
332:345 – Linear Systems & Signals – Spring 2021

Set 8 – Feedback Control System Examples – S. J. Orfanidis

Example – Radar Tracking Antenna

We briefly considered feedback control systems in set-2 including a thermostat model, which was a
nonlinear control system that could only be solved numerically, and a PID cruise control example
that could be solved analytically using Laplace transforms. Here, we discuss PID controllers further.

Consider a dish antenna sitting on a rotating base that can be rotated azimuthally by a drive motor
to track a flying aircraft. The dynamics of the rotating structure is described by the equations:

Jθ̈(t)= −βθ̇(t)+N(t)+Ndist(t)

where θ(t) is the azimuthal angle, N(t) is the torque applied by the drive motor, Ndist(t) is a
torque due to disturbances such as wind gusts or steady wind noise, J is the moment of inertia
of the structure, and β is a frictional constant that quantifies an opposing frictional torque that is
proportional to the angular velocity θ̇.

It is desired to design a control system that generates an appropriate torque N(t) such that the
angle θ(t) will follow a desired reference angle θref(t), that is, θ(t)→ θref(t).

For example, if one wishes to point the antenna towards a given angle θ1, then, θref(t)= θ1u(t).
To point initially towards θ1 and t0 seconds later to point towards θ2, one would choose θref(t)=
θ1u(t)+(θ2 − θ1)u(t − t0). Similarly, to track a uniformly moving aircraft, one would choose the
ramp function θref(t)=ω0 tu(t), or, more correctly, θref(t)= arctan

(
ω0 t

)
u(t).

By some redefinitions, the above system can be replaced by the following standardized form
where the output y(t) represents θ(t), and f(t), fdist(t) represent the torque inputsN(t),Ndist(t),

ÿ(t)= −aẏ(t)+f(t)+fdist(t) � Y(s)= G(s)[F(s)+Fdist(s)
]

(1)

where the system transfer function is,

G(s)= 1

s(s+ a) (2)

The control system is implemented as the feedback system shown below,

where the overall reference input r(t) represents the desired reference angle θref(t), and the con-
troller Gc(s) is designed to generate the appropriate torque input f(t) to make the system follow
the reference input, i.e., y(t)→ r(t), or for the tracking error signal, e(t)= r(t)−y(t)→ 0.

In this set, you will design a PID controller† and experiment with its settings, and also investigate
its tracking ability and its robustness in the presence of disturbance inputs. The PID controller has
the transfer function:

Gc(s)= kp + kis + kds (PID controller) (3)

First, show that the overall transfer relationships from the two inputs R(s), Fdist(s) to the two
outputs Y(s) and E(s) are as follows:

Y(s) = H(s)R(s)+Hdist(s)Fdist(s)

E(s) = Herr(s)R(s)−Hdist(s)Fdist(s)
(4)

†Proportional-Integral-Derivative controller, see also Example-10 of set-2. See also the “MATLAB control systems tuto-
rial” and the “Control Theory Applications with Matlab” web links on Sakai Resources.
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where,

H(s) = Gc(s)G(s)
1+Gc(s)G(s) =

kds2 + kps+ ki
s3 + (a+ kd)s2 + kps+ ki = closed-loop

Herr(s) = 1

1+Gc(s)G(s) =
s2(s+ a)

s3 + (a+ kd)s2 + kps+ ki = error

Hdist(s) = G(s)
1+Gc(s)G(s) =

s
s3 + (a+ kd)s2 + kps+ ki = disturbance

(5)

Regarding the choice of the PID parameters kp, ki, kd, we note the following:

• Increasing kp will decrease the rise time but increase the overshoot.

• Increasing ki will increase the overshoot and the settling time and
decrease the rise time.

• ki must be nonzero in order to guarantee zero steady-state error, i.e.,
e(t)→ 0, for both step and ramp inputs.

• Increasing kd will decrease the overshoot and the settling time.

