
332:345 – Linear Systems & Signals – Spring 2021

Set 2 – Some Application Examples – S. J. Orfanidis

1. Audio Equalizer

2. RC Circuit – First-Order LP/HP Filters

3. RLC Circuit – Second-Order LP/BP/HP Filters

4. ECG – Removing 60 Hz Interference

5. Car with Linear Drag

6. Conductivity Model and Ohm’s Law

7. Rotating Antenna with Linear Drag

8. Newton’s Law of Cooling

9. Thermostat Model

10. Cruise Control

11. Sprinting Models

12. Racecar Performance

13. Skydiver

14. Supersonic Free Fall

15. Rising and Falling Ball

16. Air Drag on Baseball

17. Parachuting

18. Epidemiology of Social Networks

19. Growth Models

20. Bass Model in Marketing Engineering

Appendix. MATLAB Differential Equation Solvers

This set contains a number application examples of LTI systems (and a few non-linear and
non-time-invariant ones) that are described by first or second order differential equations. It
covers a broad range of applications, intending to show the wide applicability of signals and
systems concepts.

It illustrates also how to solve such systems using MATLAB’s built-in symbolic toolbox func-
tions for Laplace transforms and for analytically solving differential equations, and how to solve
them numerically by converting them to difference equations. Further discussion of such topics
and additional examples will be presented in class and in future sets.

Most of the examples are taken from the freshman MATLAB course that I taught during the
2011-2015 years, with all course materials available from,

https://www.ece.rutgers.edu/~orfanidi/127f11/

The zip file, f19set2.zip, attached to this set, contains all data files required in the examples.

1

To put these examples in perspective with respect to the LSS course, please note the following:

1. Examples 1–8 and 11 deal with first- and second-order LTI systems described by linear
constant-coefficient differential equations that can be solved analytically by the classical
method that you learned in differential equations courses, implemented by MATLAB’s
symbolic toolbox with the built-in function dsolve. They can also be solved by Laplace
transforms, implemented with the built-in functions laplace, ilaplace, partfrac.

For real-life input signals, continuous-time linear systems can only be solved numerically
by some form of discretization of the differential equations, for example, by using MAT-
LAB’s built-in linear systems function lsim, or, by a DIY method of converting the differ-
ential equations to difference equations that can be iterated in time.

A large part of the LSS course will be devoted to developing the theory and methods for
dealing with and solving such problems, and illustrated by additional examples. Discrete-
time systems and DSP concepts become very essential tools in the analysis, design, and
implementation of linear systems.

2. Examples 9–10 introduce feedback control systems. The first is nonlinear, and the second
is a special case of a PID control system. Proper selection of the parameters of a PID
controller is an important practical issue and will be discussed further in the course.

3. Examples 12–17 deal with non-linear systems using the paradigm of motion under the
influence of an air-drag force that depends quadratically on the velocity. Each example
brings out a different aspect, such as reversing in mid-course the sign of the input, or,
reversing the sign of the output, or, changing the parameters of the system (becoming
non-time-invariant), or dealing with one- or two-dimensional motions, demonstrating also
how to obtain the solutions analytically, and more importantly, numerically.

4. Examples 18–20 deal with applications described by non-linear differential equations. In
Example 18, the SIR model of infectious diseases is used as a metaphor to model social
networks. Examples 19–20 deal with growth models, and how to fit their parameters to
observed data.

Growth models attempt to model the increase of populations under the constraint of
limited natural resources. They are used widely in describing the growth of populations of
humans, plants and animals, algae, bacteria, and the spread of diseases, such as SARS and
Measles, as well as forecasting the growth and decline of products, ideas, and innovations,
viewing the economy and marketplace as an “ecosystem”.

The Bass model, discussed last, is the most influential model in marketing engineering
for describing the diffusion of innovations, that is, the introduction, acceptance, adoption,
growth, and eventual decline of new products, ideas, innovations, techniques, services,
and procedures.

2

1. Shelving EQ Demo

H(s)= s+Ga
s+ a = transfer function

H(ω)= H(s)∣∣s=jω = jω+Ga
jω+ a = frequency response , ω = 2πf,with f in Hz

|H(ω)| =
√
ω2 +G2a2

ω2 + a2
= magnitude response

|H(0)| = G = gain at DC =
⎧⎨
⎩G > 1, boost

G < 1, cut

GdB = 20 log10(G)= gain in dB � G = 10GdB/20

0 1 2 3 4 5
0

1

2

3

4

ω

|H
(ω

)|

shelving EQ, boost, a = 1

 G = 2 ≡ 6 dB
 G = 3 ≡ 9.5 dB
 G = 4 ≡ 12 dB

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ω

|H
(ω

)|

shelving EQ, cut, a = 1

 G = 0.2 ≡ −14 dB
 G = 0.4 ≡ −8 dB
 G = 0.6 ≡ −4 dB

The input/output differential equation is obtained by cross-multiplying by X(s) and (s+ a),
Y(s)
X(s)

= H(s)= s+Ga
s+ a ⇒ sY(s)+aY(s)= sX(s)+GX(s)

and going to the time domain, noting that s is represented by the time derivative d/dt,

dy(t)
dt

+ ay(t)= dx(t)
dt

+Gax(t) (1)

A discretized version obtained by approximating the derivatives by,†

yn+1 − yn
T

+ ayn = xn+1 − xn
T

+Gaxn (2)

where xn, yn denote the values of x(tn), y(tn) at the sampled time instants, tn = nT, with a
small time step T. Replacing n by n−1, then Eq. (2) can be rearranged into the more convenient
recursive form,

yn = (1− aT)yn−1 + xn + (GaT − 1)xn−1 (3)

The following MATLAB code (demonstrated in class) illustrates how to integrate Eq. (1) nu-
merically using the built-in function lsim, applied to a short sound file (provided with this set),
and also how to iterate the discretized version of Eq. (3), and finally displaying the frequency
spectra of the signals x(t), y(t) and the EQ filter. Note that frequency units are in kHz.

†corresponding to the forward Euler integration rule

3

[x,fs] = audioread(’turn3.wav’); x = x(:,1); % select channel 1

Fs = fs/1000; % fs = 44100 Hz, Fs = 44.1 kHz
N = length(x); T = 1/Fs; % N = 624095, T = 22.6757 microseconds
n = 0:N-1; t = n*T; % TD = N/fs = 624095/44100 = 14.15 sec

a = 0.6; % a in kHz
GdB = 25; G = 10^(GdB/20); % boost gain in dB and absolute scales

s = tf(’s’); % transfer function variable, tf class
H = (s+G*a)/(s+a); % transfer function object, class(H) is tf

y = lsim(H,x,t); % run with zero initial state by default

sound([x; zeros(1*fs,1); y],fs); % play x,y with 1-sec pause between them

% discretized version --

b1 = a*G*T - 1; % forward Euler
a1 = a*T - 1;

y1 = zeros(size(x)); % initialize recursion
v1 = 0; w1 = 0;

for n = 1:length(x)
y1(n) = -a1*w1 + x(n) + b1*v1;
w1 = y1(n);
v1 = x(n);

end

% sound([x; zeros(1*fs,1); y1],fs); % play x,y1 with 1-sec pause between them

% Frequency content of x,y, and H --

N = 4096; f = (0:N-1)*Fs/N; % DFT frequencies in kHz
X = 20*log10(abs(fft(x,N))); % X(f) in dB
Xdc = X(1); X = X - Xdc; % normalize X(f) relative to DC
Y = 20*log10(abs(fft(y,N))) - Xdc; % Y(f) relative to Xdc

w = 2*pi*f;
H2 = 10*log10((w.^2 + G^2*a^2)./(w.^2 + a^2)); % magnitude square in dB

figure; plot(f,Y,’r-’, f,X,’b--’, f,H2,’k-’);
xaxis(0,5,0:1:5); yaxis(-10,40, -10:10:40); grid
legend(’ {\ity}({\itt})’, ’ {\itx}({\itt})’, ’ filter’, ’location’,’ne’)
xlabel(’{\itf} (kHz)’); ylabel(’dB’);
title([’Shelving EQ, a = ’,num2str(a),’ kHz, gain = ’,num2str(GdB),’ dB’]);

0 1 2 3 4 5
−10

0

10

20

30

40

f (kHz)

dB

Shelving EQ, a = 0.6 kHz, gain = 25 dB

 y(t)
 x(t)
 filter

4

2. RC Circuit – First-Order LP/HP filters

I = C dVC
dt

VR = RI
Vin = VR +VC

Considering VC(t) or VR(t) as the outputs of the system driven by the input Vin(t), we
have the following first-order differential equations,

dVC
dt

+ 1

RC
VC = 1

RC
Vin ⇒ lowpass

dVR
dt

+ 1

RC
VR = dVin

dt
⇒ highpass

Setting a = 1/RC, and taking Laplace transforms (ignoring initial conditions) and using the
rule that, d/dt → s, we obtain the corresponding transfer functions,

dVC
dt

+ aVC = aVin

dVR
dt

+ aVR = dVin

dt

⇒
sVC(s)+aVC(s)= aVin(s)

sVR(s)+aVR(s)= sVin(s)

with transfer functions and impulse responses,

HLP(s)= VC(s)
Vin(s)

= a
s+ a = LP filter

HHP(s)= VR(s)
Vin(s)

= s
s+ a = HP filter

⇒
hLP(t) = ae−atu(t)
hHP(t) = δ(t)−ae−atu(t)

where we note the complementarity property: HLP(s)+HHP(s)= 1. The shelving equalizer of
the previous example corresponds to a linear combination of two LP and HP filters, that is,

HEQ(s)= GHLP(s)+HHP(s)= G a
s+ a +

s
s+ a =

s+Ga
s+ a

A more general first-order linear system with input x(t) and output y(t) is described by a
differential equation of the following form,

ẏ(t)+a1y(t)= b0 ẋ(t)+b1x(t)

Soon, we’ll figure out how to solve this in complete generality with arbitrary initial conditions
specified either at t = 0− or at t = 0+.

5

3. Series RLC Circuit – Second-Order LP/BP/HP filters

a ≡ R
L
= damping constant

ω0 ≡ 1√
LC

= resonance frequency

Transfer functions:

HLP(s) = VC(s)
Vin(s)

= ω2
0

s2 + as+ω2
0
= LP filter

HBP(s) = VR(s)
Vin(s)

= as
s2 + as+ω2

0
= BP filter

HHP(s) = VL(s)
Vin(s)

= s2

s2 + as+ω2
0
= HP filter

time-domain differential equations:

VL(s)
Vin(s)

= s2

s2 + as+ω2
0

⇒ (s2 + as+ω2
0)VL(s)= s2Vin(s) ⇒

s2VL(s)+asVL(s)+ω2
0VL(s)= s2Vin(s) ⇒ V̈L + aV̇L +ω2

0VL = V̈in , etc.

V̈C + aV̇C +ω2
0VC =ω2

0Vin

V̈R + aV̇R +ω2
0VR = aV̇in

V̈L + aV̇L +ω2
0VL = V̈in

The characteristic poles (i.e. zeros of the denominator, s2 + as+ω2
0 = 0) are,

s = −a
2
± j

√
ω2

0 −
a2

4

and, if you recall from Principles II, we have the three possible cases:

ω0 >
a
2

⇒ damped, complex conjugate poles

ω0 = a
2

⇒ critically damped, two equal real poles

ω0 <
a
2

⇒ overdamped, two real poles

Since a > 0 and ω0 real, in all three cases the poles will have negative real parts resulting
in a stable and causal system.

Consider an example with circuit parameters, R = 1 Ω, L = 1 H, C = 40 mF. Then, a =
R/L = 6, ω0 = 1/

√
LC = 5, so that the poles are as follows corresponding to a damped case,

s = −a
2
± j

√
ω2

0 −
a2

4
= −3± 4j

6

The resulting transfer functions and their partial fraction expansions are,

HLP(s) = 25

s2 + 6s+ 25
= 3.125j
s+ 3+ 4j

− 3.125j
s+ 3− 4j

HBP(s) = 6s
s2 + 6s+ 25

= 3− 2.25j
s+ 3+ 4j

+ 3+ 2.25j
s+ 3− 4j

HHP(s) = s2

s2 + 6s+ 25
= 1− 3+ 0.875j

s+ 3+ 4j
− 3− 0.857j
s+ 3− 4j

The corresponding causal (and stable) impulse responses, will be,

hLP(t) = 6.25e−3t sin(4t)u(t)

hBP(t) = e−3t[6 cos(4t)−4.5 sin(4t)
]

hHP(t) = δ(t)−e−3t[6 cos(4t)−1.75 sin(4t)
]

These can be obtained by taking (the real parts of) the inverse Laplace transforms of the
above partial fraction expansions.

Even faster, one may use MATLAB’s symbolic toolbox to generate both the inverse Laplace
transforms and the partial fraction expansions, with typical code,

syms s t

HLP = 25/(s^2 + 6*s + 25);

HBP = 6*s/(s^2 + 6*s + 25);

HHP = s^2/(s^2 + 6*s + 25);

hLP = ilaplace(HLP); % hLP = (25*sin(4*t)*exp(-3*t))/4

hBP = ilaplace(HBP); % hBP = 6*exp(-3*t)*(cos(4*t) - (3*sin(4*t))/4)

hHP = ilaplace(HHP); % hHP = dirac(t) - 6*exp(-3*t)*(cos(4*t) + (7*sin(4*t))/24)

HLP = partfrac(HLP, ’factormode’,’full’); % HLP = -25i/(8*(s+3-4i)) + 25i/(8*(s+3+4i))

HBP = partfrac(HBP, ’factormode’,’full’); % HBP = (3+9i/4)/(s+3-4i) + (3-9i/4)/(s+3+4i)

HHP = partfrac(HHP, ’factormode’,’full’); % HHP = (-3+7i/8)/(s+3-4i) + (-3-7i/8)/(s+3+4i) + 1

7

4. ECG – Removing 60 Hz Interference

The recording of an electrocardiogram (ECG) is susceptible to 60-Hz power-frequency inter-
ference because of the use of exposed electrodes placed on the chest. The 60-Hz interference
can be removed with the help of a notch filter.

The transfer function of a 2nd order notch filter with notch frequency f0 and 3-dB width Δf
(both in Hz) is given by,

H(s)= s2 +ω2
0

s2 + as+ω2
0

(4)

where ω0 = 2πf0 is the notch frequency in rads/sec, and, a = 2πΔf . The corresponding
impulse response is given by,

h(t)= δ(t)−ae−at/2
[

cos(ωrt)− a
2ωr

sin(ωrt)
]
u(t) , where ωr =

√
ω2

0 −
a2

4
(5)

Assuming that ω0 > a/2, as is typical for narrow notch filters, we see from Eq. (5) that
the impulse response is a decaying sinusoid with a time-constant of τ = 2/a = 1/πΔf , which
is inversely proportional to the 3-dB width. Thus, the more narrow the filter, the longer its
transient response and time constant. This tradeoff is observed in the graphs of the filtered
ECGs below for the cases Δf = 1 and Δf = 3 Hz.

The included files, ece0.dat, ecg60.dat, represent a two-beat recording of a noise-free ECG
and an ECG contaminated with 60 Hz interference, respectively, and are shown below.

