
332:345 – Linear Systems & Signals – Spring 2021

Set 4 – Solved Second-Order Examples – S. J. Orfanidis

Overview

We briefly review some of the material from set-3. Practical LTI systems are described by linear
constant-coefficient differential equations (LCCDEs). For simple type inputs (e.g., unit-steps, ramps,
pulses, exponentials, sinusoids) the solution can be obtained analytically by,

(a) Laplace transforms using initial conditions at t = 0−

(b) the classical method using initial conditions at t = 0+, implemented for example using the
dsolve function of MATLAB’s symbolic toolbox.

For more complicated and arbitrary inputs, the LCCDEs can be solved numerically by,

(a) using MATLAB’s built-in lsim function
(b) converting the CT differential equation into a DT difference equation using some sort of dis-

cretization scheme, such as zero-order-hold, forward or backward Euler, or bilinear/trapezoidal
transformation, and then iterating it numerically (lsim uses either a zero- or a first-order hold
by default).

In this set, as well as in set-6, we illustrate the above approaches with several first- and second-
order examples. Consider a second-order LTI system described by a second-order differential equa-
tion of the form given below in Eq. (1), which also can be transformed to the s-domain using the
formal mapping, s↔ d/dt, and define its transfer function as the ratio of the Laplace transform of
the output to the Laplace transform of the input,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t)

(D2 + a1D+ a2)y(t)= (b0D2 + b1D+ b2)x(t)
(1)

(s2 + a1s+ a2)Y(s)= (b0s2 + b1s+ b2)X(s) ⇒ H(s)= Y(s)
X(s)

= b0s2 + b1s+ b2

s2 + a1s+ a2
(2)

where we used the notation,

D = d
dt
, ḟ(t)= Df(t)= df(t)

dt

Similarly, a first-order LTI system is characterized by the following first-order differential equa-
tion and transfer function,

ẏ(t)+ay(t)= b0ẋ(t)+b1x(t)

(D+ a)y(t)= (b0D+ b1)x(t)
(3)

(s+ a)Y(s)= (b0s+ b1)X(s) ⇒ H(s)= Y(s)
X(s)

= b0s+ b1

s+ a (4)

The differential equation (1) is to be solved for y(t) with a given input x(t) and given initial
conditions, y(0−), ẏ(0−), specified at t = 0−. Alternatively, as is done in the classical method of
solving differential equations, one can specify the initial conditions, y(0+), ẏ(0+), at time t = 0+.
For the first-order case of Eq. (3), the initial condition at t = 0− is the single number y(0−), or
equivalently at t = 0+, the number, y(0+). In set-3 we saw that the mapping between the two sets
of conditions is as follows, up to order 3,
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y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0 ẋ(0+)+(b1 − a1b0)x(0+)

ÿ(0+) = ÿ(0−)+b0 ẍ(0+)+(b1 − a1b0)ẋ(0+)+
(
b2 − a2b0 − a1(b1 − a1b0)

)
x(0+)

(5)

These assume that the input signal x(t) is causal and that it does not have any impulsive delta-
function terms, like δ(t), but it may be discontinuous at t = 0. For first-order systems only the
first equation in (5) is needed, for second-order systems, only the first two are needed, and for
third-order, all three are needed.

The general solution of Eqs. (1) or (3), subject to the given initial conditions can be decomposed
as a sum of two types of terms,

y(t) = yzi(t)︸ ︷︷ ︸
zero-input
IC(0−)�= 0

+ yzs(t)︸ ︷︷ ︸
zero-state
IC(0−)= 0
h(t)∗x(t)

= yhomog(t)︸ ︷︷ ︸
homogeneous

IC(0+)�= 0

+ yf(t)︸ ︷︷ ︸
forced response

easy to guess

(6)

The zero-input/zero-state decomposition uses the initial conditions at t = 0−, and each term
separately, or both simultaneously, can be determined by Laplace transform methods. The relevant
MATLAB functions are, laplace, solve, partfrac, ilaplace. The zero-state term can also be obtained by
convolving the system’s impulse response h(t) with the input signal x(t), that is, by the operation,
yzs(t)= h(t)∗x(t), but that is generally less convenient than the Laplace method.

The homogeneous/forced-response decomposition uses the initial conditions at t = 0+. It is
equivalent to the classical method of solution and can be implemented in MATLAB with the function
dsolve, which requires the conditions at t = 0+. Both decompositions are special cases of the more
general, but not unique, decomposition into a homogeneous part and a particular solution,

y(t)= yhomog(t)︸ ︷︷ ︸
homogeneous

+ ypart(t)︸ ︷︷ ︸
particular

(7)

The homogeneous part in Eq. (6) or (7) is expressible as a linear combination of the characteristic
modes of the system, with coefficients fixed by the initial conditions at t = 0+. This approach is
illustrated in various examples below.

Since convolution in the time-domain becomes multiplication in the s-domain, the Laplace trans-
form of the zero-state component will be,

yzs(t)= h(t)∗x(t) � Yzs(s)= H(s)X(s) (8)

Thus, the Laplace transform of the total solution will be as follows, with the part Yzi(s) incor-
porating the initial conditions at t = 0−,

y(t)= yzi(t)+yzs(t) � Y(s)= Yzi(s)+Yzs(s)= Yzi(s)+H(s)X(s) (9)

Eq. (5) also applies separately to the zero-input and zero-state parts. By definition, the zero-
input component, yzi(t), is the solution of Eq. (1) when the input is zero, x(t)= 0. Also by definition,
the zero-state component, yzs(t), is the solution of (1) with the given input x(t), but subject to zero
initial conditions at t = 0−. It follows that the initial conditions of yzi(t) are the same as those of
the total solution y(t), indeed, y(0−)= yzi(0−)+yzs(0−)= yzi(0−)+0 = yzi(0−), and similarly for
the other conditions. Thus, the conditions (5) for yzi(t) will be, after setting x(t)= 0,

yzi(0+) = yzi(0−)= y(0−)
ẏzi(0+) = ẏzi(0−)= ẏ(0−)
ÿzi(0+) = ÿzi(0−)= ÿ(0−)

(10)
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We note that there is no distinction between t = 0− and t = 0+, and moreover, the conditions
for yzi(t)match those of the total solution y(t). The yzi(t) component can be determined either by
Laplace or by the dsolve method both using the same initial conditions at t = 0−. For the zero-state
component, Eq. (5) becomes,

yzs(0−) = 0 , yzs(0+)= b0x(0+)

ẏzs(0−) = 0 , ẏzs(0+)= b0 ẋ(0+)+(b1 − a1b0)x(0+)

ÿzs(0−) = 0 , ÿzs(0+)= b0 ẍ(0+)+(b1 − a1b0)ẋ(0+)+
(
b2 − a2b0 − a1(b1 − a1b0)

)
x(0+)

(11)

It follows that the zero-state component yzs(t) can be determined by three methods:

(i) convolution, yzs(t)= h(t)∗x(t)
(ii) Laplace method applied to the zero initial conditions at t = 0− of Eq. (11)

(iii) dsolve method applied to the t = 0+ conditions of Eq. (11).

Forced Response

In the decomposition of Eq. (6), the form of the forced response term, yf(t), can be guessed
easily in simple cases of the driving input.† Consider a 1st order, or 2nd order, filter with real-valued
coefficients and with poles p1, or p1, p2 with p1 �= p2, that lie in the left-hand s-plane,

H(s)= b0s+ b1

s+ a1
≡ b0s+ b1

s− p1
, H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2
≡ b0s2 + b1s+ b2

(s− p1)(s− p2)

Then, the forced response will have the following forms for exponential, sinusoidal, unit-step,
unit-ramp, or quadratic input signals,

x(t) yf(t) input type

ept Bept exponential , p �= pi , B = H(p)
epit Bi tepit exponential , p = pi, Bi = lim

s=pi
[
(s− pi)H(s)

]
ejω0t H(ω0)ejω0t sinusoidal , H(ω0)= H(s)|s=jω0

cos(ω0t) Re
[
H(ω0)ejω0t

]
sinusoidal

sin(ω0t) Im
[
H(ω0)ejω0t

]
sinusoidal

A0 B0 constant , B0 = A0H(0)
A0 +A1 t B0 + B1 t linear

A0 +A1 t +A2 t2 B0 + B1 t + B2 t2 quadratic

In the last three polynomial cases, one inserts the polynomial form of yf(t) into the differential
equation and matches like powers of t, for example, for the 2nd order system and 2nd order poly-
nomial input, we have,

yf(t) = B0 + B1 t + B2 t2

x(t) = A0 +A1 t +A2 t2
⇒

ÿf + a1 ẏf + a2yf = 2B2 + a1(B1 + 2B2t)+a2(B0 + B1 t + B2 t2)

b0 ẍ+ b1 ẋ+ b2x = b02A2 + b1(A1 + 2A2t)+b2(A0 +A1 t +A2 t2)

and equating the two right-hand sides and matching like powers of t gives three equations in the
three unknowns B0, B1, B2 to be solved in terms of A0,A1,A2. The procedure is illustrated in the
examples below.

†B. P. Lathi, Linear Systems & Signals, 2nd ed., Oxford University Press, 2005.
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Summary of Procedures

For simplicity, we consider a 1st order, or a 2nd order filter with real-valued coefficients, with poles
at p1, or at p1, p2 with p1 �= p2, that lie in the left-hand s-plane,

(1st order): H(s)= b0s+ b1

s+ a1
≡ b0s+ b1

s− p1

(2nd order): H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2
≡ b0s2 + b1s+ b2

(s− p1)(s− p2)

(12)

and corresponding differential equations,

(1st order): ẏ + a1y = b0ẋ+ b1x

(2nd order): ÿ + a1ẏ + a2y = b0ẍ+ b1ẋ+ b2x
(13)

The problem is to solve Eqs. (13) for a given causal input signal x(t) and specified initial conditions,
y(0−) in the 1st order case, or, y(0−), ẏ(0−) in the 2nd order one.

In the Laplace method, we take Laplace transforms of both sides of Eqs. (13) incorporating the
initial conditions at t = 0−,

(1st order):
[
sY(s)−y(0−)]+ a1Y(s)= b0sX(s)+b1X(s)

(2nd order):
[
s2Y(s)−sy(0−)−ẏ(0−)]+ a1

[
sY(s)−y(0−)]+ a2Y(s)= b0s2X(s)+b1sX(s)+b2X(s)

and solve for the Laplace transform of the output Y(s),

(1st order): Y(s)= y(0
−)

s+ a1
+
(
b0s+ b1

s+ a1

)
X(s)

(2nd order): Y(s)= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+
(
b0s2 + b1s+ b2

s2 + a1s+ a2

)
X(s)

(14)

with the first term representing the zero-input part, and the second, the zero-state part. One then
obtains the time-domain solution y(t) by inverting the Laplace transforms in Eq. (14) using partial
fraction techniques.

In the classical method, we first transform the ICs at t = 0− to the ICs at t = 0+ using the
mappings of Eq. (11). Then pick a particular solution of the differential equations (13), typically, a
forced solution yf(t) using the table on the previous page as a guide. The general solution is then
obtained by adding to yf(t) a homogeneous solution consisting of a sum of characteristic modes,

(1st order): y(t)= c1ep1t + yf(t)
(2nd order): y(t)= c1ep1t + c2ep2t + yf(t)

(15)

and fix the coefficients c1, c2 by imposing the t = 0+ initial conditions, i.e.,

(1st order): y(0+)= c1 + yf(0+)

(2nd order):

⎧⎨
⎩y(0

+)= c1 + c2 + yf(0+)
ẏ(0+)= c1p1 + c2p2 + ẏf (0+)

Examples of these procedures are presented in the rest of this set.
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Steady-State Sinusoidal Response

For the special case of a causal sinusoidal input, we can find the complete (zero-state) solution
as the sum of the forced term and the transients arising from the filter poles. Consider again a 2nd
order filter with distinct poles p1, p2, and a complex sinusoidal input,

H(s)= b0s2 + b1s+ b2

(s− p1)(s− p2)
, x(t)= ejω0tu(t) ⇒ X(s)= 1

s− jω0

then, the zero-state output will have Laplace transform,

Y(s)= H(s)X(s)= b0s2 + b1s+ b2

(s− p1)(s− p2)(s− jω0)

which can be expanded in partial fractions in the form,

Y(s)= b0s2 + b1s+ b2

(s− p1)(s− p2)(s− jω0)
= H(ω0)

s− jω0︸ ︷︷ ︸
forced response

+ R1

s− p1
+ R2

s− p2︸ ︷︷ ︸
transients

(16)

and inverted into the time domain,

y(t)= H(ω0)ejω0t︸ ︷︷ ︸
forced response

+R1ep1t +R2ep2t︸ ︷︷ ︸
transients

, t ≥ 0 (17)

The first term represents the steady-state sinusoidal response, and the last two terms, the tran-
sients which decay exponentially.

To find R1, R2, one must carry out the above partial fraction expansion on Y(s), which can be
facilitated by the use of the function residue applied on Y(s), or by the use of the symbolic toolbox
functions laplace and partfrac.

If the input were real-valued, that is, either, cos(ω0t)u(t), or, sin(ω0t)u(t), then (assuming that
the filter coefficients are real), the solution is obtained by extracting the real or the imaginary parts
of the solution in Eq. (17).
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Example 1

Consider the following linear system, driven by the input x(t)= 10e−3tu(t), and subject to the
initial conditions at t = 0−, y(0−)= 0, ẏ(0−)= −5,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) , or, (D2 + 3D+ 2)y(t)= Dx(t) (18)

where D denotes the differential operator D = d/dt.

