
29

Lab 3 – Delays and FIR Filtering

3.1. Introduction

In this lab you will study sample by sample processing methods for FIR filters and implement them
on the TMS320C6713 processor. Once you know how to implement a multiple delay on a sample by
sample basis, it becomes straightforward to implement FIR and IIR filters. Multiple delays are also the
key component in various digital audio effects, such as reverb.

Delays can be implemented using linear or circular buffers, the latter being more efficient, especially
for audio effects. The theory behind this lab is developed in Ch. 4 of the text [1] for FIR filters, and used
in Ch. 8 for audio effects.

3.2. Delays Using Linear and Circular Buffers

A D-fold delay, also referred to as a delay line, has transfer function H(z)= z−D and corresponds to a
time delay in seconds:

TD = DT = D
fs

⇒ D = fsTD (3.1)

where T is the time interval between samples, related to the sampling rate by fs = 1/T. A block diagram
realization of the multiple delay is shown below:

Fig. 3.1 Tapped delay line.

There are D registers whose contents are the “internal” states of the delay line. The dth state sd, i.e.,
the content of the dth register, represents the d-fold delayed version of the input, that is, at time n we
have: sd(n)= x(n− d), for d = 1, . . . ,D; the case d = 0 corresponds to the input s0(n)= x(n).

At each time instant, all D contents are available for processing and can be “tapped” out for further
use (e.g., to implement FIR filters). For example, in the above diagram, the dth tap is being tapped, and
the corresponding transfer function from the input x to the output y = sd is the partial delay z−d.

TheD contents/states sd, d = 1,2, . . . ,D, and the input s0 = xmust be stored in memory in a (D+1)-
dimensional array or buffer. But the manner in which they are stored and retrieved depends on whether
a linear or a circular buffer is used. The two cases are depicted below.

Fig. 3.2 Linear and circular buffers.

In both cases, the buffer can be created in C by the declaration:

float w[D+1];

3 DELAYS AND FIR FILTERING 30

Its contents are retrieved as w[i], i = 0,1, . . . ,D. Thinking of w as a pointer, the contents can also
be retrieved by ∗(w+ i)= w[i], where ∗ denotes the de-referencing operator in C.

In the linear buffer case, the states are stored in the buffer sequentially, or linearly, that is, the ith
state is:

si = w[i]= ∗(w+ i) , i = 0,1, . . . ,D

At each time instant, after the contents si are used, the delay-line is updated in preparation for the
next time instant by shifting its contents to the right from one register to the next, as suggested by the
block diagram in Fig. 3.1. This follows from the definition si(n)= x(n − i), which implies for the next
time instant si(n+1)= x(n+1−i)= si−1(n). Thus, the current si−1 becomes the next si. Since si = w[i],
this leads to the following updating algorithm for the buffer contents:

for i = D down to i = 1, do:
w[i]= w[i− 1]

where the shifting is done from the right to the left to prevent the over-writing of the correct contents.
It is implemented by the C function delay() of the text [1]:

// delay.c - linear buffer updating
// --------------------------------

void delay(int D, float *w)
{

int i;

for (i=D; i>=1; i--)
w[i] = w[i-1];

}

// --------------------------------

For large values of D, this becomes an inefficient operation because it involves the shifting of large
amounts of data from one memory location to the next. An alternative approach is to keep the data
unshifted but to shift the beginning address of the buffer to the left by one slot.

This leads to the concept of a circular buffer in which a movable pointer p is introduced that always
points somewhere within the buffer array, and its current position allows one to retrieve the states by
si = ∗(p + i), i = 0,1, . . . ,D. If the pointer p + i exceeds the bounds of the array to the right, it gets
wrapped around to the beginning of the buffer.

To update the delay line to the next time instant, the pointer is left-shifted, i.e., by the substitution
p = p − 1, or, −−p, and is wrapped to the right end of the buffer if it exceeds the array bounds to the
left. Fig. 3.3 depicts the contents and pointer positions at two successive time instants for the linear and
circular buffer cases for D = 3. In both cases, the states are retrieved by si = ∗(p + i), i = 0,1,2,3,
but in the linear case, the pointer remains frozen at the beginning of the buffer, i.e., p = w, and the
buffer contents shift forwards, whereas in the circular case, p shifts backwards, but the contents remain
in place.

Fig. 3.3 Buffer contents at successive time instants for D = 3.

