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Abstract

A family of digital parametric audio equalizers based on high-order Butterworth,
Chebyshev, and elliptic analog prototype filters is derived that generalizes the con-
ventional biquadratic designs and provides flatter passbands and sharper bandedges.
The equalizer filter coefficients are computable in terms of the center frequency, peak
gain, bandwidth, and bandwidth gain. We consider the issues of filter order and
bandwidth selection, and discuss frequency-shifted transposed, normalized-lattice,
and minimum roundoff-noise state-space realization structures. The design equa-
tions apply equally well to lowpass and highpass shelving filters, and to ordinary
bandpass and bandstop filters.

0. Introduction

Digital parametric audio equalizers are commonly implemented as biquadratic filters [1–15]. In
some circumstances, it might be of interest to use equalizer designs based on high-order filters.
Such designs can provide flatter passbands and sharper bandedges at the expense of higher
computational cost.

In this paper, we present a family of digital equalizers and shelving filters based on high-
order Butterworth, Chebyshev, and elliptic lowpass analog prototypes and derive explicit design
equations for the filter coefficients in terms of the desired peak gain, peak or cut frequency,
bandwidth, and bandwidth gain. We discuss frequency-shifted transposed, normalized-lattice,
and minimum roundoff-noise state-space realization structures, as well as structures that allow
the independent control of center frequency, gain, and bandwidth.

High-order equalizers have been considered previously by Moorer [3] who used a conformal
mapping method based on elliptic functions to map a first-order lowpass digital shelving filter
into a high-order elliptic equalizer, and by Keiler and Zölzer [18] who obtained a fourth-order
equalizer based on a second-order analog Butterworth prototype.

Our elliptic designs are essentially equivalent to Moorer’s, but we follow a direct approach
that closely parallels the conventional analog filter design methods and can be applied equally
well to all three filter types, Butterworth, Chebyshev, and elliptic.
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We start by designing a high-order analog lowpass shelving filter that meets the given gain
and bandwidth specifications. The analog filter is then transformed into a digital lowpass shelv-
ing filter using the bilinear transformation. Finally, the digital shelving filter is transformed
into a peaking equalizer centered at the desired peak frequency using a lowpass-to-bandpass
z-domain transformation [16,17].

1. General Considerations

The design specifications for the digital equalizer are the quantities {G,G0, GB, f0, Δf, fs}, that
is, the peak or cut gain G, the reference gain G0 (usually set equal to unity), the bandwidth
gain GB, the peak or cut frequency f0 in Hz, the bandwidth Δf measured at level GB, and the
sampling rate fs. These are illustrated in Fig. 1 for the Butterworth case. In the elliptic case, an
additional gain, Gs, needs to be specified, as discussed in Section 5. The bandwidth is related
to the left and right bandedge frequencies f1, f2 by Δf = f2 − f1. It is convenient to work with
the normalized digital frequencies in units of radians per sample:

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

, ω1 = 2πf1
fs

, ω2 = 2πf2
fs

(1)

The starting point of the design method is an equivalent analog lowpass shelving filter,
illustrated in Fig. 1, that has the same gain specifications as the desired equalizer, but with peak
frequency centered at Ω = 0 and bandedge frequencies at ±ΩB.

The analog filter may be transformed directly to the desired digital equalizer by the bandpass
transformation between the s and z planes [16]:

s = 1− 2 cosω0 z−1 + z−2

1− z−2
(2)

The corresponding frequency mapping between s = jΩ and z = ejω is found from (2) to be:

Ω = cosω0 − cosω
sinω

(3)

Fig. 1 Specifications of high-order equalizer and the equivalent lowpass analog prototype.
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where ω = 2πf/fs and f is the physical frequency in Hz. The requirement that the bandedge
frequencies ω1,ω2 map onto ±ΩB gives the conditions:

cosω0 − cosω1

sinω1
= −ΩB , cosω0 − cosω2

sinω2
= ΩB (4)

These may be solved for ω0 and ΩB in terms of ω1 and ω2:

ΩB = tan
(
Δω

2

)
, tan2

(
ω0

2

)
= tan

(
ω1

2

)
tan

(
ω2

2

)
(5)

where Δω =ω2 −ω1. Equivalently, we have:

cosω0 = sin(ω1 +ω2)
sinω1 + sinω2

(6)

Conversely, Eqs. (4) may be solved for ω1 and ω2 in terms of ω0 and Δω:

ejω1 = c0 + j
√
Ω2
B + s2

0

1+ jΩB , ejω2 = c0 + j
√
Ω2
B + s2

0

1− jΩB (7)

where Δω enters through ΩB = tan(Δω/2). Extracting the real parts of Eq. (7), we obtain:

cosω1 =
c0 +ΩB

√
Ω2
B + s2

0

Ω2
B + 1

, cosω2 =
c0 −ΩB

√
Ω2
B + s2

0

Ω2
B + 1

(8)

where we introduced the shorthand notation c0 = cosω0 and s0 = sinω0. Eqs. (7) have the
proper limits asω0 → 0 andω0 → π, resulting in the cutoff frequencies (measured at level GB)
of the digital lowpass and highpass shelving equalizers:

ω0 = 0 , ω1 = 0 , ω2 = Δω, (LP shelf)

ω0 = π, ω1 = π−Δω, ω2 = π, (HP shelf)
(9)

The magnitude responses of the high-order analog lowpass shelving Butterworth, Chebyshev,
and elliptic prototype filters that we consider in this paper are taken to be:

|Ha(Ω)|2 = G2 +G2
0ε2F2

N(w)
1+ ε2F2

N(w)
(10)

where N is the analog filter order, ε is a constant, and FN(w) is a function of the normalized
frequency w = Ω/ΩB given by:

FN(w)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wN, Butterworth

CN(w), Chebyshev, type-1

1/CN(w−1), Chebyshev, type-2

cd(NuK1, k1), w = cd(uK, k), Elliptic

(11)
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whereCN(x) is the order-N Chebyshev polynomial, that is,CN(x)= cos(N cos−1 x), and cd(x, k)
is the Jacobian elliptic function cd with modulus k and real quarter-period K. The parameters
k and k1 are defined in Section 5.

In all four cases, the function FN(w) is normalized such that FN(1)= 1. The requirement
that the bandwidth gain be equal to GB at the frequencies Ω = ±ΩB gives a condition from
which the constant ε may be determined. Setting Ω = ΩB in Eq. (10), we obtain:

|Ha(ΩB)|2 = G2 +G2
0ε2

1+ ε2
= G2

B � ε =
√√√√G2 −G2

B
G2
B −G2

0
(12)

The analog transfer function Ha(s) corresponding to Eq. (10) is constructed by finding the
left-hand s-plane zeros of the numerator and denominator of (10) and pairing them in conjugate
pairs. By construction, Ha(s), and hence the equalizer transfer function, will have minimum
phase. This is a desirable property because our designs imply that the transfer function of a cut
by the same amount as a boost will be the inverse of the corresponding boost transfer function.
In terms of its s-plane zeros and poles, Ha(s) may be written in the factored form:

Ha(s)= H0

[
1− s/z0

1− s/p0

]r L∏
i=1

[
(1− s/zi)(1− s/z∗i )
(1− s/pi)(1− s/p∗i )

]
(13)

where L is the number of analog second-order sections, related to the analog filter order by
N = 2L+ r, where r = 0, if N is even, and r = 1, if N is odd. The notation [F]r means that the
factor F is present if r = 1 and absent if r = 0. The quantity H0 is the gain atΩ = 0 (and at the
peak frequency ω =ω0) and is given in terms of G or GB as follows:

H0 =
⎧⎨
⎩
G, Butterworth and Chebyshev-2

GrG1−r
B , Chebyshev-1 and Elliptic

(14)

The zeros z0, zi and poles p0, pi are given in Appendix A.2 for all four filter types. We will use
Eq. (13) for the Butterworth, Chebyshev-2, and elliptic designs. For Chebyshev type-1 designs,
it is more convenient to use the following form:

Ha(s)= H∞
[
z0 − s
p0 − s

]r L∏
i=1

[
(zi − s)(z∗i − s)
(pi − s)(p∗i − s)

]
(15)

where H∞ is the gain at Ω = ∞ (and at ω = 0 and ω = π) given by:

H∞ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
G0, Butterworth and Chebyshev-1

Gr0G
1−r
B , Chebyshev-2

Gr0G1−r
s , Elliptic

(16)

The conventional textbook designs [23] of lowpass filters are obtained as special cases of
Eqs. (10)–(16) in the limit G0 = 0, G = 1.

For realization purposes, it proves convenient to implement the transformation (2) in two
stages by first transforming the analog lowpass shelving filter into a digital lowpass shelving
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filter using the ordinary bilinear transformation, and then transforming that into the bandpass
peaking equalizer. This two-step process is expressed by writing Eq. (2) in the form [16,17]:

s = 1− ẑ−1

1+ ẑ−1
= 1− 2c0 z−1 + z−2

1− z−2
� ẑ−1 = z−1(c0 − z−1)

1− c0z−1
(17)

Such transformations have been used in the design of the biquadratic equalizer [8] and
bandpass and bandstop filters with variable characteristics [19–21].

Under the lowpass transformation from s to ẑ, the factored form of Eq. (13) results in a digital
lowpass shelving filter of order N that is a cascade of first- and second-order sections in the
variable ẑ. Then, the lowpass-to-bandpass transformation from ẑ to z will yield the bandpass
equalizer, centered at ω0, as a cascade of second- and fourth-order sections in the variable z,
with a net filter order of 2N.

