}(t)=a_{1} \sin (2 \pi t)+a_{2} \sin (6 \pi t)+a_{3} \sin (10 \pi t)+a_{4} \sin (14 \pi t)
$$

where the coefficients a_{i} are obtained by the condition that the signals $x(t)$ and $x_{a}(t)$ agree at the first four sampling instants $t_{n}=n T=n / 16 \mathrm{~Hz}$, for $n=1,2,3,4$. These four conditions can be arranged into a 4×4 matrix equation of the form:

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{c}
* \\
* \\
* \\
*
\end{array}\right]
$$

Determine the numerical values of the starred entries. Then, using MATLAB, solve this matrix equation for the coefficients a_{i}. Once a_{i} are known, the signal $x_{a}(t)$ is completely defined.
On the same graph, plot one period of the pulse waveform $x(t)$ together with $x_{a}(t)$. Verify that they agree at the 16 sampling time instants that lie within this period.
e. The methods of parts (c, d) can be generalized to any sampling rate f_{s} such that $L=f_{s} / f_{0}$ is an even integer (so that all the out-of-band odd harmonics will wrap onto the odd harmonics within the Nyquist interval). First show that the number of odd harmonics within the positive side of the Nyquist interval is:

$$
K=\text { floor }\left(\frac{L+2}{4}\right)
$$

This means that the aliased signal will be the sum of K terms:

$$
\begin{equation*}
x_{a}(t)=\sum_{k=1}^{K} a_{k} \sin (2 \pi(2 k-1) t) \tag{4.5}
\end{equation*}
$$

By matching $x_{a}(t)$ to $x(t)$, or $p(t)$, at the first K sampling instants $n=1,2, \ldots, K$, set up a linear system of K equations in the K unknowns a_{k}, i.e., with $t_{n}=n T$,

$$
\begin{equation*}
\sum_{k=1}^{K} a_{k} \sin \left(2 \pi(2 k-1) t_{n}\right)=p\left(t_{n}\right), \quad n=1,2, \ldots, K \tag{4.6}
\end{equation*}
$$

and solve it with Matlab. Once you have the coefficients a_{k}, evaluate and plot $x(t)$ and $x_{a}(t)$, and add the sampled points on the graph. Repeat this for the following eight, progressively larger, sampling rates:

$$
f_{s}=[4,8,16,24,32,40,48,64]
$$

It should be evident that even though the square wave is not a bandlimited signal, it can still be sampled adequately if the sampling rate is chosen to be large enough.

4.3. FIR Filtering

The objective of this lab is to implement your own version of the built-in function filter adapted to FIR filters. The IIR case will be considered in a future lab. The documentation for filter states that it is implemented using the transposed block diagram realization. For example, for an order-3 FIR filter that realization and the system of difference equations implementing it are:

$$
\begin{aligned}
y(n) & =h_{0} x(n)+v_{1}(n) \\
v_{1}(n+1) & =h_{1} x(n)+v_{2}(n) \\
v_{2}(n+1) & =h_{2} x(n)+v_{3}(n) \\
v_{3}(n+1) & =h_{3} x(n)
\end{aligned}
$$

For an M th order filter, the computational algorithm is,

$$
\begin{aligned}
y(n) & =h_{0} x(n)+v_{1}(n) \\
v_{1}(n+1) & =h_{1} x(n)+v_{2}(n) \\
v_{2}(n+1) & =h_{2} x(n)+v_{3}(n) \\
& \vdots \\
v_{M-1}(n+1) & =h_{M-1} x(n)+v_{M}(n) \\
v_{M}(n+1) & =h_{M} x(n)
\end{aligned}
$$

The state vector $\mathbf{v}(n)$ represents the current contents of the M delays. The algorithm uses the current state $\mathbf{v}(n)$ to compute the current output $y(n)$ from the current input $x(n)$, and then, it updates the state to the next time instant, $\mathbf{v}(n+1)$. Usually, the state vector is initialized to zero, but it can be initialized to an arbitrary vector, say, $\mathbf{v}_{\text {init }}$.