3 DELAYS AND FIR FILTERING 31

In the text [1], the functions tap() and cdelay() are used for extracting the states si and for the
circular back-shifting of the pointer. Although these two functions could be used in the CCS environment,
we prefer instead to use a single function called pwrap() that calculates the new pointer after performing
the required wrapping. The function is declared in the common header file dsplab.h and defined in the
file dsplab.c in the directory C:\dsplab\common. Its listing is as follows:

// pwrap.c - pointer wrapping relative to circular buffer
// Usage: p_new = pwrap(D,w,p)
// --

float *pwrap(int D, float *w, float *p)
{

if (p > w+D)
p -= D+1;

if (p < w)
p += D+1;

return p;
}

// --

The ith state si and the updating of the delay-line can be obtained by the function calls:

si = ∗pwrap(D,w,p+ i) , i = 1,2, . . . ,D

pnext =pwrap(D,w,−−p)
We will use this function in the implementation of FIR filters and in various audio effects. It will allow

us to easily translate a sample processing algorithm expressed in pseudo-code into the actual C code.
As an example, let us consider the circular buffer implementation of the partial delay z−d. The block
diagram of Fig. 3.1 and the pseudo-code computational algorithm are as follows:

for each input x do:
y = sd = ∗(p+ d)
∗p = x
−−p

We may translate this into C by the following operations using pwrap:

y = *pwrap(D,w,p+d); // delay output
*p = x; // delay-line input
p = pwrap(D,w,--p); // backshift circular buffer pointer

In the last line, we must pre-decrement the pointer inside pwrap, that is, --p, instead of post-
decrementing it, p--. Why? By comparison, the linear buffer implementation, using a (D+1)-dimensional
buffer, is as follows:

y = w[d]; // delay output
w[0] = x; // delay-line input
for (i=D; i>=0; i--) // update linear buffer

w[i] = w[i-1];

An alternative approach to circular buffers is working with circular indices instead of pointers. The
pointer p always points at some element of the buffer array w, that is, there is a unique integer q such
that p = w + q, with corresponding content ∗p = w[q]. This is depicted in Fig. 3.2. The index q is
always bound by the limits 0 ≤ q ≤ D and wrapped modulo–(D+1) if it exceeds these limits.

The textbook functions tap2() and cdelay2(), and their corresponding MATLAB versions given in
the Appendix of [1], implement this approach. Again, however, we prefer to use the following function,
qwrap(), also included in the common file dsplab.c, that calculates the required wrapped value of the
circular index:

3 DELAYS AND FIR FILTERING 32

// qwrap.c - circular index wrapping
// Usage: q_new = qwrap(D,q);
// -------------------------------------

int qwrap(int D, int q)
{

if (q > D)
q -= D + 1;

if (q < 0)
q += D + 1;

return q;
}

// -------------------------------------

In terms of this function, the above d-fold delay example is implemented as follows:

qd = qwrap(D,q+d); // (q+d) mod (D+1)
y = w[qd]; // delayed output
w[q] = x; // delay-line input
q = qwrap(D,--q); // backshift pointer index

We note that in general, the ith state is:

si = ∗(p+ i)= ∗(w+ q+ i)= w[q+ i]
where q+ i must be wrapped as necessary. Thus, the precise way to extract the ith state is:

qi = qwrap(D,q+ i) , si = w[qi] , i = 1,2, . . . ,D

Lab Procedure

A complete C program that implements the above d-fold delay example on the TMS320C6713 processor
is given below:

// delay1.c - multiple delay example using circular buffer pointers (pwrap version)
// --

#include "dsplab.h" // init parameters and function prototypes

short xL, xR, yL, yR; // input and output samples from/to codec

#define D 8000 // max delay in samples (TD = D/fs = 8000/8000 = 1 sec)
short fs = 8; // sampling rate in kHz
float w[D+1], *p, x, y; // circular delay-line buffer, circular pointer, input, output
int d = 4000; // must be d <= D

// --

void main() // main program executed first
{

int n;

for (n=0; n<=D; n++) w[n] = 0; // initialize circular buffer to zero
p = w; // initialize pointer

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(MIC); // use LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

3 DELAYS AND FIR FILTERING 33

// --

interrupt void isr() // sample processing algorithm - interrupt service routine
{

read_inputs(&xL, &xR); // read left and right input samples from codec

x = (float) xL; // work with left input only

y = *pwrap(D,w,p+d); // delayed output - pwrap defined in dsplab.c
*p = x; // delay-line input
p = pwrap(D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write left and right output samples to codec

return;
}

// --

Note the following features. The sampling rate is set to 8 kHz, therefore, the maximum delayD = 8000
corresponds to a delay of 1 sec, and the partial delay d = 4000, to 1/2 sec. The circular buffer array w
has dimensionD+1 = 8001 and its scope is global within this file. It is initialized to zero within main()
and the pointer p is initialized to point to the beginning of w, that is, p = w.

The left/right input samples, which are of the short int type, are cast to float, while the float output
is cast to short int before it is sent out to the codec.

a. Create and build a project for this program. Then, run it. Give the system an impulse by lightly tapping
the table with the mike, and listen to the impulse response. Then, speak into the mike.