(a) Determine the transfer function H(s) of this system, and determine analytically (i.e., by hand)
its partial fraction expansion (PFE). Then, determine the PFE again using MATLAB’s residue
function, and alternatively, using the partfrac function of the symbolic toolbox.

(b) Using inverse Laplace transforms, determine analytically the impulse response h(t) of this
system. Then, determine it again using MATLAB’s symbolic toolbox.

(c) Determineh(t) again using the impulse matching method using Eq. (89) of the Appendix. Then,
implement the impulse matching method using the ilaplace function of the symbolic toolbox,
and alternatively, using the dsolve function.

(d) Using Laplace transforms, determine analytically the zero-input response subject to the given
initial conditions. Then, determine it again by working exclusively in the time domain and
expressing it as a linear combination of characteristic modes, and fixing the expansion coeffi-
cients from the initial conditions. Finally, determine the solution again with MATLAB’s symbolic
toolbox, using the ilaplace function and, alternatively, the dsolve function.

(e) For the given input x(t), determine the zero-state response by analytically performing the con-
volution operation, y(t)= h(t)∗x(t).

(f) Determine the above zero-state response analytically using Laplace transforms. Then, deter-
mine it again with MATLAB’s symbolic toolbox, using the ilaplace function and, alternatively,
the dsolve function.

(g) For the given input and initial conditions, determine the full solution of Eq. (18) consisting
of the sum of the zero-input and zero-state responses found above. Then, determine it again
analytically using Laplace transforms and carrying out the partial fraction expansions by hand.
Then, determine the full solution again using the function ilaplace of the symbolic toolbox.

(h) Given the above initial conditions, y(0−)= 0, ẏ(0−)= −5, what are the corresponding initial
conditions at t = 0+, that is, y(0+), ẏ(0+)? Using the conditions at t = 0+, re-derive the full
solution of part (g), using the “classical method” described in Section 2.5 of the text. Then,
derive it again with the symbolic toolbox and the function dsolve.

(i) Using the built-in function lsim, compute the output y(t) that corresponds to the given input
x(t) and initial conditions, y(0−)= 0, ẏ(0−)= −5, and plot it over the time interval 0 ≤ t ≤ 6.
This is a bit tricky since the initial conditions are non-zero.

Solution

(a) Taking Laplace transforms of both sides of Eq. (18) with no initial conditions, we have,

s2Y(s)+3sY(s)+2Y(s)= sX(s) ⇒ H(s)= Y(s)
X(s)

= s
s2 + 3s+ 2

For the PFE, we have,

H(s)= s
s2 + 3s+ 2

= s
(s+ 2)(s+ 1)

= A
s+ 2

+ B
s+ 1
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where

A = s
s+ 1

∣∣∣∣
s=−2

= −2

−2+ 1
= 2 , B = s

s+ 2

∣∣∣∣
s=−1

= −1

−1+ 2
= −1

so that

H(s)= s
s2 + 3s+ 2

= s
(s+ 2)(s+ 1)

= 2

s+ 2
− 1

s+ 1
(19)

Using the residue function we find,

num = [1,0]; den = [1,3,2];
[r,p] = residue(num,den)

% r =
% 2
% -1
% p =
% -2
% -1

where the residues r1, r2 are the same as A,B. Using the symbolic toolbox and the function
partfrac, we obtain the same PFE result,

syms s
H = s/(s^2+3*s+2);
H = partfrac(H); % H = 2/(s + 2) - 1/(s + 1)

(b) Inverting the PFE in Eq. (19), we find,

h(t)= 2e−2tu(t)−e−tu(t)
where we used the basic transform pair,

e−atu(t) ←→ 1

s+ a
Using the symbolic toolbox, we obtain the same,

syms s
H = s/(s^2+3*s+2);
h = ilaplace(H) % h = 2*exp(-2*t) - exp(-t)

(c) From Eq. (89), we must first determine the solution of the all-pole problem,

ÿn(t)+3ẏn(t)+2yn(t)= 0 , with yn(0)= 0 , ẏn(0)= 1 (20)

where here the initial conditions are the same at t = 0±. Then, since H(s)= B(s)/A(s), with,
B(s)= s, and A(s)= s2 + 3s+ 2, we will obtain h(t) from,

h(t)= b0δ(t)+
[
B(D)yn(t)

]
u(t)= [ẏn(t)]u(t)

The solution of Eq. (20) and its derivative are linear combinations of characteristic modes,

yn(t)= c1e−t + c2e−2t

ẏn(t)= −c1e−t − 2c2e−2t

The initial conditions result in two equations in the two unknowns c1, c2,

yn(0)= c1 + c2 = 0

ẏn(0)= −c1 − 2c2 = 1
⇒ c1 = 1

c2 = −1

Thus,
yn(t)= e−t − e−2t

ẏn(t)= 2e−2t − e−t ⇒ h(t)= [ẏn(t)]u(t)= [2e−2t − e−t]u(t)
Using the ilaplace function, we obtain the same,
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syms s t Yn
Yn = 1/(s^2 + 3*s + 2); % 1/A(s), denominator part of H(s)
yn = ilaplace(Yn) % yn = exp(-t) - exp(-2*t)
h = diff(yn,t) % h = 2*exp(-2*t) - exp(-t)

These operations are equivalent to the more direct approach,

syms s
H = s/(s^2+3*s+2);
h = ilaplace(H) % h = 2*exp(-2*t) - exp(-t)

The same answers for yn(t) and h(t) can also be obtained using the dsolve function,

syms t yn(t)
yn = dsolve(’D2yn + 3*Dyn + 2*yn=0’,’yn(0)=0’,’Dyn(0)=1’)
h = diff(yn,t)

Note that the ilaplace method requires the initial conditions at t = 0−, and the dsolve method,
the conditions at t = 0+. But these are the same for the solution yn(t).
We note also that Yn(s)= 1/A(s), the denominator part of H(s). This is generally true for
any denominator order, and is a consequence of the defining properties of the solution yn(t),
indeed, using the Laplace transforms of the derivatives of yn(t) and incorporating the initial
conditions, we have for the above 2nd order case,

yn(t) ⇒ Yn(s)
ẏn(t) ⇒ sYn(s)−yn(0−)= sYn(s)
ÿn(t) ⇒ s2Yn(s)−syn(0−)−ẏn(0−)= s2Yn(s)−1

(21)

Thus, Eq. (20) transforms into,

ÿn(t)+3ẏn(t)+2yn(t)= 0 ⇒ s2Yn(s)−1+ 3sYn(s)+2Yn(s)= 0 or,

Yn(s)= 1

s2 + 3s+ 2

(d) Let us solve this for arbitrary initial conditions, y(0−)= y0 and ẏ(0−)= ẏ0, and at the end set
y0 = 0 and ẏ0 = −5. Using Eq. (21), the differential equation (18) with x(t)= 0 transforms in
the s-domain into,

ÿ(t)+3ẏ(t)+2y(t)= 0 ⇒ s2Y(s)−sy0 − ẏ0 + 3
(
sY(s)−y0

)+ 2Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= sy0 + ẏ0 + 3y0

s2 + 3s+ 2
= sy0 + ẏ0 + 3y0

(s+ 1)(s+ 2)
= ẏ0 + 2y0

s+ 1
− ẏ0 + y0

s+ 2

which gives the zero-input response in the time domain,

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (22)

and in the specific case of y0 = 0 and ẏ0 = −5,

yzi(t)= −5e−t + 5e−2t , t ≥ 0 (23)

An alternative approach is to work in the time-domain and express y(t) and its derivative as a
linear combination of characteristic modes, and fix the expansion coefficients from the initial
conditions, that is, set

y(t)= c1e−t + c2e−2t

ẏ(t)= −c1e−t − 2c2e−2t
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and at t = 0−, impose the conditions,

y(0−)= c1 + c2 = y0

ẏ(0−)= −c1 − 2c2 = ẏ0
⇒ c1 = ẏ0 + 2y0

c2 = −ẏ0 − y0

which results in the same answer as in Eq. (22). The same expression is obtained using the
ilaplace function of the symbolic toolbox, where y0,dy0 stand for the constants y0, ẏ0,

syms s y0 dy0 Y
Y = solve(s^2*Y-s*y0-dy0 + 3*(s*Y-y0)+2*Y==0,Y)
Y = partfrac(Y,s) % Y = (dy0 + 2*y0)/(s + 1) - (dy0 + y0)/(s + 2)
yzi = ilaplace(Y) % yzi = exp(-t)*(dy0 + 2*y0) - exp(-2*t)*(dy0 + y0)

Alternatively, we can use the dsolve function,

syms y0 dy0
yzi = dsolve(’D2y + 3*Dy+ 2*y = 0’, ’y(0)=y0’, ’Dy(0)=dy0’)

(e) The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞
h(t′)x(t − t′)dt′ (24)

Because the input x(t)= 10e−3tu(t) is causal, the range of its argument in Eq. (24) must be
restricted to, t − t′ ≥ 0. Similarly, because h(t′) is causal, its argument must be t′ ≥ 0.
Combining the two inequalities, we have,

t − t′ ≥ 0
t′ ≥ 0

⇒ t ≥ 0
0 ≤ t′ ≤ t

Thus, yzs(t) must also be causal, and for t ≥ 0, the integral in (24) simplifies into,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0
(2e−2t′ − e−t′)10e−3(t−t′)dt′

= 10e−3t
∫ t

0
(2e−2t′ − e−t′)e3t′dt′ = 10e−3t

∫ t
0
(2et

′ − e2t′)dt′

= 10e−3t
[

2(et − 1)−1

2
(e2t − 1)

]
= −5e−t + 20e−2t − 15e−3t

thus,

yzs(t)=
[−5e−t + 20e−2t − 15e−3t]u(t) (25)

The same can also be obtained using the convolution table on p 57 of the SSTA text. The
integration can also be performed with the int function of the symbolic toolbox,

syms t tau
x = 10*exp(-3*(t-tau));
h = 2*exp(-2*tau) - exp(-tau);
yzs = int(h*x, tau, 0, t) % yzs = 20*exp(-2*t) - 5*exp(-t) - 15*exp(-3*t)

(f) The Laplace transform of the input x(t)= 10e−3tu(t) is, X(s)= 10/(s+3). It follows that the
transform of the zero-state output will be,

Y(s)= H(s)X(s)= s
s2 + 3s+ 2

· 10

s+ 3
= 10s
(s+ 1)(s+ 2)(s+ 3)

with PFE,†

Y(s)= 10s
(s+ 1)(s+ 2)(s+ 3)

= A
s+ 1

+ B
s+ 2

+ C
s+ 3

†Partial fractions are reviewed in Sect. 3.5 of the SSTA text.
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where,

A = (s+ 1)Y(s)
∣∣∣∣
s=−1

= 10s
(s+ 2)(s+ 3)

∣∣∣∣
s=−1

= 10(−1)
(−1+ 2)(−1+ 3)

= −5

B = (s+ 2)Y(s)
∣∣∣∣
s=−2

= 10s
(s+ 1)(s+ 3)

∣∣∣∣
s=−2

= 10(−2)
(−2+ 1)(−2+ 3)

= 20

C = (s+ 3)Y(s)
∣∣∣∣
s=−3

= 10s
(s+ 1)(s+ 2)

∣∣∣∣
s=−3

= 10(−3)
(−3+ 1)(−3+ 2)

= −15

Inverting the Laplace transform Y(s), we obtain the time-domain zero-state response, which
agrees with that of Eq. (25),

yzs(t)=
[−5e−t + 20e−2t − 15e−3t]u(t)

The PFE residues can also be obtained by the function residue, where the outputs r1, r2, r3

correspond to C,B,A, respectively,

[r,p] = residue([10,0], conv([1 3 2],[1 3]))

% r =
% -15.0000
% 20.0000
% -5.0000
% p =
% -3.0000
% -2.0000
% -1.0000

The indicated convolution operation, conv([1 3 2],[1 3]), results in the coefficients, [1, 6, 11, 6],
and effectively multiplies the polynomials,

(s2 + 3s+ 2)(s+ 3)= s3 + 6s2 + 11s+ 6

The PFE and the Laplace inversions can also be accomplished with the symbolic toolbox,

syms s
H = s/(s^2+3*s+2);
X = 10/(s+3);
Y = H*X; % Y = 10*s/((s + 3)*(s^2 + 3*s + 2))
Y = partfrac(Y) % Y = 20/(s + 2) - 5/(s + 1) - 15/(s + 3)
yzs = ilaplace(Y) % yzs = 20*exp(-2*t) - 5*exp(-t) - 15*exp(-3*t)

For t ≥ 0, we obtain from the above solution,

yzs(t)= −5e−t + 20e−2t − 15e−3t

ẏzs(t)= 5e−t − 40e−2t + 45e−3t ⇒ yzs(0+)= −5+ 20− 15 = 0

ẏzs(0+)= 5− 40+ 45 = 10

The term, “zero-state” solution refers to zero initial conditions at time t = 0−. As we see above,
at t = 0+ the initial conditions are not zero. See part (h) for more discussion on this issue, and
on how to predict the conditions at t = 0+ from those at t = 0−. The symbolic toolbox solution
using the function ilaplace requires the t = 0− conditions, whereas the solution using dsolve,
requires the t = 0+ conditions.

