
332:345 – Linear Systems & Signals – Spring 2021

Set 1 – Convolution Examples – S. J. Orfanidis

Overview

The output† y(t) of an LTI system with impulse response h(t) and input x(t) is given by the
convolution between h(t) and x(t), denoted by, y(t)= h(t)∗x(t), and defined by the following
integrals, which, for later convenience, we will refer to them as the direct and the LTI forms of
convolution, the latter name arising from the derivation of convolution from the assumed linearity
and time-invariance properties of the system,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′︸ ︷︷ ︸

direct form

=
∫∞
−∞
x(t′)h(t − t′)dt′︸ ︷︷ ︸

LTI form

(1)

In this set we discuss a number of convolution examples done by the method presented in class,
that is, first determining the range of the output time t, and then, determining the proper limits of
integration over t′. These limits depend on the value of t and whether one uses the direct or the LTI
forms in Eq. (1). This method usually results in a unified expression that is valid for all the output
times t. One can then specialize the expression to the various time subintervals that are relevant in
each problem. In some cases, we will also discuss the flip-and-slide method, which is intuitive but
less convenient.

The starting point of the class method is to write down the two inequalities on t′ and t− t′ that
enforce the time constraints of the given functions h(t) and x(t). Then, one solves the inequalities
for t, and then for t′. In particular, let us assume that h(t) and x(t) are nonzero over the intervals:

h(t) , a ≤ t ≤ b
x(t) , c ≤ t ≤ d

where a,b, c, d may be positive or negative or even ±∞. Working with the direct form in Eq. (1) we
have the following inequalities, since t′ is the argument of h(t′), and t−t′, the argument of x(t−t′),

a ≤ t′ ≤ b
c ≤ t − t′ ≤ d

a+ c ≤ t ≤ b+ d
⇒ a ≤ t′ ≤ b

−d ≤ t′ − t ≤ −c ⇒ a ≤ t′ ≤ b
t − d ≤ t′ ≤ t − c ⇒

a+ c ≤ t ≤ b+ d
max(a, t − d)≤ t′ ≤ min(b, t − c) ⇒ y(t)=

∫ min(b,t−c)

max(a,t−d)
h(t′)x(t − t′)dt′ (2)

where we obtained the range of the output t by adding them up, that is, a+c ≤ t ≤ b+d, and then we
flipped the second one around and solved for t′. The two inequalities for t′ must be simultaneously
satisfied, hence the min/max limits. Similarly, working with the LTI form, we have the constraints,

c ≤ t′ ≤ d
a ≤ t − t′ ≤ b ⇒ c ≤ t′ ≤ d

−b ≤ t′ − t ≤ −a ⇒ c ≤ t′ ≤ d
t − b ≤ t′ ≤ t − a ⇒

a+ c ≤ t ≤ b+ d
max(c, t − b)≤ t′ ≤ min(d, t − a) ⇒ y(t)=

∫ min(d,t−a)

max(c,t−b)
h(t − t′)x(t′)dt′ (3)

for a+c ≤ t ≤ b+d. The min/max functions switch from one of their arguments to the other when
the arguments are equal. For the expression in Eq. (2), the max-function switches when a = t − d,
or, t = a+ d, and the min-function, when b = t − c, or, t = b+ c. These define three subintervals,
over which Eq. (2) simplifies. The switch points and subintervals are the same for Eq. (3). These
operations are illustrated in the examples below.
†assuming zero initial conditions

1

Example 1

Consider the input signal x(t) and the system h(t) of SSTA Example 2.5:

x(t) = u(t)−u(t − td)=
⎧⎨
⎩1 , 0 ≤ t ≤ td

0 , otherwise
= rectangular pulse of duration td

h(t) = ae−atu(t) ⇒ H(s)= a
s+ a = transfer function

shown below with a = 2 and td = 1. Compute their convolution, y(t)= h(t)∗x(t), also shown
below, in the following three ways:

(a) By the class method of using inequalities to determine the time range of the output y(t),
and the proper range of integrations, including the switch points. Use the direct form of
convolution in this part. Then, repeat using the LTI form of convolution. Verify that the two
forms of convolution give rise to the same answer for y(t).

(b) Using the flip-and-slide method by flipping x(t) and sliding it over h(t). Carry out the required
computations by integration. MATLAB code to animate the sliding process is included below.

(c) Repeat part (b), but now flip h(t) and slide it over x(t), as is done in the SSTA text.

−1 0 1 2 3
0

1

2

t

h(t), x(t)

 input x(t)
 system h(t)

−1 0 1 2 3
0

1

2

t

x(t), y(t)

 input x(t)
 output y(t)
 switch pts

Solution

Part (a)

We start by setting up the inequalities constraining t, t′, as implied by the definitions of x(t), h(t)
in the direct-form of convolution,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

0 ≤ t′ <∞
0 ≤ t − t′ ≤ td

0 ≤ t <∞
⇒

0 ≤ t′ <∞
−td ≤ t′ − t ≤ 0 ⇒

0 ≤ t′ <∞
t − td ≤ t′ ≤ t

max(0, t − td) ≤ t′ ≤ t
or, finally,

0 ≤ t <∞
max(0, t − td) ≤ t′ ≤ t

2

since x(t) is equal to 1 over its support range, the above convolution integral becomes,

y(t)=
∫ t

max(0,t−td)
h(t′)·1dt′ =

∫ t
max(0,t−td)

ae−at
′
dt′ =

[
−e−at′

]t′=t
t′=max(0,t−td)

Evaluating the integral, we find for, 0 ≤ t <∞,

y(t)= e−amax(0,t−td) − e−at =
⎧⎨
⎩1− e−at , 0 ≤ t ≤ td
e−a(t−td) − e−at , t ≥ td

(4)

with the two pieces joining continuously at the switch point, t = td. Repeating for the LTI form of
convolution, we must evaluate the expression,

y(t)=
∫∞
−∞
x(t′)h(t − t′)dt′

and the corresponding inequality constraints are now,

0 ≤ t′ ≤ td
0 ≤ t − t′ <∞

0 ≤ t <∞
⇒

0 ≤ t′ ≤ td
−∞ < t′ ≤ t

0 ≤ t′ ≤ min(t, td)

or, finally,
0 ≤ t <∞

0 ≤ t′ ≤ min(t, td)

the convolution integral becomes now,

y(t)=
∫ min(t,td)

0
h(t − t′)dt′ =

∫ min(t,td)

0
ae−a(t−t

′)dt′′ =
[
e−at eat

′
]t′=min(t,td)

t′=0

Evaluating the integral, we find for, 0 ≤ t <∞,

y(t)= e−at
[
eamin(t,td) − 1

]
=
⎧⎨
⎩1− e−at , 0 ≤ t ≤ td
e−a(t−td) − e−at , t ≥ td

(5)

which matches the answer given in Eq. (4).

Part (b)

Here, we flip the signal x(t′) and slide it over h(t′), that is, reflect it about the origin so that,
x(t′)→ xR(t′)= x(−t′), as shown in the upper left figure on the next page labeled t = 0. The
flipped sliding signal is represented at each time instant t by the delayed signal xR(t′ − t) viewed
as a function of t′,

y(t)=
∫∞
−∞
x(t − t′)h(t′)dt′ =

∫∞
−∞
xR(t′ − t)h(t′)dt′

When t < 0, xR(t′ − t) and h(t′) do not overlap as shown in the upper-right graph on the next
page, i.e., their product is zero, so that y(t)= 0 in this case.

When, 0 ≤ t ≤ td = 1, there is partial overlapping as shown in the bottom-left graph on the next
page, and in this case the overlapped area determines the limits of integration to be from, t′ = 0,
to, t′ = t, resulting in,

y(t)=
∫ t

0
ae−at

′
dt′ = 1− e−at , 0 ≤ t ≤ td

3

When, t ≥ td = 1, there is full overlapping as shown in the bottom-right graph below, and in
this case the overlapped area determines the limits of integration to be from, t′ = t − td, to, t′ = t,
resulting in,

y(t)=
∫ t
t−td

ae−at
′
dt′ = e−at[eatd − 1

] = e−a(t−td) − e−at , t ≥ td

−2 −1 0 1 2 3
−1

0

1

2

tt−1

t’

t = 0

−2 −1 0 1 2 3
−1

0

1

2

tt−1

t’

t < 0

−2 −1 0 1 2 3
−1

0

1

2

tt−1

t’

t < 1

−2 −1 0 1 2 3
−1

0

1

2

tt−1

t’

t > 1

Part (c)

Here, we flip h(t′) and slide it over x(t′), that is, we reverse, hR(t′)= h(−t′) and delay it by
successive amounts t, that is, hR(t′ − t), used in the LTI form of convolution,

y(t)=
∫∞
−∞
h(t − t′)x(t′)dt′ =

∫∞
−∞
hR(t′ − t)x(t′)dt′

The graphs on the next page show some representative successive positions starting at t = 0
shown in the upper-left graph, which displays the reflected signal hR(t′),

hR(t′)= h(−t′)= aeat′u(−t′) ⇒ hR(t′ − t)= h(t − t′)= aea(t′−t)u(t − t′)
When t < 0, hR(t′ − t) and x(t′) do not overlap as shown in the upper-right graph on the next

page, i.e., their product is zero, so that y(t)= 0 in this case.
When, 0 ≤ t ≤ td = 1, there is partial overlapping as shown in the bottom-left graph, and in this

case the overlapped area determines the integration limits to be from, t′ = 0, to, t′ = t, resulting in,

y(t)=
∫ t

0
aea(t

′−t)dt′ = 1− e−at , 0 ≤ t ≤ td

4

When, t ≥ td = 1, there is full overlapping as shown in the bottom-right graph, and in this case
the overlapped area determines the limits of integration to be from, t′ = 0, to, t′ = td, resulting in,

y(t)=
∫ td

0
aea(t

′−t)dt′ = e−at[eatd − 1
] = e−a(t−td) − e−at , t ≥ td

−2 −1 0 1 2 3
−1

0

1

2

t

t’

t = 0

−2 −1 0 1 2 3
−1

0

1

2

t

t’

t < 0

−2 −1 0 1 2 3
−1

0

1

2

t

t’

t < 1

−2 −1 0 1 2 3
−1

0

1

2

t

t’

t > 1

As expected, the output y(t) is seen to be the same from the two forms of convolution.