Bring the mike near the speaker and then give the system an impulse. You should hear repeated
echoes. If you bring the mike too close to the speakers the output goes unstable. Draw a block diagram
realization that would explain the effect you are hearing. Experimentally determine the distance at
which the echoes remain marginally stable, that is, neither die out nor diverge. (Technically speaking,
the poles of your closed-loop system lie on the unit circle.)

b. Change the sampling rate to 16 kHz, recompile and reload keeping the value of d the same, that is,
d = 4000. Listen to the impulse response. What is the duration of the delay in seconds now?

c. Reset the sampling rate back to 8 kHz, and this time change d to its maximum value d = D = 8000.
Recompile, reload, and listen to the impulse response. Experiment with lower and lower values of
d and listen to your delayed voice until you can no longer distinguish a separate echo. How many
milliseconds of delay does this correspond to?

d. Set d = 0, recompile and reload. This should correspond to no delay at all. But what do you hear?
Can you explain why? Can you fix it by changing the program? Will your modified program still work
with d �= 0? Is there any good reason for structuring the program the way it was originally?

e. In this part you will profile the computational cost of the sample processing algorithm. Open the
source file delay1.c in a CCS window. Locate the read_inputs line in the isr(), then right-click on
that line and choose Toggle Software Breakpoint ; a red dot will appear in the margin. Do the same for
the write_outputs line.

From the top menu of the CCS window, choose Profile -> Clock -> View ; a little yellow clock will appear
on the right bottom status line of CCS. When you compile, load, and run your program, it will stop
at the first breakpoint, with a yellow arrow pointing to it. Double-click on the profile clock to clear
the number of cycles, then type F5 to continue running the program and it will stop at the second
breakpoint. Read and record the number of cycles shown next to the profile clock.

3 DELAYS AND FIR FILTERING 34

f. Write a new program, called delay2.c, that makes use of the function qwrap instead of pwrap. Repeat
parts (a) and (e).

g. Next, write a new program, called delay3.c, that uses linear buffers. Its isr() will be as follows:

interrupt void isr()
{

int i;

read_inputs(&xL, &xR);

x = (float) xL;

w[0] = x; // delay-line input
y = w[d]; // delay output
for (i=D; i>=0; i--) // update linear buffer

w[i] = w[i-1];

yL = yR = (short) y;

write_outputs(yL,yR);

return;
}

Build the project. You will find that it may not run (because the data shifts require too many cycles that
over-run the sampling rate). Change the program parameters D,d to the following values D = 2000
and d = 1000. Rebuild and run the program. Repeat part (e) and record the number of cycles.
Change the parameters D,d of the program delay1.c to the same values, and repeat part (e) for that.
Comment on the required number of samples using the linear vs. the circular buffer implementation.

3.3. FIR Comb Filters Using Circular Buffers

More interesting audio effects can be derived by combining several multiple delays. An example is the
FIR comb filter defined by Eq. (8.2.8) of the text [1]:

yn = xn + axn−D + a2xn−2D + a3xn−3D

Its transfer function is given by Eq. (8.2.9):

H(z)= 1+ az−D + a2z−2D + a3z−3D

Its impulse response has a very sparse structure:

h = [1,0, 0, . . . , 0︸ ︷︷ ︸
D−1 zeros

, a, 0 ,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a2, 0, 0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a3]

The comb-like structure of its frequency response and its zero-pattern on the z-plane are depicted in
Fig. 8.2.5 of [1]. Instead of implementing it as a general FIR filter, a more efficient approach is to program
the block diagram directly by using a single delay line of order 3D and tapping it out at taps 0, D, 2D,
and 3D. The block diagram realization and corresponding sample processing algorithm are:

x ys0

s1

s2

s3

a

a2

a3

z-D

z-D

z-D

for each input x do:
s0 = x
s1 = ∗(p+D)
s2 = ∗(p+ 2D)
s3 = ∗(p+ 3D)
y = s0 + as1 + a2s2 + a3s3

∗p = s0

−−p

3 DELAYS AND FIR FILTERING 35

The translation of the sample processing algorithm into C is straightforward and can be incorporated
into the following isr() function to be included in your main program:

interrupt void isr()
{

float s0, s1, s2, s3, y; // states & output

read_inputs(&xL, &xR); // read inputs from codec

s0 = (float) xL; // work with left input only
s1 = *pwrap(3*D,w,p+D); // extract states relative to p
s2 = *pwrap(3*D,w,p+2*D); // note, buffer length is 3D+1
s3 = *pwrap(3*D,w,p+3*D);
y = s0 + a*s1 + a*a*s2 + a*a*a*s3; // output sample
*p = s0; // delay-line input
p = pwrap(3*D,w,--p); // backshift pointer

yL = yR = (short) y;

write_outputs(yL,yR); // write outputs to codec

return;
}

Lab Procedure

Set the sampling rate to 8 kHz and the audio source to microphone. Choose the delay to be D = 4000,
corresponding to TD = 0.5 sec, so that the total duration of the filter is 3TD = 1.5 sec, and set a = 0.5.

a. Write a C program called comb.c that incorporates the above interrupt service routine. You will
need to globally declare/define the parameters D,a, p, as well as the circular buffer w to be a 3D+1
dimensional float array. Make sure you initialize the buffer to zero inside main(), as was done in the
previous example, and also initialize p = w.