In the present case, since we just found yzs(0+)= 0, ẏzs(0+)= 10, we can apply the dsolve
function, noting that ẋ(t)= −3 · 10e−3t for t ≥ 0+,

syms t yzs(t)
yzs = dsolve(’D2y+3*Dy+2*y = 10*(-3)*exp(-3*t)’, ’y(0)=0’, ’Dy(0)=10’)

which results in the same solution as that of Eq. (25).
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(g) Adding up the zero-input and zero-state solutions of Eqs. (22) and (25), and combining like
exponential terms, we obtain the total solution of Eq. (18), which meets the arbitrary initial
conditions, y(0−)= y0, ẏ(0−)= ẏ0,

y(t)= (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t − 15e−3t , t ≥ 0+ (26)

and for the particular values, y(0−)= 0, ẏ(0−)= −5,

y(t)= −10e−t + 25e−2t − 15e−3t , t ≥ 0+ (27)

The first two terms depend only on the characteristic modes e−t, e−2t, and are referred to as
the “natural response” or “homogeneous solution”, whereas the last term depends only on the
input x(t)= 10e−3t and is referred to as the “particular solution” or “forced response”,

y(t)= (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t︸ ︷︷ ︸
homogeneous

−15e−3t︸ ︷︷ ︸
forced

The factor −15 in the forced response can be predicted in advance using the following result:
Given a system with transfer functionH(s) and an exponential causal input x(t)= Ae−at, then
the forced response output is simply, yforced(t)= AH(−a)e−at, where H(−a) is the transfer
functionH(s) evaluated at s = −a (assuming that s = −a is not a pole ofH(s)

)
. Thus, in our

example,

yforced(t)= 10H(−3)e−3t = 10 · s
s2 + 3s+ 2

∣∣∣∣
s=−3

e−3t = −15e−3t

Next, we derive the total solution using Laplace transforms and partial fraction expansions. The
approach is similar to that of part (d), except here the right-hand sides are not zero. For the
case of arbitrary initial conditions, y(0−)= y0 and ẏ(0−)= ẏ0, the transform of the differential
equation (18) is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−sy0 − ẏ0 + 3
(
sY(s)−y0

)+ 2Y(s)= sX(s)

where the transform of ẋ(t)was, sX(s)−x(0−)= sX(s), since x(0−)= 0 because x(t) is causal.
Solving for Y(s), and replacing X(s)= 10/(s+ 3), we obtain,

Y(s) = sy0 + ẏ0 + 3y0 + sX(s)
s2 + 3s+ 2

= (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s2 + 3s+ 2)(s+ 3)

= (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 2)(s+ 3)

= A
s+ 1

+ B
s+ 2

+ C
s+ 3

= ẏ0 + 2y0 − 5

s+ 1
+ 20− y0 − ẏ0

s+ 2
− 15

s+ 3

(28)

where we may verify easily,

A = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 2)(s+ 3)

∣∣∣∣
s=−1

= ẏ0 + 2y0 − 5

B = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 3)

∣∣∣∣
s=−2

= 20− y0 − ẏ0

C = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 2)

∣∣∣∣
s=−3

= −15

It follows that the inverse Laplace transform of Eq. (28) is as in Eq. (26). The same partial
fraction expansion and inverse transform can be obtained easily by the symbolic toolbox,
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syms s y0 dy0 Y
X = 10/(s+3);
Y = solve(s^2*Y-s*y0-dy0 + 3*(s*Y-y0) + 2*Y == s*X, Y)
Y = partfrac(Y,s) % Y = (dy0+2*y0-5)/(s + 1) + (20-dy0-y0)/(s + 2) - 15/(s + 3)
y = ilaplace(Y) % y = exp(-t)*(dy0+2*y0-5) + exp(-2*t)*(20-dy0-y0) - 15*exp(-3*t)

(h) We recall that for a second-order system of the form,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒ H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2

and for a causal input x(t) that does not have any δ(t) terms at t = 0, the mapping between
the initial conditions at t = 0− and those at t = 0+ is given by,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)
(29)

For our particular system, we have, [b0, b1, b2]= [0,1,0], so that Eqs. (29) become,

y(0+) = y(0−)
ẏ(0+) = ẏ(0−)+x(0+)

(30)

Thus, for the input x(t)= 10e−3tu(t), and initial conditions y0, ẏ0 at t = 0−, we have,

y(0+) = y0

ẏ(0+) = ẏ0 + 10
(31)

These are the conditions that must be used in applying the classical method, or the dsolve
function. In the classical method, we construct the solution as the sum of a particular solution
and a general homogeneous solution. For the particular solution, we may take the forced
response, which in our example is, yforced(t)= −15e−3t. For the homogeneous solution we
form a linear combination of the characteristic modes e−t, e−2t. Thus,

y(t)= c1e−t + c2e−2t − 15e−3t

ẏ(t)= −c1e−t − 2c2e−2t + 45e−3t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (31), we have,

y(0+)= c1 + c2 − 15 = y0

ẏ(0+)= −c1 − 2c2 + 45 = ẏ0 + 10
⇒ c1 = ẏ0 + 2y0 − 5

c2 = 20− ẏ0 − y0

Thus, we obtain the same solution as that in Eq. (26), for t ≥ 0+,

y(t)= c1e−t + c2e−2t − 15e−3t = (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t − 15e−3t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+ of Eq. (31),

syms t y0 dy0 y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-3*t); dx = diff(x,t);
y = dsolve(ddy + 3*dy + 2*y == dx, y(0) == y0, dy(0) == dy0+10)

(i) Suppose that one naively tries to use the function lsim to compute the system output for the
given input. This can be done simply by the MATLAB code,
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t = linspace(0,6,601); % desired range of t’s
x = 10*exp(-3*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
y = lsim(H,x,t); % assumes zero initial conditions

This code, however, will generate only the zero-state part, yzs(t), of the correct answer. The
function lsim can handle initial conditions, but those are for state-space realizations only. If
the initial conditions are specified in terms of the output y(t) and its derivatives, then one
must map these initial conditions to the proper state-vector initial conditions to be used in
lsim.

Such mapping can be accomplished by the so-called observability matrix (we’ll discuss it at
a later date). The built-in function obsv allows one to perform such mapping and thus, use
lsim with any desired initial conditions at t = 0−. The following MATLAB code illustrates the
procedure.

y0 = 0; dy0 = -5; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = 10*exp(-3*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
si = obsv(S) \ yi; % map yi to initial state-vector si
y = lsim(S,x,t,si); % run model S with initial state si
yzs = lsim(S,x,t); % run model S with zero initial state si=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

The computed outputs are shown on the right graph below. Those on the left graph are the
exact responses derived in Eqs. (25) and (26) . They are virtually indistinguishable from the
numerically computed ones using lsim.
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Example 2

Repeat questions (d–i) of the previous example, for the same system defined by Eq. (18), but with
input x(t)= 10e−2tu(t), and initial conditions at t = 0−, y(0−)= 2, ẏ(0−)= −7.

Note that parts (a–c) are the same as before. The new input has a pole that coincides with one of the
characteristic modes of the system, and thus, we will have to deal with a double-pole in the Laplace
inverses.

Solution

(d) Because the initial conditions are different from those of Example 1, the zero-input solution
will also be different. However, the steps are identical to those leading to Eq. (22),

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (32)

Replacing the constants by y0 = 2 and ẏ0 = −7, we have,

yzi(t)= 5e−2t − 3e−t , t ≥ 0 (33)

The other methods mentioned in part (d) of Example 1 remain the same.

(e) The zero-state output will be different here because the input is different. The impulse response
h(t) is the same as in Example 1, therefore, the convolutional formula gives,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0
(2e−2t′ − e−t′)10e−2(t−t′)dt′

= 10e−2t
∫ t

0
(2e−2t′ − e−t′)e2t′dt′ = 10e−2t

∫ t
0
(2− et′)dt′

= 10e−2t [2t − (et − 1)
] = 10e−2t − 10e−t + 20te−2t

so that,
yzs(t)=

[
10e−2t − 10e−t + 20te−2t]u(t) (34)

Using the function int of the symbolic toolbox returns the same answer,

syms t tau
x1 = 10*exp(-2*(t-tau));
h1 = 2*exp(-2*tau) - exp(-tau);
yzs = int(h1*x1, tau, 0, t)

(f) The Laplace transform of the input x(t)= 10e−2tu(t) is, X(s)= 10/(s+2). It follows that the
transform of the zero-state output will be,

Y(s)= H(s)X(s)= s
s2 + 3s+ 2

· 10

s+ 2
= 10s
(s+ 2)2(s+ 1)

with PFE,

Y(s)= 10s
(s+ 2)2(s+ 1)

= A
s+ 2

+ B
(s+ 2)2

+ C
s+ 1

= 10

s+ 2
+ 20

(s+ 2)2
− 10

s+ 1

where,†

A = d
ds
[
(s+ 2)2Y(s)

]∣∣∣∣
s=−2

= d
ds

[
10s
s+ 1

]
s=−2

= 10

(s+ 1)2

∣∣∣∣
s=−2

= 10

B = (s+ 2)2Y(s)
∣∣∣∣
s=−2

= 10s
s+ 1

∣∣∣∣
s=−2

= 20

C = (s+ 1)Y(s)
∣∣∣∣
s=−1

= 10s
(s+ 2)2

∣∣∣∣
s=−1

= −10

†see Sect. 3.5 of the SSTA text.
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Inverting the Laplace transform Y(s), we obtain the time-domain zero-state response yzs(t),
which agrees with that of Eq. (34).

yzs(t)=
[
10e−2t − 10e−t + 20te−2t]u(t)

The PFE residues can also be obtained by the function residue, which correctly accounts for
the double pole, where the outputs r1, r2, r3 correspond to A,B,C, respectively,

[r,p] = residue([10,0], conv([1 3 2],[1 2]))

% r =
% 10.0000
% 20.0000
% -10.0000
% p =
% -2.0000
% -2.0000
% -1.0000

The indicated convolution operation, conv([1 3 2],[1 2]), results in the coefficients, [1, 5, 8, 4],
and effectively multiplies the polynomials,

(s2 + 3s+ 2)(s+ 2)= (s+ 2)2(s+ 1)= s3 + 5s2 + 8s+ 4

The PFE and the Laplace inversions can also be accomplished with the ilaplace function,

syms s
H = s/(s^2+3*s+2);
X = 10/(s+2);
Y = H*X; % Y(s) = H(s)*X(s) = 10*s/((s + 2)*(s^2 + 3*s + 2))
Y = partfrac(Y) % Y = 10/(s + 2) - 10/(s + 1) + 20/(s + 2)^2
yzs = ilaplace(Y) % yzs = 10*exp(-2*t) - 10*exp(-t) + 20*t*exp(-2*t))

To derive the solution using the dsolve function, we must transform the initial conditions of
the zero-state solution from their zero values at t = 0− to their values at 0+ using the mapping
of Eq. (29), or, specifically, here, Eq. (31). Thus, we have yzs(0+)= 0, and ẏzs(0+)= 0+10 = 10.
The application of dsolve is then,

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-2*t); dx = diff(x,t);
yzs = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 0, dy(0) == 10)

which produces exactly the same expression as in Eq. (34).

(g) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = 5e−2t − 3e−t

yzs(t) = 10e−2t − 10e−t + 20te−2t

y(t) = 15e−2t − 13e−t + 20te−2t

(35)

The first two terms represent the “homogeneous” solution and the third, the “forced” response,

y(t)= 15e−2t − 13e−t︸ ︷︷ ︸
homogeneous

+20te−2t︸ ︷︷ ︸
forced

, t ≥ 0 (36)

The expression 20te−2t for the forced response can be predicted in advance. We recall from
part (g) of Example 1 that the forced response of a linear system H(s) due to an exponential
input of the form x(t)= Ae−atu(t) is given simply byAH(−a)e−atu(t), provided that s = −a
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is not a pole of the system. But if s = −a is a pole of the system (and that pole is assumed to
be a simple pole), then, the forced response is given by the modified expression,

x(t)= Ae−atu(t) −→ yforced(t)= ARte−atu(t) , R = (s+ a)H(s)
∣∣∣∣
s=−a

where the factor (s + a) will cancel a similar factor in the denominator of H(s). For our
particular example, since A = 10 and s = −2, we have,

AR = 10 (s+ 2)H(s)
∣∣∣∣
s=−2

= (s+ 2)
10s

(s+ 1)(s+ 2)

∣∣∣∣
s=−2

= 10s
s+ 1

∣∣∣∣
s=−2

= 20

Next, we rederive Eq. (36) using Laplace transforms and partial fraction expansions. For the
given initial conditions, y(0−)= 2, ẏ(0−)= −7, the transform of the differential equation (18)
is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−2s+ 7+ 3
(
sY(s)−2

)+ 2Y(s)= sX(s)
Solving for Y(s), and replacing X(s)= 10/(s+ 2), we find after some algebra,

Y(s) = 2s2 + 13s− 2

(s+ 2)(s2 + 3s+ 2)
= 2s2 + 13s− 2

s3 + 5s2 + 8s+ 4
= 2s2 + 13s− 2

(s+ 2)2(s+ 1)

= A
s+ 2

+ B
(s+ 2)2

+ C
s+ 1

= 15

s+ 2
+ 20

(s+ 2)2
− 13

s+ 1

(37)

which upon inversion yields exactly Eq. (36). The PFE coefficients can be confirmed using the
residue function,

[r,p] = residue([2, 13, -2], [1, 5, 8, 4])

