
16
Adaptive Filters

16.1 Adaptive Implementation of Wiener Filters

We review briefly the solution of the Wiener filtering problem.

The general solution does not place any a priori restriction on the order of the Wiener filter. In
general, an infinite number of weights is required to achieve the lowest estimation error. However,
in adaptive implementations we must insist in advance that the number of filter weights be finite.
This is so because the adaptation algorithm adapts each weight individually. Obviously, we cannot
adapt an infinite number of weights. We will assume then, that the optimal Wiener filter is an FIR
filter, say with M + 1 weights

h = [h0, h1, h2, . . . , hM]T , H(z)= h0 + h1z−1 + h2z−2 + · · · + hMz−M

This filter processes the available observations yn to produce the estimate

x̂n =
M∑
m=0

hmyn−m = h0yn + h1yn−1 + h2yn−2 + · · · + hMyn−M

The weights hm are chosen optimally so that the mean-square estimation error is minimized;
that is,

E = E[e2
n]= min , en = xn − x̂n

This minimization criterion leads to the orthogonality equations, which are the determining
equations for the optimal weights. Writing the estimate in vector notation

x̂n = [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦ = hTy(n)

16.1. Adaptive Implementation of Wiener Filters 851

we may write the orthogonality equations as

E[enyn−m]= 0 , 0 ≤m ≤M

or, equivalently,
E[eny(n)]= 0

These give the normal equations

E[(xn − x̂n)y(n)]= E
[(
xn − hTy(n)

)
y(n)

] = 0 , or,

E[y(n)y(n)T]h = E[xny(n)] , or,

Rh = r , R = E[y(n)y(n)T] , r = E[xny(n)]

The optimal weights are obtained then by

h = R−1r (16.1.1)

The corresponding minimized value of the estimation error is computed by

E = E[e2
n]= E

[
en

(
xn − hTy(n)

)] = E[enxn]= E[(xn − hTy(n)
)
xn

]
= E[x2

n]−hTE[y(n)xn]= E[x2
n]−hTr = E[x2

n]−rTR−1r

The normal equations, and especially the orthogonality equations, have their usual correlation
canceling interpretations. The signal xn being estimated can be written as

xn = en + x̂n = en + hTy(n)

It is composed of two parts, the term en which because of the orthogonality equations is
entirely uncorrelated with y(n), and the second term, which is correlated with y(n). In effect,
the filter removes from xn any part of it that is correlated with the secondary input y(n); what is
left, en, is uncorrelated with y(n). The Wiener filter acts as a correlation canceler. If the primary
signal xn and the secondary signal y(n) are in any way correlated, the filter will cancel from the
output en any such correlations.

One difficulty with the above solution is that the statistical quantitiesR and r must be known,
or at least estimated, in advance. This can be done either by block processing or adaptive process-
ing methods. The principal advantages of block processing methods are that the design is based
on a single, fixed, data record and that the length of the data record may be very short. Thus,
such methods are most appropriate in applications where the availability of data is limited, as for
example, in parametric spectrum estimation based on a single block of data, or in deconvolution
applications where the data to be deconvolved are already available, for example, a still distorted
picture or a recorded segment of a seismic response.

Availability of data, however, is not the only consideration. In a changing environment, even if
more data could be collected, it may not be correct to use them in the design because stationarity
may not be valid for the longer data block. Block processing methods can still be used in such
cases, but the optimum filters must be redesigned every time the environment changes, so that
the filter is always matched to the data being processed by it. This is, for example, what is done
in speech processing. The input speech signal is divided into fairly short segments, with each
segment assumed to arise from a stationary process, then the statistical correlations are estimated
by sample correlations and the optimal prediction coefficients corresponding to each segment
are computed. In a sense, this procedure is data-adaptive, but more precisely, it is block-by-block
adaptive.

852 16. Adaptive Filters

In other applications, however, we do not know how often to redesign and must use adaptive
implementations that provide an automatic way of redesigning the optimum processors to con-
tinually track the environment. For example, communications and radar antennas are vulnerable
to jamming through their sidelobes. Adaptive sidelobe cancelers continuously adjust themselves
to steer nulls toward the jammers even when the jammers may be changing positions or new
jammers may be coming into play. Another example is the equalization of unknown or changing
channels, or both. In switched telephone lines the exact transmission channel is not known in
advance but is established at the moment the connection is made. Similarly, in fading commu-
nications channels the channel is continuously changing. To undo the effects of the channel,
such as amplitude and phase distortions, an equalizer filter must be used at the receiving end
that effectively acts as an inverse to the channel. Adaptive equalizers determine automatically
the characteristics of the channel and provide the required inverse response. Other applications,
well-suited to adaptive implementations, are noise canceling, echo canceling, linear prediction
and spectrum estimation, and system identification and control.

In this chapter we discuss several adaptation algorithms, such as the Widrow-Hoff least mean
square (LMS) algorithm, the conventional recursive least squares (RLS) algorithm, the fast RLS
algorithms, and the adaptive lattice algorithms and present some of their applications [1341–
1349]. A typical adaptive implementation of a Wiener filter is depicted in Fig. 16.1.1.

Fig. 16.1.1 Adaptive Wiener filter.

The adaptation algorithm continuously monitors the output error signal en and attempts to
minimize the output power E[e2

n], or, equivalently tries to decorrelate en from the secondary
input yn. At each time instant n, the current values of the weights are used to perform the
filtering operation. The computed output en is then used by the adaptation part of the algorithm
to change the weights in the direction of their optimum values. As processing of the input signals
xn and yn takes place and the filter gradually learns the statistics of these inputs, its weights
gradually converge to their optimum values given by the Wiener solution (16.1.1). Clearly, the
input statistics must remain unchanged for at least as long as it takes the filter to learn it and
converge to its optimum configuration. If, after convergence, the input statistics should change,
the filter will respond by readjusting its weights to their new optimum values, and so on. In other
words, the adaptive filter will track the non-stationary changes of the input statistics as long as
such changes occur slowly enough for the filter to converge between changes. The three basic
issues in any adaptive implementation are:

1. The learning or convergence speed of the algorithm.
2. The computational complexity of the algorithm.
3. The numerical accuracy and stability of the algorithm.

The convergence speed is an important factor because it determines the maximum rate of
change of the input non-stationarities that can be usefully tracked by the filter. The computa-

16.2. Correlation Canceler Loop (CCL) 853

tional complexity refers to the number of operations required to update the filter from one time
instant to the next. The table below shows how various adaptive algorithms fare under these
requirements.

algorithm speed complexity stability

LMS slow simple stable

RLS fast complex stable

Fast RLS fast simple unstable

Lattice fast simple stable

Only adaptive lattice algorithms satisfy all three requirements. We will discuss these algo-
rithms in detail later on. In the next section we begin with the LMS algorithm because it is the
simplest and most widely used. We finish this section with the obvious remark that adaptive or
block processing optimal filter designs, regardless of type, cannot do any better than the the-
oretical Wiener solution. The optimal filter, therefore, should be first analyzed theoretically to
determine if it is worth using it in the application at hand.

16.2 Correlation Canceler Loop (CCL)

To illustrate the basic principles behind adaptive filters, consider the simplest possible filter, that
is, a filter with only one weight

The weight h must be selected optimally so as to produce the best possible estimate of xn :

x̂n = hyn
The estimation error is expressed as

E = E[e2
n]= E

[
(xn − hyn)2)

] = E[x2
n]−2hE[xnyn]+E[y2

n]h2

= E[x2
n]−2hr +Rh2

(16.2.1)

The minimization condition is

∂E
∂h

= 2E
[
en
∂en
∂h

]
= −2E[enyn]= −2r + 2Rh = 0 (16.2.2)

which gives the optimum solution hopt = R−1r, and also shows the correlation cancellation
condition E[enyn]= 0. The adaptive implementation is based on solving the equation

∂E
∂h

= 0 (16.2.3)

iteratively, using a gradient-descent method. The dependence of the error E on the filter param-
eter h is parabolic, with an absolute minimum occurring at the above optimal value hopt = R−1r.

