332:345 - Linear Systems \& Signals - Fall 2009

Sample Exam-2 Questions

1. For the PID controller example shown below, choose the following system and PID transfer functions:

(a) Derive expressions for the following closed-loop transfer functions in terms of the parameters a, k_{p}, k_{i}, k_{d} :

$$
H(s)=\frac{Y(s)}{R(s)}, \quad H_{\mathrm{err}}(s)=\frac{E(s)}{R(s)}
$$

(b) Set $a=2$ and $k_{d}=1$. What should be the numerical values of k_{p}, k_{i} in order for the poles of the closed-loop system $H(s)$ to be positioned at the s-plane locations $s=-4$ and $s=-5$? [Ans. $k_{p}=16, k_{i}=40$.] What are the transfer functions $H(s), H_{\text {err }}(s)$ in this case?
(c) For arbitrary values of a and k_{d}, and arbitrary settings for the closedloop pole locations $s=-a_{1}$ and $s=-a_{2}$, where a_{1}, a_{2} are both positive numbers, how would one calculate the desired settings k_{p}, k_{i} of the controller? Repeat if the desired closed-loop poles are required to be at the conjugate locations $s=-a \pm j b$, with a, b positive.
(d) For the numerical values derived in part (b), use partial fraction expansions to determine the unit-step output, that is, $y(t)$ when $r(t)=$ $u(t)$. [Ans. $y(t)=u(t)+e^{-4 t} u(t)-1.5 e^{-5 t} u(t)$.]
2. Determine the causal impulse response $h(t)$ of the following system (where a, b are positive and $a \neq b$):

$$
H(s)=\frac{1}{(s+a)(s+b)}
$$

Determine $h(t)$ also in the case when $a=b$.
3. Show that the zero-order-hold discretized version $H(z)$ of the transfer function $H(s)$ of the previous problem (with $a \neq b$) has the following form:

$$
H(z)=\frac{A\left(1-z^{-1}\right)}{1-e^{-a T} z^{-1}}+\frac{B\left(1-z^{-1}\right)}{1-e^{-b T} z^{-1}}+C
$$

where T is the sampling time interval. Determine the coefficients A, B, C in terms of a, b.
4. The signal $f(t)=e^{j \omega_{o} t} \boldsymbol{u}(t)$ is sent to the input of the system in problem 2 (with $a \neq b$). Show that the output will have the following form for all t,

$$
y(t)=H_{0} e^{j \omega_{0} t} \boldsymbol{u}(t)+A e^{-a t} \boldsymbol{u}(t)+B e^{-b t} \boldsymbol{u}(t)
$$

Determine the coefficients H_{0}, A, B in terms of ω_{0}, a, b. Identify the steady-state and transient terms in this output.
If $a=2$ and $b=3$, determine the $40-\mathrm{dB}$ effective time constant $t_{\text {eff }}$ of this system. [Ans. $t_{\text {eff }}=2.3$.]
5. For any stable and causal system (i.e., with poles strictly in the left-hand s-plane), show that its $60-\mathrm{dB}$ and $40-\mathrm{dB}$ time constants are related by

$$
t_{60}=1.5 t_{40}
$$

6. Determine the inverse z-transform of the following:

$$
F(z)=\frac{19-9 z^{-1}-9 z^{-2}+4 z^{-3}}{\left(1-0.5 z^{-1}\right)\left(1-0.8 z^{-1}\right)}=\frac{19-9 z^{-1}-9 z^{-2}+4 z^{-3}}{1-1.3 z^{-1}+0.4 z^{-2}}
$$

You must use long division to reduce the order of the numerator (from order 3 to order 1) and then apply partial fraction expansion.
[Ans. $\left.f(n)=10 \delta(n)+10 \delta(n-1)+5(0.5)^{n} u(n)+4(0.8)^{n} u(n).\right]$
7. Consider the periodic function $f(t)$ defined over one period T by:

$$
f(t)=1-\frac{2|t|}{T}, \quad-\frac{T}{2} \leq t \leq \frac{T}{2}
$$

Sketch $f(t)$. Then, determine the coefficients c_{m} of its Fourier series expansion:

$$
f(t)=\sum_{m=-\infty}^{\infty} c_{m} e^{2 \pi j m t / T}
$$

8. Repeat the previous problem if $f(t)$ is defined by:

$$
f(t)= \begin{cases}1, & |t|<\frac{T}{4} \\ 0, & \frac{T}{4}<|t|<\frac{T}{2}\end{cases}
$$