Note: The required integrals above were done with the help of the following standard indefinite
integral, ∫

ae±axdx = ±e±ax

5

The MATLAB code for animating the flip-and-slide procedure for both the cases of parts (b) and
(c) is given below. The required function arrows.m can be found in Sakai Resources.

td = 1;
a = 2;

u = @(t) (t>=0); % unit step

x = @(t) u(t)-u(t-td); % input pulse
xR = @(t) x(-t); % flipped input

h = @(t) a*exp(-a*t).*u(t); % system
hR = @(t) h(-t); % flipped impulse response

%% sliding x over h ---

% move with left/right arrow keys
% exit with down-arrow key

tau = linspace(-2,3,5001);

figure;
t = 0; dt = 0.125;
while 1

plot(tau,h(tau),’b-’, ’linewidth’,2); hold on
plot(tau,xR(tau-t),’r-’,’linewidth’,3);
arrows([t,-0.5],[t,-0.1],1);
plot([t,t],[-0.5,-0.1],’b--’);
arrows([t-1,-0.5],[t-1,-0.1],1);
plot([t-1,t-1],[-0.5,-0.1],’b--’);
text(t-0.05,-0.7,’\itt’);
text(t-1.2,-0.7,’{\itt}-1’);
xaxis(-2,3,-2:3); yaxis(-1,2.5,-1:1:2.5); grid
xlabel(’\itt’’’)
hold off;
waitforbuttonpress;
k = double(get(gcf,’CurrentCharacter’));
if k==29, t = t + dt; end % right arrow
if k==28, t = t - dt; end % left arrow
if k==31, break; end % down arrow

end

%% sliding h over x ---

% move with left/right arrow keys
% exit with down-arrow key

tau = linspace(-2,3,5001);

figure;
t = 0; dt = 0.125;
while 1

plot(tau,x(tau),’b-’, ’linewidth’,2); hold on
plot(tau,hR(tau-t),’r-’,’linewidth’,3);
arrows([t,-0.5],[t,-0.1],1);
plot([t,t],[-0.5,-0.1],’b--’);
text(t-0.05,-0.7,’\itt’);
xaxis(-2,3,-2:3); yaxis(-1,2.5,-1:1:2.5); grid
xlabel(’\itt’’’)
hold off;
waitforbuttonpress;
k = double(get(gcf,’CurrentCharacter’));
if k==29, t = t + dt; end % right arrow
if k==28, t = t - dt; end % left arrow
if k==31, break; end % down arrow

end

6

Example 2

Determine the convolution of the signals h(t) and x(t) that have the following supports, i.e., the
intervals over which they are non-zero,

h(t)= 2, −1 ≤ t ≤ 1

x(t)= t, 0 ≤ t ≤ 3

Solution

Since h(t) has a simpler expression, let us work with the right form of Eq. (1). The argument t′ of
x(t′)must lie in its support interval, and similarly, t− t′ must lie in the support of h(t− t′), that is,

0 ≤ t′ ≤ 3

−1 ≤ t − t′ ≤ 1

−1 ≤ t ≤ 4

⇒
0 ≤ t′ ≤ 3

−1 ≤ t′ − t ≤ 1
⇒

0 ≤ t′ ≤ 3

t − 1 ≤ t′ ≤ t + 1
or,

−1 ≤ t ≤ 4

max(0, t − 1)≤ t′ ≤ min(3, t + 1)
The convolution integral then becomes, for −1 ≤ t ≤ 4,

y(t)=
∫ min(3,t+1)

max(0,t−1)
h(t − t′)x(t′)dt′ =

∫ min(3,t+1)

max(0,t−1)
2 · t′dt′ = [min(3, t + 1)

]2 − [max(0, t − 1)
]2

and the switch points are at, 0 = t− 1, or, t = 1, and, 3 = t+ 1, or, t = 2, so that the overall output
interval [−1,4] is split into the subintervals, [−1,1], [1,2], [2,4]. The expression for y(t) then
simplifies accordingly over each subinterval,

−1 ≤ t ≤ 1 ⇒ y(t)= (t + 1)2

1 ≤ t ≤ 2 ⇒ y(t)= (t + 1)2−(t − 1)2= 4t

2 ≤ t ≤ 4 ⇒ y(t)= 9− (t − 1)2

The following MATLAB code evaluates and plots h(t), x(t), y(t).
u = @(t) (t>=0); % define the unit-step function
t = linspace(-1,4,501);
h = 2*(u(t+1)-u(t-1));
x = t.*(u(t)-u(t-3));
y = min(3,t+1).^2 - max(0,t-1).^2;
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

−1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

t

 h(t)
 x(t)
 y(t)
 switch points

Note that h(t) corresponds to a non-causal system and, as you can see, the output y(t) starts
coming out before the input x(t) begins!

7

Example 3

Determine the convolution of h(t) and x(t), defined as follows over their support intervals,

h(t)= t , 0 ≤ t ≤ 1

x(t)= 2 , 2 ≤ t ≤ 5

Solution

Since x(t) is simpler, let us work with the left form of Eq. (1). The argument t′ of h(t′) must lie in
its support interval, and similarly, t − t′ must lie in the support of x(t − t′), that is,

0 ≤ t′ ≤ 1

2 ≤ t − t′ ≤ 5

2 ≤ t ≤ 6

⇒
0 ≤ t′ ≤ 1

−5 ≤ t′ − t ≤ −2 ⇒
0 ≤ t′ ≤ 1

t − 5 ≤ t′ ≤ t − 2

max(0, t − 5)≤ t′ ≤ min(1, t − 2)

or, finally, the support interval of y(t), and the integration range over t′, are,

2 ≤ t ≤ 6

max(0, t − 5)≤ t′ ≤ min(1, t − 2)

The convolution integral then becomes over the support range, 2 ≤ t ≤ 6,

y(t)=
∫ min(1,t−2)

max(0,t−5)
2t′ dt′ = [min(1, t − 2)

]2 − [max(0, t − 5)
]2

and the switch points are at, 0 = t − 5, or, t = 5, and, 1 = t − 2, or, t = 3, so that the overall
output interval [2,6] is split into the subintervals, [2,3], [3,5], [5,6]. The expression for y(t)
then simplifies accordingly over each subinterval,

2 ≤ t ≤ 3 ⇒ y(t)= (t − 2)2

3 ≤ t ≤ 5 ⇒ y(t)= 1

5 ≤ t ≤ 6 ⇒ y(t)= 1− (t − 5)2

The following MATLAB code evaluates and plots h(t), x(t), y(t), where we note that since h(t)
is causal, the output begins as soon as the input is applied at t = 2. The input-on and input-off
transients are also observed.

u = @(t) (t>=0);
t = linspace(0,7,701);
h = t.*(u(t)-u(t-1));
x = 2*(u(t-2)-u(t-5));
y = (min(1,t-2).^2 - max(0,t-5).^2) .* (u(t-2)-u(t-6));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5 6 7
0

1

2

3

t

 h(t)
 x(t)
 y(t)
 switch points

8

Let us also calculate the result using the flip-and-slide method. Since the input begins at t = 2, it
would be more convenient to undelay it so that it starts at t = 0, and determine the convolution of
that with h(t), and at the end, delay the answer by 2 units of time. This is based on the property that
if the input or the filter are delayed by a certain amount, then their convolution is also delayed by the
same amount. Thus, we begin by the following undelayed signals and calculate their convolution,

h(t)= t , 0 ≤ t ≤ 1

x(t)= 2 , 0 ≤ t ≤ 3

In the flip-and-slide method, either x(t) or h(t) is flipped relative to the origin and then slid over
the other. Here, we will flip x(t) since it has a simpler shape than h(t), and apply the convolution
formula in the form,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

At each time instant t, the “front” of the the flipped signal is at t′ = t, and its front value is
x(t− t′)= x(0). For our particular case, the extent of the flipped/slid input will be over the interval,
t − 3 ≤ t′ ≤ t. Three cases are possible as shown in the figure below.

(a) for 0 ≤ t ≤ 1, the flipped input x(t − t′) is only partially overlapping with h(t′), with the
overlapped portion shaded in yellow. This corresponds to the input-on transient period. The
range of integration in the convolution formula will be, 0 ≤ t′ ≤ t, and y(t) evaluates into,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′ =

∫ t
0
h(t′)︸ ︷︷ ︸
t′

x(t − t′)︸ ︷︷ ︸
2

dt′ =
∫ t

0
2t′dt′ = 2

t2

2
= t2

(b) for 1 ≤ t ≤ 3, the flipped input x(t − t′) is fully overlapping with h(t′). This corresponds
to the steady-state period. The convolution range of integration will be over the interval,
0 ≤ t′ ≤ 1, and y(t) evaluates into,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′ =

∫ 1

0
h(t′)︸ ︷︷ ︸
t′

x(t − t′)︸ ︷︷ ︸
2

dt′ =
∫ 1

0
2t′dt′ = 2

12

2
= 1

(c) for 3 ≤ t ≤ 4, the flipped input x(t − t′) is again only partially overlapping with h(t′),
corresponding to the input-off transients, with the integration range (shown in yellow), t−3 ≤
t′ ≤ 1, and y(t) evaluates into,

y(t)=
∫ 1

t−3
h(t′)︸ ︷︷ ︸
t′

x(t − t′)︸ ︷︷ ︸
2

dt′ =
∫ 1

t−3
2t′dt′ = 2

1

2

[
1− (t − 3)2] = 1− (t − 3)2

(d) note also that for, t < 0, or, t > 4, the flipped input x(t − t′) does not overlap at all with
h(t′), so that the output y(t) will be zero.

Combining these results we find the convolution of the undelayed input,

y(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t2 , 0 ≤ t ≤ 1

1 , 1 ≤ t ≤ 3

1− (t − 3)2 , 3 ≤ t ≤ 4

0 , t ≤ 0 ‖ t ≥ 4

9

This output is shown in the right figure below.

