
Fall 2009 – 332:347 – Linear Systems Lab – Lab 4

Consider a dish antenna sitting on a rotating base that can be rotated az-
imuthally by a drive motor to track a flying aircraft. The dynamics of the rotating
structure is described by the equations:

Jθ̈(t)= −βθ̇(t)+N(t)+Ndist(t)

where θ(t) is the azimuthal angle, N(t) is the torque applied by the drive
motor, Ndist(t) is a torque due to disturbances such as wind gusts or steady
wind noise, J is the moment of inertia of the structure, and β is a frictional
constant that quantifies an opposing frictional torque that is proportional to
the angular velocity θ̇.

A control system must be designed to apply an appropriate torqueN(t) such
that the angle θ(t) will follow a desired reference angle θref(t), that is, θ(t)→
θref(t). For example, if one wishes to point the antenna towards a given angle
θ1, then, θref(t)= θ1u(t). To point initially towards θ1 and t0 seconds later
to point towards θ2, one would choose θref(t)= θ1upulse(t, t0)+θ2u(t − t0).
Similarly, to track a uniformly moving aircraft, one would choose the ramp
function θref(t)= θ̇0tu(t), or, more accurately as explained in class, θref(t)=
arctan

(
θ̇0t

)
u(t).

By some redefinitions, the above system can be replaced by the standardized
form where the output y(t) represents θ(t) and f(t), fdist(t) represent the
torque inputs N(t),Ndist(t):

ÿ(t)= −aẏ(t)+f(t)+fdist(t) � Y(s)= G(s)[F(s)+Fdist(s)
]

where the system transfer function is

G(s)= 1

s(s+ a)

The control system is implemented as the feedback system shown below,

where the overall reference input r(t) represents the desired reference angle
θref(t), and the controllerGc(s) is designed to generate the appropriate torque
input f(t) to make the system follow the reference input, i.e., y(t)→ r(t), or
for the error signal, e(t)= r(t)−y(t)→ 0.

In this lab, you will use a PID controller and experiment with its settings to
achieve a desired response and also investigate the robustness of the control
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system in the presence of disturbance inputs. You willalso study the perfor-
mance of the corresponding digital control system, with the system discretized
using the zero-order hold method, and look at the effect of selecting differ-
ent values of the sampling time interval. The PID controller has the transfer
function:

Gc(s)= kp + kis + kds

The overall transfer relationships from the two inputs R(s), Fdist(s) to the
two outputs Y(s) and E(s) are as follows:

Y(s) = H(s)R(s)+Hdist(s)Fdist(s)

E(s) = Herr(s)R(s)−Hdist(s)Fdist(s)

H(s) = Gc(s)G(s)
1+Gc(s)G(s) =

kds2 + kps+ ki
s3 + (a+ kd)s2 + kps+ ki = closed-loop

Herr(s) = 1

1+Gc(s)G(s) =
s2(s+ a)

s3 + (a+ kd)s2 + kps+ ki = error

Hdist(s) = G(s)
1+Gc(s)G(s) =

s
s3 + (a+ kd)s2 + kps+ ki = disturbance

The corresponding digital control system, and its equivalent transfer func-
tion description in which the D/A converter has been replaced by a zero-order
hold, are shown below:

The discrete-time operation can be obtained by sampling all the signals in
this figure at a sampling interval T. Assuming the discrete controller has trans-
fer function Gc(z)= G∗c (s), the corresponding z-domain transfer functions of
the feedback system are obtained as follows:
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Y(s) = G(s)[Gzoh(s)F∗(s)+F∗dist(s)
]
, Gzoh(s)= 1− e−sT

s

F(s) = Gc(s)E∗(s)= Gc(s)
[
R∗(s)−Y∗(s)]

and taking the starred-Laplace transforms,

Y∗(s) = [G(s)Gzoh(s)
]∗F∗(s)+G∗(s)F∗dist(s)

F∗(s) = G∗c (s)
[
R∗(s)−Y∗(s)]

Denoting Gd(z)=
[
G(s)Gzoh(s)

]∗
and G(z)= G∗(s), Y(z)= Y∗(s), etc.,

we may rewrite the above as

Y(z) = Gd(z)F(z)+G(z)Fdist(z)

F(z) = Gc(z)
[
R(z)−Y(z)]

which leads to the feedback discrete-time transfer functions:

Y(z)= Hd(z)R(z)+Hdist(z)Fdist(z)

Hd(z)= Gc(z)Gd(z)
1+Gc(z)Gd(z) , Hdist(z)= G(z)

1+Gc(z)Gd(z) (1)

The discretized versions of Gc(z),Gd(z),G(z)were derived in class:

Gd(z) = (aT + e−aT − 1)z+ (1− e−aT − aTe−aT)
a2(z− 1)(z− e−aT) = ZOH system

G(z) = (1− e−aT)z−1

a(1− z−1)(1− e−aTz−1)

Gc(z) = kp + kiT
2

(
1+ z−1

1− z−1

)
+ kd
T
(1− z−1)= discrete PID controller

(2)

Regarding the choice of the PID controller parameters kp, ki, kd, we recall
from class the following: (a) ki must be nonzero in order to guarantee zero
steady-state error for the given system, i.e., e(t)→ 0, for both the step and
ramp responses, (b) increasing ki will increase the overshoot and the settling
time and decrease the rise time, (b) increasing kd will decrease the overshoot and
the settling time, and (c) increasing kp will decrease the rise time but increase the
overshoot. With above background, please carry out the following experiments:

a. Starting with the parameter values a = 2, kp = 10, ki = 5, kd = 3, construct
the transfer function objects for the system, controller, closed-loop feedback
system, and disturbance transfer function using, for example, the MATLAB code:
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a = 2; kp=20; ki=5; kd = 3;
s = tf(’s’);
G = 1/(s*(s+a));
Gc = kp + ki/s + kd*s;
H = minreal(Gc*G/(1+Gc*G));
Hdist = minreal(G/(1+Gc*G));

Plot the step response of H and then increase the PID parameters by doubling
their values one at a time, plot the step response, and observe the dependence
on such changes.

