
332:345 – Linear Systems & Signals – Spring 2021

Set 6 – Discretization Methods – S. J. Orfanidis

In this set, we consider the numerical implementation of the examples of Set-4 by converting
their analog transfer functions into digital ones and implementing them in MATLAB as difference
equations, and comparing their output with that of the built-in function lsim.

The following discretization schemes are considered, which will be discussed in more detail
in class, see also the Appendix of this set: (i) forward Euler, (ii) backward Euler, (iii) trapezoidal,
also known as bilinear or Tustin transformation, and (iv) zero-order hold. Below, we summarize
the design equations for all four methods, for first-order and second-order systems. The built-in
functions c2dm and c2d can also be used to convert a continuous-time system to an equivalent
discrete-time one, however, they do not include the forward and backward Euler methods. But they
do include the trapezoidal (Tustin) and zero-order hold (the default) methods.

The function lsim is used for simulating the behavior of continuous-time systems, but it can-
not be used to actually replace the continuous-time system by an equivalent discrete-time one that
can then be implemented digitally, for example, on a digital signal processor. Moreover, lsim, and
MATLAB in general, process signals on a block basis and are not so well-suited for real-time pro-
cessing. However, once the equivalent discrete-time transfer function is available, it can easily be
implemented in real-time. The examples in this set demonstrate how to do this.

Summary of Discretization Schemes

For a second-order system with analog transfer function Ha(s),

ÿ(t)+A1 ẏ(t)+A2y(t)= B0 ẍ(t)+B1 ẋ(t)+B2x(t) ⇒ Ha(s)= B0s2 + B1s+ B2

s2 +A1s+A2
(1)

the equivalent discrete-time difference equation is also 2nd order and has the following form with
a discrete transfer function Hd(z),

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1 + b2xn−2 ⇒ Hd(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(2)

where yn is an approximation to the value of y(t) at the sampling instant tn = nT, where T is a
small time increment, and xn is the value of the input at t = tn, that is,

yn ≈ y(tn)= y(nT) , xn = x(tn)= x(nT) , n = 0,1,2, . . .

The relationship between the coefficients {b0, b1, b2, a1, a2} and {B0, B1, B2,A1,A2} depends
on the value of T and the chosen discretization scheme. The difference equation can be iterated by
writing it in the following form,

for n = 0,1,2, . . . ,

yn = −a1yn−1 − a2yn−2 + b0xn + b1xn−1 + b2xn−2

(3)

where the two previously computed outputs, yn−2, yn−1, help compute the current one, yn. For
example, we have explicitly for n = 0,1,2,3,

y0 = −a1y−1 − a2y−2 + b0x0 + b1x−1 + b2x−2

y1 = −a1y0 − a2y−1 + b0x1 + b1x0 + b2x−1

y2 = −a1y1 − a2y0 + b0x2 + b1x1 + b2x0

y3 = −a1y2 − a2y1 + b0x3 + b1x2 + b2x1 , and so on,

To get the iteration going, we need to know the two initial values y−1, y−2. The values of
x−1, x−2 can be taken to be zero since we assume a causal input. Because the given initial con-
ditions y(0−), ẏ(0−) of the differential equation are specified at t = 0−, and T is small, we may
choose the starting values as follows,
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y−1 ≈ y(0−)
y−2 ≈ y(0−)−Tẏ(0−) (4)

The second my be justified by the following approximation of the derivative,

ẏ(0−)≈ y(−T)−y(−2T)
T

≈ y−1 − y−2

T
⇒ y−2 ≈ y−1 −Tẏ(0−)

Similarly, for a first-order system we have the differential and corresponding difference equations,

ẏ(t)+A1y(t)= B0 ẋ(t)+B1x(t) ⇒ Ha(s)= B0s+ B1

s+A1
(5)

yn + a1yn−1 = b0xn + b1xn−1 ⇒ Hd(z)= b0 + b1z−1

1+ a1z−1
(6)

and iterated by writing it in the following form,

for n = 0,1,2, . . . ,

yn = −a1yn−1 + b0xn + b1xn−1

(7)

where now only the starting value y−1 is needed, and we may choose it as in Eq. (4),

y−1 ≈ y(0−) (8)

Forward-Euler, Backward-Euler, and Trapezoidal Rules

The three cases can be handled together and are obtained by replacing the s variable in the analog
transfer function Ha(s) by the following transformation in terms of the variable z,

s = 1− z−1

p+ qz−1
= z− 1

pz+ q ⇒ Hd(z)= Ha(s)
∣∣∣∣
s= 1−z−1

p+qz−1

= Ha
(

1− z−1

p+ qz−1

)
(9)

where p,q are defined as follows in the three cases, in terms of the discretization time step T,

forward Euler: p = 0 , q = T ⇒ s = 1

T
(z− 1)

backward Euler: p = T , q = 0 ⇒ s = 1

T
(1− z−1)

trapezoidal/bilinear/Tustin: p = q = 1

2
T ⇒ s = 2

T
1− z−1

1+ z−1

(10)

The mapping between the coefficients {b0, b1, b2, a1, a2} and {B0, B1, B2,A1,A2} is obtained
from the algebraic relationship,

b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
= B0s2 + B1s+ B2

s2 +A1s+A2

∣∣∣∣∣
s= 1−z−1

p+qz−1

=
B0

(
1− z−1

p+ qz−1

)2

+ B1

(
1− z−1

p+ qz−1

)
+ B2(

1− z−1

p+ qz−1

)2

+A1

(
1− z−1

p+ qz−1

)
+A2

The algebra can be carried out quickly with the symbolic toolbox,

syms B0 B1 B2 A1 A2 s z p q
H = (B0*s^2 + B1*s + B2)/(s^2 + A1*s + A2);
Hd = collect(subs(H,s,(1-z)/(p+q*z)))
symdisp(Hd) % symdisp is on Sakai Resources
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and we obtain the following relationships that depend on the choices of p,q,

b0 = B0 + B1p+ B2p2

1+A1p+A2p2
, b1 = B1(q− p)−2B0 + 2B2pq

1+A1p+A2p2
, b2 = B0 − B1q+ B2q2

1+A1p+A2p2

a1 = A1(q− p)−2+ 2A2pq
1+A1p+A2p2

, a2 = 1−A1q+A2q2

1+A1p+A2p2

(11)

For the first-order case, we define similarly,

b0 + b1z−1

1+ a1z−1
= B0s+ B1

s+A1

∣∣∣∣
s= 1−z−1

p+qz−1

which leads to,

b0 = B0 + B1p
1+A1p

, b1 = B1q− B0

1+A1p
, a1 = A1q− 1

1+A1p
(12)

Zero-Order Hold Method

The justification of the zero-order hold design procedure will be discussed in class, see also in the
Appendix of this set. The corresponding discrete-time transfer function is defined by,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
(13)

where Z[G(s)] denotes the z-transform of G(s), a notation and operation to be clarified in class
and the Appendix. This formula leads to the following computational steps.

Step 1: Start with the analog transfer function Ha(s), then form Ha(s)/s, and expand it in partial
fractions. For example, for a first-order transfer function we have,

Ha(s)= B0s+ B1

s+ p1
⇒ Ha(s)

s
= B0s+ B1

s(s+ p1)
= R0

s
+ R1

s+ p1
(14)

with residues,

R0 = B1

p1
, R1 = B0 − B1p1

p1
(15)

Similarly, for a second-order transfer function with two distinct poles (p1 �= p2), we obtain,

Ha(s)= B0s2 + B1s+ B2

(s+ p1)(s+ p2)
⇒ Ha(s)

s
= B0s2 + B1s+ B2

s(s+ p1)(s+ p2)
= R0

s
+ R1

s+ p1
+ R2

s+ p2

(16)

where the residues are given by,

R0 = B2

p1p2
, R1 = B0p2

1 − B1p1 + B2

p1(p1 − p2)
, R2 = B0p2

2 − B1p2 + B2

p2(p2 − p1)
(17)

while for the case of a double-pole, we have,

Ha(s)= B0s2 + B1s+ B2

(s+ p1)2
⇒ Ha(s)

s
= B0s2 + B1s+ B2

s(s+ p1)2
= R0

s
+ R1

s+ p1
+ R2

(s+ p2)2

(18)

with residues,

R0 = B2

p2
1
, R1 = B0p2

1 − B2

p2
1

, R2 = −B0p2
1 − B1p1 + B2

p1
(19)
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Step 2: Replace single- and double-pole terms as follows in terms of z (applicable also when p1 = 0),

1

s+ p1
⇒ 1

1− e−p1Tz−1

1

(s+ p1)2
⇒ Tz−1

(1− e−p1Tz−1)2

(20)

Step 3: After making these replacements, multiply by an overall factor of (1 − z−1) to obtain the
final transfer function. Thus, for the first-order case, we have,

Hd(z)= (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1

]
= R0 + R1(1− z−1)

1− e−p1Tz−1
≡ b0 + b1z−1

1+ a1z−1
(21)

which after replacing R0, R1 in terms of B0, B1, p1, gives,

b0 = B0 , b1 = −B0p1 − B1 + B1e−p1T

p1
, a1 = −e−p1T (1st order) (22)

Similarly, the second-order case with distinct poles gives,

Hd(z)= (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1
+ R2

1− e−p2Tz−1

]
≡ b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(23)

where,

b0 = R0 +R1 +R2 = B0

b1 = −R1 −R2 −R1e−p2T −R2e−p1T −R0(e−p1T + e−p2T)

b2 = R1e−p2T +R2e−p1T +R0e−p1Te−p2T

a1 = −e−p1T − e−p2T , a2 = e−p1Te−p2T

(2nd order) (24)

with R0, R1, R2 given by Eq. (17). Lastly, for the case of a double-pole, we have,