0 1 2 3 4 5 6 7
0

1

2

3

t

 h(t)
 x(t)

0 1 2 3 4 5 6 7
0

1

2

3

t

 y(t)
 switch points

Replacing now t by t − 2, will delay this answer by 2 time units, resulting in the desired output,

y(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(t − 2)2 , 0 ≤ t − 2 ≤ 1

1 , 1 ≤ t − 2 ≤ 3

1− ((t − 2)−3
)2 , 3 ≤ t − 2 ≤ 4

0 , t − 2 ≤ 0 ‖ t − 2 ≥ 4

which can be rewritten in the form obtained earlier,

y(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(t − 2)2 , 2 ≤ t ≤ 3

1 , 3 ≤ t ≤ 5

1− (t − 5)2 , 5 ≤ t ≤ 6

0 , t ≤ 2 ‖ t ≥ 6

Although the flip-and-slide method is intuitively clear and straightforward, it typically requires
performing multiple integrals and drawing multiple figures as the flipped signal is slid through the
other one. In carrying out this method, one should remember that the sliding point t corresponds
to the front value x(0) of the flipped signal, and that often the problem is simplified if one solves a
time-delayed or time-advanced version and then adjusts the amount of the delay or advance in the
answer. One can work, of course, with the original signal, provided one is careful as to where the
sliding point t is, as illustrated below comparing the cases of a delayed and an undelayed signal,

Also, one should note that (i) the initial input-on transients arise from partial overlapping while
the flipped signal is entering the domain of the filter, (ii) the steady-state part arises when there is
full overlapping with the filter, and (iii) the input-off transients arise when the flipped signal is again
partially overlapping while exiting from the domain of the filter.

10

Example 4

Determine the convolution of h(t) and x(t), defined over the following support intervals by,

h(t)= 1 , −2 ≤ t ≤ 1

x(t)= 1 , 4 ≤ t ≤ 6

Solution

Let us work with the left form of Eq. (1). The argument t′ of h(t′) must lie in its support interval,
and similarly, t − t′ must lie in the support of x(t − t′), that is,

−2 ≤ t′ ≤ 1

4 ≤ t − t′ ≤ 6

2 ≤ t ≤ 7

⇒
−2 ≤ t′ ≤ 1

−6 ≤ t′ − t ≤ −4
⇒

−2 ≤ t′ ≤ 1

t − 6 ≤ t′ ≤ t − 4
or, finally

2 ≤ t ≤ 7

max(−2, t − 6)≤ t′ ≤ min(1, t − 4)

The convolution integral then becomes, for 2 ≤ t ≤ 7,

y(t)=
∫ min(1,t−4)

max(−2,t−6)
1 · 1dt′ = min(1, t − 4)−max(−2, t − 6)

and the switch points are at, 1 = t − 4, or, t = 5, and, −2 = t − 6, or, t = 4, so that the overall
output interval [2,7] is split into the subintervals, [2,4], [4,5], [5,7]. The expression for y(t)
then simplifies accordingly over each subinterval,

2 ≤ t ≤ 4 ⇒ y(t)= (t − 4)−(−2)= t − 2

4 ≤ t ≤ 5 ⇒ y(t)= (t − 4)−(t − 6)= 2

5 ≤ t ≤ 7 ⇒ y(t)= 6− (t − 1)= 7− t
The following MATLAB code evaluates and plots h(t), x(t), y(t).

u = @(t) (t>=0);
t = linspace(-2,7,901);
h = u(t+2)-u(t-1);
x = u(t-4)-u(t-6);
y = (min(1,t-4) - max(-2,t-6)) .* (u(t-2)-u(t-7));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

−2 −1 0 1 2 3 4 5 6 7
0

1

2

t

 h(t)
 x(t)
 y(t)

This is also a non-causal system with output that begins before the input!

11

Example 5

Use the results of the previous example to determine the convolution of h(t) and x(t), defined over
the support intervals,

h(t)= 1 , 0 ≤ t ≤ 3

x(t)= 1 , 4 ≤ t ≤ 6

Solution

The given h(t) is the delayed version of the previous h(t) by t = 2 time units. Therefore, the output
y(t) will also be delayed by the same amount. Thus, replacing t by t − 2 in the previous example,
we find that y(t) will be nonzero over 2 ≤ t − 2 ≤ 7, or, 4 ≤ t ≤ 9, and within that range it will be
given by,

y(t)= min(1, t − 2− 4)−max(−2, t − 2− 6)= min(1, t − 6)−max(−2, t − 8) , 4 ≤ t ≤ 9

The following MATLAB code evaluates and plots h(t), x(t), y(t).

u = @(t) (t>=0);
t = linspace(0,9,901);
h = u(t)-u(t-3);
x = u(t-4)-u(t-6);
y = (min(1,t-6) - max(-2,t-8)) .* (u(t-4)-u(t-9));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5 6 7 8 9
0

1

2

t

 h(t)
 x(t)
 y(t)

Now, h(t) is causal and the output begins at the same time as the input, i.e., at t = 4.

12

Example 6

Use the results of the previous example to determine the convolution of h(t) and x(t), defined over
the following support intervals by,

h(t)= 1 , 0 ≤ t ≤ 3

x(t)= 1 , 0 ≤ t ≤ 2

Solution

The given x(t) is the time-advanced version of the previous one by t = 4 time units. Therefore, the
output y(t) will also be advanced by the same amount. Thus, replacing t by t + 4 in the previous
example, we find that y(t) will be nonzero over 4 ≤ t + 4 ≤ 9, or, 0 ≤ t ≤ 5, and within that range
it will be given by,

y(t)= min(1, t + 4− 6)−max(−2, t + 4− 8)= min(1, t − 2)−max(−2, t − 4) , 0 ≤ t ≤ 5

this can also be written as,

y(t)= min(3, t)−max(0, t − 2) , 0 ≤ t ≤ 5

with MATLAB code,

u = @(t) (t>=0);
t = linspace(0,5,501);
h = u(t)-u(t-3);
x = u(t)-u(t-2);
y = (min(1,t-2) - max(-2,t-4)) .* (u(t)-u(t-5));
plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5 6 7 8 9
0

1

2

t

 h(t)
 x(t)
 y(t)

13

Example 7

The convolution, y(t)= f1(t)∗f2(t), between two unit pulses of durations T1 and T2,

f1(t)= u(t)−u(t −T1) , 0 ≤ t ≤ T1

f2(t)= u(t)−u(t −T2) , 0 ≤ t ≤ T2

is given as follows, where the output time t is in the range, 0 ≤ t ≤ T1 +T2,†

y(t)= min(T1, t)−max(0, t −T2)= T1 +T2 − |t −T1| − |t −T2|
2

For example, the convolution between two identical unit pulses of duration T is,

f(t)= u(t)−u(t −T) , y(t)= f(t)∗f(t)

for, 0 ≤ t ≤ 2T,

y(t)= min(T, t)−max(0, t −T)=
⎧⎨
⎩t , 0 ≤ t ≤ T

2T − t , T ≤ t ≤ 2T
= triangular pulse

0 1 2 3
0

0.5

1

1.5

t/T

y(
t)

/T

 f(t)
 y(t)

†we used the following identities, for real a,b, min(a, b)= a+ b− |a− b|
2

, max(a, b)= a+ b+ |a− b|
2

.

14

Example 8

Use the previous result and the delay property to determine the convolution of the two unit pulses,

f1(t)= u(t − 1)−u(t − 2) , 1 ≤ t ≤ 2

f2(t)= u(t − 1)−u(t − 3) , 1 ≤ t ≤ 3

Solution

If we undelay them, we would have the unit pulses,

f1(t)= u(t)−u(t − 1) , 0 ≤ t ≤ 1

f2(t)= u(t)−u(t − 2) , 0 ≤ t ≤ 2

which according to the previous problem have convolution (T1 ≤ T2 case),

y(t)= min(1, t)−max(0, t − 2) , 0 ≤ t ≤ 1+ 2 = 3

Now, if we apply two delays, each by t = 1 time units, we would get the desired result,

y(t)= min(1, t − 2)−max(0, t − 4) , 2 ≤ t ≤ 5

with MATLAB code,

u = @(t) (t>=0);
t = linspace(0,6,601);
y = (min(1,t-2)-max(0,t-4)).*(u(t-2)-u(t-5));
figure; plot(t,y,’r-’,’linewidth’,2);

0 1 2 3 4 5 6
0

0.5

1

1.5

t

 y(t)

15

Example 9

If h(t) or x(t) consist of multiple segments, you can break them into separate parts, and add up
the answers. For example, consider the convolution of the two signals,

h(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t , 0 ≤ t ≤ 1

1 , 1 ≤ t ≤ 2

0 , otherwise

, x(t)= u(t − 1)−u(t − 3)=
⎧⎨
⎩1 , 1 ≤ t ≤ 3

0 , otherwise

We can write h(t) as the sum of the two parts,

h(t)= h1(t)+h2(t) ,
h1(t)= t

[
u(t)−u(t − 1)

]
h2(t)= u(t − 1)−u(t − 2)

Solution

Then, y(t) can be calculated as the sum,

y(t)= h(t)∗x(t)= [h1(t)+h2(t)
]∗ x(t)= h2(t)∗x(t)+h2(t)∗x(t)= y1(t)+y2(t)

The case, y2 = h2 ∗ x, was worked out in Example 8. The case, y1 = h1 ∗ x, is very similar to that
of Example 3, and may be solved by setting up the inequalities,

0 ≤ t′ ≤ 1

1 ≤ t − t′ ≤ 3

1 ≤ t ≤ 4

⇒
0 ≤ t′ ≤ 1

−3 ≤ t′ − t ≤ −1
⇒

0 ≤ t′ ≤ 1

t − 3 ≤ t′ ≤ t − 1
or, finally

1 ≤ t ≤ 4

max(0, t − 3)≤ t′ ≤ min(1, t − 1)

The convolution integral then becomes, for 1 ≤ t ≤ 4,

y1(t)=
∫ min(1,t−1)

max(0,t−3)
t′ · 1dt′ = 1

2

[
min2(1, t − 1)−max2(0, t − 3)

]
Combining this with the answer of the previous example, we obtain the total output, for, 1 ≤ t ≤ 5,

y(t)= y1(t)+y2(t)=1

2

[
min2(1, t − 1)−max2(0, t − 3)

][
u(t − 1)−u(t − 4)

]
+ [min(1, t − 2)−max(0, t − 4)

][
u(t − 2)−u(t − 5)

]
The switch times are at t = 2, t = 3, and t = 4, and the above expression specializes as follows in the
four subintervals, [1,2], [2,3], [3,4], [4,5], where y1(t) and y2(t) overlap over the subintervals
[2,3] and [3,4],

1 ≤ t ≤ 2 ⇒ y(t)= 1

2
(t − 1)2

2 ≤ t ≤ 3 ⇒ y(t)= 1

2
+ t − 2 = t − 3

2

3 ≤ t ≤ 4 ⇒ y(t)= 1

2
− 1

2
(t − 3)2+1 = 3

2
− 1

2
(t − 3)2

4 ≤ t ≤ 5 ⇒ y(t)= 1− (t − 4)= 5− t
The MATLAB code is,

16

u = @(t) (t>=0);
t = linspace(0,5,1001);
h = t.*(u(t)-u(t-1)) + u(t-1)-u(t-2);
x = u(t-1)-u(t-3);
y = 1/2*(min(1,t-1).^2 - max(0,t-3).^2) .* (u(t-1)-u(t-4)) + ...