The steady-state tracking error due to a particular reference input r(t) can be calculated with the
help of the final-value theorem of Laplace transforms, that is,

lim
t→∞e(t)= lim

s→0

[
sE(s)

] = lim
s→0

[
sHerr(s)R(s)

] = lim
s→0

[
s3(s+ a)R(s)

s3 + (a+ kd)s2 + kps+ ki

]
(6)

For a step input r(t)= u(t), or a ramp input r(t)= tu(t), we have R(s)= 1/s, or R(s)= 1/s2,
respectively, and for these Eq. (6) implies that the tracking error will be zero provided ki �= 0.

Digital Control

The corresponding digital control system, and its equivalent transfer function description in which
the D/A converter has been replaced by a zero-order hold, are shown below:
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The discrete-time operation can be obtained by sampling all the signals in the middle figure at
a sampling interval T. Assuming that the discrete controller has transfer function Gc(z)= G∗c (s),
then, the corresponding z-domain transfer functions of the feedback system are obtained as follows:

Gzoh(s) = 1− e−sT
s

Y(s) = G(s)[Gzoh(s)F∗(s)+F∗dist(s)
]

F(s) = Gc(s)E∗(s)= Gc(s)
[
R∗(s)−Y∗(s)]

and taking the starred-Laplace transforms,†

Y∗(s) = [G(s)Gzoh(s)
]∗F∗(s)+G∗(s)F∗dist(s)

F∗(s) = G∗c (s)
[
R∗(s)−Y∗(s)]

Denoting, Gd(z)=
[
G(s)Gzoh(s)

]∗
, and, G(z)= G∗(s), Y(z)= Y∗(s), etc., we may rewrite the

above as,
Y(z) = Gd(z)F(z)+G(z)Fdist(z)

F(z) = Gc(z)
[
R(z)−Y(z)]

which leads to the feedback discrete-time transfer functions:

Y(z)= Hd(z)R(z)+Hdist(z)Fdist(z) (7)

Hd(z) = Gc(z)Gd(z)
1+Gc(z)Gd(z) = closed-loop

Hdist(z) = G(z)
1+Gc(z)Gd(z) = disturbance

(8)

where the discrete-time transfer functions Gd(z),G(z) are defined by,

Gd(z) = Z
[
Gzoh(s)G(s)

] = [Gzoh(s)G(s)
]∗∣∣∣∣

z=esT

G(z) = Z[G(s)] = G∗(s)
∣∣∣∣
z=esT

(9)

Using the techniques of set-6, show that they are given by the following expressions,

Gd(z) = (aT + e−aT − 1)z−1 + (1− e−aT − aTe−aT)z−2

a2(1− z−1)(1− e−aTz−1)

G(z) = (1− e−aT)z−1

a(1− z−1)(1− e−aTz−1)

(10)

and, for Gc(z), we may replace in Gc(s) the integrator part by the trapezoidal rule, and the differ-
entiation part by the backward Euler rule, that is,

Gc(s) = kp + kis + kds = analog PID controller

⇓
Gc(z) = kp + kiT

2

(
1+ z−1

1− z−1

)
+ kd
T
(1− z−1)= discrete PID controller

(11)

†recalling the properties that, in general,
[
G1G2

]∗ �= G∗1 G∗2 , but,
[
G1G∗2

]∗ = G∗1 G∗2
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Experiments

With the above background information, please carry out the following experiments.

(a) Starting with the parameter values,

a = 2, kp = 10, ki = 5, kd = 3 (12)

construct the transfer function objects for the system G(s), controller Gc(s), closed-loop feed-
back system H(s), tracking error Herr(s), and disturbance transfer function Hdist(s), using, for
example, the MATLAB code:

a = 2; kp = 10; ki = 5; kd = 3;
s = tf(’s’);
G = 1/(s*(s+a));
Gc = kp + ki/s + kd*s;
H = minreal(Gc*G/(1+Gc*G));
Herr = minreal(1/(1+Gc*G));
Hdist = minreal(G/(1+Gc*G));

where the minreal function removes any possible common factors from the numerator and
denominator transfer functions, resulting in a minimal realization—this happens for example in
the case ki = 0 in which some s factors can be canceled.

