
332:345 – Linear Systems and Signals – Spring 2021

Set 9 – Fourier Series Theory and Examples – S. J. Orfanidis

1. Overview

Fourier series is the expansion of a periodic function into a linear combination of sinusoids whose
frequencies are integer multiples (harmonics) of a fundamental frequency. It was formally intro-
duced by Fourier in 1809, but several examples of such expansions were known to Euler in the
1750s, such as the following, where x is in units of radians and the periodic function is specified
over one basic period,
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where the fourth case, expressed in terms of the Heaviside unit-step, is a vertically shifted and scaled
version of the third. These waveforms are shown below (with vertical units normalized to one.) At
the discontinuities, the function values are the averages from the two sides of the discontinuity.
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Periodic functions arise in two major contexts in linear systems and signal processing:

• In the time domain as periodic functions f(t) of time twith some periodT, or, for discrete-time
systems as periodic sequences f[n] of the sampling time index n with some integer periodN.

• In the frequency domain for digital signals, as periodic functions of frequency f with period
the sampling frequency fs, or, equivalently, the digital frequency Ω = 2πf/fs with period 2π.
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In the time-domain context, the Fourier series expansion of a periodic signal f(t) of period T,
and the corresponding expansion coefficients are given by,

f(t)=
∞∑

k=−∞
ckejkω0t � ck = 1

T

∫ T/2
−T/2

f(t)e−jkω0t dt −∞ < k <∞ (2)

or,

f(t)=
∞∑

k=−∞
cke2πjkt/T � ck = 1

T

∫ T/2
−T/2

f(t)e−2πjkt/T dt −∞ < k <∞ (3)

where ω0 = 2π/T is the fundamental harmonic, and kω0, the kth harmonic. The integration
interval over one period was taken to be symmetric about the origin, [−T/2, T/2]. But, it can be
changed to any other interval that spans one period, such as, [0, T].

In the frequency-domain context, we have seen that the frequency response of a digital filter with
transfer functionH(z) is obtained by replacing z = ejΩ intoH(z), whereΩ is the digital frequency,
thus resulting in a periodic function of Ω with period 2π,

H(Ω)= H(z)
∣∣∣∣
z=ejΩ

=
∞∑

k=−∞
hkz−k

∣∣∣∣
z=ejΩ

, or,

H(Ω)=
∞∑

k=−∞
hk e−jΩk � hk = 1

2π

∫ π
−π
H(Ω)ejΩk dΩ −∞ < k <∞ (4)

Thus, in this case, the “Fourier series” coefficients are the impulse response coefficients hk. Eq. (4)
is referred to as the “Fourier series filter design method”, and provides a simple way of designing
FIR digital filters, especially when H(Ω) has some ideal shape such as an ideal lowpass filter, and
the integrations for hk can be done easily. We discuss some design examples below. Eq. (4) can also
be obtained from Eq. (3) by making the substitutions, t → −Ω and T = 2π.

If the periodic function f(t) in Eq. (2) is real-valued, then the Fourier series coefficients ck must
satisfy the following complex-conjugation symmetry property (also known as hermitian property),

f(t)= real-valued � c∗k = c−k (5)

Resolving ck into its real and imaginary parts, defined by the convention,

ck = 1

2
(ak − jbk)

it follows that ak and bk will be symmetric and antisymmetric in k, that is,

f(t)= real-valued � c∗k = c−k �
ak = a−k
bk = −b−k (6)

and, in particular, we have at k = 0, b0 = −b0, which implies that b0 = 0 and therefore, c0 = a0/2.
Thus, for real-valued f(t), we can fold the Fourier series sum to be only over non-negative harmonics,

f(t) =
∞∑

k=−∞
ckejkω0t = c0 +

∞∑
k=1

ckejkω0t +
−1∑

k=−∞
ckejkω0t

= c0 +
∞∑
k=1

[
ckejkω0t + c−ke−jkω0t

] = c0 +
∞∑
k=1

[
ckejkω0t + c∗k e−jkω0t

]

= c0 +
∞∑
k=1

2 Re
[
ckejkω0t

] = a0

2
+

∞∑
k=1

2 Re
[

1

2
(ak − jbk)ejkω0t

]
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or, replacing, ejkω0t = cos(kω0t)+j sin(kω0t), and extracting real parts,

f(t)= c0 + 2
∞∑
k=1

Re
[
ckejkω0t

] = 1

2
a0 +

∞∑
k=1

[
ak cos(kω0t)+bk sin(kω0t)

]
(7)

with ck, ak, bk calculated from,

ck = 1

2
(ak − jbk)= 1

T

∫ T/2
−T/2

f(t)e−jkω0t dt k ≥ 0 (8)

or, separating real and imaginary parts,†

ak = 2

T

∫ T/2
−T/2

f(t)cos(kω0t)dt

bk = 2

T

∫ T/2
−T/2

f(t)sin(kω0t)dt

k ≥ 0 (9)

We note also that in the frequency-domain case of Eq. (4), the symmetry properties are slightly
different. Here, we commonly assume that the filter coefficients hk are real-valued, and this implies
the following hermitian property for the frequency response H(Ω),

hk = real-valued � H∗(Ω)= H(−Ω) (10)

Some additional transformation properties are (i) reflecting about the origin and (ii) translating
along the time axis. Their effect on the Fourier series coefficients is as follows, in the time and
frequency contexts,

f(t) −→ f(−t)
ck −→ c−k

f(t) −→ f(t − t0)
ck −→ cke−jkω0t0

H(Ω) −→ e−jΩMH(Ω)

hk −→ hk−M
(11)

We note also that if f(t) is real-valued and even in t, then, ak �= 0, bk = 0, so that ck is real and
even in k, and if f(t) is real-valued and odd in t, then ak = 0, bk �= 0, or, ck is imaginary and odd in
k (but b0 always zero in either case).

Similarly, if H(Ω) is real and even in Ω, then, hk is real and even in k, and if H(Ω) is imaginary
and odd inΩ, then, hk is real and odd in k. The first case is relevant in designing lowpass, highpass,
bandpass, or bandstop digital filters, and the second case is relevant in designing differentiator and
Hilbert transformer filters.

2. Convergence

Generally, the convergence of the infinite series of Eqs. (2) and (4) can be proved under the so-called
Dirichlet conditions,‡ which require that over one period, the periodic function f(t) be absolutely
integrable, and that it have a finite number of discontinuities, and a finite number of extrema. More
precisely, the Fourier series can be thought of as the limit of the following finite sum, as the number
of terms tends to infinity, that is,

f(t)= lim
M→∞

fM(t) , where fM(t)=
M∑

k=−M
ckejkω0t (12)

†note: the SSTA book denotes our a0/2 by a0.
‡See p. 234 of the SSTA text, and the Wikipedia article, https://en.wikipedia.org/wiki/Dirichlet conditions
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Under the Dirichlet conditions, it can be proved that fM(t) converges to f(t) in a point-wise
sense but only at points of continuity of f(t), that is, for each value of t which is not a point of
discontinuity. At a discontinuity point, the finite series converges to the average of the function
values from either side of the discontinuity, that is,

lim
M→∞

fM(t)= f(t−)+f(t+)
2

If the function f(t) is square-integrable over one period, then it will also be absolutely integrable,
and if it meets the other Dirichlet conditions (discontinuities and extrema), the Fourier series rep-
resentation will still be valid. In this case, one can show the following Parseval identity between the
average “power” of the signal and its Fourier coefficients,

1

T

∫ T/2
−T/2

∣∣f(t)∣∣2dt =
∞∑

k=−∞
|ck|2 = |c0|2 + 2

∞∑
k=1

|ck|2 = 1

4
a2

0 +
1

2

∞∑
k=1

(a2
k + b2

k) (Parseval) (13)

where the last two expressions are valid only for real-valued f(t). Moreover, one can prove that
fM(t) converges to f(t) in the following mean-square-error sense,

lim
M→∞

1

T

∫ T/2
−T/2

∣∣f(t)−fM(t)∣∣2dt = 0 (14)

If f(t) has a finite number of discontinuity points, they occupy a set of measure zero and there-
fore do not contribute to this integral.

The interpretation of Eq. (13) is that |ck|2 represents the amount of the total power carried by
the kth harmonic. The concept of total harmonic distortion,† used as a measure of nonlinearity
effects in audio amplifier systems, is defined in terms of the ratio of the power carried by the higher
harmonics to the power carried by the fundamental one, that is, the ratio,

THD =

√√√√√√√
∞∑
k=2

|ck|2

|c1|2 = [
total harmonic distortion

]
(15)

Finally, we note that a more general version of Parseval’s identity involves two (square-integrable)
periodic functions f(t), g(t), that is,

1

T

∫ T/2
−T/2

f∗(t)g(t)dt =
∞∑

k=−∞
f∗k gk (Parseval) (16)

where fk, gk are the corresponding Fourier series coefficients,

f(t)=
∞∑

k=−∞
fkejkω0t , g(t)=

∞∑
k=−∞

gkejkω0t

3. Gibbs Phenomenon

Even though, under the Dirichlet conditions, the finite-term approximation fM(t) of Eq. (12) con-
verges to f(t) at points of continuity, the function fM(t) is not a good approximation to f(t) near
discontinuity points where it exhibits rapidly oscillating ripples which do not diminish in size asM
gets larger, but rather they tend to cluster more and more closely near the discontinuity with their
overshoot remaining constant approximately equal to 8.95%. This is the Gibbs phenomenon, which
was described by Gibbs in 1899, but was earlier observed by Wilbraham in 1848.‡

†https://en.wikipedia.org/wiki/Total harmonic distortion
‡see the Wikipedia article, https://en.wikipedia.org/wiki/Gibbs phenomenon, and the original papers by Wilbra-

ham and Gibbs, as well as the historical overview by Hewitt & Hewitt placed on Sakai resources.
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Fig. 1 Gibbs phenomenon for square wave – rectangular window.

This behavior is illustrated in Fig. 1 for a rectangular square wave for the casesM = 10,20,40,400.
It can be observed that as M gets larger, the approximation fM(t) gets better at continuity points,
while the ripples cluster ever more narrowly around the discontinuity, eventually occupying a set of
measure zero, which is the reason why the point-wise and mean-square convergence results men-
tioned earlier are valid in the limit M → ∞. The details of this example and MATLAB code are
discussed in Example 1 below.

The graphs also display the overshoot level of approximately 8.95%, which remains essentially
constant even at small values of M. As discussed below, the overshoot is given by the formula,

1

π
Si(π)−1

2
= 0.08949 (17)

where Si(x) is the sine-integral function,

Si(x)=
∫ x

0

sinv
v

dv (18)

and the point x = π corresponds to its maximum. The built-in function sinint can be used to
evaluate Si(x). Alternatively, one can used the somewhat faster function Si placed on the “course
functions” folder on Sakai.

The standard remedy for eliminating the Gibbs phenomenon is to replace the Fourier series
coefficients ck by their slightly tweaked versions, wkck, where the wk coefficients are referred to
as window weights or tapers. They are approximately equal to unity near the center of the range
−M ≤ k ≤M, while tapering off near the edges. A widely used and effective choice is the so-called
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Hamming window, defined as follows,†

(Hamming window) wk = 0.54+ 0.46 · cos
(
πk
M

)
−M ≤ k ≤M (19)

Thus, instead of fM(t) of Eq. (12), one uses the following modified expression to approximate f(t),

fM(t)=
M∑

k=−M
ckejkω0t ⇒ f̂M(t)=

M∑
k=−M

wkckejkω0t (20)

Fig. 2 shows the effect of applying the Hamming window to the cases of Fig. 1. We observe that
the overshoot has been substantially suppressed.

−1.5 −1 −0.5 0 0.5 1 1.5

−0.0895
0

0.25

0.5

0.75

1
1.0895

t / T

square wave,  M = 10

−1.5 −1 −0.5 0 0.5 1 1.5

−0.0895
0

0.25

0.5

0.75

1
1.0895

t / T

square wave,  M = 20

−1.5 −1 −0.5 0 0.5 1 1.5

−0.0895
0

0.25

0.5

0.75

1
1.0895

t / T

square wave,  M = 40

−1.5 −1 −0.5 0 0.5 1 1.5

−0.0895
0

0.25

0.5

0.75

1
1.0895

t / T

square wave,  M = 400

Fig. 2 Gibbs phenomenon for square wave – Hamming window.