Lab Procedure

a. Write a MATLAB function, say, firtr.m, that implements the above algorithm and has the possible syntaxes:

```
y = firtr(h,x);
[y,vout] = firtr(h,x,vin);
% h = (M+1)-dimensional filter vector (row or column)
% x = length-N vector of input samples (row or column)
% y = length-N vector of output samples (row or column)
% vin = M-dimensional vector of initial states - zero vector, by default
% vout = M-dimensional final state vector, i.e., final contents of delays
```

Test your function with the following case:

```
x = [1, 1, 2, 1, 2, 2, 1, 1];
h = [1, 2, -1, 1];
y = [1, 3, 3, 5, 3, 7, 4, 3] % expected result
```

b. The function firtr can be run on a sample by sample basis to generate the successive internal state vectors, for example, using a loop such as,

```
v = zeros(1,M); % initial state vector
for n=1:7ength(x)
    [y(n),vout] = firtr(h,x(n),v); % recycled state vector v
    v = vout; % next state
end
```

Add appropriate fprintf commands before, within, and after this loop to generate the following table of values for the above example,

n	x	y	v1	v2	v3
0	1	1	0	0	0
1	1	3	2	-1	1
2	2	3	1	0	1
3	1	5	4	-1	2
4	2	3	1	1	1
5	2	7	5	-1	2
6	1	4	3	0	2
7	1	3	2	1	1
8	-	-	3	0	1

where v_{1}, v_{2}, v_{3} are the internal states at each time instant.
c. Write a function, myconv.m, that uses the above function firtr to implement the convolution of two vectors \mathbf{h}, \mathbf{x}. It should be functionally equivalent to the built-in function conv and have usage,

```
% y = myconv(h,x);
%
% h = (M+1)-dimensional filter vector (row or column)
% x = length-N vector of input samples (row or column)
% y = length-(N+M) vector of output samples (row or column)
```

Test it on the following case:

```
x = [1, 1, 2, 1, 2, 2, 1, 1];
h = [1, 2, -1, 1];
y = [1, 3, 3, 5, 3, 7, 4, 3, 3, 0, 1] % expected result
```


4.4. Filtering of Noisy Signals

A length- N signal $x(n)$ is the sum of a desired signal $s(n)$ and interference $v(n)$:

$$
x(n)=s(n)+v(n), \quad 0 \leq n \leq N-1
$$

where

$$
s(n)=\sin \left(\omega_{0} n\right), \quad v(n)=\sin \left(\omega_{1} n\right)+\sin \left(\omega_{2} n\right), \quad 0 \leq n \leq N-1
$$

with

$$
\left.\omega_{1}=0.1 \pi, \quad \omega_{0}=0.2 \pi, \quad \omega_{2}=0.3 \pi \quad \text { [radians/sample }\right]
$$

In order to remove $v(n)$, the signal $x(n)$ is filtered through a bandpass FIR filter that is designed to pass the frequency ω_{0} and reject the interfering frequencies ω_{1}, ω_{2}. An example of such a filter of order
$M=150$ can be designed with the Fourier series method using a Hamming window, and has impulse response:

$$
h(n)=w(n)\left[\frac{\sin \left(\omega_{b}(n-M / 2)\right)-\sin \left(\omega_{a}(n-M / 2)\right)}{\pi(n-M / 2)}\right], \quad 0 \leq n \leq M
$$

where $\omega_{a}=0.15 \pi, \omega_{b}=0.25 \pi$, and $w(n)$ is the Hamming window:

$$
w(n)=0.54-0.46 \cos \left(\frac{2 \pi n}{M}\right), \quad 0 \leq n \leq M
$$

It has an effective passband $\left[\omega_{a}, \omega_{b}\right]=[0.15 \pi, 0.25 \pi]$. To avoid a computational issue at $n=M / 2$, you may use MATLAB's built-in function sinc, which is defined as follows:

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

Lab Procedure

a. Let $N=200$. On the same graph plot $x(n)$ and $s(n)$ versus n over the interval $0 \leq n \leq N-1$.
b. Filter $x(n)$ through the filter $h(n)$ using your function firtr, and plot the filtered output $y(n)$, together with $s(n)$, for $0 \leq n \leq N-1$. Apart from an overall delay introduced by the filter, $y(n)$ should resemble $s(n)$ after the M initial transients.
c. To see what happened to the interference, filter the signal $v(n)$ separately through the filter and plot the output, on the same graph with $v(n)$ itself.
d. Using the built-in MATLAB function freqz calculate and plot the magnitude response of the filter over the frequency interval $0 \leq \omega \leq 0.4 \pi$:

$$
|H(\omega)|=\left|\sum_{n=0}^{M} h(n) e^{-j \omega n}\right|
$$

Indicate on that graph the frequencies $\omega_{1}, \omega_{0}, \omega_{2}$. Repeat the plot of $|H(\omega)|$ in dB units.
e. Redesign the filter with $M=200$ and repeat parts (a)-(d). Discuss the effect of choosing a longer filter length.

Example Graphs