0 0.5 1 1.5 2
−2

−1

0

1

2

3

4
noise−free ECG

t (sec)

x 0(t
)

0 0.5 1 1.5 2
−2

−1

0

1

2

3

4
noisy ECG

t (sec)

x(
t)

The following MATLAB code does the following: (a) loads the ECG data, (b) defines (as transfer
function classes) two notch filters, with 3-dB widths of Δf = 1 and Δf = 3 Hz, (c) computes and
plots the filtered ECG outputs using the built-in function lsim, and (d) computes and plots, versus
frequency f in Hz the corresponding magnitude-square filter responses obtained by setting
s = jω in Eq. (4), that is, the quantity,

|H(ω)|2 = (ω2 −ω2
0)2

(ω2 −ω2
0)

2 + a2ω2

∣∣∣∣∣∣
ω=2πf

(6)

The left and right 3-dB frequencies f1, f2 are given in Hz by,

f1 = −Δf
2
+
√
f2

0 +
(
Δf
2

)2

f2 = +Δf
2
+
√
f2

0 +
(
Δf
2

)2
⇒ Δf = f2 − f1 (7)

8

They are not quite symmetrically placed about f0, only approximately so. They are obtained
by finding the positive solutions (in ω = 2πf) of the 3-dB condition (i.e., at half power),

|H(ω)|2 = (ω2 −ω2
0)2

(ω2 −ω2
0)

2 + a2ω2
= 1

2

In the magnitude response graphs below, the 3-dB frequencies are indicated by the short red
horizontal lines drawn at the half-power levels.

x0 = load(’ecg0.dat’); % true ECG - for comparison only
x = load(’ecg60.dat’); % noisy ECG

fs = 1000; T = 1/fs; % sampling rate

N = length(x);
t = (0:N-1)*T;

f0 = 60; % Hz
w0 = 2*pi*f0; % rad/sec

f = linspace(0,120,2401); % frequency range for plotting |H(f)|^2
w = 2*pi*f;

figure; plot(t,x,’b’);
title(’noisy ECG’);
xaxis(0,2,0:0.5:2); yaxis(-2,4,-2:1:4);
xlabel(’{\itt} (sec)’); ylabel(’{\itx}({\itt})’);

for Df = [3,1] % 3-dB widths in Hz
Dw = 2*pi*Df;
f1 = -Df/2 + sqrt(f0^2 + Df^2/4); % left 3dB bandedge
f2 = +Df/2 + sqrt(f0^2 + Df^2/4); % right 3dB bandedge

s = tf(’s’); % transfer function variable
H = (s^2+w0^2)/(s^2 + Dw*s + w0^2); % transfer function object
y = lsim(H,x,t); % run with zero initial state

figure; plot(t,y,’b’, t,x0,’r-’);
title([’filtered ECG, \Delta{\itf} = ’,num2str(Df),’ Hz’]);
xaxis(0,2,0:0.5:2); yaxis(-2,4,-2:1:4);
xlabel(’{\itt} (sec)’); ylabel(’{\ity}({\itt})’);
legend(’ filtered’, ’ true ECG’,’location’,’se’);

H2 = (w.^2-w0^2).^2 ./ ((w.^2-w0^2).^2 + Dw^2*w.^2);

figure; plot(f,H2,’b-’); hold on
title([’notch filter, \Delta{\itf} = ’,num2str(Df),’ Hz’]);
xaxis(0,120, 0:30:120); yaxis(0,1.1, 0:0.5:1);
xlabel(’{\itf} (Hz)’); ylabel(’|{\itH}({\itf})|^2’);
plot([f1,f2],[0.5,0.5], ’r-’, ’linewidth’,2)
plot(f0,0,’r.’,’markersize’,22)
legend(’ filter’, ’ 3 dB width’, ’ notch’,’location’,’se’);
hold off

end

In future sets, we will discuss how to discretize second- and higher-order systems using
a variety of discretization schemes such as the zero-order hold, forward and backward Euler
methods, and the trapezoidal/bilinear transformation method. It should be noted that the built-
in function lsim uses either a zero-order or a first-order hold, whichever is more appropriate
for the input at hand.

9

0 0.5 1 1.5 2
−2

−1

0

1

2

3

4
filtered ECG, Δf = 3 Hz

t (sec)

y(
t)

 filtered
 true ECG

0 0.5 1 1.5 2
−2

−1

0

1

2

3

4
filtered ECG, Δf = 1 Hz

t (sec)

y(
t)

 filtered
 true ECG

0 30 60 90 120
0

0.5

1

notch filter, Δf = 3 Hz

f (Hz)

|H
(f

)|
2

 filter
 3 dB width
 notch

0 30 60 90 120
0

0.5

1

notch filter, Δf = 1 Hz

f (Hz)

|H
(f

)|
2

 filter
 3 dB width
 notch

10

5. Car with Linear Drag

m
dv
dt
= F −mαv , α = frictional constant

Assuming a constant force F, the solutions for v(t) and displacement x(t) (such that, ẋ = v)
are, with initial conditions v(0+)= v0 and x(0+)= x0,†

v(t) = vc + (v0 − vc)e−αt

x(t) = x0 + vc t + 1

α
(v0 − vc) (1− e−αt)

, vc ≡ F
mα

Eventually, the friction balances the force F (i.e., F −mαv = 0), and the car is moving with
constant velocity, vc.

Some additional and mathematically similar examples are: (a) microscopic version of Ohm’s
law, (b) rotating radar antenna with linear drag, (c) Newton’s law of cooling, (d) sprinting models.

% -----------------
% solve with DSOLVE
% -----------------
syms t v(t) a v0 vc % F = vc*a, vc = critical velocity, mass m = 1

v = dsolve(diff(v,t) == a*vc - a*v, v(0)==v0)

symdisp(v) % v(t) = vc + exp(-a*t)*(v0 - vc)

syms t x(t) x0
dotx = diff(x,t); ddotx = diff(dotx,t);
x = dsolve(ddotx + a*dotx==a*vc, x(0)==x0, dotx(0)==v0)

% x = (v0 - vc + a*x0)/a + t*vc - (exp(-a*t)*(v0 - vc))/a

simplify(v-diff(x,t)) % verify v = dx/dt

% -----------------------------
% solve with Laplace transforms
% -----------------------------
syms V X s

% solve for V(s): s*V-v0 + a*V = a*vc/s ==> V(s) = vc/s + (v0-vc)/(s+a)

V = solve(s*V-v0 + a*V == a*vc/s, V)

v = ilaplace(V) % v = vc + exp(-a*t)*(v0 - vc)

X = solve(s^2*X-s*x0-v0 + a*(s*X-x0)==a*vc/s, X); % solve for X(s)
x = ilaplace(X)

% X = partfrac(X,s); % X = vc/s^2 - (v0-vc)/(a*(s+a)) + (v0-vc+a*x0)/(a*s)

†in this example, v(0−)= v(0+) and x(0−)= x(0+).

11

6. Conductivity Model and Ohm’s Law

Consider a conduction charge e with massmmoving under the influence of an electric field
E, where the drag force is due to collisions with the atomic lattice,

m
dv
dt
= eE −mαv

Assuming a constant electric field E that is turned on at t = 0, and zero initial velocity,
v(0)= 0, the solution is,

v(t)= vc − vce−αt , vc = eE
mα

= drift velocity

The current density or current flux (i.e., amount of charge flowing per unit time per unit
cross sectional area) is, where N is the number of conduction charges per unit volume,

J = Nev = Nevc(1− e−αt)= Ne2E
mα

(1− e−αt)

which, for large t, becomes the usual steady-state version of Ohm’s law,

J = Ne2E
mα

≡ σE , σ = Ne2

mα
= conductivity (8)

For copper, we have the typical values, N = 8.4×1028 electrons/m3, α = 4.1×1013 sec−1,
e = 1.6×10−19 Coul, m = 0.1×10−31 kg, resulting in the conductivity value,

σ = 5.8×107 Siemens/m

The time constant of reaching steady-state is τ = 1/α = 2.439×10−14 sec, i.e., 0.02439
picoseconds!

The ordinary circuit version of Ohm’s law is obtained from Eq. (8) by considering a resistor
of length l and cross-sectional area A, and assuming that the current density is distributed
uniformly over the area (i.e., ignoring skin effects). Since the voltage drop across the resistor is
V = E · l, the total current I flowing through it will be:

I = JA = σEA = σ V
l
A = σA

l
V ≡ V

R
, R = l

σA
= resistance

12

7. Rotating Antenna with Linear Drag

J
d2θ
dt2

= T − Jα dθ
dt

J
dω
dt

= T − Jαω

θ = angle of rotation

ω = θ̇ = angular velocity

J = moment of inertia

T = driving torque , α = drag constant

Assuming a constant Torque F, the solutions for ω(t) and θ(t) and displacement are with
initial conditions ω(0)=ω0 and θ(0)= θ0,

ω(t) =ωc + (ω0 −ωc)e−αt

θ(t) = θ0 +ωct + 1

α
(ω0 −ωc)(1− e−αt)

, ωc ≡ T
Jα

% --

syms t y(t) N a w0 y0

w = diff(y,t); Dw = diff(w,t);

y = dsolve(Dw == -a*w + N, y(0)==y0, w(0)==w0)

y = simplify(y)

symdisp(y) % theta(t)

w = diff(y,t);

symdisp(w) % omega(t)

13

8. Newton’s Law of Cooling

The rate of change of the temperature T(t) of an enclosure subject to external temperature
Text is given by Newton’s law, where k is a thermal constant that quantifies the insulation of the
enclosure from the external environment,

dT
dt

= −k(T −Text) (Newton’s law) (9)

A block diagram realization is shown below.

Assuming a constant Text and initial condition T(0)= T0, the solution is,

T(t)= Text + (T0 −Text)e−kt

so that eventually, the temperature of the enclosure is equalized with that of the external envi-
ronment.

% --

syms t T(t) k T0 Text

T = dsolve(diff(T,t)==-k*(T-Text), T(0)==T0)

symdisp(T) % T(t) = Text + exp(-k*t)*(T0 - Text)

14

9. Thermostat Model

A typical home furnace supplies an amount of heat that increases the air temperature of a
room by R0 = 20 oF per hour. The time rate of change of the room temperature is governed by
Newton’s law of cooling:†

dT(t)
dt

= −k[T(t)−Text(t)
]+R(t) (10)

whereT(t) is the room temperature at time t, Text(t) is the external temperature, k is a measure
of the loss of heat through the walls, and R(t) is the rate of temperature increase per hour sup-
plied by the furnace (like the R0 above.) A block diagram realization of Eq. (10) is shown below.
It is similar to that of the previous example, but with an extra feedback loop for calculating the
control signal R(t).

A typical home thermostat can be programmed to several temperature settings during the
day. Here, we will assume two settings, a higher temperature setting TH for the first 12 hours
of a day, and a lower setting TL for the second 12 hours. Thus, the control temperature of the
thermostat is defined by the time function:

Tc(t)=
⎧⎨
⎩TH , if mod(t,24)< 12

TL , if mod(t,24)≥ 12
(11)

where the modulo operation, mod(t,24), reduces the time tmodulo 24, i.e., it finds the remain-
der of the division of t by 24, so that it is always in the range 0 ≤ mod(t,24)< 24.

If the room temperature falls below the prescribed control temperature (TH or TL), the
thermostat turns the furnace on until the control temperature is reached and then it turns the
furnace off. This can be modeled into Eq. (10) by choosing the control signal R(t) as follows:

R(t)=
⎧⎨
⎩R0 , if T(t)< Tc(t)

0 , if T(t)≥ Tc(t)
(12)

BecauseR(t) depends onT(t) in a nonlinear manner, Eq. (10) can only be solved numerically.
To this end, time is discretized in small equal-step increments, tn = nΔt, n = 1,2,3, . . . ,
where Δt is a small step size. The time-derivative in Eq. (10) can be approximated as a ratio of
differences, resulting in the following difference equation:

T(tn+1)−T(tn)
Δt

= −k[T(tn)−Text(tn)
]+R(tn)

Using the simplified notation T(n) to denote T(tn),‡ and similarly for R(tn) and Tc(tn),
this difference equation can be rearranged into:

T(n+ 1)= T(n)−kΔt [T(n)−Text(n)
]+ΔtR(n) , n ≥ 1 (13)

†For a more realistic version, see the paper by P. S. Sansgiry and C. C. Edwards, “A Home Heating Model for Calculus
Students,” Coll. Math. J., 27, 395 (1996).
‡n is a MATLAB index, and T(n), a MATLAB array.

15

where

R(n)=
⎧⎨
⎩R0 , if T(n)< Tc(n)

0 , if T(n)≥ Tc(n)
(14)

with

Tc(n)=
⎧⎨
⎩TH , if mod(tn,24)< 12

TL , if mod(tn,24)≥ 12
(15)

The initial value in Eq. (13) will be assumed given, i.e., T(1)= T0. For the external tempera-
ture, we will assume a simple sinusoidal model with 24-hr periodicity:

Text(n)= A− B cos
(

2πtn
24

)
(16)

Consider the following realistic numerical values:

A = 40 oF , B = 10 oF

k = 0.35 hr−1 , R0 = 20 oF /hr

TH = 70 oF , TL = 60 oF , T0 = 35 oF

Define the time vector tn to span a 48-hr period and sampled every 3 seconds:

Tmax = 48; Dt = 3/3600; % units of hours
tn = Dt:Dt:Tmax;

a. Use a for-loop to calculate the control signal Tc(n) and plot it versus tn. Within the same
for-loop, calculate also the actual room temperature T(n), and on separate graph plot it
versus tn together with the external temperature Text(n).

Observe the initial transients starting from T0, and the ability of the thermostat system to
follow the prescribed high/low settings, switching between the two at every 12-hr period.

b. Repeat the calculation and plotting of T(n) using the value k = 0.25, corresponding to a
well-insulated house, and then using k = 0.50 for a poorly insulated one.

c. For the case k = 0.35, assume that there is a power failure at time tf = 18 and that from
then on the furnace stops operating. Calculate and plot the room temperature and observe
how it eventually follows the external temperature variations (with some lag.)

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80

temperature control signal T
c
(t)

t (hours)

de
gr

ee
s

(o F
)

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80
room temperature T(t), k = 0.35

t (hours)

de
gr

ee
s

(o F
)

 T(t)
 T

ext
(t)

16

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80
room temperature T(t), k = 0.5

t (hours)

de
gr

ee
s

(o F
)

 T(t)
 T

ext
(t)

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80

room temperature T(t), t
f
 = 18

t (hours)

de
gr

ee
s

(o F
)

 T(t)
 T

ext
(t)

The essential MATLAB code for this problem is listed below:

A = 40; B = 10;
T0 = 35;
TH = 70; TL = 60;
R0 = 20;

Tmax = 48; % hours
Dt = 3/3600; % 3 sec in units of hours
t = Dt:Dt:Tmax; % units of hours

Te = A - B*cos(pi*t/12); % external temperature

Tc = TH*(mod(t,24)<12) + TL*(mod(t,24)>=12); % control temperature
% control signal, R(n) = R0*(T(n)<Tc(n))

figure; plot(t,Tc,’b-’);
xlabel(’t (hours)’); ylabel(’degrees (^oF)’);
title(’temperature control signal T_c(t)’);
yaxis(20,80,20:10:80); xaxis(0,48,0:6:48); grid on;

for k = [0.35, 0.25, 0.50] % generate graphs for three values of k
T(1) = T0;
for n=1:length(t)-1

R = R0*(T(n)<Tc(n)); % control signal
T(n+1) = T(n) - k*Dt*(T(n)-Te(n)) + Dt*R;

end

figure; plot(t,T,’b-’, t,Te,’r--’);
xlabel(’t (hours)’); ylabel(’degrees (^oF)’);
title([’room temperature T(t), k = ’,num2str(k)]);
yaxis(20,80,20:10:80); xaxis(0,48,0:6:48); grid on;

end

k = 0.35;
t_f = 18; % control signal is non-zero only for t(n)<=tf

T(1) = T0;
for n=1:length(t)-1

R = R0*(T(n)<Tc(n) & t(n)<=t_f); % control signal
T(n+1) = T(n) - k*Dt*(T(n)-Te(n)) + Dt*R;

end

figure; plot(t,T,’b-’, t,Te,’r--’);
xlabel(’t (hours)’); ylabel(’degrees (^oF)’);
title([’room temperature T(t), t_f = ’,num2str(t_f)]);
yaxis(20,80,20:10:80); xaxis(0,48,0:6:48); grid on;

17

10. Cruise Control

We saw in Example 5 that a car’s motion in the presence of linear drag and under the influence
of the engine’s accelerating force F(t), or acceleration, f(t)= F(t)/m, is described by the first-
order linear system for the velocity v(t), and its transfer function G(s),

dv(t)
dt

= f(t)−αv(t) ⇒ G(s)= V(s)
F(s)

= 1

s+α (17)

In a cruise control system, depicted below, a controlling system generates the appropriate
throttle/acceleration input signal f(t) to the car’s dynamics that causes the car to reach a pre-
scribed reference speed, as set by the driver. The actual speed, denoted in the figure by y(t), is
fed back and subtracted from the desired reference speed r(t), and the resulting error signal
e(t)= r(t)−y(t) is used by the controller to generate the appropriate acceleration f(t).