854 16. Adaptive Filters

This is shown below

In the adaptive version, the filter parameter h is made time-dependent, h(n), and is updated from
one time instant to the next as follows

h(n+ 1)= h(n)+Δh(n) (16.2.4)

whereΔh(n) is a correction term that must be chosen properly in order to ensure that eventually
the time-varying weight h(n) will converge to the optimal value:

h(n)→ hopt = R−1r as n→∞
The filtering operation is now given by the still linear but time non-invariant form

x̂n = h(n)yn (16.2.5)

The computation of the estimate at the next time instant should be made with the new weight,
that is,

x̂n+1 = h(n+ 1)yn+1

and so on. The simplest way to choose the correction term Δh(n) is the gradient-descent, or
steepest-descent, method. The essence of the method is this: It is required that the change
h → h + Δh must move the performance index closer to its minimum than before, that is, Δh
must be such that

E(h+Δh)≤ E(h)
Therefore, if we always demand this, the repetition of the procedure will lead to smaller and

smaller values of E until the smallest value has been attained. Assuming that Δh is sufficiently
small, we may expand to first order and obtain the condition

E(h)+Δh ∂E(h)
∂h

≤ E(h)
IfΔh is selected as the negative gradient −μ(∂E/∂h) then this inequality will be guaranteed,

that is, if we choose

Δh = −μ ∂E(h)
∂h

(16.2.6)

then the inequality is indeed satisfied:

E(h)+Δh ∂E(h)
∂h

= E(h)−μ
∣∣∣∣∣∂E(h)∂h

∣∣∣∣∣
2

≤ E(h)

The adaptation parameter μ must be small enough to justify keeping only the first-order
terms in the above Taylor expansion. Applying this idea to our little adaptive filter, we choose
the correction Δh(n) according to Eq. (16.2.6), so that

h(n+ 1)= h(n)+Δh(n)= h(n)−μ ∂E
(
h(n)

)
∂h

(16.2.7)

16.3. The Widrow-Hoff LMS Adaptation Algorithm 855

Using the expression for the gradient
∂E(h)
∂h

= −2r + 2Rh, we find

h(n+ 1) = h(n)−μ[−2r + 2Rh(n)
]

= (1− 2μR)h(n)+2μr

This difference equation may be solved in closed form. For example, using z-transforms with
any initial conditions h(0), we find

h(n)= hopt + (1− 2μR)n(h(0)−hopt) (16.2.8)

where hopt = R−1r. The coefficient h(n) will converge to its optimal value hopt, regardless of the
starting value h(0), provided μ is selected such that

|1− 2μR| < 1

or, −1 < 1−2μR < 1, or since μmust be positive (to be in the negative direction of the gradient),
μ must satisfy

0 < μ <
1

R
(16.2.9)

To select μ, one must have some a priori knowledge of the magnitude of the input variance
R = E[y2

n]. Such choice for μ will guarantee convergence, but the speed of convergence is
controlled by how close the number 1 − 2μR is to one. The closer it is to unity, the slower the
speed of convergence. As μ is selected closer to zero, the closer 1−2μRmoves towards one, and
thus the slower the convergence rate. Thus, the adaptation parameter μ must be selected to be
small enough to guarantee convergence but not too small to cause a very slow convergence.

16.3 The Widrow-Hoff LMS Adaptation Algorithm

The purpose of the discussion in Sec. 16.2 was to show how the original Wiener filtering problem
could be recast in an iterative form. From the practical point of view, this reformulation is still not
computable since the adaptation of the weights requires a priori knowledge of the correlations
R and r. In the Widrow-Hoff algorithm the above adaptation algorithm is replaced with one that
is computable [1341,1342]. The gradient that appears in Eq. (16.2.7)

h(n+ 1)= h(n)−μ ∂E
(
h(n)

)
∂h

is replaced by an instantaneous gradient by ignoring the expectation instructions, that is, the
theoretical gradient

∂E(h(n))
∂h

= −2E[enyn]= −2r + 2Rh(n)= −2E[xnyn]+2E[y2
n]h(n)

is replaced by
∂E
∂h

= −2enyn = −2
(
xn − h(n)yn

)
yn = −2xnyn + 2y2

nh(n) (16.3.1)

so that the weight-adjustment algorithm becomes

h(n+ 1)= h(n)+2μenyn (16.3.2)

In summary, the required computations are done in the following order:

1. At time n, the filter weight h(n) is available.

856 16. Adaptive Filters

2. Compute the filter output x̂n = h(n)yn.

3. Compute the estimation error en = xn − x̂n.

4. Compute the next filter weight h(n+ 1)= h(n)+2μenyn.

5. Go to next time instant n→ n+ 1.

The following remarks are in order:

1. The output error en is fed back and used to control the adaptation of the filter weight
h(n).

2. The filter tries to decorrelate the secondary signal from the output en. This, is easily
seen as follows: If the weight h(n) has more or less reached its optimum value, then
h(n+ 1)� h(n), and the adaptation equation implies also approximately that enyn � 0.

3. Actually, the weight h(n) never really reaches the theoretical limiting value hopt = R−1r.
Instead, it stabilizes about this value, and continuously fluctuates about it.

4. The approximation of ignoring the expectation instruction in the gradient is known as
the stochastic approximation. It complicates the mathematical aspects of the problem
considerably. Indeed, the difference equation

h(n+ 1)= h(n)+2μenyn = h(n)+2μ
(
xn − h(n)yn

)
yn

makes h(n) depend on the random variable yn in highly nonlinear fashion, and it is very
difficult to discuss even the average behavior of h(n).

5. In discussing the average behavior of the weight h(n), the following approximation is
typically (almost invariably) made in the literature

E
[
h(n+ 1)

] = E[h(n)]+ 2μE
[
xnyn

]− 2μE
[
h(n)y2

n
]

= E[h(n)]+ 2μE
[
xnyn

]− 2μE
[
h(n)

]
E
[
y2
n
]

= E[h(n)]+ 2μr − 2μE
[
h(n)

]
R

where in the last term, the expectation E
[
h(n)

]
was factored out, as though h(n) were

independent of yn. With this approximation, the average E
[
h(n)

]
satisfies the same dif-

ference equation as before with solution given by Eq. (16.2.8). Typically, the weight h(n)
will be fluctuating about the theoretical convergence curve as it converges to the optimal
value, as shown below

After convergence, the adaptive weight h(n) continuously fluctuates about the Wiener
solution hopt. A measure of these fluctuations is the mean-square deviation of h(n) from

hopt, that is, E
[(
h(n)−hopt

)2]
. Under some restrictive conditions, this quantity has been

calculated [1350] to be

E
[(
h(n)−hopt

)2]→ μEmin (for large n)

16.3. The Widrow-Hoff LMS Adaptation Algorithm 857

where Emin is the minimized value of the performance index (16.2.1). Thus, the adaptation
parameter μ controls the size of these fluctuations. This gives rise to the basic trade-off of
the LMS algorithm: to obtain high accuracy in the converged weights (small fluctuations),
a small value of μ is required, but this will slow down the convergence rate.

A realization of the CCL is shown in Fig. 16.3.1. The filtering part of the realization must be
clearly distinguished from the feedback control loop that performs the adaptation of the filter
weight.

Fig. 16.3.1 Correlation canceler loop.

Historically, the correlation canceler loop was introduced in adaptive antennas as a sidelobe
canceler [1351–1356] The CCL is the simplest possible adaptive filter, and forms the elementary
building block of more complicated, higher-order adaptive filters.

We finish this section by presenting a simulation example of the CCL loop. The primary signal
xn was defined by

xn = −0.8yn + un
where the first term represents that part of xn which is correlated with yn. The part un is not
correlated with yn. The theoretical value of the CCL weight is found as follows:

r = E[xnyn]= −0.8E[ynyn]+E[unyn]= −0.8R+ 0 ⇒ hopt = R−1r = −0.8

The corresponding output of the CCL will be x̂n = hoptyn = −0.8yn, and therefore it will com-
pletely cancel the first term of xn leaving at the output en = xn − x̂n = un.

In the simulation we generated 1000 samples of a zero-mean white-noise signal yn of variance
0.1, and another independent set of 1000 samples of a zero-mean white-noise signal un also of
variance 0.1, and computed xn. The adaptation algorithm was initialized, as is usually done, to
zero initial weight h(0)= 0. Fig. 16.3.2 shows the transient behavior of the adaptive weight h(n),
as well as the theoretical weight E

[
h(n)

]
, as a function of the number of iterations n, for the two

values of μ, μ = 0.03 and μ = 0.01.
Note that in both cases, the adaptive weight converges to the theoretical value hopt = −0.8,

and that the smaller μ is slower but the fluctuations are also smaller. After the adaptive weight
has reached its asymptotic value, the CCL begins to operate optimally, removing the correlated
part of xn from the output en.

858 16. Adaptive Filters

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

iterations n

h
(n

)

Transient behavior of CCL loop

μ = 0.01

μ = 0.03

Fig. 16.3.2 Transient behavior of theoretical (dashed) and adaptive weights h(n).

Later on we will consider the complex-valued version of adaptive Wiener filters. Their ele-
mentary building block is the complex CCL shown below

The performance index is now

E = E[|en|2] = E[|xn − hyn|2] = min

with optimum solution

hopt = R−1r , R = E[y∗nyn] , r = E[xny∗n]

Analog implementations of the CCL are used in adaptive antennas. An analog CCL is shown

16.4. Adaptive Linear Combiner 859

below

where a high gain amplifier G and an ordinary RC-type integrator are used. If τ denotes the RC
time constant of the integrator, the weight updating part of the CCL is

τḣ(t)+h(t)= Gu(t)= Ge(t)y∗(t)
The performance of the analog CCL can be analyzed by replacing the adaptive weight h(t)

by its statistical average, satisfying

τḣ(t)+h(t)= GE[e(t)y∗(t)] = GE[(x(t)−h(t)y(t))y∗(t)]
or, defining R = E[y(t)y∗(t)] and r = E[x(t)y∗(t)],

τḣ(t)+h(t)= Gr −GRh(t)
with solution for t ≥ 0:

h(t)= hopt + (h(0)−hopt)e−at

where hopt is the asymptotic value

hopt = (1+GR)−1Gr

Thus, a high gain G is needed to produce an asymptotic value close to the theoretical Wiener
solution R−1r. The time constant of adaptation is given by

1

a
= τ

1+GR
Note that this particular implementation always converges and the speed of convergence is

still inversely dependent on R.