First, determine the poles of the closed-loop transfer function H(s) and from the pole lying
closest to the imaginary axis on the s-plane, calculate the 40-dB time constant ofH(s). Note that
the poles can be determined by using the function roots or pzmap, e.g.,

p = roots(H.den{1}); % H.den{1} is the vector of denominator coefficients of H(s)
p = pzmap(H);

Next, define t as a vector of 1001 equally-spaced time samples spanning the interval 0 ≤ t ≤ 20.
Using the lsim function, calculate and plot the unit-step response of H(s) over this time range.
Is the observed transient time consistent with the 40-dB time constant? You may find it useful
to define the unit-step function as,

u = @(t) double(t>=0);

Then, increase the PID parameters by doubling their values one at a time, and plot the corre-
sponding step responses, and comment on the effect of such changes.

(b) For the parameter values defined in Eq. (12), and for the same time range as in part (a), gener-
ate the following four reference input signals describing the typical reference angle situations
mentioned in the introduction.

r(t) = u(t)+u(t − 10) (switches from r = 1 to r = 2 at t = 10)

r(t) = 0.1 t u(t) (uniformly moving aircraft)

r(t) = arctan(0.1 t)u(t) (uniformly moving with correct angle)

r(t) =

⎧⎪⎪⎨
⎪⎪⎩

0.04 t , 0 ≤ t ≤ 10

−2+ 0.69 t − 0.07 t2 + 0.0025 t3 , 10 ≤ t ≤ 14 (accelerating)
0.8+ 0.2 (t − 14) , 14 ≤ t ≤ 20

(13)

The fourth case, emulates a situation where the aircraft is moving at constant speed until t = 10
and then between t = 10 and t = 14, it accelerates to a new speed. The expression between
10 ≤ t ≤ 14 is the cubic Hermite interpolation polynomial (see z-transform file sztable.pdf on
Sakai) that interpolates smoothly between the two speeds.

For each of the four r(t) inputs, compute the corresponding output y(t) of the closed-loop
system H, using the function lsim, as follows
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y = lsim(H,r,t);

On the same graph, plot both y(t) and r(t) with different linestyles, observing whether the
controlled system is capable of following the desired input reference setting. On a separate
graph, plot the tracking error signal e(t) versus t.

For the particular case of the ramp input r(t)= 0.1tu(t), set temporarily ki = 0, and recompute
and plot the system output y(t) and error e(t), noting that the steady-state error e(t) is no
longer zero, although the slope of the output does follow the slope of the reference input. After
this part, set ki back to its non-zero value.

(c) Because of the difficulty in implementing the derivative term kds of the PID controller, the fol-
lowing modified variant is often used:

Gc(s)= kp + kis +
kds
τs+ 1

(14)

where τ is a very small quantity. In this case, the closed-loop transfer function becomes,

H(s)= (kd + τkp)s2 + (kp + τki)s+ ki
τs4 + (τa+ 1)s3 + (a+ kd + τkp)s2 + (kp + τki)s+ ki (15)

Set τ = 0.05 and use the PID parameters of Eq. (12).

Determine the transfer function Hf(s) from the overall input r(t) to the controller’s torque
output f(t) and for all four choices of r(t) of Eq. (13), compute the torque f(t) and plot it
versus t.† This will give you a sense of the actual input being applied to the controlled system
G(s) that causes it to follow the reference input r(t). Set τ = 0 after this part is complete.

(d) Here, you will investigate how the controlled system responds to a disturbance. Consider two
types of disturbances, one imitating a wind gust lasting for a brief period of time, say, 4 ≤ t ≤ 6,
and the other imitating steady wind noise. They can be generated by the following MATLAB code,
for the same length-1001 vector of t’s that you defined in part (a),

fdist = 2*(u(t-4)-u(t-6)); % wind gust

seed=2016; rng(seed); % initialize random number generator
fdist = randn(size(t)); % zero-mean, unit-variance noise

For each type of disturbance, compute the corresponding system output using the disturbance
transfer function Hdist, and add it to the previously obtained output from each of the four ref-
erence signals r(t) to get the total system output:

ydist = lsim(Hdist,fdist,t);
y = lsim(H,r,t);
ytot = y + ydist;

For each of the resulting eight cases (2 disturbances× 4 reference signals), plot the signals ytot(t)
and r(t) on the same graph, observing how the system recovers (or not) from the disturbance.

