
47

Lab 4 – Sampling, Aliasing, FIR Filtering

This is a software lab. In your report, please include all Matlab code, numerical results, plots, and your
explanations of the theoretical questions. The due date is one week from assignment.

4.1. Sampling and Aliasing – Sinusoids

The aim of this lab is to demonstrate the effects of aliasing arising from improper sampling. A given
analog signal x(t) is sampled at a rate fs, the resulting samples x(nT) are then reconstructed by an
ideal reconstructor into the analog signal xa(t). Improper choice of fs will result in a different signal,
xa(t)�= x(t), even though the two agree at their sample values, that is, xa(nT)= x(nT). The procedure
is illustrated in the following figure:

Lab Procedure

a. Consider an analog signal x(t) consisting of three sinusoids of frequencies of 1 kHz, 4 kHz, and 6
kHz:

x(t)= sin(2πt)+2 sin(8πt)+3 sin(12πt)

where t is in milliseconds. Show that if this signal is sampled at a rate of fs = 5 kHz, it will be
aliased with the following signal, in the sense that their sample values will be the same:

xa(t)= 2 sin(2πt)

On the same graph, plot the two signals x(t) and xa(t) versus t in the range 0 ≤ t ≤ 2 msec. To
this plot, add the time samples x(tn) and verify that x(t) and xa(t) intersect precisely at these
samples.

b. Repeat part (a) with fs = 10 kHz. In this case, determine the signal xa(t) with which x(t) is aliased.
Plot both x(t) and xa(t) on the same graph over the same range 0 ≤ t ≤ 2 msec. Verify again that
the two signals agree at the sampling instants, xa(nT)= x(nT). See example graphs at the end.

4.2. Sampling and Aliasing – Square Wave

Consider a periodic pulse wave x(t) with period T0 = 1 sec, as shown below. Let p(t) denote one basic
period of x(t) defined over the time interval 0 ≤ t ≤ 1:

p(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if 0.125 < t < 0.375
−1, if 0.625 < t < 0.875
0.5, if t = 0.125 or t = 0.375

−0.5, if t = 0.625 or t = 0.875
0, otherwise

(4.1)

This periodic signal admits a Fourier series expansion containing only sine terms with odd harmonics
of the basic period f0 = 1/T0 = 1 Hz, that is, the frequencies fm =mf0, m = 1,3,5, . . . Hz:

x(t)=
∑

m=1,3,5,...
bm sin(2πmt)= b1 sin(2πt)+b3 sin(6πt)+b5 sin(10πt)+· · · (4.2)

The Fourier series coefficients are given as follows, for m = 1,3,5,7, . . .

4 SAMPLING, ALIASING, FIR FILTERING 48

bm = cos(πm/4)− cos(3πm/4)− cos(5πm/4)+ cos(7πm/4)
πm

The reason why the signal x(t) was defined to have the values ±0.5 at the discontinuity points is a
consequence of a theorem that states that any finite sum of Fourier series terms will always pass through
the mid-points of discontinuities.

Lab Procedure

a. Define the function of Eq. (4.1) in MATLAB using a one-line anonymous function definition of the
form:

p = @(t) ... % one period of the square wave

using vectorized relational operations, such as, (0.125<t & t<0.375).

b. To understand the nature of the approximation of the square wave by the Fourier series sum,
truncate the sum to a finite number of terms, that is, with M odd,

xM(t)=
M∑

m=1,3,5,...
bm sin(2πmt)= b1 sin(2πt)+b3 sin(6πt)+· · · + bM sin(2πMt) (4.3)

Evaluate and plot x(t) and xM(t) over one period 0 ≤ t ≤ 1, for M = 21 and M = 41.

c. The pulse waveform x(t) is now sampled at the rate of fs = 8 Hz and the resulting samples x(nT)
are reconstructed by an ideal reconstructor resulting into the aliased analog signal xa(t).
The spectrum of the sampled signal consists of the periodic replication of the harmonics of x(t)
at multiples of fs. Because fs/f0 = 8 is an even integer, all the odd harmonics that lie outside the
Nyquist interval, [−4,4] Hz, will be wrapped onto the odd harmonics that lie inside this interval,
that is, onto ±1,±3 Hz. This can be verified by listing a few of the odd harmonics of x(t) and the
corresponding wrapped ones modulo fs that lie within the Nyquist interval:

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 ...
1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 ...

where the bottom row is obtained by subtracting enough multiples of fs = 8 from each harmonic
until it is brought to lie within the interval [−4,4] Hz. This means then that the aliased signal will
consist only of sinusoids of frequencies f1 = 1 and f3 = 3 Hz,

xa(t)= A sin(2πt)+B sin(6πt) (4.4)

Determine the coefficientsA,B by setting up two equations in the two unknowns A,B by enforcing
the matching equations xa(nT)= x(nT) at the two sampling instants n = 1,2.