Thus, the designed equalizer transfer function can be expressed in terms of the variable s,
or the variable ẑ, or the variable z, in the following equivalent cascaded forms:

H(z) =
[
B00 + B01s
A00 +A01s

]r L∏
i=1

[
Bi0 + Bi1s+ Bi2s2

Ai0 +Ai1s+Ai2s2

]
(18a)

=
[
b̂00 + b̂01ẑ−1

1+ â01ẑ−1

]r L∏
i=1

[
b̂i0 + b̂i1ẑ−1 + b̂i2ẑ−2

1+ âi1ẑ−1 + âi2ẑ−2

]
(18b)

=
[
b00 + b01z−1 + b02z−2

1+ a01z−1 + a02z−2

]r L∏
i=1

[
bi0 + bi1z−1 + bi2z−2 + bi3z−3 + bi4z−4

1+ ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

]
(18c)

WhenN = 1, the r-factor is identical to the conventional biquad equalizer [1–15]. For the special
cases of lowpass and highpass digital shelving filters, we have c0 = ±1, and Eq. (17) reduces to
ẑ−1 = ±z−1. These cases are described only by Eqs. (18a) and (18b).

The algebraic relations among the coefficients of Eq. (18) are straightforward and given in
Appendix A.1. In the following sections, we present the design equations for the coefficients of
Eqs. (18) in the Butterworth, the two Chebyshev, and the elliptic cases.

2. Butterworth Designs

Using Eq. (93) for the Butterworth zeros and poles, we obtain the following expression for the
analog transfer function (18a) in the Butterworth case:

Ha(s)=
[
gβ+ g0s
β+ s

]r L∏
i=1

[
g2β2 + 2gg0siβs+ g2

0s2

β2 + 2siβs+ s2

]
(19)

where we defined the parameters:

g = G1/N, g0 = G1/N
0 , β = ε−1/NΩB = ε−1/N tan

(
Δω

2

)
(20)
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si = sinφi , φi = (2i− 1)π
2N

, i = 1,2, . . . , L (21)

The parameter ε is given by Eq. (12) and ΩB by Eq. (5). Using the coefficient transformations
given in Appendix A.1, we find the coefficients of the digital lowpass shelving filter (18b):

D0 = β+ 1 Di = β2 + 2siβ+ 1

b̂00 = (gβ+ g0)/D0 b̂i0 = (g2β2 + 2gg0siβ+ g2
0)/Di

b̂01 = (gβ− g0)/D0 b̂i1 = 2(g2β2 − g2
0)/Di

â01 = (β− 1)/D0 b̂i2 = (g2β2 − 2gg0siβ+ g2
0)/Di

âi1 = 2(β2 − 1)/Di
âi2 = (β2 − 2siβ+ 1)/Di

(22)

The coefficients of the second and fourth-order sections of the bandpass equalizer (18c) are:

D0 = β+ 1 Di = β2 + 2siβ+ 1

b00 = (g0 + gβ)/D0 bi0 = (g2β2 + 2gg0siβ+ g2
0)/Di

b01 = −2g0c0/D0 bi1 = −4c0(g2
0 + gg0siβ)/Di

b02 = (g0 − gβ)/D0 bi2 = 2
(
g2

0(1+ 2c2
0)−g2β2

)
/Di

a01 = −2c0/D0 bi3 = −4c0(g2
0 − gg0siβ)/Di

a02 = (1− β)/D0 bi4 = (g2β2 − 2gg0siβ+ g2
0)/Di

ai1 = −4c0(1+ siβ)/Di
ai2 = 2

(
1+ 2c2

0 − β2
)
/Di

ai3 = −4c0(1− siβ)/Di
ai4 = (β2 − 2siβ+ 1)/Di

(23)

When N = 1, we have g = G, g0 = G0, β = ε−1 tan(Δω/2), and the second-order section
coefficients {b00, b01, b02, a01, a02} become identical to those of the conventional biquadratic
equalizer, for example, in the form given in [13,14]. TheN = 2 case corresponds to the second-
order shelving filters discussed in [3,12] and used in [18] to design a fourth-order equalizer.
We note also that Eqs. (19)–(23) have the proper limits in the ordinary resonator/bandpass and
notch/bandstop cases G0 = 0, G = 1 and G0 = 1, G = 0.

3. Chebyshev Type-1 Designs

For the Chebyshev designs, the bandwidthΔω and gain levelGB define the extent of the equirip-
ple passband in the type-1 case, or the onset of the equiripple stopband in the type-2 case.

Therefore, for the type-1 case, GB must be chosen to be very close to G in order to achieve
a flat passband, and for the type-2 case, it must be very close to G0 to achieve a flat stopband.
These remarks are illustrated in Fig. 2.
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For the type-1 case, the analog zeros and poles are given by Eq. (96) of Appendix A.2. The
resulting analog transfer function takes the form:

Ha(s)=
[
bΩB + g0s
aΩB + s

]r L∏
i=1

[
(b2 + g2

0c
2
i )Ω

2
B + 2g0bsiΩBs+ g2

0s2

(a2 + c2
i )Ω

2
B + 2asiΩBs+ s2

]
(24)

where we defined g0 = G1/N
0 and:

b = g0 sinhu = 1

2
(β− g2

0β−1) , a = sinhv = 1

2
(α−α−1) (25)

eu = g−1
0 β , β = (Gε−1 +GB

√
1+ ε−2

)1/N , ev = α = (ε−1 +
√

1+ ε−2
)1/N

(26)

si = sinφi , ci = cosφi , φi = (2i− 1)π
2N

, i = 1,2, . . . , L (27)

The choice of these parameters allows a graceful passage to the limit G0 = 0, G = 1, which
is relevant in designing ordinary lowpass and bandpass filters. Using Eq. (89) of Appendix A.1,
the digital lowpass shelving filter coefficients of Eq. (18b) are found to be:

D0 = aΩB + 1 Di = (a2 + c2
i )Ω

2
B + 2asiΩB + 1

b̂00 = (bΩB + g0)/D0 b̂i0 =
(
(b2 + g2

0c
2
i )Ω

2
B + 2g0bsiΩB + g2

0

)
/Di

b̂01 = (bΩB − g0)/D0 b̂i1 = 2
(
(b2 + g2

0c
2
i )Ω

2
B − g2

0

)
/Di

â01 = (aΩB − 1)/D0 b̂i2 =
(
(b2 + g2

0c
2
i )Ω

2
B − 2g0bsiΩB + g2

0

)
/Di

âi1 = 2
(
(a2 + c2

i )Ω
2
B − 1

)
/Di

âi2 =
(
(a2 + c2

i )Ω
2
B − 2asiΩB + 1

)
/Di

(28)

and using Eq. (90), we obtain the bandpass equalizer coefficients:

D0 = aΩB + 1 Di = (a2 + c2
i )Ω

2
B + 2asiΩB + 1

b00 = (g0 + bΩB)/D0 bi0 =
(
(b2 + g2

0c
2
i )Ω

2
B + 2g0bsiΩB + g2

0

)
/Di

b01 = −2g0c0/D0 bi1 = −4c0(g2
0 + g0bsiΩB)/Di

b02 = (g0 − bΩB)/D0 bi2 = 2
(
g2

0(1+ 2c2
0)−(b2 + g2

0c
2
i )Ω

2
B
)
/Di

a01 = −2c0/D0 bi3 = −4c0(g2
0 − g0bsiΩB)/Di

a02 = (1− aΩB)/D0 bi4 =
(
(b2 + g2

0c
2
i )Ω

2
B − 2g0bsiΩB + g2

0

)
/Di

ai1 = −4c0(1+ asiΩB)/Di
ai2 = 2

(
1+ 2c2

0 − (a2 + c2
i )Ω

2
B
)
/Di

ai3 = −4c0(1− asiΩB)/Di
ai4 =

(
(a2 + c2

i )Ω
2
B − 2asiΩB + 1

)
/Di

(29)
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4. Chebyshev Type-2 Designs

In the type-2 Chebyshev case, the analog shelving filter transfer function of Eq. (18a), constructed
from the corresponding left-hand s-plane zeros and poles given by Eq. (98), is found to be:

Ha(s)=
[
gΩB + bs
ΩB + as

]r L∏
i=1

[
g2Ω2

B + 2gbsiΩBs+ (b2 + g2c2
i )s2

Ω2
B + 2asiΩBs+ (a2 + c2

i )s2

]
(30)

where we set g = G1/N and defined:

b = g sinhu = 1

2
(β− g2β−1), a = sinhv = 1

2
(α−α−1) (31)

with si, ci,φi given by Eq. (27), and the quantities u, v defined by:

eu = g−1β , β = (G0ε+GB
√

1+ ε2
)1/N , ev = α = (ε+ √1+ ε2

)1/N
(32)

The form of Eq. (30) facilitates the limitG = 0,G0 = 1, which describes ordinary notch/bandstop
filters. The coefficients of the corresponding digital lowpass shelving filter are:

D0 = ΩB + a Di = Ω2
B + 2asiΩB + a2 + c2

i

b̂00 = (gΩB + b)/D0 b̂i0 = (g2Ω2
B + 2gbsiΩB + b2 + g2c2

i )/Di
b̂01 = (gΩB − b)/D0 b̂i1 = 2(g2Ω2

B − b2 − g2c2
i )/Di

â01 = (ΩB − a)/D0 b̂i2 = (g2Ω2
B − 2gbsiΩB + b2 + g2c2

i )/Di
âi1 = 2(Ω2

B − a2 − c2
i )/Di

âi2 = (Ω2
B − 2asiΩB + a2 + c2

i )/Di

(33)

Fig. 2 Bandwidth specifications of Chebyshev type-1 and type-2 equalizers.
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and the coefficients of the bandpass equalizer:

D0 = ΩB + a Di = Ω2
B + 2asiΩB + a2 + c2

i

b00 = (b+ gΩB)/D0 bi0 = (g2Ω2
B + 2gbsiΩB + b2 + g2c2

i )/Di
b01 = −2bc0/D0 bi1 = −4c0(b2 + g2c2

i + gbsiΩB)/Di
b02 = (b− gΩB)/D0 bi2 = 2

(
(b2 + g2c2

i )(1+ 2c2
0)−g2Ω2

B
)
/Di

a01 = −2ac0/D0 bi3 = −4c0(b2 + g2c2
i − gbsiΩB)/Di

a02 = (a−ΩB)/D0 bi4 = (g2Ω2
B − 2gbsiΩB + b2 + g2c2

i )/Di
ai1 = −4c0(a2 + c2

i + asiΩB)/Di
ai2 = 2

(
(a2 + c2

i )(1+ 2c2
0)−Ω2

B
)
/Di

ai3 = −4c0(a2 + s2
i − asiΩB)/Di

ai4 = (Ω2
B − 2asiΩB + a2 + c2

i )/Di

(34)

We note that for both Chebyshev cases, the filter order N = 1 corresponds to the conventional
biquadratic equalizer.

