
Fall 2009 – 332:347 – Linear Systems Lab – Lab 2

1. This problem demonstrates the time-invariance property of LTI systems
and also studies the the numerical approximation to convolution achieved
by the built-in function conv. Consider a system described by the follow-
ing differential equation and corresponding impulse response:

ẏ(t)+ay(t)= af(t) ⇒ h(t)= ae−atu(t)
Let the input signal f(t) be a square pulse of duration of tp seconds,
starting at t = 0, that is,

f(t)= upulse(t, tp)=
{

1, for 0 ≤ t < tp
0, for other t

The corresponding exact output, obtained by convolving h(t) and f(t),
was found in class:

yexact(t)=
∫
h(t − τ)f(τ)dτ = e−at[eamin(t,tp) − 1

]
u(t) (1)

A numerical approximation to the convolution integral is obtained by con-
sidering the discrete time instants tn = nT, where T is a small sampling
interval, and approximating:

y(tn)=
∫
h(tn − τ)f(τ)dτ ≈ T

∑
m
h(tn − tm)f(tm) (2)

It can be implemented by the MATLAB code:

y = T * conv(h,f);

(a) Define the signals h(t), f(t) for the following choice of parameters
over a maximum time interval of Tmax:

Tmax = 25; a = 0.5; tp = 10; T = Tmax/100;
t = 0:T:Tmax;
h = a*exp(-a*t);
f = ustep(t,tp);

Calculate the exact and approximate convolution outputs of Eqs. (1)
and (2) and plot all three signals f(t), yexact, y(t) versus t on the same
graph. Repeat when T = Tmax/1000 and discuss the improvement
in the approximation.
For plotting purposes you may wish to keep only firstN = length(t)
convolutional outputs. This can be accomplished by redefining the
computed output vector by:

y = y(1:length(t));

(b) Repeat the previous question when the input is the delayed unit
pulse:

f(t)= upulse(t − td, tp)
with the choice of the delay td = 5. Observe the corresponding delay
in the computed output.

1

2. This problem illustrates transient and steady-state sinusoidal responses.
Consider a signal consisting of three sinusoidal bursts (shown at end):

f(t)=

⎧⎪⎪⎨
⎪⎪⎩

sin(3t), 0 ≤ t < 30

sin(2t), 30 ≤ t < 70

sin(3t), 70 ≤ t < 100

It can be generated over a period 0 ≤ t ≤ 100 by the code:

Tmax = 100; T = Tmax/1000; t = 0:T:Tmax;
f = sin(3*t) .* upulse(t,30) + ...

sin(2*t) .* upulse(t-30,40) + ...
sin(3*t) .* upulse(t-70,30);

It is desired to eliminate the middle burst by means of a notch filter:

H(s)= s2 +ω2
0

s2 +αs+ω2
0

whereω0 = 2 is the notch frequency coinciding with the frequency of the
middle burst, and α = 0.3 is a parameter that represents the 3-dB width
of the notch (see graph on last page). As discussed in class, the impulse
response of this filter is:

h(t)= δ(t)−g(t) , g(t)= αe−αt/2[cos(ωrt)− α
2ωr

sin(ωrt)
]
u(t)

where ωr =
√
ω2

0 −α2/4. It follows that the output signal will be:

y(t)=
∫
h(t − τ)f(τ)dτ = f(t)−

∫
g(t − τ)f(τ)dτ

which can be implemented by the MATLAB code:

y = f - T * conv(g,f);

(a) Compute the above output signal y(t) and plot it versus t. On a
separate graph, but using the same vertical and horizontal scales,
plot the input signal f(t). Note the removal of the middle burst
after the transients have decayed. Explain quantitatively the slight
attenuation of the first and third bursts.

Repeat with α = 0.1, which corresponds to a narrower notch, but
with a longer time constant.

(b) For the case α = 0.3, plot h(t) versus 0 < t < Tmax. The time
constant of the filter is the effective duration of h(t). On another
graph, plot the magnitude response |H(ω)|2 over 0 ≤ω ≤ 5.
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