4 SAMPLING, ALIASING, FIR FILTERING 49

On the same graph, plot one period of the pulse wave x(t) together with xa(t). Verify that they
agree at the eight sampling time instants that lie within this period. Because of the sharp transitions
of the square wave, you must use a very dense time vector, for example,

t = linspace(0,1,4097);

Also, if you wish, you may do part (c) and part (d), as special cases of part (e).

d. Assume, next, that the pulse waveform x(t) is sampled at the rate of fs = 16 Hz. By considering
how the out-of band harmonics wrap into the Nyquist interval [−8,8]Hz, show that now the aliased
signal xa(t) will have the form:

xa(t)= a1 sin(2πt)+a2 sin(6πt)+a3 sin(10πt)+a4 sin(14πt)

where the coefficients ai are obtained by the condition that the signals x(t) and xa(t) agree at the
first four sampling instants tn = nT = n/16 Hz, for n = 1,2,3,4. These four conditions can be
arranged into a 4×4 matrix equation of the form:

⎡
⎢⎢⎢⎣
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
∗
∗
∗
∗

⎤
⎥⎥⎥⎦

Determine the numerical values of the starred entries. Then, using MATLAB, solve this matrix
equation for the coefficients ai. Once ai are known, the signal xa(t) is completely defined.

On the same graph, plot one period of the pulse waveform x(t) together with xa(t). Verify that
they agree at the 16 sampling time instants that lie within this period.

e. The methods of parts (c,d) can be generalized to any sampling rate fs such that L = fs/f0 is an
even integer (so that all the out-of-band odd harmonics will wrap onto the odd harmonics within
the Nyquist interval). First show that the number of odd harmonics within the positive side of the
Nyquist interval is:

K = floor
(
L+ 2

4

)

This means that the aliased signal will be the sum of K terms:

xa(t)=
K∑
k=1

ak sin
(
2π(2k− 1)t

)
(4.5)

By matching xa(t) to x(t), or p(t), at the first K sampling instants n = 1,2, . . . , K, set up a linear
system of K equations in the K unknowns ak, i.e., with tn = nT,

K∑
k=1

ak sin
(
2π(2k− 1)tn

) = p(tn) , n = 1,2, . . . , K (4.6)

and solve it with Matlab. Once you have the coefficients ak, evaluate and plot x(t) and xa(t), and
add the sampled points on the graph. Repeat this for the following eight, progressively larger,
sampling rates:

fs = [4, 8, 16, 24, 32, 40, 48, 64]

It should be evident that even though the square wave is not a bandlimited signal, it can still be
sampled adequately if the sampling rate is chosen to be large enough.

4 SAMPLING, ALIASING, FIR FILTERING 50

4.3. FIR Filtering

The objective of this lab is to implement your own version of the built-in function filter adapted to FIR
filters. The IIR case will be considered in a future lab. The documentation for filter states that it is
implemented using the transposed block diagram realization. For example, for an order-3 FIR filter that
realization and the system of difference equations implementing it are:

y(n) = h0 x(n)+v1(n)

v1(n+ 1) = h1 x(n)+v2(n)

v2(n+ 1) = h2 x(n)+v3(n)

v3(n+ 1) = h3 x(n)

For an Mth order filter, the computational algorithm is,

y(n) = h0 x(n)+v1(n)

v1(n+ 1) = h1 x(n)+v2(n)

v2(n+ 1) = h2 x(n)+v3(n)

...

vM−1(n+ 1) = hM−1 x(n)+vM(n)
vM(n+ 1) = hM x(n)

v(n)=

⎡
⎢⎢⎢⎢⎣
v1(n)
v2(n)
...
vM(n)

⎤
⎥⎥⎥⎥⎦ = state vector

The state vector v(n) represents the current contents of theM delays. The algorithm uses the current
state v(n) to compute the current output y(n) from the current input x(n), and then, it updates the
state to the next time instant, v(n + 1). Usually, the state vector is initialized to zero, but it can be
initialized to an arbitrary vector, say, vinit.

Lab Procedure

a. Write a MATLAB function, say, firtr.m, that implements the above algorithm and has the possible
syntaxes:

y = firtr(h,x);
[y,vout] = firtr(h,x,vin);

% h = (M+1)-dimensional filter vector (row or column)
% x = length-N vector of input samples (row or column)
% y = length-N vector of output samples (row or column)
% vin = M-dimensional vector of initial states - zero vector, by default
% vout = M-dimensional final state vector, i.e., final contents of delays

Test your function with the following case:

4 SAMPLING, ALIASING, FIR FILTERING 51

x = [1, 1, 2, 1, 2, 2, 1, 1];
h = [1, 2, -1, 1];
y = [1, 3, 3, 5, 3, 7, 4, 3] % expected result

b. The function firtr can be run on a sample by sample basis to generate the successive internal state
vectors, for example, using a loop such as,

v = zeros(1,M); % initial state vector
for n=1:length(x)

[y(n),vout] = firtr(h,x(n),v); % recycled state vector v
v = vout; % next state

end

Add appropriate fprintf commands before, within, and after this loop to generate the following
table of values for the above example,

n x y v1 v2 v3

0 1 1 0 0 0
1 1 3 2 -1 1
2 2 3 1 0 1
3 1 5 4 -1 2
4 2 3 1 1 1
5 2 7 5 -1 2
6 1 4 3 0 2
7 1 3 2 1 1
8 - - 3 0 1

where v1, v2, v3 are the internal states at each time instant.

