
332:345 – Linear Systems & Signals – Fall 2009
Sample Final Exam Questions

1. Please review all sample questions for exams 1 & 2.

2. Consider a second-order analog audio parametric equalizer filter,

H(s)= Gαs+G0(s2 +ω2
0)

s2 +αs+ω2
0

, α =
√√√√G2

B −G2
0

G2 −G2
B
Δω (1)

where G,G0, GB are the peak, reference, and bandwidth gains, and Δω is
the bandwidth measured at level GB.

(a) Often the bandwidth gain is defined to be the geometric mean of the
peak and reference gains, that is, GB = (GG0)1/2. Show that this
choice corresponds to the arithmetic mean of the gains in dB units.
(The dB gains are defined by GdB = 20 log10(G), etc.)

(b) Set G0 = 1. For the above geometric-mean choice for GB, show that
an equalizer of boost gain GdB at center frequency ω0 and width
Δω, is the exact inverse of an equalizer with a cut gain by an equal
an opposite amount −GdB at the same center frequency and width,
i.e., show that the corresponding boost and cut transfer functions
will be related by,

Hboost(s)Hcut(s)= 1

(c) Set G0 = 1. For the above geometric-mean choice for GB, show that
the equalizer corresponding to peak gainG and center frequencyω0

and width Δω is given by:

H(s)= s2 +ΔωG1/2s+ω2
0

s2 +ΔωG−1/2s+ω2
0

You may use this result to prove part(b).

(d) Consider again the more general version of the equalizer given by
Eq. (1). In audio work the bandwidth is usually expressed in octaves,
that is, a bandwidth of say B octaves means that the ratio of the
upper and lower bandedge frequencies is given by

ω2

ω1
= 2B ⇒ B = log2

(
ω2

ω1

)
= octave bandwidth

Using the fact thatω2ω1 =ω2
0, show that the actual bandwidth Δω

in units of rads/sec is related to the octave bandwidth B by

Δω = 2ω0 sinh
(

1

2
B ln(2)

)

1

3. The transmitter and receiver of an AM communication system are depicted
below. The baseband signal to be transmitted is f(t) and has Fourier
transform F(ω) assumed to be bandlimited in the interval |ω| ≤ωB.

The modulated transmitted signal and its demodulated version at the re-
ceiver will be:

fAM(t) = cos(ωct)f(t)

g(t) = cos(ωct)fAM(t)

(a) Express the spectra of fAM(t) and g(t) in terms of the original spec-
trum F(ω) and make a rough sketch of them versus ω, assuming
that ωc�ωB.

(b) Discuss the need for the indicated lowpass filter (LPF) and explain
how to pick its specifications.

(c) Explain why the above system would fail if the receive-carrier cos(ωct)
were to be replaced by sin(ωct), i.e., g(t)= sin(ωct)fAM(t), having
a 90o phase difference compared to the transmit-carrier. (In practice,
any possible phase offset in the carrier signals is compensated using
a phase-locked loop.)

[Hint: trig identity 2 cos(α)cos(β)= cos(α+ β)+ cos(α− β) .]

4. The square–root raised-cosine filter is probably the most widely used
pulse shaping filter in digital communication systems. Its frequency re-
sponse is bandlimited and is defined by,

P(ω)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 , |ω| ≤ωc −Δ

cos
(
π
4Δ
(|ω| −ωc +Δ

))
, ωc −Δ ≤ |ω| ≤ωc +Δ

0 , |ω| > ωc +Δ

where Δ < ωc. It has a flat response over the interval |ω| ≤ ωc − Δ,
and beyond that, it tapers to zero following a cosine curve. It is depicted
below.
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(a) Verify that P(ω) is the square root of the raised-cosine filter defined
in the sample problems for exam-2.