Hd(z) = (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1
+ R2Tz−1

(1− e−p2Tz−1)2

]

≡ b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

(25)

where, with R0, R1, R2 given by Eq. (19),

b0 = R0 +R1 = B0

b1 = (R2T − 2R0 −R1)e−p1T −R1

b2 = (R1 −R2T +R0e−p1T)e−p1T

a1 = −2e−p1T , a2 = e−2p1T

(2nd order, double pole) (26)

Example

Consider the first-order shelving audio equalizer discussed in class:

ẏ(t)+ay(t)= G0 ẋ(t)+Gax(t) ⇒ Ha(s)= G0s+Ga
s+ a (27)
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The application of Eqs. (12) and (22) leads to the following discrete transfer functions,

pq case: Hd(z)=

(
Gap+G0

ap+ 1

)
+
(
Gaq−G0

ap+ 1

)
z−1

1+
(
aq− 1

ap+ 1

)
z−1

zero-order hold: Hd(z)= G0 + (G−Ge−aT −G0)z−1

1− e−aTz−1

(28)

Sample-by-Sample Processing

Real-time digital processing means the processing of a sampled input signal on a sample-by-sample
basis. Each arriving input sample is subjected to a series of computational steps (referred to as the
sample processing algorithm) that calculate the current output sample. These computations must
be completed within the sampling time interval T that separates incoming time samples.

Modern DSPs are extremely fast and can easily perform hundreds or even thousands of such
operations between samples. For example, for a typical hi-fi audio signal sampled at a rate of 40
kHz (40,000 samples/sec), the time interval between samples is T = 1/40000 sec = 25 μsec. A
modern DSP has an instruction time of about 1 nsec for performing a typical multiplication or
addition. Therefore, during the interval of T = 25 μsec = 25,000 nsec, it can perform, 25,000 basic
instructions, which are more than enough for typical audio processing.

Discrete-time transfer functions of the type of Eq. (2), as well as higher order ones, can be imple-
mented in real time using different, but mathematically equivalent, block diagram realizations—each
block diagram representing the computational steps of a particular sample processing algorithm.
Here, we discuss briefly three standard realizations: the direct, canonical, and transposed, illustrat-
ing them with a second-order transfer function,†

Hd(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(29)

The direct-form realization (also known as direct-form-1, or, DF-1) attempts to directly realize
the right-hand side terms of the corresponding difference equation (3) relating x(n) and y(n),

y(n)= −a1y(n− 1)−a2y(n− 2)+b0x(n)+b1x(n− 1)+b2x(n− 2)

We do not wish to use any arrays because, for real-time processing, the input and output signals
can have infinite length. But we do need to keep track of the two previously computed output
samples, y(n−1), y(n−2), and the two previously available input samples, x(n−1), x(n−2). To
this end, let us use the following notation for these delayed signals,

v1(n)= x(n− 1)
v2(n)= x(n− 2)= v1(n− 1)
w1(n)= y(n− 1)
w2(n)= y(n− 2)= w1(n− 1)

They may be referred to as the internal “states” of the filter. Then, the difference equation can
be written as a sum of terms, all occurring at the same instant n,

y(n)= −a1w1(n)−a2w2(n)+b0x(n)+b1v1(n)+b2v2(n)

Once the current output y(n) is calculated, the states can be updated to the values that they
must have at the next time instant, n+ 1. From their definition, we see that their next values are,

v1(n+ 1)= x(n)
v2(n+ 1)= x(n− 1)= v1(n)
w1(n+ 1)= y(n)
w2(n+ 1)= y(n− 1)= w1(n)

†more details may be found in Ch. 6–7 of the I2SP book on Sakai
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The figure below shows this realization and its sample processing algorithm, where the input
delays hold the signals v1(n), v2(n) and the output delays hold, w1(n),w2(n),

initialize w1,w2, v1, v2

for each input sample x, do,

y = −a1w1 − a2w2 + b0x+ b1v1 + b2v2

w2 = w1

w1 = y
v2 = v1

v1 = x

(30)

The operations of updating the contents of thew2,w1 delays must be done in the indicated order,
and similarly for v2, v1. Although the direct form is a straightforward realization (also having fairly
robust numerical properties in terms of overflows and coefficient quantization), it requires twice
as many delays as they may be necessary. The canonical and transposed realizations use only two
delays (for a 2nd order filter), but at the expense of introducing some auxiliary signals—however,
the total number of multiplication operations remain the same for all three realizations.

The canonical realization (also known as direct-form-2, DF-2, or, controller-canonical-form) is
shown below together with its sample processing algorithm.

initialize w1,w2

for each input sample x, do,

w0 = −a1w1 − a2w2 + x
y = b0w0 + b1w1 + b2w2

w2 = w1

w1 = w0

(31)

It uses the auxiliary signal w0(n) that runs between the input and output adders and is neither
x(n) nor y(n). It must be computed first at the left adder, and its value then passed to the right
adder to compute y(n). The signals w1(n) and w2(n) are simply delayed versions of w0(n) and
therefore, must be updated to the next time instant as follows,

w2(n)= w0(n− 2)
w1(n)= w0(n− 1) ⇒ w2(n)= w1(n− 1)

w1(n)= w0(n− 1) ⇒ w2(n+ 1)= w1(n)
w1(n+ 1)= w0(n)

Thus, the realization is described by the following system of first-order difference equations
from which the above sample processing algorithm is derived, where the indicated computational
order (i.e., updating w2 first, and w1, second) matters only when stating the sample processing
algorithm because the values of w1,w2 are overwritten from one sampling instant to the next,

w0(n) = −a1w1(n)−a2w2(n)+x(n)
y(n) = b0w0(n)+b1w1(n)+b2w2(n)

w2(n+ 1) = w1(n)

w1(n+ 1) = w0(n)

(canonical realization) (32)

The transposed realization (also known as the observer-canonical form) is shown below together
with its sample processing algorithm.
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initialize v1, v2

for each input sample x, do,

y = b0x+ v1

v1 = b1x− a1y + v2

v2 = b2x− a2y

(33)

The contents of the two delay registers, v1(n), v2(n), are the internal states . Since the corre-
sponding inputs to the delays must be the next values, v1(n + 1), v2(n + 2), it follows that this
realization is described by the following system of first-order difference equations,

y(n) = b0x(n)+v1(n)

v1(n+ 1) = b1x(n)−a1y(n)+v2(n)

v2(n+ 1) = b2x(n)−a2y(n)

(transposed realization) (34)

Every realization has a transposed version obtained by the following transposition rules:

• replace adders by nodes
• replace nodes by adders
• reverse all flows
• exchange input with output

In this sense, the above transposed realization is recognized to be the transposed version of the
canonical form. The canonical realization is perhaps the most widely used realization, however, it
can often suffer from overflows and coefficient quantization effects. It has the advantage that it
can be implemented in DSP hardware using circular delay-line buffers which reduce the number of
operations per time update.† The transposed realization is fairly robust in terms of overflows and
coefficient quantization, and is used by MATLAB’s built-in function filter.

State-Space Realizations

Block diagram realizations can also be cast in state-space form with the contents of the delays that
appear in the block diagram chosen to represent the internal states of the realization.

A so-called ABCD state-space realization has the following standard form, written as a system
of first-order difference equations,

s(n+ 1) = As(n)+Bx(n)
y(n) = Cs(n)+Dx(n)

(ABCD state-space realization) (35)

where the state vector s(n) and the matrices A,B,C,D have appropriate dimensions. The corre-
sponding sample processing algorithm for computing the output sample and updating the state
vector can be stated as follows, where the operations must be done in the indicated order,

initialize s, then,
for each input sample x, do,

y = Cs+Dx , output
s = As+ Bx , next state

(ABCD sample processing algorithm) (36)

†see I2SP Chapters 4, 7, 8 for more discussion on circular buffers and their use in digital audio effects.
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For example, the state vectors for the canonical and transposed realizations of our 2nd order
example are the two-dimensional vectors chosen as the contents of the two delay registers that
appear in their respective block diagrams, that is,

s(n)=
[
w1(n)
w2(n)

]
= canonical , s(n)=

[
v1(n)
v2(n)

]
= transposed (37)

The corresponding A,B,C,Dmatrices have dimensions, 2×2, 2×1, 1×2, and 1×1, respectively,
and are given as follows in the two cases,

(canonical): A =
[
−a1 −a2

1 0

]
, B =

[
1
0

]
, C = [c1, c2] , D = b0

(transposed): A =
[
−a1 1
−a2 0

]
, B =

[
c1

c2

]
, C = [1, 0] , D = b0

(38)

where we defined the parameters,
c1 = b1 − b0a1

c2 = b2 − b0a2

Using the state-vector definition in Eq. (37), we may derive the state-space form of the transposed
realization by rewriting Eq. (34) in the following way,

y(n) = b0x(n)+v1(n)

v1(n+ 1) = b1x(n)−a1y(n)+v2(n)= b1x(n)−a1
[
b0x(n)+v1(n)

]+ v2(n)

v2(n+ 1) = b2x(n)−a2y(n)= b2x(n)−a2
[
b0x(n)+v1(n)

