
Fall 2009 – 332:347 – Linear Systems Lab – Lab 3

1. Consider the following linear system:

ÿ(t)+4ẏ(t)+3y(t)= ḟ (t)+2f(t)

Assuming zero-initial conditions, show that the following three input sig-
nals produce the indicated outputs expressed in the s-domain by:

f(t)= δ(t) ⇒ Y(s)= s+ 2

(s+ 1)(s+ 3)
= 1/2
s+ 1

+ 1/2
s+ 3

f(t)= u(t) ⇒ Y(s)= s+ 2

s(s+ 1)(s+ 3)
= 2/3

s
− 1/2
s+ 1

− 1/6
s+ 3

f(t)= e−4tu(t) ⇒ Y(s)= s+ 2

(s+ 4)(s+ 1)(s+ 3)
= − 2/3

s+ 4
+ 1/6
s+ 1

+ 1/2
s+ 3

For each case, verify the indicated partial fraction expansion coefficients
using the function:

[r,p,k] = residue(num,den);

Then, determine the analytical expressions for the time-domain output
signals y(t) and plot them versus t in the range 0 ≤ t ≤ 10.

2. A signal f(t) consists of a sinusoid plus random noise:

f(t)= sin(ω0t)+v(t) (1)

It is desired to process f(t) through a bandpass filter H(s) that lets the
sinusoid pass through unchanged, while it substantially attenuates the
noise component, so that the output signal would have the form:

y(t)= sin(ω0t)+yv(t) (2)

where yv(t) denotes the filtered noise, which must be much weaker than
the input noise, i.e., the RMS value of yv(t) must be much less than the
RMS value of v(t), or in terms of their variances, σ2

yv � σ2
v. Such a band-

pass filter can be designed to have transfer function and I/O differential
equation:

H(s)= αs
s2 +αs+ω2

o
� ÿ(t)+αẏ(t)+ω2

0y(t)= αf(t) (3)

This is complementary to the notch filter discussed in lab-2. Its magnitude
frequency response, obtained by setting s = jω, is given by:

|H(ω)|2 = α2ω2(
ω2 −ω2

0

)2 +α2ω2
(4)

1

It has a narrow peak centered atω0 and unity gain there, i.e., H(ω0)= 1.
Its 3-dB width is Δω = α (see graphs at end). Its impulse response is
given by:

h(t)= αe−αt/2[cos(ωrt)− α
2ωr

sin(ωrt)
]
u(t) , ωr =

√
ω2

0 −
α2

4
(5)

Assuming the noise component to be white noise with broadband flat
spectrum, the narrow peak of the filter will only let through a small part
of the noise (whatever lies within the effective width of the peak), so that
the output noise power will be proportional to the bandwidth parameter
α — it can be shown that σ2

yv/σ
2
v ≈ Tα/2. Thus, the smaller the α, the

more noise reduction. On the other hand, as can be seen from Eq. (5),
the smaller the α, the longer the effective time constant teff = 2/α of
the filter, resulting in longer transients. In this lab, you will study this
tradeoff between noise reduction and speed of response.

(a) Start with the valuesω0 = 5 andα = 1. Plot the magnitude response
squared |H(ω)|2 versus ω in the interval 0 ≤ ω ≤ 10. Then, plot
the phase response Arg

[
H(ω)

]
versus the same values of ω.

(b) Generate 2001 equally-spaced noisy sinusoidal samples of f(t) in
the interval 0 ≤ t ≤ 40, e.g., using the code:

w0 = 5; a = 1;
t = linspace(0,40,2001);
seed = 10000; randn(’state’,seed); % initialize random number generator
v = randn(size(t)); % generate white gaussian noise samples
f = sin(w0*t) + v; % noisy sinusoid

Compute the filter output samples y(t) using the function lsim,

y = lsim(tf(num,den),f,t, [0;0], ’zoh’);

where this syntax, as opposed to y = lsim(num,den,f,t), forces
the use of the zero-order-hold method of integration.

On two separate graphs, plot f(t) and y(t) versus t. Observe the
initial transients and the steady-state output (it’s not quite equal to
the sinusoid because a small amount of noise survives the filtering
process.)

(c) To observe what happens to the noise itself, filter the noise signal
v(t) through this filter to obtain the filtered noise yv(t). On two
separate graphs, but using the same vertical scales, plot the signals
v(t) and yv(t) versus t.

(d) Repeat parts (a–c) for the values α = 1/2 and α = 1/10, discussing
the tradeoffs between noise reduction, speed of response, and qual-
ity of resulting desired signal.

(e) The zero-order-hold method implemented by the function lsim is
equivalent to replacing the continuous-time transfer function H(s)
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of Eq. (3) by the following discrete-time transfer function and corre-
sponding input/output equation:

H(z)= Gz−1(1− z−1)
1+ a1z−1 + a2z−2

yn + a1yn−1 + a2yn−2 = G(fn−1 − fn−2)
(6)

with coefficients:

G = α
ωr

e−αT/2 sin(ωrT)

a1 = −2e−αT/2 cos(ωrT)

a2 = e−αT
(7)

We will derive this result in class later. For the values ω0 = 5, α =
1/2, T = t(2)−t(1), compute the output samples yn = y(tn) for
the input samples fn = f(tn) by writing a repetitive loop that solves
the difference equation (6) (as was done in Lab-2), for example:

initialize w1 = w2 = 0, then,
for each n = 0,1,2, . . . do:
w0 = fn − a1w1 − a2w2

yn = G(w1 −w2)
w2 = w1

w1 = w0

Plot y(tn) and compare it with that obtained using lsim in part (b).
You may check the output of your loop by comparing it with the
output of the function filter.
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