5. Elliptic Designs

In this section we adapt the conventional elliptic filter design methods [22–27] to the equalizer
problem. We follow the notational conventions and computational algorithms of Ref. [25]. The
required elliptic function moduli k, k1 may be determined in terms of the given filter specifica-
tions by the procedure described below.

The use of the elliptic function cd (instead of usual sn) in the definition of Eq. (11) applies
to both the even and odd values of the filter order N. The elliptic function moduli k, k1 and the
filter order N are required to satisfy the following “degree equation”:

N
K′

K
= K′1
K1

(35)

where K,K′ and K1, K′1 are the quarter periods corresponding to the moduli k, k1 and defined
in terms of the complete elliptic integrals [29–31] by K = K(k), K′ = K(k′), K1 = K(k1), and
K′1 = K(k′1), where k′, k′1 are the complementary moduli k′ = (1−k2)1/2 and k′1 = (1−k2

1)1/2.
A consequence of the degree equation [23,27] is that FN(w)= cd(NuK1, k1) is a rational

function of w = cd(uK, k) given as follows (and normalized such that FN(1)= 1):

FN(w)= [w]r
L∏
i=1

[(
w2 − ζ2

i
1−w2k2ζ2

i

)(
1− k2ζ2

i
1− ζ2

i

)]
(36)

where N = 2L+ r, and ζi and (kζi)−1 are the zeros and poles of FN(w), where:

ζi = cd(uiK, k) , ui = 2i− 1

N
, i = 1,2, . . . , L (37)

Because the elliptic designs are equiripple in both the passband and stopband, the speci-
fications of the equalizer must be modified by adding a gain Gs that defines the level of the
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equiripple stopband. These specifications and those of the equivalent analog lowpass shelving
filter are shown in Fig. 3.

The gain GB defines the equiripple passband, which extends over the ±ΩB interval for the
shelving filter. The equiripple stopband begins at a frequency Ωs > ΩB that defines the elliptic
modulus k = ΩB/Ωs. At the normalized frequency w1 = Ωs/ΩB = 1/k, we have FN(w1)=
1/k1. Indeed, the condition that w1 = cd(uK, k)= 1/k is satisfied with u = jK′/K, that is,
cd(uK, k)= cd(jK′, k)= 1/k, which is a standard property of the cd elliptic function [30,31].
Then, the same property and the degree equation (35) imply that:

FN(w1)= cd(NuK1, k1)= cd(jNK1K′/K, k1)= cd(jK′1, k1)= 1/k1 (38)

Using Eq. (38), the requirement that the gain be equal to Gs at w = w1 gives the condition:

|Ha(Ωs)|2 = G2 +G2
0ε2/k2

1

1+ ε2/k2
1

= G2
s � k1 = ε

εs
, εs =

√√√√G2 −G2
s

G2
s −G2

0
(39)

Thus, the elliptic moduli k, k1 are given as follows in terms of the shelving filter specifications:

k = ΩB
Ωs

, k1 = ε
εs

(40)

Because of the degree equation, any two of the parametersN,Gs,Ωs, or equivalently,N,k, k1,
will determine the third. For the equalizer problem, it is convenient to fix N and Gs, with Gs
chosen to be very close toG0 in order to achieve a flat stopband. Then, from the degree equation
we may determine the parameter k and, hence, the value of the stopband edge frequency Ωs.

An exact solution of the degree equation can be derived by using the property of Eq. (38).
Setting w1 = 1/k and FN(w1)= 1/k1 in Eq. (36), we obtain the formula for k1:

k1 = kN
L∏
i=1

sn4(uiK, k) (41)

Fig. 3 Design specifications of elliptic equalizer and corresponding shelving filter.
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where we used the property: (1 − ζ2
i )/(1 − k2ζ2

i )= sn2(uiK, k). Noting the invariance [28]
of the degree equation under the substitutions k → k′1 and k1 → k′, we also obtain the exact
solution for k in terms of N,k1, expressed via the complementary moduli k′, k′1:

k′ = (k′1)N
L∏
i=1

sn4(uiK′1, k′1) (42)

Eqs. (41) and (42), known as the “modular equations,” were derived first by Jacobi in his
original treatise on elliptic functions [29] and have been used since in the context of elliptic
filter design [23,27,28].

The degree equation can also be solved approximately, and accurately, by working with the
nomes q,q1 corresponding to the moduli k, k1. Exponentiating Eq. (35), we have:

q1 = qN � q = q1/N
1 (43)

where q = e−πK′/K and q1 = e−πK′1/K1 . Once q has been calculated fromN and q1, the modulus
k can be determined from the series expansion [30]:

k = 4
√
q

⎛
⎜⎜⎜⎜⎜⎝

∞∑
m=0

qm(m+1)

1+ 2
∞∑
m=1

qm
2

⎞
⎟⎟⎟⎟⎟⎠

2

(44)

which converges very fast. For example, keeping only the terms up to m = 7, gives a very
accurate approximation.

The shelving filter transfer function Ha(s) is constructed by Eq. (13), where the poles p0, pi
are given by Eqs. (100)–(102) of Appendix A.2 and the zeros z0, zi by Eqs. (104)–(105). The
expressions for the zeros take into account the special cases G = 1, G0 = 0 and G = 0, G0 = 1.

Once Ha(s) is determined from its zeros and poles, it may be transformed to the digital
equalizer forms of Eq. (18) using the bilinear transformations. The required coefficient trans-
formations are given by Eqs. (89) and (90) of Appendix A.1. The resulting digital filter coefficients
do not have any easily stated analytical form. They have been implemented numerically by the
MATLAB functions of Appendix A.6.

From the calculated value of Ωs = ΩB/k, the equalizer’s bandwidth, Δωs = 2πΔfs/fs, at
the stopband level Gs can be derived by inverting the relationship Ωs = tan(Δωs/2). The left
and right stopband edge frequencies can be calculated from Eq. (8) with Ωs replacing ΩB:

cosωs1 =
c0 +Ωs

√
Ω2
s + s2

0

Ω2
s + 1

, cosωs2 =
c0 −Ωs

√
Ω2
s + s2

0

Ω2
s + 1

(45)

We note that the type-1 Chebyshev designs correspond to the limitΩs →∞,Gs → G0, or, k =
k1 = 0. In this limit, the quarter periods become K = K1 = π/2, the elliptic function cd tends
to an ordinary cosine, w = cd(uK, k)= cos(uπ/2), and the function FN(w)= cd(NuK1, k1)=
cos(Nuπ/2) becomes equal to the Nth order Chebyshev polynomial CN(w), and the ζi =
cd(uiK, k)= cos(uiπ/2) become its roots.
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6. Order Determination

We saw in the elliptic case that the order N and the stopband level Gs were enough to fix the
rest of the design parameters, and in particular, the bandwidth Δfs atGs. Conversely, if Δf , Δfs
and the levels GB, Gs are specified independently, then, the moduli k, k1 are fixed and may not
necessarily satisfy the degree equation (35) with an integer N. In this case, one may calculate:

N = K′1/K1

K′/K
(46)

and round it up to the next integer. Then, either k1 needs to be recalculated from Eq. (41), or
k from Eq. (42). Given that N is a decreasing function of k1 and an increasing function of k,
it follows that the resulting specifications will be slightly improved. In the first case, k1 will
slightly decrease implying that either ε decreases or εs increases, and hence, either GB gets
closer to G, or Gs gets closer to G0. In the second case, k will slightly increase, implying that
Ωs will get smaller, resulting in a narrower bandwidth Δfs.

A similar determination of the orderN can be carried out in the Butterworth and Chebyshev
cases. One must specify a secondary bandwidth specification, such as Δfs at Gs, as illustrated
in Fig. 3. Defining the parameters k, k1 exactly as in Eq. (40), and using the condition that
FN(w1)= 1/k1 at w1 = 1/k, we obtain the following degree equations. For the Butterworth
case:

k1 = kN ⇒ N = lnk1

lnk
(47)

For the type-1 Chebyshev case, we have CN(1/k)= 1/k1, or,

cosh
(
N cosh−1(1/k)

) = 1/k1 ⇒ N = cosh−1(1/k1)
cosh−1(1/k)

(48)

For the type-2 Chebyshev case, because GB was chosen to be close to G0, the secondary
bandwidth level Gs must be chosen to be very close to G, thus corresponding to a narrower
bandwidth Δfs than Δf . This implies that k = ΩB/Ωs > 1 and also k1 = ε/εs > 1. The degree
equation in this case is CN(k)= k1, or,

cosh(N cosh−1 k)= k1 ⇒ N = cosh−1 k1

cosh−1 k
(49)

The inequality εs < ε for the type-2 case can be seen from the identity:

ε2
s − ε2 = (G2

B −G2
s)(G2 −G2

0)
(G2

s −G2
0)(G

2
B −G2

0)
(50)

where for a boost, we must have G > Gs > GB > G0, and for a cut, G < Gs < GB < G0. For the
Butterworth, type-1 Chebyshev, and elliptic cases, we always have εs > ε, because for a boost
we must have G > GB > Gs > G0, and for a cut, G < GB < Gs < G0.