We will study such feedback control systems in greater detail later in set-8, considering also
the influence of possible disturbance inputs that may be present, such as wind forces. But
for now, let us just mention that the so-called closed-loop transfer function from the overall
reference input r(t) to the final output y(t), and ignoring the disturbance input, is given in
terms of the car’s and controller’s transfer functions G(s) and Gc(s) by,

H(s)= Y(s)
R(s)

= Gc(s)G(s)
1+Gc(s)G(s) (18)

An effective and very widely used industrial controller is the so-called proportional-integral-
derivative (PID) controller that has a transfer function of the form,

Gc(s)= kp + kis + kds (PID controller) (19)

The parameters kp, ki, kd are to be chosen to optimize the performance of the control system
in terms of its speed of response and its ability to track various types of reference inputs, such
as step functions or ramps. For our little example, we will use a PI controller defined by,

Gc(s)= kp + kis (PI controller) (20)

The figure below shows the closed-loop response when the reference speed is set to 40 mph
for a period 0 ≤ t ≤ 4, and then is reset to a new value of 60 mph when t > 4.

0 1 2 3 4 5 6 7 8
0

20

40

60

80

t

y(
t)

step response, a = 1, k
p
 = 2, k

i
 = 2

 speed settings
 actual speed

0 1 2 3 4 5 6 7 8
0

20

40

60

80

t

y(
t)

step response, a = 1, k
p
 = 2, k

i
 = 4.5

 speed settings
 actual speed

18

In both cases, the output reaches the desired reference values after the transients caused by
the sudden changes in the reference settings die out. In the right graph, the speed of response is
shorter but at the expense of an overshoot. Some guidelines on how to pick the parameters kp, ki
will be discussed later on in set-8. Inserting Eqs. (17) and (20) into (18), we find the closed-loop
transfer function for our example,

H(s)= Gc(s)G(s)
1+Gc(s)G(s) =

kps+ ki
s2 + (kp +α)s+ ki (21)

The unit-step response is obtained by setting r(t)= u(t), or, R(s)= 1/s, and computing an
inverse Laplace transform with the help of partial fraction expansions,

Y(s)= H(s)R(s)= H(s)
s

⇒ y(t)= ilaplace
(
Y(s)

)
For the two cases in the above figure, we find for, kp = 2 , ki = 2,

H(s) = 2s+ 2

s2 + 3s+ 2
= 2(s+ 1)
(s+ 1)(s+ 2)

= 2

s+ 2

Y(s) = H(s)
s

= 2

s(s+ 2
= 1

s
− 1

s+ 2

y(t) = 1− e−2t , t ≥ 0

while for, kp = 2 , ki = 4.5, we have,

H(s) = 2s+ 4.5
s2 + 3s+ 4.5

Y(s) = H(s)
s

= 1

s
− s+ 1

s2 + 3s+ 4.5
= 1

s
−
[1

6(3− j)
s+ 1.5+ 1.5j

+
1
6(3+ j)

s+ 1.5− 1.5j

]

y(t) = 1− 2 Re
[

1

6
(3− j) e−1.5t e−1.5jt

]
= 1− 1

3
e−1.5t[3 cos(1.5t)− sin(1.5t)

]
The MATLAB code used to generate the above graphs was as follows,

a = 1; kp = 2; ki = 4.5; % for left graph, use ki = 2

t = linspace(0,8,2401); % time range

s = tf(’s’); % tf class
G = 1/(s+a); % car’s transfer function
Gc = kp + ki/s; % PI controller

H = minreal(Gc*G/(1+Gc*G)); % closed-loop, minreal() removes common factors
% H = feedback(Gc*G,1); % alternative construction of H

T1 = 4; % switch time
v1 = 40; v2 = 60; % reference speeds

r = v1*(t<=T1) + v2*(t>T1); % reference input r(t)

y = lsim(H, r, t); % computed output y(t)

figure; plot(t,r,’r--’, t,y,’b-’);
legend(’ speed settings’, ’ actual speed’, ’location’,’se’)

19

11. Sprinting Models

Simple mathematical models exist for fitting the track data of 100-meter sprinters. The fol-
lowing two-parameter and three-parameter models, due to Keller and Tibshirani (see references
below), fit very well the track data of some very famous sprinters, such as Usain Bolt (currently
considered to be the fastest man in the world), Carl Lewis, and Ben Johnson.

Let v(t) and x(t) denote the speed and distance traveled at time t, then, the models give
rise to the following expressions,

v(t) = α
(

1− e−γ(t−t0)
)

x(t) = α(t − t0)−αγ
(

1− e−γ(t−t0)
) (Keller) (22)

v(t) = α
(

1− e−γ(t−t0)
)
− βt

x(t) = α(t − t0)−1

2
β(t − t0)2−α

γ

(
1− e−γ(t−t0)

) (Tibshirani) (23)

where t ≥ t0, and α,β,γ are parameters to be fitted, and t0 is the reaction time (which legally
must be greater than 0.1 sec to qualify.) The Keller model corresponds to setting β = 0 or c = 0
in Eq. (24) in the Tibshirani case.

Physically, the two models arise from the following equations of motion, both of which
assume a frictional force proportional to −γv (i.e., linear drag), and a constant accelerating
force in the Keller model, or a linearly decreasing one in the Tibshirani one (i.e., the sprinter
can’t maintain a constant force for the entire run),

dv
dt
= −γv+ F (Keller)

dv
dt
= −γv+ (F − ct) (Tibshirani)

(24)

where F, c are the constants, F = αγ − β, c = γβ. In sprinting events, the elapsed time is
recorded at 10-meter intervals, for example, for Usain Bolt at Beijing 2008, we have the observed
data:

xi (meters) 0 10 20 30 40 50 60 70 80 90 100
ti (sec) 0.165 1.85 2.87 3.78 4.65 5.50 6.32 7.14 7.96 8.79 9.69

The model parameters α,β,γ, can be fitted to such data. The figures below show some
typical fits.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

t, (sec)

x(
t)

,
(m

)

U. Bolt / Beijing 2008

 Keller model
 observed
 fitted

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

t, (sec)

x(
t)

,
(m

)

U. Bolt / Beijing 2008

 Tibshirani model
 observed
 fitted

20

The Tibshirani differential equation of motion can be solved for v(t) and x(t), verifying
Eq. (23), by the following MATLAB code using DSOLVE or Laplace,

% -----------------
% using DSOLVE
% -----------------
syms a c F positive
syms t x(t)

v = diff(x,t); Dv = diff(v,t);

x = dsolve(Dv == F-c*t - a*v, x(0)==0, v(0)==0) % zero initial conditions

v = diff(x,t)

symdisp(x);
symdisp(v);

% -----------------
% using Laplace
% -----------------
syms V s % solve with Laplace transforms
U = laplace(F-c*t) % input U(s) = F/s - c/s^2
V = solve(s*V==U-a*V, V); % V = (F*s-c)/(s^2*(a + s))

% V = (F*a+c)/a^2 * (1/s - 1/(s+a)) - c/a * 1/s^2
v1 = ilaplace(V) % v1 = (F*a+c)/a^2 * (1 - exp(-a*t)) - c/a * t

simplify(v-v1); % verify DSOLVE and Laplace solutions are the same

syms X s
X = simplify(solve(s^2*X==U-a*s*X, X)) % X = (F*s-c)/(s^3*(a + s))
x1 = ilaplace(X)

simplify(x-x1); % verify DSOLVE and Laplace solutions are the same

Sprinting References

1. J. B. Keller, “Theory of Competitive Running,” Phys. Today, 26, no.9, p.43 (1973), see also,
“Optimal Velocity in a Race,” Am. Math. Monthly, 81, 474 (1974).

2. R. Tibshirani, “Who is the Fastest Man in the World?,” Amer. Statistician, 51, 106 (1997).

3. G. Wagner, “The 100-Meter Dash: Theory and Experiment,” Phys. Teacher, 36, 144 (1998).

4. O. Helene and M. T. Yamashita, “The Force, Power, and Energy of the 100 Meter Sprint,”
Am. J. Phys., 78, 307 (2010).

5. http://myweb.lmu.edu/jmureika/track/, J. R. Mureika. Contains additional data.

21

12. Racecar Performance

The distance x(t) traveled by a car, and its velocity v(t), satisfy the following equations of
motion that include an acceleration term a(t) due to the car’s engine torque and an opposing
air drag term that is proportional to the square of the velocity:

dv(t)
dt

= a(t)−C · v2(t)

dx(t)
dt

= v(t)
(25)

We may view this as a nonlinear system with input a(t) and output v(t). The drag coefficient
C depends on the air density and the aerodynamic shape of the car – a more detailed explanation
of the drag coefficient is given in the next (skydiver) example.

To improve performance and fuel efficiency, car and racecar designers are always striving
to reduce the drag coefficient C by proper design of the aerodynamics of the car.

It is desired to measure the 0–60 mph performance of the car, as well as its braking perfor-
mance from 60 mph to 0 mph — car reviews typically provide such data.

To this end, the driver first applies maximum torque until the car reaches 60 mph and
measures the corresponding time, say, t60, and then applies the brakes until the car stops, and
measures the stopping time, tstop, so that the braking time is, tbrake = tstop−t60, and the braking
distance, xbrake = xstop − x60, where, x60 = x(t60) and xstop = x(tstop).

Let us discretize the time as, tn = (n − 1)T, where n = 1,2,3, . . . , and T = 0.001 sec
is a small time step. Then, the above differential equations may be replaced by the following
difference equations:

x(n+ 1)−x(n)
T

= v(n)

v(n+ 1)−v(n)
T

= a(n)−Cv2(n)
⇒

x(n+ 1) = x(n)+Tv(n)

v(n+ 1) = v(n)+T[a(n)−Cv2(n)
] (26)

where v(n) is in units of mph, the drag constant is chosen as C = 0.008, and the initial accel-
eration and subsequent decelerating/braking action can be modeled by:

a(n)=
⎧⎨
⎩+a1 , if tn ≤ t60

−a2 , if t60 < tn ≤ tstop
(27)

with, a1 = 30 and a2 = 7. The parameters t60, tstop are not known a priori and must be deter-
mined on the fly. However, as shown below, they can be computed analytically for the simple
model of Eq. (27).

a. Using a forever while-loop and starting with zero initial velocity, iterate Eq. (26) until v(n)
reaches 60 mph, and determine the iteration index, say, n60 when the loop exits, and the
corresponding 0–60 mph time, t60 = (n60−1)T. As you iterate Eq. (26), save the computed
distance, velocity, and time, x(n), v(n), t(n), into arrays.†

b. Then, continue with another forever while-loop that starts at n = n60, and iterates until
the velocity is reduced to zero. Determine the index upon exit from the loop, say, nstop,
and the total stopping time, tstop = (nstop−1)T. Append the new arrays x(n), v(n), t(n)
into the arrays of part (a) and plot velocity and distance vs. time as shown below.

†convert distances to feet noting that 1 mph = 5280/3600 ft/sec.

22

The analytical solutions can be expressed in terms of the following critical-time and critical-
velocity (terminal-velocity) constants defined by,

v1 =
√
a1

C
, t1 = 1√

a1C

v2 =
√
a2

C
, t2 = 1√

a2C

then, the exact solutions are,

v(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
v1 tanh

(
t
t1

)
, 0 ≤ t ≤ t60

v2 tan
(
t − t60

t2
+ atan

(v60

v2

))
, t60 ≤ t ≤ tstop

(28)

x(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
v1t1 ln

[
cosh

(
t
t1

)]
, 0 ≤ t ≤ t60

x60 + v2t2 ln
[

cos
(
t − t60

t2

)
+ v60

v2
sin

(
t − t60

t2

)]
, t60 ≤ t ≤ tstop

(29)

where, v60 = v(t60)= 60, and,

t60 = t1 atanh
(
v60

v1

)
, x60 = x(t60)= 1

2
v1t1 ln

(
v2

1

v2
1 − v2

60

)

tstop = t60 + t2 atan
(
v60

v2

)
, xstop = x60 + 1

2
v2t2 ln

(
1+ v

2
60

v2
2

)

These can be verified easily using MATLAB’s symbolic toolbox. The graphs below show the
velocity in mph, v(t), and distance in feet, x(t), computed numerically using the iteration in
Eq. (26) and implemented by the MATLAB code listed at the end.

The 0–60 time of 4.7 sec is very fast – this is a high performance car. The braking time is,
tbrake = 9.4−4.7 = 4.7 sec, which is typical (if we ignore the reaction time), the braking distance
is also typical, xbrake = 445− 295 = 150 ft.

The analytical expressions of Eqs. (28) and (29) are not plotted since they are visually indis-
tinguishable from the numerical ones — in order to see any differences, the sampling interval
T must be substantially increased to at least T = 0.1 sec.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

t (sec)

v(
t)

 (
m

ph
)

velocity

 v(t)
 t

60
 = 4.7 sec

 t
stop

 = 9.4 sec

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

t (sec)

x(
t)

 (
fe

et
)

distance

 x(t)
 x

60
 = 295 ft

 x
stop

 = 445 ft

23

% ---

v60 = 60; % mph
ft = 5280/3600; % conversion factor, 1 mph = 5280/3600 ft/sec
C = 0.008;
a1 = 30; % maximum acceleration
a2 = 7; % maximum deceleration

v1 = sqrt(a1/C) % critical velocity when accelerating
t1 = 1/sqrt(a1*C)
v2 = sqrt(a2/C) % critical velocity when decelerating
t2 = 1/sqrt(a2*C)

T = 0.001; % use T = 0.0001 for improved approximation

n=1; t(1)=0; v(1)=0; x(1)= 0; % loop initialization

while 1 % forever while loop
if v(n)>v60, break; end % must have v60 < v1
x(n+1) = x(n) + T*v(n)*ft; % distance in feet
v(n+1) = v(n) + T*(a1 - C*v(n)^2); % update velocity
t(n+1) = n*T; % update time
n = n+1;

end

n60 = n; % n60 is MATLAB index
t60 = (n60-1)*T;
x60 = x(n60); % distance traveled to reach v60

while 1 % starting now at n = n60
if v(n)<0, break; end
x(n+1) = x(n) + T*v(n)*ft;
v(n+1) = v(n) + T*(-a2 - C*v(n)^2); % deceleration is -a2
t(n+1) = n*T;
n = n+1;

end

nstop = n;
tstop = (nstop-1)*T % stopping time
tbrake = tstop - t60; % braking time
xstop = x(nstop); % total distance traveled
xbrake = xstop - x60 % braking distance

figure;
plot(t,v,’b-’, ’linewidth’,2); hold on;
plot(t60,v60,’ro’, tstop,0,’rs’, [t60,t60],[0,60],’r--’)
xaxis(0, 10, 0:1:10); xlabel(’t (sec)’)
yaxis(0, 70, 0:10:70); ylabel(’v(t) (mph)’);
title(’velocity’);
legend(’ v(t)’, [’ t_{60} = ’,num2str(t60,’%5.1f’),’ sec’], ...

[’ t_{stop} = ’,num2str(tstop,’%5.1f’),’ sec’], ’location’,’ne’)

figure;
plot(t,x,’b-’, ’linewidth’,2); hold on;
plot(t60,x60,’ro’, tstop,xstop,’rs’, [t60,t60],[0,x60],’r--’)
plot([tstop,tstop],[0,xstop],’r--’)
xaxis(0, 10, 0:1:10); xlabel(’t (sec)’)
yaxis(0, 500, 0:100:500); ylabel(’x(t) (feet)’);
title(’distance’);
legend(’ x(t)’, [’ x_{60} = ’,num2str(x60,’%5.0f’),’ ft’], ...