(min(1,t-2) - max(0,t-4)).*(u(t-2)-u(t-5));
figure; plot(t,h,’k:’, t,x,’b--’, t,y,’r-’)

0 1 2 3 4 5
0

0.5

1

1.5

2

t

 h(t)
 x(t)
 y(t)

17

Example 10

In this example, we use the class method to derive a closed-form expression valid for the convolution
of Example 2-5 of the text, as displayed in Fig. 2-13.

Solution

It’s convenient to break the filter and the input into their left and right halves, since these parts have
simpler forms, that is, writing, h(t)= h1(t)+h2(t), and, x(t)= x1(t)+x2(t), where

h1(t) =
⎧⎨
⎩+1, 0 ≤ t ≤ 1

0, otherwise
, h2(t)=

⎧⎨
⎩−1, 1 < t ≤ 2

0, otherwise

x1(t) =
⎧⎨
⎩t, 0 ≤ t ≤ 1

0, otherwise
, x2(t)=

⎧⎨
⎩2− t, 1 ≤ t ≤ 2

0, otherwise

Then, the convolution can be broken up into four terms,

y(t)= y11(t)+y12(t)+y21(t)+y22(t)

where

yij(t)=
∫∞
−∞
hi(t′)xj(t − t′)dt′ , for i, j = 1,2

Using the class method of enforcing the inequalities satisfied by t′ and t − t′, we find that the
correct ranges for t and for the integration ranges are as follows for the four cases,

y11 case : 0 ≤ t ≤ 2, max(0, t − 1)≤ t′ ≤ min(1, t)
y12 case : 1 ≤ t ≤ 3, max(1, t − 1)≤ t′ ≤ min(2, t)
y21 case : 1 ≤ t ≤ 3, max(0, t − 2)≤ t′ ≤ min(1, t − 1)
y22 case : 2 ≤ t ≤ 4, max(1, t − 2)≤ t′ ≤ min(2, t − 1)

and the corresponding convolution integral are easily evaluated,

y11(t) =
∫ min(1,t)

max(0,t−1)
t′ dt′ = 1

2

[
min(1, t)

]2 − 1

2

[
max(0, t − 1)

]2

y12(t) =
∫ min(2,t)

max(1,t−1)
(2− t′)dt′ = 2 min(2, t)−1

2

[
min(2, t)

]2 − 2 max(1, t − 1)+1

2

[
max(1, t − 1)

]2

y21(t) = −
∫ min(1,t−1)

max(0,t−2)
t′ dt′ = −1

2

[
min(1, t − 1)

]2 + 1

2

[
max(0, t − 2)

]2

y22(t) = −
∫ min(2,t−1)

max(1,t−2)
(2− t′)dt′ = −2 min(2, t − 1)+1

2

[
min(2, t − 1)

]2 + 2 max(1, t − 2)−1

2

[
max(1, t − 2)

]2

Adding these up and enforcing their support ranges in t, we obtain the expression,

y(t)= y11(t)·
[
u(t)−u(t−2)

]+[y12(t)+y21(t)
]·[u(t−1)−u(t−3)

]+y22(t)·
[
u(t−2)−u(t−4)

]
By specializing this in each of the time subintervals, we find the explicit expression for y(t),

y(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 t

2 , 0 ≤ t ≤ 1

− 3
2 t

2 + 4t − 2 , 1 ≤ t ≤ 2
3
2 t

2 − 8t + 10 , 2 ≤ t ≤ 3

− 1
2 t

2 + 4t − 8 , 3 ≤ t ≤ 4

18

The following MATLAB code evaluates and plots the signals h(t), x(t), y(t). The graphs are
shown at the end, showing also the switch points at times t = 1,2,3.

u = @(t) (t>=0);

t = linspace(-1,5,6001);

h = u(t) - 2*u(t-1) + u(t-2);
x = t.*(u(t)-u(t-1)) + (2-t).*(u(t-1)-u(t-2));

y = @(t) t.^2/2 .* (u(t)-u(t-1)) + ...
(-3*t.^2/2 + 4*t - 2) .* (u(t-1)-u(t-2)) + ...
(3*t.^2/2 - 8*t + 10) .* (u(t-2)-u(t-3)) + ...
(-t.^2/2 + 4*t - 8) .* (u(t-3)-u(t-4));

ts = [1,2,3]; ys = y(ts); % switch points

figure; plot(t,h,’b-’, t,x,’r--’, ’linewidth’,2)
figure; plot(t,y(t),’b-’, ts,ys,’r.’, ’linewidth’,2, ’markersize’,23);

−1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

t

h(t), x(t)

 h(t)
 x(t)

−1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

t

output, y(t)

 y(t)
 switch points

19

Example 11

Consider the input signal x(t) and the system h(t) of SSTA Problem 2.12:

x(t) = 2
[
u(t)−u(t − 1)

] =
⎧⎨
⎩2 , 0 ≤ t ≤ 1

0 , all other t

h(t) = 2t
[
u(t)−u(t − 1)

]︸ ︷︷ ︸
h1(t)

+ (4− 2t)
[
u(t − 1)−u(t − 2)

]︸ ︷︷ ︸
h2(t)

=

⎧⎪⎪⎨
⎪⎪⎩

2t , 0 ≤ t ≤ 1

4− 2t , 1 ≤ t ≤ 2

0 , all other t

These are depicted below. Compute their convolution, y(t)= h(t)∗x(t), also shown below, in the
following four ways:

(a) By the class method of using inequalities to determine the time range of the output y(t), and
the proper range of integrations, including the switch points. You may use the direct form of
convolution in this part.

(b) Using the class method, but applying separately to the two parts h1(t), h2(t) and adding up
the results to obtain a closed-form expression for y(t) that is valid for all t.

(c) Using the flip-and-slide method by flipping x(t) and sliding it over h(t). Carry out the required
computations by integration, or, by using trapezoidal areas [note: the area of a trapezoid is
the average of its two parallel sides times the distance separating them.]

(d) Repeat part (c), but now flip h(t) and slide it over x(t).

−1 0 1 2 3 4
0

1

2

3

t

x(t)

−1 0 1 2 3 4
0

1

2

3

t

h(t)

2t 4−2t

−1 0 1 2 3 4
0

1

2

3

t

y(t)

 y(t)
 switch pts

20

Solution

Part (a)

We start by setting up the inequalities constraining t, t′, as implied by the definitions of x(t), h(t)
in the direct-form of convolution,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′

0 ≤ t′ ≤ 2

0 ≤ t − t′ ≤ 1

0 ≤ t ≤ 3

⇒
0 ≤ t′ ≤ 2

t − 1 ≤ t′ ≤ t
max(0, t − 1) ≤ t′ ≤ min(2, t)

or, finally,
0 ≤ t ≤ 3

max(0, t − 1)≤ t′ ≤ min(2, t)

since x(t) is equal to 2 over its range, the above convolution integral becomes,

y(t)=
∫ min(2,t)

max(0,t−1)
2h(t′)dt′ , for 0 ≤ t ≤ 3

The switch points are at t = 1 and t = 2. These give rise to three cases, first range:

0 ≤ t ≤ 1 ⇒ −1 ≤ t − 1 ≤ 0 ⇒ max(0, t − 1)= 0 ≤ t′ ≤ min(2, t)= t
so that,

y(t)=
∫ t

0
2h(t′)dt′ =

∫ t
0

2 · 2t′dt′ = 2t2

Second range:

1 ≤ t ≤ 2 ⇒ 0 ≤ t − 1 ≤ 1 ⇒ max(0, t − 1)= t − 1 ≤ t′ ≤ min(2, t)= t
and noting that in this case, 0 ≤ t − 1 ≤ 1 ≤ t ≤ 2, the convolution integral splits into two parts,
corresponding to the two branches of h(t′),

y(t)=
∫ t
t−1

2h(t′)dt′ =
∫ 1

t−1
2h(t′)dt′ +

∫ t
1

2h(t′)dt′ =
∫ 1

t−1
2 · 2t′dt′ +

∫ t
1

2(4− 2t′)dt′ , or,

y(t)= [−2t2 + 4t
]+ [−2t2 + 8t − 6

] = −4t2 + 12t − 6

Third range:

2 ≤ t ≤ 3 ⇒ 1 ≤ t − 1 ≤ 2 ⇒ max(0, t − 1)= t − 1 ≤ t′ ≤ min(2, t)= 2

y(t)=
∫ 2

t−1
2h(t′)dt′ =

∫ 2

t−1
2(4− 2t′)dt′ = 2t2 − 12t + 18

Thus, collecting all ranges,

y(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2t2 , 0 ≤ t ≤ 1

−4t2 + 12t − 6 , 1 ≤ t ≤ 2

2t2 − 12t + 18 , 2 ≤ t ≤ 3

0 , all other t

(6)

The MATLAB code used to generate the graphs on the previous page was as follows:

21

u = @(t) (t>=0); % unit step

x = @(t) 2*(u(t)-u(t-1)); % input pulse
h = @(t) 2*t.*(u(t)-u(t-1)) + (4-2*t).*(u(t-1)-u(t-2)); % system

t = linspace(-1,4,1001);

figure; plot(t,x(t),’r-’,’linewidth’,2);
xaxis(-1,4,-1:4); yaxis(0,3.5,0:3); grid
xlabel(’\itt’); title(’{\itx}({\itt})’)

figure; plot(t,h(t),’b-’,’linewidth’,2);
xaxis(-1,4,-1:4); yaxis(0,3.5,0:3); grid
xlabel(’\itt’); title(’{\ith}({\itt})’)

y = @(t) 2*t.^2.*(u(t)-u(t-1)) +... % output
(-6+12*t-4*t.^2).*(u(t-1)-u(t-2)) + ...
(2*t.^2-12*t+18).*(u(t-2)-u(t-3));

ts = [0,1,2,3]; % switch points

figure; plot(t,y(t),’b-’,’linewidth’,2); hold on
plot(ts,y(ts),’r.’,’markersize’,25);

xaxis(-1,4,-1:4); yaxis(0,3.5,0:3); grid
xlabel(’\itt’); title(’{\ity}({\itt})’)

Part (b)

We begin by solving the two separate convolution problems,

h1(t)= 2t
[
u(t)−u(t − 1)

] ⇒ y1(t)= h1(t)∗x(t)=
∫∞
−∞
h1(t′)x(t − t′)dt′

h2(t)= (4− 2t)
[
u(t − 1)−u(t − 2)

] ⇒ y2(t)= h2(t)∗x(t)=
∫∞
−∞
h1(t′)x(t − t′)dt′

For h1(t′), we have the inequalities,

0 ≤ t′ ≤ 1

0 ≤ t − t′ ≤ 1

0 ≤ t ≤ 2

⇒
0 ≤ t′ ≤ 1

t − 1 ≤ t′ ≤ t
max(0, t − 1) ≤ t′ ≤ min(1, t)

which gives, for 0 ≤ t ≤ 2,

y1(t)=
∫ min(1,t)

max(0,t−1)
h1(t′)x(t − t′)dt′ =

∫ min(1,t

max(0,t−1)
2 · 2t′dt′ , or,

y1(t)=
[

2 min2(1, t)−2 max2(0, t − 1)
] · [u(t)−u(t − 2)

]
, for all t

Similarly, for h2(t′), we have,

1 ≤ t′ ≤ 2

0 ≤ t − t′ ≤ 1

1 ≤ t ≤ 3

⇒
1 ≤ t′ ≤ 2

t − 1 ≤ t′ ≤ t
max(1, t − 1) ≤ t′ ≤ min(2, t)

22

which gives, for 1 ≤ t ≤ 3,

y2(t)=
∫ min(2,t)

max(1,t−1)
h2(t′)x(t − t′)dt′ =

∫ min(2,t)

max(1,t−1)
2(4− 2t′)dt′

or, after using the indefinite integral,

∫
2(4− 2x)dx = 8x− 2x2,

y2(t)=
[

8 min(2, t)−2 min2(2, t)−8 max(1, t−1)+2 max2(1, t−1)
]·[u(t−1)−u(t−3)

]
, for all t

Finally, adding up the two outputs, we obtain,

y(t) = y1(t)+y2(t)=
= [2 min2(1, t)−2 max2(0, t − 1)

] · [u(t)−u(t − 2)
]+

+ [8 min(2, t)−2 min2(2, t)−8 max(1, t − 1)+2 max2(1, t − 1)
] · [u(t − 1)−u(t − 3)

]
, for all t

It can easily be verified that this expression reduces to Eq. (6).

Part (c)

Here, we flip the signal x(t′) and slide it over h(t′), that is, reflect it about the origin so that,
x(t′)→ xR(t′)= x(−t′), as shown in the upper right figure on the next page labeled t = 0. The
flipped sliding signal is represented at each time instant t by the delayed signal xR(t′ − t) viewed
as a function of t′,

y(t)=
∫∞
−∞
x(t − t′)h(t′)dt′ =

∫∞
−∞
xR(t′ − t)h(t′)dt′

When t ≤ 0, xR(t′ − t) and h(t′) do not overlap as shown in the upper two graphs on the next
page, i.e., their product is zero, so that y(t)= 0 in this case.

When, 0 ≤ t ≤ 1, there is partial overlapping as shown in the middle-left graph on the next page,
and in this case the convolution integral is the area of the indicated triangle multiplied by the value
2 of the input signal, so that,

y(t)=
∫ t

0
2 · 2t′dt′ = 2 · 1

2
t · 2t = 2t2

When, 1 ≤ t ≤ 2, there is full overlapping as shown in the middle-right graph on the next page,
and in this case the convolution integral is the area of the two trapezoids multiplied by the value 2
of the input signal, so that,

y(t)= 2·1

2

[
2(t−1)+2

][
1−(t−1)

]+2·1

2
[2+4−2t](t−1)= [−2t2+4t

]+[−2t2+8t−6
] = −4t2+12t−6

which can also be done by explicit integration over the two branches of h(t′), as in part (a),

y(t)=
∫ 1

t−1
2 · 2t′dt′ +

∫ t
1

2(4− 2t′)dt′ = [−2t2 + 4t
]+ [−2t2 + 8t − 6

] = −4t2 + 12t − 6

When, 2 ≤ t ≤ 3, there is again partial overlapping as shown in the lower-left graph on the next
page, and in this case the convolution integral is the area of the indicated triangle multiplied by the
value 2 of the input signal, so that,

y(t)= 2 · 1

2

[
4− 2(t − 1)

][
2− (t − 1)

] = 2(3− t)2= 2t2 − 12t + 18

Finally, when t > 3, there is no overlap as shown in the lower-right graph on the next page, so
that y(t)= 0 in this case. Collecting the above ranges, the final result for y(t) is seen to be the same
as that of Eq. (6).

23

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1

t’

t < 0

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1

t’

t = 0

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1

t’

0 ≤ t ≤ 1

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1

t’

1 ≤ t ≤ 2

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1

t’

2 ≤ t ≤ 3

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1

t’

t > 3

24

Part (d)

Here, we flip h(t′) and slide it over x(t′), that is, we reverse, hR(t′)= h(−t′) and delay it by
successive amounts t, that is, hR(t′ − t), used in the LTI form of convolution,

y(t)=
∫∞
−∞
h(t − t′)x(t′)dt′ =

∫∞
−∞
hR(t′ − t)x(t′)dt′

The graphs on the next page show some representative successive positions starting at t = 0
shown in the upper-left graph, which displays the reflected signal hR(t′),

hR(t′)= h(−t′)=

⎧⎪⎪⎨
⎪⎪⎩
−2t′ , 0 ≤ −t′ ≤ 1

4+ 2t′ , 1 ≤ −t′ ≤ 2

0 , all other t′
=

⎧⎪⎪⎨
⎪⎪⎩
−2t′ , −1 ≤ t′ ≤ 0

4+ 2t′ , −2 ≤ t′ ≤ −1

0 , all other t′

hR(t′ − t)=

⎧⎪⎪⎨
⎪⎪⎩
−2(t′ − t) , −1 ≤ t′ − t ≤ 0

4+ 2(t′ − t) , −2 ≤ t′ − t ≤ −1

0 , all other t′
=

⎧⎪⎪⎨
⎪⎪⎩
−2(t′ − t) , t − 1 ≤ t′ ≤ t
4+ 2(t′ − t) , t − 2 ≤ t′ ≤ t − 1

0 , all other t′
(7)

When 0 ≤ t ≤ 1, shown in the upper-right graph on the next page, the overlapping portion is a
triangle whose area (adjusted for the amplitude 2 of x(t′)) is as follows because its vertical height
is hR(t′ − t) at t′ = 0,

y(t)= 2 · 1

2

[−2(0− t)] · t = 2t2

When 1 ≤ t ≤ 2, shown in the middle-left graph on the next page, the overlapping portion is the
sum of the two trapezoids whose parallel sides are hR(t′ − t) evaluated at t′ = 0, t′ = t − 1, and
t′ = 1, resulting in the sum,

y(t)= 2 · 1

2

[
2− 2(1− t)](2− t)+2 · 1

2

[
2+ 4− 2t

]
(t − 1)= −4t2 + 12t − 6

When 2 ≤ t ≤ 3, shown in the middle-right graph on the next page, the overlapping portion is
the triangle whose vertical side is hR(t′ − t) evaluated at t′ = 1, resulting in,

y(t)= 2 · 1

2

[
4+ 2(1− t)](3− t)= 2(3− t)2= 2t2 − 12t + 18

Finally, when t ≥ 3, shown in the bottom graph on the next page, there is no overlap, so that
y(t)= 0. Collecting the results for all the ranges, the answer for y(t) is identical to that of Eq. (6).