c. Write a function, myconv.m, that uses the above function firtr to implement the convolution of
two vectors h,x. It should be functionally equivalent to the built-in function conv and have usage,

% y = myconv(h,x);
%
% h = (M+1)-dimensional filter vector (row or column)
% x = length-N vector of input samples (row or column)
% y = length-(N+M) vector of output samples (row or column)

Test it on the following case:

x = [1, 1, 2, 1, 2, 2, 1, 1];
h = [1, 2, -1, 1];
y = [1, 3, 3, 5, 3, 7, 4, 3, 3, 0, 1] % expected result

4.4. Filtering of Noisy Signals

A length-N signal x(n) is the sum of a desired signal s(n) and interference v(n):

x(n)= s(n)+v(n) , 0 ≤ n ≤ N − 1

where
s(n)= sin(ω0n) , v(n)= sin(ω1n)+ sin(ω2n) , 0 ≤ n ≤ N − 1

with
ω1 = 0.1π, ω0 = 0.2π, ω2 = 0.3π [radians/sample]

In order to remove v(n), the signal x(n) is filtered through a bandpass FIR filter that is designed to
pass the frequencyω0 and reject the interfering frequenciesω1,ω2. An example of such a filter of order

4 SAMPLING, ALIASING, FIR FILTERING 52

M = 150 can be designed with the Fourier series method using a Hamming window, and has impulse
response:

h(n)= w(n)
[

sin
(
ωb(n−M/2)

)− sin
(
ωa(n−M/2)

)
π(n−M/2)

]
, 0 ≤ n ≤M

where ωa = 0.15π, ωb = 0.25π, and w(n) is the Hamming window:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, 0 ≤ n ≤M

It has an effective passband [ωa,ωb]= [0.15π,0.25π]. To avoid a computational issue at n = M/2,
you may use MATLAB’s built-in function sinc, which is defined as follows:

sinc(x)= sin(πx)
πx

Lab Procedure

a. Let N = 200. On the same graph plot x(n) and s(n) versus n over the interval 0 ≤ n ≤ N − 1.

b. Filter x(n) through the filter h(n) using your function firtr, and plot the filtered output y(n),
together with s(n), for 0 ≤ n ≤ N − 1. Apart from an overall delay introduced by the filter, y(n)
should resemble s(n) after the M initial transients.

c. To see what happened to the interference, filter the signal v(n) separately through the filter and
plot the output, on the same graph with v(n) itself.

d. Using the built-in MATLAB function freqz calculate and plot the magnitude response of the filter
over the frequency interval 0 ≤ω ≤ 0.4π:

∣∣H(ω)∣∣ =
∣∣∣∣∣∣
M∑
n=0

h(n)e−jωn
∣∣∣∣∣∣

Indicate on that graph the frequencies ω1,ω0,ω2. Repeat the plot of |H(ω)| in dB units.

e. Redesign the filter with M = 200 and repeat parts (a)–(d). Discuss the effect of choosing a longer
filter length.

4 SAMPLING, ALIASING, FIR FILTERING 53

Example Graphs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4

6

8

t (msec)

x(
t)

,
x a(t

)

sinusoids, f
s
 = 5 kHz

 original
 aliased
 samples

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4

6

8

t (msec)
x(

t)
,

x a(t
)

sinusoids, f
s
 = 10 kHz

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

Fourier series, M = 21

 original
 approximate

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

Fourier series, M = 41

 original
 approximate

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 4 Hz, K = 1

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 8 Hz, K = 2

 original
 aliased
 samples

4 SAMPLING, ALIASING, FIR FILTERING 54

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 16 Hz, K = 4

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 24 Hz, K = 6

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 32 Hz, K = 8

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 40 Hz, K = 10

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 48 Hz, K = 12

 original
 aliased
 samples

0 0.25 0.5 0.75 1

−1

−0.5

0

0.5

1

t (sec)

x(
t)

,
x a(t

)

sampled square wave, f
s
 = 64 Hz, K = 16

 original
 aliased
 samples

0 50 100 150 200
−3

−2

−1

0

1

2

3
x(n) and s(n)

time samples, n

4 SAMPLING, ALIASING, FIR FILTERING 55

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Magnitude Response |H(ω)|, M=150

ω in units of π
0 0.1 0.2 0.3 0.4

−100

−75

−50

−25

0

Magnitude Response |H(ω)|, M=150

ω in units of π

dB

0 50 100 150 200
−3

−2

−1

0

1

2

3
s(n) and filtered x(n), M=150

n
0 50 100 150 200

−3

−2

−1

0

1

2

3
v(n) and filtered v(n), M=150

n

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Magnitude Response |H(ω)|, M=200

ω in units of π
0 0.1 0.2 0.3 0.4

−100

−75

−50

−25

0

Magnitude Response |H(ω)|, M=200

ω in units of π

dB

0 50 100 150 200
−3

−2

−1

0

1

2

3
s(n) and filtered x(n), M=200

n
0 50 100 150 200

−3

−2

−1

0

1

2

3
v(n) and filtered v(n), M=200

n