(b) By direct calculation of the inverse Fourier transform, show that the
impulse response of this filter is given by,

p(t)=
sin
(
(ωc −Δ)t

)+ 4tΔ
π

cos
(
(ωc +Δ)t

)

πt ·
[

1−
(

4tΔ
π

)2
] (2)

(c) Show that its value at t = 0 is,

p(0)= πωc + (4−π)Δ
π2

and that its value at t = ±π/(4Δ) is,
√

2Δ
2π2

[
(π− 2)cos

(
πωc

4Δ

)
+ (π+ 2)sin

(
πωc

4Δ

)]

(d) To do the required Fourier integral for obtaining Eq. (2), first note
that because P(ω) is even in ω, the integral simplifies into,

p(t)= 1

2π

∫∞
−∞
P(ω)ejωtdω = 1

π

∫∞
0
P(ω)cos(ωt)dω

Then, split the integral as follows,

p(t)= 1

π

∫ωc−Δ

0
P(ω)cos(ωt)dω+ 1

π

∫ωc+Δ

ωc−Δ
P(ω)cos(ωt)dω

Show that the first term is:

sin
(
(ωc −Δ)t

)
πt

and the second,

4Δ
π2

·
cos
(
(ωc +Δ)t

)+ 4tΔ
π

sin
(
(ωc −Δ)t

)

1−
(

4tΔ
π

)2

Then, obtain Eq. (2) by adding up these two terms.

Hint: You may use the indefinite integral:

∫
cos(ax)cos(bx)dx = sin

(
(a+ b)x)

2(a+ b) + sin
(
(a− b)x)

2(a− b)
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5. Show that the inverse of an invertible 2×2 matrix is given explicitly as
follows:

A =
[
a b
c d

]
⇒ A−1 = 1

ad− bc

[
d −b
−c a

]

Then, show that its characteristic polynomial is given by

p(s)= det(sI −A)= s2 − tr(A)s+ det(A)

where I is the unit 2×2 matrix, and tr(A),det(A) denote the trace and
determinant of the matrix A. This is a general result for any 2×2 matrix.

Finally, verify the Cayley-Hamilton theorem by explicit matrix multiplica-
tion, that is, show that

p(A)= A2 − tr(A)A+ det(A)I = 0

6. Consider the second-order linear system:

ÿ(t)+a1ẏ(t)+a2y(t)= b0f̈ (t)+b1ḟ (t)+b2f(t)

where the input f(t) is assumed to be a causal function that does not have
any impulsive terms (e.g., δ(t), δ̇(t), etc.).

(a) Show the following relationships between the output values at times
t = 0− and t = 0+:

y(0+)−y(0−)= b0 f(0+)
ẏ(0+)−ẏ(0−)= (b1 − b0a1)f(0+)+b0 ḟ (0+)

(3)

where because of the causality of f(t), we used the result that f(0−)=
ḟ (0−)= 0. Eqs. (3) allow one to map the initial conditions at 0− to
those at 0+. Hint: Integrate the differential equation once and then
twice over the interval [0−, t] and then take the limit t → 0+:

∫ t
0−
[
ÿ(τ)+a1ẏ(τ)+a2y(τ)

]
dτ =

∫ t
0−
[
b0f̈ (τ)+b1ḟ (τ)+b2f(τ)

]
dτ

∫ t
0−
dt′

∫ t′
0−
[
ÿ(τ)+a1ẏ(τ)+a2y(τ)

]
dτ =

∫ t
0−
dt′

∫ t′
0−
[
b0f̈ (τ)+b1ḟ (τ)+b2f(τ)

]
dτ

(b) Consider the controller canonical state-space realization (actually,
any other realization) of the above second-order system, and differ-
entiate the output equation once to get the system:

ẋ = Ax+ Bf
y = Cx+Df
ẏ = Cẋ+Dḟ = CAx+CBf +Dḟ
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From the last two equations, argue that:

y(0+)−y(0−)= Df(0+)
ẏ(0+)−ẏ(0−)= CBf(0+)+Dḟ(0+)

and show that these are equivalent to Eqs. (3).

7. Consider an [A,B,C,D] state-space representation of a single-input single-
output (SISO) order-p system:

ẋ = Ax+ Bf
y = Cx+Df

where the state vector x is a p-dimensional column vector. Given an
arbitrary p × p invertible matrix V, define the transformed state vector
x′ = Vx, and the transformed matrices:

A′ = VAV−1 , B′ = VB , C′ = CV−1 , D′ = D

Show that these define a new state-space representation that satisfies:

ẋ′ = A′x′ + B′f
y = C′x′ +D′f

Moreover, show thatC′B′ = CB. How is this result relevant to the previous
problem?

