332:345 - Linear Systems \& Signals

Block Diagram Realizations - Fall 2009 - S. J. Orfanidis

Consider the second-order transfer function example:

$$
H(s)=\frac{b_{0} s^{2}+b_{1} s+b_{2}}{s^{2}+a_{1} s+a_{2}}=b_{0}+\frac{c_{1} s+c_{2}}{s^{2}+a_{1} s+a_{2}}=b_{0}+\frac{r_{1}}{s-p_{1}}+\frac{r_{2}}{s-p_{2}}
$$

where p_{1}, p_{2} are the system poles, assumed to be disctinct, $p_{1} \neq p_{2}$. Note that

$$
\begin{aligned}
& c_{1}=b_{1}-b_{0} a_{1} \\
& c_{2}=b_{2}-b_{0} a_{2}
\end{aligned}
$$

Controller Canonical Form

$$
\begin{aligned}
& \dot{x}_{1}=-a_{1} x_{1}-a_{2} x_{2}+f \\
& \dot{x}_{2}=x_{1} \\
& y=b_{0} \dot{x}_{1}+b_{1} x_{1}+b_{2} x_{2} \\
&=b_{0}\left(-a_{1} x_{1}-a_{2} x_{2}+f\right)+b_{1} x_{1}+b_{2} x_{2} \\
&=c_{1} x_{1}+c_{2} x_{2}+b_{0} f \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-a_{1} & -a_{2} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] f } \\
& y=\left[c_{1}, c_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+b_{0} f
\end{aligned}
$$

Also known as the "phase-variable canonical" form. Often written in a reversed way by renumbering the states in a reversed fashion, $x_{1} \rightarrow x_{2}$ and $x_{2} \rightarrow x_{1}$ and writing the above equations in reverse order (as is done in the textbook):

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-a_{2} & -a_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] f \\
y & =\left[c_{2}, c_{1}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+b_{0} f
\end{aligned}
$$

Observer Canonical Form

$$
\begin{aligned}
y & =b_{0} f+x_{1} \\
\dot{x}_{1} & =-a_{1} y+x_{2}+b_{1} f=-a_{1}\left(b_{0} f+x_{1}\right)+x_{2}+b_{1} f=-a_{1} x_{1}+x_{2}+c_{1} f \\
\dot{x}_{2} & =-a_{2} y+b_{2} f=-a_{2}\left(b_{0} f+x_{1}\right)+b_{2} f=-a_{2} x_{1}+c_{2} f
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
-a_{1} & 1 \\
-a_{2} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] f \\
y & =[1,0]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+b_{0} f
\end{aligned}
$$

Also know as the "dual" of the phase-variable canconical form. It is the transposed of the controller form obtained by applying the four transposition rules:

- replace adders by nodes
- replace nodes by adders
- reverse all flows
- exchange input with output

The $[A, B, C, D]$ state-space parameters are obtained by the replacements:

$$
A \rightarrow A^{T}, \quad B \rightarrow C^{T}, \quad C \rightarrow B^{T}, \quad D \rightarrow D
$$

The above (scalar) transfer function remains invariant because of the identity:

$$
H(s)=C(s I-A)^{-1} B+D=B^{T}\left(s I-A^{T}\right)^{-1} C^{T}+D
$$

Parallel Pole Form

Valid in this form only when poles are distinct. If poles are complex-valued, then the states are too. Note that the state matrix A is diagonal. The parameters can be obtained by performing partial fraction expansion on $H(s)$.

In MATLAB, the call,

$[A, B, C, D]=t f 2 s s([b 0, b 1, b 2],[1, a 1, a 2]) ;$
produces the controller canonical state-space form, whereas the call,
$[r, p, k]=\operatorname{residue}([b 0, b 1, b 2],[1, a 1, a 2]) ;$
produces the vectors of residues and poles for the paralle/pole form:

$$
\mathbf{r}=\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right], \quad \mathbf{p}=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right], \quad b_{0}=k
$$