9. Using the results of the previous two problems and the Parseval identity for periodic signals, prove the following two infinite series results:

$$
\sum_{m=1,3,5, \ldots}^{\infty} \frac{1}{m^{2}}=\frac{\pi^{2}}{8}, \quad \sum_{m=1,3,5, \ldots}^{\infty} \frac{1}{m^{4}}=\frac{\pi^{4}}{96}
$$

10. The raised-cosine filter is used very widely in digital data transmission systems. Its frequency response is bandlimited and is defined by,
$H(\omega)=\left\{\begin{array}{l}1, \\ \frac{1}{2}\left[1+\cos \left(\frac{\pi}{2 \Delta}\left(|\omega|-\omega_{c}+\Delta\right)\right)\right], \\ 0,\end{array}\right.$

$$
|\omega| \leq \omega_{c}-\Delta
$$

$\omega_{c}-\Delta \leq|\omega| \leq \omega_{c}+\Delta$
$|\omega|>\omega_{c}+\Delta$
where $\Delta<\omega_{c}$. It has a flat response over the interval $|\omega| \leq \omega_{c}-\Delta$, and beyond that, it tapers to zero following a cosine curve. It is depicted below.

By direct calculation of the inverse Fourier transform, show that the impulse response of this filter is given by,

$$
h(t)=\frac{\sin \left(\omega_{c} t\right)}{\pi t} \cdot \frac{\cos (t \Delta)}{1-4 t^{2} \Delta^{2} / \pi^{2}}
$$

What is its value at $t=0$ and at $t= \pm \pi / 2 \Delta$? To do the Fourier integral, first note that because $H(\omega)$ is even in ω, the integral simplifies into,

$$
h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) e^{j \omega t} d \omega=\frac{1}{\pi} \int_{0}^{\infty} H(\omega) \cos (\omega t) d \omega
$$

Then, split the integral as follows,

$$
h(t)=\frac{1}{\pi} \int_{0}^{\omega_{c}-\Delta} H(\omega) \cos (\omega t) d \omega+\frac{1}{\pi} \int_{\omega_{c}-\Delta}^{\omega_{c}+\Delta} H(\omega) \cos (\omega t) d \omega
$$

Show that the first term is:

$$
\frac{\sin \left(\left(\omega_{c}-\Delta\right) t\right)}{\pi t}
$$

and the second,

$$
\frac{4 t^{2} \Delta^{2} \sin \left(\left(\omega_{c}-\Delta\right) t\right)+\pi^{2} \cos \left(\omega_{c} t\right) \sin (t \Delta)}{\pi t\left(\pi^{2}-4 t^{2} \Delta^{2}\right)}
$$

Hint: You may use the indefinite integral:

$$
\int \cos (a x) \cos (b x) d x=\frac{\sin ((a+b) x)}{2(a+b)}+\frac{\sin ((a-b) x)}{2(a-b)}
$$