% r =
% 15.0000
% 20.0000
% -13.0000
% p =
% -2.0000
% -2.0000
% -1.0000

Moreover, the solution for Y(s), its PFE expansion, and inversion can be carried out simply by
the symbolic toolbox,

syms s t Y
X = 10/(s+2);
Y = solve(s^2*Y-s*2+7 + 3*(s*Y-2) + 2*Y == s*X, Y);
Y = simplify(Y) % Y = (2*s^2 + 13*s - 2)/((s + 2)*(s^2 + 3*s + 2))
Y = partfrac(Y,s) % Y = 15/(s + 2) - 13/(s + 1) + 20/(s + 2)^2
y = ilaplace(Y) % y = 15*exp(-2*t) - 13*exp(-t) + 20*t*exp(-2*t)

(h) The initial conditions at t = 0+ can be derived from Eq. (30),

y(0+) = y(0−)= 2

ẏ(0+) = ẏ(0−)+x(0+)= −7+ 10 = 3
(38)

Using these conditions, we may derive the solution of Eq. (36) by the classical method, in which
we construct the solution as the sum of a particular solution and a general homogeneous
solution. For the particular solution, we may take the forced response, which in our example
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is, yforced(t)= 20te−2t. For the homogeneous solution we form a linear combination of the
characteristic modes e−t, e−2t. Thus,

y(t)= c1e−t + c2e−2t + 20te−2t

ẏ(t)= −c1e−t − 2c2e−2t + 20(1− 2t)e−2t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (31), we have,

y(0+)= c1 + c2 = 2

ẏ(0+)= −c1 − 2c2 + 20 = 3
⇒ c1 = −13

c2 = 15

Thus, we obtain the same solution as that in Eq. (36), for t ≥ 0+,

y(t)= c1e−t + c2e−2t + 20te−2t = −13e−t + 15e−2t + 20te−2t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+ of Eq. (38),

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-2*t); dx = diff(x,t);
yy = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 2, dy(0) == 3)

(i) The numerical computation using the lsim function is carried out in exactly the same way as
in part (i) of Example 1, only the input and initial conditions are different. The MATLAB code
is listed below.

y0 = 2; dy0 = -7; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = 10*exp(-2*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
si = obsv(S) \ yi; % map yi to initial state-vector si
y = lsim(S,x,t,si); % run model S with initial state si
yzs = lsim(S,x,t); % run model S with zero initial state si=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

The computed outputs are shown on the right graph below. Those on the left graph are the
exact responses yzs(t), y(t) derived in Eq. (35). They are virtually indistinguishable from the
numerically computed ones using lsim.
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Example 3

Repeat questions (d–i) of Example 1, for the same system defined by Eq. (18), but with input x(t)=(
t2 + 5t + 3

)
u(t), and initial conditions at t = 0−, y(0−)= 2, ẏ(0−)= 0.

This example illustrates how to handle non-exponential inputs and how to guess the corresponding
forced response. Note that parts (a–c) are the same as in Example 1.

Solution

(d) Because the initial conditions are different from those of Examples 1 and 2, the zero-input
solution will also be different. However, the steps are identical to those leading to Eq. (22),

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (39)

Replacing the constants by y0 = 2 and ẏ0 = 0, we have,

yzi(t)= 4e−t − 2e−2t , t ≥ 0 (40)

(e) The impulse response h(t) is the same as in Example 1, therefore, the convolutional formula
gives, for the given input,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0

[
2e−2t′ − e−t′][(t − t′)2+5(t − t′)+3

]
dt′

=
∫ t

0

[
2e−2t′ − e−t′][t2 + t′2 − 2tt′ + 5t − 5t′ + 3

]
dt′

The integrations can be done with the help of the following integrals (set a = 1, a = 2),∫ t
0
e−at

′
dt′ = 1− e−at

a
,
∫ t

0
t′e−at

′
dt′ = 1− e−at(1+ at)

a2∫ t
0
t′2e−at

′
dt′ = 2− e−at(2+ 2at + a2t2)

a3

eventually resulting in,
yzs(t)=

(
1+ t − e−2t)u(t) (41)

The disappearance of the e−t term is explained below in part (f). Using the function int of the
symbolic toolbox returns the same answer as Eq. (41)

syms t tau
x1 = (t-tau)^2 + 5*(t-tau) + 3;
h1 = 2*exp(-2*tau) - exp(-tau);
y1 = int(h1*x1, tau, 0, t) % yzs = t - exp(-2*t) + 1

(f) The Laplace transform of the input x(t)= (t2 + 5t + 3)u(t) is,

X(s)= 2

s3
+ 5

s2
+ 3

s
= 3s2 + 5s+ 2

s3
= (s+ 1)(3s+ 2)

s3

Thus, accidentally, X(s) contains a zero-factor (s + 1), which will get cancelled by the same
pole factor of H(s) when computing the Laplace transform of the zero-state response, that is,

Y(s)= H(s)X(s) = s
(s+ 1)(s+ 2)

· (s+ 1)(3s+ 2)
s3

= 3s+ 2

s2(s+ 2)

= A
s
+ B
s2
+ C
s+ 2

= 1

s
+ 1

s2
− 1

s+ 2

(42)
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where the PFE coefficients are computed in the usual manner,

A = d
ds
[
s2Y(s)

]∣∣∣∣
s=0
= d
ds

[
3s+ 2

s+ 2

]
s=0
= 4

(s+ 2)2

∣∣∣∣
s=0
= 1

B = s2Y(s)
∣∣∣∣
s=0
= 3s+ 2

s+ 2

∣∣∣∣
s=0
= 1

C = (s+ 2)Y(s)
∣∣∣∣
s=−2

= 3s+ 2

s2

∣∣∣∣
s=−2

= −1

which can also be obtained by the residue function,

[r,p] = residue([3,2],[1,2,0,0])

% r =
% -1
% 1
% 1
% p =
% -2
% 0
% 0

The inversion of Eq. (42) leads directly to Eq. (41). The inversion using the symbolic toolbox
leads to the same answer,

syms s t
H = s/(s^2+3*s+2); % system
x = t^2 + 5*t + 3; % input
X = simplify(laplace(x)) % X = (3*s^2 + 5*s + 2)/s^3
Y = simplify(H*X); % Y = (3*s + 2)/(s^2*(s + 2))
Y = partfrac(Y) % Y = 1/s +1/s^2 - 1/(s + 2)
yzs = ilaplace(Y) % yzs = 1 + t - exp(-2*t)

To derive the solution using the dsolve function, we must transform the initial conditions of
the zero-state solution from their zero values at t = 0− to their values at 0+ using the mapping
of Eq. (29), or, since now, x(0+)= 3, we have, yzs(0+)= 0, ẏzs(0+)= 0+3 = 3. The application
of dsolve is then,

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = t^2 + 5*t + 3; dx = diff(x,t);
yzs = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 0, dy(0) == 3)

which produces exactly the same expression as in Eq. (41).

(g) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = 4e−t − 2e−2t

yzs(t) = 1+ t − e−2t

y(t) = 4e−t − 3e−2t + 1+ t
(43)

The first two terms represent the “homogeneous” solution and the third, the “forced” response,

y(t)= 4e−t − 3e−2t︸ ︷︷ ︸
homogeneous

+1+ t︸ ︷︷ ︸
forced

, t ≥ 0 (44)

The expression 1 + t for the forced response can be worked out in advance by the following
argument. Since the input is a quadratic polynomial in t, we may seek a forced response that
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is a similar 2nd order polynomial. However, because the input gets differentiated in the right-
hand-side of Eq. (18), it will become first-order in t. Thus, we seek a forced response of the
form y(t)= β0 + β1t. Inserting this into Eq. (18) gives,

ÿ + 3ẏ + 2y = ẋ ⇒ 0+ 3β1 + 2(β0 + β1t)= 2t + 5

Matching like powers of t, gives the two equations in β0, β1,

5β0 = 5
2β1 = 2

⇒ β0 = 1
β1 = 1

Thus, the forced response to the input, x(t)= t2+5t+3, is yforced(t)= β0+β1t = 1+ t. Next,
we rederive Eq. (44) using Laplace transforms and partial fraction expansions. For the given
initial conditions, y(0−)= 2, ẏ(0−)= 0, the transform of the differential equation (18) is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−2s+ 3
(
sY(s)−2

)+ 2Y(s)= sX(s)

Solving for Y(s), and replacing X(s)= (3s2 + 5s+ 2)/s3, we find after some algebra,

Y(s)= 2s3 + 9s2 + 5s+ 2

s2(s2 + 3s+ 2)
= 2s3 + 9s2 + 5s+ 2

s2(s+ 1)(s+ 2)
= 4

s+ 1
− 3

s+ 2
+ 1

s
+ 1

s2
(45)

where we omitted the details of the PFE expansion. The inversion of Eq. (45) leads to (44). The
symbolic toolbox derivation of this result is straightforward,

syms s t Y
X = simplify(laplace(t^2+5*t+3))
Y = solve(s^2*Y-s*2 + 3*(s*Y-2) + 2*Y == s*X, Y)
Y = simplify(Y) % Y = (2*s^3 + 9*s^2 + 5*s + 2)/(s^2*(s^2 + 3*s + 2))
Y = partfrac(Y,s) % Y = 4/(s + 1) - 3/(s + 2) + 1/s + 1/s^2
yt = ilaplace(Y) % y = 4*exp(-t) - 3*exp(-2*t) + 1 + t

(h) Next, we work out the full solution of Eq. (44) using the classical method applied with the t = 0+
initial conditions, y(0+)= 2, ẏ(0+)= 3. Forming the sum of the forced response and a linear
combination of the characteristic modes, we have,

y(t)= c1e−t + c2e−2t + 1+ t
ẏ(t)= −c1e−t − 2c2e−2t + 1

(classical method)

for t ≥ 0. Imposing the t = 0+ conditions, we find,

y(0+)= c1 + c2 + 1 = 2

ẏ(0+)= −c1 − 2c2 + 1 = 3
⇒ c1 = 4

c2 = −3

Thus, we obtain the same solution as that in Eq. (44), for t ≥ 0+,

y(t)= c1e−t + c2e−2t + 1+ t = 4e−t − 3e−2t + 1+ t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+,

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = t^2 + 5*t + 3; dx = diff(x,t);
y = dsolve(ddy + 3*dy + 2*y == dx, y(0) == 2, dy(0) == 3)

(i) The numerical computation using the lsim function is carried out in exactly the same way as in
the previous examples, only the input and initial conditions are different. The MATLAB code
is listed below.
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y0 = 2; dy0 = 0; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = t.^2 + 5*t + 3; % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
si = obsv(S) \ yi; % map yi to initial state-vector si
y = lsim(S,x,t,si); % run model S with initial state si
yzs = lsim(S,x,t); % run model S with zero initial state si=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

The computed outputs are shown on the right graph below. Those on the left graph are the
exact responses yzs(t), y(t) derived in Eq. (43). They are virtually indistinguishable from the
numerically computed ones using lsim.
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Example 4

Repeat questions (a–i) of Example 1 for the following linear system,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t)

(D2 + 4D+ 3)y(t)= (2D2 +D+ 1)x(t) , D = d
dt

(46)

with initial conditions, y(0−)= 2, ẏ(0−)= −4, and driven by the causal input,

x(t)= e−2tu(t) (47)

This example illustrates how to handle systems that have numerator and denominator of the same
order, so that their impulse response has a delta-function term, and also how to handle the mapping
between t = 0− and t = 0+ initial conditions in the more general case of Eq. (29).

Solution

(a) Taking Laplace transforms of both sides of Eq. (46) with no initial conditions, we have,

s2Y(s)+4sY(s)+3Y(s)= 2s2X(s)+sX(s)+X(s) ⇒ H(s)= Y(s)
X(s)

= 2s2 + s+ 1

s2 + 4s+ 3
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Note the factorization,
s2 + 4s+ 3 = (s+ 1)(s+ 3)

Thus, the system’s poles are at s = −1 and s = −3. After long division and PFE, we find,

H(s)= 2s2 + s+ 1

s2 + 4s+ 3
= 2− 7s+ 5

s2 + 4s+ 3
= 2− 7s+ 5

(s+ 1)(s+ 3)
= 2+ 1

s+ 1
− 8

s+ 3

These can also be found with the residue function,

[r,p,k] = residue([2,1,1],[1,4,3])
% r =
% -8
% 1
% p =
% -3
% -1
% k =
% 2

Using the symbolic toolbox, we obtain the same PFE,

syms s
H = (2*s^2 + s + 1)/(s^2+4*s+3);
H = partfrac(H) % H = 1/(s + 1) - 8/(s + 3) + 2

(b) Inverting the PFE of H(s), we find,

h(t)= 2δ(t)+[e−t − 8e−3t]u(t)
where the constant term inverted into a Dirac delta. Using the symbolic toolbox, we obtain the
same,

syms s
H = (2*s^2 + s + 1)/(s^2+4*s+3);
H = partfrac(H)
h = ilaplace(H) % h = exp(-t) - 8*exp(-3*t) + 2*dirac(t)

(c) From Eq. (89), we must first determine the solution of the all-pole problem,

ÿn(t)+4ẏn(t)+3yn(t)= 0 , with yn(0)= 0 , ẏn(0)= 1 (48)

Then, since H(s)= B(s)/A(s), with, B(s)= 2s2 + s+ 1, and A(s)= s2 + 4s+ 3, we can obtain
h(t) from,

h(t)= b0δ(t)+
[
B(D)yn(t)

]
u(t)= 2δ(t)+[2ÿn(t)+ẏn(t)+yn(t)]u(t)