16.4 Adaptive Linear Combiner

A straightforward generalization of the correlation canceler loop is the adaptive linear com-
biner, where one has available a main signal xn and a number of secondary signals ym(n),
m = 0,1, . . . ,M. These (M + 1) secondary signals are to be linearly combined with appropriate
weights h0, h1, . . . , hM to form an estimate of xn:

x̂n = h0y0(n)+h1y1(n)+· · · + hMyM(n)= [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎢⎣

y0(n)
y1(n)

...
yM(n)

⎤
⎥⎥⎥⎥⎥⎦ = hTy(n)

860 16. Adaptive Filters

A realization of this is shown in Fig. 16.4.1. The adaptive linear combiner is used in adap-
tive radar and sonar arrays [1351–1355]. It also encompasses the case of the ordinary FIR, or
transversal, Wiener filter [1342].

Fig. 16.4.1 Linear combiner.

The optimal weights hm minimize the estimation error squared

E = E[e2
n]= min , en = xn − x̂n

The corresponding orthogonality equations state that the estimation error be orthogonal
(decorrelated) to each secondary signal ym(n):

∂E
∂hm

= 2E
[
en
∂en
∂hm

]
= −2E

[
enym(n)

] = 0 , 0 ≤m ≤M

or, in vector form

E
[
eny(n)

] = 0 ⇒ E
[
xny(n)

]− E[y(n)yT(n)
]
h = r−Rh = 0

with optimum solution hopt = R−1r.
The adaptive implementation is easily obtained by allowing the weights to become time-

dependent, h(n), and updating them in time according to the gradient-descent algorithm

h(n+ 1)= h(n)−μ ∂E
(
h(n)

)
∂h

with instantaneous gradient

∂E
∂h

= −2E
[
eny(n)

]→ −2eny(n)

so that
h(n+ 1)= h(n)+2μeny(n)

or, component-wise
hm(n+ 1)= hm(n)+2μenym(n) , 0 ≤m ≤M (16.4.1)

The computational algorithm is summarized below:

1. x̂n = h0(n)y0(n)+h1(n)y1(n)+· · · + hM(n)yM(n)
2. en = xn − x̂n
3. hm(n+ 1)= hm(n)+2μenym(n) , 0 ≤m ≤M

16.4. Adaptive Linear Combiner 861

Fig. 16.4.2 Adaptive linear combiner.

It is evident that each weight hm(n) is being adapted by its own correlation canceler loop,
while all weights use the same feedback error en to control their loops. The case of two weights
(M = 1) is shown in Fig. 16.4.2.
The adaptive linear combiner has two major applications:

1. Adaptive sidelobe canceler.

2. Adaptive FIR Wiener filter.

The two cases differ only in the way the inputs to the linear combiner are supplied. The linear
combiner part, performing the optimum processing, is the same in both cases. The time series
case is discussed in the next section. The array problem is depicted below.

It consists of a main and a number of secondary antennas. The main antenna is highly
directional and oriented toward the desired signal. Jammers picked up by the sidelobes of the

862 16. Adaptive Filters

main antenna and by the secondary antennas will tend to be canceled because the adaptive linear
combiner, acting as a correlation canceler, will adjust itself to cancel that part of the main signal
that is correlated with the secondary ones. The desired signal may also be canceled partially if it
is picked up by the secondary antennas. Strong jammers, however, will generally dominate and
as a result the canceler will configure itself to cancel them. The cancellation of the desired signal
can also be prevented by imposing additional constraints on the filter weights that can sustain
the beam in the desired look-direction.

The adaptation speed of the adaptive canceler is affected by the relative power levels of the
jammers. If there are jammers with greatly differing powers, the overall adaptation speed may be
slow. The stronger jammers tend to be canceled faster; the weaker ones more slowly. Qualitatively
this may be understood by inspecting, for example, expression (14.2.32). The power levels Pi of
the plane waves act as penalty factors in the performance index, that is, the minimization of the
performance index will tend to favor first the largest terms in the sum. This limitation of the LMS
algorithm has led to the development of alternative algorithms, such as adaptive Gram-Schmidt
preprocessors or RLS, in which all jammers get canceled equally fast.

16.5 Adaptive FIR Wiener Filter

The adaptive FIR or transversal filter is a special case of the adaptive linear combiner. In this
case, there is only one secondary signal yn. The required M + 1 signals ym(n) are provided as
delayed replicas of yn, that is,

ym(n)= yn−m (16.5.1)

A realization is shown in Fig. 16.5.1. The estimate of xn is

x̂n =
M∑
m=0

hm(n)yn−m = h0(n)yn + h1(n)yn−1 + · · · + hM(n)yn−M

Fig. 16.5.1 Adaptive FIR Wiener filter.

The time-varying filter weights hm(n) are continuously updated according to the gradient-
descent LMS algorithm

hm(n+ 1)= hm(n)+2μenym(n) , or,

hm(n+ 1)= hm(n)+2μenyn−m , 0 ≤m ≤M (16.5.2)

16.5. Adaptive FIR Wiener Filter 863

Each weight is therefore updated by its own CCL. Again, we summarize the computational
steps:

1. Compute the estimate x̂n =
M∑
m=0

hm(n)yn−m

2. Compute the error signal en = xn − x̂n
3. Adjust the weights hm(n+ 1)= hm(n)+2μenyn−m , 0 ≤m ≤M
The function lms is an implementation of the algorithm. With a minor modification it can

also be used for the more general adaptive linear combiner. Each call to the function reads a pair
of input samples {xn, yn}, performs the filtering operation to produce the output pair {x̂n, en},
updates the filter coefficients hm(n) to their new values hm(n+ 1) to be used by the next call,
and updates the internal state of the filter. It is essentially the function dwf with the weight
adaptation part added to it.

Next, we present the same simulation example as that given in Section Sec. 16.3, but it is now
approached with a two-tap adaptive filter (M = 1). The filtering equation is in this case

x̂n = h0(n)yn + h1(n)yn−1

The theoretical Wiener solution is found as follows: First note that

Rxy(k) = E[xn+kyn]= E
[
(−0.8yn+k + un+k)yn

] = −0.8E[yn+kyn]

= −0.8Ryy(k)= −0.8R(k)

Thus, the cross correlation vector is

r =
[
Rxy(0)
Rxy(1)

]
= −0.8

[
R(0)
R(1)

]

and the Wiener solution becomes:

h = R−1r =
[
R(0) R(1)
R(1) R(0)

]−1 [−0.8R(0)
−0.8R(1)

]

= −0.8
R(0)2−R(1)2

[
R(0) −R(1)
−R(1) R(0)

][
R(0)
R(1)

]
=

[
−0.8

0

]

We could have expected that h1 is zero, since the signal xn does not depend on yn−1, but only
on yn. The adaptive weights were both initialized to the (arbitrary) value of h0(0)= h1(0)= −0.4,
and the value of μ was 0.03. Fig. 16.5.2 shows the two adaptive weights h0(n) and h1(n) as a
function of n, converging to their optimal values of h0 = −0.8 and h1 = 0.

How does one select the filter order M? The rule is that the filter must have at least as many
delays as that part of xn which is correlated with yn. To see this, suppose xn is related to yn by

xn = c0yn + c1yn−1 + · · · + cLyn−L + un (16.5.3)

where un is uncorrelated with yn. Then, the filter order must be at least L. If M ≥ L, we can
write:

xn = c0yn + c1yn−1 + · · · + cMyn−M + un = cTy(n)+un
where c is the extended vector having ci = 0 for L + 1 ≤ i ≤ M. The cross-correlation between
xn and y(n) is

r = E[xny(n)
] = E[(yT(n)c)y(n)

] = E[y(n)yT(n)
]
c = Rc

864 16. Adaptive Filters

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

iterations n

LMS weights

h1(n)

h0(n)

Fig. 16.5.2 Transient behavior of FIR adaptive filter.

Thus, the Wiener solution will be h = R−1r = c. This, in turn, implies the complete cancella-
tion of the y-dependent part of xn. Indeed, x̂n = hTy(n)= cTy(n) and

en = xn − x̂n =
(
cTy(n)+un

)− cTy(n)= un
What happens if we underestimate the filter order and chooseM < L? In this case, we expect

to cancel completely the first M terms of Eq. (16.5.3) and to cancel the remaining terms as much
as possible. To see this, we separate out the first M terms writing

xn = [c0, . . . , cM]

⎡
⎢⎢⎢⎣

yn
...

yn−M

⎤
⎥⎥⎥⎦+ [cM+1, . . . , cL]

⎡
⎢⎢⎢⎣
yn−M−1

...
yn−L

⎤
⎥⎥⎥⎦+ un ≡ cT1 y1(n)+cT2 y2(n)+un

The problem of estimating xn using an Mth order filter is equivalent to the problem of esti-
mating xn from y1(n). The cross-correlation between xn and y1(n) is

E
[
xny1(n)

] = E[y1(n)yT1 (n)
]
c1 + E

[
y1(n)yT2 (n)

]
c2

It follows that the optimum estimate of xn is

x̂n = E
[
xnyT1 (n)

]
E
[
y1(n)yT1 (n)

]−1
y1(n)

= (
cT1 E

[
y1(n)yT1 (n)

]+ cT2 E
[
y2(n)yT1 (n)

])
E
[
y1(n)yT1 (n)

]−1
y1(n)

= (
cT1 + cT2 E

[
y2(n)yT1 (n)

]
E
[
y1(n)yT1 (n)

]−1)
y1(n)

= cT1 y1(n)+cT2 ŷ2/1(n)

where ŷ2/1(n)= E
[
y2(n)yT1 (n)

]
E
[
y1(n)yT1 (n)

]−1
y1(n) is recognized as the optimum estimate

of y2(n) based on y1(n). Thus, the estimation error will be

en = xn − x̂n =
[
cT1 y1(n)+cT2 y2(n)+un

]− [
c1y1(n)+cT2 ŷ2/1(n)

]
= cT2

[
y2(n)−ŷ2/1(n)

]+ un
which shows that the y1(n) part is removed completely, and the y2(n) part is removed as much
as possible.