The Gibbs phenomenon can be understood by expressing the finite-term approximation fM(t),
or more generally, f̂M(t), as a convolution over one period between the original periodic signal f(t)
and the periodic function whose Fourier coefficients are the weights wk, that is,

f̂M(t)=
∫ T/2
−T/2

f(t′)WM(t − t′)dt′ (21)

where,

WM(t)= 1

T

M∑
k=−M

wkejkω0t (22)

†The review paper by Harris on Sakai resources, reviews dozens of windows—you will learn more on this subject in
your DSP course.

6



Indeed, using the definition of ck from Eq. (2), we can verify,

∫ T/2
−T/2

f(t′)WM(t − t′)dt′ =
∫ T/2
−T/2

f(t′)
1

T

M∑
k=−M

wkejkω0(t−t′)dt′

=
M∑

k=−M
wk

[
1

T

∫ T/2
−T/2

f(t′)e−jkω0t′dt′
]
ejkω0t

=
M∑

k=−M
wkckejkω0t = f̂M(t)

In the particular case of rectangular weights, wk = 1, for −M ≤ k ≤M, we have,

WM(t)= 1

T

M∑
k=−M

ejkω0t (23)

which can be summed up using the finite geometric series,

WM(t) = 1

T

M∑
k=−M

ejkω0t = 1

T
[
ejMω0t + ej(M−1)ω0t + · · · + e−j(M−1)ω0t + e−jMω0t

]

= 1

T
e−jMω0t

[
e2Mjω0t + · · · + e2jω0t + ejω0t + 1

]

= 1

T
e−jMω0t e

j(2M+1)ω0t − 1

ejω0t − 1
= 1

T
ej(M+1)ω0t − e−jMω0t

ejω0t/2
(
ejω0t/2 − e−jω0t/2

)
= 1

T
ej(M+1/2)ω0t − e−j(M+1/2)ω0t

ejω0t/2 − e−jω0t/2
= sin

(
(2M + 1)ω0t/2

)
T sin(ω0t/2)

Thus, denoting, N = 2M + 1, we have,

WM(t)= sin(Nω0t/2)
T sin(ω0t/2)

(24)

It can be verified easily that even for small values of N, such as, N = 7, or, M = 3, the above
function can be well approximated by the sinc-function,

WM(t)= sin(Nω0t/2)
T sin(ω0t/2)

≈ sin(Nω0t/2)
Tω0t/2

= sin(Nω0t/2)
πt

(25)

Thus, the finite-term approximation to f(t) reads in convolutional form,

fM(t)=
∫ T/2
−T/2

f(t′)WM(t − t′)dt′ ≈
∫ T/2
−T/2

f(t′)
sin
(
Nω0(t − t′)/2

)
π(t − t′) dt′ (26)

We recall† that the sinc function (25) tends to δ(t) in the limit M → ∞, or, N → ∞, therefore,
the above convolutional expression would tend to f(t) as it should, that is, for |t| < T/2,

lim
M→∞

fM(t)=
∫ T/2
−T/2

f(t′)δ(t − t′)dt′ = f(t) (27)

Consider now a square wave of period T with duty cycle τ < T. It can be defined over one
period either in terms of the Heaviside unit-step function, u(x), or, in terms of the sign function,

† lim
ε→0

sin(πt/ε)
πt

= δ(t), see Lecture-3 of the course.
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recognizing that, u(x)= (1+ sign(x)
)
/2,

f(t)= u(t+ 1
2 τ
)− u(t− 1

2 τ
) = 1

2
sign

(
t+ 1

2 τ
)− 1

2
sign

(
t− 1

2 τ
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 , |t| < 1
2 τ

0.5 , t = ± 1
2 τ

0 , 1
2 τ < |t| < 1

2T

(28)

Inserting f(t) into Eq. (26), we obtain,

fM(t)=
∫ T/2
−T/2

f(t′)
sin
(
Nω0(t − t′)/2

)
π(t − t′) dt′ =

∫ τ/2
−τ/2

sin
(
Nω0(t − t′)/2

)
π(t − t′) dt′ (29)

Changing variables of integration to v = Nω0(t′ − t)/2 and using the definition (18) of the Si
function, and the property, Si(−x)= − Si(x), we may express fM(t) as the difference of Si functions,

fM(t)= 1

π
Si
(
Nω0(t + 1

2 τ)/2
)− 1

π
Si
(
Nω0(t − 1

2 τ)/2
)

(30)

In fact, the two Si terms match the two sign terms of Eq. (28) with the Gibbs overshoot arising from
the properties of the Si function. Fig. 3 demonstrates how the function Si(x)/π approximates the
function sign(x)/2, and how Si(Nx/2)/π approximates sign(x)/2 even better, being a compressed
version of Si(x)/π. The maximum of the Si function is at,

d
dx

Si(x)= sinx
x

= 0 ⇒ x = π

resulting in the maximum value Si(π)/π = 0.58949, shown on the left graph of Fig. 3, whose
deviation from the maximum value of the function sign(x)/2, that is, from 1/2, is the overshoot,

1

π
Si(π)−1

2
= 0.58949− 0.5 = 0.08949

as given in Eq. (17). The maximum shown on right graph in Fig. 3 occurs atNx/2 = π, or, x = 2π/N,
and the maximum value is still the same, Si(π)/π = 0.58949.
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Fig. 3 Gibbs phenomenon due to properties of the Si function.

Using non-rectangular weights wk, Eq. (29) is replaced by the following, where WM(t) function
is given by Eq. (22),

f̂M(t)=
∫ τ/2
−τ/2

WM(t − t′)dt′ (31)

By proper choice ofwk, the resulting overshoot can be diminished. For example, using Hamming
weights, the overshoot is reduced to 0.2 % from 8.95 %, or, by about a factor of 45.

8



4. Discrete Fourier Series and the DFT

A continuous-time sinusoid such as, cos(ωt), is a periodic function of twith period 2π/ω. However,
its sampled version may not be, in the following sense. Replacing t by the sampled time tn = nTs,
where Ts is the sampling interval, and fs = 1/Ts, the sampling rate, the sampled sinusoid becomes,

cos(ωt) ⇒ cos(ωtn)= cos(ωnTs)= cos(Ωn)

where,Ω =ωTs = 2πfTs = 2πf/fs, is the digital frequency in units of rads/sample. Such sampled
sinusoid is not necessarily a periodic function of the time index n. If it is periodic with some integer
period of, say, N samples, then, we must have,

cos(Ωn)= cos
(
Ω(n+N)) = cos(Ωn+ΩN)

and this requires that the quantity ΩN be an integral multiple of 2π, such as, ΩkN = 2πk, or,
Ωk = 2πk/N. Thus, only the following type of sinusoids are periodic with period N,

cos(Ωkn)= cos
(

2πkn
N

)
, n = 0,1, . . . ,N − 1 (32)

The frequencies Ωk = 2πk/N are called the N-point DFT frequencies. In units of Hz, the DFT
frequencies are fk = kfs/N. We may restrict the index k to the range, k = 0,1, . . . ,N − 1, because
beyond that range, the frequencies Ωk repeat in value modulo 2π, and the value of the sinusoids
(32) is not affected, thus, the relevant DFT frequencies are,

(DFT frequencies) Ωk = 2πk
N

fk = kfs
N

, k = 0,1, . . . ,N − 1 (33)

The corresponding N complex points on the z-plane, zk = ejΩk = e2πjk/N, k = 0,1, . . . ,N − 1,
are the so-called N-th roots of unity because they are the N solutions of the algebraic N-th degree
equation, zN = 1. They can be visualized by dividing the unit circle intoN equal pie slices, as shown
for example below for the case N = 8,

zk = ejΩk , Ωk = 2πk
8

, k = 0,1,2, . . . ,7

Consider now a more general sampled signal f(n) and assume that it is periodic with period
N, so that, f(n +N)= f(n). It represents a double-sided sequence with a repeated basic period,[
f(0), f(1), . . . , f(N−1)

]
. Such a signal can be expanded in a so-called discrete Fourier series (DFS)

in which only the N DFT frequencies Ωk will appear,

f(n)= 1

N

N−1∑
k=0

FkejΩkn (DFS, IDFT) (34)

This represents a periodic function of n with period N. The basic period can be constructed by
restricting the index over the range, n = 0,1, . . . ,N − 1.
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TheN Fourier series coefficients Fk, k = 0,1, . . . ,N−1, are the so-calledN-point discrete Fourier
transform (DFT) of f(n) and are computed as follows from one period of f(n),

(DFT) Fk =
N−1∑
n=0

f(n)e−jΩkn k = 0,1, . . . ,N − 1 (35)

These are the discrete-time versions of the continuous-time Fourier series expansion of Eq. (2).
The expansion (34) of f(n) into the discrete-time sinusoids ejΩkn is also referred to as the inverse
discrete Fourier transform (IDFT), or the synthesis transform. The intuitive meaning of the DFT
coefficients Fk is that they represent the relative importance of the sinusoids that synthesize the
waveform f(n). Similarly, the DFT of Eq. (35) is called, the analysis transform, analyzing f(n) into
its frequency components.

Eqs. (34) and (35) can also be written in compact matrix forms with the help of the N×N DFT
matrix with matrix elements given by,

Akn = e−jΩkn = e−2πjkn/N , 0 ≤ k ≤ N − 1 , 0 ≤ n ≤ N − 1 (36)

Defining the column vectors, F = [F0, F1, . . . , FN−1]T and, f = [f0, f1, . . . , fN−1]T, of the DFT and
time samples, Eqs. (35) and (34) can be written as,

F = Af (DFT) � f = 1

N
A∗F (IDFT) (37)

It is evident that the inverse of the DFT matrix A is simply, A−1 = A∗/N, which can also be
verified from the definition (36), with the help of the finite geometric series,

1

N
(
A∗A)nm= 1

N

N−1∑
k=0

A∗nkAkm =
1

N

N−1∑
k=0

e2πjk(n−m)/N = 1

N
e2πj(n−m) − 1

e2πj(n−m)/N − 1
= δ(n−m)

for 0 ≤ n,m ≤ N − 1, with the last result following by examining the two cases n �=m and n =m.
The DFT matrix A can be constructed very simply as an anonymous MATLAB function,†

A = @(N) exp(-2*pi*j*(0:N-1)’*(0:N-1)/N);

For example, the 2×2, 4×4, and 8×8 DFT matrices are,

A =
[

1 1
1 −1

]
, A =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦ (38)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1√

2
(1− j) −j 1√

2
(−1− j) −1 1√

2
(−1+ j) j 1√

2
(1+ j)

1 −j −1 j 1 −j −1 j
1 1√

2
(−1− j) j 1√

2
(1− j) −1 1√

2
(1+ j) −j 1√

2
(−1+ j)

1 −1 1 −1 1 −1 1 −1
1 1√

2
(−1+ j) −j 1√

2
(1+ j) −1 1√

2
(1− j) j 1√

2
(−1− j)

1 j −1 −j 1 j −1 −j
1 1√

2
(1+ j) j 1√

2
(−1+ j) −1 1√

2
(−1− j) −j 1√

2
(1− j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

We note also, that the concept of the DFT is applicable more generally than just to periodic
signals. Given an arbitrary signal f(n) of finite or infinite length, which is not necessarily periodic,

†the Fast Fourier Transform (FFT) is a fast way of computing the DFT, requiring O(N log2N) operations as opposed
to O(N2) for the matrix DFT.
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its frequency spectrum, or discrete-time Fourier transform (DTFT) is obtained by evaluating its z-
transform at z = ejΩ, with Ω =ωTs, that is,

F(Ω)= F(z)
∣∣∣∣
z=ejΩ

=
∞∑

n=−∞
f(n)z−n

∣∣∣∣
z=ejΩ

=
∞∑

n=−∞
f(n)e−jΩn , or,

F(Ω)=
∞∑

n=−∞
f(n)e−jΩn (DTFT) (40)

If f(n) has length N, then we recognize that Eq. (35) is the evaluation of the DTFT at the DFT
frequencies, that is,

Fk = F(Ωk) , k = 0,1, . . . ,N − 1 (41)

In fact, theN-point DFT of an arbitrary signal f(n) can be defined by Eq. (41) to be the evaluation
of its DTFT at the DFT frequencies. Or, equivalently, the evaluation of its z-transform at the N-th
root of unity points, zk = ejΩk = e2πjk/N, n = 0,1, . . . ,N − 1. It turns out that associated with the
arbitrary signal f(n) there is a periodic signal of periodN, denoted by f̃ (n), with the same DFT and
whose DFS coincides with that of Eq. (34), that is,

Fk = F(Ωk)=
∞∑

n=−∞
f(n)z−n

∣∣∣∣∣
z=zk=ejΩk

=
N−1∑
n=0

f̃ (n)z−n
∣∣∣∣∣∣
z=zk=ejΩk

or,

Fk = F(Ωk)=
∞∑

n=−∞
f(n)e−jΩkn =

N−1∑
n=0

f̃ (n)e−jΩkn

f̃(n)= 1

N

N−1∑
k=0

FkejΩkn
(42)

The signal f̃ (n) is the periodized version of f(n), also called the periodic extension of f(n),
obtained by summing up all the shifted replicas of f(n) with period N, that is,

f̃ (n)=
∞∑

p=−∞
f(n− pN)= · · · + f(n+ 2N)+f(n+N)+f(n)+f(n−N)+f(n− 2N)+· · · (43)

More on this topic will be presented in class with examples. Note also that, in general, for an
N-point DFT of a real-valued signal, the DFT coefficients and the corresponding DFT frequencies
satisfy the following conjugation properties,

F∗k = FN−k , ΩN−k = −Ωk + 2π , exp(jΩN−kn)= exp(−jΩkn) (44)

These can be verified in all real-valued examples of this set.