Build and run this project. Listen to the impulse response of the filter by tapping the table with the
mike. Speak into the mike. Bring the mike close to the speakers and get a closed-loop feedback.

b. Keeping the delay D the same, choose a = 0.2 and run the program again. What effect do you hear?
Repeat for a = 0.1. Repeat with a = 1.

c. Set the audio input to LINE and play your favorite wave file or MP3 into the input. Experiment with
reducing the value of D in order to match your song’s tempo to the repeated echoes. Some wave files
are in the directory c:\dsplab\wav (e.g., try dsummer, take5.)

d. The FIR comb can also be implemented recursively using the geometric series formula to rewrite its
transfer function in the recursive form as shown in Eq. (8.2.9) of the text:

H(z)= 1+ az−D + a2z−2D + a3z−3D = 1− a4z−4D

1− az−D

This requires a (4D+1)-dimensional delay-line buffer w. The canonical realization and the corre-
sponding sample processing algorithm are shown below:

x ys0

s1

s4

a

−a4

z-D

z-3D

for each input x do:
s1 = ∗(p+D)
s4 = ∗(p+ 4D)
s0 = x+ as1

y = s0 − a4s4

∗p = s0

−−p

3 DELAYS AND FIR FILTERING 36

Write a new program, comb2.c, that implements this algorithm. Remember to define the buffer to be
a (4D+1)-dimensional float array. Using the values D = 1600 (corresponding to a 0.2 sec delay) and
a = 0.5, recompile and run both the comb.c and comb2.c programs and listen to their outputs.

In general, such recursive implementations of FIR filters are more prone to the accumulation of round-
off errors than the non-recursive versions. You may want to run these programs with a = 1 to observe
this sensitivity.

3.4. FIR Filters with Linear and Circular Buffers

The sample-by-sample processing implementation of FIR filters is discussed in Sect. 4.2 of the text [1].
For an order-M filter, the input/output convolutional equation can be written as the dot product of the
filter-coefficient vector h = [h0, h1, . . . , hM]T with the state vector s(n)= [xn , xn−1 , . . . , xn−M]T:

yn =
M∑
m=0

h(m)x(n−m)= [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎣

x(n)
x(n− 1)

...
x(n−M)

⎤
⎥⎥⎥⎥⎦ = hTs(n) , s(n)=

⎡
⎢⎢⎢⎢⎣

x(n)
x(n− 1)

...
x(n−M)

⎤
⎥⎥⎥⎥⎦

A block diagram realization for the case M = 3 is depicted below.

We note that the ith component of the state vector is si(n)= x(n− i), i = 0,1, . . . ,M, and therefore,
the states are the tap outputs of a multiple delay-line with M delays. Thus, the definition of the delay
line and its time updating remains the same as in the previous sections. To realize the FIR filter, we must
use the tapped outputs si from the delay line to calculate the dot product, and then update the delay line
to the next time instant.

In this lab, we consider five implementations of FIR filters and study their relative efficiency in terms
of machine cycles at different levels of compiler optimization:

y = fir(M, h, w, x); - linear buffer implementation
y = firc(M, h, w, &p, x); - circular buffer with pointers
y = firc2(M, h, w, &q, x); - circular index with updating in loop
y = firq(M, h, w, &q, x); - circular index with updating outside loop
y = fira(w, h, Lh, Nb, q); - circular buffer in linear assembly

These functions are defined below. The function, fir, implements the linear buffer case:

// fir.c - FIR filter in direct form with linear buffer
// Usage: y = fir(M, h, w, x);
// --

float fir(int M, float *h, float *w, float x)
{

int i;

3 DELAYS AND FIR FILTERING 37

float y; // y=output sample

w[0] = x; // read current input sample x

for (y=0, i=0; i<=M; i++) // process current output sample
y += h[i] * w[i]; // dot-product operation

for (i=M; i>=1; i--) // update states for next call
w[i] = w[i-1]; // done in reverse order

return y;
}

// --

The function firc implements the circular buffer version using the pointer-wrapping function pwrap:

// firc.c - FIR filter implemented with circular pointer
// Usage: y = firc(M, h, w, &p, x);
// --

float *pwrap(int, float *, float *); // defined in dsplab.c

float firc(int M, float *h, float *w, float **p, float x)
{

int i;
float y;

**p = x; // read input sample x

for (y=0, i=0; i<=M; i++) {
y += (*h++) * (**p); // i-th state s[i] = *pwrap(M,w,*p+i)
*p = pwrap(M,w,++*p); // pointer to state s[i+1] = *pwrap(M,w,*p+i+1)
}

*p = pwrap(M,w,--*p); // update circular delay line

return y;
}

// --

The function firc2 is a circular buffer version using the pointer-index-wrapping function qwrap:

// firc2.c - FIR filter implemented with circular index
// Usage: y = firc2(M, h, w, &q, x);
// --

int qwrap(int, int); // defined in dsplab.c

float firc2(int M, float *h, float *w, int *q, float x)
{

int i;
float y;

w[*q] = x; // read input sample x

for (y=0, i=0; i<=M; i++) {
y += *h++ * w[*q]; // i-th state s[i] = w[*q]
*q = qwrap(M,++*q); // pointer to state s[i+1] = w[*q+1]
}

*q = qwrap(M,--*q); // update circular delay line

return y;
}

// --

3 DELAYS AND FIR FILTERING 38

In both firc and firc2, the circular pointer or index are being wrapped during each pass through
the for-loop that computes the output sample y. This is inefficient but necessary because C does not
support circular arrays.

All modern DSP chips, including the C6713, support circular addressing in hardware, which does the
required wrapping automatically without any extra instructions. The following function, firq, emulates
the hardware version more closely by avoiding the repeated calls to qwrap inside the for-loop—it performs
only one wrapping when it reaches the end of the buffer and wraps the index back to q = 0; furthermore,
it wraps once more after the for-loops in order to backshift the pointer index:

// firq.c - FIR filter implemented with circular index
// Usage: y = fircq(M, h, w, &q, x);
// --

float firq(int M, float *h, float *w, int *q, float x)
{

int i, Q;
float y;

Q = M - (*q); // number of states to end of buffer

w[*q] = x; // read input sample x

for (y=0, i=0; i<=Q; i++) // loop from q to end of buffer
y += h[i] * w[(*q)++];

(*q) = 0; // wrap to beginning of buffer

for (i=Q+1; i<=M; i++) // loop to q-1
y += h[i] * w[(*q)++];

(*q)--; if (*q == -1) *q = M; // backshift index

return y;
}

// --

The for-loop is split into two parts, the first part starts at position q and loops until the end of the
buffer, then it wraps to the beginning of the buffer; the second part loops till q− 1. The required states
si of the FIR filter and their association with the filter coefficients hi are depicted below.

Finally, we consider the linear assembly function, fira.sa, listed below, that exploits the hardware
implementation of circular buffers on the C6713 processor. It is based on the function convol1.sa of
Ref. [3], adapted here to our convention of counting the states and filter coefficients in forward order and
updating the circular index by backshifting. Linear assembly functions have an extension .sa and may
be included in a project just like C functions. The linear assembly optimizer determines which particular
hardware registers to assign to the various local variables in the function.

; fira.sa - linear assembly version of FIR filter with circular buffer
;
; extern float fira(float *, float *, int, int, int);
;
; float w[Lw];
; #pragma DATA_ALIGN(w, Lb)
;

3 DELAYS AND FIR FILTERING 39

; usage: w[q] = x; read input sample
; y = fira(w,h,Lh,Nb,q); compute output sample
; q--; if (q==-1) q = Lw-1; update circular index by backshifting
;
; M = filter order
; Lh = M+1 = filter length
; Nb >= 1 + ceil(log2(Lh)) = circular buffer bytes-length exponent
; Lb = 2^(Nb+1) = circular buffer length in bytes
; Lw = Lb/4 = 2^(Nb-1) = circular buffer in 32-bit words
; --

.global _fira
_fira .cproc w, h, Lh, Nb, q ; function arguments

.reg Y, P, si, hi ; local variables

ADDAW w, q, w ; point to w[q] = x = current input
; set up the circular buffer

SHL Nb, 16, Nb ; shift Nb to BK0 field
set Nb, 8,8, Nb ; set circular mode, BK0, B4
MVC Nb, AMR ; load mode into AMR

ZERO Y ; output

loop: .trip 8, 500 ; assume between 8 and 500 taps

LDW *w++, si ; load i-th state, si = x(n-i)
LDW *h++, hi ; load i-th filter coeff, h(i)
MPYSP si,hi,P ; multiply single precision, P = hi*si
ADDSP P,Y,Y ; Y = Y + P = accumulate output

