1. Consider the following linear system:

$$
\ddot{y}(t)+4 \dot{y}(t)+3 y(t)=\dot{f}(t)+2 f(t)
$$

Assuming zero-initial conditions, show that the following three input signals produce the indicated outputs expressed in the s-domain by:

$$
\begin{array}{ll}
f(t)=\delta(t) & \Rightarrow Y(s)=\frac{s+2}{(s+1)(s+3)}=\frac{1 / 2}{s+1}+\frac{1 / 2}{s+3} \\
f(t)=u(t) & \Rightarrow Y(s)=\frac{s+2}{s(s+1)(s+3)}=\frac{2 / 3}{s}-\frac{1 / 2}{s+1}-\frac{1 / 6}{s+3} \\
f(t)=e^{-4 t} u(t) & \Rightarrow Y(s)=\frac{s+2}{(s+4)(s+1)(s+3)}=-\frac{2 / 3}{s+4}+\frac{1 / 6}{s+1}+\frac{1 / 2}{s+3}
\end{array}
$$

For each case, verify the indicated partial fraction expansion coefficients using the function:

$$
[r, p, k]=\text { residue(num,den); }
$$

Then, determine the analytical expressions for the time-domain output signals $y(t)$ and plot them versus t in the range $0 \leq t \leq 10$.
2. A signal $f(t)$ consists of a sinusoid plus random noise:

$$
\begin{equation*}
f(t)=\sin \left(\omega_{0} t\right)+v(t) \tag{1}
\end{equation*}
$$

It is desired to process $f(t)$ through a bandpass filter $H(s)$ that lets the sinusoid pass through unchanged, while it substantially attenuates the noise component, so that the output signal would have the form:

$$
\begin{equation*}
y(t)=\sin \left(\omega_{0} t\right)+y_{v}(t) \tag{2}
\end{equation*}
$$

where $y_{v}(t)$ denotes the filtered noise, which must be much weaker than the input noise, i.e., the RMS value of $y_{v}(t)$ must be much less than the RMS value of $v(t)$, or in terms of their variances, $\sigma_{y_{v}}^{2} \ll \sigma_{v}^{2}$. Such a bandpass filter can be designed to have transfer function and I/O differential equation:

$$
\begin{equation*}
H(s)=\frac{\alpha s}{s^{2}+\alpha s+\omega_{o}^{2}} \Leftrightarrow \ddot{y}(t)+\alpha \dot{y}(t)+\omega_{0}^{2} y(t)=\alpha f(t) \tag{3}
\end{equation*}
$$

This is complementary to the notch filter discussed in lab-2. Its magnitude frequency response, obtained by setting $s=j \omega$, is given by:

$$
\begin{equation*}
|H(\omega)|^{2}=\frac{\alpha^{2} \omega^{2}}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+\alpha^{2} \omega^{2}} \tag{4}
\end{equation*}
$$

It has a narrow peak centered at ω_{0} and unity gain there, i.e., $H\left(\omega_{0}\right)=1$ Its $3-\mathrm{dB}$ width is $\Delta \omega=\alpha$ (see graphs at end). Its impulse response is given by:
$h(t)=\alpha e^{-\alpha t / 2}\left[\cos \left(\omega_{r} t\right)-\frac{\alpha}{2 \omega_{r}} \sin \left(\omega_{r} t\right)\right] u(t), \quad \omega_{r}=\sqrt{\omega_{0}^{2}-\frac{\alpha^{2}}{4}}$
Assuming the noise component to be white noise with broadband flat spectrum, the narrow peak of the filter will only let through a small part of the noise (whatever lies within the effective width of the peak), so that the output noise power will be proportional to the bandwidth parameter α - it can be shown that $\sigma_{y_{v}}^{2} / \sigma_{v}^{2} \approx T \alpha / 2$. Thus, the smaller the α, the more noise reduction. On the other hand, as can be seen from Eq. (5), the smaller the α, the longer the effective time constant $t_{\text {eff }}=2 / \alpha$ of the filter, resulting in longer transients. In this lab, you will study this tradeoff between noise reduction and speed of response.
(a) Start with the values $\omega_{0}=5$ and $\alpha=1$. Plot the magnitude response squared $|H(\omega)|^{2}$ versus ω in the interval $0 \leq \omega \leq 10$. Then, plot the phase response $\operatorname{Arg}[H(\omega)]$ versus the same values of ω.
(b) Generate 2001 equally-spaced noisy sinusoidal samples of $f(t)$ in the interval $0 \leq t \leq 40$, e.g., using the code:
$w 0=5$; $a=1$;
$t=1$ inspace $(0,40,2001)$;
seed $=10000 ;$ randn('state', seed); \% initialize random number generator $v=r a n d n(s i z e(t))$; $\%$ generate white gaussian noise samples
$f=\sin (w 0 * t)+v ;$ \% noisy sinusoid