]
or,

v1(n+ 1) = −a1v1(n)+v2(n)+(b1 − b0a1)x(n)= −a1v1(n)+v2(n)+c1 x(n)

v2(n+ 1) = −a2v1(n)+(b2 − b0a2)x(n)= −a2v1(n)+c2x(n)

y(n) = v1(n)+b0x(n)

or, reassembled in ABCD form,[
v1(n+ 1)
v2(n+ 1)

]
=
[
−a1 1
−a2 0

][
v1(n)
v2(n)

]
+
[
c1

c2

]
x(n)

y(n) = [1 , 0
][ v1(n)
v2(n)

]
+ b0x(n)

Similarly, we have for the canonical form,

w1(n+ 1) = w0(n)= −a1w1(n)−a2w2(n)+x(n)
w2(n+ 1) = w1(n)

y(n) = b0w0(n)+b1w1(n)+b2w2(n)

= b0
[−a1w1(n)−a2w2(n)+x(n)

]+ b1w1(n)+b2w2(n)

= (b1 − b0a1)w1(n)+(b2 − b0a2)w2(n)+b0x(n)

= c1w1(n)+c2w2(n)+b0x(n)

or, reassembled in ABCD form,[
w1(n+ 1)
w2(n+ 1)

]
=
[
−a1 −a2

1 0

][
w1(n)
w2(n)

]
+
[

1
0

]
x(n)

y(n) = [c1, c2
][w1(n)
w2(n)

]
+ b0x(n)
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Note that the ABCD parameters of the canonical and transposed cases are related to each other
by the following mappings, which actually apply more generally to all transposed realizations and
are effectively equivalent to the four transposition rules mentioned above,

A −→ AT

B −→ CT

C −→ BT

D −→ D

(transposition mapping) (39)

In terms of the ABCD state-space parameters, the transfer function of the discrete-time system
can be obtained by taking z-transforms of both sides of Eqs. (35) and eliminating the state variable,

zS(z) = AS(z)+BX(z)
Y(z) = CS(z)+DX(z)

⇒
S(z) = (zI −A)−1BX(z)

Y(z) = C(zI −A)−1BX(z)+DX(z) , or,

Hd(z)= Y(z)
X(z)

= C(zI −A)−1B+D (40)

where I denotes the identity matrix. We note that the mapping (39) leaves (40) invariant. The
corresponding impulse response is obtained by inverting Eq. (40) causally,

hd(n)= CAn−1Bu(n− 1)+Dδ(n) (41)

We demonstrate Eq. (40) explicitly for the canonical realization with parameters given by Eq. (38),

zI −A =
[
z 0
0 z

]
−
[
−a1 −a2

1 0

]
=
[
z+ a1 −a2

−1 z

]

det(zI −A) = z2 + a1z+ a2

(zI −A)−1 = 1

det(zI −A)

[
z a2

1 z+ a1

]
= 1

z2 + a1z+ a2

[
z a2

1 z+ a1

]

C(zI −A)−1B = 1

z2 + a1z+ a2

[
c1, c2

][ z a2

1 z+ a1

][
1
0

]
= c1z+ c2

z2 + a1z+ a2

Hd(z) = C(zI −A)−1B+D = c1z+ c2

z2 + a1z+ a2
+ b0

= (b1 − b0a1)z+ (b2 − b0a2)
z2 + a1z+ a2

+ b0 = b0z2 + b1z+ b2

z2 + a1z+ a2

= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

MATLAB’s built-in function, tf2ss, maps a transfer function defined by numerator and denomi-
nator coefficients, num,den, to an ABCD state space form that is by default the canonical realization,

[A,B,C,D] = tf2ss(num,den); % canonical state-space form

For example, for our 2nd orderHd(z), it generates the parameters of the canonical form in Eq. (38),

num = [b0,b1,b2];
den = [1,a1,a2];
[A,B,C,D] = tf2ss(num,den); % canonical state-space form
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Initialization Procedures

The sample processing algorithms (30)–(33) as well as (36) require that the internal states (i.e., the
contents of the delay registers) be properly initialized. Normally, they are initialized to zero, a choice
that corresponds to the so-called “‘zero-state” output. However, since the discrete-time systems
discussed in this set are meant to represent, and numerically solve, continuous-time systems with
arbitrary initial conditions specified at t = 0− or t = 0+, we need to be able to incorporate such
conditions into the discrete case. We discuss here only the 2nd order case, but the method can easily
be extended to any order.

For the case of the direct-form realization, we already discussed in Eqs. (3) and (4) how to ap-
proximate the two initial output samples, y−2, y−1, at sampled times n = −2 and n = −1 in terms
of given initial values, y(0−), ẏ(0−), specified at t = 0− for the differential equation, that is,

y−1 ≈ y(0−)
y−2 ≈ y(0−)−Tẏ(0−) (42)

Recalling that, w1(n)= y(n− 1), w2(n)= y(n− 2), we have, w1(0)= y(−1), w2(0)= y(−2).
Thus, the following initial values must be used in the direct-form algorithm (30), with the iteration
starting at n = 0,

w1(0)= y−1 = y(0−)
w2(0)= y−2 = y(0−)−Tẏ(0−) (43)

and, v1(0)= x(−1)= 0, and, v2(0)= x(−2)= 0, because the input x(t) is assumed to be causal.
In the other realizations, however, the internal states, wi(n) or vi(n), are not directly related to

y(n) and therefore, Eq. (43) cannot be used directly. Since any realization can be mapped into a state-
space form, the following procedure can be used (for 2nd order systems) to map the values, y−2, y−1,
to the initial value, s(0), of the two-dimensional state vector s(n). Given an ABCD realization (35),
we apply Eqs. (35) at n = −2 and n = −1, assuming a causal input, i.e., x(−2)= x(−1)= 0,

y(−2) = Cs(−2)+Dx(−2)= Cs(−2)

s(−1) = As(−2)+Bx(−2)= As(−2)

y(−1) = Cs(−1)+Dx(−1)= Cs(−1)= CAs(−2)

s(0) = As(−1)+Bx(−1)= As(−1)= A2 s(−2)

or, arranging, y−2, y−1, into a column,[
y−2

y−1

]
=
[
C
CA

]
s(−2)≡ Fs(−2)

s(0) = A2 s(−2)

(44)

where we defined the so-called “observability” matrix, which is a 2×2 matrix in the 2nd order case,†

F =
[
C
CA

]
(observability matrix) (45)

The types of 2nd order systems that are of interest in practice are so-called “observable” systems‡
and are characterized by the property that their observability matrix F is invertible, i.e., the inverse
F−1 exists. This allows Eq. (44) to be solved for s(−2) which is then used to calculate s(0),

s(−2)= F−1

[
y−2

y−1

]
⇒ s(0)= A2 s(−2)= A2F−1

[
y−2

y−1

]

†for an Mth order case, F is an M ×M matrix defined as F = [C; CA; CA2; · · · CAM−1
]

‡https://en.wikipedia.org/wiki/Observability
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Thus, given the approximate initial output values (42), we calculate the initial state vector s(0) by,

s(0)= A2F−1

[
y−2

y−1

]
= A2F−1

[
y(0−)−Tẏ(0−)

y(0−)

]
(46)

The sample processing algorithm (36) is then iterated starting at n = 0. The examples below
clarify these operations. The observability matrix can be computed with MATLAB’s built-in function,
obsv, or with the more specialized function, obsmat, placed on Sakai, that allows its calculation for
either the canonical or the transposed realizations. The two functions have usage,

F = obsv(A,C); % based on a given ABCD state-space form

F = obsmat(num,den,type); % type = ’c’, ’t’, for canonical or transposed

For our 2nd order example, we may derive the overall transformation matrix A2F−1 in analytical
form. For the canonical realization, we have,

C = [c1, c2
]
, CA = [c1, c2

][−a1 −a2

1 0

]
= [−a1c1 + c2 , −a2c1

]

F =
[
C
CA

]
=
[

c1 c2

−a1c1 + c2 −a2c1

]
⇒ F−1 = 1

a1c1c2 − a2c2
1 − c2

2

[
−a2c1 −c2

a1c1 − c2 c1

]

A2 =
[
−a1 −a2

1 0

][
−a1 −a2

1 0

]
=
[
a2

1 − a2 a1a2

−a1 −a2

]

A2F−1 =
[
a2

1 − a2 a1a2

−a1 −a2

]
1

a1c1c2 − a2c2
1 − c2

2

[
−a2c1 −c2

a1c1 − c2 c1

]
, or,

A2F−1 = 1

a1c1c2 − a2c2
1 − c2

2

[
c1a2

2 − a1a2c2 a1a2c1 + a2c2 − a2
1c2

a2c2 a1c2 − a2c1

]
(canonical) (47)

The transposed case is simpler,

C = [1 , 0
]
, CA = [1 , 0

][−a1 1
−a2 0

]
= [−a1 , 1

]

F =
[
C
CA

]
=
[

1 0
−a1 1

]
⇒ F−1 =

[
1 0
a1 1

]

A2 =
[
−a1 1
−a2 0

][
−a1 1
−a2 0

]
=
[
a2

1 − a2 −a1

a1a2 −a2

]

A2F−1 =
[
a2

1 − a2 −a1

a1a2 −a2

][
1 0
a1 1

]
, or,

A2F−1 =
[
−a2 −a1

0 −a2

]
(transposed) (48)

There are similar initialization issues in the continuous-time case. As we saw previously in set-4
(e.g., see Example 1), the function lsim for simulating a CT system assumes zero initial values. For
non-zero values one must use the observability matrix to map these values to those for the internal
state required by lsim. This is further clarified in the examples below.
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Example 1

In Example 1 of Set-4, we considered the following linear system, driven by the input x(t)= 10e−3tu(t),
and subject to the initial conditions, y(0−)= 0, ẏ(0−)= −5, at t = 0−,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ Ha(s)= s
s2 + 3s+ 2

(49)

and using Laplace and dsolve methods found the following exact solutions for the zero-input, zero-
state, and total responses, for t ≥ 0,

yzi(t) = −5e−t + 5e−2t

yzs(t) = −5e−t + 20e−2t − 15e−3t

y(t) = −10e−t + 25e−2t − 15e−3t = yzi(t)+yzs(t)
(50)

Here, we wish to solve the above system numerically by converting it to a discrete-time system and
compare the numerical zero-input, zero-state, and total response solutions to those obtained using
lsim and to the exact ones of Eq. (50).