5. Filtering of Periodic Signals

The sinusoidal response is one of the most fundamental results of LTI systems. It states that the
steady-state output of a stable LTI system due to a sinusoidal input is itself sinusoidal, but modified
in magnitude and phase by the frequency response of the filter,

ejω0t −→ H −→ H(ω0)ejω0t (45)

A generalization of this result holds for periodic input signals. Indeed, expanding such input
into its Fourier series of harmonics, and applying Eq. (45) to each harmonic, and invoking linearity,
we obtain the following steady-state output, i.e., after filter transients have died out,

f(t)=
∞∑

k=−∞
ckejωkt −→ H −→ ysteady(t)=

∞∑
k=−∞

ckH(ωk)ejωkt (46)
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where ωk = kω0. A similar result holds in the discrete-time case for an input with period N,

f(n)= 1

N

N−1∑
k=0

FkejΩkn −→ H −→ ysteady(n)= 1

N

N−1∑
k=0

FkH(Ωk)ejΩkn (47)

where Ωk = 2πk/N. In both the continuous and the discrete time cases, the steady-state output
remains periodic, with Fourier series coefficients altered by the filter.

6. Filtering Transients – Continuous Time

In deriving the steady-state output, we tentatively assumed that the input periodic signal f(t) was
double-sided and infinitely long. If f(t) is taken to be causal and periodic starting at t = 0, then the
steady-state output (46) will be reached only after the transients have died out for large values of t
that are longer than the effective time constant of the filter.

The derivation of the complete output using Laplace transforms is briefly as follows. Denoting
by p(t) the portion of f(t) over the first period, 0 ≤ t < T, the causal periodic signal f(t) can be
expressed as the sum of replicas of p(t) that are right-shifted by multiples of T, that is, for t ≥ 0,

f(t)=
∞∑
m=0

p(t −mT)= p(t)+p(t −T)+p(t − 2T)+· · · (48)

It follows that the Laplace transform of f(t) is expressible as follows in terms of the Laplace
transform P(s) of p(t),

F(s)= P(s)+e−sTP(s)+e−2sTP(s)+· · · = P(s)(1+ e−sT + e−2sT + · · · )= P(s)
1− e−sT (49)

where we used the delay theorem of Laplace transforms and summed up the infinite geometric series,
whose convergence requires that we take the ROC to be the right-half plane s-plane, Re(s)> 0.

Assuming a stable and causal Mth order filter with M distinct poles in the left-hand s-plane at
locations, s = −pi, i = 1,2, . . . ,M, such that Re(pi)> 0, its transfer function will have the following
form with a numerator polynomial B(s) of degree at most M,

H(s)= B(s)
(s+ p1)(s+ p2)· · · (s+ pM)

The output Laplace transform will be then,

Y(s)= H(s)F(s)= B(s)P(s)
(s+ p1)· · · (s+ pM)(1− e−sT)

The zeros of the denominator factor (1 − e−sT), which become poles of Y(s), are at the har-
monics, i.e., the locations sT = 2πjk, or, s = jωk, where ωk = kω0, for −∞ < k < ∞, and under
reasonable assumptions on P(s), we may assume that Y(s) can be expanded in an infinite partial
fraction expansion (known in math as a Mittag-Leffler expansion),

Y(s)= B(s)P(s)
(s+ p1)· · · (s+ pM)(1− e−sT) =

M∑
i=1

Ai
s+ pi +

∞∑
k=−∞

Bk
s− jωk

The residues can be obtained by the usual cover-up method. In particular, the Bk are given by
the Fourier series coefficients of Eq. (46), that is, Bk = ckH(ωk),† indeed, multiplying by (s− jωk)
and taking the limit s→ jωk, gives,

Bk = lim
s→jωk

(s− jωk)Y(s)= lim
s→jωk

B(s)P(s)(s− jkω0)
(s+ p1)· · · (s+ pN)(1− e−sT)

= P(jωk)H(ωk)· lim
s→jωk

s− jωk

1− e−sT =
1

T
P(jωk)H(ωk)= ckH(ωk)

†we recall that we denote, H(ωk)= H(s)
∣∣
s=jωk .
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where the last limit was determined as follows, noting that e−jωkT = e−2πjk = 1,

lim
s→jωk

s− jωk

1− e−sT = lim
s→jωk

s− jωk

1− e−(s−jωk)T
= lim
s→jωk

s− jωk

1− (1− (s− jωk)T
) = 1

T

and we recognized that ck = P(jωk)/T, which follows from the definition of P(s),

1

T
P(s)= 1

T

∫ T
0
p(t)e−stdt ⇒ ck = 1

T

∫ T
0
p(t)e−jωktdt = 1

T
P(s)

∣∣
s=jωk

= 1

T
P(jωk)

In summary, we have,

Bk = 1

T
P(jωk)H(ωk)= ckH(ωk) , −∞ < k <∞ (50)

so that,

Y(s)=
M∑
i=1

Ai
s+ pi +

∞∑
k=−∞

ckH(ωk)
s− jωk

(51)

Since the overall ROC is Re(s)> 0, we may invert Eq. (51) causally to obtain the full output due
to the causal periodic input f(t) of Eq. (48),

y(t)=
M∑
i=1

Aie−pit

︸ ︷︷ ︸
transients

+
∞∑

k=−∞
ckH(ωk)ejωkt

︸ ︷︷ ︸
steady-state

, t ≥ 0 (52)

7. Filtering Example – Half-Wave Rectifier AC/DC Converter

Fig. 4 shows an example of a half-wave rectified sinusoid of fundamental frequency ω0 = 2π/T,
defined over one period by,

f(t)= p(t)=
⎧⎨
⎩sin(ω0t) , 0 ≤ t ≤ 1

2 T

0 , 1
2 ≤ T ≤ T

(53)

Such rectified signals are used to implement AC to DC converters, consisting typically of a diode
followed by a lowpass filter, such as a first-order RC filter, as shown below,

The input to the diode is the AC signal, x(t)= sin(ω0t), and its output, f(t), is half-wave
rectified. The lowpass filter smoothes out f(t), effectively producing a DC output.

Fig. 4 also shows its DC-rectified filtered version according to Eq. (46) using a simple RC-type
first-order filter, that has a time constant τ that is much longer than the period T, that is, τ� T,

H(s)= 1

1+ τs =
a

s+ a , a = 1

τ
(54)

The long time constant prevents the output from decaying too fast during the off-cycles of the
sinusoid. The level of the rectified DC output is equal to the DC-level of the input sinusoid, that is,
equal to the Fourier series coefficient c0 of f(t), here, in particular, c0 = 1/π = 0.3183.

Fig. 5 shows the corresponding transients produced by using the lsim function, or alternatively,
the formula (52), with the actual output converging to the steady output at large times. The Laplace
transform of one period p(t) is in this example,

P(s)=
∫ T

0
p(t)e−st dt =

∫ T/2
0

sin(ω0t)e−st dt = ω0(1+ e−sT/2)
s2 +ω2

0
(55)
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Fig. 4 Rectified sinewave with first-order lowpass filter – steady output.

The partial fraction expansion (51) and its inverse read in this case,

Y(s)= A
s+ a +

1

T

∞∑
k=−∞

P(jωk)H(ωk)
s− jωk

, A = −aP(−a)
eaT − 1

(56)

y(t)= Ae−at + 1

T

∞∑
k=−∞

P(jωk)H(ωk)ejωkt , t ≥ 0 (57)

where,

ck = 1

T
P(jωk)= − 1+ e−jπk

2π(k2 − 1)
The coefficients c0, c±1 are special and can be obtained by taking the proper limits of P(s),

c0 = 1

π
, c±1 = ∓ j

4
(58)

The MATLAB code for generating these graphs is as follows.

T = 1; w0 = 2*pi/T;

u = @(t) double(t>=0);
P = @(t) sin(w0*t).*(u(t)-u(t-T/2)); % half-wave rectified sinusoid

c = @(k) -(1+exp(-j*pi*k))./(k.^2-1)/2/pi; % FS coefficients
c0 = 1/pi; c1 = -j/4;
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Fig. 5 Rectified sinewave with first-order lowpass filter – transient output.

t = linspace(0,3*T,6001);
f = P(t)+P(t-T)+P(t-2*T); % plot over three periods

for M = [10,30] % keep M terms in FS series
for tau = [5,10] % compare two values of tau

n = 2:M;
H = @(w) 1./(1 + j*w*tau); % filter frequency response

[tt,k] = meshgrid(t,n);

fM = c0 + 2*real(c1*exp(j*w0*t)) + ... % sum Fourier series
2*real(sum(c(k).*exp(j*w0*k.*tt)));

yst = H(0)*c0 + 2*real(H(w0)*c1*exp(j*w0*t)) + ... % steady-state output
2*real(sum(H(k*w0).*c(k).*exp(j*w0*k.*tt)));

figure; plot(t,fM,’b-’, t,yst,’r-’, ’linewidth’,2)
end

end

% -------------------------------------------------------------

t = linspace(0,24*T,24001); % plot over 24 periods

F = @(s) w0*(1+exp(-s*T/2))./(s.^2 + w0^2); % Laplace transform of one period

for M = 30
for tau = [5,10]

n = 2:M;
H = @(w) 1./(1 + j*w*tau);

[tt,k] = meshgrid(t,n);

fM = c0 + 2*real(c1*exp(j*w0*t)) + ...
2*real(sum(c(k).*exp(j*w0*k.*tt)));

yst = H(0)*c0 + 2*real(H(w0)*c1*exp(j*w0*t)) + ...
2*real(sum(H(k*w0).*c(k).*exp(j*w0*k.*tt)));

a = 1/tau; A = a*F(-a)/(1-exp(a*T));

y = A*exp(-a*t) + yst; % full output, Eq.(55)

% Hsim = tf(1,[tau,1]); % filter transfer function object
% ysim = lsim(Hsim, fM, t)’; % LSIM output due to fM(t)
% Err = norm(y - ysim) % compare Eq.(55) with LSIM
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figure; plot(t,fM,’k-’, t,yst,’r-’, t,y,’b-’, ’linewidth’,2)
end

end

The effect of the lowpass filter is to attenuate the strength of the higher harmonics (k ≥ 1)
relative to the zeroth harmonic (k = 0), resulting in a practically DC output, with the attenuation
becoming more severe as τ is increased and the cutoff frequency a = 1/τ of the filter is reduced.
The following table compares the relative values of the Fourier series coefficients before filtering,
|ck/c0|, and after filtering, |ckH(ωk)/c0|, for the two values, τ = 5T and τ = 10T,

τ = 5T τ = 10T
k |ck/c0| |ckH(ωk)/c0| |ckH(ωk)/c0|
0 1.000000 1.000000 1.000000
1 0.785398 0.003979 0.001989
2 0.333333 0.000844 0.000422
3 0.000000 0.000000 0.000000
4 0.066667 0.000084 0.000042
5 0.000000 0.000000 0.000000
6 0.028571 0.000024 0.000012
7 0.000000 0.000000 0.000000
8 0.015873 0.000010 0.000005

8. Filtering Transients – Discrete Time

Similar results hold in the discrete-time case. Consider a causal periodic sequence f(n) with period
N, and denote its first period by p(n), that is, for 0 ≤ n ≤ N − 1,

p(n)= [p(0), p(1), . . . , p(N − 1)
]

(59)

with z-transform,

P(z)=
N−1∑
n=0

p(n)z−n (60)