Compute the filter output samples $y(t)$ using the function 1sim,

$$
y=1 \operatorname{sim}(t f(n u m, d e n), f, t,[0 ; 0], \text { 'zoh'); }
$$

where this syntax, as opposed to $y=1 \operatorname{sim}(n u m, d e n, f, t)$, forces the use of the zero-order-hold method of integration.
On two separate graphs, plot $f(t)$ and $y(t)$ versus t. Observe the initial transients and the steady-state output (it's not quite equal to the sinusoid because a small amount of noise survives the filtering process.)
(c) To observe what happens to the noise itself, filter the noise signal $v(t)$ through this filter to obtain the filtered noise $y_{v}(t)$. On two separate graphs, but using the same vertical scales, plot the signals $v(t)$ and $y_{v}(t)$ versus t.
(d) Repeat parts (a-c) for the values $\alpha=1 / 2$ and $\alpha=1 / 10$, discussing the tradeoffs between noise reduction, speed of response, and quality of resulting desired signal.
(e) The zero-order-hold method implemented by the function 1 sim is equivalent to replacing the continuous-time transfer function $H(s)$
of Eq. (3) by the following discrete-time transfer function and corresponding input/output equation:

$$
\begin{aligned}
& H(z)=\frac{G z^{-1}\left(1-z^{-1}\right)}{1+a_{1} z^{-1}+a_{2} z^{-2}} \\
& y_{n}+a_{1} y_{n-1}+a_{2} y_{n-2}=G\left(f_{n-1}-f_{n-2}\right)
\end{aligned}
$$

with coefficients:

$$
\begin{align*}
G & =\frac{\alpha}{\omega_{r}} e^{-\alpha T / 2} \sin \left(\omega_{r} T\right) \\
a_{1} & =-2 e^{-\alpha T / 2} \cos \left(\omega_{r} T\right) \tag{7}\\
a_{2} & =e^{-\alpha T}
\end{align*}
$$

We will derive this result in class later. For the values $\omega_{0}=5, \alpha=$ $1 / 2, T=t(2)-t(1)$, compute the output samples $y_{n}=y\left(t_{n}\right)$ for the input samples $f_{n}=f\left(t_{n}\right)$ by writing a repetitive loop that solves the difference equation (6) (as was done in Lab-2), for example:

$$
\begin{aligned}
& \text { initialize } w_{1}=w_{2}=0, \text { then, } \\
& \text { for each } n=0,1,2, \ldots \text { do: } \\
& w_{0}=f_{n}-a_{1} w_{1}-a_{2} w_{2} \\
& y_{n}=G\left(w_{1}-w_{2}\right) \\
& w_{2}=w_{1} \\
& w_{1}=w_{0}
\end{aligned}
$$

Plot $y\left(t_{n}\right)$ and compare it with that obtained using 1 sim in part (b). You may check the output of your loop by comparing it with the output of the function filter.

Typical Outputs