(a) Determine explicit expressions for the discrete-time coefficients [b0, b1, b2] and [a1, a2] of the
approximating difference equation using both the pq and the zero-older hold discretization
schemes of Eqs. (11) and (24).

(b) Using a sampling time T = 0.01, evaluate the coefficient expressions of part (a) for the trape-
zoidal case. Then, using the sample processing algorithm of the canonical form Eq. (31), com-
pute the output signals, yzi(t), yzs(t), y(t), by applying the appropriate input and initial con-
ditions, and compare these outputs with the exact and lsim outputs.

(c) Repeat part (b), using the zero-order hold discretization method and implement the discrete-
time filter using the transposed sample processing algorithm (33). In addition, compare the
outputs computed by (33) with those computed using the built-in function filter, which also
uses the transposed form.

Solution

(a) The analog transfer function coefficients are [B0, B1, B2]= [0,1,0], and [A1,A2]= [3,2]. It
follows from Eq. (11),

b0 = p
1+ 3p+ 2p2

, b1 = q− p
1+ 3p+ 2p2

, b2 = − q
1+ 3p+ 2p2

a1 = 3(q− p)−2+ 4pq
1+ 3p+ 2p2

, a2 = 1− 3q+ 2q2

1+ 3p+ 2p2

(51)

and in particular, for the trapezoidal case with, p = q = T/2,

b0 = T
T2 + 3T + 2

, b1 = 0 , b2 = − T
T2 + 3T + 2

a1 = 2T2 − 4

T2 + 3T + 2
, a2 = T2 − 3T + 2

T2 + 3T + 2

(52)

Similarly for the ZOH case, we find,

b0 = 0 , b1 = (e−T − e−2T) , b2 = −(e−T − e−2T)

a1 = −(e−T + e−2T) , a2 = e−3T
(53)
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(b) Evaluating Eq. (52) for T = 0.01, we find the coefficients and corresponding discrete-time
transfer function,

[b0, b1, b2]= [0.0049, 0, −0.0049] , [a1, a2]= [−1.9702, 0.9704]

Hd(z)= 0.0049 − 0.0049z−2

1− 1.9702z−1 + 0.9704z−2

(c) Similarly, Eq. (53) gives,

[b0, b1, b2]= [0, 0.0099, −0.0099] , [a1, a2]= [−1.9702, 0.9704]

Hd(z)= 0.0099z−1 − 0.0099z−2

1− 1.9702z−1 + 0.9704z−2

The following MATLAB code illustrates all the numerical computations — the four graphs at the end
are visually indistinguishable.

y0 = 0; doty0 = -5; % initial conditions at t=0-

x = @(t) 10*exp(-3*t).*(t>=0); % input signal

T = 0.01; % sampling time interval
t = 0:T:6; % same as, t = linspace(0,6,601);

yzi = -5*exp(-t) + 5*exp(-2*t); % exact zero-input, Eq.(50)
yzs = -5*exp(-t) + 20*exp(-2*t) - 15*exp(-3*t); % exact zero-state
ye = -10*exp(-t) + 25*exp(-2*t) - 15*exp(-3*t); % ye = yzi + yzs = exact total

figure; plot(t,ye,’b-’, t,yzs,’r--’, t,yzi,’g--’)
title(’exact’); % exact outputs
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

xt = x(t); % input signal samples
s = tf(’s’); % transfer function variable, class tf
H = s/(s^2+3*s+2); % transfer function object, class tf
S = ss(H); % S is canonical state-space model of H, class ss
F = obsv(S); % observability matrix for CT canonical

% F = obsmat([0 1 0], [1 3 2], ’c’); % alternative calculation of F

yi = [y0; doty0]; % initial conditions with respect to y
si = F \ yi; % initial state-vector

% run lsim on state model S
ya = lsim(S,xt,t,si); % non-zero input and non-zero initial state si
yazs = lsim(S,xt,t); % non-zero input and zero initial state si=0
yazi = lsim(S,0*xt,t,si); % zero input and non-zero initial state si

figure; plot(t,ya,’b-’, t,yazs,’r--’, t,yazi,’g--’)
title(’lsim’); % LSIM outputs
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

Err = [norm(ya-ye’)/norm(ye)*100, ... % percent errors between exact and LSIM
norm(yazs-yzs’)/norm(yzs)*100, ...
norm(yazi-yzi’)/norm(yzi)*100] % Err = [0.0047, 0.0075, 0]
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% part (b) - trapezoidal case --------------------------------------------------------

b0 = T/(T^2 + 3*T + 2); % trapezoidal coefficients
b1 = 0;
b2 = -T/(T^2 + 3*T + 2);
a1 = 2*(T^2 - 2)/(T^2 + 3*T + 2);
a2 = (T^2 - 3*T + 2)/(T^2 + 3*T + 2);

b = [b0,b1,b2];
a = [1, a1,a2];

num2str([b;a], ’ %1.8f’) % print with more decimals

% 0.00492587 0.00000000 -0.00492587
% 1.00000000 -1.97024777 0.97044481

% canonical-form -- zero-state response yc_zs(n) -- Eq.(31)

w1 = 0; w2 = 0; % initial values
for n=0:length(t)-1

w0 = -a1*w1 - a2*w2 + x(n*T);
yczs(n+1) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

% canonical-form -- total response yc(n) -- Eq.(31)

A = tf2ss(b,a); % state matrix for canonical form
F = obsmat(b,a,’c’); % observability matrix for canonical
si = A*A*inv(F)*[y0-T*doty0; y0]; % initial state, Eq.(45)
w1 = si(1); w2 = si(2); % initial values
for n=0:length(t)-1

w0 = -a1*w1 - a2*w2 + x(n*T);
yc(n+1) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

% canonical-form -- zero-input response yc_zi(n) -- Eq.(31)

A = tf2ss(b,a);
F = obsmat(b,a,’c’);
si = A*A*inv(F)*[y0-T*doty0; y0];
w1 = si(1); w2 = si(2); % initial values
for n=0:length(t)-1

w0 = -a1*w1 - a2*w2 + 0*x(n*T); % note, input has been zeroed
yczi(n+1) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

figure; plot(t,yc,’b-’, t,yczs,’r--’, t,yczi,’g--’)
title(’trapezoidal - canonical form’); % trapezoidal outputs
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total output’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

Ec = [norm(yc-ye)/norm(ye)*100, ... % percent errors between exact and trapezoidal
norm(yczs-yzs)/norm(yzs)*100, ...
norm(yczi-yzi)/norm(yzi)*100] % Ec = [1.4988 2.2483 2.0495]
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% part (c) - zero-order hold case ----------------------------------------------------

b0 = 0; % ZOH coefficients
b1 = exp(-T)-exp(-2*T);
b2 = -exp(-T)+exp(-2*T);
a1 = -exp(-T)-exp(-2*T);
a2 = exp(-3*T);

b = [b0,b1,b2];
a = [1, a1,a2];

num2str([b;a], ’ %1.8f’) % print with more decimals

% 0.00000000 0.00985116 -0.00985116
% 1.00000000 -1.97024851 0.97044553

% transposed-form -- zero-state response yc_zs(n) -- Eq.(33)

v1 = 0; v2 = 0; % initial values
for n=0:length(t)-1

ytzs(n+1) = b0*x(n*T) + v1;
v1 = b1*x(n*T) - a1*ytzs(n+1) + v2;
v2 = b2*x(n*T) - a2*ytzs(n+1);

end

yfzs = filter(b,a,x(t)); % output using FILTER and zero initial conditions

% transposed-form -- total response yc(n) -- Eq.(33)

A = tf2ss(b,a).’; % state matrix for transposed form
F = obsmat(b,a,’t’); % observability matrix for transposed
si = A*A*inv(F)*[y0-T*doty0; y0]; % initial state for transposed, Eq.(45)
v1 = si(1); v2 = si(2); % initial values
for n=0:length(t)-1

yt(n+1) = b0*x(n*T) + v1;
v1 = b1*x(n*T) - a1*yt(n+1) + v2;
v2 = b2*x(n*T) - a2*yt(n+1);

end

yf = filter(b,a,x(t),si); % output using FILTER and initial conditions

% transposed-form -- zero-input response yc_zi(n) -- Eq.(33)

A = tf2ss(b,a).’;
F = obsmat(b,a,’t’);
si = A*A*inv(F)*[y0-T*doty0; y0];
v1 = si(1); v2 = si(2); % initial values
for n=0:length(t)-1

ytzi(n+1) = b0*x(n*T)*0 + v1; % zero input
v1 = b1*x(n*T)*0 - a1*ytzi(n+1) + v2;
v2 = b2*x(n*T)*0 - a2*ytzi(n+1);

end

yfzi = filter(b,a,x(t)*0,si); % output using FILTER and initial conditions

figure; plot(t,yt,’b-’, t,ytzs,’r--’, t,ytzi,’g--’)
title(’zero-order hold - transposed form’) % ZOH outputs
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total output’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

