
Fall 2009 – 332:347 – Linear Systems Lab – Lab 5

1. In this part, you will study the steady-state and transient response of a
filter. Consider the following sinusoidal input signal and filter:

f(t)= sin(ω0t)u(t) , H(s)= s+ 3

s2 + s+ 1.25

where ω0 = 4 rad/sec and t is in seconds.

(a) Determine the poles of the filter and calculate its 40-dB time con-
stant in sec. Calculate the frequency response H(ω0), as well as its
magnitude |H(ω0)|, and phase φ0 = argH(ω0).

(b) Define a vector of 1001 equally-spaced time points t spanning the
interval 0 ≤ t ≤ 10, and evaluate the corresponding steady-state
output signal:

yst(t)= |H(ω0)| sin(ω0t +φ0) (1)

(c) The exact response to a complex sinusoidal input eiω0tu(t)was worked
out in class for any filter:

yc(t)= H(ω0)ejω0tu(t)+
M∑
i=1

Biepitu(t) (2)

where pi, i = 1,2, . . . ,M, are the filter poles, M is the order of the
denominator polynomial of H(s), assuming that the order of the
numerator polynomial was at most M. The exact response due to a
real-valued sinusoidal input sin(ω0t)u(t) is obtained by calculating
the imaginary part of Eq. (2).

Using the function residue, compute the quantities Bi, pi that ap-
pear in Eq. (2), and then evaluate yc(t) at the same vector of t’s
defined above, and extract its imaginary part y(t)= Im

[
yc(t)

]
.

On the same graph, plot y(t), yst(t), and the input f(t), and observe
how y(t) tends to yst(t) as t increases.

Calculate the phase delay tph = −φ0/ω0 and verify that it is consis-
tent with the observed phase shift of the steady-state output.

On a separate graph, plot only the transient part ytr(t)= y(t)−yst(t).
Is its rate of decrease consistent with the 40-dB time constant that
you calculated above?

(d) Repeat parts [a-c], for ω0 = 8.
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2. In this part, you will study the effect of a bandlimited channel on an input
pulse and observe the distortions introduced when the channel’s band-
width is narrower than the pulse’s bandwidth. The main tradeoff to ob-
serve is that the distortions diminish as the time-bandwidth product TωB
increases. Consider first a rectangular pulse of duration T:

f(t)= rectT(t)=
{

1 , |t| < T/2
0 , |t| > T/2 ⇒ F(ω)= sin(ωT/2)

ω/2

The channel has bandwidth ωB and is defined by the ideal response:

H(ω)=
{

1 , |ω| ≤ωB

0 , |ω| > ωB

The corresponding output signal was worked out in class:

y(t) = 1

2π

∫ωB

−ωB

sin(ωT/2)
ω/2

cos(ωt)dω

= 1

π

[
Si
(
ωB(t +T/2)

)− Si
(
ωB(t −T/2)

)] (3)

where Si(x) is the standard Si (sine-integral) function defined by

Si(x)=
∫ x

0

sinu
u

du

The MATLAB function Si.m is part of this lab.

(a) To gain an understanding of the function Si, plot Si(x) versus x over
−30 ≤ x ≤ 30, and also plot Si(5x), which is a compressed version
of Si(x). Determine the maximum ripple and the value of x at which
it occurs. Notice that the compressed version, does not eliminate
the ripples, but squeezes them more tightly towards x = 0. Note
also, that Si(5x) resembles the sign-function scaled by π/2, that is,
Si(5x)≈ sign(x)π/2.

The shifted/compressed copies of Si in Eq. (3) will resemble the square
pulse. In fact, the original square pulse can be represented in terms
of similarly shifted copies of the sign-function, for any value of ωB:

f(t)= 1

2

[
sign

(
ωB(t +T/2)

)− sign
(
ωB(t −T/2)

)]
(4)

(b) Generate a vector t of equally-spaced time samples spanning the in-
terval −4 ≤ t ≤ 4. For the numerical values T = 1 and ωB = 1,
compute the signals y(t) and f(t) from Eqs. (3) and (4) and plot
them on the same graph. Repeat for the values ωB = 5,10,25,50.
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(c) Consider next the following Lorentzian/Cauchy pulse and its Fourier
transform:

f(t)= T2

T2 + t2 � F(ω)= πTe−T|ω|

The output of the ideal band-limited filter was obtained in Exam-2:

y(t) = 1

2π

∫ωB

−ωB

πTe−T|ω| cos(ωt)dω

=
[

T2

T2 + t2
]
·
[

1+ 1

T
e−TωB

[
t sin(ωBt)−T cos(ωBt)

]] (5)

For the values T = 1 and ωB = 1, plot f(t) and y(t) on the same
graph. Repeat for ωB = 2,10.

(d) The above examples were chosen because the inverse Fourier trans-
form could be expressed in terms of known functions. In general,
numerical integration is required. For example, the exact output:

y(t)= 1

2π

∫ωB

−ωB

F(ω)ejωt dω

may be approximated by the sum:

yapp(t)= 1

2π

N−1∑
k=0

F(ωk)ejωkt Δω (6)

where

Δω = 2ωB

N
, ωk = −ωB + k2ωB

N
This is effectively the so-called inverse discrete Fourier transform
(IDFT), and we will encounter it again in the DSP course. For example,
applying Eq. (6) to the Lorentzian case, we have:

yapp(t)= 1

2π

N−1∑
k=0

πTe−T|ωk| ejωkt Δω (7)

ForT = 1,ωB = 2, and for the valuesN = 5,10,50, compute yapp(t)
and plot its real part on the same graph with y(t) of Eq. (5). On
separate graphs but using the same vertical scale as for the real part,
plot the imaginary part of yapp(t) and verify that it is essentially zero
(it would be exactly zero if the sum over k was extended to be over
the interval 0 ≤ k ≤ N, instead of 0 ≤ k ≤ N − 1.)
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Typical Outputs
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 = 2,  N = 10
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