The solution of Eq. (48) and its derivative are linear combinations of characteristic modes,

yn(t)= c1e−t + c2e−3t

ẏn(t)= −c1e−t − 3c2e−3t

The initial conditions give two equations in the unknowns c1, c2,

yn(0)= c1 + c2 = 0

ẏn(0)= −c1 − 3c2 = 1
⇒

c1 = 1

2

c2 = −1

2

Thus,

yn(t)= 1

2
e−t − 1

2
e−3t

ẏn(t)= 3

2
e−3t − 1

2
e−t

ÿn(t)= 1

2
e−t − 9

2
e−3t

⇒
h(t) = 2δ(t)+[2ÿn(t)+ẏn(t)+yn(t)]u(t)

= 2δ(t)+[e−t − 8e−3t]u(t)

Using the ilaplace function, we obtain the same,
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syms s t Yn
Yn = 1/(s^2 + 4*s + 3); % denominator part of H(s)
yn = ilaplace(Yn) % yn = exp(-t)/2 - exp(-3*t)/2
h = 2*dirac(t) + 2*diff(yn,t,2) + diff(yn,t) + yn

The same answers for yn(t) and h(t) can also be obtained using the dsolve function,

syms t yn(t)
yn = dsolve(’D2yn + 4*Dyn + 3*yn=0’,’yn(0)=0’,’Dyn(0)=1’)
h = 2*dirac(t) + 2*diff(yn,t,2) + diff(yn,t) + yn

(d) For the given initial conditions, y(0−)= 2 and ẏ(0−)= −4, the differential equation (46) with
x(t)= 0 transforms in the s-domain into,

ÿ(t)+4ẏ(t)+3y(t)= 0 ⇒ s2Y(s)−2s+ 4+ 4
(
sY(s)−2

)+ 3Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= 2s+ 4

s2 + 4s+ 3
= 2s+ 4

(s+ 1)(s+ 3)
= 1

s+ 1
+ 1

s+ 3

which gives the zero-input response in the time domain,

yzi(t)= e−t + e−3t , t ≥ 0 (49)

An alternative approach is to work in the time-domain and express y(t) and its derivative as a
linear combination of characteristic modes, and fix the expansion coefficients from the initial
conditions, that is, set

y(t)= c1e−t + c2e−3t

ẏ(t)= −c1e−t − 3c2e−3t

and at t = 0−, impose the conditions,

y(0−)= c1 + c2 = 2

ẏ(0−)= −c1 − 3c2 = −4
⇒ c1 = 1

c2 = 1

which results in the same answer as in Eq. (49). The same expression is obtained using the
ilaplace function of the symbolic toolbox,

syms s Y
Y = solve(s^2*Y-s*2+4 + 4*(s*Y-2)+3*Y == 0,Y) % Y = (2*s + 4)/(s^2 + 4*s + 3)
Y = partfrac(Y,s) % Y = 1/(s + 1) + 1/(s + 3)
yzi = ilaplace(Y) % yzi = exp(-t) + exp(-3*t)

Alternatively, we can use the dsolve function (here, the t = 0± conditions are the same),

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
yzi = dsolve(ddy + 4*dy + 3*y == 0, y(0) == 2, dy(0) == -4)

(e) The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

Separating out the delta-function term of h(t), we may write,

h(t)= 2δ(t)+g(t) , g(t)= [e−t − 8e−3t]u(t)
and the convolution integral becomes, for t ≥ 0,

yzs(t)=
∫∞
−∞
[
2δ(t′)+g(t′)]x(t − t′)dt′ = 2x(t)+

∫ t
0
g(t′)x(t − t′)dt′
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and for the given input, x(t)= e−2tu(t), we find for t ≥ 0,

yzs(t) = 2e−2t +
∫ t

0
(e−t

′ − 8e−3t′)e−2(t−t′)dt′

= 2e−2t + e−2t
∫ t

0
(e−t

′ − 8e−3t′)e2t′dt′ = 2e−2t + e−2t
∫ t

0
(et

′ − 8e−t
′
)dt′

= 2e−2t + e−2t[(et − 1)−8(1− e−t)]
thus,

yzs(t)= e−t + 8e−3t − 7e−2t , t ≥ 0 (50)

(f) The Laplace transform of the input x(t)= e−2tu(t) is, X(s)= 1/(s + 2). It follows that the
transform of the zero-state output and its PFE will be,

Y(s)= H(s)X(s)= 2s2 + s+ 1

s2 + 4s+ 3
· 1

s+ 2
= 2s2 + s+ 1

(s+ 1)(s+ 2)(s+ 3)
= 1

s+ 1
− 7

s+ 2
+ 8

s+ 3

Inverting the Laplace transform Y(s), we obtain the same zero-state response of Eq. (50). The
PFE residues can also be obtained by the function residue,

[r,p] = residue([2 1 1], conv([1 4 3],[1 2]))
% r =
% 8.0000
% -7.0000
% 1.0000
% p =
% -3.0000
% -2.0000
% -1.0000

The PFE and the Laplace inversions can also be accomplished with the symbolic toolbox,

syms s
H = (2*s^2 + s + 1)/(s^2+4*s+3);
X = 1/(s+2);
Y = H*X; % Y(s) = (2*s^2 + s + 1)/((s + 2)*(s^2 + 4*s + 3))
Y = partfrac(Y) % Y = 1/(s + 1) - 7/(s + 2) + 8/(s + 3)
yzs = ilaplace(Y) % yzs = exp(-t) - 7*exp(-2*t) + 8*exp(-3*t)

(g) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = e−t + e−3t

yzs(t) = e−t + 8e−3t − 7e−2t

y(t) = 2e−t + 9e−3t − 7e−2t

(51)

The first two terms represent the “homogeneous” solution and the third, the “forced” response,

y(t)= 2e−t + 9e−3t︸ ︷︷ ︸
homogeneous

−7e−2t︸ ︷︷ ︸
forced

, t ≥ 0 (52)

As in Example 1, the forced response can be predicted in advance by the rule,

x(t)= e−at −→ yforced(t)= H(−a)e−at

where with a = 2, we evaluateH(−a)= −7. Next, we rederive Eq. (52) using Laplace transforms
and partial fraction expansions. For the given initial conditions, y(0−)= 2, ẏ(0−)= −4, the
transform of the differential equation (46) is,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t) ⇒
s2Y(s)−2s+ 4+ 4

(
sY(s)−2

)+ 3Y(s)= (2s2 + s+ 1)X(s)
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Solving for Y(s), and replacing X(s)= 1/(s+ 2), we find after some algebra,

Y(s)= 4s2 + 9s+ 9

(s+ 2)(s2 + 4s+ 3)
= 2

s+ 1
+ 9

s+ 3
− 7

s+ 2
(53)

which upon inversion yields exactly Eq. (52). The solution for Y(s), its PFE expansion, and
inversion can also be carried out simply by the symbolic toolbox,

syms s Y
X = 1/(s+2);
Y = solve(s^2*Y-s*2+4 + 4*(s*Y-2) + 3*Y == (2*s^2+s+1)*X, Y)
Y = partfrac(Y,s)
y = ilaplace(Y)

(h) We recall that for a second-order system of the form,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒ H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2

and for a causal input x(t) that has no delta-function singularities, the mapping between the
initial conditions at t = 0− and the initial conditions at t = 0+ is given by,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)
(54)

For our particular system, we have, [b0, b1, b2]= [2,1,1], and [a1, a2]= [4,3], so that b0 = 2,
b1 = 1, a1 = 4, and Eqs. (54) become,

y(0+) = y(0−)+2x(0+)

ẏ(0+) = ẏ(0−)+2 ẋ(0+)−7x(0+)
(55)

Thus, for the input x(t)= e−2tu(t), and the given initial conditions at t = 0−, we have, x(0+)=
1 and ẋ(0+)= −2, so that

y(0+) = 2+ 2 = 4

ẏ(0+) = −4− 4− 7 = −15
(56)

Using these conditions, we may derive the solution of Eq. (52) by the classical method, in which
we construct the solution as the sum of a particular solution and a general homogeneous
solution. For the particular solution, we may take the forced response, which in our example
is, yforced(t)= −7e−2t. For the homogeneous solution we form a linear combination of the
characteristic modes e−t, e−3t. Thus,

y(t)= c1e−t + c2e−3t − 7e−2t

ẏ(t)= −c1e−t − 3c2e−3t + 14e−2t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (56), we have,

y(0+)= c1 + c2 − 7 = 4

ẏ(0+)= −c1 − 3c2 + 14 = −15
⇒ c1 = 2

c2 = 9

Thus, we obtain the same solution as that in Eq. (52), for t ≥ 0+,

y(t)= c1e−t + c2e−3t − 7e−2t = 2e−t + 9e−3t − 7e−2t

Finally, the same solution can be obtained with the dsolve function applied with the initial
conditions at t = 0+ of Eq. (56),
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syms t y(t)
x = exp(-2*t);
dy = diff(y,t); ddy = diff(dy,t);
dx = diff(x,t); ddx = diff(dx,t);
y = dsolve(ddy + 4*dy + 3*y == 2*ddx+dx+x, y(0) == 4, dy(0) == -15)

We finish with some remarks on the 0− and 0+ approaches. In both cases, displayed in Eq. (57),
the total solution is written as a sum of a “homogeneous” solution and a “particular” inhomo-
geneous solution.

y(t)= e−t + e−3t︸ ︷︷ ︸
zero-input

+e−t + 8e−3t − 7e−2t︸ ︷︷ ︸
zero-state

= 2e−t + 9e−3t︸ ︷︷ ︸
homogeneous

−7e−2t︸ ︷︷ ︸
forced

, t ≥ 0 (57)

In the 0− approach, the zero-state part is such a particular solution which is computable inde-
pendently of the initial conditions using convolution, h(t)∗x(t), or by inverting, H(s)X(s),
while the zero-input part is a homogeneous solution whose coefficients c1, c2 are determined
from the t = 0− conditions.

On the other hand, in the 0+ approach the particular solution is the forced response, while the
homogeneous part is determined by fixing its coefficients c1, c2 from the t = 0+ conditions.

In the 0− approach, the coefficients of the homogeneous parts arising from the zero-input and
zero-state components combine to give the net homogeneous coefficients of the 0+ approach.

Whether one uses the 0− or the 0+ approach depends on how the problem is posed. It is evident
that the decomposition into a homogeneous and a particular solution is not unique since we
can always add some arbitrary homogeneous terms to the homogeneous part while subtracting
them from the particular part. However, the above two specific ways of decomposing are
convenient in terms of applying the initial conditions and in terms of guessing the particular
solution. These remarks are valid more generally, not just in the second-order case of the
present example.

(i) The numerical computation using the lsim function is carried out in exactly the same way as
in the previous examples. The MATLAB code is listed below.

y0 = 2; dy0 = -4; % given initial conditions at t=0-
t = linspace(0,4,401); % desired time range
x = exp(-2*t); % input signal
s = tf(’s’); % transfer function variable
H = (2*s^2+s+1)/(s^2+4*s+3); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
si = obsv(S) \ yi; % initial state-vector
y = lsim(S,x,t,si); % run with initial state si
yzs = lsim(S,x,t); % run with zero initial state si=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs
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Example 5

Repeat questions (d–h) of Problem 1 for the following linear system,

ÿ(t)+4ẏ(t)+3y(t)= 2ẍ(t)+ẋ(t)+x(t)

(D2 + 4D+ 3)y(t)= (2D2 +D+ 1)x(t) , D = d
dt

(58)

with initial conditions, y(0−)= 1, ẏ(0−)= 3, and driven by the causal sinusoidal input,

x(t)= 10 cos(t)u(t) (59)

Solution

The transfer function and impulse response are the same as in the previous example,

h(t) = 2δ(t)+(e−t − 8e−3t)u(t)
H(s) = 2s2 + s+ 1

s2 + 4s+ 3

We note that since x(0+)= 10 and ẋ(0+)= 0, the initial conditions at t = 0− map as follows to those
at t = 0+ according to Eq. (29),

y(0+) = y(0−)+b0x(0+)= 1+ 2 · 10 = 21

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)= 3+ 2·0+ (1− 4·2)10 = −67
(60)

(d) For the given initial conditions, y(0−)= 1 and ẏ(0−)= 3,† the differential equation (58) with
x(t)= 0 transforms in the s-domain into,

ÿ(t)+4ẏ(t)+3y(t)= 0 ⇒ (
s2Y(s)−s+ 3

)+ 4
(
sY(s)−1

)+ 3Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= s+ 7

s2 + 4s+ 3
= s+ 7

(s+ 1)(s+ 3)
= 3

s+ 1
− 2

s+ 3

which gives the zero-input response in the time domain,

yzi(t)= 3e−t − 2e−3t , t ≥ 0 (61)

An alternative approach is to work in the time-domain and express yzi(t) and its derivative as
a linear combination of characteristic modes, and fix the expansion coefficients from the initial
conditions, that is, set

yzi(t)= c1e−t + c2e−3t

ẏzi(t)= −c1e−t − 3c2e−3t

and at t = 0−, impose the conditions,

yzi(0−)= c1 + c2 = 1

ẏzi(0−)= −c1 − 3c2 = 3
⇒ c1 = 3

c2 = −2

which results in the same answer as in Eq. (61). The same expression is obtained using the
ilaplace function of the symbolic toolbox,

†the ICs for the zero-input solution are the same as the ICs of the total solution, see discussion in set-3.
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syms s Y
Y = solve(s^2*Y-s+3 + 4*(s*Y-1)+3*Y == 0,Y) % Y = (s + 7)/(s^2 + 4*s + 3)
Y = partfrac(Y,s) % Y = 3/(s + 1) - 2/(s + 3)
yzi = ilaplace(Y) % yzi = 3*exp(-t) - 2*exp(-3*t)