Experiment with other choices of the controller settings kp, ki, kd and come up
with values that meet your expectations for a good step response. Explain your
reasons for your choice and use these values in the rest of the lab.

b. Define t as a vector of 1001 equally-spaced time samples spanning the interval
0 ≤ t ≤ 20. For these values of t, generate the following three reference in-
put signals describing the typical reference angle situations mentioned at the
beginning of this handout:

r(t) = upulse(t,10)+2u(t − 10)

r(t) = 0.1 t u(t)

r(t) = arctan
(
0.1 t

)
u(t)

r(t) =

⎧⎪⎪⎨
⎪⎪⎩

0.04 t , 0 ≤ t ≤ 10

−2+ 0.69 t − 0.07 t2 + 0.0025 t3 , 10 ≤ t ≤ 14

0.8+ 0.2 (t − 14) , 14 ≤ t ≤ 20

The fourth case, emulates a situation where the aircraft is moving at constant
speed until t = 10 and then between t = 10 and t = 14, it accelerates to a new
speed. The expression between 10 ≤ t ≤ 14 is the cubic Hermite interpolation
polynomial (see z-transform page on the course web page) that interpolates
smoothly between the two speeds.

For each r(t), compute the corresponding output of the closed-loop systemH,
using the function lsim:

y = lsim(H,r,t);

On the same graph, plot both y(t) and r(t) with different colors, observing
whether the controlled system is capable of following the desired input refer-
ence setting.

For the particular case of the ramp input r(t)= 0.1tu(t), set temporarily ki = 0,
and recompute the system output y(t) noting that the steady-state error e(t)
is no longer zero, although the slope of the output does follow the slope of the
reference input. After this part, set ki back to its non-zero value.
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c. Because of the difficulty in implementing the derivative term kds of the PID
controller, the following variant is often used:

Gc(s)= kp + kis +
kds
τs+ 1

where τ is a very small quantity. Set τ = 0.05 and repeat part (b).

In addition, determine the transfer function Hf(s) from the overall input r(t)
to the controller’s torque output f(t) and for all four choices of r(t), compute
the applied torque f(t) and plot it versus t. This will give you a sense of the
actual input being applied to the controlled system G(s). Set τ = 0 after this
part is complete.

d. Next, you will investigate how the controlled system responds to a disturbance.
Consider two types of disturbances, one imitating a wind gust lasting for a
brief period of time, say, 4 ≤ t ≤ 6, and the other imitating steady wind noise.
They can be generated by the following MATLAB code (for the same length-1001
vector of t’s that you defined in part (b)):

fdist = 2*upulse(t-4,2); % wind gust
seed=2009; randn(’state’,seed); fdist = randn(1,1001); % steady wind noise

For each type of disturbance, compute the corresponding system output using
the disturbance transfer function Hdist, and add it to the previously obtained
output from each of the four reference signals r(t) to get the total system
output:

ydist = lsim(Hdist,fdist,t);
y = lsim(H,r,t);
ytot = y + ydist;

For each of the resulting eight cases (2 disturbances × 4 reference signals),
plot the signals ytot(t) and r(t) on the same graph, observing how the system
recovers (or not) from the disturbance.

e. Next, you will study the behavior of the discrete PID control system, described
by Eqs. (1) and (2). For this part, you may ignore the disturbance input. A
reasonable initial choice for the discretization sampling time interval Ts is to
choose it to be a small fraction of the effective time constant of the closed-
loop system H. The time constant is the the inverse of the smallest damping
constant and can be obtained with the help of the function pzmap:

p = pzmap(H); % poles of H
teff = 1/abs(max(real(p))); % effective time constant
Ts = teff/20; % initial choice of Ts

The zero-order hold discretization of the system G(s) is given by Eq. (2), but it
can be obtained also using the c2d function:
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T = Ts; % to be changed later to T = Ts/2, 2*Ts, 4*Ts, 6*Ts
Gd = c2d(G,T); % ZOH discretization

The discrete PID controller Gc(z) of Eq. (2) and the discrete feedback transfer
function Hd(z) can be constructed by the code:

z = tf(’z’);
Gc = kp + ki*T*(z+1)/(z-1)/2 + kd*(z-1)/z/T;
Hd = feedback(Gc*Gd,1);

The time vector t must now be resampled at multiples of the chosen interval T,
that is, tn = nT, and in order for it to span the interval 0 ≤ t ≤ 20, we must
redefine:

tn = (0:T:20);

Using this new vector of t’s, construct the discrete-time reference inputs:

rn = upulse(tn,10)+2u(tn − 10)

rn = 0.1 tn

rn = arctan
(
0.1 tn

)

and compute the output yn of the discrete closed-loop system:

yn = lsim(Hd,rn);
%yn = filter(Hd.num{1}, Hd.den{1}, rn); % alternative evaluation of yn

On the same graph, plot yn versus the sampled time tn, together with the output
y(t) of the continuous-time system computed in the previous parts using the
original length-1001 time vector t, that is,

figure; plot(tn,yn,’r-’, t,y,’b-’);

Compare the outputs of the discrete and continuous time systems.

f. Repeat part (d) using the alternative choices of the interval T:

T = 1

2
Ts , T = 2Ts , T = 4Ts , T = 6Ts

And discuss the improvement or deterioration of the expected response.
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Typical Outputs
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