[Lh] SUB Lh, 1, Lh ; decrement, Lh = Lh-1
[Lh] B loop ; loop until Lh=0

.return Y ; put sum in A4 - C convention

.endproc

; --

Lab Procedure

A lowpass FIR filter of order M and cutoff frequency f0 can be designed using the Hamming window
approach by the following equations (see Ch.11 of [1]):

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, h(n)= w(n) sin

(
ω0(n−M/2)

)
π(n−M/2) , 0 ≤ n ≤M

where ω0 = 2πf0/fs, and w(n) is the Hamming window.

a. Design such a filter with MATLAB using the following values: fs = 8 kHz, f0 = 2 kHz, and filter order
M = 100. Then, using the built-in MATLAB function freqz, or the textbook function dtft, calculate
and plot in dB the magnitude response of the filter over the frequency interval 0 ≤ f ≤ 4 kHz. The
designed filter response is shown in Fig. 3.4 in absolute units and in dB.

b. The designed 101-long impulse response coefficient vector h can be exported into a data file, h.dat,
in a form that is readable by a C program by the following MATLAB command:

C_header(’h.dat’, ’h’, ’M’, h);

where C_header is a MATLAB function in the directory c:\dsplab\common. A few lines of the resulting
data file are shown below:

3 DELAYS AND FIR FILTERING 40

0 1 2 3 4
0

0.5

1

f (kHz)

m
ag

n
it

u
de

0 1 2 3 4
−80

−60

−40

−20

0

f (kHz)

dB

Fig. 3.4 Magnitude response of lowpass filter.

// h.dat - FIR impulse response coefficients
// exported from MATLAB using C_header.m
// ---

#define M 100 // filter order

float h[M+1] = {
-0.000000000000000,
0.000525586170315,
-0.000000000000000,
-0.000596985888698,
0.000000000000000,
0.000725138232653,

--- etc. ---
-0.000596985888698,
-0.000000000000000,
0.000525586170315,
-0.000000000000000
};

// ---

The following complete C program, firex.c, implements this example on the C6713 processor. The
program reads the impulse response vector from the data file h.dat, and defines a 101-dimensional
delay-line buffer array w. The FIR filtering operation is based on any of the choices, fir, firc,
firc2, firq, depending on which lines are uncommented.

// firex.c - FIR filtering example
// --

#include "dsplab.h" // DSK initialization declarations and function prototypes

//float fir(int, float *, float *, float);
//float firc(int, float *, float *, float **, float);
//float firc2(int, float *, float *, int *, float);
//float firq(int, float *, float *, int *, float);

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#include "h.dat" // contains M+1 = 101 filter coefficients

float w[M+1]; // filter delay lines
int on = 1; // turn filter on
//float *p;
//int q;

// --

3 DELAYS AND FIR FILTERING 41

void main()
{

int i;

for (i=0; i<=M; i++) w[i] = 0; // initialize delay-line buffer
//p = w; // initialize circular pointer
//q = 0;

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// ---

interrupt void isr()
{

float x, y; // filter input & output

read_inputs(&xL, &xR); // read audio samples from codec

if (on) {
x = (float)(xL); // work with left input only

//y = fir(M,h,w,x);
//y = firc(M,h,w,&p,x);
//y = firc2(M, h, w, &q, x);
//y = firq(M, h, w, &q, x);

yL = (short)(y);
}

else // pass through if filter is off
yL = xL;

write_outputs(yL,yL); // write audio samples to codec

return;
}

// --

Create and build a project for this program. You will need to add one of the functions fir, firc,
firc2, firq to the project. Using the following MATLAB code (same as in the aliasing example of
Lab-1), generate a signal consisting of a 1-kHz segment, followed by a 3-kHz segment, followed by
another 1-kHz segment, where all segments have duration of 1 sec:

fs = 8000; f1 = 1000; f2 = 3000; f3 = 1000;
L = 8000; n = (0:L-1);
A = 1/5; % adjust playback volume

x1 = A * cos(2*pi*n*f1/fs);
x2 = A * cos(2*pi*n*f2/fs);
x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

First, set the parameter on=0 so that the filtering operation is bypassed. Send the above signal into
the line input of the DSK and listen to the output. Then, set on=1 to turn the filter on using the linear
buffer version, fir, recompile and run the program, and send the same signal in. The middle 3-kHz
segment should not be heard, since it lies in the filter’s stopband.

3 DELAYS AND FIR FILTERING 42

c. Create breakpoints at the read_inputs and write_outputs lines of the isr() function, and start the
profile clock. Run the program and record the number of cycles between reading the input samples
and writing the computed outputs.

d. Uncomment the appropriate lines in the above program to implement the circular buffer versions
using the functions firc, firc2, firq. You will need to add these to your project. Recompile and
run your program with the same input.