12



7. Bandwidth

The bandwidth levels GB and Gs may be chosen arbitrarily, as long as they satisfy the basic
inequalities (with the roles of GB and Gs reversed in the Chebyshev-2 case):

G > GB > Gs > G0 (boost)

G < GB < Gs < G0 (cut)
(51)

If the boost gain is more than 3 dB above the reference G0, one may choose GB to be 3 dB
below the peak,G2

B = G2/2, or, alternatively, 3 dB above the reference,G2
B = 2G2

0. Other choices
that respect the inequalities (51) are the geometric and arithmetic means [14]:

G2
B = GG0 , G2

B =
1

2
(G2 +G2

0) (52)

The corresponding values of ε defined by Eq. (12) are in these cases:

ε =
√
G
G0
, ε = 1 (53)

A more general definition is the weighted arithmetic mean:

G2
B =

G2 +α2G2
0

1+α2
⇒ ε = α (54)

where α is an arbitrary constant. The geometric mean choice implies that a boost and a cut by
equal and opposite gains in dB will cancel exactly [9]. On the other hand, as we discuss in the
next section, the weighted arithmetic mean makes possible a generalization of the Regalia-Mitra
realization [5] that allows the independent control of the filter coefficients by the equalizer’s
center frequency f0, bandwidth Δf , and gain G.

Regardless of the choice ofGB, and for all four filter types, it can be shown that a boost and a
cut by gains G and G−1, with bandwidth levels GB and G−1

B , and with the same center frequency
and bandwidth, will cancel each other. Consider the boost and the cut defined by the gains:

G > GB > Gs > G0 (boost)

G−1 < G−1
B < G−1

s < G−1
0 (cut)

(55)

From the definition (12), it follows that:

εcut =
√√√√G−2 −G−2

B
G−2
B −G−2

0
= G0

G

√√√√G2 −G2
B

G2
B −G2

0
= G0

G
εboost (56)

This implies that the root conditions (92) for the zeros and poles will exchange roles, and
therefore, zi,cut = pi,boost and pi,cut = zi,boost. The corresponding analog, and hence, the digital
transfer functions will become inverses of each other:

Hcut(z)= 1

Hboost(z)
(57)
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The elliptic modulus k1 remains invariant under this change because the quantity εs also
changes in the same way as in Eq. (56), and therefore, the ratio ε/εs remains unchanged.

The bandwidth Δω = ω2 − ω1 is given in linear frequency scale and enters the design
equations, for all filter types, through the quantity ΩB = tan(Δω/2). If the bandwidth is to be
specified in octaves, then it may be mapped to the linear Δω in the following way.

Because the quantities Ωi = tan(ωi/2), i = 0,1,2, are related through Ω1Ω2 = Ω2
0, that

is, through Eq. (5), we may set Ω2 = 2B/2Ω0 and Ω1 = 2−B/2Ω0, where B plays the role of
an equivalent analog octave bandwidth. Using some trigonometric identities, we obtain the
following expression for Δω in terms of B:

ΩB = tan
(
Δω

2

)
= sinω0 sinh

(
ln 2

2
B
)

(58)

The true bandwidth in octaves is defined by b = log2(ω2/ω1), or, 2b =ω2/ω1. Replacing
ω2 = 2 arctan(Ω2)= 2 arctan(2B/2Ω0), and similarly for ω1, we obtain the following “band-
width equation” relating B, b, and Ω0 = tan(ω0/2) [32]:

2b = arctan(2B/2Ω0)
arctan(2−B/2Ω0)

(59)

In order to map the given octave bandwidth b to the linear one, one must solve Eq. (59) for B
and substitute it in (58). By expanding (59) to first order in b and B, Bristow-Johnson obtained
the following approximate solution [9]:

B = ω0

sinω0
b (60)

This approximation works very well for low frequencies ω0, as well as for high ω0 and
narrow b. For any values of ω0 and b, Eq. (59) may be solved iteratively, with Eq. (60) serving
as the starting point. By rearranging (59) in the form 2B/2 = Ω0/ tan

(
2−b arctan(2B/2Ω0)

)
, we

obtain the following convergent iteration, initialized at B0 = B given by (60):

2Bn+1/2 = Ω0

tan
(
2−b arctan(2Bn/2Ω0)

) , n = 0,1,2, . . . (61)

At large values of ω0 where the approximation (60) is not as good, the convergence is very
fast, requiring only two or three iterations; the convergence is slow at small ω0, but then the
approximation (60) is good and there is no need for the iteration. The calculated physical band-
width at the nth iteration may be defined through 2bn = arctan(2Bn/2Ω0)/ arctan(2−Bn/2Ω0).
The iteration error |bn − b| decreases essentially exponentially with the iteration index n. This
can be seen as follows. Assuming that Bn is near the desired solution B of (59), and linearizing
the recursion (61) about B, we obtain the following solution for the errors ΔBn = Bn − B:

ΔBn = const · (−a)n , a = (2B +Ω2
0)arctan(2−B/2Ω0)

(1+ 2BΩ2
0)arctan(2B/2Ω0)

(62)

where the quantity a can be shown to be less than unity for all values of B and Ω0, and a
decreasing function of B (a � 1 at low ω0, which explains the slow convergence in that case.)
Thus, ΔBn decreases exponentially, and so does the error |bn − b|, since it follows |ΔBn|.
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Once B has been calculated from b and ω0, it may be used in (58) to obtain the linear
bandwidth Δω and, from it, the actual bandedge frequencies ω1,ω2 through Eqs. (8), or from
ω2,1 = 2 arctan(2±B/2Ω0). The calculated bandedge frequencies will always lie within the
Nyquist interval, for all values of ω0 and b. However, it must be emphasized that, although
ω1,ω2 are b-octaves apart, they will not necessarily lie symmetrically at ±b/2 octaves about
ω0, and may result in a very asymmetric band, especially at large ω0s.

For the Chebyshev and elliptic cases, it may be desirable to be able to design the filters
based on a more standard definition of the bandwidth, such as the 3-dB width, yet preserving
the flatness of the passband and stopband controlled by the gains GB and Gs. This issue has
been discussed in [33]. In general terms, the problem is to compute the design bandwidth Δω
at the level GB from a given bandwidth Δωb at an arbitrary intermediate level Gb, such that
G0 < Gs < Gb < GB < G. For a given order N, the required bandwidth Δω and the design
parameter ΩB can be determined from Δωb as follows:

ΩB = tan
(
Δω

2

)
= 1

wb
tan

(
Δωb

2

)
(63)

where the normalized frequency wb is is the solution of the equation:

FN(wb)= εb
ε
, εb =

√√√√G2 −G2
b

G2
b −G2

0
(64)

Eq. (64) was obtained from the equivalent magnitude condition:

G2 +G2
0ε2F2

N(wb)
1+ ε2F2

N(wb)
= G2

b (65)

The solution of (64) is straightforward. For example, for the type-1 Chebyshev case, one may
solve cosh(Nu)= εb/ε for u and then calculate wb = cosh(u). Similarly, for the elliptic case,
using the inverse of the cd elliptic function (see Appendix A.3), one may solve cd(NuK1, k1)=
εb/ε for u and compute wb = cd(uK, k), where k1 is fixed from the levels GB and Gs, and k
is calculated from N,k1 using the degree equation. Once the bandwidth Δω is determined, it
may be used to complete the filter design. If the Gb-bandwidth is given in octaves, then it can
be converted to linear frequency scale by applying Eqs. (58)–(61) to Δωb instead of Δω.

If the filter order N is not given, but rather both Δω,Δωb at the levels GB,Gb are given,
then, the quantities εb and wb = tan(Δωb/2)/ tan(Δω/2) are fixed and the filter order may
be determined by solving Eq. (64) forN as in Sect. 6. This is straightforward for the Butterworth
and Chebyshev cases.

The elliptic case is a bit more difficult because the third level Gs must also be fixed inde-
pendently. The following trial-and-error approach works well: for each successive filter order
N = 1,2, . . . , calculate k fromN,k1 using the degree equation, then solve cd(NuK1, k1)= εb/ε
for u, calculate the error e = cd(uK, k)−wb, and keep the firstN for which e becomes negative
(it always starts from positive values provided that wb < εb/ε, which is easily met for practical
specifications.)

If the filter is designed with the computedN and the given Δω, then the resulting Gb-width
will be slightly narrower than Δωb. If the width Δωb is to be matched exactly, the resulting
Δω, obtained from Eqs. (63)–(64) using the computed N, will be slightly wider than specified.
All of the above operations can be implemented by the MATLAB functions of Appendix A.6.
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8. Realizations

The digital equalizer transfer function H(z) given by Eq. (18) may be realized as the cascade
of the fourth-order sections in (18c), or alternatively, as the cascade of the frequency-shifted
second-order lowpass shelving filter sections in (18b), in which each unit delay ẑ−1 is replaced
by the lowpass to bandpass transformation of Eq. (17).

