332:345 - Linear Systems \& Signals - Fall 2009
 Sample Exam-1 Questions

1. The impulse response $h(t)$ of an LTI system and an input signal $f(t)$ are nonzero over the following time ranges:

$$
\begin{array}{ll}
h(t), & a \leq t \leq b \\
f(t), & c \leq t \leq d
\end{array}
$$

The corresponding output is given by the convolutional equation:

$$
y(t)=\int h(t-\tau) f(\tau) d \tau
$$

Determine the time range for $y(t)$, and the precise limits of the above integral.
2. Sketch the two signals $h(t)=e^{-t} u(t)$ and $f(t)=u(t)-u(t-5)$. Then, determine their convolution $y(t)=\int h(t-\tau) f(\tau) d \tau$ using the following two methods:
(a) By performing the indicated time integration.
(b) By working with Laplace transforms.
3. Using Laplace transforms, solve the following differential equation,

$$
\ddot{y}(t)+5 \dot{y}(t)+4 y(t)=3 f(t)
$$

where $f(t)=e^{-3 t} u(t)$ with arbitrary initial conditions: $y(0-)$ and $\dot{y}(0-)$. Identify the parts of the solution that correspond to the decomposition of $y(t)$ into a "homogeneous solution" and a "particular solution". Similarly, identify the parts that correspond to the "zero-input solution" and the "zero-state solution".
4. Determine the impulse response $h(t)$ of the system of the previous problem using Laplace transform techniques.
5. The input signal $f(t)=u(t)$ to an unknown LTI system causes the following output signal: $y(t)=2 u(t)-e^{-2 t} u(t)$.
(a) What input signal $f(t)$ would cause the output $y(t)=e^{-2 t} u(t)$?
(b) What is the impulse response $h(t)$ of this system? What is its transfer function $H(s)$?
6. Using long division and partial-fraction expansions, determine the impulse response $h(t)$ of the system with the following transfer function:

$$
H(s)=\frac{s^{3}+4 s^{2}+2 s+2}{s^{2}+5 s+4}
$$

7. Consider the signals:

$$
f(t)=(2-t)[u(t)-u(t-2)], \quad h(t)=u(t)-u(t-1)
$$

Sketch the two signals and then determine their convolution in two different ways:
(a) Using the time-domain convolution formula $y(t)=\int h(t-\tau) f(\tau) d \tau$.
(b) Using Laplace transform techniques, i.e., by inverting the Laplace transform of the output signal, $Y(s)=H(s) F(s)$.

Demonstrate that the answers in (a) and (b) are equivalent.
8. Consider the Laplace transform pair:

$$
f(t)=t^{2} u(t) \quad \Leftrightarrow \quad F(s)=\frac{2}{s^{3}}, \quad \operatorname{Re}(s)>0
$$

Demonstrate its correctness by the following three methods:
(a) Using the definition of Laplace transforms.
(b) Using the time-multiplication property and the fact that $u(t)$ has Laplace transform $1 / s$.
(c) Working with the doubly differentiated signal $\ddot{f}(t)$ and applying the differentiation property.
9. The general solution of the differential equation,

$$
\dot{y}(t)+2 y(t)=\dot{f}(t)+3 f(t) \quad \text { (i.e., from Lab-1) }
$$

for arbitrary input $f(t)$ and with zero initial conditions is given by,

$$
y(t)=f(t)+\int_{0}^{t} e^{-2(t-\tau)} f(\tau) d \tau, \quad t \geq 0
$$

(a) Verify that it is a solution.
(b) Derive it by first finding the impulse response $h(t)$ of the above system and then using the convolutional formula.
(c) Explain how to turn this solution into a difference equation using the zero-order hold technique discussed in class.
(d) Then, write a MATLAB function that solves this difference equation. The function should have as inputs the sampling time T and a vector of input samples $f\left(t_{n}\right)$ corresponding to the sampling times $t_{n}=n T$. The function output should be the vector of corresponding output samples $y\left(t_{n}\right)$.
10. What Laplace transform properties would you use to prove the following Laplace transform pair?:

$$
f(t)=\cos \left(\omega_{0} t\right) u(t) \quad \Leftrightarrow \quad F(s)=\frac{s}{s^{2}+\omega_{0}^{2}}
$$