Then, the causal periodic sequence f(n) will consist of the periodic replication of p(n) at mul-
tiples of the period N,

f(n)=
∞∑
m=0

p(n−mN)= p(n)+p(n−N)+p(n− 2N)+· · · (61)

Its z-transform can be expressed in terms of P(z), and may be summed up with the help of the
geometric series, taking the ROC to be, |z| > 1,

F(z)= P(z)+z−NP(z)+z−2NP(z)+· · · = P(z)[1+ z−N + z−2N + · · · ] = P(z)
1− z−N (62)

The zeros of the denominator (1−z−N), which become the poles of F(z), are the so-called Nth
roots of unity, that is, the N complex numbers, lying on the unit-circle,

zk = e2πjk/N = ejΩk , k = 0,1, . . . ,N − 1 (63)

Since P(z) has degree at most N − 1, Eq. (62) admits a normal partial fraction expansion with
respect to the N poles zk,

F(z)= P(z)
1− z−N =

P(z)
(1− z0z−1)(1− z1z−1)· · · (1− zN−1z−1)

=
N−1∑
k=0

ck
1− zkz−1

(64)

16



where the ck are the DFS coefficients, so that the causal periodic inverse will be,

f(n)=
N−1∑
k=0

ckznk =
N−1∑
k=0

ckejΩkn , n ≥ 0 (65)

We have already seen in Sec. 4 that the ck coefficients are given by ck = Fk/N, in terms of the
N-point DFT of the sequence f(n), or its first period, p(n), that is,

ck = 1

N
Fk = 1

N

N−1∑
n=0

p(n)e−jΩkn = 1

N

N−1∑
n=0

p(n)z−nk = 1

N
P(zk) , k = 0,1, . . . ,N − 1 (66)

where P(zk) are the values of P(z) at the Nth roots of unity. Eq. (66) can also be derived by the
cover-up method of the partial fraction expansion, indeed, using the fact that zNk = 1, we have,

ck = lim
z→zk

P(z)(1− zkz−1)
1− z−N = P(zk) lim

z→zk

[
1− zkz−1

1− z−N
]
= P(zk) lim

z→zk

[
1− zkz−1

1− (zkz−1)N

]
= 1

N
P(zk)

where the last limit was derived as follows, using the finite geometric series, or L’Hospital’s rule,

lim
z→zk

[
1− zkz−1

1− (zkz−1)N

]
= lim
x→1

[
1− x

1− xN
]
= lim
x→1

[
1

1+ x+ · · · + xN−1

]
= 1

N

Consider next a stable/causal discrete-time filter, H(z)= B(z)/A(z), of order M having M
distinct poles pi inside the unit-circle, that is, |pi| < 1, and with degree of B(z) ≤M,

H(z)= B(z)
A(z)

= B(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

In filtering of the causal f(n) with H(z), we may apply partial fractions to the output z-transform,

Y(z) = H(z)F(z)= B(z)P(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)(1− zN)

= B(z)P(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)(1− z0z−1)(1− z1z−1)· · · (1− zN−1z−1)

=
M∑
i=1

Ai
1− piz−1

+
N−1∑
k=0

Bk
1− zkz−1

where from the cover-up method we find,

Bk = lim
z→zk

[
(1−zkz−1)H(z)F(z)

] = H(zk)P(zk) lim
z→zk

[
(1− zkz−1)

1− z−N
]
= 1

N
H(zk)P(zk)= ckH(zk)

Therefore,†

Y(z)=
M∑
i=1

Ai
1− piz−1

+
N−1∑
k=0

ckH(zk)
1− zkz−1

=
M∑
i=1

Ai
1− piz−1

+
N−1∑
k=0

ckH(Ωk)
1− ejΩkz−1

(67)

which leads to the following discrete-time version of Eq. (52) for the complete causal inverse that
includes both the transients and the steady-state,

y(n)=
M∑
i=1

Aipni +
N−1∑
k=0

ckH(zk)znk =
M∑
i=1

Aipni︸ ︷︷ ︸
transients

+
N−1∑
k=0

ckH(Ωk)ejΩkn

︸ ︷︷ ︸
steady-state

, n ≥ 0 (68)

†noting again the notation, H(Ωk)= H(z)
∣∣
z=ejΩk

17



9. FIR Digital Filter Design Using the Fourier Series Method

We mentioned in Section 1 that a major application of Fourier series in linear systems is the design
of FIR digital filters that have a periodic frequency responseH(Ω)with period 2π in the normalized
digital frequency Ω = 2πf/fs =ωTs. The corresponding Fourier series expansion reads,

H(Ω)=
∞∑

k=−∞
hk e−jΩk � hk = 1

2π

∫ π
−π
H(Ω)ejΩk dΩ −∞ < k <∞ (69)

As in the time case, the same convergence results and Parseval identities are also valid in this case,
that is, assuming thatH(Ω) satisfies the Dirichlet conditions, then we have point-wise convergence
at Ω points of continuity,

H(Ω)= lim
M→∞

HM(Ω) , where HM(Ω)=
M∑

k=−M
hke−jΩk (70)

and, for square-integrable functions H(Ω), we have Parseval’s identity,

1

2π

∫ π
−π

∣∣H(Ω)∣∣2 dΩ =
∞∑

k=−∞
|hk|2 (Parseval) (71)

and mean-square convergence,

lim
M→∞

1

2π

∫ π
−π

∣∣H(Ω)−HM(Ω)∣∣2dΩ = 0 (72)

The calculation of the ideal impulse response coefficients hk from Eq. (69) is straightforward for
ideal desired frequency response shapes, such as, ideal lowpass, bandpass, etc. For example, an
ideal bandpass filter with left and right passband digital frequenciesΩa,Ωb has the ideal response,
defined over one period, −π ≤ Ω ≤ π,

H(Ω)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 , Ωa ≤ |Ω| ≤ Ωb
0 , |Ω| < Ωa
0 , Ωb < |Ω| ≤ π

(73)

The integration in Eq. (69) results in the ideal filter coefficients,

hideal
k = sin(Ωbk)− sin(Ωak)

πk
(74)

Keeping only those in the range −M ≤ k ≤ M, and windowing them with a window wk to
eliminate the Gibbs ripples, gives the final coefficients, hk = wkhideal

k . For example, using a Hamming
window, we have,

hk = wkhideal
k =

[
0.54+ 0.46 cos

(
πk
M

)]
·
[

sin(Ωbk)− sin(Ωak)
πk

]
, −M ≤ k ≤M (75)

The case Ωb �= 0 and Ωa = 0 corresponds to a lowpass design, whereas, Ωb = π and Ωa �= 0
to a highpass one. The designed impulse response hk has length N = 2M + 1, and has a length-M
anticausal part. By delaying it by M samples, i.e., replacing k by k−M, we can make it causal. The
final designed impulse response is then, for, n = 0,1, . . . ,N − 1 = 2M,

h(n)=
[

0.54+ 0.46 cos
(
π(n−M)

M

)]
·
[

sin
(
Ωb(n−M)

)− sin
(
Ωa(n−M)

)
π(n−M)

]
(76)

18



Other windows can be used of course. See the Harris paper on Sakai resources reviewing dozens
of windows. Once the finite impulse response h(n) is designed, one may compute its frequency
response as the discrete-time Fourier transform,

H(Ω)=
N−1∑
n=0

h(n)e−jΩn

Design Example

As an example illustrating such designs, consider a length-L signal x(n) that is the sum of a desired
signal s(n) and interference v(n):

x(n)= s(n)+v(n) , 0 ≤ n ≤ L− 1

where
s(n) = sin(Ω0n)

v(n) = sin(Ω1n)+ sin(Ω2n) , 0 ≤ n ≤ L− 1

with
Ω1 = 0.1π, Ω0 = 0.2π, Ω2 = 0.3π [radians/sample]

In order to remove v(n), the signal x(n) is filtered through a bandpass FIR filter that is designed
to pass the frequency Ω0 and reject the interfering frequencies Ω1,Ω2.

Such filter can be designed using Eq. (76) by properly choosing Ωa,Ωb such that Ω1 < Ωa and
Ω2 > Ωb, so that Ω1,Ω2 lie in the left and right stopbands of the filter, while Ω0 lies within the
passband. Thus, we are led to the choices,

Ωa = 0.15π, Ωb = 0.25π

The noisy input x(n) and the desired signal s(n) are depicted below.

0 50 100 150 200
−3

−2

−1

0

1

2

3
x(n) and s(n)

time samples,  n

The filter length was chosen to be N = 151, so that, M = 75. Its output due to x(n) is shown
below together with the desired signal s(n). Also shown on the right, is the noise part v(n) and its
the filtered version which is suppressed by the filter.

Because the filter has finite impulse response, the filter transients have finite duration, N − 1 =
2M. The effect of the overall delay by M is also evident in the output. There is also a phase shift
due to the filter’s phase response also arising from the delay, which can be calculated in samples
by, nshift =

[
mod2π(MΩ0)

]
/Ω0, which evaluates to nshift = 5 when M = 75, and to nshift = 0 when

M = 100. Both are clearly visible in the filtered output for x(n).
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The filter’s magnitude response is shown below, plotted both in absolute units and in dB. One
can see that the Ω1,Ω2 interferers are suppressed by about 60 dB on either side of the passband.
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The next two figures repeat the design with a longer filter of length N = 201, or, M = 100.
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Finally, the next two figures show the magnitude responses of the two filters of lengthsN = 151
and N = 201 design with no Hamming windowing, i.e., using a rectangular window. The presence
of the Gibbs ripples is evident at the left and right discontinuities of the passband.
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The MATLAB code for the case N = 151, or, M = 75, is given below.

L = 201; % signal length
n=(0:L-1);

w1 = 0.1*pi; % frequencies in rads/sample
w0 = 0.2*pi;
w2 = 0.3*pi;

s = sin(w0*n); % desired signal
v = sin(w1*n) + sin(w2*n); % noise
x = s + v; % noisy input

figure; plot(n,x,’r-’, n,s,’b--’); % plot x,s

M = 75;
k = 0:2*M;
wind = 0.54 + 0.46*cos(pi*(k-M)/M); % Hamming window

fa = 0.15; fb = 0.25; % bandedges in units of pi

h = wind .* (sinc(fb*(k-M))*fb - sinc(fa*(k-M))*fa); % note: sinc(x) = sin(pi*x)/(pi*x)

y = filter(h,1,x); % filtered x
yv= filter(h,1,v); % filtered v

figure; plot(n,s,’b--’, n, y,’r-’); % plot x,y
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figure; plot(n,v,’b--’, n,yv,’r-’); % plot v,yv

w = pi*linspace(0,0.4,801); % digital frequencies in rads/sample
H = abs(freqz(h,1,w)); % magnitude response

figure; plot(w/pi, H, ’b-’); % absolute scales
figure; plot(w/pi, 20*log10(H), ’b-’); % dB scales

% set wind=1 for the rectangular window case.