Then, repeat part (c) and record the number of computation cycles.

e. The compiler optimization thus far was set to “none”. Using the keyboard combination “ALT-P P”, or
the CCS menu commands Project -> Build Options, change the optimization level to -o0, -o1, -o2,
-o3, and for each level and each of the four filter implementations fir, firc, firc2, firq, repeat
part (c) and record the number of cycles in a table form:

none -o0 -o1 -o2 -o3
fir
firc
firc2
firq
fira

f. Add to the above table the results from the linear assembly version implemented by the following
complete C program, firexa.c, and evaluate your results in terms of efficiency of implementation
and optimization level.

// firexa.c - FIR filtering example using circular buffer with linear assembly
// --

#include "dsplab.h" // DSK initialization declarations and function prototypes

extern float fira(float *, float *, int, int, int);

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#include "h.dat" // contains M+1 = 101 filter coefficients

#define Nb 8 // circular-buffer length (bytes) exponent, Nb = 1 + ceil(log2(M+1)) = 8
#define Lb 512 // circular-buffer length (bytes) = 2^(Nb+1)
#define Lw 128 // circular-buffer length (words) = 2^(Nb-1) = Lb/4
#define Lh 101 // filter length = M+1

float w[Lw]; // circular buffer

#pragma DATA_ALIGN(w, Lb) // align buffer at byte-boundary

int q; // circular-buffer index
int on = 1; // filter is ON or OFF

// --

void main()
{

int i;

for (i=0; i<Lw; i++) w[i] = 0; // initialize circular buffer to zero
q = 0; // initialize index into buffer

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(8); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

3 DELAYS AND FIR FILTERING 43

while(1); // keep waiting for interrupt, then jump to isr()
}

// ---

interrupt void isr()
{

float x, y; // filter input & output

read_inputs(&xL, &xR);

if (on) {
x = (float)(xL); // work with left input only

w[q] = x; // put x into w[q],

y = fira(w, h, Lh, Nb, q); // fira does not update q

q--; if (q == -1) q = Lw-1; // backshift to update q for next time instant

yL = (short)(y);
}

else
yL = xL;

write_outputs(yL,yL);

return;
}

// --

3.5. Voice Scrambler

A simple voice scrambler works by spectrum inversion. It is not the most secure way of encrypting
speech, but we consider it in this lab as an application of low pass filtering and AM modulation. The
main operations are depicted below.

First, the sampled speech signal x(n) is filtered by a lowpass filter h(n) whose cutoff frequency f0 is
high enough not to cause distortions of the speech signal (the figure depicts an ideal filter). The sampling
rate fs is chosen such that 4f0 < fs. The filtering operation can be represented by the convolutional
equation:

y0(n)=
∑
m
h(m)x(n−m) (3.2)

Next, the filter output y0(n) modulates a cosinusoidal carrier signal whose frequency coincides with

3 DELAYS AND FIR FILTERING 44

the filter’s cutoff frequency f0, resulting in the signal:

y1(n)= s(n)y0(n), where s(n)= 2 cos(ω0n) , ω0 = 2πf0
fs

(3.3)

The multiplication by the carrier signal causes the spectrum of the signal to be shifted and centered at
±f0, as shown above. Finally, the modulated signal y1(n) is passed through the same filter again which
removes the spectral components with |f| > f0, resulting in a signal y2(n) with inverted spectrum. The
last filtering operation is:

y2(n)=
∑
m
h(m)y1(n−m) (3.4)

To unscramble the signal, one may apply the scrambling steps (3.2)–(3.4) to the scrambled signal itself.
This works because the inverted spectrum will be inverted again, recovering in the original spectrum.

In this lab, you will study a real-time implementation of the above procedures. The lowpass filter will
be designed with the parameters fs = 16 kHz, f0 = 3.3 kHz, and filter orderM = 100 using the Hamming
design method:

h(n)= w(n) sin
(
ω0(n−M/2)

)
π(n−M/2) , 0 ≤ n ≤M (3.5)

where ω0 = 2πf0/fs, and w(n) is the Hamming window:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, 0 ≤ n ≤M (3.6)

The following C program, scrambler.c, forms the basis of this lab. It is a variation of that discussed
in the Chassaing-Reay text [2].