8. Consider the linear system described by the following second-order dif-
ferential equation:

ÿ(t)+3ẏ(t)+2y(t)= f̈ (t)+f(t) (4)

(a) Find its transfer function H(s) and draw the controller canonical

realization form. Answer: H(s)= s2 + 1

s2 + 3s+ 2
.

(b) Apply long-division to put H(s) in the form,

H(s)= s2 + 1

s2 + 3s+ 2
= b0 + c1s+ c2

s2 + 3s+ 2

and determine the numerical values of the coefficientsb0, c1, c2. Then
draw the corresponding controller canonical realization form.

(c) Applying the four transposition rules, draw the transposed realiza-
tion of that of part (a), that is, the observer canonical form.

(d) For the controller realization of part (a), define appropriate internal
states and derive the corresponding [A,B,C,D] state-space realiza-
tion.

Answers: A =
[
−3 −2

1 0

]
, B =

[
1
0

]
C = [−3,−1], D = 1.
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(e) Calculate the Laplace transform of the state transition matrix, i.e.,

Φ(s)= (sI −A)−1

where I is the 2×2 unit matrix. Answer:
1

s2 + 3s+ 2

[
s −2
1 s+ 3

]
.

(f) By explicit matrix multiplication, calculate the system transfer func-
tion and show that it is correctly given by parts (a,b), that is, show
that

H(s)= C(sI −A)−1B+D
(g) Perform a partial-fraction expansion on each entry of the matrixΦ(s)

and then perform an inverse Laplace transform, thereby, obtaining
the state transition matrix:

φ(t)= eAt , t ≥ 0

Answer: φ(t)=
[

2e−2t − e−t 2e−2t − 2e−t
e−t − e−2t 2e−t − e−2t

]
.

(h) By explicit matrix multiplication, determine the impulse response of
this system, that is,

h(t)= CeAtB+Dδ(t)= Cφ(t)B+Dδ(t)

Answer: h(t)= (2e−t − 5e−2t)u(t)+δ(t).
(i) Alternatively, obtain h(t) by performing the inverse Laplace trans-

form of H(s) using partial-fraction expansions of part (b).

(j) Next, assume that the input to Eq. (4) is f(t)= e−3tu(t). Using stan-
dard Laplace transform methods and partial-fraction expansions, solve
Eq. (4) subject to arbitrary initial conditions, that is, arbitrary values
for y(0−) and ẏ(0−). You should find the answer to be:

y(t)= (2y0 + ẏ0 + 1)e−t − (y0 + ẏ0 + 5)e−2t + 5e−3t (5)

for t ≥ 0, where we used the shorthand notation y0 = y(0−) and
ẏ0 = ẏ(0−).

(k) Read sections 7.1, 7.4, 7.5, and 7.11 of your text on the issues that
arise when the differential equation of the system contains time-
derivatives of the input (which cause delta-function impulses). Using
the techniques illustrated by Examples 7.5 and 7.21, solve part (j) by
writing y(t) as the sum of a homogeneous solution and a particular
solution of the form:

y(t) = yh(t)+yp(t)
yh(t) = Ae−t + Be−2t

yp(t) =
∫ t

0−
h(t − τ)f(τ)dτ
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Fix A,B by imposing the initial conditions y0, ẏ0. Verify that the
resulting y(t) is the same as that of Eq. (5). Answers:

yh(t) = (2y0 + ẏ0)e−t − (y0 + ẏ0)e−2t

yp(t) = e−t − 5e−2t + 5e−3t

(l) Consider the conventional approach of solving a differential equation
as the sum of a homogeneous solution and a particular solution. For
an input of the form f(t)= es1tu(t), (e.g., s1 = −3 in this example,)
the particular solution is found to be H(s1)es1t, where H(s1) is the
value of H(s) at s = s1. Applying this to this example, we write the
solution on the form:

y(t)= Ae−t + Be−2t +H(−3)e−3t , t ≥ 0

By setting t = 0+, we obtain a relation betweenA,B. Another relation
is obtained by differentiating with respect to t and then setting t =
0+. By solving these two equations for A,B show that y(t) has the
following form for t ≥ 0:

y(t)= (2y(0+)+ẏ(0+)+5
)
e−t − (y(0+)+ẏ(0+)+10

)
e−2t + 5e−3t

By applying the results of Eqs. (3), show that this solution is equiva-
lent to that of Eq. (5).