16.6. Speed of Convergence 865

16.6 Speed of Convergence

The convergence properties of the LMS algorithm [1342,1350,1356] may be discussed by restoring
the expectation values where they should be, that is

∂E
∂h

= −2E
[
eny(n)

]
, y(n)=

⎡
⎢⎢⎢⎢⎢⎣

y0(n)
y1(n)

...
yM(n)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦

resulting in the difference equation for the weight vector

h(n+ 1) = h(n)−μ ∂E
∂h

= h(n)+2μE
[
eny(n)

]
= h(n)+2μ

{
E
[
xny(n)

]− E[y(n)yT(n)
]
h(n)

}
= h(n)+2μr− 2μRh(n)

or,
h(n+ 1)= (I − 2μR)h(n)+2μr (16.6.1)

where r = E[xny(n)
]

andR = E[y(n)yT(n)
]
. The difference equation (16.6.1) has the following

solution, where hopt = R−1r

h(n)= hopt + (I − 2μR)n(h(0)−hopt)

Convergence to hopt requires that the quantity (1− 2μλ), for every eigenvalue λ of R, have
magnitude less than one (we assume that R has full rank and therefore all its eigenvalues are
positive):

|1− 2μλ| < 1 � −1 < 1− 2μλ < 1 � 0 < μ <
1

λ
This condition will be guaranteed if we require this inequality for λmax, the maximum eigen-

value:

0 < μ <
1

λmax
(16.6.2)

Note that λmax can be bounded from above by

λmax < tr(R)=
M∑
i=0

Rii =
M∑
i=0

R(0)= (M + 1)R(0)

and one may require instead μ < 1/
(
(M + 1)R(0)

)
. As for the speed of convergence, suppose

that μ is selected half-way within its range (16.6.2), near 0.5/λmax, then the rate of convergence
will depend on the slowest converging term of the form (1 − 2μλ)n that is, the term having
|1−2μλ| as close to one as possible. This occurs for the smallest eigenvalue λ = λmin. Thus, the
slowest converging term is effectively given by (1− 2μλmin)n= (1− λmin/λmax)n. The effective
time constant in seconds is obtained by writing t = nT, where T is the sampling period, and
using the approximation

(
1− λmin

λmax

)n
� exp

(
−λmin

λmax
n
)
= e−t/τ

where

τ = T λmax

λmin

866 16. Adaptive Filters

The eigenvalue spread λmax/λmin controls, therefore, the speed of convergence. The conver-
gence can be as fast as one sampling instantT if the eigenvalue spread is small, i.e., λmax/λmin � 1.
But, the convergence will be slow if the eigenvalue spread is large. As we shall see shortly, a large
spread in the eigenvalues of the covariance matrixR corresponds to a highly self-correlated signal
yn.

Thus, we obtain the general qualitative result that in situations where the secondary signal
is strongly self-correlated, the convergence of the gradient-based LMS algorithm will be slow. In
many applications, such as channel equalization, the convergence must be as quick as possible.
Alternative adaptation schemes exist that combine the computational simplicity of the LMS al-
gorithm with a fast speed of convergence. Examples are the fast RLS and the adaptive lattice
algorithms.

The possibility of accelerating the convergence rate may be seen by considering a more general
version of the gradient-descent algorithm in which the time update for the weight vector is chosen
as

Δh = −M ∂E
∂h

(16.6.3)

where M is a positive definite and symmetric matrix. The LMS steepest descent case is obtained
as a special case of this when M is proportional to the unit matrix I, M = μI. This choice
guarantees convergence towards the minimum of the performance index E(h), indeed,

E(h+Δh)� E(h)+ΔhT
(
∂E
∂h

)
= E(h)−

(
∂E
∂h

)T
M

(
∂E
∂h

)
≤ E(h)

Since the performance index is

E = E[e2
n]= E

[(
xn − hTy(n)

)2] = E[x2
n]−2hTr+ hTRh

it follows that ∂E/∂h = −2(r−Rh), and the difference equation for the adaptive weights becomes

h(n+ 1)= h(n)+Δh(n)= h(n)+2M(
r−Rh(n)

)
or,

h(n+ 1)= (I − 2MR)h(n)+2Mr (16.6.4)

with solution for n ≥ 0
h(n)= hopt + (I − 2MR)n(h(0)−hopt) (16.6.5)

where hopt = R−1r is the asymptotic value, and h(0), the initial value. It is evident from
Eq. (16.6.4) or (16.6.5) that the choice of M can drastically affect the speed of convergence. For
example, if M is chosen as

M= (2R)−1 (16.6.6)

then I − 2MR = 0, and the convergence occurs in just one step! This choice of M is equivalent
to Newton’s method of solving the system of equations

f(h)= ∂E
∂h

= 0

for the optimal weights. Indeed, Newton’s method linearizes about each point h to get the next
point, that is, Δh is selected such that

f(h+Δh)� f(h)+
(
∂f

∂h

)
Δh = 0

where we expanded to first order in Δh. Solving for Δh, we obtain

Δh = −
(
∂f

∂h

)−1

f(h)

16.6. Speed of Convergence 867

But since f(h)= −2(r−Rh), we have ∂f/∂h = 2R. Therefore, the choiceM= (2R)−1 corre-
sponds precisely to Newton’s update. Newton’s method is depicted below for the one-dimensional
case.

Note that the property that Newton’s method converges in one step is a well-known property
valid for quadratic performance indices (in such cases, the gradient f(h) is already linear in h
and therefore Newton’s local linearization is exact). The important property about the choice
M= (2R)−1 is thatM is proportional to the inverse of R. An alternative choice could have been
M= αR−1. In this case I − 2MR becomes proportional to the identity matrix:

I − 2MR = (1− 2α)I

having equal eigenvalues. Stability requires that |1 − 2α| < 1, or equivalently, 0 < α < 1, with
Newton’s choice corresponding exactly to the middle of this interval, α = 1/2. Therefore, the
disparity between the eigenvalues that could slow down the convergence rate is eliminated, and
all eigenmodes converge at the same rate (which is faster the more M resembles (2R)−1).

The implementation of such Newton-like methods requires knowledge of R, which we do not
have (if we did, we would simply compute the Wiener solution hopt = R−1r.) However, as we shall
see later, the so-called recursive least-squares algorithms effectively provide an implementation
of Newton-type methods, and that is the reason for their extremely fast convergence. Adaptive
lattice filters also have very fast convergence properties. In that case, because of the orthogonal-
ization of the successive lattice stages of the filter, the matrix R is diagonal (in the decorrelated
basis) and the matrix M can also be chosen to be diagonal so as to equalize and speed up the
convergence rate of all the filter coefficients. Recursive least-squares and adaptive lattice filters
are discussed in Sections Sec. 16.16 and 16.18, respectively.

Finally, we would like to demonstrate the previous statement that a strongly correlated signal
yn has a large spread in the eigenvalue spectrum of its covariance matrix. For simplicity, consider
the 2×2 case

R = E[y(n)yT(n)
] = E

[[
yn
yn−1

][
yn, yn−1

]] =
[
R(0) R(1)
R(1) R(0)

]

The two eigenvalues are easily found to be

λmin = R(0)−|R(1)|
λmax = R(0)+|R(1)|

and therefore, the ratio λmin/λmax is given by

λmin

λmax
= R(0)−|R(1)|
R(0)+|R(1)|

Since for an autocorrelation function we always have |R(1)| ≤ R(0), it follows that the largest
value of R(1) is ±R(0), implying that for highly correlated signals the ratio λmin/λmax will be
very close to zero.

868 16. Adaptive Filters

16.7 Adaptive Channel Equalizers

Channels used in digital data transmissions can be modeled very often by linear time-invariant
systems. The standard model for such a channel including channel noise is shown here.

In the Figure, Hc(z) is the transfer function for the channel and vn, the channel noise, as-
sumed to be additive white gaussian noise. The transfer functionHc(z) incorporates the effects
of the modulator and demodulator filters, as well as the channel distortions. The purpose of a
channel equalizer is to undo the distorting effects of the channel and recover, from the received
waveform yn, the signal xn that was transmitted. Typically, a channel equalizer will be an FIR filter
with enough taps to approximate the inverse transfer function of the channel. A basic equalizer
system is shown below.

In this figure, H(z) is the desired transfer function of the equalizer. In many situations,
such in the telephone network, the channel is not known in advance, or it may be time-varying
as in the case of multipath channels. Therefore, it is desirable to design equalizers adaptively
[1357–1359].

A channel equalizer, adaptive or not, is an optimal filter since it tries to produce as good
an estimate x̂n of the transmitted signal xn as possible. The Wiener filtering concepts that we
developed thus far are ideally suited to this problem. This is shown below.