// scrambler.c - voice scrambler example
// --

#include "dsplab.h" // initialization declarations and function prototypes
#include <math.h>
#define PI 3.14159265358979

short xL, xR, yL, yR; // left and right input and output samples from/to codec

#define M 100 // filter order
#define L 160 // carrier period, note L*f0/fs = 160*3.3/16 = 33 cycles

float h[M+1], w1[M+1], w2[M+1]; // filter coefficients and delay-line buffers
int n=0; // time index for carrier, repeats with period L
int on=1; // turn scrambler on (off with on=0)

float w0, f0 = 3.3; // f0 = 3.3 kHz
short fs = 16; // fs = 16 kHz

// --

void main()
{

int i;
float wind;

w0 = 2*PI*f0/fs; // carrier frequency in rads/sample

for (i=0; i<=M; i++) { // initialize buffers & design filter
w1[i] = w2[i] = 0;
wind = 0.54 - 0.46 * cos(2*PI*i/M); // Hamming window
if (i==M/2)

h[i] = w0/PI;
else

h[i] = wind * sin(w0*(i-M/2)) / (PI*(i-M/2));
}

3 DELAYS AND FIR FILTERING 45

initialize(); // initialize DSK board and codec, define interrupts

sampling_rate(fs); // possible sampling rates: 8, 16, 24, 32, 44, 48, 96 kHz
audio_source(LINE); // LINE or MIC for line or microphone input

while(1); // keep waiting for interrupt, then jump to isr()
}

// --

interrupt void isr() // sample processing algorithm - interrupt service routine
{

int i;
float y;

read_inputs(&xL, &xR); // read left and right input samples from codec

if (on) {
y = (float)(xL); // work with left input only

w1[0] = y; // first filter
for (y=0, i=0; i<=M; i++)

y += h[i] * w1[i];
delay(M,w1);

y *= 2*cos(w0*n); // multiply y by carrier
if (++n >= L) n = 0;

w2[0] = y; // second filter
for (y=0, i=0; i<=M; i++)

y += h[i] * w2[i];
delay(M,w2);

yL = (short)(y);
}

else
yL = xL; // pass through if on=0

write_outputs(yL,yL);

return;
}

// --

Two separate buffers,w1,w2, are used for the two lowpass filters. The filter coefficients are computed
on the fly within main() using Eqs. (3.5) and (3.6). A linear buffer implementation is used for both filters.
The sinusoidal carrier signal is defined by:

s[n]= 2 cos(ω0n) , ω0 = 2πf0
fs

Since fs/f0 = 16/3.3 samples/cycle, it follows that the smallest number of samples containing an
integral number of cycles will be:

L = 16

3.3
· 33 = 160 samples

that is, these 160 samples contain 33 cycles and will keep repeating. Therefore, the time index n of s[n]
is periodically cycled over the interval 0 ≤ n ≤ L− 1.

Lab Procedure

a. Explain why the factor 2 is needed in the carrier definition s(n)= 2 cos(ω0n). Explain why f0 must

3 DELAYS AND FIR FILTERING 46

be chosen such that 4f0 < fs in designing the lowpass filter.

b. Create and build a project for this program. The parameter on=1 turns the scrambler on or off. Create
a GEL file for this parameter and open it when you run the program.

c. Play the following two wave files through program:

JB.wav
JBs.wav

When you play the second, which is a scrambled version of the first, it will get unscrambled.

d. Open MATLAB and generate three sinusoids of frequencies 300 Hz, 3000 Hz, and 300 Hz, sampled at
a rate of 16 kHz, each of duration of 1 second, and concatenate them to form a 3-second signal. Then
play this out of the PCs sound card using the sound() function. For example, the following MATLAB
code will do this:

fs = 16000; f1 = 300; f2 = 3000; f3 = 300;
L = 16000; n = (0:L-1);
A = 1/5; % adjust playback volume

x1 = A * cos(2*pi*n*f1/fs);
x2 = A * cos(2*pi*n*f2/fs);
x3 = A * cos(2*pi*n*f3/fs);

sound([x1,x2,x3], fs);

Play this signal through the DSK with the scrambler off. Then, play it with the scrambler on. What are
the frequencies in Hz of the scrambled signal that you hear? Explain this in your report.

e. Instead of actually computing the cosine function at each call of isr(), a more efficient approach
would be to pre-compute the L repeating samples of the carrier s[n] and keep re-using them. This
can be accomplished by replacing the two modulation instructions in isr() by:

y *= s[n]; // multiply y by carrier
if (++n >= L) n = 0;

where s[n] must be initialized within main() to the L values, s[n]= 2 cos(ω0n), n = 0,1, . . . , L− 1.

Re-write the above program to take advantage of this suggestion. Test your program.

In Lab-4, we will reconsider the scrambler and implement the required spectrum inversion using the FFT.

3.6. References

[1] S. J. Orfanidis, Introduction to Signal Processing, online book, 2010, available from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/

[2] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the TMS320C6713 and
TMS320C6416 DSK, 2nd ed., Wiley, Hoboken, NJ, 2008.

[3] S. A. Tretter, Communication System Design Using DSP Algorithms with Laboratory Experiments for
the TMS320C6713 DSK, Springer, New York, 2008, code available from:
http://www.ece.umd.edu/~tretter