Examples – Continuous Time

Example 1 – square wave

Derive the Fourier series (FS) representation of a square wave of period T with duty cycle τ = βT,
where 0 < β < 1. The square wave is symmetrically defined over one period by a Heaviside unit-step
function, as in Eq. (28),

f(t)= u(t + 1
2 τ
)− u(t − 1

2 τ
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 , |t| < 1
2 τ

0.5 , t = ± 1
2 τ

0 , 1
2 τ < |t| < 1

2T

(77)

The ordinary unit-step could also be used, but the Heaviside is more natural here because the FS
representation will pass through the 1/2 point discontinuity at the edges. Also, by applying the
Parseval identity (13), show the infinite series summation results,

∞∑
k=1

sin2(πβk)
k2

= π2

2
β(1− β) ,

∞∑
k=1
k odd

1

k2
= π2

8

Solution

The FS coefficients are calculated from Eq. (2), for −∞ < k <∞,

ck = 1

T

∫ T/2
−T/2

f(t)e−jkω0t dt = 1

T

∫ τ/2
−τ/2

e−jkω0t dt = sin(πkτ/T)
πk

= sin(πβk)
πk

(78)

The integral can be done easily using the symbolic toolbox.

syms t;
syms b T positive;
syms k integer
w0 = 2*pi/T;
c = simplify(int(exp(-j*k*w0*t), t, -b*T/2, b*T/2) / T);

Since ck are real and c0 = β, the representation (7) becomes,

f(t)= c0 +
∞∑
k=1

2 Re
[
ckejkω0t

] = β+ ∞∑
k=1

2 sin(πβk)
πk

cos(kω0t)

The finite-term representation is obtained by

fM(t)= β+
M∑
k=1

2 sin(πβk)
πk

cos(kω0t)
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and the corresponding Hamming-weighted version,

fwM(t)= β+
M∑
k=1

wk
2 sin(πβk)

πk
cos(kω0t) , with wk = 0.54+ 0.46 cos

(
πk
M

)

Figs. 1 and 2 show fM(t) and fwM(t) for β = 1/2 and M = 10,20,40,400. The MATLAB code for
generating these graphs is as follows, and can be used as a model for all subsequent examples. The
code is completely vectorized with the help of meshgrid, but the use of loops would be an alternative
method,

T = 1; b = 0.5; w0 = 2*pi/T;

u = @(t) double(t>=0); % or, (sign(t)+1)/2, for Heaviside unit-step
P = @(t) u(t+b*T/2)-u(t-b*T/2); % one period

c = @(k) b*sinc(b*k); % ck = sin(pi*b*k)/(pi*k)

t = linspace(-1.5*T, 1.5*T, 9001); % plot over three periods
f = P(t+T) + P(t) + P(t-T); % replicate P(t) three times

for M = [10,20,40,400]
n = 1:M;

[tt,k] = meshgrid(t,n); % replicate t vertically, n horizontally

fM = b + 2*real(sum(c(k).*exp(j*w0*k.*tt))); % rectangular weights w_k=1
% summed column-wise

figure; plot(t,f,’k-’, t,fM,’r-’)

wk = 0.54 + 0.46*cos(pi*k/M);
fw = b + 2*real(sum(wk.*c(k).*exp(j*w0*k.*tt))); % Hamming weights w_k

figure; plot(t,f,’k-’, t,fw,’r-’)
end

For the infinite series summations, we apply Parseval’s identity in the form for real-valued f(t),

|c0|2 + 2
∞∑
k=1

|ck|2 = 1

T

∫ T/2
−T/2

∣∣f(t)∣∣2dt (79)

which reads in the present case, since c0 = β,

β2 + 2
∞∑
k=1

sin2(πβk)
π2k2

= 1

T

∫ βT/2
−βT/2

1 · dt = β ⇒
∞∑
k=1

sin2(πβk)
k2

= π2

2
β(1− β)

Setting β = 0.5 and noting that sin(0.5πk) is non-zero only for odd k, we obtain the special case,

∞∑
k=1
k odd

1

k2
= π2

2
0.5(1− 0.5)= π2

8

Example 2 – sampling function

Consider a periodic train of impulses separated at multiples of the period T,
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f(t)=
∞∑

n=−∞
δ(t − nT) (80)

It may be viewed as the limit of the previous example as the pulse width tends to zero, τ → 0,
and the pulse height increases like 1/τ.

Solution

Since f(t)= δ(t) within the first period, its FS coefficients will be,

ck = 1

T

∫ T/2
−T/2

δ(t)e−jkω0t dt = 1

T
, −∞ < k <∞ (81)

Thus, we obtain the Fourier series representation of the pulse train, where ω0 = 2π/T,

∞∑
n=−∞

δ(t − nT)= 1

T

∞∑
k=−∞

ejkω0t (82)

This result plays an important part in the derivation of the sampling theorem.

Example 3 – Fourier series of finite number of sinusoids

For each of the following signals, decide if they are periodic, and if so, determine their period T,
and the Fourier series coefficients, ck, for all k.

(a) f(t)= cos(πt)+ cos(2πt)+ cos(3πt)

(b) f(t)= 4 cos(πt)· cos(2πt)· cos(3πt)

(c) f(t)= 2 cos
(
πt
3

)
+ 4 sin

(
2πt

5

)
+ 6 cos (πt)

(d) f(t)= 2 cos
(
πt
3

)
+ 4 sin

(
πt√

3

)
+ 6 cos (πt)

Solution

In each case, the individual terms are periodic, but perhaps with different periods—the questions is
whether there is a common period for all terms.

For (a), the three frequencies are multiples of the lowest one, ω0 = π, therefore, it is periodic
with period T = 2π/ω0 = 2. The FS coefficients are identified by replacing the cosines by their
complex versions using Euler’s formula,

f(t)= cos(πt)+ cos(2πt)+ cos(3πt)= 1

2

[
ejω0t + e−jω0t + ej2ω0t + e−j2ω0t + ej3ω0t + e−j3ω0t

]

It follows that the FS coefficients in the expansion, f(t)=
∞∑

k=−∞
ckejkω0t, will be,

c±1 = c±2 = c±3 = 1

2
, ck = 0 for all other k

For (b), we may use the trig identity,

2 cos(α)cos(β)= cos(α+ β)+ cos(α− β)
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to re-write the signal as a sum of sinusoidal terms,

f(t) = 4 cos(πt)· cos(2πt)· cos(3πt)= 2
[
cos(πt + 2πt)+ cos(πt − 2πt)

] · cos(3πt)

= 2 cos(3πt)cos(3πt)+2 cos(πt)cos(3πt)

= cos(6πt)+ cos(0πt)+ cos(4πt)+ cos(2πt)= 1+ cos(2πt)+ cos(4πt)+ cos(6πt)

Since all frequencies are multiples of lowest one, ω0 = 2π, the signal will be periodic, with
period, T = 2π/ω0 = 1. The FS coefficients are found using Euler’s formula as above,

c0 = 1 , c±1 = c±2 = c±3 = 1

2
, ck = 0 for all other k

For (c), we need to determine if the frequencies π/3 and 2π/5 can be integer multiples of a
fundamental harmonic ω0, i.e., if there are integers k,m such that,

kω0 = π
3
, mω0 = 2π

5
⇒ k

m
= 1/3

2/5
= 5

6

thus, we can pick k = 5 and m = 6, and the fundamental harmonic ω0 can be determined from
either condition,

ω0 = π/3
k

= 2π/5
m

= π
15

It follows that the period will be T = 2π/ω0 = 30, and the given signal can be written in terms of
the fundamental ω0 as,

f(t) = 2 cos
(
πt
3

)
+ 4 sin

(
2πt

5

)
+ 6 cos (πt)

= 2 cos(5ω0t)+4 sin(6ω0t)+6 cos(15ω0t)

= 2 · 1

2

[
ej5ωot + e−j5ω0t

]+ 4 · 1

2j
[
ej6ωot − e−j6ω0t

]+ 6 · 1

2

[
ej15ωot + e−j15ω0t

]
= [ej5ωot + e−j5ω0t

]− 2j
[
ej6ωot − e−j6ω0t

]+ 3
[
ej15ωot + e−j15ω0t

]
from which we identify the FS coefficients,

c±5 = 1 , c±6 = ∓2j , c±15 = 3 , ck = 0 for all other k

The above choice forω0 results in the shortest period T. An alternative choice could have been,
T = 30p, for any integer, p ≥ 1, resulting in the harmonics, k = 5p, m = 6p. In periodic signals,
any multiple of the basic period, e.g., pT, would also be a period, therefore, it is the smallest period
that is significant.

For case (d), there is no way we can satisfy the harmonic condition with integers k,m,

kω0 = π
3
, mω0 = π√

3
⇒ k

m
= 1/3

1/
√

3
= 1√

3

Therefore, the signal f(t) is not periodic.
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Example 4 – triangular wave

Derive the Fourier series representation of a triangular waveform of period T, defined over one
period by,

f(t)= 1− 4|t|
T
, −1

2
T ≤ t ≤ 1

2
T (83)

Also, by applying the Parseval identity (79), show the infinite series summation result,

∞∑
k=1
k odd

1

k4
= π4

96

Solution

The FS coefficients are calculated from Eq. (2), for −∞ < k <∞,

ck = 1

T

∫ T/2
−T/2

f(t)e−jkω0t dt = 1

T

∫ T/2
−T/2

(
1− 4|t|

T

)
e−jkω0t dt =

⎧⎪⎨
⎪⎩

0 , k = even
4

π2k2
, k = odd

(84)

The resulting representation (7) and its finite-term version are,

f(t)=
∞∑

k=1,3,5,...

8

π2k2
cos(kω0t) , fM(t)=

M∑
k=1,3,5,...

8

π2k2
cos(kω0t)

Fig. 6 shows the cases M = 3 and M = 30 plotted over three periods. For the infinite series
summation, we apply Eq. (79),

2
∞∑
k=1

16

π4k4
= 1

T

∫ T/2
−T/2

(
1− 4|t|

T

)2

dt = 1

3
⇒

∞∑
k=1
k odd

1

k4
= π4

96
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Fig. 6 Triangular wave.
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Example 5 – decaying exponential

Derive the Fourier series representation of a decaying exponential of period T, defined over one
period as follows where a > 0,

f(t)= e−at , 0 ≤ t < T (85)

Also, by applying the Parseval identity (79), show the infinite series summation result,†

∞∑
k=1

1

a2T2 + 4π2k2
= coth

( 1
2aT

)
4aT

− 1

2a2T2
(86)

Solution

The FS coefficients are calculated from Eq. (2), for −∞ < k <∞,

ck = 1

T

∫ T
0
f(t)e−jkω0t dt = 1

T

∫ T
0
e−ate−jkω0t dt = 1− e−aT

aT + 2πjk
(87)

The resulting representation (7) becomes,

f(t) =
∞∑

k=−∞

1− e−aT
aT + 2πjk

ejkω0t = 1− e−aT
aT

+
∞∑
k=1

2 Re

[
1− e−aT
aT + 2πjk

ejkω0t

]

= 1− e−aT
aT

+
∞∑
k=1

[
2aT(1− e−aT)
a2T2 + 4π2k2

cos(kω0t)+4πk(1− e−aT)
a2T2 + 4π2k2

sin(kω0t)
]

Fig. 7 shows the finite-term approximations with a = 2, T = 1, andM = 30 andM = 60 plotted over
four periods, using both rectangular and Hamming windows. The MATLAB code used to generate
the graphs was as follows,

T = 1; a = 2; w0 = 2*pi/T;

t = linspace(0,4*T,8001);

u = @(t) double(t>=0);
P = @(t) exp(-a*t).*(u(t)-u(t-T));
f = P(t)+P(t-T)+P(t-2*T)+P(t-3*T);

c = @(k) (1-exp(-a*T))./(a*T + 2*pi*j*k);

for M = [30,60]
n = -M:M;

[tt,k] = meshgrid(t,n);

fM = real(sum(c(k).*exp(j*w0*k.*tt)));

figure; plot(t,f,’b:’, t,fM,’r-’);

wk = 0.54 + 0.46*cos(pi*k/M);
fw = real(sum(wk.*c(k).*exp(j*w0*k.*tt)));
figure; plot(t,f,’b:’, t,fw,’r-’);

end

For the infinite series summation, we apply Eq. (79), noting that |ck|2 = (1− e−aT)2

a2T2 + 4π2k2
,

(1− e−aT)2

a2T2
+ 2

∞∑
k=1

(1− e−aT)2

a2T2 + 4π2k2
= 1

T

∫ T/2
−T/2

e−2atdt = 1− e−2aT

2aT

which can be rearranged into Eq. (86).

†see also formula 1.445 (with x = 0) in the Gradshteyn table of Fourier series on sakai resources.
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Fig. 7 Exponentially decaying waveform.

Example 6 – sawtooth waveform

Derive the Fourier series representation of a sawtooth waveform of periodT, defined over one period
as follows,

f(t)= 2t
T
, −1

2
T ≤ t ≤ 1

2
T (88)

Also, with the help of Parseval’s identity (79), show the infinite summation result,

∞∑
k=1

1

k2
= π2

6

Solution

The FS coefficients are calculated from Eq. (2), for −∞ < k <∞, and k �= 0,

ck = 1

T

∫ T/2
−T/2

f(t)e−jkω0t dt = 1

T

∫ T/2
−T/2

2t
T
e−jkω0t dt = j(−1)k

πk
(89)

whereas c0 = 0. The resulting representation (7) becomes,

f(t)= c0 +
∞∑
k=1

2 Re
[
ckejkω0t

] = ∞∑
k=1

2 Re
[
j(−1)k

πk
ejkω0t

]
=

∞∑
k=1

2(−1)k+1

πk
sin(kω0t)

Fig. 8 shows the finite-term approximations with M = 10 and M = 40 plotted over three periods,
using both rectangular and Hamming windows. The Gibbs phenomenon is pronounced because of
the discontinuities of the waveform.
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Fig. 8 Sawtooth waveform.