Et = [norm(yt-ye)/norm(ye)*100, ... % percent errors between exact and ZOH
norm(ytzs-yzs)/norm(yzs)*100, ...
norm(ytzi-yzi)/norm(yzi)*100] % Et = [2.0645 1.5151 2.0464]

Ef = [norm(yt-yf)/norm(yf)*100, ... % percent errors of transposed and FILTER
norm(ytzs-yfzs)/norm(yfzs)*100,...
norm(ytzi-yfzi)/norm(yfzi)*100] % Ef = [8.12e-12, 3.34e-12, 0]

15



% for completeness, we also include the calculation using the direct form of Eq.(30)
% ----------------------------------------------------------------------------------
% direct-form -- total response yd(n)
% w1 = y0; % initialize w1,w2
% w2 = y0-T*doty0;
% v1 = 0; % initialize v,v2, where x(t) is causal
% v2 = 0;
% for n=0:length(t)-1
% yd(n+1) = -a1*w1 - a2*w2 + b0*x(n*T) + b1*v1 + b2*v2; % difference equation
% w2 = w1; % time updates
% w1 = yd(n+1);
% v2 = v1;
% v1 = x(n*T);
% end
%
% norm(yd-yf)*100/norm(yf) % percentage error with respect to FILTER = 2.5809e-12
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Example 2

In Example 2 of Set-4, we had the same system as above, but with input, x(t)= 10e−2tu(t), and
initial conditions, y(0−)= 2, ẏ(0−)= −7, at t = 0−. The exact solutions were, for t ≥ 0,

yzi(t) = 5e−2t − 3e−t

yzs(t) = 10e−2t − 10e−t + 20te−2t

y(t) = 15e−2t − 13e−t + 20te−2t = yzi(t)+yzs(t)
(54)

Repeat parts (a,b,c) of the previous example with T = 0.01, but use the backward Euler method for
part (b).

Solution

Eq. (51) specializes as follows for the backward Euler case that has, p = T, q = 0,

b0 = T
1+ 3T + 2T2

, b1 = − T
1+ 3T + 2T2

, b2 = 0

a1 = − 2+ 3T
1+ 3T + 2T2

, a2 = 1

1+ 3T + 2T2

(55)

with numerical values for T = 0.01,

[b0, b1, b2]= [0.0097, −0.0097, 0] , [a1, a2]= [−1.9705, 0.9707]

Hd(z)= 0.0097 − 0.0097z−1

1− 1.9705z−1 + 0.9707z−2

The ZOH values are the same as in the previous example. The MATLAB code also remains the same,
except for re-defining the initial conditions and the input signal,

y0 = 2; doty0 = -7; % initial conditions at t=0-

x = @(t) 10*exp(-2*t).*(t>=0); % input signal

T = 0.01; % sampling time interval
t = 0:T:6; % same as, t = linspace(0,6,601);

yzi = 5*exp(-2*t) - 3*exp(-t); % exact zero-input, Eq.(54)
yzs = 10*exp(-2*t) - 10*exp(-t) + 20*t.*exp(-2*t); % exact zero-state
ye = 15*exp(-2*t) - 13*exp(-t) + 20*t.*exp(-2*t); % ye = yzi + yzs = exact total

% part (b) - backward Euler case --------------------------------------------------------

b0 = T/(1 + 3*T + 2*T^2); % backward Euler coefficients
b1 = -T/(1 + 3*T + 2*T^2);
b2 = 0;
a1 = -(2+3*T)/(1 + 3*T + 2*T^2);
a2 = 1/(1 + 3*T + 2*T^2);

b = [b0,b1,b2];
a = [1, a1,a2];

num2str([b;a], ’ %1.8f’) % print with more decimals

% 0.00970685 -0.00970685 0.00000000
% 1.00000000 -1.97049117 0.97068530
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% the rest of the code remains essentially the same as in the previous example,
% with the following changes in the percentage error calculations,
%
% Err = [norm(ya-ye’)/norm(ye)*100, ... % percent errors between exact and LSIM
% norm(yazs-yzs’)/norm(yzs)*100, ...
% norm(yazi-yzi’)/norm(yzi)*100] % Err = [0.0023, 0.0033, 0]
%
% Ec = [norm(yc-ye)/norm(ye)*100, ... % percent errors between exact and backward Euler
% norm(yczs-yzs)/norm(yzs)*100, ...
% norm(yczi-yzi)/norm(yzi)*100] % Ec = [0.6939 2.4984 2.8315]
%
% Et = [norm(yt-ye)/norm(ye)*100, ... % percent errors between exact and ZOH
% norm(ytzs-yzs)/norm(yzs)*100, ...
% norm(ytzi-yzi)/norm(yzi)*100] % Et = [1.6926 1.0084 3.5500]
%
% Ef = [norm(yt-yf)/norm(yf)*100, ... % percent errors of transposed and FILTER
% norm(ytzs-yfzs)/norm(yfzs)*100,...
% norm(ytzi-yfzi)/norm(yfzi)*100] % Ef = [5.48e-12, 6.05e-12, 0]
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Example 3

Repeat the previous example with input, x(t)= (t2 + 5t + 3
)
u(t), and initial conditions at t = 0−,

y(0−)= 2, ẏ(0−)= 0, and using forward Euler and ZOH discretization methods. The exact outputs
were obtained in Example 3 of Set-4,

yzi(t) = 4e−t − 2e−2t

yzs(t) = 1+ t − e−2t

y(t) = 1+ t + 4e−t − 3e−2t = yzi(t)+yzs(t)
(56)

Solution

Eq. (51) specializes as follows for the forward Euler case that has, p = 0, q = T,

b0 = 0 , b1 = T , b2 = −T
a1 = −2+ 3T , a2 = 1− 3T + 2T2

(57)

with numerical values for T = 0.01,

[b0, b1, b2]= [0, 0.0100, −0.0100] , [a1, a2]= [−1.9700, 0.9702]

Hd(z)= 0.00100z−1 − 0.0100z−2

1− 1.9700z−1 + 0.9702z−2

The ZOH values are the same as in the previous example. The MATLAB code also remains the same,
except for re-defining the initial conditions and the input signal,

y0 = 2; doty0 = 0; % initial conditions at t=0-

x = @(t) (t.^2 + 5*t + 3).*(t>=0); % input signal

T=0.01; % sampling time interval
t = 0:T:6; % same as, t = linspace(0,6,601);

yzi = 4*exp(-t) - 2*exp(-2*t); % exact zero-input, Eq.(56)
yzs = 1 + t - exp(-2*t); % exact zero-state
ye = 1 + t + 4*exp(-t) - 3*exp(-2*t); % ye = yzi + yzs = exact total

% the rest of the code remains essentially the same as in the previous example,
% with the following changes in the percentage error calculations,

% Err = [norm(ya-ye’)/norm(ye)*100, ... % percent errors between exact and LSIM
% norm(yazs-yzs’)/norm(yzs)*100, ...
% norm(yazi-yzi’)/norm(yzi)*100] % Err = [4.25e-05, 4.53e-05, 3.96e-13]
%
% Ec = [norm(yc-ye)/norm(ye)*100, ... % percent errors between exact and forward Euler
% norm(yczs-yzs)/norm(yzs)*100, ...
% norm(yczi-yzi)/norm(yzi)*100] % Ec = [0.1731, 0.1069, 1.3782]
%
% Et = [norm(yt-ye)/norm(ye)*100, ... % percent errors between exact and ZOH
% norm(ytzs-yzs)/norm(yzs)*100, ...
% norm(ytzi-yzi)/norm(yzi)*100] % Et = [0.2680, 0.1390, 0.9006]
%
% Ef = [norm(yt-yf)/norm(yf)*100, ... % percent errors of transposed and FILTER
% norm(ytzs-yfzs)/norm(yfzs)*100,...
% norm(ytzi-yfzi)/norm(yfzi)*100] % Ef = [2.77e-12, 2.87e-12, 0]
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Example 4

In Example 4 of Set-4, we considered the following linear system, driven by the input x(t)= e−2tu(t),
and subject to the initial conditions at t = 0−, y(0−)= 2, ẏ(0−)= −4,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t) ⇒ Ha(s)= 2s2 + s+ 1

s2 + 4s+ 3
(58)

The resulting zero-input, zero-state, and complete output signals were, for t ≥ 0,

yzi(t) = e−t + e−3t

yzs(t) = e−t + 8e−3t − 7e−2t

y(t) = 2e−t + 9e−3t − 7e−2t = yzi(t)+yzs(t)
(59)

(a) Determine explicit expressions for the discrete-time coefficients [b0, b1, b2] and [a1, a2] of the
approximating difference equation using both the pq and the zero-older hold discretization
schemes of Eqs. (11) and (24).

(b) Using a sampling time T = 0.01, evaluate the coefficient expressions of part (a) for the trape-
zoidal and zero-order hold cases. Then, using the sample processing algorithm of Eq. (30),
compute the output signals by iterating the corresponding difference equations with zero and
non-zero initial conditions as given above, and compare the outputs with the exact and lsim
outputs obtained in Set-4.