(e) Next, you will study the behavior of the discrete PID control system, described by Eqs. (8) and
(10). For this part, you may ignore the disturbance input. A reasonable initial choice for the
discretization sampling time interval Ts is to choose it to be a small fraction of the effective
time constant of the closed-loop system H. The time constant is the the inverse of the smallest
damping constant and can be obtained with the help of the function pzmap:

†MATLAB will complain if you tried to do this part with τ = 0.
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p = pzmap(H); % poles of H
teff = 1/abs(max(real(p))); % effective time constant
Ts = teff/20; % initial choice of Ts

The zero-order hold discretization of the system G(s) is given by Eq. (10), but it can be obtained
also using the c2d function:

T = Ts; % to be changed later to T = Ts/2, 2*Ts, 3*Ts
Gd = c2d(G,T); % ZOH discretization by default

The discrete PID controller Gc(z) of Eq. (11) and the discrete feedback transfer function Hd(z)
can be constructed by the code:

z = tf(’z’);
Gc = kp + ki*T*(z+1)/(z-1)/2 + kd*(z-1)/z/T;
Hd = feedback(Gc*Gd,1);

The time vector t must now be resampled at multiples of the chosen interval T, that is, tn = nT,
and in order for it to span the interval 0 ≤ t ≤ 20, we must redefine:

tn = 0:T:20;

Using this new vector of t’s, construct the discrete-time reference inputs:

rn = u(tn)+2u(tn − 10)

rn = 0.1 tn

rn = arctan
(
0.1 tn

)

and compute the output yn of the discrete closed-loop system:

yn = lsim(Hd,rn);
% yn = filter(Hd.num{1}, Hd.den{1}, rn); % alternative evaluation of yn

On the same graph, plot yn versus the sampled time tn, together with the output y(t) of the
continuous-time system computed in the previous parts using the original length-1001 time
vector t, that is,

figure; plot(tn,yn,’r-’, t,y,’b-’);

Compare the outputs of the discrete and continuous time systems.

(f) Repeat part (e) using the alternative choices of the interval T:

T = 1

2
Ts , T = 2Ts , T = 3Ts

And discuss the improvement or deterioration of the expected response.
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Typical Outputs
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Example – PI Control of Inverted Pendulum

The inverted pendulum provides a simple model for many applications, such as walking and standing
of humans and upright animals, walking robots, rockets during liftoff, stabilizing tall buildings,
transporting large vertical objects, and the Segway self-balancing two-wheeled vehicle [1–10].

The present discussion is based on Sect. 4.12 of the SSTA text. The inverted pendulum, depicted
below, consists of a mass m concentrated at the end of a (weightless) rod of length L whose other
end is connected to a frictionless pivot hinge on a cart moving with acceleration ẍ(t). By controlling
ẍ(t), the pendulum can remain stable in its upside-down position.

The picture on the right shows the pendulum in a coordinate frame in which the cart is at rest and
the mass is subjected to the negative acceleration, −ẍ(t). That acceleration together with gravity g,
projected along a direction perpendicular to the rod, induce a net torque, τ =mL(g sinθ− ẍ cosθ),
that tends to rotate the pendulum. The resulting equation of motion is,

mL2 θ̈ = τ =mL(g sinθ− ẍ cosθ) ⇒ θ̈ = g
L

sinθ− ẍ
L

cosθ (16)

For small deviations θ from the vertical, Eq. (16) can be linearized by making the small-angle
approximations, sinθ ≈ θ, and, cosθ ≈ 1− 1