Alternatively, we can use the dsolve function (here, the t = 0± conditions are the same),

syms t y(t)
dy = diff(y,t); ddy = diff(dy,t);
yzi = dsolve(ddy + 4*dy + 3*y == 0, y(0) == 1, dy(0) == 3)

(e) The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

Separating out the delta-function term of h(t), we may write,

h(t)= 2δ(t)+g(t) , g(t)= [e−t − 8e−3t]u(t)
and the convolution integral becomes, for t ≥ 0,

yzs(t)=
∫∞
−∞
[
2δ(t′)+g(t′)]x(t − t′)dt′ = 2x(t)+

∫ t
0
g(t′)x(t − t′)dt′

and for the given input, x(t)= 10 cos(t)u(t), we find for t ≥ 0,

yzs(t) = 20 cos(t)+
∫ t

0
(e−t

′ − 8e−3t′)10 cos(t − t′)dt′

= 20 cos(t)+24e−3t − 5e−t − 19 cos(t)−3 sin(t)

or, simplifying,
yzs(t)= 24e−3t − 5e−t + cos(t)−3 sin(t) , t ≥ 0 (62)

(f) The Laplace transform of the input is,

X(s)= 10s
s2 + 1

= 10s
(s− j)(s+ j)

and, the Laplace transform of the zero-state output, including its PFE expansion,

Y(s)= H(s)X(s) = 10s(2s2 + s+ 1)
(s2 + 4s+ 3)(s2 + 1)

= 10s(2s2 + s+ 1)
(s+ 3)(s+ 1)(s− j)(s+ j)

= 24

s+ 3
− 5

s+ 1
+

1
2(1+ 3j)
s− j +

1
2(1− 3j)
s+ j

= 24

s+ 3
− 5

s+ 1
+ s− 3

s2 + 1

= 24

s+ 3
− 5

s+ 1
+ s
s2 + 1

− 3

s2 + 1

The inverse Laplace transform of the last expression coincides with that of Eq. (62). The sym-
bolic toolbox calculation, listed below, gives the same result.

syms s
syms t real
H = (2*s^2 + s + 1)/(s^2+4*s+3);
x = 10*cos(1*t);
X = laplace(x);
Y = H*X;
Y = partfrac(Y,’factormode’,’full’) % lists complex poles separately
% Y = partfrac(Y) % combines complex poles together
yzs = ilaplace(Y)
yzs = real(yzs) % yzs = 24*exp(-3*t) - 5*exp(-t) + cos(t) - 3*sin(t)
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Alternatively, we can use the dsolve function, where now the proper t = 0+ initial conditions
can be obtained from Eq. (60) by setting the t = 0− conditions to zero, yzs(0−)= ẏzs(0−)= 0,
which gives the values, yzs(0+)= 20 and ẏzs(0+)= −70.

syms t y(t)
x = 10*cos(t);
dy = diff(y,t); ddy = diff(dy,t);
dx = diff(x,t); ddx = diff(dx,t);
yzs = dsolve(ddy + 4*dy + 3*y == 2*ddx + dx + x, y(0)==20, dy(0)==-70)
% yzs = 24*exp(-3*t) - 5*exp(-t) + 10^(1/2)*cos(t + atan(3))
% = 24*exp(-3*t) - 5*exp(-t) + cos(t) -3*sin(t)

(g-h) Adding up the zero-input and zero-state responses, we obtain the full solution, for t ≥ 0,

yzi(t) = 3e−t − 2e−3t

yzs(t) = 24e−3t − 5e−t + cos(t)−3 sin(t)

y(t)= yzi(t)+yzs(t) = 3e−t − 2e−3t︸ ︷︷ ︸
zero-input

+24e−3t − 5e−t + cos(t)−3 sin(t)︸ ︷︷ ︸
zero-state

= 22e−3t − 2e−t︸ ︷︷ ︸
homogeneous

+ cos(t)−3 sin(t)︸ ︷︷ ︸
forced response

(63)

The first two terms represent the “homogeneous” solution and the last two, the “forced” re-
sponse. The sinusoidal forced response can be predicted in advance by the rules,

x(t)= ejω0t ⇒ yforced(t)= H(ω0)ejω0t

x(t)= cos(ω0t) ⇒ yforced(t)= Re
[
H(ω0)ejω0t

]
x(t)= sin(ω0t) ⇒ yforced(t)= Im

[
H(ω0)ejω0t

]
where here, ω0 = 1, and the frequency response is evaluated to be,

H(ω0)= H(s)
∣∣
s=jω0

= 2s2 + s+ 1

s2 + 4s+ 3

∣∣∣∣∣
s=jω0

= 2j2 + j + 1

j2 + 4j + 3
= 1+ 3j

10

and the forced response to the input, 10 cos t, becomes,†

10 · Re
[

1+ 3j
10

ejt
]
= Re

[
(1+ 3j)ejt

] = cos t − 3 sin t

Once we know the forced response, we can determine the homogeneous part by expressing it as
a linear combination of characteristic modes, resulting in the total solution and its derivative,

y(t) = c1e−3t + c2e−t + cos t − 3 sin t

ẏ(t) = −3c1e−3t − c2e−t − sin t − 3 cos t

and fixing the coefficients by applying the t = 0+ initial conditions of Eq. (60), as in the classical
method, that is,

y(0+) = c1 + c2 + 1 = 21

ẏ(0+) = −3c1 − c2 − 3 = −67
⇒

c1 = 22

c2 = −2

Finally, we can derive the full solution (63) using Laplace transforms with the given t = 0−
initial conditions, y(0−)= 1, ẏ(0−)= 3. The transform of the differential equation gives the
algebraic equation,

(
s2Y(s)−s− 3

)+ 4
(
sY(s)−1

)+ 3Y(s)= (2s2 + s+ 1)X(s)= (2s2 + s+ 1)
10s
s2 + 1

†the polar representation is, cos t − 3 sin t = √10 cos(t + atan3).
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with solution and PFE,

Y(s)= 21s3 + 17s2 + 11s+ 7

(s2 + 4s+ 3)(s+1)
= 22

s+ 3
− 2

s+ 1
+ s
s2 + 1

− 3

s2 + 1

resulting in Eq. (63),
y(t)= 22e−3t − 2e−t + cos(t)−3 sin(t)

The MATLAB code for that is simply,

y0=1; dy0=3;
syms s t Y
x = 10*cos(t);
X = laplace(x);
Y = solve((s^2*Y-s*y0-dy0) + 4*(s*Y-y0)+3*Y == (2*s^2+s+1)*X, Y)
Y = partfrac(Y,s) % Y = 2/(s + 3) - 2/(s + 1) + (s - 3)/(s^2 + 1)
y = ilaplace(Y) % y = 22*exp(-3*t) - 2*exp(-t) + cos(t) - 3*sin(t

The figure below plots x(t) and y(t), showing how the output becomes sinusoidal after the
initial transients have died out.
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Example 6

Consider the following system identification examples. Please solve them analytically (i.e. by hand)
and by using MATLAB’s symbolic toolbox.

(a) The zero-state response of an unknown causal LTI system H to a unit-step input is,

u(t) H−→ e−tu(t)−e−3tu(t)

Determine the impulse response h(t) by working exclusively in the time domain. Then, deter-
mine it again by working in the s-domain and inverting its transfer function H(s).

(b) The input and corresponding zero-state output of an unknown causal LTI system are shown
below,

e−tu(t) H−→ e−2tu(t)−e−3tu(t)

Determine the system transfer function H(s), and from it, the impulse response h(t).

(c) An unknown signal x(t) is send to the input of the system found in part (b) and the following
zero-state output is observed,

?
H−→ te−2tu(t)

Determine x(t). Without any further calculations, determine the input that would cause the
following zero-state output and justify your answer,

?
H−→ (t − 5)e−2(t−5)u(t − 5)

Solution

(a) Working in the time domain, the zero-state output is related to the input by convolution,

y(t)=
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t
0
h(t′)u(t − t′)dt′ =

∫ t
0
h(t′)dt′

where the limits were determined by the assumed causality of the input and system, and we
replaced the unit-step input, x(t− t′)= u(t− t′)= 1, because t− t′ ≥ 0. Thus, differentiating
both sides, we obtain for t ≥ 0,

h(t)= dy(t)
dt

= d
dt
(
e−t − e−3t) = 3e−3t − e−t

Working in the s-domain, we have the Laplace transforms of the unit-step input, the output,
and the transfer function,

X(s)= 1

s
, Y(s)= 1

s+ 1
− 1

s+ 3
= 2

s2 + 4s+ 3

H(s)= Y(s)
X(s)

= 2s
s2 + 4s+ 3

= 3

s+ 3
− 1

s+ 1

so that the causal Laplace inverse is,

h(t)= [3e−3t − e−t]u(t)
The symbolic toolbox calculation is as follows,

31



syms s t
X = 1/s;
y = exp(-t)-exp(-3*t);
Y = laplace(y) % Y = 1/(s + 1) - 1/(s + 3)
H = collect(Y/X) % H = (2*s)/(s^2 + 4*s + 3)
H = partfrac(H) % H = 3/(s + 3) - 1/(s + 1)
h = ilaplace(H) % h = 3*exp(-3*t) - exp(-t)

(b) From the Laplace transforms of the input and output, we obtain H(s),

X(s)= 1

s+ 1
, Y(s)= 1

s+ 2
− 1

s+ 3
= 1

s2 + 5s+ 6

H(s)= Y(s)
X(s)

= s+ 1

s2 + 5s+ 6
= s+ 1

(s+ 2)(s+ 3)
= 2

s+ 3
− 1

s+ 2

with Laplace inverse,
h(t)= [2e−3t − e−2t]u(t)

The symbolic toolbox calculation is,

syms s t
x = exp(-t);
y = exp(-2*t)-exp(-3*t);
X = laplace(x) % X = 1/(s + 1)
Y = laplace(y) % Y = 1/(s + 2) - 1/(s + 3)
H = collect(Y/X) % H = (s + 1)/(s^2 + 5*s + 6)
H = partfrac(H) % 2/(s + 3) - 1/(s + 2)
h = ilaplace(H) % h = 2*exp(-3*t) - exp(-2*t)

(c) From Y(s)= H(s)X(s), we have, X(s)= Y(s)/H(s),

Y(s)= 1

(s+ 2)2
, H(s)= s+ 1

s2 + 5s+ 6
= s+ 1

(s+ 2)(s+ 3)

X(s)= Y(s)
H(s)

=
1

(s+ 2)2

s+ 1

(s+ 2)(s+ 3)

= s+ 3

(s+ 1)(s+ 2)
= 2

s+ 1
− 1

s+ 2

and inverting,
x(t)= [2e−t − e−2t]u(t)

The symbolic toolbox calculation is,

syms s t
y = t*exp(-2*t);
Y = laplace(y) % Y = 1/(s+2)^2
H = (s+1)/(s^2+5*s+6); % H = (s + 1)/((s + 2)*(s + 3))
X = simplify(Y/H) % X = (s + 3)/(s^2 + 3*s + 2)
X = prod(factor(X)) % X = (s + 3)/((s + 1)*(s + 2))
X = partfrac(X) % X = 2/(s + 1) - 1/(s + 2)
x = ilaplace(X) % x = 2*exp(-t) - exp(-2*t)

Since the system is linear time-invariant, if x(t) causes y(t), then, x(t−t0) will cause y(t−t0),
thus, since the output is delayed by t0 = 5 time units, we must have the same delay at the input,
that is,

x(t − 5)= [2e−(t−5) − e−2(t−5)]u(t − 5)
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Example 7 – Steady-State and Transient Response

In this example, we study the sinusoidal steady-state and transient responses of a filter. Consider
the following sinusoidal input signal and filter:

x(t)= sin(ω0t)u(t) , H(s)= s+ 3

s2 + s+ 1.25
= s+ 3

(s− p1)(s− p2)

where ω0 = 4 rad/sec and t is in seconds.

(a) Determine the two filter poles p1, p2 and calculate the corresponding 40-dB time constant in
seconds. Determine an analytical expression for the impulse response h(t) of this filter.

Define a vector of 1001 equally-spaced time points t spanning the interval 0 ≤ t ≤ 10, and
evaluate and plot h(t) over that interval.

(b) Calculate the value of the frequency response at ω =ω0, that is,

H(ω0)= H(s)
∣∣∣
s=jω0

as well as its magnitude |H(ω0)|, and phase φ0 = argH(ω0), in radians, i.e., the polar rep-
resentation, H(ω0)= |H(ω0)|ejφ0 . For the same time vector t of part (a), evaluate the corre-
sponding steady-state output signal due to the sinusoidal input x(t), that is,

yst(t)= Im
[
H(ω0)ejω0t

] = Im
[|H(ω0)|ejφ0 ejω0t

] = |H(ω0)| sin(ω0t +φ0) (64)

(c) The full response to a causal complex sinusoidal input, ejω0tu(t), was worked out in Eq. (17)
for a 2nd order filter with two distinct poles, for the zero-state case,

yc(t)= H(ω0)ejω0t︸ ︷︷ ︸
steady-state

+R1ep1t +R2ep2t︸ ︷︷ ︸
transients

, t ≥ 0 (65)

where the first term represents the steady-state sinusoidal response, and the last two terms are
the transients, which decay exponentially. The response due to a real-valued sinusoidal input,
sin(ω0t)u(t), is obtained by calculating the imaginary part of Eq. (65), that is, for t ≥ 0,

y(t)= Im
[
yc(t)

] = Im
[
H(ω0)ejω0t

]︸ ︷︷ ︸
steady-state, yst(t)

+ Im
[
R1ep1t +R2ep2t

]︸ ︷︷ ︸
transients, ytr(t)

= yst(t)+ytr(t) (66)

Using the function residue, compute the quantities Ri, pi that appear in Eq. (65), and then
evaluate yc(t) at the same vector of t’s defined above, and extract its imaginary part as in (66).