Solution

The analog transfer function coefficients are [B0, B1, B2]= [2,1,1], and [A1,A2]= [4,3]. It follows
from Eq. (11),

b0 = p2 + p+ 2

1+ 4p+ 3p2
, b1 = q− p− 4+ 2pq

1+ 4p+ 3p2
, b2 = q2 − q+ 2

1+ 4p+ 3p2

a1 = 4(q− p)−2+ 6pq
1+ 4p+ 3p2

, a2 = 3q2 − 4q+ 1

1+ 4p+ 3p2

(60)

Similarly for the ZOH case, we find,

b0 = 2 , b1 = −1

3

(
9e−T + 5− 2e−3T) , b2 = 1

3

(
8e−T − 3e−3T + e−4T)

a1 = −
(
e−T + e−3T) , a2 = e−4T

(61)

Evaluating Eq. (60) for T = 0.01, p = q = T/2, we have,

[b0, b1, b2]= [1.9656, −3.9212, 1.9558] , [a1, a2]= [−1.9605, 0.9608]

Hd(z)= 1.9656− 3.9212z−1 − 1.9558z−2

1− 1.9605z−1 + 0.9608z−2

Similarly, Eq. (61) gives,

[b0, b1, b2]= [2, −3.9899, 1.9900] , [a1, a2]= [−1.9605, 0.9608]

Hd(z)= 2− 3.9899z−1 + 1.9900z−2

1− 1.9605z−1 + 0.9608z−2

The following MATLAB code segment illustrates the computation,

21



y0 = 2; doty0 = -4; % initial conditions at t=0-

T=0.01; % sampling time interval
t = 0:T:6; % same as, t = linspace(0,6,601);

x = @(t) exp(-2*t).*(t>=0); % input signal

yzi = exp(-t) + exp(-3*t); % exact zero-input, Eq.(59)
yzs = exp(-t) + 8*exp(-3*t) - 7*exp(-2*t); % exact zero-state
ye = 2*exp(-t) + 9*exp(-3*t) - 7*exp(-2*t); % ye = yzi + yzs = exact total

% p = T/2; q = T/2; % uncomment for trapezoidal
% b0 = (p^2 + p + 2)/(3*p^2 + 4*p + 1);
% b1 = -(p - q - 2*p*q + 4)/(3*p^2 + 4*p + 1);
% b2 = (q^2 - q + 2)/(3*p^2 + 4*p + 1);
% a1 = -(4*p - 4*q - 6*p*q + 2)/(3*p^2 + 4*p + 1);
% a2 = (3*q^2 - 4*q + 1)/(3*p^2 + 4*p + 1);

% b0 = 2; % uncomment for ZOH
% b1 = -(9*exp(-T) + 5 - 2*exp(-3*T))/3;
% b2 = (8*exp(-T) - 3*exp(-3*T) + exp(-4*T))/3;
% a1 = -(exp(-T) + exp(-3*T));
% a2 = exp(-4*T);

% the rest of the code remains essentially the same as in the previous example,
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Appendix – Discretization Schemes

1. Forward-Euler, Backward-Euler, and Trapezoidal Rules

The forward/backward Euler and trapezoidal discretization rules given in Eqs. (9) and (10) can be
understood intuitively by considering the simple case of an integrator LTI system, that is, one whose
input/output differential equation and solution are,

ẏ(t)= x(t) ⇒ y(t)= y(0−)+
∫ t

0−
x(t′)dt′ , t ≥ 0− (62)

Given a discretization time-step T, then by subtracting the values of y(t) at the two successive
time instants, tn = nT, and, tn−1 = (n− 1)T, we obtain from Eq. (62),

y(tn)−y(tn−1)=
∫ tn
tn−1

x(t)dt (63)

which represents the area under the curve x(t) over the subinterval [tn−1, tn]. The three discretiza-
tion rules arise by approximating this area in three slightly different ways, as shown below.

In the forward Euler case, the area is approximated by the rectangle of baseT and height equal to
the left sample x(tn−1), extrapolated forward. In the backward Euler case, the right sample x(tn) is
extrapolated backward defining a rectangular area of base T. In the trapezoidal case, the two points
x(tn−1), x(tn) are connected by a straight line forming a trapezoid of base T (its area is the average
of the heights times the base). Thus, the three approximations lead to the difference equations,

forward Euler: y(tn)−y(tn−1)= T · x(tn−1)

backward Euler: y(tn)−y(tn−1)= T · x(tn)

trapezoidal: y(tn)−y(tn−1)= T · x(tn−1)+x(tn)
2

And, introducing the p,q definitions of Eq. (10), the above may be written in a unified compact way,

yn − yn−1 = pxn + qxn−1 (64)

where we denoted x(tn) by xn and similarly for yn. In the z-domain this leads to the discrete-time
transfer function,

Hd(z)= Y(z)
X(z)

= p+ qz−1

1− z−1
(65)

and if we compare it with the original continuous-time transfer function of the integrator, that is,

Ha(s)= Y(s)
X(s)

= 1

s
(66)

we obtain the identification of the s variable in terms of z as given by Eq. (9), in the sense that Eq. (65)
acts as if it were the integrator (66),

1

s
= p+ qz−1

1− z−1
⇒ s = 1− z−1

p+ qz−1
(67)
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2. Ideal Sampling, Starred Laplace Transform, and Z-Transform

An ideal sampler, depicted below, represents the periodic measurement of a continuous-time signal
whereby a switch closes periodically , say every T seconds driven by a sampling clock, and capturing
the time samples, x(nT), of the analog signal.

Because such ideal switch closes and opens instantaneously, the duration of each sample will be
zero, thus, the resulting sampled signal, denoted here by x∗(t),† can be viewed as a continuous-
time signal consisting of a sum of delta-function pulses, each weighted by the corresponding sample
values, and with zero values between samples,

x∗(t)=
∑
n
x(nT)δ(t − nT)= ideally-sampled signal (68)

Assuming a causal signal x(t), the above summation can be restricted to n ≥ 0. The Laplace
transform of the ideally sampled signal x∗(t) is referred to as the starred Laplace transform,‡

X∗(s)=
∫∞

0−
x∗(t)e−stdt =

∫∞
0−

∑
n≥0

x(nT)δ(t − nT)e−stdt =
∑
n≥0

x(nT)
∫∞

0−
δ(t − nT)e−stdt

or,

X∗(s)=
∑
n≥0

x(nT)e−nsT = starred Laplace transform (69)

With the replacement, z = esT, Eq. (69) is recognized as the z-transform of the sequence x(nT),

X(z)= X∗(s)
∣∣∣∣
z=esT

=
∑
n≥0

x(nT)z−n = z-transform (70)

Often, the following abused notation is used for this z-transform, X(z)= Z[X(s)], that is,

X(z)= Z[X(s)] = X∗(s)∣∣∣∣
z=esT

=
∑
n≥0

x(nT)z−n (71)

which actually consists of the following series of steps going from X(s) to X(z),

X(s) L−1−−−→ x(t) sample−−−−→ x(nT) Z−−→ X(z)=
∑
n
x(nT)z−n (72)

and can be combined into the more awkward notation,

X(z)= Z
[
L−1[X(s)]∣∣∣∣

sampled

]
(73)

We note also that if the sampled signal x∗(t) is further filtered by an analog system with transfer
function Ga(s) and impulse response ga(t), then, if the analog output is (synchronously) sampled

†A notation not to be confused with complex conjugation
‡A notation used primarily in the control systems literature
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at the same rate, the overall system can be thought of a discrete-time system with transfer function,
Gd(z)= Z

[
Ga(s)

]
, and impulse response, gd(n)= ga(nT), as depicted below,

Indeed, we have the following relationships, assuming causal system and input,

Y(s)= Ga(s)X∗(s)

y(t)=
∫∞

0−
ga(t − t′)x∗(t′)dt′ =

∑
m≥0

ga(t −mT)x(mT)

y(nT)=
∑
m≥0

ga(nT −mT)x(mT) ⇒ gd(n)= ga(nT)

Y∗(s)= [Ga(s)X∗(s)]∗ = G∗a (s)X∗(s) ⇒ Gd(z)= Z
[
Ga(s)

]
Y(z)= Gd(z)X(z)

(74)

where the indicated factorization,
[
Ga(s)X∗(s)

]∗ = G∗a (s)X∗(s), is valid because one of the fac-
tors is already starred.† We will use the results of Eq. (74) in another set discussing digital control
systems.