We consider briefly the frequency-shifted versions of the transposed, normalized-lattice [34–
36], and minimum-noise state-space [37–41] realizations of Eq. (18b). The latter two are known
to have excellent numerical properties, at the expense of effectively doubling the number of
filter coefficients. Such realizations may be appropriate under stringent filter specifications,
such as very low center frequencies or rapidly-varying equalizer parameters [36].

The normalized lattice realization of the transformation (17) is shown in Fig. 4. It has the ex-
pected limit (without requiring any pole/zero cancellations) in the lowpass and highpass shelv-
ing filter cases ω0 = 0 and ω0 = π. Other realizations of (17) are, of course, possible that
require fewer operations, such as, for example, the one-multiplier form of [8,21]. However, they
lack the scaling and L2-normalization properties of the normalized lattice.

The transposed (of the direct-form II) realization of the second-order sections of Eq. (18b),
after each delay ẑ−1 has been replaced by Fig. 4, is shown in Fig. 5. The figure represents the
transfer function:

B(ẑ)
A(ẑ)

= b̂0 + b̂1ẑ−1 + b̂2ẑ−2

1+ â1ẑ−1 + â2ẑ−2
, ẑ−1 = (c0 − z−1)z−1

1− c0z−1
(66)

Fig. 4 Normalized lattice realization of Eq. (17).

Fig. 5 Frequency-shifted transposed realization of the filter sections of Eq. (18b).
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The normalized lattice realization of Eq. (66) is shown in Fig. 6. The reflection and transmis-
sion coefficients are constructed as follows [34–36]:

γ1 = â1

1+ â2
, γ2 = â2 , τ1 =

√
1− γ2

1 , τ2 =
√

1− γ2
2 (67)

The ladder coefficients d0, d1, d2 are the solutions of the triangular system:

⎡
⎢⎣ 1 γ1 â2

0 1 â1

0 0 1

⎤
⎥⎦
⎡
⎢⎣d0τ1τ2

d1τ2

d2

⎤
⎥⎦ =

⎡
⎢⎣
b̂0

b̂1

b̂2

⎤
⎥⎦ (68)

The first-order factor of Eq. (18b) is obtained by setting â2 = b̂2 = 0, or equivalently, γ2 = 0,
d2 = 0, and τ2 = 1, which amounts to deleting the γ2 lattice section.

Computationally, Eqs. (67) and (68) are simple to use. Explicit expressions for the lattice
filter parameters can be given in the Butterworth and Chebyshev cases. For example, for the
first-order Butterworth factor of Eq. (18b), we find:

γ1 = β− 1

β+ 1
, d0 =

√
β(g+ g0)
β+ 1

, d1 = gβ− g0

β+ 1
(69)

Eq. (69) can also be used to implement the conventional biquadratic equalizer. For the ith
second-order Butterworth factor of (18b), we have:

γ1 = β2 − 1

β2 + 1
, γ2 = β2 − 2siβ+ 1

β2 + 2siβ+ 1
(70)

d0 =
√
β(g+ g0)

[
(1− β2)(g− g0)+2siβ(g+ g0)

]
(β2 + 2siβ+ 1)

√
2si(β2 + 1)

d1 =
√

2β(g+ g0)
[
gβ(1+ βsi)−g0(β+ si)

]
(β2 + 2siβ+ 1)

√
si(β2 + 1)

d2 = g2β2 − 2gg0siβ+ g2
0

β2 + 2siβ+ 1

(71)

Fig. 6 Frequency-shifted normalized lattice realization of the sections of Eq. (18b).
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Optimum state-space realizations that have minimum roundoff noise under fixed-point arith-
metic, and under an L2-scaling constraint for the internal states, are well-known [37–39]. Explicit
design equations for the case of second-order sections with complex-conjugate poles have been
given by Barnes [40] and Bomar [41].

One may use such optimum realizations for each second-order section of Eq. (18b), and
replace the delays ẑ−1 by Fig. 4. The resulting state-space realization of Eq. (66) is shown in
Fig. 7, where the indicated state vectors s and w are two-dimensional. The corresponding time-
domain description is:

y(n) = Cs(n)+Dx(n)
s(n+ 1) = c0

[
As(n)+Bx(n)]− s0w(n)

w(n+ 1) = s0
[
As(n)+Bx(n)]+ c0w(n)

(72)

The ABCD parameters are given in Appendix A.4. For the odd-N case, the first-order factor
in ẑ−1 is described by Eq. (72) with one-dimensional ABCD parameters.

For the special case of the ordinary biquadratic equalizer (N = 1), the first-order factor
in ẑ−1 may be regarded as a second-order factor in z−1 and realized directly in its optimum
second-order state-space form. We have derived the following explicit form of the optimum
second-order state-space parameters in this case:

A = 1

1+ β

[
c0 β+ s0

β− s0 c0

]
, B =

√
2β

1+ β

[ √
1− s0

−σ√1+ s0

]

C =
√

2β(G−G0)
2(1+ β)

[
σ
√

1+ s0 , −
√

1− s0

]
, D = G0 +Gβ

1+ β

(73)

where β = ε−1 tan(Δω/2) and σ = sign(c0), with the convention that sign(0)= 1. The cor-
responding first-order lowpass and highpass shelving filters obtained in the limits ω0 = 0 and
ω0 = π are described by the one-dimensional state-space parameters:

A = ±1− β
1+ β , B = 2

√
β

1+ β , C = ±
√
β(G−G0)

1+ β , D = G0 +Gβ
1+ β (74)

Fig. 7 Frequency-shifted state-space realization of the filter sections of Eq. (18b).
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The state covariance matrix [39] of the realization (73) is found to be:

K =
∞∑
n=0

AnBBTATn = I (75)

where I is the two-dimensional identity matrix. A similar result holds for the realization (74),
but with I replaced by unity. We note that the L2-scaling rule requires that the diagonal entries
of K be unity [39].

The realizations shown in Figs. 5–7 are partially decoupled in the sense that the dependence
on the center frequency ω0 resides only in the multipliers c0, s0, whereas the dependence on
the bandwidth and gain resides in the other coefficients.

For the Butterworth and the two Chebyshev cases, it is possible to generalize the Regalia-
Mitra realizations [5] in which the dependence on the bandwidth, gain, and center frequency is
completely decoupled into separate filter coefficients.

Such decoupling is possible [14] only if the bandwidth level is defined according the weighted
arithmetic mean of Eq. (54). Then, the constant ε = α is independent of the peak gain G and
hence the parameter β of Eq. (20) depends only on the bandwidth Δω.

For the first-order factor of Eq. (18b), the decoupled realization is obtained by a rearrange-
ment of the first-order normalized lattice filter as shown in Fig. 8, where the coefficients d0, d1

are the solutions of the system: [
1 â1

â1 1

][
d0

d1

]
=
[
b̂0

b̂1

]
(76)

Eq. (76) is equivalent to expanding the corresponding first-order transfer function in the form:

B(ẑ)
A(ẑ)

= b̂0 + b̂1ẑ−1

1+ â1ẑ−1
= d0 + d1

AR(ẑ)
A(ẑ)

(77)

where AR(ẑ) is the reverse of the polynomial A(ẑ). For the Butterworth first-order filter coef-
ficients given by Eq. (22), we find:

γ1 = β− 1

β+ 1
, d0 = g+ g0

2
, d1 = g− g0

2
(78)

Similarly, for the type-1 Chebyshev case, we have:

γ1 = aΩB − 1

aΩB + 1
, d0 = 1

2

(
b
a
+ g0

)
, d1 = 1

2

(
b
a
− g0

)
(79)

Thus, the coefficients d0, d1 depend only on the gain, and the coefficients γ1, τ1, only on the
bandwidth. The second-order factors in Eq. (18b) also admit a decoupled realization, but at the
expense of doubling the number of delays. Fig. 9 shows this realization, where the coefficients
d0, d1, d2 are the solutions of the system:

⎡
⎢⎣ 1 â2 1
â1 â1 2
â2 1 1

⎤
⎥⎦
⎡
⎢⎣ d0

d1

d2τ1τ2

⎤
⎥⎦ =

⎡
⎢⎣
b̂0

b̂1

b̂2

⎤
⎥⎦ (80)
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This is equivalent to expanding the second-order transfer function (66) in the form:

B(ẑ)
A(ẑ)

= d0 + d1
AR(ẑ)
A(ẑ)

+ d2
τ1τ2(1+ ẑ−1)2

A(ẑ)
(81)

For the ith second-order Butterworth factors of Eq. (22), we have:

d0 = 1

2
g0(g0 + g) , d1 = 1

2
g0(g0 − g) , d2 = (g2 − g2

0)

√
β(β2 + 1)

32si
(82)

with the reflection coefficients given by Eq. (70). For the type-1 Chebyshev case, we have:

γ1 = (a2 + c2
i )Ω

2
B − 1

(a2 + c2
i )Ω

2
B + 1

, γ2 = (a2 + c2
i )Ω

2
B − 2asiΩB + 1

(a2 + c2
i )Ω

2
B + 2asiΩB + 1

d0 = 1

2
g0

(
g0 + ba

)
, d1 = 1

2
g0

(
g0 − ba

)
, d2 = (b2 − g2

0a2)

√√√√((a2 + c2
i )Ω

2
B + 1

)
ΩB

32sia(a2 + c2
i )

Replacing the unit delays ẑ−1 by Fig. 4, and splitting the multiplier d2 into two factors, one
depending on g and the other on ΩB, we obtain a realization of the equalizer that allows the
independent control of the gain, bandwidth, and center frequency. In the Chebyshev cases,
one must choose α 	 1 for type-1 and α 
 1 for type-2 in Eq. (54), in order to achieve flat
passbands and stopbands, respectively.

The main limitation of such decoupled realizations is the restrictive definition of the band-
width level GB. Thus, the transposed, normalized-lattice, and state-space realizations are more
flexible.