11. Using only the transform pairs and properties listed on the table of Fourier transforms given in class, work out the Fourier or inverse Fourier transforms of the following cases:
(a) $f(t)=t e^{-a t} u_{h}(t) \Rightarrow F(\omega)=$?
(b) $f(t)=e^{-a t} e^{j \omega_{0} t} u_{h}(t) \Rightarrow F(\omega)=$?
(c) $f(t)=e^{-a t} \cos \left(\omega_{0} t\right) u_{h}(t) \Rightarrow F(\omega)=$?
(d) $f(t)=e^{-a t} \sin \left(\omega_{0} t\right) u_{h}(t) \Rightarrow F(\omega)=$?
(e) $F(\omega)=\frac{e^{-j\left(\omega-\omega_{0}\right) t_{0}}}{a+j\left(\omega-\omega_{0}\right)} \quad \Rightarrow \quad f(t)=$?
(f) $F(\omega)=\frac{j \omega+b}{j \omega+a} \Rightarrow f(t)=$?
(g) $F(\omega)=\frac{j\left(\omega-\omega_{0}\right)+b}{j\left(\omega-\omega_{0}\right)+a} \Rightarrow f(t)=$?
(h) $F(\omega)=\frac{j\left(\omega-\omega_{0}\right)+b}{j\left(\omega-\omega_{0}\right)+a} e^{-j\left(\omega-\omega_{0}\right) t_{0}} \quad \Rightarrow \quad f(t)=$?
(i) $\quad F(\omega)=e^{-a\left|\omega-\omega_{0}\right|} \quad \Rightarrow \quad f(t)=$?
(j) $f(t)=e^{-a\left|t-t_{0}\right|} \Rightarrow F(\omega)=$?
(k) $f(t)=\cos \left(\omega_{0} t\right) \frac{\sin \left(\omega_{c} t\right)}{\pi t}, \quad \omega_{0}>\omega_{c} \Rightarrow F(\omega)=$?
(l) $f(t)=\frac{t_{0}^{2}}{t_{0}^{2}+t^{2}} \Rightarrow F(\omega)=$?
(m) $f(t)=t e^{-t^{2} / 2 \sigma^{2}} \Rightarrow F(\omega)=$?
(n) $F(\omega)=\cos \left(\frac{\omega^{2}}{2 \beta}\right), \quad \beta=$ real $\Rightarrow f(t)=$?
(o) $\quad F(\omega)=\sin \left(\frac{\omega^{2}}{2 \beta}\right), \quad \beta=$ real $\Rightarrow f(t)=$?
(p) $f(t)=\cos \left(\frac{\beta t^{2}}{2}-\frac{\pi}{4}\right), \quad \beta=$ real, $\Rightarrow F(\omega)=$?
(q) $F(\omega)=\frac{4}{(3+j \omega)^{2}+16} \Rightarrow f(t)=$?
(r) $F(\omega)=\frac{3+j \omega}{(3+j \omega)^{2}+16} \quad \Rightarrow \quad f(t)=$?
(s) $f(t)=\cos \left(\omega_{0} t+\phi\right), \quad \phi$ is a constant $\Rightarrow F(\omega)=$?
12. Prove the following properties of Fourier transforms listed on the table posted on the course web page: (a) reflection, (b) duality, (c) conjugation, (d) hermitian, (e) delay, (f) modulation, (g) time differentiation, (h) convolution, and finally the following property:

$$
f(t) \longleftrightarrow F(\omega) \Rightarrow \quad e^{j \omega_{0} t} f\left(t-t_{0}\right) \longleftrightarrow e^{-j\left(\omega-\omega_{0}\right) t_{0}} F\left(\omega-\omega_{0}\right)
$$

13. Using the properties listed on your table of Fourier transforms, show the following property: If $f(t)$ is real-valued and even in t, i.e., $f(t)=f(-t)$, then its Fourier transform is also real-valued and even, i.e., $F(\omega)(=F(-\omega)$. Moreover, show that $f(t)$ can be recovered from $F(\omega)$ by,

$$
f(t)=\frac{1}{\pi} \int_{0}^{\infty} F(\omega) \cos (\omega t) d \omega
$$

14. Consider the two gaussian pulses of widths $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{2}$:

$$
f_{1}(t)=\frac{1}{\sqrt{2 \pi \tau_{1}^{2}}} \exp \left(-\frac{t^{2}}{2 \tau_{1}^{2}}\right), \quad f_{2}(t)=\frac{1}{\sqrt{2 \pi \tau_{2}^{2}}} \exp \left(-\frac{t^{2}}{2 \tau_{2}^{2}}\right)
$$