[’ x_{stop} = ’,num2str(xstop,’%5.0f’),’ ft’], ’location’,’nw’)

% ---

24

13. Skydiver

A skydiver jumps off a hot-air balloon at a height of h0 meters, with an initial vertical velocity
v0. The vertical drag force depends quadratically on the downward vertical velocity v :

Fdrag = 1

2
ρCAv2

where ρ is the air density (assumed here to be independent of height), A is the effective area
of the skydiver perpendicular to the motion, and C is a drag coefficient. Assuming a dense
body and ignoring the buoyancy force,† the net downward vertical force on the skydiver is the
difference between the force of gravity Fgrav =mg, and the drag force, wherem is the skydiver’s
mass plus equipment and g is the acceleration of gravity (also assumed to be independent of
height). Thus, Newton’s second law of motion (F =ma) states that:

m
dv
dt
= Fnet = Fgrav − Fdrag =mg− 1

2
ρCAv2 (30)

Eq. (30) represents a nonlinear system (because of the quadratic term) whose input is the
gravity force Fgrav and whose output is v(t). As the downward velocity v keeps increasing, the
drag-force term in Eq. (30) keeps building up until it compensates the gravity force, resulting
in zero acceleration, or, constant velocity vc, referred to as critical or terminal velocity. From
then on, the skydiver falls at that constant velocity. The balancing condition between gravity
and drag force gives the following value of the critical velocity:

mg− 1

2
ρCAv2

c = 0 ⇒ vc =
√

2mg
ρCA

=
√

2Fgrav

ρCA
(31)

Let us define also the related quantities tc and hc,

tc = vc
g
=
√

2m
ρCAg

, hc = vctc = v2
c
g
= 2m
ρCA

(32)

The skydiver can control the value of vc by changing the effective area A. For example, if
the skydiver turns vertical, then A decreases and vc increases. Similarly, just before reaching
ground, the skydiver opens a parachute, thus substantially increasing A and greatly decreasing
vc. Using the definitions (31) and (32), Eq. (30) can be written in the simplified form:

dv
dt
= vc
tc

(
1− v

2

v2
c

)
(33)

The solution of the differential equation (33) with initial condition v(t0)= v0 is given by:

v(t)= vc
v0

vc
+ tanh

(
t − t0
tc

)

1+ v0

vc
tanh

(
t − t0
tc

) , t ≥ t0 (34)

where tc is a measure of the time constant to reach the critical velocity value.‡ Note that v(t0)=
v0 as it should, and v(∞)= vc. The solution (34) can be derived by standard calculus methods,
or, by using MATLAB’s symbolic math toolbox, for example, using the function DSOLVE:

†From Archimedes’ principle, the buoyancy force can be taken into account by replacing g by its effective value
geff = g(1− ρ/ρobj), where ρobj is the object’s density. Here, we assume that ρ	 ρobj.
‡Typically, v(t) reaches about 99% of vc within a couple of tc’s while falling a distance of a couple of hc’s.

25

syms t v(t) v0
syms tc vc positive

v = dsolve(diff(v,t)==(1-v^2/vc^2)*vc/tc, v(0)==v0)

The corresponding vertical drop distance y (measured from the balloon), can be obtained by
integrating the above solution for v :

dy
dt
= v ⇒ y(t)= hc ln

[
cosh

(
t − t0
tc

)
+ v0

vc
sinh

(
t − t0
tc

)]
, for t ≥ t0

Note that at t = t0, we have y(t0)= 0. The corresponding height measured from the ground
(see above figure) is h(t)= h0 − y(t), or,

h(t)= h0 − hc ln
[

cosh
(
t − t0
tc

)
+ v0

vc
sinh

(
t − t0
tc

)]
, t ≥ t0 (35)

Often, we wish to know how long it takes to drop to a height h ≤ h0. This can be obtained
by solving Eq. (35) for t in terms of h :

t = t0 + h0 − h
vc

+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2(h0−h)/hc

vc + v0

⎤
⎦ , h0 ≥ h ≥ 0 (36)

or, in terms of the drop distance y = h0 − h,

t = t0 + y
vc
+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2y/hc

vc + v0

⎤
⎦ , 0 ≤ y ≤ h0 (37)

As y increases by a few hc lengths, or as h decreases towards zero, the term e−2y/hc becomes
small and can be ignored, implying from Eq. (37) that the skydiver is then effectively falling with
constant terminal velocity vc:

t ≈ t0 + y
vc
+ tc ln

[
2vc

vc + v0

]
, y� hc

Setting y = h0 gives the time it takes to reach the ground:

tg = t0 + h0

vc
+ tc ln

⎡
⎣vc +

√
v2
c + (v2

0 − v2
c)e−2h0/hc

vc + v0

⎤
⎦

The rest of this example is made into a homework problem for you to try your hands on (not
to be handed in). Assume the following numerical values:

ρ = 1.2 kg/m3, air density
g = 9.8 m/sec2, acceleration of gravity
m = 70 kg, skydiver’s weight (mass)
C = 1 skydiver’s drag coefficient

a. Write a MATLAB function V(t, t0, v0, vc) that implements Eq. (34). It should be vectorized
in the variable t, with t0, v0, vc being parameters. Similarly, write functionsH(t, h0, t0, v0, vc)
and T(h, t0, h0, v0, vc) that implement Eqs. (35) and (36). The three functions must be de-
fined as anonymous functions:

V = @(t,t0,v0,vc) ...
H = @(t,h0,t0,v0,vc) ...
T = @(h,t0,h0,v0,vc) ...

26

b. Assume that the skydiver jumps from a height of h0 = 2500 m, with zero initial velocity
v0 = 0, at t0 = 0, and is oriented so that her effective surface area is A0 = 0.7 m2.
Calculate the terminal velocity vc0, and then calculate the time t1 it takes to drop to a
height of h1 = 1500 m above the ground and the speed v1 at that time. Use the above
functions for your calculations.

When the skydiver reaches the height h1, she suddenly changes orientation (e.g. turns
sideways) so that her effective area is now A1 = 0.3 m2. Calculate the new terminal
velocity vc1. Use the values of v1, t1 as the initial conditions for the rest of the fall for
t ≥ t1. Calculate the time t2 at which the skydiver reaches a height of h2 = 200 m above
ground, and calculate the speed v2 at that time instant.

At that time t2, the skydiver suddenly opens her parachute, which has surface area of
A2 = 50 m2. Calculate the new terminal velocity vc2.† Use the values of v2, t2 as the initial
values for the rest of the fall for t ≥ t2. Calculate the time, say tg, it takes to hit the ground
(i.e., the height is h = 0.)

c. Using the calculated values from part (b), and using appropriate relational operators and
your function V(t, t0, v0, vc), define a single-line anonymous function v(t) that describes
the velocity of the fall through the various stages till the ground is hit, that is, define the
function:

v(t)=

⎧⎪⎪⎨
⎪⎪⎩
V(t, t0, v0, vc0) , if t0 ≤ t ≤ t1
V(t, t1, v1, vc1) , if t1 ≤ t ≤ t2
V(t, t2, v2, vc2) , if t2 ≤ t ≤ tg

Similarly, define an overall height function:

h(t)=

⎧⎪⎪⎨
⎪⎪⎩
H(t, h0, t0, v0, vc0) , if t0 ≤ t ≤ t1
H(t, h1, t1, v1, vc1) , if t1 ≤ t ≤ t2
H(t, h2, t2, v2, vc2) , if t2 ≤ t ≤ tg

Define the vector of time instants spanning the interval 0 ≤ t ≤ tg :

t = linspace(0,tg,1001);

Evaluate v(t) and h(t) at these times t, and plot them. Plot height in units of kilome-
ters. See example plots below. On the height plot, place the points t1, t2, tg at which
the skydiver’s configuration changes. Note that the height plots are almost, but not quite,
straight-line plots with changing slopes because the terminal velocities change, see Eq. (36).

d. In parts (b,c), the heights h1, h2 were given and you had to calculate the corresponding
times t1, t2 at which changes in configuration took place.

In a slightly different version, assume now that these times are given to be t1 = 30 and
t2 = 50 sec. Calculate the corresponding heights h1, h2 and the time tg to reach the
ground. Repeat the plots of part (c).

†The terminal velocity vc2 is roughly equal to the velocity of jumping off a height of about one meter.

27

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

t (sec)

v(
t)

 (
m

/s
ec

)

downward velocity

 v(t)
 t

g

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

t (sec)

h
(t

)
 (

km
)

h
1
 = 1.5, h

2
 = 0.2 km

 height h(t)
 t

1
 = 26.85 sec

 t
2
 = 48.42 sec

 t
g
 = 87.82 sec

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

t (sec)

v(
t)

 (
m

/s
ec

)

downward velocity

 v(t)
 t

g

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

t (sec)

h
(t

)
 (

km
)

t
1
 = 30, t

2
 = 50 sec

 height h(t)
 h

1
 = 1.37 km

 h
2
 = 0.17 km

 t
g
 = 83.00 sec

28

14. Supersonic Free Fall

This is a more complicated version of the previous example, in that both the air density
ρ and gravity g are assumed to depend on height. It also shows how to discretize and solve
numerically a nonlinear system of differential equations.

In October 2012, Felix Baumgartner jumped off a balloon from the stratospheric altitude of
39 km (above sea-level), reaching after 50 sec a supersonic speed of 377 m/sec, at an altitude of
28 km. The speed of sound at that altitude is 300 m/sec, therefore, he achieved a record speed
of Mach 1.25. After falling for 260 seconds and reaching an altitude of 2.5 km, he opened the
parachute, and eventually reached the ground after a total falling time of 9 minutes and 18 sec.
Note that the ground at the landing site in Roswell, New Mexico was at an elevation of 1043
meters above sea level. The following data were recorded during the fall, see Ref. [1] at the end.

t v h vsound

(sec) (m/s) (km) (m/s)

0 0 38.969 315.38 jump altitude above sea level
34 309.72 33.446 305.48 begin supersonic speeds
50 377.11 27.833 300.28 maximum supersonic speed
64 289.72 22.960 297.02 end supersonic speeds

180 79.17 7.619 309.71 speed slows substantially
260 53.19 2.567 330.30 parachute opens
558 – 1.043 336.27 ground is reached

The purpose of this example is to reproduce these results. We recall from the previous
example that the air-drag force and downward vertical force are given by:

Fdrag = 1

2
ρCAv2

m
dv
dt
=mg− Fdrag =mg− 1

2
ρCAv2

which may be re-written in the form:

dv
dt
= g ·

(
1− v

2

v2
c

)
, vc =

√
2mg
CAρ

= terminal velocity (38)

At high altitudes h, both the acceleration of gravity g and the air density ρ, and hence vc,
depend on the height h, and can be represented by the following functions:

g(h) = g0R2
e

(Re + h)2
, g0 = 9.80665 m/s2 , Re = 6356.766 km

ρ(h) = 1.2241 · exp

[
−
(

h
11.661

)
−
(

h
18.192

)2

+
(

h
29.235

)3
]
, 0 ≤ h ≤ 40 km

vc(h) =
√

2mg(h)
CAρ(h)

= height-dependent terminal velocity

(39)

where h is in units of km in all expressions, and Re is the radius of the earth. The function
ρ(h) provides a simple and accurate least-squares fit to the standard atmosphere data over the
interval 0 ≤ h ≤ 40 km. Thus, Eq. (33) must be replaced by the nonlinear system:

dv
dt
= g(h)·

(
1− v2

v2
c(h)

)
= acceleration

dh
dt

= −v = speed

(40)

29

where h is measured upwards from the ground and is related to the drop-distance y from the
initial height by h = h0 − y, as shown in the above figure. The negative sign in the second
equation is because v represents the downward velocity and dh/dt, the upward velocity.

Next, we discretize the time in small time steps tn = (n− 1)T, n = 1,2, . . . , and replace the
time-derivatives by differences to obtain the following computational algorithm:

v(n+ 1)−v(n)
T

= a(n)≡ g(h(n)) ·
(

1− v2(n)
v2
c
(
h(n)

)
)

h(n+ 1)−h(n)
T

= −v(n)

which can be rearranged as follows, where we also divided the velocity term of h(n) by 1000
because h(n) is in km instead of meters:†

initialize at:

h(1)= h0 , v(1)= v0 = 0

for n = 1,2,3, . . . , do:

a(n)= g(h(n)) ·
(

1− v2(n)
v2
c
(
h(n)

)
)

v(n+ 1)= v(n)+a(n)·T
h(n+ 1)= h(n)−v(n)·T/1000

(41)

In the rest of this example assume the following parameter values:

m = 118 kg 260 lbs, Baumgartner’s total weight including equipment, Ref. [1]
C1 = 1.0 drag coefficient during free-fall
A1 = 0.7 m2 cross-sectional area during free-fall
C2 = 3.17 drag coefficient after parachute opens
A2 = 25.1 m2 parachute area, 270 ft2, Ref. [1]
v0 = 0 initial jump velocity
h0 = 38.969 km initial jump altitude, Ref. [1]
hs = 1.043 km landing site elevation above sea level, Ref. [1]
t260 = 260 sec time parachute opens, Ref. [1]
T = 0.01 sec time step

For the parameters not found in Ref. [1], we chose reasonable values to see if the above
model can adequately describe the fall. The value of C2 seems excessive but we estimated it in
the following way. The parachute was opened at a distance of (2567 − 1043)= 1524 meters
above ground, and it took (558 − 260)= 298 sec to land. Therefore, an approximate estimate
of the terminal velocity with the parachute open is vc = 1524/298 = 5.1 m/sec. Since the area
of the parachute is known, one can solve the equation vc =

√
2mg/ρCA for C, which gives

C = 3.17 using the values of ρ,g at the altitude of hs = 1.043 km.

a. Define single-line anonymous MATLAB functions implementingg(h) andρ(h) from Eq. (39).
Define a MATLAB function vc(h,CA) to be used with the two values of the coefficients
C1A1 and C2A2:

vc(h,CA)=
√

2mg(h)
CAρ(h)

(42)

whereCA is thought of as a single variable. Plotg(h), ρ(h), and vc(h,C1A1), vc(h,C2A2),
for 0 ≤ h ≤ 40 km.

†h(n), v(n) are MATLAB arrays

30

b. Run the following forever while-loop that implements Eq. (41), with the added feature that
it uses vc(h,C1A1) while the parachute is closed and then switches to vc(h,C2A2) when
the parachute opens at time t = 260 sec. The loop constructs the vectors t, v, h.

h(1) = h0;
v(1) = v0;
n = 1;

while 1
if h(n)<hs, break; end % break if ground altitude is reached
t(n) = (n-1)*T;
H = h(n); % altitude at time t(n)
CA = C1*A1*(t(n)<=t260) + C2*A2*(t(n)>t260); % parachute closed
a(n) = g(H)*(1 - v(n)^2/vc(H,CA)^2);
v(n+1) = v(n) + a(n)*T; % v(n) in m/s, a(n) in m/s^2, T in sec
h(n+1) = h(n) - v(n)*T/1000; % h in units of km
n = n+1;

end

c. From the exit condition of the loop, determine the total time to reach ground, tg, in sec-
onds. For the purpose of comparing the calculated values to the observed ones given
above, calculate also the following data points.

Using the function max, determine the maximum velocity reached, vmax, and the time
instant tmax and height hmax at which it is reached.

Determine also the time, velocity, and height, say, tb, vb, hb, when the fall becomes super-
sonic. And also the time, velocity, and height, say, te, ve, he, when the supersonic speeds
end and they become subsonic.

Determine the velocity and height corresponding to the time t = 180 sec, as well as those
corresponding to t = 260 sec when the parachute opens.