The design of the optimal filter requires two things: first, the autocorrelation of the received
signal yn, and second, the cross-correlation of the transmitted signal xn with the received signal.
Since the transmitted signal is not available at the receiver, the following procedure is used.
After the channel connection is established, a “training” sequence xn, which is also known to
the receiver, is transmitted over the channel. Then, the equalizer may be designed, and then the
actual message transmitted. To appreciate the equalizer’s action as an inverse filter, suppose
that the training sequence xn is a white-noise sequence of variance σ2

x . According to the theory
developed in Chap. 11, the optimal filter estimating xn on the basis of yn is given by

H(z)= 1

σ2
εB(z)

[Sxy(z)
B(z−1)

]
+

16.8. Adaptive Echo Cancelers 869

where B(z) is the spectral factor of Syy(z)= σ2
εB(z)B(z−1). To simplify the discussion, let us

ignore the causal instruction:

H(z)= Sxy(z)
σ2
εB(z)B(z−1)

= Sxy(z)
Syy(z)

Since we have Y(z)= Hc(z)X(z)+V(z), we find

Sxy(z) = Sxx(z)Hc(z−1)+Sxv(z)= Sxx(z)Hc(z−1)= σ2
xHc(z−1)

Syy(z) = Hc(z)Hc(z−1)Sxx(z)+Svv(z)= σ2
xHc(z)Hc(z−1)+σ2

v

the equalizer’s transfer function is then

H(z)= Sxy(z)
Syy(z)

= σ2
xHc(z−1)

σ2
xHc(z)Hc(z−1)+σ2

v

It is seen that when the channel noise is weak (small σ2
v), the equalizer essentially behaves

as the inverse filter 1/Hc(z) of the channel.
In an adaptive implementation, we must use a filter with a finite number of weights. These

weights are adjusted adaptively until they converge to their optimal values. Again, during this
“training mode” a known pilot signal is sent over the channel and is received as yn. At the
receiving end, the pilot signal is locally generated and used in the adaptation algorithm. This
implementation is shown below.

16.8 Adaptive Echo Cancelers

Consider two speakers A and B connected to each other by the telephone network. As a result
of various impedance mismatches, when A’s speech reaches B, it manages to “leak” through and
echoes back to speaker A, as though it were B’s speech.

An echo canceler may be placed near B’s end, as shown.

870 16. Adaptive Filters

It produces an (optimum) estimate of A’s echo through B’s circuits, and then proceeds to
cancel it from the signal returning to speaker A. Again, this is another case for which optimal
filtering ideas are ideally suited. An adaptive echo canceler is an adaptive FIR filter placed as
shown [1360–1365].

As always, the adaptive filter will adjust itself to cancel any correlations that might exist
between the secondary signal yn (A’s speech) and the primary signal xn (A’s echo).

16.9 Adaptive Noise Canceling

In many applications, two signals are available; one is composed of a desired signal plus undesired
noise interference, and the other is composed only of noise interference which, if not identical
with the noise part of the first signal, is correlated with it. This is shown in Fig. 16.9.1. An
adaptive noise canceler [1350] is an adaptive filter as shown in the Figure. It acts as a correlation
canceler. If the signals xn and yn are in any way correlated (i.e., the noise component of xn with
yn), then the filter will respond by adapting its weights until such correlations are canceled from
the output en. It does so by producing the best possible replica of the noise component of xn
and proceeding to cancel it. The output en will now consist mainly of the desired signal.

Fig. 16.9.1 Adaptive noise canceler.

There are many applications of adaptive noise canceling, such as adaptive sidelobe cancel-
lation, acoustic noise cancellation [1368–1370], canceling 60 Hz interference in EKG recordings,
plasma estimation [1371], and ghost cancellation in television [1372].

An interesting property of the adaptive noise canceler is that when the secondary signal yn is
purely sinusoidal at some frequency ω0, the adaptive filter behaves as a notch filter [1350,1373]
at the sinusoid’s frequency, that is, the transfer relationship between the primary input xn and
the output en becomes the time-invariant transfer function of a notch filter. This is a surprising
property since the adaptation equations for the weights and the filtering I/O equation are in
general time-noninvariant. To understand this effect, it proves convenient to work with complex-
valued signals using a complex-valued reformulation of the LMS algorithm [1374]. We make a

16.9. Adaptive Noise Canceling 871

short digression on this, first. We assume that xn, yn and the weights h(n) are complex-valued.
The performance index is replaced by

E = E[e∗nen]
where the I/O filtering equation is still given by

x̂n =
M∑
m=0

hmyn−m = hTy(n)

Since the weights h are complex, the index E depends on both the real and the imaginary
parts of h. Equivalently, we may think of E as a function of the two independent variables h and
h∗. A complex change in the weights Δh will change the index to

E(h+Δh,h∗ +Δh∗)= E(h,h∗)+ΔhT
∂E
∂h

+Δh†
∂E
∂h∗

Choosing Δh to be proportional to the complex conjugate of the negative gradient, that is,

Δh = −2μ
∂E
∂h∗

= 2μE[eny(n)∗]

will move the index E towards its minimum value; indeed,

E(h+Δh,h∗ +Δh∗)= E(h,h∗)−4μ
(
∂E
∂h

)† (
∂E
∂h

)
≤ E(h,h∗)

Thus, the complex version of the LMS algorithm consists simply of replacing the instanta-
neous gradient by its complex conjugate [1374]. We summarize the algorithm as follows:

1. Compute x̂n = h(n)Ty(n).
2. Compute en = xn − x̂n.

3. Update weights h(n+ 1)= h(n)+2μeny(n)∗.

Using this complex version, we now discuss the notching behavior of the adaptive filter.
Suppose yn is sinusoidal

yn = Aejω0n

at some frequency ω0. Then, the weight-update equation becomes:

hm(n+ 1)= hm(n)+2μeny∗n−m = hm(n)+2μA∗e−jω0(n−m)

for m = 0,1, . . . ,M. The factor e−jω0(n−m) suggests that we look for a solution of the form

hm(n)= fm(n)e−jω0(n−m)

Then, fm(n) must satisfy the difference equation

e−jω0fm(n+ 1)= fm(n)+2μA∗en

As a difference equation in n, this equation has constant coefficients, and, therefore, may be
solved by z-transform techniques. Taking z-transforms of both sides we find

e−jω0zFm(z)= Fm(z)+2μA∗E(z)

which may be solved for Fm(z) in terms of E(z) to give

Fm(z)= E(z) 2μA∗ejω0

z− ejω0

872 16. Adaptive Filters

On the other hand, the I/O filtering equation from yn to the output x̂n is

x̂n =
M∑
m=0

hm(n)yn−m =
M∑
m=0

fm(n)e−jω0(n−m)Aejω0(n−m) =
M∑
m=0

fm(n)A

or, in the z-domain

X̂(z)=
M∑
m=0

Fm(z)A = E(z)2μ(M + 1)|A|2ejω0

z− ejω0

Finally, the I/O equation from xn to en becomes

en = xn − x̂n
and, in the z-domain

E(z)= X(z)−X̂(z)= X(z)−E(z)2μ(M + 1)|A|2ejω0

z− ejω0

which may be solved for the transfer function E(z)/X(z)

E(z)
X(z)

= z− ejω0

z−Rejω0
, R ≡ 1− 2μ(M + 1)|A|2 (16.9.1)

This filter has a zero at z = ejω0 which corresponds to the notch at the frequency ω0. For
sufficiently small values of μ and A, the filter is stable; its pole is at z = Rejω0 and can be made
to lie inside the unit circle (0 < R < 1). If the primary input xn happens to have a sinusoidal
component at frequency ω0, this component will be completely notched away from the output.
This will take place even when the sinusoidal reference signal is very weak (i.e., when A is small).
The implications of this property for jamming by signal cancellation in adaptive array processing
have been discussed in [1375]. The notching behavior of the adaptive noise canceler when the
reference signal consists of a sinusoid plus noise has been discussed in [1376].

A related result is that the adaptive noise canceler behaves as a time-invariant comb filter
whenever its secondary input yn is a periodic train of impulses separated by some period [1377].
This property can be used to cancel periodic interference. Because the method of signal averaging
can be thought of as comb filtering, the above property may also be used as an alternative method
to perform signal averaging for pulling weak periodic signals from background noise, such as
evoked potentials [1378].

16.10 Adaptive Line Enhancer

A special case of adaptive noise canceling is when there is only one signal xn available which is
contaminated by noise. In such a case, the signal xn provides its own reference signal yn, which
is taken to be a delayed replica of xn, that is, yn = xn−Δ, as shown in Fig. 16.10.1, referred to as
the adaptive line enhancer (ALE) [1350,1379–1381].

Will such arrangement be successful? The adaptive filter will respond by canceling any com-
ponents of the main signal xn that are in any way correlated with the secondary signal yn = xn−Δ.
Suppose the signal xn consists of two parts: a narrowband component that has long-range cor-
relations such as a sinusoid, and a broadband component which will tend to have short-range

16.10. Adaptive Line Enhancer 873

Fig. 16.10.1 Adaptive line enhancer.

correlations. One of these could represent the desired signal and the other an undesired inter-
fering noise. Pictorially the autocorrelations of the two components could look as follows.

where kNB and kBB are effectively the self-correlation lengths of the narrowband and broadband
components, respectively. Beyond these lags, the respective correlations die out quickly. Suppose
the delay Δ is selected so that

kBB ≤ Δ ≤ kNB

Since Δ is longer than the effective correlation length of the BB component, the delayed
replica BB(n−Δ) will be entirely uncorrelated with the BB part of the main signal. The adaptive
filter will not be able to respond to this component. On the other hand, since Δ is shorter than
the correlation length of the NB component, the delayed replica NB(n − Δ) that appears in the
secondary input will still be correlated with the NB part of the main signal, and the filter will
respond to cancel it. Thus, the filter outputs will be as shown.