The MATLAB code used to generate the graphs was as follows,

T = 1; w0 = 2*pi/T;

t = linspace(-1.5*T, 1.5*T, 6001);

u = @(t) double(t>=0);
P = @(t) 2*t/T.*(u(t+T/2)-u(t-T/2));
f = P(t+T)+P(t)+P(t-T);

c = @(k) j*(-1).^k/pi./k;

for M = [10,40]
n = 1:M;

[tt,k] = meshgrid(t,n);

fM = 2*real(sum(c(k).*exp(j*k.*tt*w0)));

figure; plot(t,fM,’r-’, t,f,’k:’)

wk = 0.54 + 0.46*cos(pi*k/M);

fw = 2*real(sum(wk.*c(k).*exp(j*k.*tt*w0)));

figure; plot(t,fw,’r-’, t,f,’k:’)
end
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For the infinite summation, we apply (79), noting that c0 = 0 and |ck|2 = 1

π2k2
,

2
∞∑
k=1

1

π2k2
= 1

T

∫ T/2
−T/2

(
2t
T

)2

dt = 1

3
⇒

∞∑
k=1

1

k2
= π2

6

Example 7 – full-wave rectifier AC/DC converter

In Sec. 7, we discussed a half-wave rectifier AC/DC converter. A full-wave rectifier can also be
considered, and since it has no gaps, it is easier for the lowpass filter to produce a DC output.
However, the circuitry is more complicated than using a simple diode.† The periodic rectified AC
signal is now defined over one period as,

f(t)= p(t)= ∣∣sin(ω0t)
∣∣ , 0 ≤ t ≤ T (90)

(a) Determine the Laplace transform P(s) of p(t) and the Fourier coefficients ck of the double-
sided periodic signal f(t).

(b) If f(t) is restricted to its causal part and is sent to the input of an RC-type filter of the form,

H(s)= 1

1+ τs =
a

s+ a , a = 1

τ
(91)

then, determine the complete output causal signal y(t) consisting of a transient part and a
steady-state part, the latter representing the DC output.

Solution

The Laplace transform of one period, p(t), is in this example,

P(s)=
∫ T

0
p(t)e−st dt =

∫ T
0

∣∣sin(ω0t)
∣∣e−st dt = ω0

(
1+ e−sT/2)2

s2 +ω2
0

(92)

This can be verified by direct integration, or, noting that the full-wave periodic signal can be
thought of the sum of the half-wave signal plus the latter delayed by half a period. Using Eq. (55)
and the delay theorem of Laplace transforms, we have,

P(s)=
(
ω0(1+ e−sT/2)

s2 +ω2
0

)
+ e−sT/2

(
ω0(1+ e−sT/2)

s2 +ω2
0

)
= ω0

(
1+ e−sT/2)2

s2 +ω2
0

The Fourier series coefficients are obtained by setting, s = jωk = jkω0 in P(s),

ck = 1

T
P(jωk)= −

(
1+ e−jπk)2

2π(k2 − 1)
(93)

These imply that ck = 0, for odd values of k, including k = ±1 verified by taking a proper limit.
The average DC level achieved after filtering is given by the coefficient c0 = 2/π = 0.6366.

The complete causal filter output is still given by Eq. (56) and (57) in the Laplace and time domains,
but using the new P(s),

Y(s) = A
s+ a +

∞∑
k=−∞

ckH(ωk)
s− jωk

, A = −aP(−a)
eaT − 1

, H(ωk)= a
a+ jωk

y(t) = Ae−at +
∞∑

k=−∞
ckH(ωk)ejωkt , or,

y(t) = Ae−at︸ ︷︷ ︸
transients

+ c0 + 2
∞∑
k=1

Re
[
ckH(ωk)ejωkt

]
︸ ︷︷ ︸

steady-state

, t ≥ 0

(94)

†search for “full wave rectifier” on https://en.wikipedia.org.
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The figure below shows the steady-state part on the left graph, and the full output on the right
graph, determined with a filter time constant τ = 5T, and keepingM = 100 harmonics in the Fourier
series parts of f(t) and y(t).
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The MATLAB code is similar to that of Sec. 7 and is omitted.

Example 8 – filtered square wave

Repeat Example 7 for the periodic square wave of Example 1, and in particular, for the duty-cycle
case of β = 1/2. For the filter of Eq. (91), choose a fast time constant, such as τ = T/10 or τ = T/5,
in order to converge to state-state quickly.

Solution

One period of the square wave of Example 1 with duty-cycle β is given by,

p(t)= u(t)−u(t − βT)
and has Laplace transform,

P(s)=
∫ T

0
p(t)e−st dt = 1− e−βsT

s
(95)

with Fourier series coefficients obtained by setting, s = jωk = jkω0 in P(s),

ck = 1

T
P(jωk)= 1− e−2πjβk

2πjk
== e−πjβk β sin(πβk)

πβk
= e−πjβk β sinc(βk) (96)

The complete causal filter output is still given by Eq. (56) and (57) in the Laplace and time domains,
but using the new P(s),

Y(s) = A
s+ a +

∞∑
k=−∞

ckH(ωk)
s− jωk

, A = −aP(−a)
eaT − 1

, H(ωk)= a
a+ jωk

y(t) = Ae−at +
∞∑

k=−∞
ckH(ωk)ejωkt , or,

y(t) = Ae−at︸ ︷︷ ︸
transients

+ c0 + 2
∞∑
k=1

Re
[
ckH(ωk)ejωkt

]
︸ ︷︷ ︸

steady-state

, t ≥ 0

(97)

The figure below shows the full output y(t) plotted over four periods, for the two filter time
constants τ = T/10 and τ = T/5, and keeping only M = 50 harmonics in the Fourier series sum.
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The time constants are so short, that one effectively sees only the steady-state part of the output
in these graphs.
The following MATLAB code was used to generate the graphs.

T = 1; w0 = 2*pi/T; b = 0.5;

u = @(t) (1+sign(t))/2; % Heaviside unit-step
p = @(t) u(t)-u(t-b*T); % duty cycle = b
P = @(s) (1-exp(-b*s*T))./s; % P(s) Laplace transform of p(t)

c = @(k) b * sinc(b*k) .* exp(-j*b*pi*k); % FS coeffs

M = 50; % number of harmonics kept
n = -M:M;

D = 4; % number of periods to plot
t = linspace(0, D*T, 1000*D+1);
f = zeros(size(t));
for m = 0:D-1 % construct square wave input

f = f + p(t-m*T);
end

for tau = [T/10, T/5]
H = @(w) 1./(1 + j*w*tau);

[tt,k] = meshgrid(t,n);

yst = real(sum(H(k*w0).*c(k).*exp(j*w0*k.*tt))); % steady

a = 1/tau; A = a*P(-a)/(1-exp(a*T));

y = A * exp(-a*t) + yst; % exact output

figure; plot(t,f,’b--’, t,yst,’r-’, ’linewidth’,2)
end
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Examples – Discrete Time

Example 9 – filtering of periodic discrete-time signals

Consider eight periods of the causal period-4 discrete-time signal, defined for 0 ≤ n ≤ 31 as follows,

f(n)= [3 6 6 0︸ ︷︷ ︸
one period

3 6 6 0︸ ︷︷ ︸ 3 6 6 0︸ ︷︷ ︸ 3 6 6 0︸ ︷︷ ︸ 3 6 6 0︸ ︷︷ ︸ 3 6 6 0︸ ︷︷ ︸ 3 6 6 0︸ ︷︷ ︸ 3 6 6 0︸ ︷︷ ︸ ] (98)

(a) Calculate the DFS coefficients of this signal, and express f(n) as a linear combination of
sinusoids, and determine the values of the coefficients A,B,C,D, in the following expression,

f(n)= A+ B(−1)n+C sin
(
πn
2

)
+D cos

(
πn
2

)
(99)

(b) Consider the filter,

H(z)= 0.5
1− 0.5z−1

Apply Eq. (68) to determine the exact output of this filter, y(n), 0 ≤ n ≤ 31, for the input
f(n). Plot the signals f(n) and y(n) using stem plots. Moreover, calculate the same output
using the MATLAB function filter and verify that it is numerically identical to that of Eq. (68).

Solution

The DFS coefficients are the 4-point DFT of one period of f(n), which can be calculated using the
4×4 DFT matrix, that is,⎡

⎢⎢⎢⎣
F0

F1

F2

F3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
f0
f1
f2
f3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

3
6
6
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

15
−3− 6j

3
−3+ 6j

⎤
⎥⎥⎥⎦

The N = 4 DFT digital frequencies Ωk are,

Ωk = 2πk
4

, k = 0,1,2,3 ⇒ Ω0 = 0 , Ω1 = π
2
, Ω2 = π, Ω3 = 3π

2

Noting that Ω3 = −Ω1 mod (2π), and applying the IDFT formula (34) to the case N = 4, we
obtain the DFS representation of f(n),

f(n) = 1

4

3∑
k=0

FkejΩkn = 1

4

[
F0ejΩ0n + F1ejΩ1n + F2ejΩ2n + F3ejΩ3n

]

= 1

4

[
15+ (−3− 6j)ejπn/2 + 3ejπn + (−3+ 6j)e−jπn/2

]

= 1

4

[
15+ 3ejπn − 3

(
ejπn/2 + e−jπn/2)− 6j

(
ejπn/2 − e−jπn/2)]

= 1

4

[
15+ 3ejπn − 3 · 2 cos

(
πn
2

)
− 6j · 2j sin

(
πn
2

)]

or, noting that, ejπn = cos(πn)+j sin(πn)= cos(πn)= (−1)n, we have,

f(n)= 15

4
+ 3

4
(−1)n−3

2
cos

(
πn
2

)
+ 3 sin

(
πn
2

)
(100)
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One can verify that Eq. (100) reproduces the given period for n = 0,1,2,3. Next, using Eq. (67), we
obtain the z-transform of the filter output, expressed in terms of the z-transform of one period,
P(z)= 3+ 6z−1 + 6z−2 + 0z−3 = 3+ 6z−1 + 6z−2,

Y(z)= H(z)F(z)= H(z)· P(z)
1− z−4

= 0.5(3+ 6z−1 + 6z−2)
(1− 0.5z−1)(1− z−4)

= R
1− 0.5z−1

+ 1

4

3∑
k=0

FkH(Ωk)
1− ejΩkz−1

where from the cover-up method we calculate the residue,

R = 0.5(3+ 6z−1 + 6z−2)
1− z−4

∣∣∣∣∣
z=0.5

= 0.5
(
3+ 6(0.5)−1+6(0.5)−2

)
1− 0.5−4

= −1.3

The transfer function values H(z) at the 4th roots of unity, zk = ejΩk = e2πjk/4, k = 0,1,2,3, are,

zk =

⎡
⎢⎢⎢⎣

1
j

−1
−j

⎤
⎥⎥⎥⎦ ⇒ H(Ωk)= H(zk)= 0.5

1− 0.5z−1
k
=

⎡
⎢⎢⎢⎣

1
0.4− 0.2j

1/3
0.4+ 0.2j

⎤
⎥⎥⎥⎦

so that the remaining expansion residues are obtained by element-wise multiplication,

Bk = 1

4
FkH(Ωk)= 1

4

⎡
⎢⎢⎢⎣

15
−3− 6j

3
−3+ 6j

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

1
0.4− 0.2j

1/3
0.4+ 0.2j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

3.75
−0.6− 0.45j

0.25
−0.6+ 0.45j

⎤
⎥⎥⎥⎦

It follows that the causal inverse z-transform of Y(z) will be, for n ≥ 0,

y(n) = R(0.5)n+1

4

3∑
k=0

FkH(Ωk)ejΩkn = R(0.5)n+
[
B0ejΩ0n + B1ejΩ1n + B2ejΩ2n + B3ejΩ3n

]

= −1.3(0.5)n+
[

3.75+ (−0.6− 0.45j)ejπn/2 + 0.25ejπn + (−0.6+ 0.45j)e−jπn/2
]

or, expressed in real-valued form,

y(n)= −1.3(0.5)n︸ ︷︷ ︸
transients

+3.75+ 0.25(−1)n−1.2 cos
(
πn
2

)
+ 0.9 sin

(
πn
2

)
︸ ︷︷ ︸

steady-state

, n ≥ 0 (101)

The signals f(n) and y(n) are shown below.
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time samples,  n

filter output,  y(n)

The signal output y(n) computed using the function filter is numerically identical to that com-
puted by Eq. (101). The numerical values are shown in the table below. We note that the output
eventually becomes periodic with period, [2.8, 4.4, 5.2, 2.6], corresponding to the steady-state
part of Eq. (101). See Example 15 for a much quicker calculation of this output period.
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n f(n) y(n) | n f(n) y(n)
---------------------------------------------
0 3.0000 1.5000 | 16 3.0000 2.8000
1 6.0000 3.7500 | 17 6.0000 4.4000
2 6.0000 4.8750 | 18 6.0000 5.2000
3 0.0000 2.4375 | 19 0.0000 2.6000