Print the given data, and the above calculated data points, exactly as shown below.

observed calculated
t v h t v h

notes (sec) (m/s) (km) (sec) (m/s) (km)
-------------------------- ----------------------- --------------------------
initial height 0 0.00 38.969 0.00 0.00 38.969
begin supersonic 34 309.72 33.446 34.07 305.57 33.531
maximum supersonic speed 50 377.11 27.833 50.23 369.39 27.925
end supersonic 64 289.72 22.960 67.65 296.35 21.950
speed slows substantially 180 79.17 7.619 180.00 77.94 6.901
parachute opens 260 53.19 2.567 260.00 57.75 1.589
ground 558 - 1.043 364.65 5.11 1.043

d. Plot the calculated speed v(t) and height h(t) versus time t over the interval 0 ≤ t ≤ tg,
and indicate on the graphs the observed and calculated data points from part (c).

We note that the above model describes the overall motion fairly accurately. Our calculated
altitude corresponding to t = 260 sec is shorter than the observed one, and this causes the
total landing time to be shorter. A possible explanation is that after reaching subsonic speeds
around t = 64 sec, Baumgartner went into a period of spinning and changing orientation before
stabilizing again. Our simplified model did not take that into account and this could have
increased the drag coefficient C1 and surface area A1 for a period of time, resulting in the
observed higher altitude at t = 260.

Nevertheless, the model confirms the main features of free fall in an atmosphere with density
that diminishes with altitude, namely, that as the fall proceeds, the speed first increases to a
maximum, and then decreases to a terminal velocity, but not quite achieving it, see Refs. [5–7].

31

0 100 200 300 400 500 600
0

100

200

300

400

t (sec)

v
 (

m
/s

)

vertical velocity

 velocity
 speed of sound
 calculated
 observed

0 50 100 150 200 250 300
0

100

200

300

400

t (sec)

v
 (

m
/s

)

vertical velocity − expanded view

 velocity
 speed of sound
 calculated
 observed

0 100 200 300 400 500 600
0

4

8

12

16

20

24

28

32

36

40

t (sec)

h
 (

km
)

altitude

ground

 altitude
 calculated
 observed

0 50 100 150 200 250 300
0

4

8

12

16

20

24

28

32

36

40

t (sec)

h
 (

km
)

altitude − expanded view

ground

 altitude
 calculated
 observed

References

1. Red Bull Stratos Project, 2012.

http://www.redbullstratos.com/

http://www.redbullstratos.com/science/scientific-data-review/

http://issuu.com/redbullstratos/docs/red_bull_stratos_factsheet_final_statistics_050213

2. F. R. Greening, “Baumgartner’s Jump and the Physics of Freefall,” Phys. Educ., 48, 139
(2013).

3. F. Theilmann and M. Apolin, “Supersonic Freefall—A Modern Adventure as a Topic for the
Physics Class,” Phys. Educ., 48, 150 (2013).

4. A. W. Robinson and C. G. Patrick, “The Physics of Colonel Kittinger’s Longest Lonely Leap,”
Phys. Educ., 43, 477 (2008).

5. J. Benacka, “High-Altitude Free Fall Revised,” Am. J. Phys., 78, 616 (2010).

6. P. Mohazzabi and J. H. Shea, “High-Altitude Free Fall,” Am. J. Phys., 64, 1242 (1996).

7. N. M. Shea, “Terminal Speed and Atmospheric Density,” Phys. Teacher, 31, 176 (1993).

32

15. Rising and Falling Ball

A ball is thrown vertically upwards at time t = 0 with some initial velocity v0 from an initial
height y0. As the ball rises, gravity and air drag act downwards slowing down the ball. The ball
reaches a maximum height, say, ymax at time tmax. Then, it begins to fall down but now the air
drag is acting upwards slowing down the ball until it reaches a terminal velocity, say, vc, and
eventually the ball hits the ground at some time, say, tg.

The figure below depicts the directions of the forces on the rising and falling ball. Assuming
that the air drag is quadratic in the velocity, the acceleration of the rising and falling ball is given
by Eq. (43) below. Again, we can think of this as a nonlinear system with input the gravity force
and output the velocity.

a = dv
dt
= −g−D · v · |v| = −g−D · v2 · sign(v)=

⎧⎨
⎩−g−Dv

2 , v ≥ 0, rising

−g+Dv2 , v ≤ 0, falling
(43)

where, |v| = v · sign(v), and g is the acceleration of gravity and D is a drag constant related to
the mass m, air density ρa, the ball’s cross-sectional area A, and drag coefficient C, by

D = ρa CA
2m

Eq. (43) ignores the buoyancy force, but that can be easily taken into account by simply
replacing g by a new effective g as follows, where ρ is the density of the ball:

geff = g
(

1− ρa
ρ

)

We will assume a very dense ball ρ � ρa, so that the buoyancy force is negligible. On the
other hand, for a hot-air balloon, we have ρ < ρa, and geff will reverse sign causing a lift.

We would like to replace Eq. (43) by a difference equation that can be solved numerically in
MATLAB using a while-loop, and to determine the height y(t) as a function of time, as well as
the maximum height and time ymax, tmax, and the ground time tg. Moreover, since this problem
can be solved analytically, we will compare the numerical and analytical solutions. Let us define
the following parameters in terms of g,D, where vc is the terminal velocity:

vc =
√
g
D
, tc = vc

g
= 1√

gD
, hc = vctc = v2

c
g
= 1

D
(44)

Then, the time tmax to reach the maximum height is given in terms of the initial velocity v0 by:

v0 = vc · tan
(
tmax

tc

)
⇒ tmax = tc · atan

(
v0

vc

)
(45)

The solution of Eq. (43) is given as follows, where the time interval 0 ≤ t ≤ tmax represents
the rising period, and t ≥ tmax, the falling period:

v(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vc · tan

(
tmax − t
tc

)
, 0 ≤ t ≤ tmax

vc · tanh
(
tmax − t
tc

)
, t ≥ tmax

(46)

33

Integrating the equation dy/dt = v, we determine the height y(t) as measured from the
ground up:

y(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ymax + hc · ln

[
cos

(
tmax − t
tc

)]
, 0 ≤ t ≤ tmax

ymax − hc · ln
[

cosh
(
tmax − t
tc

)]
, t ≥ tmax

(47)

where ymax is given as follows in terms of the initial height y0:

ymax = y0 − hc · ln
[

cos
(
tmax

tc

)]
(48)

Requiring that y = 0 at t = tg, results in the following expression for tg:

ymax − hc · ln
[

cosh
(tmax − tg

tc

)]
= 0 ⇒ tg = tmax + tc · acosh

[
exp

(
ymax

hc

)]
(49)

Now to the numerical solutions. We discretize the time by tn = (n−1)T, for n = 1,2,3, . . . ,
where T is a very small time step. Then, the differential equations,

dv
dt
= a = −g−D · v · |v| , dy

dt
= v

can be replaced by the difference equations:

v(n+ 1)−v(n)
T

= a(n)= −g−D · v(n)·∣∣v(n)∣∣ , y(n+ 1)−y(n)
T

= v(n) (50)

where a(n), v(n), y(n) denote the numerical approximations to a(tn), v(tn), y(tn), respec-
tively. Rewriting Eq. (50), we obtain our final numerical computation algorithm that calculates
a(n), v(n), y(n):

initialize:

v(1)= v0 , y(1)= y0

for n = 1,2,3, . . . , do:

a(n)= −g−D · v(n)·∣∣v(n)∣∣
v(n+ 1)= v(n)+a(n)·T
y(n+ 1)= y(n)+v(n)·T

(51)

Consider the following numerical values (where we rounded g for convenience):

g = 10 m/sec2 , D = 0.1 m−1 , v0 = 30 m/sec , y0 = 1 m , T = 0.01 sec

a. Using a forever while-loop, iterate Eq. (51) until ground is reached, that is, insert a condition
to exit the loop when y(n) becomes negative. Determine the last iteration index, say, ng,
just before ground is reached, and calculate the corresponding time in seconds using
tg = (ng − 1)T.

Moreover, insert some code in the loop to determine the maximum height reached, ymax,
and the time index, nmax, and actual time tmax = (nmax − 1)T, when that maximum is
reached.

b. Construct the vector of times t(n)= (n − 1)T, for n = 1 : ng, and plot v(n) and y(n)
versus t. Indicate the points y0, ymax, and y = 0 on the graphs.

Moreover, add to the graphs the corresponding plots of v(t) and y(t) obtained from the
exact analytical expressions given above.

Repeat parts (a,b) with the larger T = 0.02 sec, which will make more visible the slight
discrepancy between the iterative and analytical solutions.

34

0 1 2 3 4
−10

0

10

20

30
velocity v(t)

t (sec)

v(
t)

 (
m

/s
ec

)

 exact
 iterative
 v = 0
 ground

0 1 2 3 4
0

3

6

9

12

height y(t)

t (sec)

y(
t)

 (
m

et
er

s)

 exact
 iterative
 max
 ground

References

1. A. Cromer, “Stable Solutions Using the Euler Approximation,”, Am. J. Phys., 49, 455 (1981).

2. R. W. Stanley, “Numerical Methods in Mechanics,” Am. J. Phys., 52, 499 (1984).

3. A. D’Innocenzo and L. Renna, “Analysis of Some Elementary Numerical Methods in Me-
chanics,”
Eur. J. Phys., 13, 153 (1992).

4. I. R. Gatland, “Numerical Integration of Newton’s Equations Including Velocity-Dependent
Forces,” Am. J. Phys., 62, 259 (1996).

5. T. Timberlake and J. E. Hasbun, “Computation in Classical Mechanics,” Am. J. Phys.,76,
334 (2008).

35

16. Air Drag on Baseball

The force due to the air resistance acting against a moving object is taken to be proportional
to the square of the object’s velocity, typically at speeds less than 200 mph:

F = 1

2
CρAv2

whereC,ρ,A are the drag coefficient, air density, and object’s cross sectional area. The direction
of the force is opposite of the velocity. In this problem, we will study the impact of air drag
on the motion of a baseball. We will obtain the ball’s trajectory using a discretized version of
Newton’s equations of motion and solve them using for-loops in MATLAB. For a ball of radius
R, cross-sectional area A = πR2, and mass m, let us define the normalized drag coefficient:

D = CρA
2m

= CρπR2

2m

Then, Newton’s equations of motion take the following form for the x, y (horizontal and
vertical) components of positions, velocities, and accelerations:

dx
dt
= vx, dvx

dt
= ax = −Dvxv , v =

√
v2
x + v2

y

dy
dt
= vy, dvy

dt
= ay = −Dvyv− g

(52)

where g is the acceleration of gravity acting vertically downwards. In systems language, the
gravity force is the input to the system and the outputs are the quantities, x(t), y(t), vx(t),
vy(t), satisfying Eqs. (52).

These differential equations may be solved numerically using, for example, MATLAB’s built-
in differential equation solver ode45. However, in this problem, we are going to replace them
with a discrete-time version that can very accurately determine the solution.

We assume that time is discretized in small steps tn = nT, n = 0,1,2, . . . , where T is a very
small step increment. Let us denote by x(n) the value of the horizontal distance x(tn) at time
t = tn, and similarly for the quantities y(n), vx(n), vy(n). Then, Eq. (52) can be replaced by
the following discretized version:

v(n)=
√
v2
x(n)+v2

y(n)

ax(n)= −Dvx(n)v(n)
ay(n)= −Dvy(n)v(n)−g

(53)

x(n+ 1)= x(n)+Tvx(n)+1

2
T2 ax(n)

vx(n+ 1)= vx(n)+Tax(n)

y(n+ 1)= y(n)+Tvy(n)+1

2
T2 ay(n)

vy(n+ 1)= vy(n)+Tay(n)

(54)

At time n, we assume that we know the quantities x(n), y(n), vx(n), vy(n). From Eq. (53),
we calculate the accelerationsax(n), ay(n), and use them in Eq. (54) to calculate the next values†
x(n + 1), y(n + 1), vx(n + 1), vy(n + 1), and the process is repeated. To get the recursions
started we may take the initial values to be:

x(0)= 0 , y(0)= h , vx(0)= v0 cosθ0 , vy(0)= v0 sinθ0 (55)

†this is justified by assuming that the accelerations remain constant within each small time sub-interval [tn, tn+1].

36

where h is the height of the initial launch, and v0, θ0, the initial velocity and angle of departure
of the ball. The objective of this problem is to use a for-loop to carry out the iterations (53)–(54)
and compare the resulting trajectory with the one obtained when the drag force is ignored. The
latter is given by,

x = v0 cosθ0 t , y = h+ v0 sinθ0 t − 1

2
g t2 (56)

The maximum travel time, i.e., the time it takes to hit ground, is:

Tmax = v0 sinθ0

g
+
√√√√2h
g
+ v

2
0 sin2 θ0

g2
(57)

Choose an initial ball speed of v0 = 90 mph and launch angle θ0 = 30o, convert them to
m/sec and radians, and use the following values for the other parameters (given in metric units):

h = 1, C = 0.5, R = 0.0366, ρ = 1.2, m = 0.145, g = 9.81

a. Choose a sampling time interval of T = 1/100 sec, calculate Tmax in seconds, and define
the maximum number of samples to use in the iterative algorithm by,

N = floor

(
Tmax

T

)

Define the time vector, t = 0 : T : Tmax, and compute the corresponding x, y vectors in
the no-drag case from Eq. (57).

b. Use a for-loop to iterate Eqs. (53) and (54) for, n = 0 : N, and calculate the arrays
x(n), y(n), vx(n), vy(n).† Because the air drag force slows down the motion, the ball
will hit the ground faster than in the no-drag case. Put some conditional code in your
for-loop that breaks out of the loop when the ball hits ground. Therefore, the effective
length of the resulting arrays x(n), y(n) will be shorter than N. Determine the value of
n, say, nmax, and the corresponding travel time, tmax = nmaxT, when the ball hits ground.

c. On the same graph, plot the trajectories (y vs. x) that you computed in parts (a,b). De-
termine and place on the curves the points (xmax, ymax) that correspond to the maximum
heights of both trajectories. For the no-drag case, these points are determined by,

xmax = v2
0 cosθ0 sinθ0

g
, ymax = h+ v

2
0 sin2 θ0

2g

For both cases, determine the time t0 it takes to reach the corresponding maximum height.

d. For the air-drag case, plot on the same graph the velocity vectors vx, vy versus time over
the interval 0 ≤ t ≤ tmax, e.g., you may choose, t = linspace(0, tmax, nmax). Place on the
graph the point (t0, vy = 0) that corresponds to the ball reaching its maximum height.