2θ
2 ≈ 1, resulting in,

θ̈ =ω2
0 θ−

ẍ
L
, ω0 =

√
g
L

(17)

whereω0 is the natural frequency of oscillation of a pendulum in its stable hanging-down position.
In the absence of ẍ, Eq. (17) is unstable since its solution is a linear combination of the normal modes,
eω0t, e−ω0t, the first of which is unstable for t → +∞. The transfer function of the LTI system (17)
from the input x(t) to the output θ(t), is obtained using Laplace transforms,

G(s)= − s2/L
s2 −ω2

0
(18)

The instability of the system is also evident from Eq. (18) by noting thatG(s) has poles at s =ω0

and s = −ω0, the first of which lies in the right-half s-plane. The system can be stabilized by feeding
back the output signal θ(t) through a properly chosen controller Gc(s), as shown below.

In this example, we will use a PID controller of the following PI form, where L is a common factor
introduced for convenience that multiplies both kp, ki,

Gc(s)= kpL+ kiLs (19)
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The closed-loop transfer function from x(t) to θ(t), as well as the transfer function from x(t)
to the pendulum’s effective input e(t), are given by,

H(s) = Θ(s)
X(s)

= G(s)
1+Gc(s)G(s) =

s2/L
(kp − 1)s2 + ki s+ω2

0

He(s) = E(s)
X(s)

= 1

1+Gc(s)G(s) = −
s2 −ω2

0

(kp − 1)s2 + ki s+ω2
0

(20)

By proper selection of the PI gains kp, ki, the above transfer functions can stabilized with their
poles lying strictly in the left-hand s-plane. For example, in order to place the closed-loop poles at
the negative-real locations, s = −α1 and s = −α2, with α1,α2 arbitrary positive numbers, one can
determine the gains kp, ki by requiring the identity in s,

(kp − 1)s2 + ki s+ω2
0 ≡ (kp − 1)(s+α1)(s+α2)

which leads to the following solution for kp, ki in terms of the given α1,α2,

kp = 1+ ω2
0

α1α2

ki =ω2
0

(
1

α1
+ 1

α2

) (21)

With these choices for kp, ki, the transfer functions (20) read,

H(s) = α1α2

Lω2
0

s2

(s+α1)(s+α2)

He(s) = −α1α2

ω2
0

s2 −ω2
0

(s+α1)(s+α2)

(22)

Experiments

(a) Assuming α1 �= α2, show that the angle response θ(t), and the effective input e(t), due to a
sudden unit-step shift in position, x(t)= x0u(t), are given as follows, for t ≥ 0,

θ(t) = x0α1α2

Lω2
0(α1 −α2)

[
α1e−α1t −α2e−α2t

]

e(t) = x0 − x0

ω2
0(α1 −α2)

[
α2(α2

1 −ω2
0)e−α1t −α1(α2

2 −ω2
0)e−α2t

] (23)

so that the pendulum angle θ(t) asymptotically tends to the vertical position, θ = 0, while the
effective input e(t) becomes a unit-step, like the x(t) input.

(b) Forα1 �= α2, show that the angle response θ(t), and the effective input e(t), due to a uniformly
moving cart, x(t)= v0 tu(t), are given as follows, for t ≥ 0,

θ(t) = v0α1α2

Lω2
0(α1 −α2)

[
e−α2t − e−α1t

]

e(t) = v0 t − v0(α1 +α2)
α1α2

+
v0

[
α2

2(α
2
1 −ω2

0)e−α1t −α2
1(α

2
2 −ω2

0)e−α2t
]

α1α2ω2
0(α1 −α2)

(24)

so that, again, θ(t) stabilizes at the vertical θ = 0 position, while e(t) follows the uniformly
moving input x(t) up to a delay.
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(c) For α1 �= α2, and a uniformly accelerating cart, x(t)= 1
2a0t2u(t), show that the angle response

θ(t), and the effective input e(t), are given as follows, for t ≥ 0,

θ(t) = θ0 + θ0

α1 −α2

[
α2e−α1t −α1e−α2t

]

e(t) = 1

2
a0 t2 − v1 t + x1 −

a0

[
α3

2(α
2
1 −ω2

0)e−α1t −α3
1(α

2
2 −ω2

0)e−α2t
]