On the same graph, plot y(t), yst(t), and the input x(t), and observe how y(t) tends to yst(t)
as t increases.

(d) Using partial fraction expansions, determine exact analytical expressions for the quantities,
H(ω0),R1, R2, as well as exact expressions for the two signals, yst(t), ytr(t). Verify that the
exact H(ω0),R1, R2 match those obtained from the residue function.

(e) Calculate the theoretical phase delay, tph = −φ0/ω0, in seconds. Then, estimate it from the
computed graphs by the following procedure: Consider the later time interval, 8 < t < 9, over
which steady state has apparently been reached, and using the built-in function max, determine
the time instants, say, t1, t2, at which x(t) and y(t) reach their maximum values, then, compute
the estimated phase delay as the difference, test = t2 − t1, and compare it with the theoretical
value tph. Add the pairs of points t1, x(t1) and t2, y(t2) on the graph of part (c) using markers
(see example graph at end).

(f) On a separate graph, plot the transient part, ytr(t), by itself. Is its rate of decrease consistent
with the 40-dB time constant that you calculated above?
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Solution

The filter poles are the roots of, s2 + s + 1.25 = 0, namely, p1,2 = −0.5 ± j. The partial fraction
expansion of H(s) can be inverted to obtain h(t),

H(s)= s+ 3

s2 + s+ 1.25
= s+ 3

(s+ 0.5− j)(s+ 0.5+ j) =
0.5− 1.25j
s+ 0.5− j +

0.5+ 1.25j
s+ 0.5+ j

with causal inverse Laplace transform,

h(t) = (0.5− 1.25j)e(−0.5+j)t + (0.5+ 1.25j)e(−0.5−j)t = 2 Re
[
(0.5− 1.25j)e(−0.5+j)t

]
= 2 Re

[
(0.5− 1.25j)e−0.5t(cos t + j sin t)

]
= e−0.5t(cos t + 2.5 sin t

)
, t ≥ 0

The 40-dB time constant of h(t) is, since p1 = −0.5+ j,

t40 = ln
(
10−2

)
Re(p1)

= − ln(100)
−0.5

= 9.2103 sec

The frequency response evaluated at, ω =ω0 = 4, is exactly,

H(ω0)= H(s)
∣∣∣
s=jω0

= s+ 3

s2 + s+ 1.25

∣∣∣∣
s=4j

= −452+ 1136j
3737

≈ −0.1210− 0.3040j

with magnitude and phase (brought into the standard interval, −π ≤ φ0 ≤ π),

|H(ω0)| = 20√
3737

≈ 0.3272 , φ0 = argH(ω0)= atan
(

284

113

)
−π ≈ −1.9495 radians

thus, the phase delay will be,

tph = −φ0

ω0
= −−1.9495 rad

4 rad/sec
= 0.4874 sec

It represents the amount of delay by which the steady-state sinusoidal output is delayed relative to
the sinusoidal input.

For the full response due to a causal complex sinusoidal input, ejω0t u(t), we may work with Laplace
transforms and expand in partial fractions as in Eq. (16), noting that the Laplace transform of the
complex sinusoidal input, xc(t)= ejω0t u(t), is, Xc(s)= 1/(s− jω0),

Yc(s)= H(s)Xc(s) = s+ 3

(s2 + s+ 1.25)(s− jω0)
= s+ 3

(s− p1)(s− p2)(s− jω0)

= H(ω0)
s− jω0︸ ︷︷ ︸

steady-state

+ R1

s− p1
+ R2

s− p2︸ ︷︷ ︸
transients

(67)

The partial fraction expansion coefficients, H(ω0),R1, R2, can be calculated with the help of the
function residue, whose inputs are the numerator and denominator coefficients of Yc(s). The
numerator is the same as that ofH(s), whereas the denominator can be determined by multiplying
the factors, (s2 + s + 1.25)(s − jω0), with coefficients obtained by convolving the coefficients of
those two factors, as illustrated by the MATLAB code,
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w0 = 4;
num = [1,3]; % numerator coefficients of Yc(s)
den = conv([1,1,1.25],[1,-j*w0]); % denominator coefficients of Yc(s)

[R,p] = residue(num,den) % residues and poles of Yc(s)

% R =
% -0.1210 - 0.3040i % corresponds to H(w0)
% -0.2574 + 0.0743i % corresponds to R2 of the text
% 0.3784 + 0.2297i % corresponds to R1 of the text

% p =
% 0.0000 + 4.0000i % input pole at j*w0
% -0.5000 - 1.0000i % system pole p2
% -0.5000 + 1.0000i % system pole p1

These coefficients can also be obtained in exact analytical form by carrying out the partial fraction
expansion in Eq. (67) with ω0 = 4,

Yc(s)= s+ 3

(s+ 0.5− j)(s+ 0.5+ j)(s− 4j)
= H(ω0)
s− 4j

+ R1

s+ 0.5− j +
R2

s+ 0.5+ j (68)

where we find the following exact expressions, agreeing with those from residue,

H(ω0) = s+ 3

(s+ 0.5− j)(s+ 0.5+ j)

∣∣∣∣∣
s=4j

= −452+ 1136j
3737

= −0.1210− 0.3040i

R1 = s+ 3

(s+ 0.5+ j)(s− 4j)

∣∣∣∣∣
s=−0.5+j

= 28+ 17j
74

= 0.3784+ 0.2297i

R1 = s+ 3

(s+ 0.5− j)(s− 4j)

∣∣∣∣∣
s=−0.5−j

= 52− 15j
202

= 0.2574− 0.0743i

(69)

Inserting Eqs. (69) into Eq. (66), we find the exact expressions for the signals,

yst(t) = − 1

3737

[
1136 cos(4t)+452 sin(4t)

]

ytr(t) = 8

3737
e−0.5t[142 cos t + 297 sin t

]
y(t) = yst(t)+ytr(t)

(70)

The MATLAB code for producing the required graphs is as follows,

t = linspace(0,10,1001); % time samples
h = @(t) exp(-t/2).*(cos(t) + 2.5*sin(t));
t40 = log(100)/0.5 % t40 = 9.2103 sec

figure; plot(t,h(t),’b-’);
yaxis(-2,2,-2:2); xaxis(0,10,0:1:10);
xlabel(’{\itt} (sec)’); grid;
title(’impulse response {\ith}({\itt})’);

w0 = 4;
s0 = j*w0;
H0 = (s0 + 3)/(s0^2 + s0 + 1.25) % -0.1210 - 0.3040i
magH0 = abs(H0); phi0 = angle(H0);
tph = -phi0/w0; % theoretical phase delay = 0.4874
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x = sin(w0*t); % input
yst = -(1136*cos(4*t)+452*sin(4*t))/3737; % steady-state part
ytr = exp(-t/2).*(142*cos(t) + 297*sin(t))*8/3737; % transient part
y = yst + ytr; % total response

i8 = find(t==8); % absolute index for t=8
[x1,i1] = max(x(t>8 & t<9)); % i1 is relative index over 8<t<9
[y2,i2] = max(y(t>8 & t<9)); % i2 is relative index over 8<t<9
i1 = i1+i8; i2 = i2+i8; % absolute indices
t1 = t(i1); t2 = t(i2); % max times
t_est = t2-t1; % estimated phase delay, t_est = 0.4800

figure; plot(t,y,’b-’, t,yst,’r--’, t,x,’k:’); hold on
plot(t1,x1,’g.’, t2,y2,’g.’) % add maxima
yaxis(-1.3,1.3,-1:0.5:1); xaxis(0,10,0:1:10);
xlabel(’{\itt} (sec)’);
title(’{\itx}({\itt}), {\ity}({\itt}), {\ity}_{st}({\itt})’);
legend(’ exact’, ’ steady’, ’ input’, ’ max’, ’location’,’sw’)

figure; plot(t,ytr,’b-’, ’linewidth’,2); % transient part
yaxis(-1.3,1.3,-1:0.5:1); xaxis(0,10,0:1:10);
xlabel(’{\itt} (sec)’); grid;
title(’transient part {\ity}_{tr}({\itt})’);
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Example 8 – Noise Reduction

In this example, we discuss noise reduction concepts. A signal x(t) consists of a sinusoid of fre-
quency ω0, f(t)= sin(ω0t), plus random noise v(t),

x(t)= f(t)+v(t)= sin(ω0t)+v(t) (71)

It is desired to process x(t) through a bandpass filter H(s) that lets the sinusoid pass through
unchanged, while it substantially attenuates the noise component, so that the output signal would
have the form during steady state,

y(t)= sin(ω0t)+yv(t) (72)

where yv(t) denotes the filtered noise, which must be much weaker than the input noise, i.e., the
RMS value of yv(t) must be much less than the RMS value of v(t), or in terms of their variances,
σ2
yv � σ2

v. Such a bandpass filter can be chosen to be a simple resonator filter with transfer function
and input/output differential equation:

H(s)= αs
s2 +αs+ω2

0
� ÿ(t)+αẏ(t)+ω2

0y(t)= αẋ(t) (73)

This is complementary to the notch filter discussed in set-2. Such bandpass filter could represent,
for example, a simple radio receiver tuned to the carrier frequency ω0 of a radio station, allowing
through only a small band of frequencies around the carrier, and rejecting all other frequencies. Its
frequency and magnitude responses, obtained by setting, s = jω, are given by:

H(ω)= H(s)
∣∣∣∣
s=jω

= jαω
ω2

0 −ω2 + jαω ⇒ |H(ω)|2 = α2ω2(
ω2 −ω2

0

)2 +α2ω2
(74)

It has a narrow peak centered atω0 and unity gain there, i.e.,H(ω0)= 1. Its 3-dB width is given by,
Δω = α (see graphs at end), with left and right 3-dB edge frequencies,

ω1 = −α
2
+
√
ω2

0 +
α2

4
, ω2 = +α

2
+
√
ω2

0 +
α2

4
⇒ Δω =ω2 −ω1 = α

The causal impulse response of the filter is (assuming that α/2 < ω0),

h(t)= αe−αt/2
[

cos(ωrt)− α
2ωr

sin(ωrt)
]
u(t) , ωr =

√
ω2

0 −
α2

4
(75)

Assuming the noise component to be white noise with broadband flat spectrum, the narrow peak
of the filter will only let through a small part of the noise (whatever lies within the effective width
of the peak), so that the output noise power will be proportional to the bandwidth parameter α. It
will shown below that, σ2

yv/σ
2
v ≈ Tα/2, where T is the sampling time step.

Thus, the smaller the α, the more the noise reduction. On the other hand, as can be seen from
Eq. (75), the smaller the α, the longer the effective time constant teff = 2/α of the filter,† resulting
in longer transients. This tradeoff is more general and we will encounter it several times in this
course—it can be stated roughly as follows: “The more effective a filter, the longer its time constant.”
In this example, you will study this tradeoff between noise reduction and speed of response.

(a) Starting with the values ω0 = 5 and α = 0.2, plot the magnitude response squared |H(ω)|2
versus ω in the interval 0 ≤ ω ≤ 10. Indicate the 3-dB width on the graph. Then, plot the
phase response, arg

[
H(ω)

]
, versus the same values of ω.

†the 60-dB time constant is actually, t60 = ln(1000)·2/α = 13.82/α.
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(b) Generate 2001 equally-spaced noisy sinusoidal samples of x(t) in the interval, 0 ≤ t ≤ 40, for
example, using the code:

Tmax = 40; T = Tmax/2000; % T = 0.02 sec, other T’s can be chosen
t = 0:T:Tmax;
seed = 2016; % other seeds can be chosen
randn(’state’, seed); % initialize random number generator
v = randn(size(t)); % zero-mean, unit-variance, gaussian
x = sin(w0*t) + v; % noisy sinusoidal input

Compute the filter output samples y(t) using the function lsim,

s = tf(’s’); % transfer function class
H = a*s/(s^2 + a*s + w0^2); % transfer function, class(H) is ’tf’

y = lsim(H,x,t, [0;0], ’zoh’); % compute output signal

where this syntax forces the use of the zero-order-hold method of integration. If the argument,
’zoh’, is omitted, then lsim uses either a zero-order or a first-order hold, whichever it deems
more appropriate. The argument, [0;0], specifies that zero initial conditions be used for our
2nd order filter, i.e., y(t), is the “zero-state” response.

On two separate graphs, plot x(t) and y(t) versus t. Observe the initial transients and the
steady-state output (it’s not quite equal to the noise-free sinusoid because a small amount of
noise survives the filtering process.)

(c) To observe what happens to the noise itself, filter the noise signal v(t) through this filter to
obtain the filtered noise yv(t). On two separate graphs, but using the same vertical scales, plot
the signals v(t) and yv(t) versus t.

(d) Repeat parts (a–c) for the values α = 0.5 and α = 1, discussing the tradeoffs between noise
reduction, speed of response, and quality of the resulting desired signal.