The solution of Eq. (52) using the ode45 solver is almost indistinguishable from the above
solution, as long as T is small enough. The bottom two graphs demonstrate the ode45 method
for the two choices of T = 1/10 and T = 1/100.
The MATLAB code below illustrates the computations,

R = 0.0366; % baseball radius in meters
C = 0.5; % drag coeff for sphere
rho = 1.2; % air density kg/m^3
m = 0.145; % mass kg
g = 9.81; % m/sec^2

†note that n is the time index and you will need to shift it by 1 to make it into a MATLAB index

37

d = rho*C*(pi*R^2)/2; % drag coefficient
D = d/m;

T = 1/10; % time sampling in sec

v0 = 90 * 1609.344/3600; % initial velocity in m/sec
th0 = 30 * pi/180; % launch angle in radians

h = 1; % launch height in meters
vx(1) = v0 * cos(th0); % initial conditions
vy(1) = v0 * sin(th0);
x(1) = 0;
y(1) = h;

Tmax = v0*sin(th0)/g + sqrt(2*h/g + v0^2 * sin(th0)^2 /g^2) % travel time, no drag

t = 0:T:Tmax;
x1 = v0*cos(th0)*t; y1 = h + v0*sin(th0)*t - g*t.^2/2; % trajectory, no drag

N = floor(Tmax/T); % max number of time samples based on no drag

for n=1:N, % discretized version
if y(n) <0, break; end % break when it hits ground
v = sqrt(vx(n)^2 + vy(n)^2);
ax = -D * vx(n) * v;
ay = -D * vy(n) * v - g;
x(n+1) = x(n) + vx(n)*T + T^2/2 * ax;
vx(n+1) = vx(n) + T*ax;
y(n+1) = y(n) + vy(n)*T + T^2/2 * ay;
vy(n+1) = vy(n) + T*ay;

end

nmax=n % number of time samples to hit ground
tmax = nmax*T % travel time to hit ground with drag

figure; plot(x,y, ’b-’, ’linewidth’,2); % difference equation solutions
hold on;
plot(x1,y1,’g--’, ’linewidth’,2); % no-drag solutions

% --
% this part demonstrates ode45() for solving dz/dt = f(t,z)
% over a time span with initial conditions z0 - its syntax is:
%
% [t,z] = ode45(@f, tspan, z0, [], D,g)
%
% the function f(t,z,D,g) is defined below
%
% the [] argument is an empty options input and is placed there in order to allow the
% listing of the additional parameters D,g that must be passed into f(t,z,D,g)

tspan = [0,tmax]; % integration time span

z0 = [x(1); vx(1); y(1); vy(1)]; % initial conditions

[t,z] = ode45(@zdot, tspan, z0, [], D,g); % see definition of zdot below

% ---

x2 = z(:,1); % extract x,y parts
y2 = z(:,3);

plot(x2,y2,’r--’, ’linewidth’,2); % ode45 solutions

title(’baseball trajectories, {\itT} = 1/10’)
xlabel(’{\itx} (meters)’); ylabel(’{\ity} (meters)’);
yaxis(0,25,0:5:25); xaxis(0,150, 0:30:150); grid;
legend(’ with drag’, ’ no drag’, ’ ode45’, ’location’, ’ne’);

38

% --
% the following function must be placed in a separate M-file, zdot.m
% --
% note: z(1), z(2), z(3), z(4) stand for x, vx, y, vy

function zdot = f(t,z,D,g)

v = sqrt(z(2)^2 + z(4)^2);

zdot = [z(2); -D*z(2)*v; z(4); -g - D*z(4)*v];

% --

0 30 60 90 120 150
0

5

10

15

20

25
baseball trajectories

x (m)

y
 (

m
)

 with drag
 no drag

0 1 2 3 4
−40

−20

0

20

40

60

80
baseball velocities

t (sec)

m
ph

 v
x

 v
y

0 30 60 90 120 150
0

5

10

15

20

25
baseball trajectories, T = 1/10

x (meters)

y
 (

m
et

er
s)

 with drag
 no drag
 ode45

0 30 60 90 120 150
0

5

10

15

20

25
baseball trajectories, T = 1/100

x (meters)

y
 (

m
et

er
s)

 with drag
 no drag
 ode45

39

17. Parachuting

Continuing with Example 13, we consider now the issue of horizontal motion that we ignored
then. If the skydiver jumps from a moving plane, then at the instant of jumping, the horizontal
velocity of the skydiver is equal to that of the airplane. We will see below that the air drag in
the horizontal direction quickly slows down the horizontal motion to zero and the skydiver
effectively continues to fall vertically as we assumed in Example 13.†

We recall that the force due to the air resistance on a moving object is taken to be proportional
to the square of the object’s velocity, typically at speeds less than 200 mph:

F = 1

2
ρCAv2

whereC,ρ,A are the drag coefficient, air density, and object’s cross-sectional area. The direction
of the force is opposite that of the velocity. To simplify the subsequent notation, let us define
the following “drag constant” D, where m is the skydiver’s mass:

D = ρCA
2m

Newton’s equations of motion that take into account both horizontal and vertical motions
are as follows, where x, y denote the horizontal and vertical distances (y is measured downwards
from the airplane), and vx, vy are the corresponding velocities, and ax, ay, the accelerations:

v =
√
v2
x + v2

y (velocity magnitude)

vx = dx
dt
, ax = dvx

dt
= −Dvxv (horizontal drag)

vy = dy
dt
, ay = dvy

dt
= −Dvyv+ g (vertical drag opposing gravity)

(58)

where g is the acceleration of gravity acting vertically downwards. Again, we can think of
these as a single-input (the gravity) multiple-output linear nonlinear system. The differential
equations may be solved numerically using, for example, MATLAB’s differential equation solver
ode45. However, as we did before, we are going to replace them with a discrete-time version,
determining the solution in an iterative manner using a while-loop.

We assume that time is discretized in small steps, tn = (n− 1)T, n = 1,2,3, . . . , where T is
a very small step increment. Let us denote by x(n) the value of the horizontal distance x(tn) at

†G. Wagner and R. Wood,“Skydiver Survives Death Plunge (and the physics that helped)”, Phys. Teacher, 34,
543 (1996), see also, “A 97-year-old Vet Jumped out of a Plane to Recreate his D-Day Parachute Drop,” June 2019,
https://www.cnn.com/travel/article/ww2-parachute-tom-rice.

40

time t = tn, and similarly for the quantities y(n), vx(n), vy(n).‡ Then, Eq. (58) can be replaced
by the following discretized version, where the operations must be done in the indicated order:

v(n)=
√
v2
x(n)+v2

y(n)

ax(n)= −Dvx(n)v(n)
ay(n)= −Dvy(n)v(n)+g
x(n+ 1)= x(n)+Tvx(n)
vx(n+ 1)= vx(n)+Tax(n)
y(n+ 1)= y(n)+Tvy(n)
vy(n+ 1)= vy(n)+Tay(n)

(59)

This works as follows: At time n, we assume that we know the quantities x(n), y(n), vx(n),
vy(n). From Eq. (59), we first calculate the accelerations ax(n), ay(n), and then use them to
calculate the next values x(n+ 1), y(n+ 1), vx(n+ 1), vy(n+ 1), and the process is repeated.
To get the recursions started we may take the initial values to be at n = 1

x(1)= 0 , vx(1)= v0 , y(1)= 0 , vy(1)= 0 (60)

where v0 is the initial horizontal velocity. The initial vertical velocity is assumed to be zero. If
h0 is the initial height of the jump, then the recursions (59) are to be iterated until the skydiver
reaches the ground, i.e., until y(n)≈ h0. The last index n determines the total time to reach the
ground.

To make the problem more realistic, we will assume that when the skydiver pulls the rip cord,
the parachute does not open instantaneously, but rather it takes a few seconds to fully open.
We can model the opening of the parachute by the following gradual increase of its surface area
over time lasting from t1 to t2:†

A(t)= 1

2
(A2 −A1)· tanh

(
10
t − tmid

t2 − t1
)
+ 1

2
(A2 +A1) (61)

where tmid = (t1 + t2)/2. Effectively, for t ≤ t1 the surface area is A1, and for t ≥ t2, it is A2,
and during t1 < t2 < t2, it gradually transitions from A1 to A2, see the last graph below. By
contrast, a sudden change in the area can be modeled relative to the mid time-point tmid by,

A(t)=
⎧⎨
⎩A1 , if t ≤ tmid

A2 , if t > tmid

(62)

The time-varying area A(t) defines effectively a time-varying drag constant D(t) whose
sampled values D(tn) at time t = tn must be used in the difference equations (59):

D(t)= ρCA(t)
2m

(63)

In the sequel, we assume the following values of the parameters:

ρ = 1.2 kg/m3 air density
g = 9.81 m/sec2 acceleration of gravity
m = 77 kg skydiver’s mass plus equipment

‡ n can be thought of as a MATLAB index and x(n) as a MATLAB array.
†Note, tanh(±5)= ±0.9999.

41

C = 1 drag coefficient, typically, C = 0.2–1.4
A1 = 0.7 m2 area with parachute closed
A2 = 50 m2 area with parachute opened
t1 = 50 sec time when rip cord is pulled
t2 = 70 sec time when parachute is fully opened
v0 = 50 m/sec initial horizontal velocity, 112 mph
h0 = 2.5 km initial height
T = 0.005 sec time-step increment

a. For the given values above, define a single-line anonymous function that implements the
area A(t) as a function of time t using the definition (61). Define also a function for the
drag constant D(t). Plot A(t) over the interval 0 ≤ t ≤ 120 sec. Indicate on the graph
the points at t = t1 and t = t2.

b. Initialize the arrays x(n), y(n), vx(n), vy(n) as in Eq. (60), and for the above value of T,
run a forever while-loop that calculates the arraysax(n), ay(n), vx(n), vy(n), x(n), y(n),
and insert a condition that breaks out of the loop when y(n) becomes just greater than
h0, i.e., when the skydiver has reached the ground. Use the time-varying drag constant
D(tn) at each time instant. Your loop should have following structure:

n=1; % initialize time index

while 1 % forever while-loop
if y(n) > h0, break; end % break when ground is reached
tn = (n-1)*T; % n-th time instant in seconds
t(n) = tn; % build time vector - needed for plots
Dn = D(tn); % drag constant at time tn
v = sqrt(vx(n)^2 + vy(n)^2); % no need to save v in an array
ax(n) = -Dn * vx(n) * v; % horizontal acceleration

... etc

n = n+1; % update time index
end

After exiting the loop, delete the last values of the arrays x, y, vx, vy, but not those of
t, ax, ay. Explain why this is necessary. What are the lengths of the resulting arrays?

c. From the last value of t, determine the total duration tg in seconds of the skydiver’s fall
until she reaches the ground.

Define the corresponding array of heights measured from ground, that is, h(n)= h0 −
y(n), and calculate the value of the height hg at time t = tg. This height should be
extremely small but it’s not quite zero because the loop was exited prematurely—one
more iteration would have made hg slightly negative. In other words, for the last n, we
have h(n)� 0, but h(n+ 1)< 0, or equivalently, y(n) h0, but y(n+ 1)> h0.

Calculate also the total horizontal distance xg at ground level. Moreover calculate the array
indices n1 and n2 corresponding to the times t1 and t2 — for example, use the formula
t1 = (n1 − 1)T and solve it for n1, rounding the answer to the nearest integer.

d. Calculate the vertical terminal velocities when the parachute is closed and when it is
opened, that is, corresponding to the two surface areas A1,A2. Use the formula,

vc =
√
g
D
=
√

2mg
ρCA

and compare them with the values of the vertical velocities at times t = 30 and t = 80 sec.

42

e. Make the following plots, and on all the graphs, place the points corresponding to the
time instants t1 and t2, indicating the pulling of the rip cord and when the parachute is
completely opened:

– vertical and horizontal accelerations ay(t), ax(t) versus t, for 0 ≤ t ≤ tg,
noting the sudden severe, but brief, deceleration when the parachute opens.

– vertical and horizontal velocities vy(t), vx(t) versus t, for 0 ≤ t ≤ tg.

– height h(t) and horizontal distance x(t) versus t, for 0 ≤ t ≤ tg.

– height h versus horizontal distance x, for 0 ≤ x ≤ xg, (it quickly becomes a
vertical fall.)

e. Repeat parts (a-e), by using the area function of Eq. (62) instead of Eq. (61).

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

t (sec)

a y(t
)

 (
m

/s
ec

2)

vertical acceleration

 a
y
(t)

 t
g

 a
y
(t

1
)

 a
y
(t

2
)

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

t (sec)

a x(t
)

 (
m

/s
ec

2)

horizontal acceleration

 a
x
(t)

 t
g

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

t (sec)

v y(t
)

 (
m

/s
ec

)

vertical velocity

 v

y
(t)

 t
g

 v
y
(t

1
)

 v
y
(t

2
)

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

t (sec)

v x(t
)

 (
m

/s
ec

)

horizontal velocity

 v

x
(t)

 t
g

43

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

t (sec)

h
(t

)
 (

km
)

height, t
1
 = 50, t

2
 = 70 sec

 height h(t)
 t

g
 = 106.44 sec

 h(t
1
) = 0.56 km

 h(t
2
) = 0.18 km

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

t (sec)

x(
t)

 (
m

)

horizontal distance

 distance x(t)
 t

g
 = 106.44 sec

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

x (m)

h
 (

km
)

height vs. x

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
area during parachute opening

A
(t

)
 (

m
2)

t (sec)

 area A(t)
 t

1
 = 50 sec

 t
2
 = 70 sec

 t
g

44

18. Epidemiology of Social Networks

The susceptible-infected-recovered (SIR) model of infectious diseases provides an interesting
metaphor for social networks. A recent paper [1], predicting the demise of Facebook had gener-
ated a lot of attention.‡ It applies a modified version of the SIR model to social networks. The
model is verified first on the already demised Myspace social network, and then it is applied to
the current status of Facebook. In this example, we reproduce the results of that paper by using
the optimum estimated model parameters and iterating a discrete-time version of the model’s
differential equations using a for-loop.

The epidemiological model for a social network is described by the following system of
coupled differential equations for the quantities S(t), I(t),R(t), where b, c are constant para-
meters:

dS
dt
= −b IS

dI
dt
= b IS− c IR

dR
dt

= c IR

S(t) = no. of people “susceptible” to joining the network

I(t) = no. of “infected” people that have joined the network

R(t) = no. of “recovered” people that have left the network

(64)

Assuming equally-spaced time instants, tn = (n−1)T, where T is a small time-step, we may
approximate Eqs. (64) by the following system of discrete-time coupled difference equations,
where S(n) denotes the value S(tn):

S(n+ 1) = S(n)−TbI(n)S(n)
I(n+ 1) = I(n)+TbI(n)S(n)−Tc I(n)R(n)
R(n+ 1) = R(n)+Tc I(n)R(n)

(65)

These are obtained by approximating the derivatives in Eq. (64) as follows:

dS(tn)
dt

≈ S(n+ 1)−S(n)
T

We note that the sum S(t)+I(t)+R(t), or, S(n)+I(n)+R(n), in the discrete case, remains
independent of time. Let N denote this sum. Its value will depend on the assumed initial
conditions for S, I,R.

a. Let us test the model of Eq. (65) on the Myspace case first. The data file myspace.dat (pro-
vided with this set) contains Google weekly query data for the keyword “myspace”. Such
query data serve as proxies for the number I(t) of people that have joined the network at
time t. The data span the period from Jan. 2004 to Feb. 2014. The second column of the
data file contains 525 weekly query data points normalized so that the highest number is
100. The first column is the time in units of years, which can be parametrized as follows,
assuming 52 weeks per year:

tyear = 2004+ t
52
, t = 0,1,2, . . . ,524 , (t = time in weeks) (66)

The optimum values of the parameters b, c and the initial values S0, I0, R0 were estimated

‡Facebook has not disappeared because it keeps diversifying into different areas, as is necessary for all prod-
ucts/services to survive.

45

in the above paper by using a least-squares fitting method. The obtained values were:

N = 92.94

R0 = N · 7.19 · 10−3

I0 = N · 9.49 · 10−4

S0 = N − I0 −R0

and
β = 5.98 · 10−2 , b = β

N

ν = 2.68 · 10−2 , c = ν
N

The values of the parameters b, c assume that time was in units of weeks. However, in
plotting the results, the time scale will be in years as in Eq. (66). Starting with the initial
values, ⎡

⎢⎣ S(1)I(1)
R(1)

⎤
⎥⎦ =

⎡
⎢⎣ S0

I0
R0

⎤
⎥⎦

iterate Eq. (65) for n = 1 : 521, spanning in months the 10-year period from Jan. 2004 to
Jan. 2014. Since the time scale is months, we may choose the time step to be one month,
i.e., T = 1. However, we will use the value T = 1.02 which works much better in matching
the solutions of the two versions of Eqs. (64) and (65).†

Plot the iterative solution for I(n) versus time in years, and add the observed data on the
graph. The model describes the rise and fall of Myspace very well.

b. Based on the summary of Matlab differential equation solvers given in the Appendix, the
following Matlab function can be used to define the differential equation system (64),

f = @(t,z) [-b*z(2)*z(1); b*z(2)*z(1) - c*z(2)*z(3); c*z(2)*z(3)];

Using this function and defining the time-span to be the same as in part (a), that is,

tspan = 0:521;

integrate Eq. (64) and plot I(t) vs. t (in years), and add the solutions of part (a) on the
same graph, as shown below.