Fig. 8 Decoupled realization of the first-order factor of Eq. (18b).

Fig. 9 Decoupled realization of the second-order factors of Eq. (18b).
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9. Design Examples

Figures 10–13 show the magnitude response of the cascade of four equalizer filters: a lowpass
shelf, a boost, a cut, and a highpass shelf, designed according to the four filter types with analog
filter orders of N = 4 and N = 5. The center frequencies, bandwidths, and boost gains (relative
to G0 = 0 dB) were taken to be:

f1 = 0 kHz , Δf1 = 1 kHz , G1 = 9 dB
f2 = 4 kHz , Δf2 = 2 kHz , G2 = 12 dB
f3 = 9 kHz , Δf3 = 2 kHz , G3 = −6 dB
f4 = 20 kHz , Δf4 = 4 kHz , G4 = 6 dB

(83)

where all gains must be converted from dB to absolute units before used in the design equations.
The sampling rate was 40 kHz.

For the Butterworth case, shown in Fig. 10, the bandwidth gains were chosen to be 3 dB below
(or above, for the cut case) the peak gains, that is:

GB1 = 6 dB , GB2 = 9 dB , GB3 = −3 dB , GB4 = 3 dB (84)

The bullet dots on the graphs show the center and bandedge frequencies computed by Eq. (8).
The conventional biquad equalizers (first order for the shelves), designed with the same specifi-
cations, are also shown in Fig. 10, both individually (dotted lines) and as their overall cascaded
response (dashed line). Because of the slow rolloffs of the individual sections, the biquad cas-
caded response no longer meets the required specifications.

For the type-1 Chebyshev cases, shown in Fig. 11, we have kept the same center frequen-
cies, bandwidths, and peak gains, but in order to achieve flat passbands, we have chosen the
bandwidth gains to be 0.01 dB below the peak gains, that is,

GB1 = 8.99 dB , GB2 = 11.99 dB , GB3 = −5.99 dB , GB4 = 5.99 dB (85)
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Fig. 10 Butterworth designs.
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As a result, the passbands are very flat, but the only way to flatten the stopbands is to increase
the rolloff rate by choosing larger values of the filter order N. For the type-2 Chebyshev cases,
shown in Fig. 12, in order to achieve flat stopbands, we have chosen the bandwidth gains to be
0.01 dB above the 0-dB reference gain G0:

GB1 = 0.01 dB , GB2 = 0.01 dB , GB3 = −0.01 dB , GB4 = 0.01 dB (86)

The bandwidths near the reference gain line have the assumed values, but the equalizer
peaks or cuts become narrower, with their width increasing with the filter order N. Fig. 13
shows the elliptic case, in which both the passband and stopband bandwidth gains were chosen
to be 0.01 dB below the peaks and reference, that is, denoting the stopband gains by Gs:

GB1 = 8.99 dB , GB2 = 11.99 dB , GB3 = −5.99 dB , GB4 = 5.99 dB
Gs1 = 0.01 dB , Gs2 = 0.01 dB , Gs3 = −0.01 dB , Gs4 = 0.01 dB

(87)
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Fig. 11 Chebyshev type-1 designs.
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The elliptic case combines the benefits of the type-1 and type-2 Chebyshev cases and achieves
both flat passbands and stopbands.

To assess the accuracy of the elliptic function computations using a fixed number of Landen
iterations (described in Appendix A.3), we have computed the percentage error in the overall
cascaded frequency response and found that it is less than 0.1 percent if four iterations are used
and less than 10−5 percent for five iterations, as compared to the case of maximum precision in
which the tolerance was defined to be the machine epsilon. Thus, fixing the number of Landen
iterations to five makes the implementation of the elliptic case only slightly more complicated
than the Chebyshev cases.

Fig. 14 shows the same example, but redesigned so that the Chebyshev and elliptic cases have
the same 3-dB widths as the Butterworth case. The bandwidths listed in Eq. (83) were taken to
represent the 3-dB widths relative to the peak gains, that is, corresponding to the levels:

Gb1 = 6 dB , Gb2 = 9 dB , Gb3 = −3 dB , Gb4 = 3 dB (88)

The gains GB and Gs were still defined by Eqs. (85)–(87). The 3-dB widths were remapped to
the bandwidths at the GB design levels using Eqs. (63)–(64). The analog filter order was N = 4.

We have compared also the performance of the canonical (direct-form-II), transposed, nor-
malized lattice, and state-space realizations under some extreme filter settings with rapidly
changing parameters. We used the same benchmark example discussed by Moorer [36], and
applied Butterworth, Chebyshev, and elliptic equalizers of orders N = 1–10 designed with the
following gain specifications:

Butterworth: G = 18 dB, GB = 15 dB
Chebyshev-1: G = 18 dB, GB = 17.99 dB
Chebyshev-2: G = 18 dB, GB = 0.01 dB
Elliptic: G = 18 dB, GB = 17.99 dB, Gs = 0.01 dB

For the first 1000 time samples, the center frequency and bandwidth (at level GB) were fixed
at 44.1 Hz and 22.05 Hz, respectively; for the next 2000 samples, the center frequency was
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Fig. 13 Elliptic designs.
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ramped up linearly to 441 Hz and the bandwidth to 220.5 Hz; and for the last 1000 samples
they were kept fixed at 441 Hz and 220.5 Hz, respectively. The sampling rate was 44.1 kHz.

The input was a 4000-long vector of uniform random numbers in the range [0,1). The
resulting outputs from the four realizations are shown in Fig. 15 for the elliptic design with
N = 5. The graphs on the right column of the figure show the responses to a step-input of
amplitude equal to 0.5, which corresponds to the mean of the random input.

The transposed realization was implemented as the cascade of the realizations of Fig. 5. The
canonical realization was the transposed of Fig. 5. The normalized-lattice and the state-space
realizations were implemented by cascading the realizations of Figs. 6 and 7, respectively.

We observe that the transposed, lattice, and state-space realizations yield comparable re-
sults. The outputs differ only during the middle period when the filter is time-varying and
the realizations are not equivalent. Consistent with Moorer’s observations [36], the normalized
lattice output is visually indistinguishable from that of the state-space case—the two output
signals differing by less that 0.2 percent. As expected, the canonical form suffers from larger
oscillations during the middle period due to its unscaled internal states.
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The results from the Butterworth and Chebyshev designs and for orders N = 1–10 were
comparable to those of Fig. 15. We have also varied the sampling rate up to 96 kHz and/or
lowered all center frequencies with similar results. We looked specifically at the case when
the initial center frequency was set to zero (a shelving filter) for the first 1000 samples. The
canonical realization tended to deteriorate as the center frequencies got lower, resulting in large
oscillations during the middle period; but the other realizations remained robust.

We also studied the performance of the transposed realizations of the fourth-order factors
of Eq. (18c) and found that they were mostly well-behaved, but deteriorated at zero center
frequencies, in fact, becoming unstable due to coefficient roundoff errors that pushed some of
the poles outside the unit circle.

As a final example, we considered the behavior of the different realizations as the equalizer
was being turned on and its gain and bandwidth were time-varying. The equalizer had a fixed
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Fig. 15 Response of equalizer with time-varying center frequency and bandwidth.
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center frequency of 400 Hz. The sampling rate was 44.1 kHz. The input was a 3000-sample
long unit-amplitude sinusoid of frequency of 400 Hz. For the first 1000 samples, the equalizer
was off; for the next 1000 samples, it was turned on with its bandwidth changing linearly from
20 Hz to 100 Hz and its peak gain changing from 0 dB to 18 dB; for the last 1000 samples, the
bandwidth was fixed at 100 Hz and the gain at 18 dB.

Fig. 16 shows the outputs from the canonical, transposed, and normalized lattice realizations
of an elliptic design with N = 5 and stopband level Gs = 0.01 dB. The bandwidth level GB was
taken to be 0.01 dB below the peak gain G (when these definitions could not be made because G
was too small, we defined GB =

√
G, and Gs =

√
GB.) The state-space realization is not shown

as it always produced virtually the same output as the lattice.
In the first row of graphs, the gain was switched on instantaneously to 18 dB (G=8 in absolute

units); in the second row, it was turned on gradually in four steps that were linearly spaced in dB
between 0 and 18 dB; and in the third row, the gain was increased continuously, varying linearly
in dB. The gain curves have been superimposed on the graphs. Similar results were observed in
the Butterworth and Chebyshev cases.

The gradual turning on of the equalizer [42–45] had the beneficial effect of eliminating un-
desirable overshoots (even two intermediate steps had the same positive effect.) Although the
transposed realization was somewhat more sluggish in following the changing gain than the
lattice, its lower computational cost and good numerical behavior make it a good choice for the
implementation of high-order equalizers.

We also carried out the experiments of Figs. 15 and 16 using the decoupled realizations of
Figs. 8 and 9 and found that they had virtually identical performance as the normalized lattice.