Working Fourier transforms, show that the convolution of $f_{1}(t)$ and $f_{2}(t)$ is also a gaussian pulse of the form:

$$
f_{1}(t) * f_{2}(t)=\frac{1}{\sqrt{2 \pi \tau^{2}}} \exp \left(-\frac{t^{2}}{2 \tau^{2}}\right)
$$

and determine its width τ in terms of $\boldsymbol{\tau}_{1}, \boldsymbol{\tau}_{2}$.
15. Consider the sinc-pulse of time-width τ :

$$
f(t)=\frac{\sin (\pi t / \tau)}{\pi t}
$$

This pulse is sent through an ideal bandlimited channel of bandwidth ω_{B} rads/sec with frequency response:

$$
H(\omega)=\operatorname{rect}_{2 \omega_{B}}(\omega)= \begin{cases}1, & |\omega| \leq \omega_{B} \\ 0, & |\omega|>\omega_{B}\end{cases}
$$

(a) Using Fourier transforms, show that if $\omega_{B}<\pi / \tau$, the output signal will be given by:

$$
y(t)=\frac{\sin \left(\omega_{B} t\right)}{\pi t}
$$

How does the effective duration of $y(t)$ compare to that of $f(t)$?
(b) Show that if $\omega_{B} \geq \pi / \tau$, then $y(t)=f(t)$.
16. Using Fourier transforms or their inverses, determine the values of the the following integrals without actually performing the indicated integrations:

$$
\int_{-\infty}^{\infty} e^{-t^{2} / 2 \tau^{2}} d t, \quad \int_{-\infty}^{\infty} \frac{\sin \left(\omega_{c} t\right)}{\pi t} d t, \quad \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{a}{a^{2}+\omega^{2}} d \omega
$$

17. Consider the linear-FM-modulated pulse

$$
E(t)=f(t) e^{j \omega_{0} t+j \omega t^{2} / 2}
$$

where $f(t)$ is a pulse of effective duration of T seconds. Define the effective bandwidth due to FM modulation by $\omega_{B}=\dot{\omega}_{0} T$, or in units of $\mathrm{Hz}, B=\omega_{B} / 2 \pi$. A pulse compression filter that compresses the pulse $E(t)$ into a new pulse of compressed effective duration of $T_{\text {compr }}=1 / B$ is defined by its frequency and impulse responses:

$$
H_{\text {compr }}(\omega)=e^{j\left(\omega-\omega_{0}\right)^{2} / 2 \dot{\omega}_{0}} \quad \Leftrightarrow \quad h_{\text {compr }}(t)=\sqrt{\frac{j \dot{\omega}_{0}}{2 \pi}} e^{j \omega_{0} t-j \omega_{0} t^{2} / 2}
$$

The output of this filter is the compressed signal obtained by convolving the input $E(t)$ with the impulse response:

$$
E_{\mathrm{compr}}(t)=\int_{-\infty}^{\infty} h_{\mathrm{compr}}\left(t-t^{\prime}\right) E\left(t^{\prime}\right) d t^{\prime}
$$

Let $F(\omega)$ be the Fourier transform of the pulse envelope $f(t)$. By explicit manipulation of the convolution integral, show that the output signal is expressible in terms of $F(\omega)$ by,

$$
E_{\text {compr }}(t)=\sqrt{\frac{j \dot{\omega}_{0}}{2 \pi}} e^{j \omega_{0} t-j \dot{\omega}_{0} t^{2} / 2} F\left(-\dot{\omega}_{0} t\right)
$$

where the last factor is $F(\omega)$ with ω substituted by $-\dot{\omega}_{0} t$.
18. Apply the above result to the following three cases for the envelope $f(t)$, for which you have explicit expressions for $F(\omega)$:

$$
f(t)=e^{-t^{2} / 2 T^{2}}, \quad f(t)=e^{-|t| / T}, \quad f(t)=\frac{T^{2}}{T^{2}+t^{2}}
$$

where in all cases $f(t)$ was normalized to unity at $t=0$. (The first case was worked out in class.)
In each case, derive the corresponding output $E_{\text {compr }}(t)$ of the pulsecompression filter and show that, indeed, it has an effective duration of the order of $T_{\text {compr }}=1 / \omega_{B}$. Note also that in all cases the effective height of the compressed pulse is increased by a factor of $\sqrt{\omega_{B} T}$.
In class, we discussed the reasons why one wants to have both a large T and a large ω_{B} resulting in a large time-bandwidth product $\omega_{B} T$.