4 3.0000 2.7188 | 20 3.0000 2.8000
5 6.0000 4.3594 | 21 6.0000 4.4000
6 6.0000 5.1797 | 22 6.0000 5.2000
7 0.0000 2.5898 | 23 0.0000 2.6000

8 3.0000 2.7949 | 24 3.0000 2.8000
9 6.0000 4.3975 | 25 6.0000 4.4000
10 6.0000 5.1987 | 26 6.0000 5.2000
11 0.0000 2.5994 | 27 0.0000 2.6000

12 3.0000 2.7997 | 28 3.0000 2.8000
13 6.0000 4.3998 | 29 6.0000 4.4000
14 6.0000 5.1999 | 30 6.0000 5.2000
15 0.0000 2.6000 | 31 0.0000 2.6000

The following MATLAB code segment illustrates the computations.

p = [3 6 6 0]; % one period
f = repmat(p,1,8); % 8 periods

n = 0:length(f)-1;
y = -1.3*(0.5).^n + 3.75 +0.25*(-1).^n - 1.2*cos(pi*n/2) + 0.9*sin(pi*n/2);
yf = filter(0.5,[1,-0.5],f);

Error = norm(y -yf); % compare with FILTER

figure; stem(n,f,’b.’,’markersize’,16)
figure; stem(n,y,’r.’,’markersize’,16)

Example 10 – filtering of periodic discrete-time signals

Consider six periods of the causal period-8 discrete-time signal, defined for 0 ≤ n ≤ 47 as follows,

f(n)= [0 1 2 3 4 5 6 7︸ ︷︷ ︸
1st period

0 1 2 3 4 5 6 7︸ ︷︷ ︸
2nd period

· · · 0 1 2 3 4 5 6 7︸ ︷︷ ︸
6th period

]
(102)

and send them to the input of the filter,

H(z)= 0.5
1− 0.5z−1

(a) Determine the 8-point DFS representations of the input f(n), and that of the steady-state
output of the filter, as well as the complete causal output of the filter, in the following complex
sinusoidal forms, for n ≥ 0,

f(n) = 1

8

7∑
k=0

FkejΩkn , where Ωk = 2πk
8

ysteady(n) =
7∑
k=0

BkejΩkn , where Bk = 1

8
FkH(Ωk)

y(n) = A(0.5)n+ysteady(n)= A(0.5)n+
7∑
k=0

BkejΩkn

(103)

In other words, determine the numerical values of the complex-valued coefficients Fk, Bk, and
the value of the real-valued transient coefficient A. Moreover, recast the above expressions in
real-valued sinusoidal forms.
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(b) Verify that the real-valued sinusoidal form of f(n) correctly generates the periods of f(n),
and calculate the values of one period of ysteady(n).

(c) Calculate the exact output of the filter y(n) for 0 ≤ n ≤ 47 using Eq. (103), and display the
results in table format. Moreover, re-calculate that output using MATLAB’s built-in function
filter and verify that you get the same result. Plot the input and output signals.

Solution

The DFS coefficients Fk can be calculated quickly using an 8-point DFT of one period of f(n), using
for example the 8×8 DFT matrix of Eq. (39), thus, we have in vector form,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1

F2

F3

F4

F5

F6

F7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1√

2
(1− j) −j 1√

2
(−1− j) −1 1√

2
(−1+ j) j 1√

2
(1+ j)

1 −j −1 j 1 −j −1 j
1 1√

2
(−1− j) j 1√

2
(1− j) −1 1√

2
(1+ j) −j 1√

2
(−1+ j)

1 −1 1 −1 1 −1 1 −1
1 1√

2
(−1+ j) −j 1√

2
(1+ j) −1 1√

2
(1− j) j 1√

2
(−1− j)

1 j −1 −j 1 j −1 −j
1 1√

2
(1+ j) j 1√

2
(−1+ j) −1 1√

2
(−1− j) −j 1√

2
(1− j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
3
4
5
6
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which gives, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1

F2

F3

F4

F5

F6

F7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 4 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
−1+ j(√2+ 1)

−1+ j
−1+ j(√2− 1)

−1
−1− j(√2− 1)

−1− j
−1− j(√2+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(104)

Next, evaluating the filter’s frequency response at the 8 DFT frequencies gives,

Hk = H(Ωk)= 0.5
1− 0.5ejΩk

or, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0

H1

H2

H3

H4

H5

H6

H7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

34
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

34
16+ 3

√
2− (4+ 5

√
2)j

34(2− j)/5
16− 3

√
2+ (4− 5

√
2)j

34/3
16− 3

√
2− (4− 5

√
2)j

34(2+ j)/5
16+ 3

√
2+ (4+ 5

√
2)j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(105)

and the output’s DFS coefficients are computed from Bk = FkHk/8, or,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

B1

B2

B3

B4

B5

B6

B7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

34
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

116
−1+ 3

√
2+ (13+ 12

√
2)j

17(−1+ 3j)/5
−1− 3

√
2+ (−13+ 12

√
2)j

−17/3
−1− 3

√
2+ (13− 12

√
2)j

17(−1− 3j)/5
−1+ 3

√
2− (13+ 12

√
2)j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(106)
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In order to express the DFS expansions (103) in real-valued forms, we make use of the symmetry
properties given in Eq. (44), which for N = 8, imply the conjugation properties,

F7 = F∗1 , Ω7 = −Ω1 mod(2π) ⇒ F1ejΩ1n + F7ejΩ7n = F1ejΩ1n + F∗1 e−jΩ1n = 2 Re
(
F1ejΩ1n

)
F6 = F∗2 , Ω6 = −Ω2 mod(2π) ⇒ F2ejΩ2n + F6ejΩ6n = F2ejΩ2n + F∗2 e−jΩ2n = 2 Re

(
F2ejΩ2n

)
F5 = F∗3 , Ω5 = −Ω3 mod(2π) ⇒ F3ejΩ3n + F5ejΩ5n = F3ejΩ3n + F∗3 e−jΩ3n = 2 Re

(
F3ejΩ3n

)
Then, Eq. (103) can be re-written as follows, noting that, ejΩ4n = ejπn = (−1)n,

f(n) = 1

8

[
F0 + 2 Re

(
F1ejΩ1n

)+ 2 Re
(
F2ejΩ2n

)+ 2 Re
(
F3ejΩ3n

)+ F4(−1)n
]

ysteady(n) = B0 + 2 Re
(
B1ejΩ1n

)+ 2 Re
(
B2ejΩ2n

)+ 2 Re
(
B3ejΩ3n

)+ B4(−1)n
(107)

and these lead to,

f(n) = 7

2
− 1

2
(−1)n− cos

(
πn
4

)
− (√2+ 1)sin

(
πn
4

)

− cos
(
πn
2

)
− sin

(
πn
4

)
− cos

(
3πn

4

)
− (√2− 1)sin

(
3πn

4

) (108)

ysteady(n) = 7

2
− 1

6
(−1)n+3

√
2− 1

17
cos

(
πn
4

)
− 13+ 12

√
2

17
sin

(
πn
4

)

− 1

5
cos

(
πn
2

)
− 3

5
sin

(
πn
2

)
− 3

√
2+ 1

17
cos

(
3πn

4

)
+ 13− 12

√
2

17
sin

(
3πn

4

) (109)

Eqs. (108) and (109) generate the following periods of length 8,

f(n) = [0.0000 , 1.0000 , 2.0000 , 3.0000 , 4.0000 , 5.0000 , 6.0000 , 7.0000]

ysteady(n) = [3.0157 , 2.0078 , 2.0039 , 2.5020 , 3.2510 , 4.1255 , 5.0627 , 6.0314]

For the transient term, we calculate the residue as in Eq. (67),

A = 0.5P(z)
1− z−8

∣∣∣∣
z=0.5

= 0.5(0+ z−1 + 2z−2 + 3z−3 + 4z−4 + 5z−5 + 6z−6 + 7z−7

1− z−8

∣∣∣∣∣
z=0.5

= −3.0176

The graphs below show the signals f(n), y(n), for 0 ≤ n ≤ 47.
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with the computed values printed below, where y(n) eventually settles into its periodic steady-stat,
repeating the above period,
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n f(n) y(n) | n f(n) y(n) | n f(n) y(n)
----------------------------------------------------------------------
0 0.0000 0.0000 | 16 0.0000 3.0156 | 32 0.0000 3.0157
1 1.0000 0.5000 | 17 1.0000 2.0078 | 33 1.0000 2.0078
2 2.0000 1.2500 | 18 2.0000 2.0039 | 34 2.0000 2.0039
3 3.0000 2.1250 | 19 3.0000 2.5020 | 35 3.0000 2.5020
4 4.0000 3.0625 | 20 4.0000 3.2510 | 36 4.0000 3.2510
5 5.0000 4.0313 | 21 5.0000 4.1255 | 37 5.0000 4.1255
6 6.0000 5.0156 | 22 6.0000 5.0627 | 38 6.0000 5.0627
7 7.0000 6.0078 | 23 7.0000 6.0314 | 39 7.0000 6.0314
8 0.0000 3.0039 | 24 0.0000 3.0157 | 40 0.0000 3.0157
9 1.0000 2.0020 | 25 1.0000 2.0078 | 41 1.0000 2.0078
10 2.0000 2.0010 | 26 2.0000 2.0039 | 42 2.0000 2.0039
11 3.0000 2.5005 | 27 3.0000 2.5020 | 43 3.0000 2.5020
12 4.0000 3.2502 | 28 4.0000 3.2510 | 44 4.0000 3.2510
13 5.0000 4.1251 | 29 5.0000 4.1255 | 45 5.0000 4.1255
14 6.0000 5.0626 | 30 6.0000 5.0627 | 46 6.0000 5.0627
15 7.0000 6.0313 | 31 7.0000 6.0314 | 47 7.0000 6.0314

The output from filter can be verified to be identical to the above.

Example 11 – DFT calculation

Consider the following signal, which is periodic in n with period 4,

xn = 1.25+ 0.25(−1)n−0.5 cos
(

1
2πn

)
+ sin

(
1
2πn

)
(110)

(a) Calculate one period of this signal, that is, the values, [x0, x1, x1, x3]. Then, by comparing
Eq. (110) term by term with the inverse DFT formula of Eq. (34), determine the 4-point DFT of
one period of this signal without performing any actual DFT calculations.

(b) Determine the 4-point DFT again by calculating it using the 4×4 DFT matrix of Eq. (38).

Solution

Setting n = 0,1,2,3, we calculate the values of one period,⎡
⎢⎢⎢⎣
x0

x1

x2

x3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
2
2
0

⎤
⎥⎥⎥⎦

Since the period is 4, the first step is to re-express xn in terms of the 4-point DFT frequencies,

Ωk = 2πk
4

, k = 0,1,2,3 ⇒ Ω0 = 0 , Ω1 = π
2
, Ω2 = π, Ω3 = 3π

2

Noting that (−1)n= cos(πn)= cos(Ω2n)= ejΩ2n, we may rewrite xn as follows,

xn = 1.25+ 0.25 cos(Ω2n)−0.5 cos(Ω1n)+ sin(Ω1n)

Multiplying and dividing by a factor of 4, and using Euler’s formulas for the sine and cosine terms,
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and noting that e−jΩ1n = ejΩ3n because, −Ω1 = Ω3−2π, we may express xn in the form of Eq. (34),

xn = 1.25+ 0.25 cos(Ω2n)−0.5 cos(Ω1n)+ sin(Ω1n)

= 1

4

[
5+ cos(Ω2n)−2 cos(Ω1n)+4 sin(Ω1n)

]

= 1

4

[
5ejΩ0n + ejΩ2n − 2

1

2

(
ejΩ1n + e−jΩ1n

)+ 4
1

2j
(
ejΩ1n − e−jΩ1n

)]

= 1

4

[
5ejΩ0n + ejΩ2n − (ejΩ1n + ejΩ3n

)− 2j
(
ejΩ1n − ejΩ3n

)]

= 1

4

[
5ejΩ0n − (1+ 2j)ejΩ1n + ejΩ2n − (1− 2j)ejΩ3n

]

= 1

4
[X0ejΩ0n +X1ejΩ1n +X2ejΩ2n +X3ejΩ3n

]

from which we identity the 4-point DFT,⎡
⎢⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
−1− 2j

1
−1+ 2j

⎤
⎥⎥⎥⎦

The alternative calculation using the DFT matrix acting on the calculated time samples of one
period produces the same result,⎡

⎢⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x0

x1

x2

x3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
2
2
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
−1− 2j

1
−1+ 2j

⎤
⎥⎥⎥⎦

Example 12 – DFT calculation

Repeat parts (a,b) of the previous problem for the following signal,

xn = 1

4

[
5− (−1)n+4 cos

(
1
2πn

)
− 6 sin

(
1
2πn

)]

Ans.

