
332:345 – Linear Systems & Signals – Fall 2009
Sample Exam-2 Questions

1. For the PID controller example shown below, choose the following system
and PID transfer functions:

G(s) = 1

s+ a

Gc(s) = kp + kis + kds

(a) Derive expressions for the following closed-loop transfer functions
in terms of the parameters a, kp, ki, kd:

H(s)= Y(s)
R(s)

, Herr(s)= E(s)
R(s)

(b) Set a = 2 and kd = 1. What should be the numerical values of kp, ki
in order for the poles of the closed-loop systemH(s) to be positioned
at the s-plane locations s = −4 and s = −5? [Ans. kp = 16, ki = 40.]

What are the transfer functions H(s), Herr(s) in this case?

(c) For arbitrary values of a and kd, and arbitrary settings for the closed-
loop pole locations s = −a1 and s = −a2, where a1, a2 are both
positive numbers, how would one calculate the desired settings kp, ki
of the controller? Repeat if the desired closed-loop poles are required
to be at the conjugate locations s = −a± jb, with a,b positive.

(d) For the numerical values derived in part (b), use partial fraction ex-
pansions to determine the unit-step output, that is, y(t) when r(t)=
u(t). [Ans. y(t)= u(t)+e−4tu(t)−1.5e−5tu(t).]

2. Determine the causal impulse responseh(t) of the following system (where
a,b are positive and a �= b):

H(s)= 1

(s+ a)(s+ b)

Determine h(t) also in the case when a = b.

3. Show that the zero-order-hold discretized version H(z) of the transfer
function H(s) of the previous problem (with a �= b) has the following
form:

H(z)= A(1− z−1)
1− e−aTz−1

+ B(1− z−1)
1− e−bTz−1

+C

where T is the sampling time interval. Determine the coefficients A,B,C
in terms of a,b.
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4. The signal f(t)= ejωotu(t) is sent to the input of the system in problem
2 (with a �= b). Show that the output will have the following form for all t,

y(t)= H0ejω0tu(t)+Ae−atu(t)+Be−btu(t)

Determine the coefficients H0,A,B in terms of ω0, a, b. Identify the
steady-state and transient terms in this output.

If a = 2 and b = 3, determine the 40-dB effective time constant teff of this
system. [Ans. teff = 2.3.]

5. For any stable and causal system (i.e., with poles strictly in the left-hand
s-plane), show that its 60-dB and 40-dB time constants are related by

t60 = 1.5 t40

6. Determine the inverse z-transform of the following:

F(z)= 19− 9z−1 − 9z−2 + 4z−3

(1− 0.5z−1)(1− 0.8z−1)
= 19− 9z−1 − 9z−2 + 4z−3

1− 1.3z−1 + 0.4z−2

You must use long division to reduce the order of the numerator (from
order 3 to order 1) and then apply partial fraction expansion.

[Ans. f(n)= 10δ(n)+10δ(n− 1)+5(0.5)nu(n)+4(0.8)nu(n).]

7. Consider the periodic function f(t) defined over one period T by:

f(t)= 1− 2|t|
T
, −T

2
≤ t ≤ T
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Sketch f(t). Then, determine the coefficients cm of its Fourier series ex-
pansion:

f(t)=
∞∑

m=−∞
cme2πjmt/T

8. Repeat the previous problem if f(t) is defined by:

f(t)=

⎧⎪⎪⎨
⎪⎪⎩

1 , |t| < T
4

0 ,
T
4
< |t| < T
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9. Using the results of the previous two problems and the Parseval identity
for periodic signals, prove the following two infinite series results:

∞∑
m=1,3,5,...

1

m2
= π

2

8
,

∞∑
m=1,3,5,...

1

m4
= π

4

96
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10. The raised-cosine filter is used very widely in digital data transmission
systems. Its frequency response is bandlimited and is defined by,

H(ω)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 , |ω| ≤ωc −Δ
1

2

[
1+ cos

(
π
2Δ

(|ω| −ωc +Δ
))]

, ωc −Δ ≤ |ω| ≤ωc +Δ

0 , |ω| > ωc +Δ

where Δ < ωc. It has a flat response over the interval |ω| ≤ ωc − Δ,
and beyond that, it tapers to zero following a cosine curve. It is depicted
below.

By direct calculation of the inverse Fourier transform, show that the im-
pulse response of this filter is given by,

h(t)= sin(ωct)
πt

· cos(tΔ)
1− 4t2Δ2/π2

What is its value at t = 0 and at t = ±π/2Δ? To do the Fourier integral,
first note that because H(ω) is even in ω, the integral simplifies into,

h(t)= 1

2π

∫∞
−∞
H(ω)ejωtdω = 1

π

∫∞
0
H(ω)cos(ωt)dω

Then, split the integral as follows,

h(t)= 1

π

∫ωc−Δ

0
H(ω)cos(ωt)dω+ 1

π

∫ωc+Δ

ωc−Δ
H(ω)cos(ωt)dω

Show that the first term is:

sin
(
(ωc −Δ)t

)
πt

and the second,

4t2Δ2 sin
(
(ωc −Δ)t

)+π2 cos(ωct)sin(tΔ)
πt(π2 − 4t2Δ2)

Hint: You may use the indefinite integral:∫
cos(ax)cos(bx)dx = sin

(
(a+ b)x)

2(a+ b) + sin
(
(a− b)x)

2(a− b)
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11. Using only the transform pairs and properties listed on the table of Fourier
transforms given in class, work out the Fourier or inverse Fourier trans-
forms of the following cases:

(a) f(t)= te−atuh(t) ⇒ F(ω)=?