Note that if Δ is selected to be longer than both correlation lengths, the secondary input will
become uncorrelated with the primary input, and the adaptive filter will turn itself off. In the
opposite case, when the delay Δ is selected to be less than both correlation lengths, then both
components of the secondary signal will be correlated with the primary signal, and therefore, the
adaptive filter will respond to cancel the primary xn completely. The computational algorithm
for the ALE is as follows

1. x̂n =
M∑
m=0

hm(n)y(n−m)=
M∑
m=0

hm(n)x(n−m−Δ)

874 16. Adaptive Filters

2. en = xn − x̂n
3. hm(n+ 1)= hm(n)+2μenx(n−m−Δ) , m = 0,1, . . . ,M

The Wiener solution for the steady-state weights is h = R−1r, where R and r are both express-
ible in terms of the autocorrelation of the signal xn, as follows:

Rij = E[yn−iyn−j]= E[xn−Δ−i xn−Δ−j]= Rxx(i− j)
ri = E[xnyn−i]= E[xnxn−Δ−i]= Rxx(i+Δ)

for i, j = 0,1, . . . ,M. When the input signal consists of multiple sinusoids in additive white noise,
the inverse R−1 may be obtained using the methods of Sec. 14.2, thus resulting in a closed form
expression for the steady-state optimal weights [1381].

16.11 Adaptive Linear Prediction

A linear predictor is a special case of the ALE with the delay Δ = 1. It is shown in Fig. 16.11.1,
where to be consistent with our past notation on linear predictors we have denoted the main
signal by yn. The secondary signal, the input to the adaptive filter, is then yn−1. Due to the
special sign convention used for linear predictors, the adaptation algorithm now reads

1. ŷn = −
[
a1(n)yn−1 + a2(n)yn−2 + · · · + aM(n)yn−M

]
2. en = yn − ŷn = yn + a1(n)yn−1 + · · · + aM(n)yn−M
3. am(n+ 1)= am(n)−2μenyn−m , m = 1,2 . . . ,M

The realization of Fig. 16.11.1 can be redrawn more explicitly as in Fig. 16.11.2. The lmsap is
an implementation of the LMS adaptive predictor. At each call, the function reads a sample yn,
computes the filter output en, updates the filter coefficients am(n) to their new values am(n+1)
to be used by the next call, and updates the registers of the tapped delay line. With a small
modification it can be used in the adaptive array problem (see below).

Fig. 16.11.1 Adaptive linear predictor.

Because of the importance of the adaptive predictor, we present a direct derivation of the
LMS algorithm as it applies to this case. The weights am are chosen optimally to minimize the
mean output power of the filter, that is, the mean-square prediction error:

E = E[e2
n]= aTRa = min (16.11.1)

where a = [1, a1, a2, . . . , aM]T is the prediction error filter. The performance index (16.11.1)
is minimized with respect to the M weights am. The gradient with respect to am is the mth
component of the vector 2Ra, namely,

∂E
∂am

= 2(Ra)m= 2
(
E[y(n)y(n)T]a

)
m = 2

(
E[y(n)y(n)Ta]

)
m

= 2
(
E[y(n)en]

)
m = 2E[enyn−m]

16.11. Adaptive Linear Prediction 875

Fig. 16.11.2 Direct-form realization of adaptive predictor.

The instantaneous gradient is obtained by ignoring the expectation instruction. This gives
for the LMS time-update of the mth weight

Δam(n)= −μ ∂E
∂am

= −2μenyn−m , m = 1,2, . . . ,M (16.11.2)

The adaptive predictor may be thought of as an adaptive whitening filter, or an analysis filter
which determines the LPC model parameters adaptively. As processing of the signal yn takes
place, the autoregressive model parameters am are extracted on-line. This is but one example of
on-line system identification methods [1384–1392].

The extracted model parameters may be used in any desired way—for example, to provide
the autoregressive spectrum estimate of the signal yn. One of the advantages of the adaptive
implementation is that it offers the possibility of tracking slow changes in the spectra of non-
stationary signals. The only requirement for obtaining meaningful spectrum estimates is that the
non-stationary changes of the spectrum be slow enough for the adaptive filter to have a chance
to converge between changes. Typical applications are the tracking of sinusoids in noise whose
frequencies may be slowly changing [1382,1383,1393], or tracking the time development of the
spectra of non-stationary EEG signals [1028]. At each time instant n, the adaptive weights am(n),
m = 1,2, . . . ,M may be used to obtain an instantaneous autoregressive estimate of the spectrum
of yn in the form

Sn(ω)= 1∣∣1+ a1(n)e−jω + a2(n)e−2jω + · · · + aM(n)e−Mjω
∣∣2

This is the adaptive implementation of the LP spectrum estimate discussed in Sec. 14.2. The
same adaptive approach to LP spectrum estimation may also be used in the problem of multiple
source location, discussed in Sec. 14.3. The only difference in the algorithm is to replace yn−m
by ym(n)—that is, by the signal recorded at the mth sensor at time n—and to use the complex-
valued version of the LMS algorithm. For completeness, we summarize the computational steps
in this case, following the notation of Sec. 14.3.

1. e(n)= y0(n)+a1(n)y1(n)+a2(n)y2(n)+· · · + aM(n)yM(n)
2. am(n+ 1)= am(n)−2μe(n)y∗m(n) , m = 1,2, . . . ,M

At each time instant n, the corresponding spatial spectrum estimate may be computed by

Sn(k)= 1∣∣1+ a1(n)e−jk + a2(n)e−2jk + · · · + aM(n)e−Mjk
∣∣2

where the wavenumber k and its relationship to the angle of bearing was defined in Sec. 14.3.
Fig. 16.11.3 shows the corresponding adaptive array processing configuration.

876 16. Adaptive Filters

Fig. 16.11.3 Adaptive array processor.

The time-adaptive as well as the block-data adaptive methods of superresolution array pro-
cessing have been reviewed in [1099,1129]. The above LMS algorithm for the array weights is
effectively equivalent to the Howells-Applebaum algorithm [1351–1355]. Adaptive predictors
may also be used to improve the performance of spread-spectrum systems [1396–1402].

16.12 Adaptive Implementation of Pisarenko’s Method

In Sec. 14.2, we noted that the Pisarenko eigenvalue problem was equivalent to the minimization
of the performance index

E = E[e∗nen]= a†Ra = min (16.12.1)

subject to the quadratic constraint
a†a = 1 (16.12.2)

where

en =
M∑
m=0

amyn−m = [a0, a1, . . . , aM]

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦ = aTy(n)

The solution of the minimization problem shown in Eqs. (16.12.1) and (16.12.2) is the eigen-
vector a belonging to the minimum eigenvalue of the covariance matrixR. If there are L sinusoids
of frequenciesωi, i = 1,2, . . . , L, and we use a filter of orderM, such thatM ≥ L, then the eigen-
polynomialA(z) corresponding to the minimum eigenvector a will have L zeros on the unit circle
at precisely the desired set of frequencies, that is,

A(zi)= 0 , where zi = ejωi , i = 1,2, . . . , L

The adaptive implementation [1403] of the Pisarenko eigenvalue problem is based on the
above minimization criterion. The LMS gradient-descent algorithm can be used to update the
weights, but some care must be taken to satisfy the essential quadratic constraint (16.12.2) at
each iteration of the algorithm. Any infinitesimal change da of the weights must respect the
constraint. This means the da cannot be arbitrary but must satisfy the condition

d(a†a)= a†(da)+(da)†a = 0 (16.12.3)

so that the new weight a + da still lies on the quadratic surface a†a = 1. The ordinary gradient
of the performance index E is

∂E
∂a∗

= Ra

16.12. Adaptive Implementation of Pisarenko’s Method 877

Projecting this onto the surface a†a = 1 by the projection matrix P = I − aa†, where I is the
(M + 1)-dimensional unit matrix, we obtain the “constrained” gradient

(
∂E
∂a∗

)
c
= P ∂E

∂a∗
= (I − aa†)(Ra)= Ra− Ea (16.12.4)

which is tangent to the constraint surface at the point a. The vanishing of the constrained gradient
is equivalent to the Pisarenko eigenvalue problem. The weight update can now be chosen to be
proportional to the constrained gradient

Δa = −μ
(
∂E
∂a∗

)
c
= −μ(Ra− Ea)

The projection of the gradient onto the constraint surface is shown below.

This choice guarantees thatΔa satisfies Eq. (16.12.3); indeed, because of the projection matrix
in front of the gradient, it follows that a†Δa = 0. Actually, since Δa is not infinitesimal, it will
correspond to a finite motion along the tangent to the surface at the point a. Thus, the new point
a + Δa will be slightly off the surface and must be renormalized to have unit norm. Using the
properties,

R a = E[y(n)∗y(n)T]a = E[y(n)∗en] and E = E[e∗nen]
we write the update as

Δa = −μ(E[eny(n)∗]−E[e∗nen]a
)

The LMS algorithm is obtained by ignoring the indicated ensemble expectation values. The
weight adjustment procedure consists of two steps: first, shift the old weight a(n) by Δa(n),
and then renormalize it to unit norm:

a(n+ 1)= a(n)+Δa(n)
‖a(n)+Δa(n)‖ (16.12.5)

where the weight update is computed by

Δa(n)= −μ[eny(n)∗−e∗nena(n)
]

(16.12.6)

In summary, the computational steps are as follows:

1. At time n, a(n) is available and normalized to unit norm.

2. Compute the output en =
∑M
m=0 am(n)yn−m = a(n)Ty(n).

3. Update the filter weights using Eq. (16.12.5) and (16.12.6).

4. Go to the next time instant, n→ n+ 1.

878 16. Adaptive Filters

Fig. 16.12.1 Adaptive implementation of Pisarenko’s method.