Finally, we note that another way to justify the discretization mappings of Eq. (67) is to replace
the exact relationship, z = esT, with an approximate one based on the following small-x Taylor
series expansions of the exponential, that is,

ex ≈ 1+ x

ex = 1

e−x
≈ 1

1− x

ex = ex/2

e−x/2
≈ 1+ x/2

1− x/2
It follows that since T is small, we may make the same approximations,

z = esT ≈ 1+ sT ⇒ s = 1

T
(z− 1) forward Euler

z = esT = 1

e−sT
≈ 1

1− sT ⇒ s = 1

T
(1− z−1) backward Euler

z = esT = esT/2

e−sT/2
≈ 1+ sT/2

1− sT/2 ⇒ s = 2

T
1− z−1

1+ z−1
trapezoidal

3. Zero-Order Hold

Here, we discuss briefly the three-step design procedure of the zero-order hold discretization scheme
resulting in Eq. (13),

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
(zero-order hold) (75)

†we note the properties that, in general,
[
G1G2

]∗ �= G∗1 G∗2 , but,
[
G1G∗2

]∗ = G∗1 G∗2
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where the notation, Gd(z)= Z
[
G(s)

]
, was defined above and denotes the z-transform of G(s), or

more accurately, the z-transform of the sampled version of the inverse Laplace transform of G(s),
or, pictorially,

G(s) L−1−−−→ g(t) sample−−−−→ g(nT) Z−−→ Gd(z)=
∑
n
g(nT)z−n (76)

or, in the more awkward notation,

Gd(z)= Z
[
L−1[G(s)]∣∣∣∣

sampled

]
(77)

Let us assume that the LTI system has a proper transfer function Ha(s) with M distinct poles
lying in the left-hand s-plane, and assume that its PFE expansion has already been made in the form,

Ha(s)= R0 +
M∑
i=1

Ri
s+ pi (78)

with Re(pi)> 0, so that the corresponding causal impulse response is,

ha(t)= R0δ(t)+
M∑
i=1

Rie−pitu(t) (79)

Then, the zero-state output due to a causal input x(t) will be, for t ≥ 0,

y(t)=
∫ t

0−
ha(t − t′)x(t′)dt′ =

∫ t
0−

[
R0δ(t − t′)+

M∑
i=1

Rie−pi(t−t
′)u(t − t′)]x(t′)dt′ , or,

y(t)= R0x(t)+
M∑
i=1

Ri e−pit
∫ t

0
epit

′
x(t′)dt′︸ ︷︷ ︸

yi(t)

= R0x(t)+
M∑
i=1

Riyi(t) (80)

It follows from the definition of the partial output yi(t) after evaluating it at the two successive
time instants tn = nT and tn−1 = (n− 1)T, that it will satisfy the exact relationship,

yi(tn)−e−piT yi(tn−1)= e−pitn
∫ tn
tn−1

epit
′
x(t′)dt′ (81)

The zero-order hold approximation consists of holding the value of x(t′) constant at x(tn−1)
over the small time interval [tn−1, tn], that is, replacing x(t′)≈ x(tn−1) within the integral (81). The
t′ integration then can be done explicitly,

e−pitn
∫ tn
tn−1

epit
′
dt′ = e−pitn e

pitn − epitn−1

pi
= 1− e−pi(tn−tn−1)

pi
= 1− e−piT

pi

where we used tn − tn−1 = T. We obtain then the zero-order hold approximation of the exact
equation (81),

yi(tn)−e−piT yi(tn−1)= 1− e−piT
pi

x(tn−1) (82)

and taking z-transforms of both sides, we find,

Yi(z)−e−piTz−1Yi(z)= 1− e−piT
pi

z−1X(z) , or,

Yi(z)= 1− e−piT
pi

z−1

1− e−piTz−1
X(z)
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which can be written as an identity in z in the form,

Yi(z)= 1− e−piT
pi

z−1

1− e−piTz−1
X(z)= 1

pi

[
1− 1− z−1

1− e−piTz−1

]
X(z) (83)

Sampling Eq. (80) at t = tn, then taking z-transforms, and using Eq. (83), we find the overall
discrete-time transfer function that incorporates the zero-order hold approximation,

y(tn)= R0x(tn)+
M∑
i=1

Riyi(tn)

Y(z)= R0X(z)+
M∑
i=1

RiYi(z)= R0X(z)+
M∑
i=1

Ri
pi

[
1− 1− z−1

1− e−piTz−1

]
X(z)

Hd(z)= Y(z)
X(z)

= R0 +
M∑
i=1

Ri
pi

(
1− e−piT)z−1

1− e−piTz−1

Hd(z)= R0 +
M∑
i=1

Ri
pi

[
1− 1− z−1

1− e−piTz−1

]

Hd(z)=
(
R0 +

M∑
i=1

Ri
pi

)
−

M∑
i=1

Ri
pi

1− z−1

1− e−piTz−1
, or,

Hd(z)= R0 +
M∑
i=1

Ri
pi

(
1− e−piT)z−1

1− e−piTz−1
=
(
R0 +

M∑
i=1

Ri
pi

)
−

M∑
i=1

Ri
pi

1− z−1

1− e−piTz−1
(84)

with discrete-time impulse response, for n ≥ 0,

hd(n)= R0δ[n]+
M∑
i=1

Ri
pi

(
1− e−piT)e−piT(n−1)u[n− 1] (85)

Next, we demonstrate that Eq. (84) is identical to Eq. (75) and that steps 1–3 can be used to obtain
it. To this end, we form, G(s)= Ha(s)/s, and perform its PFE, and follow the progression of steps
shown in Eq. (76),

G(s) = Ha(s)
s

= R0

s
+

M∑
i=1

Ri
s(s+ pi) =

R0

s
+

M∑
i=1

Ri
pi

[
1

s
− 1

s+ pi

]

g(t) = R0u(t)+
M∑
i=1

Ri
pi

[
u(t)−e−pit u(t)]

g(tn) = R0u(tn)+
M∑
i=1

Ri
pi

[
u(tn)−e−piTnu(tn)

]

Gd(z) =
∞∑
n=0

g(tn)z−n = R0

1− z−1
+

M∑
i=1

Ri
pi

[
1

1− z−1
− 1

1− e−piT z−1

]
, or

Gd(z)=
(
R0 +

M∑
i=1

Ri
pi

)
1

1− z−1
−

M∑
i=1

Ri
pi

1

1− e−piTz−1
(86)

where to be more precise, by tn = nT we shall mean t+n = nT+0 = limε→0+(nT + ε), that is,
evaluating the time samples g(tn) from the right side (the causal side), so that u(tn) becomes equal
to the discrete-time unit-step u[n].
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Next, by multiplying Gd(z) by the factor (1 − z−1), we obtain the final discrete-time transfer
function, which agrees with (84),

(1− z−1)Gd(z)=
(
R0 +

M∑
i=1

Ri
pi

)
−

M∑
i=1

Ri
pi

1− z−1

1− e−piTz−1
= Hd(z)

Comparing G(s) and Gd(z) we observe that we are effectively making the substitutions of
Eq. (20), in step-3 of the construction procedure,

G(s) = R0

s
+

M∑
i=1

Ri
pi

[
1

s
− 1

s+ pi

]
⇓

Gd(z) = R0

1− z−1
+

M∑
i=1

Ri
pi

[
1

1− z−1
− 1

1− e−piT z−1

]

An alternative and faster way of showing Eqs. (84) and (85) is to work directly with Eq. (75) and
rewrite it in the form,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
= Z [F(s)] , F(s)= 1− e−sT

s
Ha(s)

which, in the time-domain, means that the discrete-time samples hd(n) will be,

hd(n)= f(t+n ) (87)

After using the differentiation and delay properties of Laplace transforms, we find from the
definition of F(s),

sF(s)= Ha(s)−e−sTHa(s) ⇒ ḟ (t)= ha(t)−ha(t −T)

where a term f(0−) was dropped because of the assumed causality of ha(t). Integrating this rela-
tionship and dropping another constant of integration for the same reason, we find,

f(t)=
∫ t
t−T

ha(t′)dt′ (88)

The same result follows by noting that, f(t)= g(t)−g(t−T), where g(t) is the inverse Laplace
transform of, G(s)= Ha(s)/s, which by the integration property of Laplace transforms is,

g(t)=
∫ t

0−
ha(t′)dt′ ⇒ f(t)=

∫ t
0−
ha(t′)dt′ −

∫ t−T
0−

ha(t′)dt′ =
∫ t
t−T

ha(t′)dt′

Thus, evaluating Eq. (87) at t = nT, or rather, at t+n , we have, for n ≥ 0,

hd(n)= f(t+n )=
∫ t+n
t+n−T

ha(t′)dt′ (zero-order hold) (89)

Next, we apply Eqs. (88)–(89) to the given analog system of Eq. (78) whose impulse response is
given by Eq. (79), assuming t ≥ 0+,

f(t) =
∫ t
t−T

ha(t′)dt′ =
∫ t
t−T

⎡
⎣R0δ(t′)+

M∑
i=1

Rie−pit
′
u(t′)

⎤
⎦dt′

= R0

∫ t
t−T

δ(t′)dt′ +
M∑
i=1

Ri
e−pi max(0,t−T) − e−pit

pi
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where because of the unit-step u(t′), the lower limit of integration in the summation terms was
constrained to be both, t−T < t′ and 0 < t′, or, max(0, t−T)< t′. The R0 term vanishes if t ≥ T+,
or n ≥ 1, and is equal to R0 if t = 0+. Similarly, the summation terms vanish at t = 0. Thus, based
on these properties, we eventually obtain the following expression, which is precisely Eq. (85),

hd(n)= f(t+n )= R0δ[n]+
M∑
i=1

Ri
pi

(
1− e−piT)e−piT(n−1) u[n− 1] (90)

Another useful way to understand the zero-order hold operation is to view it as a staircase
reconstruction filter, or, as a sample & hold operation or as a D/A conversion operation, as shown
below. It takes as input an ideally sampled signal x∗(t) and reconstructs it back into analog form by
filling the time gaps between samples by holding each sample constant for a duration of T seconds.

It may be thought of as the filtering the sampled signal x∗(t) by an analog filter whose impulse
response is a (causal) rectangular pulse of duration of T seconds,

gzoh(t)= u(t)−u(t −T) ⇒ Gzoh(s)= 1− e−sT
s

(91)

so that the staircase output becomes, for a causal input,

xzoh(t) =
∫∞

0−
x∗(t′)gzoh(t − t′)dt′ =

∫∞
0−

[∑
n≥0

x(nT)δ(t′ − nT)
]
gzoh(t − t′)dt′

=
∑
n≥0

x(nT)gzoh(t − nT)=
∑
n≥0

x(nT)
[
u(t − nT)−u(t − nT −T)

] (92)

The zero-order hold discretization formula (75) follows if the staircase-reconstructed signal
xzoh(t) is filtered further by the analog filter Ha(s), as shown below, followed by the sampling
of the resulting analog output.

