
332:347 – Linear Systems Lab – Lab 1

1. This lab illustrates the definition of the Dirac delta function, δ(t), as a
limit of ordinary functions. Consider the following four limiting forms:
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where Pε(t) and Δ2ε(t) are the unit rectangular and unit triangular pulses
as defined in the text (Eqs. (2.9) and (2.13)).

(a) For each form, select two successively smaller values of ε and eval-
uate the above functions over 1000 equally-spaced time instants in
the range −1 ≤ t ≤ 1, for example,

t = linspace(-1,1,1001);

Plot the corresponding functions versus time and note how they re-
semble the ideal δ(t) as ε gets smaller.

Notes: Vectorize your calculations. Use MATLAB’s built-in function sinc
to evaluate the fourth case (it handles the case t = 0). Also, you may use
the supplied function upulse, whose input parameters are shown below,
to generate the rectangular and triangular pulses.

One way to verify the correctness of the above limiting forms is to compute
the Fourier transforms of the ordinary functions on the right-hand sides
and show that each tends to unity as a function of frequency ω in the
limit ε→ 0. This is so because the Fourier transform of δ(t) is Δ(ω)= 1.
We will discuss this approach later, but for completeness, we give the
corresponding Fourier transforms below:
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2. Consider the following differential equation describing a first-order sys-
tem, such as an RC circuit:

ẏ(t)+ay(t)= f(t) (1)

We saw in class that its solution subject to zero initial conditions, y(0)= 0,
is given in terms of the input f(t) by,

y(t)=
∫ t

0
e−a(t−τ)f(τ)dτ , t ≥ 0 (2)

We also saw that Eq. (2) can be integrated numerically by the following
difference equation,

yn = a1yn−1 + b0fn + b1fn−1 (3)

where fn = f(nT) and yn is the numerical approximation to y(nT), with
coefficients given by,

a1 = 1− paT
1+ qaT , b0 = qT

1+ qaT , b1 = pT
1+ qaT (4)

where p+q = 1 corresponding to the cases (i) p = 1, q = 0, forward Euler
integration rule, (ii) p = 0, q = 1, backward Euler integration rule, and (iii)
p = q = 1/2, trapezoidal integration rule. A simple way to implement the
iteration (3) is by the loop:

initialize at w = v = 0, then,
for each n = 0,1,2, . . . , do:

yn = a1w+ b0fn + b1v
w = yn
v = fn

(5)

Another integration rule that is widely used in linear systems is: (iv) the
zero-order hold, which for Eq. (1) leads to the difference equation:

yn = a1yn−1 + b1fn−1 , a1 = e−aT , b1 = 1− e−aT
a

(6)

It can be iterated as a special case of Eq. (5) with b0 = 0.

(a) Consider the special case a = 2 and f(t)= e−tu(t). By performing
the integral in Eq. (2) show that the exact solution is:

y(t)= e−t − e−2t , t ≥ 0 (7)

(b) Write and execute a MATLAB script that iterates the difference equa-
tion (3) for n = 0,1,2, . . . , with zero initial conditions, and deter-
mines the solution over the interval 0 ≤ t ≤ 5. Use the value T = 0.1
for the sampling time.
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On the same graph, plot the exact y(t) versus t, as well as yn versus
tn = nT, for all four integration rules (i–iv) and assess which rule
appears to be better.

To unclutter the graphs you might want to plot only two discretiza-
tion rules plus the exact output per graph.

Note that you may define the sampled t points over [0,5], and the
corresponding input samples f(t), by

t = 0:T:5; f = exp(-t);

(c) Repeat with T = 0.05 and T = 0.01 and note the improvement of
the numerical approximation as T decreases.

3. Consider a different linear system that now has derivatives of the input
signal in its right-hand side:

ẏ + 2y = ḟ + 3f (8)

To solve this system, we convert it first into its (so-called controllable)
state-space form, described by the following system of equations, and
shown in block-diagram form below:

ẋ = −2x+ f
y = ẋ+ 3x = x+ f (9)

where x is the state and the block 1/s represents an integrator. This
could be obtained with the help of the MATLAB function tf2ss (transfer-
function to state-space), which is not really needed here:

b = [1,3]; a = [1,2]; % transfer function, H(s) = (s+ 3)/(s+ 2)
[A,B,C,D] = tf2ss(b,a); % ẋ = Ax + Bf , y = Cx+Df

(a) Verify that the system of equations (9) implies Eq. (8).

(b) Consider the same input as in the previous problem, f(t)= e−tu(t).
By applying Eq. (2) to the signal x(t), show that the exact solution
for the state and for y(t) are:

x(t)= e−t − e−2t , t ≥ 0

y(t)= 2e−t − e−2t , t ≥ 0
(10)

(c) Using similar discretization schemes as in the previous problem, in-
tegrate the state equation ẋ = −2x + f numerically over the time
interval t ∈ [0,5]. Use the values T = 0.1, 0.05, 0.01. Hint: This
part is already done.

On the same graph, for each value of T, plot the exact y(t) together
with the results of the four integration rules (i–iv). Make such graphs
for each of the three values of T. Comment on the numerical inte-
gration accuracy.
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Typical Outputs
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