A realization of the adaptive filter is shown in Fig. 16.12.1. After a number of iterations, the
algorithm may be stopped and the Pisarenko spectrum estimate computed:

Sn(ω)= 1∣∣a0(n)+a1(n)e−jω + a2(n)e−2jω + · · · + aM(n)e−Mjω
∣∣2

After convergence, Sn(ω) should exhibit very sharp peaks at the sought frequencies ωi, i =
1,2 . . . , L. The convergence properties of this algorithm have been studied in [1404]. Alternative
adaptation schemes for the weights have been proposed in [1406]. The algorithm may also be
applied to the array problem of multiple source location [1407]. Again, the only change is to
replace yn−m by ym(n), depicted below.

Both the adaptive prediction and the Pisarenko approaches to the two problems of extracting
sinusoids in noise and multiple emitter location have a common aim, namely, to produce an
adaptive filter A(z) with zeros very near or on the unit circle at the desired frequency angles.
Taking the inverse magnitude response as an estimate of the spectrum of the signal,

S(ω)= 1

|A(ω)|2
is a simple device to obtain a curve that exhibits sharp spectral peaks at the desired frequencies.

A satisfactory alternative approach would be simply to find the roots of the polynomialA(z)
and pick those that are closest to the unit circle. The phase angles of these roots are precisely
the desired frequencies. In other words, the frequency information we are attempting to extract

16.12. Adaptive Implementation of Pisarenko’s Method 879

by means of the adaptive filter is more directly represented by the zeros of the filter than by its
weights.

It would be desirable then to develop methods by which these zeros can be estimated directly
without having to submit the filter A(z) to root-finding algorithms. In implementing this idea
adaptively, we would like to adapt and track the zeros of the adaptive filter as they move about
on the complex z-plane, converging to their final destinations which are the desired zeros. In
this way, the frequency information can be extracted directly. Such “zero-tracking” adaptation
algorithms have been proposed recently [1408,1409].

Even though the representations of the filter in terms of its zeros and in terms of its weights
are mathematically equivalent, the zero representation may be more appropriate in some applica-
tions in the sense that a better insight into the nature of the underlying processes may be gained
from it than from the weight representation.

As an example, we mention the problem of predicting epileptic seizures by LPC modeling of
the EEG signal where it was found [1410] that the trajectories of the zeros of the prediction-error
filter on the z-plane exhibited an unexpected behavior, namely, prior to the onset of a seizure,
one of the zeros became the “most mobile” and moved towards the unit circle, whereas the other
zeros did not move much. The trajectory of the most mobile zero could be used as a signature for
the onset of the oncoming seizure. Such behavior could not be easily discerned by the frequency
response or by the final zero locations.

Next, we describe briefly the zero-tracking algorithm as it applies to the Pisarenko problem
and present a simulation example. Its application to adaptive prediction and to emitter location
has been discussed in [1409]. For simplicity, we assume that the number of sinusoids that are
present is the same as the order of the filter a, that is, L =M. The case L < M will be discussed
later on. The eigenpolynomial of the minimum eigenvector a may be factored into its zeros as
follows:

A(z) = a0 + a1z−1 + a2z−2 + · · · + aMz−M

= a0(1− z1z−1)(1− z2z−1)· · · (1− zMz−1)
(16.12.7)

where a0 may be thought of as a normalization factor which guarantees the unit norm constraint
(16.12.2), and zi = ejωi , i = 1,2, . . . ,M are the desired sinusoid zeros on the unit circle.

In the adaptive implementation, the weights am become time-dependent am(n) and are
adapted from each time instant to the next until they converge to the asymptotic values de-
fined by Eq. (16.12.7). At each n, the corresponding polynomial can be factored into its zeros as
follows:

a0(n)+a1(n)z−1 + a2(n)z−2 + · · · + aM(n)z−M

= a0(n)
(
1− z1(n)z−1

)(
1− z2(n)z−1

) · · · (1− zM(n)z−1
) (16.12.8)

where again the factor a0(n) ensures the unit-norm constraint. In the zero-tracking algorithm,
the weight update equation (16.12.5) is replaced by a zero-update equation of the form:

zi(n+ 1)= zi(n)+Δzi(n) , i = 1,2, . . . ,M (16.12.9)

where the zero updates Δzi(n) must be such that to ensure the convergence of the zeros to
their asymptotic values zi. One way to do this is to make the algorithm equivalent to the LMS
algorithm. The functional dependence of zi(n) on am(n) defined by Eq. (16.12.8) implies that if
the weights am(n) are changed by a small amount Δam(n) given by Eq. (16.12.6), then a small
change Δzi(n) will be induced on the corresponding zeros. This is given as follows:

Δzi(n)=
M∑
m=0

∂zi(n)
∂am

Δam(n) (16.12.10)

where the partial derivatives are given by [12]

880 16. Adaptive Filters

∂zi(n)
∂am

= − 1

a0(n)
zi(n)M−m∏

j �=i

(
zi(n)−zj(n)

) , 0 ≤m ≤M (16.12.11)

Equation (16.12.10) is strictly valid for infinitesimal changes, but for small μ, it can be taken
to be an adequate approximation for the purpose of computing Δzi(n). The advantage of this
expression is that only the current zeros zi(n) are needed to compute Δzi(n). The complete
algorithm is summarized as follows:

1. At time n, the zeros zi(n), i = 1,2, . . . ,M are available.

2. Using convolution, compute the corresponding filter weights and normalize them to unit
norm, that is, first convolve the factors of Eq. (16.12.8) to obtain the vector

b(n)T = [
1, b1(n), b2(n), . . . , bM(n)

]
= [

1, −z1(n)
]∗ [

1, −z2(n)
]∗ · · · ∗ [

1, −zM(n)
]

and then normalize b(n) to unit norm:

a(n)= b(n)
‖b(n)‖

3. Compute the filter output en = a(n)Ty(n).
4. Compute the LMS coefficient updates Δam(n) using Eq. (16.12.6). Compute the zero up-

datesΔzi(n) using Eqs. (16.12.10) and (16.12.11), and update the zeros using Eq. (16.12.9).

The algorithm may be initialized by a random selection of the initial zeros inside the unit
circle in the z-plane. Next, we present a simulation example consisting of a fourth order filter
and four sinusoids

yn = vn + ejω1n + ejω2n + ejω3n + ejω4n

with frequencies

ω1 = 0.25π, ω2 = −0.25π, ω3 = 0.75π, ω4 = −0.75π

and a zero-mean, unit-variance, white noise sequence vn (this corresponds to all sinusoids having
0 dB signal to noise ratio). The value of μ was 0.001. Figure 7.14 shows the adaptive trajecto-
ries of the four filter zeros as they converge onto the unit circle at the above frequency values.
After convergence, the adaptive zeros remain within small neighborhoods about the asymptotic
zeros. The diameter of these neighborhoods decreases with smaller μ, but so does the speed of
convergence [1409].

The transient behavior of the zeros can be seen by plotting zi(n) versus iteration number
n. Fig. 16.12.3 shows the real and imaginary parts of the adaptive trajectory of the zero z2(n)
converging to the real and imaginary parts of the asymptotic zero z2 = ejω2 = e−j0.25π = (1 −
j)/
√

2.
When the number L of sinusoids is less than the order M of the filter, only L of the M zeros

zi(n) of the filter will be driven to the unit circle at the right frequency angles. The remaining
(M − L) zeros correspond to spurious degrees of freedom (the degeneracy of the minimum
eigenvalue σ2

v), and are affected by the adaptation process only insofar as theM zero trajectories
are not entirely independent of each other but are mutually coupled through Eq. (16.12.11). Where
these spurious zeros converge to depends on the particular initialization. For some special initial
conditions it is possible for the spurious zeros to move close to the unit circle, thus causing a
confusion as to which are the true sinusoid zeros. To safeguard against such a possibility, the
algorithm may be run again with a different choice of initial zeros. Fig. 16.12.4 shows the adaptive

16.13. Gradient Adaptive Lattice Filters 881

−1 0 1

−1

0

1

complex z− plane

z4

z3

z2

z1

Fig. 16.12.2 z-Plane trajectories of the four adaptive zeros zi(n), i = 1,2,3,4.

0 500 1000 1500
−1

−0.5

0

0.5

1

time n

 Rez2(n)
 Imz2(n)

Fig. 16.12.3 Real and imaginary parts of z2(n) versus n.

trajectory of a single sinusoid, L = 1, using a third order filter, M = 3. The sinusoid’s frequency
was ω1 = 0.25π, its SNR was 0 dB, and μ was 0.001. One of the three filter zeros is driven to
the unit circle at the desired angle ω1, while the two spurious zeros traverse fairly short paths
which depend on their initial positions.