2004 2006 2008 2010 2012 2014
0

20

40

60

80

100

year

pe
rc

en
t

Myspace

 data
 model

2004 2006 2008 2010 2012 2014
0

20

40

60

80

100

year

pe
rc

en
t

Myspace − ODE version

 data
 model
 ode45

c. Next, load the Facebook data from the file facebook.dat, which span the period from Jan.
2006 to Feb. 2014. Again, the first column is the time in years, and the second are the

†this is equivalent to choosing T = 1 but changing slightly the values of b, c in (65)

46

observed values of the variable I. The optimum model parameters determined in the above
paper are in this case:

N = 94.5
R0 = N · 2.35 · 10−6

I0 = N · 6.43 · 10−5

S0 = N − I0 −R0

and
β = 3.36 · 10−2 , b = β

N

ν = 4.98 · 10−2 , c = ν
N

Repeat parts (a,b). However, now we wish to extrapolate the model into the future and
predict the status of Facebook to Jan. 2018. Therefore, we will iterate Eq. (65) over the
14-year span from Jan. 2004 to Jan. 2018, corresponding to the time index n = 1 : 729
months. The time vector in years is still defined by Eq. (66) with t going up to t = 728.
Again, use T = 0.02 for the time-step.

Plot the observed data, together with the calculated model prediction I(n) from Eq. (65),
but adjust the time scale to display only the years from Jan. 2006 to Jan. 2018.

Note that the model matches the observed data very well until the present time of Feb.
2014, and predicts a rapid downfall in the number of Facebook users beyond that.

Using appropriate relational operations, determine the time (month and year) at which the
value of I(n) will have fallen to 20 percent, and place it on the graph.

2006 2008 2010 2012 2014 2016 2018
0

20

40

60

80

100

year

pe
rc

en
t

Facebook

 data
 model
 20%

2006 2008 2010 2012 2014 2016 2018
0

20

40

60

80

100

year

pe
rc

en
t

Facebook − ODE version

 data
 model
 ode45

References

1. J. Cannarella and J. A. Spechler, “Epidemiological modeling of online social network dy-
namics”, arXiv: 1401.4208, http://arxiv.org/abs/1401.4208v1.

2. H. Hethcote, “The Mathematics of Infectious Diseases” SIAM Review, 42, 599 (2000).

3. Wikipedia, “Compartmental models in epidemiology,”
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

47

19. Growth Models

The logistic function, originally proposed by P. Verhulst in 1838, has been very successful
in describing the growth of populations of humans, plants and animals, algae, bacteria, and the
spread of diseases, such as SARS and Measles, as well as forecasting the growth and decline
of technology products, ideas, and innovations, viewing the economy and marketplace as an
“ecosystem”. It attempts to model the increase of populations under the constraint of limited
natural resources. The logistic function is also used in neural networks.

The logistic function, as well as some variants that often work better, are listed in the table
below, together with the differential equations from which they arise. The typical shape of these
growth curves is illustrated in the picture below (for the logistic case).

Model Function Differential Equation

Logistic y(t)= K
1+ e−r(t−t0)

dy
dt
= r y

[
1− y

K

]

Richards y(t)= K[
1+αe−r(t−t0)] 1

α

dy
dt
= r
α
y
[

1−
(
y
K

)α]

Pearl–Reed y(t)= K
1+Ae−r(t)

dy
dt
= ṙ(t) y

[
1− y

K

]

r(t)= r1t + r2t2 + r3t3 ṙ(t)= dr
dt
= r1 + 2r2t + 3r3t2

Gompertz y(t)= K exp
[
−e−r(t−t0)

] dy
dt
= −r y ln

(
y
K

)

Bass y(t)= pK 1− e−(p+q)t
p+ qe−(p+q)t

dy
dt
= [pK + qy]

[
1− y

K

]

(67)

where the parameters, K, r, t0,α,A, r1, r2, r3, p, q, are constants to be determined by data fit-
ting. The main feature of the differential equations is that they differ from a pure exponential
growth, dy/dt = r y, by having an effective growth rate that becomes smaller and smaller as
the population increases and it encounters limited resources, e.g., the effective growth rate of
the logistic case is reff = r(1−y/K), which becomes smaller as y increases towards its limiting
value of K.

The inflection point at t = t0 corresponds the maximum value of the derivative, i.e., the
maximum rate of growth. In particular, we have for the logistic, Richards, and Gompertz cases,

48

Logistic Richards Gompertz

y(t0)= K
2

y(t0)= K
[1+α] 1

α
y(t0)= K

exp(1)

dy(t0)
dt

= rK
4

dy(t0)
dt

= rK
[1+α] 1

α+1

dy(t0)
dt

= rK
exp(1)

(68)

We note that the logistic and Gompertz curves are special cases of the Richards curve for
the values α = 1 and α = 0, respectively. The Bass model, which is widely used in Marketing
Engineering, will be considered in greater detail in Example 20.

The basic strategy for fitting these growth curves to data is to define the growth function as
an anonymous MATLAB function of the desired parameters and time, and then apply the nlinfit
function. For example, with proper identification of the parameters c, these MATLAB functions
are,

f = @(c,t) c(1)./(1 + exp(-c(2)*(t-c(3)))); % Logistic
f = @(c,t) c(1)./(1 + c(4)*exp(-c(2)*(t-c(3)))).^(1/c(4)); % Richards
f = @(c,t) c(1)./(1 + c(2) * exp(-(c(3)*t + c(4)*t.^2 + c(5)*t.^3))); % Pearl-Reed
f = @(c,t) c(1)*exp(-exp(-c(2)*(t-c(3)))); % Gompertz

Given a set of observed data points (ti, yi), i = 1,2, . . . ,N, the estimated parameters are
obtained by

c = nlinfit(ti,yi,f,c0);

where the initial parameter vector can be estimated as follows:

[diff0,i0] = max(diff(yi)./diff(ti)); % maximum derivative
t0 = ti(i0); % inflection point
K0 = max(yi); % limiting level
r0 = 4*diff0/K0; % rate, from Eq.(11)
c0 = [K0; r0; t0]; % parameter vector (Logistic, Gompertz cases)

and in addition, set a = 1, in the Richards case, and, A = exp(r0t0), r2 = r3 = 0, in the Pearl-
Reed case. This fitting strategy will be applied to the following data files attached to this set,
with data sources and references therein:

(a) uspop.dat, uspred.dat US population and projections to 2060

(b) worldpop.dat UN projections of the world population to 2100

(c) yeast.dat growth of yeast cells

(d) algae.dat growth of algae

(e) measles.dat measles epidemic

(f) sars.dat SARS epidemic

(g) squash.dat growth of squash plant

(h) worldgdp.dat World GDP

(i) usgdp.dat United States GDP

a. Load the US population data from the file uspop.dat, as well as the US Census predictions
for 2015-2060 from the file uspred.dat. Fit the logistic model to the data in uspop.dat,
using all data with a starting date of 1790. Plot both the data, the fitted logistic curve, and
the predictions till 2060.

Next, fit the logistic model to the data in uspop.dat, using all data with a starting date of
1850, and repeat the above plots.

Finally, fit the Gompertz model to the data in uspop.dat, using all data with a starting date
of 1790, and generate a similar plot.

49

b. Load the World population data from the file worldpop.dat, and fit a logistic curve. Plot
the data and model curve till the year 2100. The nearly perfect fit of the logistic curve
makes it clear that the UN future projections are based on this model.

c. Fit a logistic model to the yeast data in yeast.dat and plot data and model on the same
graph.

d. Load the algae biomass data from the file algae.dat. First, fit a logistic model to the data
and plot the data and model on the same graph. Then, repeat the plot by fitting the data
to a Pearl-Reed model.

e. Fit the measles epidemic data, measles.dat, to both a logistic and a Richards model, and
in each case plot the data and model on the same graph.

f. Fit the SARS epidemic data, sars.dat, to all four models (Logistic, Richards, Pearl-Reed,
Gompertz), and in each case plot the data and model on the same graph. See example
graphs at end.

g. Fit the squash growth data, squash.dat, to all four models (Logistic, Richards, Pearl-Reed,
Gompertz), and in each case plot the data and model on the same graph. See example
graphs at end.

h. Fit the World GDP data, worldgdp.dat, to both a logistic and a Richards curve. Plot the
growth curves to the year 2100 and add the data to the graphs. Note how different the
future predictions are from the two methods—which one is right?

i. Repeat Part (h) for the US GDP data, usgdp.dat.

All graphs are shown after Example 20.

References

1. F. Cavallini, “Fitting a Logistic Curve to Data,” Coll. Math. J., 24, 247 (1993).

2. E. Rozema, “Epidemic Models for SARS and Measles,” Coll. Math. J., 38, 246 (2007).

3. A. Tsoularis and J. Wallace,“Analysis of Logistic Growth Models,” Math. Biosci., 179, 21
(2002).

4. R. Pearl, “The Growth of Populations,” Quart. Rev. Biol., 2, 532 (1927). See also,
R. Pearl and L. J. Reed, “Skew-Growth Curves,” Proc. Natl. Acad. Sci. 11, 16 (1925).

5. F. J. Richards, “A Flexible Growth Function for Empirical Use,” J. Exp. Botany, 10, 290
(1959).

6. P. Pflaumer, “Forecasting the U.S. Population with the Gompertz Growth Curve,” Proc. Joint
Statistical Meetings, Social Statistics Section, San Diego 2012, available online from:
https://eldorado.tu-dortmund.de/bitstream/2003/33580/1/P2012.pdf

7. G. P. Boretos, “The future of the global economy,” Technol. Forecasting & Soc. Change, 76,
316 (2009).

50

20. Bass Model in Marketing Engineering

The Bass model is the most influential model in marketing engineering for describing the
diffusion of innovations, that is, the introduction, acceptance, adoption, growth, and eventual
decline of new products, ideas, innovations, techniques, services, and procedures.

It is characterized by three parameters,m,p,q, wherem is the maximum number of potential
adopters or buyers of a product, and q,p represent growth rates of the so-called “imitators”
and “innovators”, where the former are influenced by the number of existing adaptors, while
the latter are not and decide independently of others to adopt a product. The mathematical
form of the model and the differential equation from which it arises are as follows:

N(t)=m 1− e−(p+q)t
1+ q

p
e−(p+q)t

,
dN(t)
dt

= p[m−N(t)]︸ ︷︷ ︸
innovators

+qN(t)
[

1− N(t)
m

]
︸ ︷︷ ︸

imitators

(69)

where t ≥ 0 measures the years since the introduction of the product, andN(t) is the cumulative
number of adaptors up to time t, and dN/dt represents the rate of adoption. Initially, we have
N(0)= 0 at t = 0. The function N(t) is an S-shaped curve resembling the logistic curve (see
example graphs at the end). In fact, if Eq. (69) is modified to allow a nonzero initial valueN(0),
then Eq. (69) becomes the logistic model in the limit p = 0. In practice, we typically have q� p.
More generally, the solution relating N(t) and N(t1) at an earlier time instant is:

N(t)=m
[
q+ pe−(p+q)(t−t1)]N(t1)+mp[1− e−(p+q)(t−t1)]
q
[
1− e−(p+q)(t−t1)]N(t1)+m[p+ qe−(p+q)(t−t1)] (70)

The derivative dN/dt is a bell-shaped curve and has a maximum corresponding to the in-
flection time t0 of N(t), as follows:

t0 = 1

q+ p ln

(
q
p

)
, N(t0)=m q− p

2q
,
dN(t0)
dt

=m (q+ p)2

4q
(71)

Eqs. (71) are very important to manufacturers because they determine the time t = t0 of
maximum rate of adoption of a product, to be followed by its subsequent decline at t > t0.

The model parameters m,p,q are determined by fitting the model to the observed sales
data. There exist several fitting methods, but here, we will use the least-squares method imple-
mented by nlinfit. This method requires that we provide initial estimates of the parameters,
say, m0, p0, q0. For m0, we may choose the maximum observed value of N(t). And if we have
estimates, say N0, Ṅ0 of N(t0) and dN(t0)/dt, then we may solve Eqs. (71) to obtain initial
estimates of p,q,

N0 =m0
q0 − p0

2q0
, Ṅ0 =m0

(q0 + p0)2

4q0
⇒ q0 = m0 Ṅ0

(m0 −N0)2
, p0 = Ṅ0 (m0 − 2N0)

(m0 −N0)2

(72)
Given column vectors of, say, K observed data pairs {ti,Ni, i = 1,2, . . . , K}, we can define

the model function of Eq. (69) as an anonymous MATLAB function of the parameters m,p,q
and t, then define initial estimates of the parameters, and obtain the solution as follows, where
the three parameters m,p,q are represented by the three components c(1), c(2), c(3) of the
parameter vector c,

f = @(c,t) c(1) *(1 - exp(-(c(2)+c(3))*t))./(1 + c(3)/c(2)*exp(-(c(2)+c(3))*t));

[Nd0,i0] = max(diff(Ni)./diff(ti)); % estimate the maximum of the derivative
N0 = Ni(i0); % estimate the value at inflection
m0 = max(Ni); % estimate the maximum level
q0 = m0*Nd0/(m0-N0)^2; % initial q and p
p0 = Nd0*abs(m0-2*N0)/(m0-N0)^2; % note the absolute value

51

c0 = [m0, p0, q0]’; % initial parameter vector

c = nlinfit(ti,Ni,f,c0); % fitted parameters

The data file, bass.dat, contains measured sales data for seven products: air conditioners,
color televisions, clothes dryers, ultrasound equipment, mammography facilities in hospitals,
foreign language schools, and accelerated learning programs. The data are from Ref. [2] below
and have served as benchmarks for evaluating different estimation methods of various diffusion
models, including the Bass model. Logistic models and their relatives, such as Richards and
Gompertz models, can also be used as diffusion of innovations models. See Ref. [5] below for
a comprehensive review.

a. Load the data file into MATLAB and, for each of the above seven cases, extract the corre-
sponding time and data vectors ti,Ni. Because some cases have different time lengths,
the data file has been padded with NaNs to fill the blanks, so that it can be loaded as a
whole into MATLAB. Before proceeding with each case, you must remove any potential
NaNs using, for example, the code,

Ni = Ni(~isnan(Ni)); % remove possible NaNs in some cases
ti = ti(~isnan(ti));
ti = ti-ti(1)+1; % define relative time, ti = 1,2,3,...

Determine the model parameters m,p,q for each case by following the above estimation
procedure based on nlinfit. Make a plot of the estimated model function f(c, t) vs. t
in the interval 0 ≤ t ≤ 15, and add the data points on the graph, and also indicate the
inflection point. The results of this estimation method are virtually identical to those of
Ref. [6] below. Print your results as follows:

product m p q
--
air conditioners 17.17 0.007439 0.426984
color televisions 38.31 0.016416 0.655472
clothes dryers 15.42 0.012171 0.360685
ultrasound devices 204.99 0.005830 0.423133
mammography hospitals 125.37 0.002290 0.651793
language schools 42.65 0.004871 0.549531
learning programs 65.94 0.000982 0.879754

b. Instead using the built-in function nlinfit, try a DIY approach that uses the built-in function
fminsearch to directly minimize the sum of squared errors. Given the K data pairs ti,Ni
and the model function f(c, t) defined above, the least-squares method minimizes the
following function of the parameter vector c :

J(c)=
K∑
i=1

[
Ni − f(c, ti)

]2 = min (73)

This function and its minimization using fminsearch can be easily implemented in MAT-
LAB, assuming that f(c, t) has already been defined and an initial search vector c0 has
been chosen:

J = @(c) sum((Ni - f(c,ti)).^2); % define least-squares function
c = fminsearch(J,c0); % find c that minimizes J(c)

Carry out this minimization procedure for each of the seven cases and compare your
results to those obtained in part (a).

52

c. Next, consider a discrete-time version of the Bass equation and its solution. Let the time
t be discretized in small equal steps T, that is, tn = nT, n = 0,1,2, . . . , and define the
quantities, Nn = N(tn), α = e−(p+q)T. Then, show that Nn satisfies the following non-
linear difference equation, to be iterated starting at a given initial value, N0 = N(0),

Nn+1 =m (q+ pα)Nn +mp(1−α)
q(1−α)Nn +m(p+ qα) (discrete-time Bass) (74)

for, n = 0,1,2, . . . , and show that its solution is given by,

Nn =m (q+ pαn)N0 +mp(1−αn)
q(1−αn)N0 +m(p+ qαn) , n = 0,1,2, . . . (75)

By setting p = 0 and redefining, r = q, α = e−rT, K = m, yn = Nn, y0 = N0, we obtain
also a discrete-time version of the logistic equation (see Example 19) and its solution,

yn+1 = Kryn
r(1−α)yn +Krα ⇒ yn = Kry0

r(1−αn)y0 +Krαn , n = 0,1,2, . . . (76)

Similarly, we have for the discrete-time version of the Gompertz equation and its solution,

yn+1 = K exp
[
e−rT ln

(
yn
K

)]
⇒ yn = K exp

[
e−rnT ln

(
y0

K

)]
, n = 0,1,2, . . .