25

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1t−2

t’

t = 0

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1t−2

t’

0 ≤ t ≤ 1

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1t−2

t’

1 ≤ t ≤ 2

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1t−2

t’

2 ≤ t ≤ 3

−2 −1 0 1 2 3 4
−1

0

1

2

tt−1t−2

t’

t > 3

26

The MATLAB code for animating the flip-and-slide procedure for both the cases of parts (c) and
(d) is given below. The required function arrows.m can be found in Sakai Resources.

u = @(t) (t>=0); % unit step

x = @(t) 2*(u(t)-u(t-1)); % input pulse
xR = @(t) x(-t); % flipped input

h = @(t) 2*t.*(u(t)-u(t-1)) + (4-2*t).*(u(t-1)-u(t-2)); % system
hR = @(t) h(-t);

%% sliding x over h ---

% move with left/right arrow keys --- exit with down-arrow key

tau = linspace(-2,4,1201);

figure;
t = 0; dt = 0.125;
while 1

plot(tau,h(tau),’b-’, ’linewidth’,2); hold on
plot(tau,xR(tau-t),’r-’,’linewidth’,3);
arrows([t,-0.5],[t,-0.1],1);
plot([t,t],[-0.5,-0.1],’b--’);
arrows([t-1,-0.5],[t-1,-0.1],1);
plot([t-1,t-1],[-0.5,-0.1],’b--’);
text(t-0.05,-0.7,’\itt’);
text(t-1.2,-0.7,’{\itt}-1’);
xaxis(-2,4,-2:4); yaxis(-1,2.5,-1:1:2.5); grid
xlabel(’\itt’’’)
hold off;
waitforbuttonpress;
k = double(get(gcf,’CurrentCharacter’));
if k==29, t = t + dt; end % right arrow
if k==28, t = t - dt; end % left arrow
if k==31, break; end % down arrow

end

%% sliding h over x ---

% move with left/right arrow keys --- exit with down-arrow key

tau = linspace(-2,4,1201);

figure;
t = 0; dt = 0.125;
while 1

plot(tau,x(tau),’b-’, ’linewidth’,2); hold on
plot(tau,hR(tau-t),’r-’,’linewidth’,3);
arrows([t,-0.5],[t,-0.1],1);
arrows([t-1,-0.5],[t-1,-0.1],1);
arrows([t-2,-0.5],[t-2,-0.1],1); clc;
plot([t,t],[-0.5,-0.1],’b--’);
plot([t-1,t-1],[-0.5,-0.1],’b--’);
plot([t-2,t-2],[-0.5,-0.1],’b--’); clc
plot([t-1,t-1],[0,2],’r--’);
text(t-0.05,-0.7,’\itt’);
text(t-1.2,-0.7,’{\itt}-1’);
text(t-2.2,-0.7,’{\itt}-2’);
xaxis(-2,4,-2:4); yaxis(-1,2.5,-1:1:2.5); grid
hold off;
waitforbuttonpress;
k = double(get(gcf,’CurrentCharacter’));
if k==29, t = t + dt; end % right arrow
if k==28, t = t - dt; end % left arrow
if k==31, break; end % down arrow

end

27

Example 12

This example clarifies the calculations of Problem 2.4-29 of the Lathi text using the approach dis-
cussed in class. Consider an input signal f(t) and an LTI system h(t), with corresponding convo-
lutional output,

g(t)= h(t)∗f(t)=
∫∞
−∞
h(t′)f(t − t′)dt′

From the linearity and time-invariance of the system, it follows that if the input is periodic and
expressed as a sum of shifted copies of f(t) at some period T, then the output will also be periodic
with period T and expressed as a sum of shifted copies of g(t), that is,

x(t)=
∞∑

p=−∞
f(t − pT) ⇒ y(t)=

∞∑
p=−∞

g(t − pT) (8)

If f(t) has duration T, then f(t) represents one period of the input. However, the output g(t)
will necessarily have longer length than T by an extra amount equal to the length of the filter h(t).
Therefore, the shifted copies of g(t) will overlap with each other, as shown below.

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

t

periodic input and system h(t)

 f(t+2)
 f(t)
 f(t−2)
 system h(t)

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

t

shifted/overlapped outputs

one period

 g(t+2)
 g(t)
 g(t−2)

28

Solution

The signal f(t) and the system h(t), shown above, are defined as follows,

f(t)=
⎧⎨
⎩1 , 0 ≤ t ≤ 1

0 , otherwise
, h(t)=

⎧⎨
⎩t , 0 ≤ t ≤ 1.5

0 , otherwise

The signal f(t) is periodically replicated with period T = 2. The upper graph above shows three
replicas of f(t) shifted at period T = 2, that is, the copies f(t+2), f(t), f(t−2). The bottom graph
shows the corresponding individual outputs, g(t + 2), g(t), g(t − 2), which partially overlap.

The duration of g(t) extends over 0 ≤ t ≤ 2.5. Therefore, its replica g(t + 2) that starts at
t = −2, will extend over the time interval −2 ≤ t ≤ 0.5, thus, overlapping with g(t) over the
interval 0 ≤ t ≤ 0.5. Therefore, over one period, say, 0 ≤ t ≤ 2, the complete output y(t) due to
the periodic signal x(t) will be given as follows,

y(t)=
⎧⎨
⎩g(t + 2)+g(t) , 0 ≤ t ≤ 0.5
g(t) , 0.5 ≤ t ≤ 2

(9)

and this period will be replicated at multiples of T = 2. The individual output g(t) due to f(t) can
be calculated with our class method, that is,

g(t)=
∫∞
−∞
h(t′)f(t − t′)dt′

with t, t′ being restricted as follows,

0 ≤ t′ ≤ 1.5
0 ≤ t − t′ ≤ 1

0 ≤ t ≤ 2.5
⇒ 0 ≤ t′ ≤ 1.5

−1 ≤ t′ − t ≤ 0
⇒

0 ≤ t′ ≤ 1.5
t − 1 ≤ t′ ≤ t

max(0, t − 1)≤ t′ ≤ min(1.5, t)

Thus, g(t) is given by the following single expression over, 0 ≤ t ≤ 2.5,

g(t)=
∫ min(1.5,t)

max(0,t−1)
t′dt′ = 1

2

[
min(1.5, t)

]2 − 1

2

[
max(0, t − 1)

]2

The switch points are at t = 1 and t = 1.5, so that g(t) specializes as follows over the subintervals,

0 ≤ t ≤ 1 , g(t)= 1

2
t2

1 ≤ t ≤ 1.5 , g(t)= 1

2
t2 − 1

2
(t − 1)2= t − 1

2

1.5 ≤ t ≤ 2.5 , g(t)= 9

8
− 1

2
(t − 1)2= 5

8
− 1

2
t2 + t

Splitting the interval 0 ≤ t ≤ 1 in half and adding the contribution of g(t + 2) over 0 ≤ t ≤ 0.5,
we obtain from Eq. (9),

0 ≤ t ≤ 0.5 , y(t)= 9

8
− 1

2
(t + 2− 1)2+1

2
t2 = 5

8
− t

0.5 ≤ t ≤ 1 , y(t)= 1

2
t2

1 ≤ t ≤ 1.5 , y(t)= 1

2
t2 − 1

2
(t − 1)2= t − 1

2

1.5 ≤ t ≤ 2 , y(t)= 5

8
− 1

2
t2 + t

29

The three periods of the periodic output signal y(t) are shown below.

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

t

periodic output, y(t)

one period

 y(t+2)
 y(t) = basic period
 y(t−2)
 switch points

The MATLAB code for producing the above three graphs was as follows:

u = @(t) (t>=0);
f = @(t) u(t)-u(t-1);
g = @(t) (min(t,1.5).^2 - max(0,t-1).^2) .* (u(t)-u(t-2.5))/2;
h = @(t) t.*(u(t)-u(t-1.5));

y = @(t) (g(t+2)+g(t)) .* (u(t)-u(t-0.5)) + g(t) .* (u(t-0.5)-u(t-2));

t = linspace(-3,4,7001);

plot(t,f(t+2),’r--’, t,f(t),’b-’, t,f(t-2),’m--’, t,h(t),’g-’);
plot(t,g(t+2),’r--’, t,g(t),’b-’, t,g(t-2),’m--’);
plot(t,y(t+2),’r--’, t,y(t),’b-’, t,y(t-2),’m--’);

30

Example 13 – Discrete-Time Convolution

The computation of the convolution of two finite discrete-time sequences can be structured in a
variety of ways. Please refer to the “i2sp-ch4 - convolution.pdf” handout on Sakai for more details.

Here we illustrate the following computation methods using: (a) the LTI form, (b) the direct
form, (c) the convolution table form, and (d) two versions of the convolution matrix form, and (e) the
flip-and-slide method. These methods correspond to the following expressions:

yn =
∑
m
xmhn−m = LTI form

=
∑
m
hmxn−m = direct form

=
∑
i, j

i+j=n

hixj = convolution table form

The two matrix forms are as follows, for example, for a length-4 filter and a length-5 input,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0
h1 h0 0 0 0
h2 h1 h0 0 0
h3 h2 h1 h0 0
0 h3 h2 h1 h0

0 0 h3 h2 h1

0 0 0 h3 h2

0 0 0 0 h3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
x0

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 0 0 0
x1 x0 0 0
x2 x1 x0 0
x3 x2 x1 x0

x4 x3 x2 x1

0 x4 x3 x2

0 0 x4 x3

0 0 0 x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
h0

h1

h2

h3

⎤
⎥⎥⎥⎦

The two signals to be convolved, and the resulting convolution, are in this example,

h = [1, −2, 0, 3]

x = [4, 3, 2, 1, 2]
⇒ y = h∗ x = [4, −5, −4, 9, 9, 2, 3, 6]

In the LTI form, we form a linear combination of delayed replicas of the impulse response, with
coefficients being the input signal. We display the delayed/scaled replicas horizontally, and add
them vertically,

for example,

4*[1 -2 0 3]
3*[1 -2 0 3]

2*[1 -2 0 3]
1*[1 -2 0 3]

2*[1 -2 0 3]

31

and, adding vertically,

4 -8 0 12
3 -6 0 9

2 -4 0 6
1 -2 0 3

2 -4 0 6

4 -5 -4 9 9 2 3 6

In the direct form, which is equivalent to exchanging the roles of hn and xn in the LTI form, we
form a linear combination of delayed replicas of the input signal, with coefficients being the impulse
response. We display the delayed/scaled replicas horizontally, and add them vertically,

for example,

1*[4 3 2 1 2]
-2*[4 3 2 1 2]

0*[4 3 2 1 2]
3*[4 3 2 1 2]

and, adding vertically,

4 3 2 1 2
-8 -6 -4 -2 -4

0 0 0 0 0
12 9 6 3 6

4 -5 -4 9 9 2 3 6

In the convolution table method, we arrange one of the signals horizontally, the other vertically,
and fill the table such that each row is the product of the horizontal signal times the corresponding
vertical sample, and finally we fold the table anti-diagonally, summing the corresponding entries
within each anti-diagonal fold,

so that in our example,

32

4 3 2 1 2

1 | 4 3 2 1 2
-2 | -8 -6 -4 -2 -4
0 | 0 0 0 0 0
3 | 12 9 6 3 6

4 -5 -4 9 9 2 3 6

In all three table forms, the calculated values are the same. For example, if, h = [h0, h1, h2, h3],
and, x = [x0, x1, x2, x3, x4], the outputs from any method will be as follows, where the first and last
three are the input-on and input off transients, and the middle two are the steady-state outputs,

y0 = h0x0

y1 = h0x1 + h1x0

y2 = h0x2 + h1x1 + h2x0

y3 = h0x3 + h1x2 + h2x1 + h3x0

y4 = h0x4 + h1x3 + h2x2 + h3x1

y5 = h1x4 + h2x3 + h3x2

y6 = h2x4 + h3x3

y7 = h3x4

The convolution table form is usually the most economical in terms of writing things down.
Finally, we may verify the convolution matrix calculations,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
−5
−4