⎡
⎢⎢⎢⎣
x0

x1

x2

x3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2
0
0
3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
2+ 3j
−1

2− 3j

⎤
⎥⎥⎥⎦

Example 13 – DFT of sampled signal

Consider the following analog time signal where t is in units of milliseconds,

x(t)= 0.3+ 0.4 cos(6πt)+0.5 cos(10πt)+0.6 sin(14πt)

This signal is sampled at a rate of 10 kHz and 10 samples are collected, that is, the samples x(nT),
n = 0,1,2, . . . ,9. Without numerically calculating these time samples, and without performing any
DFT calculations, determine the 10-point DFT of this signal by comparing the sampled signal with
the inverse DFT formula Eq. (34).
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Solution

Since the sampling rate is fs = 10 kHz, the sampling time interval will be T = 1/fs = 1/10 msec. It
follows that the sampled signal will be,

x(nT) = 0.3+ 0.4 cos(6πnT)+0.5 cos(10πnT)+0.6 sin(14πnT)

= 0.3+ 0.4 cos(6πnT)+0.5 cos(10πnT)+0.6 sin(14πnT)

= 0.3+ 0.4 cos(6πn/10)+0.5 cos(10πn/10)+0.6 sin(14πn/10)

= 0.3+ 0.4 cos(Ω3n)+0.5 cos(Ω5n)+0.6 sin(Ω7n)

where we re-expressed x(nT) in terms of the 10-point DFT frequencies,

Ωk = 2πk
10

, k = 0,1, . . . ,9 ⇒ Ω3 = 6π
10
, Ω5 = 10π

10
= π, Ω7 = 14π

10

Noting the properties,Ω7 = −Ω3+2π, and,Ω5 = −Ω5+2π, and using Euler’s formulas, we obtain,

x(nT) = 1

10

[
3+ 4

1

2

(
ejΩ3n + e−jΩ3n

)+ 5
1

2

(
ejΩ5n + e−jΩ5n

)+ 6
1

2j
(
ejΩ7n − e−jΩ7n

)]
(

and after replacing, e−jΩ3n = ejΩ7n, e−jΩ7n = ejΩ3n, e−jΩ5n = ejΩ5n
)

= 1

10

[
3+ 4

1

2

(
ejΩ3n + ejΩ7n

)+ 5
1

2

(
ejΩ5n + ejΩ5n

)+ 6
1

2j
(
ejΩ7n − ejΩ3n

)]

= 1

10

[
3+ 2

(
ejΩ3n + ejΩ7n

)+ 5
1

2

(
ejΩ5n + ejΩ5n

)− 3j
(
ejΩ7n − ejΩ3n

)]

= 1

10

[
3+ (2+ 3j)ejΩ3n + 10ejΩ5n + (2− 3j)ejΩ7n

]

= 1

10

[
X0ejΩ0n +X3ejΩ3n +X5ejΩ5n +X7ejΩ7n + (all other terms are absent)

]
thus, we identify the 10-point DFT to be,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
0
0

2+ 3j
0
5
0

2− 3j
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The zero values simply mean that the corresponding DFT frequencies are not part of the given signal.
We note that the above steps are reversible, that is, starting with the above DFT vectorXk, we can

insert it into the inverse DFT formula and proceed backwards to express x(n) as a linear combination
of real-valued sines and cosines.

Example 14 – DFT calculation

A discrete-time periodic signal x(n) of period 5 has the following 5-point DFT,⎡
⎢⎢⎢⎢⎢⎣
X0

X1

X2

X3

X4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

5
−5j
−10j

10j
5j

⎤
⎥⎥⎥⎥⎥⎦
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Express the signal x(n) as a linear combination of real-valued sinusoidal and cosinusoidal signals
whose frequencies are the 5-point DFT frequencies,

Ωk = 2πk
5

, k = 0,1,2,3,4

Solution

Inserting the given DFT into the inverse DFT formula of Eq. (34), we have,

x(n) = 1

5

[
X0ejΩ0n +X1ejΩ1n +X2ejΩ2n +X3ejΩ3n +X4ejΩ4n

]

= 1

5

[
5ejΩ0n − 5jejΩ1n − 10jejΩ2n + 10jejΩ3n + 5jejΩ4n

]

Noting the conjugation properties,

ejΩ4n = e−jΩ1n , ejΩ3n = e−jΩ2n

and using Euler’s formulas, we may combine terms having positive and negative frequencies,

x(n) = ejΩ0n − jejΩ1n − 2jejΩ2n + 2jejΩ3n + jejΩ4n

= ejΩ0n − jejΩ1n − 2jejΩ2n + 2je−jΩ2n + je−jΩ1n

= ejΩ0n − j(ejΩ1n − e−jΩ1n
)− 2j

(
ejΩ2n − e−jΩ2n

)
= ejΩ0n − j · 2j sin(Ω1n)−2j · 2j sin(Ω2n)= 1+ 2 sin(Ω1n)+4 sin(Ω2n)

= 1+ 2 sin
(

2πn
5

)
+ 4 sin

(
4πn

5

)

Example 15 – filtering of periodic sequences

Consider the periodic discrete-time signal of period 4,

x(n)= [· · · 2 1 1 1︸ ︷︷ ︸
one period

2 1 1 1︸ ︷︷ ︸ 2 1 1 1︸ ︷︷ ︸ · · · ] (111)

where the dots represent the repetition of the basic period, [2 1 1 1]. This signal is sent to the input
of the discrete-time system,

H(z)= z−1 + 3(1− z−2)
1+ 0.25z−2

After the transients die out, the steady-state output will also periodic with period 4 and will have a
similar repetitive form, where, [y0 , y1 , y2 , y3], represents one output period,

y(n)= [· · · y0 , y1 , y2 , y3︸ ︷︷ ︸
one period

, y0 , y1 , y2 , y3︸ ︷︷ ︸ , y0 , y1 , y2 , y3︸ ︷︷ ︸ · · · ] (112)

(a) Working with 4-point DFTs in matrix form, calculate the numerical values of [y0 , y1 , y2 , y3].

(b) Moreover, express both the input and the output signals x(n), y(n) as linear combinations of
real-valued sinusoidal signals whose frequencies are the 4-point DFT frequencies.
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Solution

The DFS/DFT series expansions of the input and (steady-state) output signals are explicitly as follows
for the case of period 4, and using the DFT conjugation properties, X1 = X∗3 , for real-valued signals,

x(n) = 1

4

[
X0ejΩ0n +X1ejΩ1n +X2ejΩ2n +X3ejΩ3n

]
= 1

4

[
X0 + 2 Re

[
X1ejΩ1n

]+X2(−1)n
]

y(n) = 1

4

[
Y0ejΩ0n +Y1ejΩ1n +Y2ejΩ2n +Y3ejΩ3n

]
= 1

4

[
Y0 + 2 Re

[
Y1ejΩ1n

]+Y2(−1)n
] (113)

where, Xk,Yk are the 4-point DFT’s of one period of the signals, and the output DFT is obtained by
multiplying the input DFT by the frequency response of the filter at the four DFT frequencies, i.e.,

Yk = XkH(zk) , zk = ejΩk , Ωk = 2πk
4

, k = 0,1,2,3 (114)

For part (a), the DFT coefficients Xk are computed by the matrix form, then, the Yk can be
computed from Eq. (114), and then an inverse DFT can be carried out in matrix form to obtain the
time samples of the output sequence. Finally, for part (b), the computed Xk,Yk are inserted in
Eq. (113) to express the signals in sinusoidal form. The computational steps are as follows,⎡

⎢⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

2
1
1
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
1
1
1

⎤
⎥⎥⎥⎦

zk = ejΩk =

⎡
⎢⎢⎢⎣
ejΩ0

ejΩ1

ejΩ2

ejΩ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
j

−1
−j

⎤
⎥⎥⎥⎦ ⇒ z2

k =

⎡
⎢⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎥⎦ ⇒ H(zk)= z−1

k + 3(1− z−2
k )

1+ 0.25z−2
k
=

⎡
⎢⎢⎢⎣

1
8− j
−1

8+ j

⎤
⎥⎥⎥⎦

and performing element-wise multiplication,⎡
⎢⎢⎢⎣
Y0

Y1

Y2

Y3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣
H(z0)
H(z1)
H(z2)
H(z3)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
1
1
1

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

1
8− j
−1

8+ j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
8− j
−1

8+ j

⎤
⎥⎥⎥⎦

The inverse DFT of Yk is calculated using the matrix inverse of Eq. (37),

⎡
⎢⎢⎢⎣
y0

y1

y2

y3

⎤
⎥⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
∗ ⎡⎢⎢⎢⎣

5
8− j
−1

8+ j

⎤
⎥⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

5
8− j
−1

8+ j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

5
2

−3
1

⎤
⎥⎥⎥⎦

so that the steady-state output sequence is,

y(n)= [· · · 5 , 2 , −3 , 1︸ ︷︷ ︸
one period

5 , 2 , −3 , 1︸ ︷︷ ︸ 5 , 2 , −3 , 1︸ ︷︷ ︸ · · · ]

Using the computed Xk,Yk, the DFS representations of x(n) and y(n) will be,

x(n) = 1

4

[
5ejΩ0n + ejΩ1n + ejΩ2n + ejΩ3n

]

y(n) = 1

4

[
5ejΩ0n + (8− j)ejΩ1n − ejΩ2n + (8+ j)ejΩ3n

] (115)

42



Using ejΩ2n = ejπn = (−1)n, and, ejΩ3n = e−jΩ1n, we may rewrite these in real-valued form,

x(n) = 1

4

[
5+ 2 cos

(
2πn

4

)
+ (−1)n

]

y(n) = 1

4

[
5+ 16 cos

(
2πn

4

)
+ 2 sin

(
2πn

4

)
− (−1)n

] (116)

Finally, we revisit Example 9 and show how to calculate the steady-state periodic output period
using the same matrix approach. In Example 9, we had found that the 4-point DFT of the input was,⎡

⎢⎢⎢⎣
F0

F1

F2

F3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
f0
f1
f2
f3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

3
6
6
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

15
−3− 6j

3
−3+ 6j

⎤
⎥⎥⎥⎦

and that the values of the transfer function, H(z)= 0.5/(1− 0.5z−1), at the DFT frequencies were,

zk =

⎡
⎢⎢⎢⎣

1
j

−1
−j

⎤
⎥⎥⎥⎦ ⇒ H(Ωk)= H(zk)= 0.5

1− 0.5z−1
k
=

⎡
⎢⎢⎢⎣

1
0.4− 0.2j

1/3
0.4+ 0.2j

⎤
⎥⎥⎥⎦

Point-by-point multiplication then gives the DFT of the output period,⎡
⎢⎢⎢⎣
Y0

Y1

Y2

Y3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
F0

F1

F2

F3

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣
H(Ω0)
H(Ω1)
H(Ω2)
H(Ω3)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

15
−3− 6j

3
−3+ 6j

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

1
0.4− 0.2j

1/3
0.4+ 0.2j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

15
−2.4− 1.8j

1
−2.4+ 1.8j

⎤
⎥⎥⎥⎦

The inverse DFT of Yk is calculated using the inverse DFT matrix,⎡
⎢⎢⎢⎣
y0

y1

y2

y3

⎤
⎥⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
Y0

Y1

Y2

Y3

⎤
⎥⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

15
−2.4− 1.8j

1
−2.4+ 1.8j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2.8
4.4
5.2
2.6

⎤
⎥⎥⎥⎦

And, we already saw in Example 9 that the input and output periodic signals can be expressed as
sums of sinusoids at the four DFT frequencies,

f(n) = 3.75+ 0.75(−1)n−1.5 cos
(
πn
2

)
+ 3 sin

(
πn
2

)
= [3, 6, 6, 0, · · · ]

y(n) = 3.75+ 0.25(−1)n−1.2 cos
(
πn
2

)
+ 0.9 sin

(
πn
2

)
= [2.8, 4.4, 5.2, 2.6, · · · ]
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