(e) The zero-order-hold method implemented by the function lsim is equivalent to replacing the
continuous-time transfer functionH(s) of Eq. (73) by the following discrete-time transfer func-
tion and corresponding input/output difference equation:

Hd(z)= Gz−1(1− z−1)
1+ a1z−1 + a2z−2

yn + a1yn−1 + a2yn−2 = G(xn−1 − xn−2)
(76)

with coefficients:

G = α
ωr

e−αT/2 sin(ωrT) , a1 = −2e−αT/2 cos(ωrT) , a2 = e−αT (77)

and filter poles, p,p∗, as the solutions of the quadratic, 1+ a1z−1 + a2z−2 = 0,

p = e−αT/2ejωrT , p∗= e−αT/2e−jωrT (78)

We will derive Eq. (76) later in set-6 and in class. Also to be derived is the corresponding causal
discrete-time impulse response, for n ≥ 0,

hd(n) = g(n)−g(n− 1)

g(n) = α
ωr

e−αnT/2 sin(ωrnT)u(n)
(79)

Notice that hd(0)= 0 as expected from the presence of the factor z−1 in the numerator of
Hd(z). Note also that hd(n) can be computed as the following integral of the continuous-time
impulse response h(t),

hd(n)=
∫ nT
nT−T

h(t)dt , n ≥ 1 (80)
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Eqs. (79) and (80) can also be derived with MATLAB’s symbolic toolbox. The output samples
yn = y(tn) corresponding to the input samples xn = x(tn) can be computed by a repetitive
loop that solves the difference equation (76), for example, choosing the transposed realization
depicted below, we have,

initialize v1 = v2 = 0, then,
for each, n = 0,1,2, . . . , do:
yn = v1

v1 = v2 +Gxn − a1yn
v2 = −Gxn − a2yn

(81)

The built-in function filter uses exactly the same transposed realization to compute the output.
Its syntax is as follows, where num,den are the numerator and denominator coefficients of the
discrete transfer function Hd(z),

num = [0,G,-G]; % numerator of Hd(z)
den = [1,a1,a2]; % denominator of Hd(z)
y = filter(num,den,x); % filtering operation

For the values ω0 = 5, α = 0.2, T = 0.02 (same T as above), use the iteration of Eq. (81)
to compute the discrete-time output signal yn = y(tn) for the same sampled input of part
(b). Then, compute it again using the function filter. Do not plot the signals y(tn) since they
are virtually indistinguishable from those calculated with lsim. However, using the built-in
function norm, do compare the resulting output vectors resulting from the three methods, by
computing the Euclidean norms of the corresponding error differences, i.e., the quantities,

Elsim = ‖ylsim − yiter‖ = norm(ylsim − yiter)

Eiter = ‖yiter − yfilter‖ = norm(yiter − yfilter)

where we expect Elsim to be tiny, and Eiter to be zero.

(f) You may have learned in your Probability & Random Processes course—and we will be deriving
this at a later date—that if you filter a zero-mean white-noise signal sequence v(tn) of variance
σ2
v, through a discrete-time filter, then the variance σ2

yv of the corresponding output noise
signal yv(tn) is related to σ2

v by,

NRR = σ
2
yv

σ2
v
=

∞∑
n=0

∣∣hd(n)∣∣2
(82)

This ratio is a measure of the noise reduction capability of the filter, and is known the noise
reduction ratio (NRR). For the filter of Eq. (79), show that the exact NRR computed by Eq. (82)
is given in closed form by,

NRR exact = 2α2e−αT sin2(ωrT)
ω2
r
(
1− e−αT)(1+ 2e−αT/2 cos(ωrT)+e−αT

) (83)

Hint: ExpandHd(z) in partial fractions, invert it to get hd(n) as sum of complex exponentials,
insert that into Eq. (82), and apply the infinite geometric series to perform the summation. To
get started, note that with p defined in Eq. (78), we have the expansion,

Hd(z) = Gz−1(1− z−1)
1+ a1z−1 + a2z−2

= −(A+A∗)+ A
1− pz−1

+ A∗

1− p∗z−1

hd(n) = −(A+A∗)δ(n)+Apnu(n)+A∗p∗nu(n)
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where A is given by,

A = Ge
αT/2(1− eαT/2e−jωrT

)
2j sin(ωrT)

where the geometric series summation results into the following, which can be transformed
into Eq. (83),

NRR exact = 2 Re
[
A2p2

1− p2

]
+ 2

|A|2 |p|2
1− |p|2 (84)

The NRR can also be estimated by the following three approximations,

NRR1 =
N−1∑
n=0

∣∣hd(n)∣∣2 = truncated sum with N terms

NRR2 =
σ̂2
yv

σ̂2
v
= using sample variances

NRR3 = T α
2
= based on the continuous-time h(t)

(85)

where N can be chosen to correspond to, say, two 60-dB time constants, that is, N = 2t60/T,
and the sample variances can be calculated using the built-in function std for the standard
deviation of a random vector, and the third expression was mentioned in the introduction.

Calculate and compare the NRR values from Eqs. (83) and (85) for the values, ω0 = 5, α = 0.2,
T = 0.02. For NRR2, the necessary output noise vector yv(tn) can be calculated using filter
with input v(tn).

(g) Show that the continuous-time limit of Eq. (83), for small T, is as quoted in Eq. (85),

NRR exact ≈ T α
2

(86)

(h) An alternative approach is to first show the integral,∫∞
0
h2(t)dt = α

2

then use Eq. (80) to justify the following steps that lead to Eq. (86) for small T,

hd(n) ≈ T · h(nT)

NRR exact =
∞∑
n=0

h2
d(n)≈ T2

∞∑
n=0

h2(nT)

= T ·
⎡
⎣T ∞∑

n=0

h2(nT)

⎤
⎦ ≈ T ∫∞

0
h2(t)dt = T α

2

(87)

Solution

The MATLAB code implementing most of the questions is as follows,

w0 = 5; a = 0.2;

w = linspace(0,10,1001); s = j*w;
Hw = a*s./(s.^2 + a*s + w0^2); % frequency response H(w)
w2 = (sqrt(a^2 + 4*w0^2) + a)/2; % left/right bandedge 3-dB frequencies
w1 = (sqrt(a^2 + 4*w0^2) - a)/2;
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figure; plot(w,abs(Hw).^2,’b-’, [w1,w2],[1,1]/2,’r-’);
yaxis(0,1.1,0:0.5:1); xaxis(0,10,0:1:10);
xlabel(’\omega’); title(’magnitude response, |{\itH}(\omega)|^2’);
text(5.3,0.5,’3-dB width \Delta\omega’,’fontsize’,18)

figure; plot(w,angle(Hw)/pi, ’b-’,’linewidth’,2);
yaxis(-1, 1, -1:0.5:1); xaxis(0,10,0:1:10); grid
xlabel(’\omega’); title(’phase response, arg{\itH}(\omega) / \pi’);

Tmax = 40; T = Tmax/2000; % T = 0.02 sec
t = 0:T:Tmax;

seed = 2010;
randn(’state’, seed); % initialize generator
v = randn(size(t)); % zero-mean, unit-variance, gaussian noise
f = sin(w0*t); % noise-free sinusoid
x = f + v; % noisy sinusoidal input

s = tf(’s’); % transfer function class
H = a*s/(s^2 + a*s + w0^2); % transfer function, class is ’tf’

y = lsim(H,x,t, [0;0], ’zoh’); % compute output signal

figure; plot(t,x,’b-’); % plot noisy input x(t)
xaxis(0,40,0:10:40); yaxis(-4,4,-4:1:4);
xlabel(’\itt’); title(’noisy input sinusoid, {\itx}({\itt})’);

figure; plot(t,y,’r-’, t,f,’b:’); % plot output y(t)
xaxis(0,40,0:10:40); yaxis(-4,4,-4:1:4);
xlabel(’\itt’); title(’lsim output, {\ity}({\itt})’);
legend(’ output {\ity}({\itt})’, ’ sin(\omega_0{\itt})’)

yv = lsim(H,v,t, [0;0], ’zoh’); % filtered noise yv(t)

figure; plot(t,v,’b-’); % plot noise v(t)
xaxis(0,40,0:10:40); yaxis(-4,4,-4:1:4);
xlabel(’\itt’); title(’input noise, {\itv}({\itt})’);

figure; plot(t,yv,’r-’); % plot filtered noise yv(t)
xaxis(0,40,0:10:40); yaxis(-4,4,-4:1:4);
xlabel(’\itt’); title(’filtered noise, {\ity_v}({\itt})’);

wr = sqrt(w0^2-a^2/4); % ZOH filter parameters for Hd(z)
G = exp(-a*T/2)*sin(wr*T)*a/wr;
a1 = -2*exp(-a*T/2)*cos(wr*T);
a2 = exp(-a*T);
num = [0,G,-G]; % numerator of Hd(z)
den = [1,a1,a2]; % denominator of Hd(z)

% compute Hd(z) output using transpose-form sample processing iteration

v1=0; v2=0; % initialize states
for n=0:length(x)-1 % n = time index

yi(n+1) = v1; % output, n+1 = MATLAB index
v1 = v2 + G*x(n+1) - a1*yi(n+1); % update state v1
v2 = -G*x(n+1) - a2*yi(n+1); % update state v2

end

yf = filter(num,den,x) ; % ZOH output using the function filter

Err_iter = norm(yf-yi) % output from iteration and from filter
Err_lsim = norm(y’-yi) % compare lsim and ZOH output from iteration

NRRex = 2*a^2/wr^2 * exp(-a*T)*sin(wr*T)^2 / ...
(1-exp(-a*T))/(1+2*exp(-a*T/2)*cos(wr*T)+exp(-a*T)); % exact NRR

g = @(n) a/wr * exp(-a*T*n/2).*sin(wr*T*n).*(n>=0);
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hd = @(n) g(n) - g(n-1);

t60 = log(10^3)*2/a; % 60-dB time constant = 69.0776 sec
N = floor(2*t60/T); % N = 6907 samples for two t60’s

yv = filter(num,den,v); % filtered noise by Hd(z)

n = 0:N-1;
NRR1 = sum(hd(n).^2) ; % same as norm(hd(n))^2
NRR2 = std(yv)^2 / std(v)^2; % using sample variances
NRR3 = a*T/2; % small-T limit, analog case

NRR = [NRRex; NRR1; NRR2; NRR3] % display NNR’s from four methods

% NRR = % for a = 0.2
% 0.0020 % exact
% 0.0020 % NRR1
% 0.0018 % NRR2
% 0.0020 % NRR3

% NRR = % for a = 0.5
% 0.0050 % exact
% 0.0050 % NRR1
% 0.0045 % NRR2
% 0.0050 % NRR3
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Appendix – Impulse Matching Method

A quick way of determining the impulse response h(t) of an LCCDE system in the time domain is
the so-called impulse matching method.† To explain it, consider a 2nd order proper system described
by the differential equation,

ÿ(t)+a1 ẏ(t)+a2y(t)= b0 ẍ(t)+b1 ẋ(t)+b2x(t)

(D2 + a1D+ a2)y(t)= (b0D2 + b1D+ b2)x(t)
(88)

where D = d/dt, and by defining the differential operators,

A(D)= D2 + a1D+ a2 , B(D)= b0D2 + b1D+ b2

then, Eq. (88) can be written compactly in the form,

A(D)y(t)= B(D)x(t)
The impulse matching method states that the causal impulse response of such system is given

by the following operation, for t ≥ 0,

h(t)= b0δ(t)+B(D)yn(t) (89)

where yn(t) is the causal solution of the all-pole homogeneous equation,

A(D)yn(t)= ÿn(t)+a1 ẏn(t)+a2yn(t)= 0 (90)

subject to the special initial conditions, yn(0−)= 0 and ẏn(0−)= 1. To verify this result, let us take
Laplace transforms of both sides of (90) and use the standard transform properties for the higher
derivatives, imposing the assumed initial conditions,

yn(t)
L−→ Yn(s)

ẏn(t)
L−→ sYn(s)−yn(0−)= sYn(s)

ÿn(t)
L−→ s2Yn(s)−syn(0−)−ẏn(0−)= s2Yn(s)−1

(91)

Then, Eq. (90) transforms into,

s2Yn(s)−1+ a1sYn(s)+a2Yn(s)= 0 ⇒ Yn(s)= 1

s2 + a1s+ a2
= 1

A(s)
Given yn(t), and applying the same transform properties to the second term of (89), we verify

that the Laplace transform of h(t) defined by (89) is indeed the correct one, H(s)= B(s)/A(s).
More explicitly, we have,

h(t) = b0δ(t)+
(
b0D2 + b1D+ b2

)
yn(t)= b0δ(t)+b0 ÿn(t)+b1 ẏn(t)+b2yn(t) ⇒

H(s) = b0 + b0
(
s2Yn(s)−1

)+ b1sYn(s)+b2Yn(s)= b0 + b0s2Yn(s)−b0 + b1sYn(s)+b2Yn(s)

= b0s2Yn(s)+b1sYn(s)+b2Yn(s)=
(
b0s2 + bss+ b2)Yn(s)= b0s2 + b1s+ b2

s2 + a1s+ a2
= B(s)
A(s)

The method generalizes to higher order (proper) LCCDEs, for example, for an Mth order system,

A(D) = DM + a1DM−1 + a2DM−2 + · · · + aM
B(D) = b0DM + b1DM−1 + b2DM−2 + · · · + bM

the impulse response h(t) is given by Eq. (89) for t ≥ 0, where yn(t) is the solution of the all-pole
homogeneous equation,

A(D)yn(t)= 0

subject to: yn(0−)= ẏn(0−)= · · · = y(M−2)
n (0−)= 0 , y(M−1)

n (0−)= 1
(92)

†B. P. Lathi, Linear Systems & Signals, 2nd ed., Oxford University Press, 2005.
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