0 1000 2000 3000

−8

0

8

Canonical

time samples
0 1000 2000 3000

−8

0

8

Transposed

time samples
0 1000 2000 3000

−8

0

8

Normalized Lattice

time samples

0 1000 2000 3000

−8

0

8

Canonical

time samples
0 1000 2000 3000

−8

0

8

Transposed

time samples
0 1000 2000 3000

−8

0

8

Normalized Lattice

time samples

0 1000 2000 3000

−8

0

8

Canonical

time samples
0 1000 2000 3000

−8

0

8

Transposed

time samples
0 1000 2000 3000

−8

0

8

Normalized Lattice

time samples

Fig. 16 Sinusoidal response of equalizer with time-varying gain.
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10. Conclusion

We have presented a unified method of designing high-order digital parametric equalizers based
on Butterworth, Chebyshev, and elliptic lowpass analog prototype filters. The high-order equal-
izers provide flatter passbands and/or stopbands and sharper bandedges. We considered the is-
sues of choosing the filter order and bandwidth, and presented realizations based on frequency-
shifted transposed, normalized-lattice, and state-space forms that have good numerical prop-
erties and are recommended for use under stringent and time-varying filter specifications. The
design equations apply equally well to shelving filters, and to ordinary lowpass, highpass, band-
pass, and bandstop filters.
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Appendix

A.1 Bilinear Transformations

The algebraic relationships among the coefficients of Eq. (18) are given as follows. For the s to
ẑ−1 transformation, the first- and second-order section coefficients are:

D0 = A00 +A01 Di = Ai0 +Ai1 +Ai2
b̂00 = (B00 + B01)/D0 b̂i0 = (Bi0 + Bi1 + Bi2)/Di
b̂01 = (B00 − B01)/D0 b̂i1 = 2(Bi0 − Bi2)/Di
â01 = (A00 −A01)/D0 b̂i2 = (Bi0 − Bi1 + Bi2)/Di

âi1 = 2(Ai0 −Ai2)/Di
âi2 = (Ai0 −Ai1 +Ai2)/Di

(89)

For the ẑ−1 to z−1 transformation, we obtain the second- and fourth-order coefficients:

b00 = b̂00 bi0 = b̂i0
b01 = c0(b̂01 − b̂00) bi1 = c0(b̂i1 − 2b̂i0)
b02 = −b̂01 bi2 = (b̂i0 − b̂i1 + b̂i2)c2

0 − b̂i1
a01 = c0(â01 − 1) bi3 = c0(b̂i1 − 2b̂i2)
a02 = −â01 bi4 = b̂i2

ai1 = c0(âi1 − 2)
ai2 = (1− âi1 + âi2)c2

0 − âi1
ai3 = c0(âi1 − 2âi2)
ai4 = âi2

(90)

A.2 Poles and Zeros

The zeros and poles of the analog shelving filter Ha(s) are constructed by by finding the roots
of the numerator and denominator of Eq. (10), that is, solving:

G2 +G2
0ε2F2

N(w)= 0 , 1+ ε2F2
N(w)= 0 (91)
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or, equivalently,

FN(w)= ±j GG0ε
, FN(w)= ±j1ε (92)

For the Butterworth case, we haveFN(w)= wN, which leads to the following left-hand s-plane
zeros and poles:

z0 = −gβg0
, zi = gβ

g0
(−si + jci) , p0 = −β , pi = β(−si + jci) (93)

for i = 1,2, . . . , L, where we introduced the parameters:

g = G1/N, g0 = G1/N
0 , β = ε−1/NΩB = ε−1/N tan

(
Δω

2

)
(94)

si = sinφi , ci = cosφi , φi = (2i− 1)π
2N

, i = 1,2, . . . , L (95)

Eq. (19) was obtained by multiplying out the first-order zero and pole factors and distributing
the gain H0 = G = gN over the N first-order sections of Eq. (13).

For the type-1 Chebyshev case, we have FN(w)= CN(w) and the left-hand s-plane zeros and
poles are found to be:

z0 = −ΩB sinhu , zi = jΩB cos(φi − ju)= ΩB(−si sinhu+ jci coshu)
p0 = −ΩB sinhv , pi = jΩB cos(φi − jv)= ΩB(−si sinhv+ jci coshv)

(96)

where i = 1,2, . . . , L, and si, ci,φi are the same as in Eq. (95). The quantities u, v are given by:

eu = g−1
0 β , β = (Gε−1 +GB

√
1+ ε−2

)1/N , ev = α = (ε−1 +
√

1+ ε−2
)1/N

(97)

where g0 = G1/N
0 . The transfer function (24) was obtained by inserting (96) into Eq. (15) and

distributing the gain H∞ = G0 = gN0 over the N first-order sections.
For the type-2 Chebyshev case, we have FN(w)= 1/CN(1/w), which leads to zeros and poles

that are essentially the inverses of those of Eq. (96). For i = 1,2, . . . , L, we have:

z−1
0 = −Ω−1

B sinhu , z−1
i = jΩ−1

B cos(φi − ju)= Ω−1
B (−si sinhu+ jci coshu)

p−1
0 = −Ω−1

B sinhv , p−1
i = jΩ−1

B cos(φi − jv)= Ω−1
B (−si sinhv+ jci coshv)

(98)

where si, ci,φi are the same as in Eq. (95), and the quantities u, v are defined by:

eu = g−1β , β = (G0ε+GB
√

1+ ε2
)1/N , ev = α = (ε+ √1+ ε2

)1/N
(99)

where g = G1/N. Inserting these into Eq. (13) and distributing the gain H0 = G = gN over the
N first-order sections, we obtain the analog transfer function (30).

We note that in both Chebyshev cases, the shelving zeros zi (or their inverses in type-2) as
well as the poles pi, lie on an ellipse on the s-plane, while in the Butterworth case they lie on a
circle.
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In the elliptic case, we have FN(w)= cd(uK1, k1) with w = cd(uK, k). Assuming initially
that G �= 0 and G0 �= 0, the resulting left-hand s-plane zeros and poles of Ha(s) in Eq. (13) are
given as follows, for i = 1,2, . . . , L:

zi = jΩB cd
(
(ui − ju0)K, k

)
, pi = jΩB cd

(
(ui − jv0)K, k

)
(100)

where the ui = (2i − 1)/N are the same as in Eq. (37), and u0, v0 are real-valued and are the
solutions of the equations:

sn(ju0NK1, k1)= j GG0ε
, sn(jv0NK1, k1)= j1ε (101)

IfN is odd, there is an additional real-valued zero and pole obtained from Eq. (100) by setting
ui = 1 (which corresponds to the index i = L+ 1):

z0 = jΩB cd
(
(1− ju0)K, k

) = jΩB sn(ju0K,k)
p0 = jΩB cd

(
(1− jv0)K, k

) = jΩB sn(jv0K,k)
(102)

where we used the identity [31]: cd(K−x, k)= sn(x, k). The evaluation of the elliptic functions
cd and sn and their inverses can be carried out efficiently by means of the Landen transformation
described in Appendix A.3.

Working with the normalized frequency wi = zi/jΩB = cd
(
(ui − ju0)K, k

)
, we verify the

root condition (92):

FN(wi) = cd
(
(ui − ju0)NK1, k1

) = cd
(
(2i− 1)K1 − ju0NK1, k1

)

= (−1)i sn(ju0NK1, k1)= ±j GG0ε

where we used the property [31]: cd
(
(2i−1)K1+x, k1

) = (−1)i sn(x, k1), for integer i. Similarly,
for odd N we have cd

(
(1− ju0)NK1, k1

) = sn(ju0NK1, k1)= jG/(G0ε).
The two special cases G0 = 0 and G = 0 must be treated separately because they lead to the

values z0 = ∞ and z0 = 0 in Eq. (102). When G0 = 0, Eq. (10) implies that the zeros of Ha(s)
coincide with the poles of FN(w), which were defined in Eq. (37). Thus, the conjugate zeros are:

zi = jΩB(kζi)−1 , ζi = cd(uiK, k) (103)

The same conclusion can also be drawn by noting that when G0 = 0 the solution of Eq. (101)
is ju0NK1 = jK′1, that is, it corresponds to a pole of the sn(x, k1) function. But because of the
degree equation, we also have ju0K = jK′, which is a pole of the sn(x, k) function. Therefore,
z0 = ∞ and the zero factor (1 − s/z0) of Ha(s) may be replaced by unity. Using the identity
cd(x− jK′, k)= 1/(k cd(x, k)), the expression (100) for zi reduces to (103) for this value of u0.

When G = 0, the zeros of Ha(s) coincide with the zeros of FN(w) given by Eq. (37), but
there is an extra zero at z0 = 0 for the odd-N case. The factor (1 − s/z0) of Eq. (13) must be
handled as a limiting case as G → 0. Using the Taylor series expansion sn(x, k)� x, which is
valid for small x, it follows that when G is small, the solution of Eq. (101) for u0, and the zero
z0 of Eq. (102), are given approximately by:

ju0NK1 � j GG0ε
⇒ u0 � G

G0εNK1
, z0 = jΩB sn(ju0K,k)� −ΩBu0K = − ΩBGK

G0εNK1
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Because in the odd-N case the overall gain in Eq. (13) isH0 = G, it follows that the first-order
factor H0(1− s/z0) of the transfer function will have a finite limit as G→ 0:

H0(1− s/z0)� G+GsG0εNK1

ΩBGK
→ s
ΩB

G0ε
NK1

K

Thus, in the odd-N case, the first-order numerator factor of Eq. (13) takes the following forms:

H0(1− s/z0)=

⎧⎪⎪⎨
⎪⎪⎩
G(1− s/z0), if G0 �= 0, G �= 0

G, if G0 = 0, G �= 0

(s/ΩB)(G0ε)(NK1/K), if G0 �= 0, G = 0

(104)

For the even-N case, we have H0 = GB, per Eq. (14). Similarly, the conjugate zeros zi,
i = 1,2, . . . , L, are given as follows, for both even and odd N:

zi =

⎧⎪⎪⎨
⎪⎪⎩
jΩB cd

(
(ui − ju0)K, k

)
, if G0 �= 0, G �= 0

jΩB(kζi)−1, if G0 = 0, G �= 0

jΩBζi, if G0 �= 0, G = 0

(105)

The case G0 = 0, G �= 0 corresponds, of course, to the conventional designs of analog
lowpass elliptic filters [22–27].