α2
1α

2
2ω

2
0(α1 −α2)

θ0 = a0

g
, v1 = a0(α1 +α2)

α1α2
, x1 = a0

(
1

α2
1
+ 1

α2
2
+ 1

α1α2
− 1

ω2
0

)
(25)

We note that asymptotically, θ(t)→ θ0, so that the equilibrium angle is slightly off the vertical.
This can be understood from the acceleration diagram above in which the torque becomes zero
when the acceleration due to gravity and that due to ẍ = a0 cancel each other, which happens at
an angle θ0 such that,

g sinθ0 − ẍ cosθ0 = 0 ⇒ tanθ0 = ẍ
g
= a0

g

or, using the small-angle approximation, tanθ0 ≈ θ0, we have, θ0 = a0/g.

(d) With α1 �= α2, suppose that the cart is moving back and forth sinusoidally with a frequency ω,
that is, x(t)= A sin(ωt)u(t), then we expect that in the steady state, the inverted pendulum
will also be oscillating with the same frequency about the vertical position θ = 0. Noting that,
sin(ωt)= Im

[
ejωt

]
, show that in this case the angle θ(t) is given by the following expression,

where the last two terms of θ(t) represent the transients and the first term, the steady state,

x(t) = A sin(ωt)= A Im
[
ejωt

]

θ(t) = Aα1α2

Lω2
0

Im
[
Rejωt +R1e−α1t +R2e−α2t

]

R = (iω)2

(α1 + jω)(α2 + jω)

R1 = α2
1

(α1 −α2)(α1 + jω)

R2 = α2
2

(α2 −α1)(α2 + jω)

(26)

(e) Repeat parts (a–d) when α1,α2 are equal, say, α1 = α2 ≡ α > 0.

(f) Consider the following numerical values,

ω0 = 1 , L = 1 , α1 = 3 , α2 = 2

x0 = 0.5 , v0 = 1 , a0 = 1 , A = 1 , ω = 2

Calculate the values of the PI gains kp, ki.
Calculate and plot the signalsθ(t), e(t) for the four cases (a–d) using the exact formulas Eq. (23)–
(26), over the time interval, 0 ≤ t ≤ 10, with a time step of T = 0.01.

Moreover, using the transfer functions of Eq. (22), calculate the same signals θ(t), e(t) using
the built-in function, lsim, and verify that they are essentially the same as the exact ones.

In the sinusoidal case, observe how the effective input e(t) to the pendulum oscillates with
a phase difference of 180o with respect to θ(t), that is, when the cart swings to the left, the
pendulum swings to the right, and conversely — see last graph.
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The typical MATLAB code for part (e), using LSIM, is as follows.

w0 = 1; L = 1; a1 = 3; a2 = 2;
x0 = 1/2; v0 = 1; a0 = 1; A = 1; w = 2;
g = L*w0^2;

kp = 1 + w0^2/a1/a2;
ki = w0^2*(1/a1+1/a2);

s = tf(’s’); % class tf
G = -s^2/L/(s^2-w0^2); % open-loop transfer function
Gc = kp*L + ki*L/s; % PI controller
H = G/(1+Gc*G); % closed-loop, can also do, H = feedback(G,Gc);
He = 1/(1+Gc*G); % equivalently, He = feedback(1,Gc*G);

t = linspace(0,10,1001); % time-step, T = 10/1000 = 0.01

x = x0*ones(size(t)); % unit-step input
% x = v0*t; % ramp input, uncomment as necessary
% x = 1/2*a0*t.^2; % uniform acceleration
% x = A*sin(w*t); % sinusoidal input

y = lsim(H,x,t); % closed-loop output, theta(t)
e = lsim(He,x,t); % effective input, e(t)

figure; plot(t,y,’b-’);
figure; plot(t,e,’r-’);

The above graphs don’t display the LSIM outputs because they are virtually identical to the exact
ones.
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