9
9
2
3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−2 1 0 0 0

0 −2 1 0 0
3 0 −2 1 0
0 3 0 −2 1
0 0 3 0 −2
0 0 0 3 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

4
3
2
1
2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
3 4 0 0
2 3 4 0
1 2 3 4
2 1 2 3
0 2 1 2
0 0 2 1
0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
−2

0
3

⎤
⎥⎥⎥⎦

In MATLAB, the convolution matrices can be constructed with the help of the built-in function
convmtx, by making the signals into columns, and specifying the number of desired columns, e.g.,
for the above two cases,

h = [1,-2, 0, 3]’; % column vector
x = [4, 3, 2, 1, 2]’; % column vector

H = convmtx(h,length(x)); % convolution matrix
X = convmtx(x,length(h)); % convolution matrix

y = H * x; % equivalent to conv(h,x)
y = X * h; % also equivalent to conv(h,x)

these commands result in the following matrices, and output signal,

33

H = X =
1 0 0 0 0 4 0 0 0
-2 1 0 0 0 3 4 0 0
0 -2 1 0 0 2 3 4 0
3 0 -2 1 0 1 2 3 4
0 3 0 -2 1 2 1 2 3
0 0 3 0 -2 0 2 1 2
0 0 0 3 0 0 0 2 1
0 0 0 0 3 0 0 0 2

y =
4
-5
-4
9
9
2
3
6

We also mention briefly the flip-and-slide form, which is the least convenient computationally.

For our example, the flipped hn is as follows as it gets shifted over the input xn (padded with
M = 3 zeros in front andM zeros at end), such that at each shifted position, the output is computed
as the dot product of the flipped/shifted filter with those input samples that are aligned under it,

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(0) = 1*4 = 4

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(1) = -2*4 + 1*3 = -5

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(2) = 0*4 - 2*3 + 1*2 = -4

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(3) = 3*4 + 0*3 - 2*2 + 1*1 = 9

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(4) = 3*3 + 0*2 - 2*1 + 1*2 = 9

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(5) = 3*2 + 0*1 - 2*2 = 2

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(6) = 3*1 + 0*2 = 3

3 0 -2 1
0 0 0 4 3 2 1 2 0 0 0 ==> y(7) = 3*2 = 6

34

Finally, we discuss how to program convolution in MATLAB. The built-in MATLAB function conv
is a compiled function and very fast. A do-it-yourself version of conv can be constructed easily in
a partially-vectorized form, as follows (explained in class).

% ---------------------- DIY version of CONV ----------------

function y = myconv(h,x)

M = length(h)-1; % filter order
L = length(x); % input length
y = zeros(size(x)); % inherit column/row nature of x

% but final y length is L+M

h = h(:); % make h,x into columns
x = x(:);

for n=0:L-1+M,
m = max(0,n-L+1):min(n,M); % vector index
y(n+1) = h(m+1).’ * x(n-m+1); % dot product

end

% ---

35

Numerical Evaluation of Convolution

The continuous-time (CT) convolution integrals of Eq. (1) can be computed exactly only for simple
functions h(t) and x(t) that lead to closed-form expressions for those integrals,

y(t)=
∫∞
−∞
h(t′)x(t − t′)dt′ =

∫∞
−∞
h(t − t′)x(t′)dt′ (10)

For arbitrary signals, such integrals may be evaluated numerically. For example, a numerical
approximation to the integral of the LTI form is obtained by considering the discrete time instants
tn = nT, where T is a small time step, and writing the integral as the limit of a sum:

y(t)=
∫
h(t − τ)x(τ)dτ = lim

T→0

[
T
∑
m
h(t − tm)x(tm)

]
(11)

where the extra factor T represents the dτ infinitesimal. Eq. (11) follows from the definition of inte-
grals as limits. For small enoughT, we may drop the limiting instruction and use the approximation,

y(t)=
∫
h(t − τ)x(τ)dτ ≈ T

∑
m
h(t − tm)x(tm) (12)

Other, more refined, approximations are possible, such as using the trapezoidal rule, however,
Eq. (12) is adequate for our purposes. Replacing t by the sampled time instant, tn = nT, we fi-
nally obtain,

y(tn)=
∫
h(tn − τ)x(τ)dτ ≈ T

∑
m
h(tn − tm)x(tm) (13)

This can be implemented by the MATLAB code:

y = T * conv(h,x); (14)

where hn, xn are the arrays h(tn), x(tn), and, of course, one must truncate x(tn), h(tn) to finite-
duration arrays for the purpose of computation.

Example 14

This example demonstrates the linearity and time-invariance properties of LTI systems and also
looks at the issue of the numerical approximation of convolution, that is, (i) truncating the signals
and (ii) replacing CT convolution by finite DT convolution as in Eq. (14). We will observe that such
approximation gets better as the sampling interval T gets smaller.

Consider a system described by the following differential equation, with corresponding impulse
response and transfer function:

dy(t)
dt

+ ay(t)= ax(t) ⇒ h(t)= ae−atu(t) , H(s)= a
s+ a (15)

Let the input signal x(t) be a square pulse of duration of td seconds, starting at t = 0, that is,

x(t)= F(t)≡ u(t)−u(t − td) , td > 0 (16)

The exact convolutional output due to the input F(t) was found in Example 1 of this set:

yexact(t)= G(t)≡ e−at
[
ea min(t,td) − 1

]
u(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− e−at , 0 ≤ t ≤ td
e−a(t−td)

[
1− e−atd] , t ≥ td

0 , t < 0

(17)

36

These expressions define the functions F(t),G(t) that are used later. They can be implemented
in MATLAB as anonymous functions (assuming that td and a have already been defined previously),

% define td,a here

F = @(t) (t>=0) - (t>=td);

G = @(t) exp(-a*t) .* (exp(a*min(t,td)) - 1) .* (t>=0);

From the linearity and time-invariance of the system, we know that if one takes as input a linear
combination of shifted copies of F(t), then, the output would be the same linear combination of
shifted copies of G(t), for example,

x(t) = c1F(t − t1)+c2F(t − t2)+c3F(t − t3)
y(t) = c1G(t − t1)+c2G(t − t2)+c3G(t − t3)

(18)

(a) Define the signals, h(t), x(t), of Eqs. (15) and (18), for the following choice of parameters over
a maximum time interval of Tmax = 25, and pulse duration, td = 1,

a = 0.9 , T = 0.05 , [c1, c2, c3]= [1, 2, 1.5] , [t1, t2, t3]= [0, 10, 15]

with t defined to span the [0, Tmax] interval in steps of T, that is, t = 0:T :Tmax. Using the
approximation of Eq. (14), calculate the output y(t), as well as the exact output using Eq. (18),
and plot both of them on the same graph, together with the input signal x(t).
For plotting purposes you may wish to keep only the first, N = length(t), convolutional
outputs. This can be accomplished by redefining the computed output vector by:

y = y(1:length(t));

(b) Observe in part (a) that because of the very short duration of the input pulses, the outputs due
to the individual pulses can be clearly discerned, each being scaled and delayed by the proper
amounts. If the pulse duration is increased, these outputs will begin to overlap.

Repeat part (a) for the pulse duration value, td = 3. The input pulses do not overlap, but the
output ones overlap more strongly because the transient portions are closer to each other.

Repeat part (a) for the pulse duration value, td = 5, corresponding to the case when the last
two pulses are just adjacent without overlap.

(c) To assess the nature of the approximation of Eq. (14), repeat parts (a,b) for the smaller value
of the time step T = 0.01, and for the larger value T = 0.1.

Solution

The typical MATLAB code for generating parts (a,b,c) is as follows, with some of the graphs shown
at the end.

a = 0.9; td = 1; % run also with td=3 and td=5

F = @(t) (t>=0) - (t>=td);

G = @(t) exp(-a*t) .* (exp(a*min(t,td)) - 1) .* (t>=0);

t1 = 0; c1 = 1; % input parameters
t2 = 10; c2 = 2;
t3 = 15; c3 = 1.5;

37

Tmax = 25; T = 0.05; % run also with T=0.01 and T=0.1

t = 0:T:Tmax;

h = a*exp(-a*t); % system

x = c1*F(t-t1) + c2*F(t-t2) + c3*F(t-t3); % input

y = T * conv(h,x); % conv output

y = y(1:length(t)); % truncate y

ye = c1*G(t-t1) + c2*G(t-t2) + c3*G(t-t3); % exact output

figure; plot(t,x,’k--’, t,y,’b-’, t,ye, ’r--’);
xlabel(’\itt’);

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 1, T = 0.05

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 3, T = 0.05

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 5, T = 0.05

 input
 conv
 exact

38

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 1, T = 0.1

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 3, T = 0.1

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 5, T = 0.1

 input
 conv
 exact

The graphs for the case T = 0.01 are not shown since the approximate outputs computed by Eq. (14)
are virtually indistinguishable from the exact ones.