A.3 Elliptic Function Computations

The key tool for the required elliptic function calculations is the Landen transformation [25,31],
which starts with a given elliptic modulus k and generates a sequence of decreasing moduli kn
via the following recursion, initialized at k0 = k:

kn =
(

kn−1

1+ k′n−1

)2

, n = 1,2, . . . ,M (106)

where k′n−1 = (1− k2
n−1)1/2. The moduli kn decrease rapidly to zero. The recursion is stopped

at n = M when kM has become smaller than a specified tolerance level, for example, smaller
than the machine epsilon. For all practical values of k, such as those in the range 0 ≤ k ≤ 0.999,
the recursion may be stopped at M = 5, with all subsequent kn being smaller than 10−15, while
for k ≤ 0.99, the subsequent kn remain smaller than 10−20.

The Landen recursions (106) imply the following recursions [31] for the complete elliptic
integrals Kn,K′n corresponding to the moduli kn, k′n:

Kn−1 = (1+ kn)Kn
K′n−1 = (1+ kn)K′n/2

⇒ 2
K′n−1

Kn−1
= K′n
Kn

(107)

Eq. (107) corresponds to the degree equation with N = 2. In fact, Eq. (106) is the same as
Eq. (41) with L = 1 and u1 = 1/2, that is, kn = k2

n−1 sn4(u1Kn−1, kn−1), where (106) follows
from the property sn(K/2, k)= 1/

√
1+ k′. The recursion (107) can be repeated to compute the
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elliptic integral K = K(k), that is, K = K0 = (1 + k1)K1 = (1 + k1)(1 + k2)K2, and so on,
yielding:

K = (1+ k1)(1+ k2)· · · (1+ kM)KM , KM = π
2

(108)

Because kM is almost zero, its elliptic integral will be essentially equal to KM = π/2. The
elliptic integral K′ can be computed in the same way by applying the Landen recursion to k′.

The Landen transformations allow the efficient evaluation of the elliptic functions cd and sn
via the following backward recursion, known also as the Gauss transformation [31], and written
in the notation of Ref. [25]:

1

cd(uKn−1, kn−1)
= 1

1+ kn
[

1

cd(uKn, kn)
+ kn cd(uKn, kn)

]
(109)

for n = M,M−1, . . . ,1. The recursion is initialized at n = M where kM is so small that the
cd function is indistinguishable from a cosine, that is, cd(uKM, kM)� cos(uπ/2). Thus, the
computation ofw = cd(uK, k), at any complex value ofu, proceeds by calculating the quantities
wn = cd(uKn, kn), initialized at wM = cos(uπ/2), and ending with w0 = w = cd(uK, k):

w−1
n−1 =

1

1+ kn
[
w−1
n + knwn

]
, n =M,M−1, . . . ,1 (110)

The function w = sn(uK, k) can be evaluated by the same recursion, initialized at wM =
sin(uπ/2). The recursion (110) can also be used to calculate the inverse cd and sn functions
by inverting it to proceed forward from n = 0 to n =M:

w−1
n = 1+ kn

2

[
w−1
n−1 +

√
w−2
n−1 − k2

n−1

]
, n = 1,2, . . . ,M (111)

Starting with a given complex value w = cd(uK, k), and setting w0 = w, the recursion will
end at wM = cos(uπ/2), which may be inverted to yield u = (2/π)acos(wM). Because u is
not unique, it may be reduced to lie within the period strip, 0 ≤ Im(u)< 2K′/K. The inverse of
w = sn(uK, k) is obtained from the same recursion, but with u = (2/π)asin(wM).

The evaluation of the cd elliptic function at a complex argument can also be carried out via
the addition theorem [31]:

cd(u+ jv, k)= cn(u, k)cn(v, k′)−j sn(u, k)dn(u, k)sn(v, k′)dn(v, k′)
dn(u, k)cn(v, k′)dn(v, k′)−jk2 sn(u, k)cn(u, k)sn(v, k′)

(112)

Finally, we note the following identity, valid for even N with the ui defined as in Eq. (37):

L∏
i=1

cd(uiK, k)=
L∏
i=1

sn(uiK, k) (113)

where N = 2L. It may be used to derive the values of the function FN(w) at w = 0 and w = ∞,
that is, F2L(0)= (−1)L and F2L(∞)= (−1)L/k1. From these, one may derive Eqs. (14) and (16).

The MATLAB toolbox described in Appendix A.6 contains functions for the implementation
of all of the above operations.
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A.4 State-Space Realizations

Given the numerator and denominator coefficients of a second-order transfer function of the
form of Eq. (66) with complex-conjugate poles, the optimum minimum roundoff-error state-
space realization is constructed by the following steps [40]:

σ = − â1

2
, ω =

√
â2 − â

2
1

4
, p = σ + jω

q1 = b̂1 − b̂0â1 , q2 = b̂2 − b̂0â2

αr = q1

2
, αi = −q1σ + q2

2ω
, α = αr + jαi

P = |α|
1− |p|2 , Q = Im

[
α

1− p2

]
, k =

√
P+Q
P−Q

B1 =
√
|α| −αi
P−Q , B2 = −sign(αr)

√
|α| +αi
P+Q

C1 = αr
B1
, C2 = αr

B2

(114)

which define the ABCD state-space parameters:

A =
[

σ ωk
−ω/k σ

]
, B =

[
B1

B2

]
, C = [C1, C2] , D = b̂0 (115)

In the special case when αr = 0 and αi > 0, we have:

B1 = 0 , B2 = −
√

2|α|
P+Q , C1 =

√
2|α|(P−Q) , C2 = 0 (116)

and in the case, αr = 0 and αi < 0 :

B1 =
√

2|α|
P−Q , B2 = 0 , C1 = 0 , C2 = −

√
2|α|(P+Q) (117)

The condition that the poles be conjugate pairs is equivalent to the reality of the quantity
ω. This condition is guaranteed by the bilinear transformation construction of the factors of
Eq. (18b). For the first-order factor of (18b), we may define B1 = (1− â2

1)1/2 and:

A =
[
−â1 0

0 0

]
, B =

[
B1

0

]
, C = [q1/B1, 0] , D = b̂0 (118)

A.5 Analog Equalizer Design

The design of analog equalizers requires only some minor changes. The lowpass analog shelving
filter of Eq. (18a) is designed exactly as before, but with the design parameter ΩB = Δω, where
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Δω = 2πΔf is the desired bandwidth in radians per second. The shelving filter is transformed
into an analog bandpass equalizer by the s-domain frequency transformation:

s→ s+ ω
2
0

s
(119)

where ω0 = 2πf0 is the desired center frequency in rads/second. Eq. (119) turns the first- and
second-order sections of Eq. (18a) into second- and fourth-order sections in s.

The bandedge frequencies are calculated by ω2,1 = ±Δω/2 + (ω2
0 + Δω2/4)1/2. They

satisfy ω2
0 = ω1ω2 and Δω = ω2 −ω1. In octaves, we have ω1 = 2−B/2ω0, ω2 = 2B/2ω0,

and Δω = 2ω0 sinh(B ln(2)/2).
For a lowpass shelving filter, one must use ΩB = ωc, where ωc = 2πfc is the cutoff fre-

quency defined at level GB. For the highpass case, one must start the lowpass design with
ΩB = 1/ωc, and apply the highpass transformation s→ 1/s.

A.6 MATLAB Functions

We developed a set of MATLAB functions for implementing the designs and filtering operations
discussed in this paper. These functions, as well as the scripts used to generate all of the
examples of Sect. 9, may be downloaded from the author’s web page [46]. The set does not
require any additional toolboxes and contains the following functions:

hpeq high-order parametric equalizer design, Sections 2–5

hpeqex0,1,2 examples illustrating the usage of hpeq

blt LP-to-BP bilinear transformation, Eqs. (17), (89)–(90)

bandedge bandedge frequencies, Eqs. (8) and (45)

hpeqord determine filter order from specifications, Eqs. (46)–(49)

octbw octave to linear bandwidth calculation, Eqs. (58)–(61)

hpeqbw bandwidth remapping, Eqs. (63)–(64)

fresp frequency response of cascaded sections, Eqs. (18b) and (18c)

dir2latt direct-form to normalized lattice coefficients, Eqs. (67)–(68)

dir2state direct-form to state-space parameters, Eqs. (114)–(118)

dir2decoup direct-form to decoupled realization, Eqs. (76)–(82)

transpfilt filtering in cascaded transposed form, Fig. 5

nlattfilt filtering in cascaded normalized lattice form, Fig. 6

df2filt filtering in direct-form-II realized by the transposed of Fig. 5

statefilt filtering in cascaded state-space form, Fig. 7

decoupfilt filtering in cascaded decoupled form, Figs. 8–9

stpeq state-space biquad parametric equalizer, Eq. (73)

landen Landen transformation, Eq. (106)

cde,acde cd elliptic function and its inverse, Eqs. (110)–(111)

sne,asne sn elliptic function and its inverse, Eqs. (110)–(111)

cne,dne cn and dn elliptic functions (for real arguments)

ellipk complete elliptic integral K(k), Eq. (108)

ellipdeg exact solution of degree equation (k from N,k1), Eq. (42)

ellipdeg1 exact solution of degree equation (k1 from N,k), Eq. (41)

ellipdeg2 solution of degree equation using nomes, Eq. (44)

elliprf elliptic rational function, Eq. (36)
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In addition, there are some scripts for testing the filtering algorithms of Sect. 8 and the
convergence of the iteration (61). Moreover, the functions hpeq_a, hpeqord_a, bandedge_a,
hpeqbw_a, hpeqex1_a, and fresp_a allow the design of analog parametric equalizers and shelv-
ing filters.
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