(m) Determine the observability matrix (and its inverse) for the second-
order system of Eq. (4), that is,

F =
[
C
CA

]

Answer: F =
[
−3 −1

8 6

]
, F−1 = 1

10

[
−6 −1

8 3

]
.

(n) For the state-space form of part (d), determine the initial state-vector
x0 = x(0−)= x(0+)= x(0) by mapping the given initial conditions
with the help of the observability matrix F, as discussed in class:

[
y0

ẏ0

]
= Fx0 ⇒ x0 = F−1

[
y0

ẏ0

]

Answer: x0 = 1

10

[
−6y0 − ẏ0

8y0 + 3ẏ0

]
.

(o) Using the state-transition matrix of part (g), calculate the homoge-
neous and forced parts of the state vector, that is,

x(t)= xh(t)+xf (t)= eAtx0 +
∫ t

0
eA(t−τ)B f(τ)dτ
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Answers:

xh(t) = eAtx0 = 1

10

[
4(y0 + ẏ0)e−t − 5(2y0 + ẏ0)e−2t

5(2y0 + ẏ0)e−t − 2(y0 + ẏ0)e−2t

]

xf (t) =
∫ t

0
eA(t−τ)B f(τ)dτ = 1

2

[
4e−2t − e−t − 3e−3t

e−t − 2e−2t + e−3t

]

(p) Calculate y(t) using the state output equation:

y(t)= Cx(t)+Df(t)
and verify that it is again given by Eq. (5).

(q) For the observer canonical form obtained in part (c), derive the cor-
responding [A,B,C,D] state-space realization and write down the
corresponding differential equations. Indicate on the block diagram
exactly what signals are chosen to be the components of the state
vector.

(r) Consider the following state-space realization obtained by applying
long-division to put H(s) in the form,

H(s)= s2 + 1

s2 + 3s+ 2
= b0 + A1

s+ 1
+ A2

s+ 2
(6)

and determine the values of the coefficients b0,A1,A2. By choos-
ing appropriate internal states, derive the corresponding state-space
parameters [A,B,C,D] that represent Eq. (6) and write down the
corresponding state equations. The state matrix A and transition
matrix eAt are diagonal here. Answers:

A =
[
−1 0

0 −2

]
, B =

[
1
1

]
, C = [2, −5] , D = 1

(s) Carry out questions (m–o) for the diagonal realization of part (q).
Verify that the resulting output is correctly given by Eq. (5).

Answers:

F =
[

2 −5
−2 10

]
, F−1 =

[
1 0.5

0.2 0.2

]
, x0 = 1

10

[
5(2y0 + ẏ0)
2(y0 + ẏ0)

]

xf (t)= 1

2

[
e−t − e−3t

2e−2t − 2e−3t

]
, xh(t)= 1

10

[
5(2y0 + ẏ0)e−t
2(y0 + ẏ0)e−2t

]

(t) Write the decomposition of H(s) given in part (b) as follows:

H(s)= b0 + c1s+ c2

s2 + 3s+ 2
= b0 +

(
1

s+ 1

)
·
(
c1s+ c2

s+ 2

)

Draw block diagram realizations for the two factors,(
1

s+ 1

)
,
(
c1s+ c2

s+ 2

)
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and connect them in cascade (i.e., in series) and in parallel with the
term b0 to obtain a new block diagram realization of H(s). Then,
introduce appropriate internal states and derive the corresponding
[A,B,C,D] state-space representation. Answers: if the two factors
are realized in their controller canonical forms,

A =
[
−1 0

1 −2

]
, B =

[
1
0

]
, C = [−3,5], D = 1

(u) Determine the matrices (sI − A)−1 and eAt of the previous part.
Answers:

1

(s+ 1)(s+ 2)

[
s+ 2 0

1 s+ 1

]
,

[
e−t 0

e−t − e−2t e−2t

]

9. Repeat all questions (a–u) of the previous problem for the following system
described by the transfer function:

H(s)= 2s+ 1

s2 + 3s+ 2

You will need to determine first the difference equation between input
f(t) and output y(t). One simplification here is that D = 0 and the
impulse response has no impulsive terms.
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