39

Example 15 – Transient and Steady-State Behavior

This example illustrates the transient and steady-state sinusoidal responses of linear systems, as
well as the analytical and numerical computation of convolution. Consider a signal consisting of
three consecutive sinusoidal bursts,

x(t)=

⎧⎪⎪⎨
⎪⎪⎩

sin(ω1t), 0 ≤ t < 30

sin(ω0t), 30 ≤ t < 70

sin(ω1t), 70 ≤ t < 100

where ω0 = 2 and ω1 = 3. It can be generated over the time interval, 0 ≤ t ≤ 100, by the following
MATLAB code segment:

w0=2; w1=3; Tmax=100; T=Tmax/2000; % T = 0.05 can be changed

t = 0:T:Tmax;

x = sin(w1*t) .* F(t,30) + ...
sin(w0*t) .* F(t-30,40) + ...
sin(w1*t) .* F(t-70,30);

where the pulse function F(t, td) is defined as in the previous example, however, here way may
think of it as function of two variables, t, td,

F = @(t,td) (t>=0) - (t>=td);

It is desired to eliminate the middle burst by means of a notch filter:

H(s)= s2 +ω2
0

s2 +αs+ω2
0

(19)

whereω0 = 2 is the notch frequency coinciding with the frequency of the middle burst, andα = 0.3
is a parameter that represents the 3-dB width of the notch, α = Δω, (see graph below), thus, the
filter Q is, Q =ω0/Δω =ω0/α. As discussed in class, the impulse response of this filter is:

h(t)= δ(t)−g(t) , g(t)= αe−αt/2
[

cos(ωrt)− α
2ωr

sin(ωrt)
]
u(t) , ωr =

√
ω2

0 −
α2

4

where it is recognized as an “underdamped” case sinceω0 > α/2.† It follows that the output signal
will be given by the convolution integral (starting from t = 0− so that the δ(t) term will be included),

y(t)=
∫∞

0−
h(t′)x(t − t′)dt′ =

∫∞
0−

[
δ(t′)−g(t′)]x(t − t′)dt′ = x(t)−∫∞

0−
g(t′)x(t − t′)dt′

which can be implemented approximately by the MATLAB code:

y = x - T * conv(g,x); (20)

(a) Compute the output signal y(t) using Eq. (20) and plot it versus t. On a separate graph, but
using the same vertical and horizontal scales, plot the input signal x(t). Note the removal of
the middle burst after the transients have decayed.

The first and third bursts have also been attenuated by a slight amount, with a new amplitude
equal approximately to |H(ω1)| — this is only an approximation because steady-state is not
yet reached for these bursts.

Calculate the numerical value of |H(ω1)| and, on the graph for y(t), add horizontal lines
at that level for the first and third bursts (see the blue line segments in the example graphs
below).

†the filter poles are at, p = −α/2± jωr , in the left-hand s-plane

40

(b) Calculate the 40-dB time constant of this filter given in general by,

τ = − ln
(
10−40/20

)
|Re(p)| = ln(100)

|Re(p)| (21)

where p is the stable pole closest to the jω axis. Is the value of τ consistent with the transients
that you observe in the plot of y(t)?

(c) Calculate the output signal y(t) by the alternative method of using the function, lsim, and
make a plot of y(t) using the same scales as in part (a). Compare the outputs from the lsim
and conv methods by computing the percentage error as the ratio,

Error = 100 · ‖yconv − ylsim‖
‖yconv‖

where the norm ‖y‖ can be computed with the built-in function norm.

(d) The frequency and magnitude responses of the transfer function H(s) of Eq. (19) are,

H(ω)= ω2
0 −ω2

ω2
0 −ω2 +αjω ⇒ |H(ω)|2 = (ω2 −ω2

0)2

(ω2 −ω2
0)2+α2ω2

(22)

As discussed in class, the (positive) left and right 3-dB frequencies ω±, that is, the solutions
of the 3-dB half-power condition, |H(ω)|2 = 1/2, are given by,

ω± = ±α
2
+
√
ω2

0 +
α2

4
(23)

Note that these frequencies satisfy the following useful relationships,†

ω+ −ω− = α
ω+ω− =ω2

0
(24)

where, Δω = ω+ −ω− = α, represents the 3-dB width of the notch. Make a plot of the
magnitude-square response |H(ω)|2 over the interval, 0 ≤ ω ≤ 5, and add to it (with dots)
the points at ω = ω0 (the notch), and at ω = ω1. Also, add the horizontal line between the
two 3-dB frequencies ω± in order to indicate the width of the notch.

(e) Repeat parts (a–d) for the case α = 0.9. Now the time constant and the transients will be
shorter, but the notch width will be wider, and the first and last bursts at ω1 will be more
distorted in amplitude.

By combining Eqs. (21) and (24), show that the 40-dB time constant and the 3-dB width satisfy
the following inverse relationship, which is a form of the uncertainty principle and captures
the tradeoff between time constant and narrowness of the notch,

τ = 2 ln(100)
Δω

More generally, this tradeoff states that the more stringent the filter specifications in the fre-
quency domain, the longer the filter time constants in the time domain.

†First prove, ω2+ω2− =ω4
0, then, use the identity, (ω+ −ω−)2=ω2+ +ω2− − 2ω+ω−

41

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

input signal, x(t)

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), conv method, a = 0.3

 y(t)
 |H(ω

1
)|

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), lsim method, a = 0.3

 y(t)
 |H(ω

1
)|

0 1 2 3 4 5
0

0.5

1

3−dB width

ω
1

notch filter, |H(ω)|2, a = 0.3

ω

The graphs for the case, a = 0.9, are shown below, where we again the basic tradeoff between time
constant and narrowness of the notch is observed.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

input signal, x(t)

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), conv method, a = 0.9

 y(t)
 |H(ω

1
)|

42

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), lsim method, a = 0.9

 y(t)
 |H(ω

1
)|

0 1 2 3 4 5
0

0.5

1

3−dB width

ω
1

notch filter, |H(ω)|2, a = 0.9

ω

The typical MATLAB code for generating the above graphs is as follows:

F = @(t,td) (t>=0) - (t>=td); % pulse function

Tmax = 100; T = Tmax/2000; % try also, T=0.01

t = 0:T:Tmax; % sampled in steps of T

w0 = 2; w1 = 3; a = 0.3; wr = sqrt(w0^2 - a^2/4);

tau = 2*log(100)/a; % 40-dB time constant, tau=30.7

wa = -a/2 + sqrt(a^2/4 + w0^2); % left/right 3-dB frequencies
wb = +a/2 + sqrt(a^2/4 + w0^2);

x = sin(w1*t).*F(t,30) + sin(w0*t).*F(t-30,40) + sin(w1*t).*F(t-70,30);
g = a*exp(-a*t/2) .* (cos(wr*t) - a/2/wr * sin(wr*t));

yg = T*conv(g,x); yg = yg(1:length(t)); % truncate to length(t)
y = x - yg; % convolutional output

H1 = abs((w0^2 - w1^2)/(w0^2 - w1^2 + j*a*w1)); % |H(w1)| = 0.9686 when a=0.3
y1 = NaN(size(t)); y1(t<=30 | t>=70) = H1; % constant envelope

s = tf(’s’); % transfer function class
H = (s^2 + w0^2)/(s^2 + a*s + w0^2);
yf = lsim(H,x,t)’; % LSIM output

percent_error = 100 * norm(y-yf)/norm(y) % Error = 0.9725 for a = 0.3
% redo with T=0.01 for improvement

figure; plot(t,x,’b-’); % plot input
figure; plot(t,y,’r-’, t,y1,’b-’, t,-y1,’b-’); % plot convolutional output
figure; plot(t,yf,’r-’, t,y1,’b-’, t,-y1,’b-’); % plot LSIM output
xlabel(’\itt’);

w = linspace(0,5,501); s = j*w; % frequency axis
H = abs((s.^2+w0^2)./(s.^2+a*s+w0^2)).^2; % magnitude-response square |H(w)|^2

figure; plot(w,H,’b-’, w0,0,’r.’, w1,H1^2,’r.’);
hold on; plot([wa,wb], [1,1]/2, ’r-’) % add 3-dB width
xlabel(’\omega’);

43

Example 16 – Central Limit Theorem

This example clarifies and illustrates some of the remarks in class regarding the central limit theo-
rem, which states that under some very general conditions, the limit of the sum of N independent
and identically-distributed random variables from an arbitrary probability density f(t) tends to a
gaussian.

Specifically, let the mean and variance of f(t) be μ,σ2. Then, if {t1, t2, . . . , tN} are independent
random variables drawn from f(t), their sum will have mean and variance:

t = t1 + t2 + · · · + tN ⇒ μN = Nμ , σ2
N = Nσ2

and probability density given by the N-fold convolution of f(t) with itself:

pN(t)= (f ∗ f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
N factors

)(t)

Then, the central limit theorem states that for large N,

pN(t)≈ 1√
2πσ2

N

exp

(
−(t − μN)

2

2σ2
N

)
= 1√

2πNσ2
exp

(
−(t −Nμ)

2

2Nσ2

)

For the square pulse, f(t)= 1
2

[
u(t + 1)−u(t − 1)

]
, used in class, we find:

μ = 1

2

∫ 1

−1
t dt = 0 , σ2 = 1

2

∫ 1

−1
t2 dt = 1

3

(the factor 1/2 normalizes f(t) to unity integral as required for it to be a probability density.) The
following MATLAB code segment evaluates pN(t) for any desired value of N:

L = 1000; t = linspace(-1,1,L+1);

f = 1/2 * ((t>=-1) - (t>=1)); % uniform distribution over [-1,1]

T = t(2)-t(1); % here, T = 2/L = 0.002

N = 2; % N can be changed to any value

str = ’\itf’; % construct plot title
y = 1; % initialize convolution

for n=1:N,

y = T * conv(y,f); % repeat convolution

if n<N
str = [str,’ * \itf’]; % plot title

end

end

y = y/sum(y)/T; % normalize to unit area, \int p(t)dt = 1

t = linspace(-N,N,L*N+1); % extent of N-fold convolution of f(t)

sigma2 = N * 1/3;

g = 1/sqrt(2*pi*sigma2) * exp(-t.^2/2/sigma2); % gaussian

figure; plot(t,y,’b-’, t,g,’r--’);
title(str);
xlabel(’\itt’);
xaxis(-6,6, -6:6);
yaxis(0,0.5, 0:0.1:0.5); grid;
legend([’ conv, {\itN} = ’,num2str(N)], ’ gaussian’, ’location’,’ne’)

44

The graphs show the cases N = 2,4,6,12. The gaussian is plotted in dashed red. The case
N = 12 illustrates a widely used property, namely, that the sum of twelve independent uniformly-
distributed random numbers is virtually a gaussian.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
f * f

t

 conv, N = 2
 gaussian

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
f * f * f * f

t

 conv, N = 4
 gaussian

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
f * f * f * f * f * f

t

 conv, N = 6
 gaussian

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
f * f * f * f * f * f * f * f * f * f * f * f

t

 conv, N = 12
 gaussian

45