(b) f(t)= e−atejω0tuh(t) ⇒ F(ω)=?

(c) f(t)= e−at cos(ω0t)uh(t) ⇒ F(ω)=?

(d) f(t)= e−at sin(ω0t)uh(t) ⇒ F(ω)=?

(e) F(ω)= e−j(ω−ω0)t0

a+ j(ω−ω0)
⇒ f(t)=?

(f) F(ω)= jω+ b
jω+ a ⇒ f(t)=?

(g) F(ω)= j(ω−ω0)+b
j(ω−ω0)+a ⇒ f(t)=?

(h) F(ω)= j(ω−ω0)+b
j(ω−ω0)+a e

−j(ω−ω0)t0 ⇒ f(t)=?

(i) F(ω)= e−a|ω−ω0| ⇒ f(t)=?

(j) f(t)= e−a|t−t0| ⇒ F(ω)=?

(k) f(t)= cos(ω0t)
sin(ωct)
πt

, ω0 > ωc ⇒ F(ω)=?

(l) f(t)= t20
t20 + t2

⇒ F(ω)=?

(m) f(t)= te−t2/2σ2 ⇒ F(ω)=?

(n) F(ω)= cos

(
ω2

2β

)
, β = real ⇒ f(t)=?

(o) F(ω)= sin

(
ω2

2β

)
, β = real ⇒ f(t)=?

(p) f(t)= cos

(
βt2

2
− π

4

)
, β = real, ⇒ F(ω)=?

(q) F(ω)= 4

(3+ jω)2+16
⇒ f(t)=?

(r) F(ω)= 3+ jω
(3+ jω)2+16

⇒ f(t)=?

(s) f(t)= cos(ω0t +φ), φ is a constant ⇒ F(ω)=?
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12. Prove the following properties of Fourier transforms listed on the table
posted on the course web page: (a) reflection, (b) duality, (c) conjugation,
(d) hermitian, (e) delay, (f) modulation, (g) time differentiation, (h) convo-
lution, and finally the following property:

f(t)←→ F(ω) ⇒ ejω0tf(t − t0)←→ e−j(ω−ω0)t0F(ω−ω0)

13. Using the properties listed on your table of Fourier transforms, show the
following property: If f(t) is real-valued and even in t, i.e., f(t)= f(−t),
then its Fourier transform is also real-valued and even, i.e., F(ω)(= F(−ω).
Moreover, show that f(t) can be recovered from F(ω) by,

f(t)= 1

π

∫∞
0
F(ω)cos(ωt)dω

14. Consider the two gaussian pulses of widths τ1 and τ2:

f1(t)= 1√
2πτ2

1

exp

(
− t2

2τ2
1

)
, f2(t)= 1√

2πτ2
2

exp

(
− t2

2τ2
2

)

Working Fourier transforms, show that the convolution of f1(t) and f2(t)
is also a gaussian pulse of the form:

f1(t)∗f2(t)= 1√
2πτ2

exp

(
− t2

2τ2

)

and determine its width τ in terms of τ1, τ2.

15. Consider the sinc-pulse of time-width τ:

f(t)= sin(πt/τ)
πt

This pulse is sent through an ideal bandlimited channel of bandwidthωB
rads/sec with frequency response:

H(ω)= rect2ωB(ω)=
{

1 , |ω| ≤ωB

0 , |ω| > ωB

(a) Using Fourier transforms, show that if ωB < π/τ, the output signal
will be given by:

y(t)= sin(ωBt)
πt

How does the effective duration of y(t) compare to that of f(t)?
(b) Show that if ωB ≥ π/τ, then y(t)= f(t).

16. Using Fourier transforms or their inverses, determine the values of the the
following integrals without actually performing the indicated integrations:∫∞

−∞
e−t

2/2τ2
dt ,

∫∞
−∞

sin(ωct)
πt

dt ,
∫∞
−∞

1

π
a

a2 +ω2
dω
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17. Consider the linear-FM-modulated pulse

E(t)= f(t)ejω0t+jω̇t2/2

where f(t) is a pulse of effective duration of T seconds. Define the ef-
fective bandwidth due to FM modulation by ωB = ω̇0T, or in units of
Hz, B = ωB/2π. A pulse compression filter that compresses the pulse
E(t) into a new pulse of compressed effective duration of Tcompr = 1/B
is defined by its frequency and impulse responses:

Hcompr(ω)= ej(ω−ω0)2/2ω̇0 � hcompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2

The output of this filter is the compressed signal obtained by convolving
the input E(t) with the impulse response:

Ecompr(t)=
∫∞
−∞
hcompr(t − t′)E(t′)dt′

Let F(ω) be the Fourier transform of the pulse envelope f(t). By explicit
manipulation of the convolution integral, show that the output signal is
expressible in terms of F(ω) by,

Ecompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2 F(−ω̇0t)

where the last factor is F(ω) with ω substituted by −ω̇0t.

18. Apply the above result to the following three cases for the envelope f(t),
for which you have explicit expressions for F(ω):

f(t)= e−t2/2T2
, f(t)= e−|t|/T , f(t)= T2

T2 + t2

where in all cases f(t) was normalized to unity at t = 0. (The first case
was worked out in class.)

In each case, derive the corresponding output Ecompr(t) of the pulse-
compression filter and show that, indeed, it has an effective duration of
the order ofTcompr = 1/ωB. Note also that in all cases the effective height
of the compressed pulse is increased by a factor of

√
ωBT.

In class, we discussed the reasons why one wants to have both a large T
and a large ωB resulting in a large time-bandwidth product ωBT.
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