The indicated filtering operations can be expressed using Laplace transforms as follows, followed
by extracting starred Laplace transforms, and replacing those by z-transforms. Noting that the
quantity, (1− e−sT), is already starred (at samples t = 0 and t = T only), we have,

Y(s) = Ha(s)Xzoh(s)= Ha(s)Gzoh(s)X∗(s)=
(
1− e−sT)X∗(s) Ha(s)

s

Y∗(s) =
[(

1− e−sT)X∗(s) Ha(s)
s

]∗
= (1− e−sT)X∗(s)[Ha(s)

s

]∗

Y(z) = (1− z−1)·Z
[
Ha(s)
s

]
X(z)= Hd(z)X(z)

(93)
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The last equation following from the second one by setting z = esT and using Eq. (71). Such
filtering viewpoint is very useful in considering the discretization of feedback control systems and
will be discussed further in an another set.

Step Invariance and Impulse Invariance

There is yet another viewpoint of the zero-order hold that is intuitive. Writing Eq. (75) in the more
accurate form,

Hd(z)= (1− z−1)·Z
[
L−1

[
Ha(s)
s

]∣∣∣∣
sampled

]
(94)

then, dividing by the factor, (1− z−1), and taking inverse z-transforms, we may re-write Eq. (94) in
the equivalent form,

Z−1
[
Hd(z)
1− z−1

]
= L−1

[
Ha(s)
s

]∣∣∣∣∣
sampled

(step invariance) (95)

Since the Laplace transform of a unit-step u(t) is 1/s, it follows that the quantity Ha(s)/s will
be the Laplace transform of the output ofHa(s) when the input is u(t), i.e., the step response of the
filterHa(s). Similarly,Hd(z)/(1−z−1) is the z-transform of the step-response of the discrete-time
system Hd(z).

Therefore, Eq. (95) states that, in the time domain, the step response of the discrete-time filter
Hd(z) must match the sampled version of the step response of the continuous-time filter Ha(s), a
property referred to as step invariance.

Impulse invariance is another simple method of discretization by requiring that the impulse
response of the discrete-time system Hd(z) match the sampled version of the impulse response of
the continuous-time system.

It can be derived as a further approximation of the zero-order hold when the sampling interval
T is small. A simple derivation, is to take the small-T limit of the quantity,

1− e−sT
s

≈ 1− (1− sT)
s

= T

which leads to the approximation of the zero-order hold,

Hd(z)= Z
[(

1− e−sT) Ha(s)
s

]
≈ Z[THa(s)]

or, in the time domain,
hd(n)≈ Tha(nT) (impulse invariance) (96)

The same result can also be obtained by approximating the integral in Eq. (89) as follows,

hd(n)=
∫ nT
nT−T

ha(t′)dt′ ≈ Tha(nT)

A slightly better approximation results if we use the trapezoidal approximation to the integral,

hd(n)=
∫ nT
nT−T

ha(t′)dt′ ≈ T h(nT)+h(nT −T)
2

(97)

This expression also fixes a small issue with the conventional impulse invariance method (96) at
n = 0, which gives, assuming a causal ha(t),

hd(0)= T
2
ha(0+)
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This leads to a corrected version† of the impulse invariance method, for n ≥ 0,

hd(n)≈ Tha(nT)−δ[n] T
2
ha(0+) (impulse invariance) (98)

We encountered Eq. (96) indirectly in set-1 in our discussion of numerical approximation of
convolution. We will not have any further use of the impulse invariance method, since the bilinear
and zero-order hold discretization methods are adequate for our purposes in this course.

4. First-Order Hold

The first-order hold has a discrete-time transfer function similar to Eq. (75),

Hd(z)= (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
(first-order hold) (99)

It is actually a modified version of the standard first-order hold, called a triangular hold, and
also used by MATLAB’s built-in function c2d. Under the same assumptions of distinct poles as for
the zero-order hold, the exact equations Eq. (76)–(81) are still valid, that is, for t ≥ 0,

Ha(s) = R0 +
M∑
i=1

Ri
s+ pi , Re(pi)> 0

y(t) = R0x(t)+
M∑
i=1

Riyi(t)

(100)

with the partial output yi(t) satisfying,

yi(tn)−e−piT yi(tn−1)= e−pitn
∫ tn
tn−1

epit
′
x(t′)dt′ (101)

where in the zero-order hold case, x(t′) was approximated by x(tn−1) within the interval, [tn−1, tn].
By contrast, the first-order hold approximation replaces x(t′) by the more accurate approximation
of a straight line connecting the points x(tn−1) and x(tn),

x(t′)≈ x(tn−1)+x(tn)−x(tn−1)
T

(t′ − tn−1) , tn−1 ≤ t′ ≤ tn
The integral (101) can then be done exactly, resulting in the difference equation, and its z-transform,

yi(tn)−e−piT yi(tn−1) = 1

Tp2
i

[(
e−piT + piT − 1

)
x(tn)+

(
1− e−piT − piTe−piT

)
x(tn−1)

]

Yi(z) = 1

Tp2
i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
X(z)

(102)

Thus, the overall output and discrete-time transfer function will be,

Y(z) = R0X(z)+
M∑
i=1

RiYi(z)

= R0X(z)+
M∑
i=1

Ri
Tp2

i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
X(z)

Hd(z) = Y(z)
X(z)

= R0 +
M∑
i=1

Ri
Tp2

i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
, or,

†R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 3/e, Wiley, New York, 1987; L. B. Jackson, “A Correction to
Impulse Invariance,” IEEE Signal Processing Letters, 7, 273 (2000); W. F. G. Mecklenbräuker, “Remarks on and Correction
to the Impulse Invariant Method for the Design of IIR Digital Filters,” Signal Processing, 80, 1687 (2000).
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Hd(z)= R0 +
M∑
i=1

Ri
Tp2

i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT)z−1

1− e−piTz−1
(103)

Next, we show the Eq. (103) is identical to (99) under the substitutions of Eq. (20),

1

s+ p1
⇒ 1

1− e−p1Tz−1

1

(s+ p1)2
⇒ Tz−1

(1− e−p1Tz−1)2

and

1

s
⇒ 1

1− z−1

1

s2
⇒ Tz−1

(1− z−1)2

(104)

For the given Ha(s) in Eq. (100), we have,

Ha(s)
s2

= R0

s2
+

M∑
i=1

Ri
s2(s+ pi) =

R0

s2
+

M∑
i=1

Ri
p2
i

[
1

s+ pi −
1

s
+ pi
s2

]

and making the substitutions (104), we find the corresponding z-transform,

Z
[
Ha(s)
s2

]
= R0Tz−1

(1− z−1)2
+

M∑
i=1

Ri
p2
i

[
1

1− e−p1Tz−1
− 1

1− z−1
+ piTz−1

(1− z−1)2

]

Thus, according to Eq. (75), we must have,

Hd(z)= (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
= R0 +

M∑
i=1

Ri
Tp2

i
· z ·

[
(1− z−1)2

1− e−p1Tz−1
− (1− z−1)+piTz−1

]

which is easily shown to be identically equal to Eq. (103).
We note also that the zero-order hold approximation of a simple integrator is equivalent to

the forward Euler rule, whereas its first-order hold approximation is equivalent to the trapezoidal
rule. Indeed, for the zero-order hold, we substitute, Ha(s)= 1/s, for the transfer function of the
integrator,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
= (1− z−1)·Z

[
1

s2

]
= (1− z−1)· Tz−1

(1− z−1)2
= T
z− 1

while for the first-order hold we have (see table of Laplace and Z transforms on Sakai),

Hd(z) = (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
= (1− z−1)2

Tz−1
· Z

[
1

s3

]
= (1− z−1)2

Tz−1
· T

2z−1(1+ z−1)
2(1− z−1)3

= T
2

1+ z−1

1− z−1

We note finally, that Eq. (99) can be rearranged as follows to obtain the so-called ramp invariance
property, which states that the time-domain ramp response of the discrete-time systemHd(z)must
match the sampled version of the ramp response of the continuous-time system,

Z−1

[
Tz−1

(1− z−1)2
Hd(z)

]
= L−1

[
Ha(s)
s2

]∣∣∣∣∣
sampled

(ramp invariance) (105)

This follows by realizing that 1/s2 is the Laplace transform of the ramp input, tu(t), and that
Tz−1/(1− z−1)2 is the z-transform of the discrete-time ramp input, nTu[n].
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5. MATLAB function – c2d2

The supplied MATLAB function c2d2 on Sakai > Resources > course functions is a simple alternative
to the built-in function c2d for converting a CT system to a DT system. Its inputs are the analog
transfer function coefficients, B = [B0, B1, B2], A = [1,A1,A2], the time-step T, and the discretiza-
tion method, and its outputs are the numerator and denominator coefficients of the discrete system,
b = [b0, b1, b2], and, a = [1, a1, a2], for example,

B = [2,1,1]; % see Example 4
A = [1,4,3];
T = 0.01;

[b,a] = c2d2(B,A,T,’fe’); % forward Euler
[b,a] = c2d2(B,A,T,’be’); % backward Euler
[b,a] = c2d2(B,A,T,’tr’); % trapezoidal (default)
[b,a] = c2d2(B,A,T,’zoh’); % zero-order hold
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