(77)

There exist other methods for discretizing the Bass, logistic, and Gompertz equations, see
Ref. [7], that are based on first discretizing the corresponding differential equations and
then solving them as difference equations, whereas the methods outlined in Eqs. (74)–(77)
directly discretize the exact solutions of those differential equations.

References

1. F. M. Bass, “A New Product Growth Model for Consumer Durables,” Management Sci., 15(5),
215 (1969). http://www.jstor.org/stable/2628128

2. F. M. Bass, Comments on “A New Product Growth for Model Consumer Durables”: The Bass
Model, Management Sci., 50(12), 1833 (2004). http://www.jstor.org/stable/30046154

3. V. Mahajan, C.H. Mason, and V. Srinivasan, “An Evaluation of Estimation Procedures for
New Product Diffusion Models,” in V. Mahajan, Y. Wind (eds.), Innovation Diffusion Models
of New Product Acceptance, Ballinger Publishing Company, Cambridge, 1986, pp. 203.
https://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/340711

4. R. Peres, E. Muller, and V. Mahajan, “Innovation Diffusion and New Product Growth Models:
A Critical Review and Research Directions,” Intern. J. of Research in Marketing, 27 91
(2010).

5. N. Meade and T. Islam, “Modelling and Forecasting the Diffusion of Innovation—A 25-year
Review,” Intern. J. Forecasting, 22, 519 (2006).

6. D. Jukíc, “On Nonlinear Weighted Least Squares Estimation of Bass Diffusion Model,” Appl.
Math. Comput., 219, 7891 (2013).

7. D. Satoh, “A discrete Bass Model and Its Parameter Estimation,” J. Operations Research, Soc.
Japan, 44, 1 (2001); see also, D. Satoh and S. Yamada, “Discrete Equations and Software
Reliability Growth Models,” IEEE Proc. 12th Int. Symp. Software Reliability Engineering,
pp. 176-184, Nov. 2001.

53

Growth Models

1810 1850 1890 1930 1970 2010 2050
0

50

100

150

200

250

300

350

400

450
US population − logistic − start=1790

t (year)

m
il

li
on

s

f(t) =
K

1 + e−r(t−t0)

K = 483.12
r = 0.02086
t0 = 1984.80

 model
 data
 prediction
 inflection

1810 1850 1890 1930 1970 2010 2050
0

50

100

150

200

250

300

350

400

450
US population − logistic − start=1850

t (year)

m
il

li
on

s

f(t) =
K

1 + e−r(t−t0)

K = 541.65
r = 0.01934
t0 = 1996.53

 model
 data
 prediction
 inflection

1810 1850 1890 1930 1970 2010 2050
0

50

100

150

200

250

300

350

400

450
US population − Gompertz model

t (year)

m
il

li
on

s

f(t) = K exp
[
−e−r(t−t0)

]

K = 1353.81
r = 0.00616
t0 = 2074.15

 model
 data
 prediction

1950 2000 2050 2100
0

2

4

6

8

10

12
World population − logistic model

t (year)

bi
ll

io
n

s

f(t) =
K

1 + e−r(t−t0)

K = 11.39
r = 0.02938
t0 = 1994.67

 model
 data
 inflection

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

yeast growth − logistic model

t (hours)

ye
as

t
ce

ll
s

f(t) =
K

1 + e−r(t−t0)

K = 662.6627
r = 0.5495
t0 = 7.8068

 model, f(t)
 data
 inflection, t

0

54

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6
algae growth − logistic model

t (days)

al
ga

e
bi

om
as

s

f(t) =
K

1 + e−r(t−t0)

K = 5.0949
r = 0.1213
t0 = 45.7748

 model, f(t)
 data
 inflection, t

0

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6
algae growth − Pearl−Reed model

t (days)

al
ga

e
bi

om
as

s

f(t) =
K

1 + ea−(r1t+r2t2+r3t3)

K = 5.2245
a = 14.5795
r1 = 0.72744
r3 = −0.01287
r3 = 0.000086

 model, f(t)
 data

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

measles epidemic − logistic model

t (days)

m
ea

sl
es

 c
as

es

f(t) =
K

1 + e−r(t−t0)

K = 3201.7
r = 0.2672
t0 = 27.74

 model, f(t)
 data
 inflection, t

0

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

measles epidemic − Richards model

t (days)

m
ea

sl
es

 c
as

es

f(t) =
K

[
1 + α e−r(t−t0)

] 1
α

K = 2945.6
r = 0.7016
t0 = 29.66
α = 4.2226

 model, f(t)
 data
 inflection, t

0

0 10 20 30 40 50 60 70 80 90
0

400

800

1200

1600

2000
SARS epidemic − logistic model

t (days)

S
A

R
S

 c
as

es

f(t) =
K

1 + e−r(t−t0)

K = 1730.35
r = 0.1108
t0 = 20.98

 model, f(t)
 data
 inflection, t

0

0 10 20 30 40 50 60 70 80 90
0

400

800

1200

1600

2000
SARS epidemic − Richards model

t (days)

S
A

R
S

 c
as

es

K = 1753.35
r = 0.0849
t0 = 17.45
α = 0.2844

 model, f(t)
 data
 inflection, t

0

55

0 10 20 30 40 50 60 70 80 90
0

400

800

1200

1600

2000
SARS epidemic − Pearl−Reed model

t (days)

S
A

R
S

 c
as

es

f(t) =
K

1 + Ae−(r1t+r2t2+r3t3)

K = 1747.53
A = 15.3970
r1 = 0.16357
r3 = −0.00177
r3 = 0.000014

 model, f(t)
 data

0 10 20 30 40 50 60 70 80 90
0

400

800

1200

1600

2000
SARS epidemic − Gompertz model

t (days)

S
A

R
S

 c
as

es

f(t) = K exp
[
−e−r(t−t0)

]

K = 1767.52
r = 0.07486
t0 = 15.54

 model, f(t)
 data
 inflection, t

0

0 3 6 9 12 15 18 21 24 27 30
0

1000

2000

3000

4000

5000

6000
squash growth − Pearl−Reed model

t (days)

w
ei

gh
t

(g
ra

m
s)

f(t) =
K

1 + Ae−(r1t+r2t2+r3t3)

K = 5501.74
A = 1935.09
r1 = 1.01734
r3 = −0.03553
r3 = 0.000525

 model, f(t)
 data

0 3 6 9 12 15 18 21 24 27 30
0

1000

2000

3000

4000

5000

6000
squash growth − Richards model

t (days)

w
ei

gh
t

(g
ra

m
s)

f(t) =
K

[
1 + α e−r(t−t0)

] 1
α

K = 5379.38
r = 0.3392
t0 = 10.08
α = 0.2775

 f(t)
data
inflection

0 3 6 9 12 15 18 21 24 27 30
0

1000

2000

3000

4000

5000

6000
squash growth − logistic model

t (days)

w
ei

gh
t

(g
ra

m
s)

f(t) =
K

1 + e−r(t−t0)

K = 5281.94
r = 0.4526
t0 = 10.94

 f(t)
data
inflection

0 3 6 9 12 15 18 21 24 27 30
0

1000

2000

3000

4000

5000

6000
squash growth − Gompertz model

t (days)

w
ei

gh
t

(g
ra

m
s)

f(t) = K exp
[
−e−r(t−t0)

]

K = 5438.27
r = 0.29675
t0 = 9.62

 f(t)
data
inflection

56

1950 1980 2010 2040 2070 2100
0

50

100

150

200

250

300

350

400

World GDP − Logistic model

t (year)

tr
il

li
on

s
$

f(t) =
K

1 + e−r(t−t0)

K = 423.31
r = 0.03716
t0 = 2062.55

 model
 data
 inflection

1950 1980 2010 2040 2070 2100
0

50

100

150

200

250

300

350

400

World GDP − Richards model

t (year)

tr
il

li
on

s
$

f(t) =
K

[
1 + α e−r(t−t0)

] 1
α

K = 146.97
r = 0.39815
t0 = 2032.94
α = 11.4158

 model
 data
 inflection

1950 1980 2010 2040 2070 2100
0

5

10

15

20

25

30
United States GDP − Logistic model

t (year)

tr
il

li
on

s
$

f(t) =
K

1 + e−r(t−t0)

K = 23.58
r = 0.08731
t0 = 2002.96

 model
 data
 inflection

1950 1980 2010 2040 2070 2100
0

5

10

15

20

25

30
United States GDP − Richards model

t (year)

tr
il

li
on

s
$

f(t) =
K

[
1 + α e−r(t−t0)

] 1
α

K = 26.02
r = 0.07286
t0 = 2004.15
α = 0.7584

 model
 data
 inflection

57

Bass Model

0 5 10 15
0

2

4

6

8

10

12

14

16

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r
 (

m
il

li
on

s)

Bass model − air conditioners

 model
 data
 inflection

0 5 10 15
0

5

10

15

20

25

30

35

40

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r
 (

m
il

li
on

s)

Bass model − color televisions

 model
 data
 inflection

0 5 10 15
0

2

4

6

8

10

12

14

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r
 (

m
il

li
on

s)

Bass model − clothes dryers

 model
 data
 inflection

0 5 10 15
0

50

100

150

200

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r

Bass model − ultrasound devices

 model
 data
 inflection

0 5 10 15
0

20

40

60

80

100

120

140

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r

Bass model − mammography hospitals

 model
 data
 inflection

0 5 10 15
0

5

10

15

20

25

30

35

40

45

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r

Bass model − language schools

 model
 data
 inflection

58

0 5 10 15
0

10

20

30

40

50

60

70

t, years

cu
m

u
la

ti
ve

 n
u

m
be

r

Bass model − learning programs

 model
 data
 inflection

59

Appendix: MATLAB Differential Equation Solvers

MATLAB has several ordinary differential equation (ODE) solvers, such as ode45 or ode23,
descriptions of which can be found by the command ’doc ode23’. All higher-order ODEs can
be reformulated as a system of first-order ODEs of the form:

ż = f(t, z) (78)

where z is a column vector of time functions z(t) and ż denotes the time-derivative dz/dt. For
example, the system of Eqs. (52) in Example 16 is already first-order in the variables {x, vx, y, vy}.
It can be put into the form of Eq. (78) by defining the vector z by,

z =

⎡
⎢⎢⎢⎣
x
vx
y
vy

⎤
⎥⎥⎥⎦ ⇒ ż =

⎡
⎢⎢⎢⎣
ẋ
v̇x
ẏ
v̇y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

vx
−Dvxv
vy

g−Dvyv

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

vx

−Dvx
√
v2
x + v2

y

vy

−g−Dvy
√
v2
x + v2

y

⎤
⎥⎥⎥⎥⎥⎦ (79)

Because z(1), z(2), z(3), z(4) are identified as x, vx, y, vy, we can rewrite (79) in a form that
defines the vector-valued function f(t, z), allowing also for the time-variation of D:⎡

⎢⎢⎢⎢⎢⎣
ż(1)
ż(2)
ż(3)
ż(4)

⎤
⎥⎥⎥⎥⎥⎦ = ż = f(t, z)=

⎡
⎢⎢⎢⎢⎢⎣

z(2)

−D(t)z(2)√z(2)2+z(4)2

z(4)

−g−D(t)z(4)√z(2)2+z(4)2

⎤
⎥⎥⎥⎥⎥⎦ (80)

Assuming that the parameter g and the function D(t) have been previously defined, then
one can define the f(t, z) function in MATLAB as an anonymous function:

f = @(t,z) [z(2); -D(t)*z(2)*sqrt(z(2)^2 + z(4)^2); z(4); -g-D(t)*z(2)*sqrt(z(2)^2 + z(4)^2)];

Then, the solution of the differential equation (78) is obtained by the command:

[t,z] = ode45(f, tspan, z0);

where tspan specifies the integration time-span of the solution, for example, tspan = [0, tg] in
the skydiver case. The vector z0 specifies the initial values, for example, in the case of Eq. (54):

z0 =

⎡
⎢⎢⎢⎣

0
v0

0
0

⎤
⎥⎥⎥⎦ (81)

The output column vector of times t is generated by the solution, and z is a matrix, such that
its ith column, z(:, i) is the solution for the ith variable z(i), e.g., for the skydiver example, the
column vectors z(:,1), z(:,2), z(:,3), z(:,4) represent the solution vectors for x(t), vx(t), y(t),
vy(t) at the time vector t.

Often the differential equation to be solved has several additional parameters that need to
be set by the user, such as the quantities {A1,A2, t1, t2, ρ,C,m,g} of Example 17. There are
basically three ways to handle such parameters. Let the parameters be denoted by p1, p2,

1. If the function f(t, z) can be defined as a one-line anonymous function, then the para-
meters p1, p2, . . . , must be defined prior to defining the function f(t, z), as we did in the
above example:

% define the values of p1, p2, ..., here
% define f as anonymous function, parameters p1,p2,... may appear here

f = @(t,z) ... % define function handle and pass it to ode45
[t,z] = ode45(f, tspan, z0); % solution

60

2. Most likely the function and its parameter dependence cannot be defined as a single-line
anonymous function. In this case one may define the function f(t, z, p1, p2, . . .) in an
M-file, say f.m, with a syntax

zdot = f(t,z,p1,p2,...)

Then, the parameters can be passed into ode45 as follows:

% here f is the file name, and @f, the function handle

[t,z] = ode45(@f, tspan, z0, [], p1,p2,...);

where the [] argument is an empty options input and is placed there in order to allow the
passing of the additional parameters p1, p2, . . .

3. This is the simplest method. Suppose again that f(t, z, p1, p2, . . .) is defined in an M-file.
Then,

% define the values of p1, p2, ..., here
% define a new anonymous function g in terms of f and pass it into ode45

g = @(t,z) f(t,z,p1,p2,...); % g is a function handle
[t,z] = ode45(g, tspan, z0); % solution

The solutions to the skydiver/Example 17 illustrate all three methods. In that problem, the
differential equation function M-file is called fdot.m and is listed below. It implements Eq. (80)
and the time-variation of the area and drag constant of Eqs. (55) and (57), and has additional
parameters A1,A2, t1, t2, ρ,C,m,g:

% ---

function zdot = fdot(t,z, A1,A2,t1,t2,rho,C,m,g)

tmid = (t1+t2)/2;

A = (A2-A1)/2 * tanh((t-tmid)/(t2-t1)*10) + (A2+A1)/2; % area at time t

%A = A1*(t<=tmid) + A2*(t>tmid); % enable for part (e)

D = rho*C*A/2/m; % drag coefficient

v = sqrt(z(2)^2 + z(4)^2); % velocity magnitude

zdot = [z(2); -D*z(2)*v; z(4); g - D*z(4)*v]; % differential equation

% ---

In the main program, ode45 is called as follows to solve the differential equation:

% define the parameters A1,A2,t1,t2,rho,C,m,g, and tg and v0, here

tspan = [0,tg]; % time span
z0 = [0; v0; 0; 0]; % initial conditions

% using version-2:

[t,z] = ode45(@fdot, tspan, z0, [], A1,A2,t1,t2,rho,C,m,g);

% or, version-3:

61

gdot = @(t,z) fdot(t,z, A1,A2,t1,t2,rho,C,m,g); % new handle

[t,z] = ode45(gdot, tspan, z0);

% extract x,vx,y,vy solutions from z and plot them vs. t:

x = z(:,1); vx = z(:,2); y = z(:,3); vy = z(:,4);

figure; plot(t,x); % etc.

62