16.13 Gradient Adaptive Lattice Filters

In this section we discuss the “gradient adaptive lattice” implementations of linear prediction
and lattice Wiener filters [1411–1416]. They are based on a gradient-descent, LMS-like approach
applied to the weights of the lattice representations rather than to the weights of the direct-
form realization. Taking advantage of the decoupling of the successive stages of the lattice, and
properly choosing the adaptation constants μ, all lattice weights can be made to converge fast
and, in contrast to the LMS weights, with a convergence rate that is essentially independent of
the eigenvalue spread of the input covariance matrix. The gradient lattice algorithms are very
similar but not identical to the recursive least-squares lattice algorithms (RLSL) [1436–1444], and

882 16. Adaptive Filters

−1 0 1

−1

0

1

complex z− plane

z1

Fig. 16.12.4 Single sinusoid with order-3 adaptive filter.

they share the same properties of fast convergence and computational efficiency with the latter.
Typically, the gradient lattice converges somewhat more slowly than RLSL. Some comparisons
between the two types of algorithms are given in [1416,1443].

We start by casting the ordinary lattice filter of linear prediction in a gradient-adaptive form,
and then discuss the gradient-adaptive form of the lattice Wiener filter, the stationary version of
which was presented in Sec. 12.11.

The lattice recursion for an Mth order prediction-error filter of a stationary signal yn was
found in Sec. 12.7 to be

e+p+1(n) = e+p (n)−γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(16.13.1)

for p = 0,1, . . . ,M − 1, and where e±0 (n)= yn. The optimal value of the reflection coefficient
γp+1 can be obtained by minimizing the performance index

Ep+1 = E[e+p+1(n)2+e−p+1(n)2] (16.13.2)

Differentiating with respect to γp+1, we find

∂Ep+1

∂γp+1
= E

[
e+p+1(n)

∂e+p+1(n)
∂γp+1

+ e−p+1(n)
∂e−p+1(n)
∂γp+1

]

and using Eq. (16.13.1)

∂Ep+1

∂γp+1
= −2E

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.3)

Inserting Eq. (16.13.1) into (16.13.3), we rewrite the latter as

∂Ep+1

∂γp+1
= −2(Cp+1 − γp+1Dp+1) (16.13.4)

where
Cp+1 = 2E

[
e+p (n)e−p (n− 1)

]
(16.13.5)

Dp+1 = E
[
e+p (n)2+e−p (n− 1)2

]
(16.13.6)

16.13. Gradient Adaptive Lattice Filters 883

Setting the gradient (16.13.4) to zero, we find the optimal value of γp+1

γp+1 = Cp+1

Dp+1
= 2E

[
e+p (n)e−p (n− 1)

]
E
[
e+p (n)2+e−p (n− 1)2

] (16.13.7)

which, due to the assumed stationarity, agrees with Eq. (12.7.3). Replacing the numerator and
denominator of Eq. (16.13.7) by time averages leads to Burg’s method.

The gradient adaptive lattice is obtained by solving ∂Ep+1/∂γp+1 = 0 iteratively by the
gradient-descent method

γp+1(n+ 1)= γp+1(n)−μp+1
∂Ep+1

∂γp+1(n)
(16.13.8)

where μp+1 is a small positive adaptation constant. Before we drop the expectation instructions
in Eq. (16.13.3), we use the result of Eq. (16.13.4) to discuss qualitatively the convergence rate of
the algorithm. Inserting Eq. (16.13.4) into (16.13.8), we find

γp+1(n+ 1)= γp+1(n)+2μp+1(Cp+1 − γp+1(n)Dp+1)

or,
γp+1(n+ 1)= (1− 2μp+1Dp+1)γp+1(n)+2μp+1Cp+1 (16.13.9)

Actually, if we replace γp+1 by γp+1(n) in Eq. (16.13.1), the stationarity of the lattice is
lost, and it is not correct to assume that Cp+1 and Dp+1 are independent of n. The implicit
dependence of Cp+1 and Dp+1 on the (time-varying) reflection coefficients of the previous lattice
stages makes Eq. (16.13.9) a nonlinear difference equation in the reflection coefficients. In the
analogous discussion of the LMS case in Sec. 16.6, the corresponding difference equation for the
weights was linear with constant coefficients. Because of the tapped delay-line structure, the
stationarity of the input signal y(n) was not affected by the time-varying weights. Nevertheless,
we will use Eq. (16.13.9) in a qualitative manner, replacing Cp+1 and Dp+1 by their constant
asymptotic values, but only for the purpose of motivating the final choice of the adaptation
parameter μp+1. The solution of Eq. (16.13.9), then, is

γp+1(n)= γp+1 + (1− 2μp+1Dp+1)n(γp+1(0)−γp+1) (16.13.10)

whereγp+1 is the asymptotic value of the weight given in Eq. (16.13.7). The stability of Eqs. (16.13.9)
and (16.13.10) requires that

|1− 2μp+1Dp+1| < 1 (16.13.11)

If we choose μp+1 as

2μp+1 = α
Dp+1

(16.13.12)

then 1−2μp+1Dp+1 = 1−α will satisfy Eq. (16.13.11). Note thatα was chosen to be independent
of the order p. This implies that all reflection coefficients γp+1(n) will essentially converge at
the same rate. Using Eqs. (16.13.3) and (16.13.12), we write Eq. (16.13.8) as follows:

γp+1(n+ 1)= γp+1(n)+ α
Dp+1

E
[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.13)

The practical implementation of this method consists of ignoring the expectation instruction,
and using a least-squares approximation for Dp+1 of the form [1411–1413]

Dp+1(n)= (1− λ)
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2

]
(16.13.14)

884 16. Adaptive Filters

where 0 < λ < 1. It may also be computed recursively by

Dp+1(n)= λDp+1(n− 1)+(1− λ)[e+p (n)2+e−p (n− 1)2
]

(16.13.15)

This quantity is a measure of Dp+1 of Eq. (16.13.6); indeed, taking expectations of both sides
and assuming stationarity, we find

E
[
Dp+1(n)

] = (1− λ) n∑
k=0

λn−kE
[
e+p (k)2+e−p (k− 1)2

]

= (1− λ)
n∑
k=0

λn−kDp+1 = (1− λn+1)Dp+1

which converges to Dp+1 for large n. With the above changes, we obtain the adaptive version of
Eq. (16.13.13),

γp+1(n+ 1)= γp+1(n)+ α
Dp+1(n)

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.16)

It can be written in a slightly different form by defining the quantity

dp+1(n) =
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2

]

= λdp+1(n− 1)+[e+p (n)2+e−p (n− 1)2
] (16.13.17)

and noting that Dp+1(n)= (1 − λ)dp+1(n). Defining the new parameter β = α/(1 − λ), we
rewrite Eq. (16.13.16) in the form

γp+1(n+ 1)= γp+1(n)+ β
dp+1(n)

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.18)

This is usually operated withβ = 1 or, equivalently,α = 1−λ. This choice makes Eq. (16.13.18)
equivalent to a recursive reformulation of Burg’s method [1411–1413]. This may be seen as fol-
lows. Set β = 1 and define the quantity cp+1(n) by

cp+1(n)=
n∑
k=0

λn−k
[
2e+p (k)e−p (k− 1)

]

Then, inserting Eq. (16.13.1), with γp+1 replaced by γp+1(n), into Eq. (16.13.18), we find after
some algebra

γp+1(n+ 1)= cp+1(n)
dp+1(n)

or, written explicitly

γp+1(n+ 1)=
2

n∑
k=0

λn−k
[
e+p (k)e−p (k− 1)

]
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2

] (16.13.19)

which corresponds to Burg’s method, and also guarantees that |γp+1(n + 1)| will remain less
than one at each iteration. The adaptive lattice is depicted in Fig. 16.13.1. At each time instant
n, the order recursions (16.13.1) are

e+p+1(n) = e+p (n)−γp+1(n)e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1(n)e+p (n)
(16.13.20)

for p = 0,1, . . . ,M − 1, with γp+1(n) updated in time using Eq. (16.13.18) or Eq. (16.13.19).
Initialize (16.13.20) by e±0 (n)= yn. We summarize the computational steps as follows:

16.13. Gradient Adaptive Lattice Filters 885

Fig. 16.13.1 Adaptive lattice predictor.

1. At time n, the coefficients γp+1(n) and dp+1(n− 1) are available.

2. Iterate Eq. (16.13.20) for p = 0,1, . . . ,M − 1.

3. Using Eq. (16.13.17), compute dp+1(n) for p = 0,1, . . . ,M − 1.

4. Using Eq. (16.13.18), compute γp+1(n+ 1) for p = 0,1, . . . ,M − 1.

5. Go to n→ n+ 1.

Next, we discuss the adaptive lattice realization of the FIR Wiener filter of Sec. 12.11. We use
the same notation as in that section. The time-invariant lattice weights gp are chosen optimally
to minimize the mean-square estimation error

E = E[e2
n]= min (16.13.21)

where en = xn − x̂n, and

x̂n =
M∑
p=0

gpe−p (n)= [g0, g1, . . . , gM]

⎡
⎢⎢⎢⎢⎢⎣

e−0 (n)
e−1 (n)

...
e−M(n)

⎤
⎥⎥⎥⎥⎥⎦ = gTe−(n) (16.13.22)

The gradient with respect to g is
∂E
∂g

= −2E
[
ene−(n)

]
(16.13.23)

Inserting Eq. (16.13.22) into (16.13.23), we rewrite the latter as

∂E
∂g

= −2(r−Rg) (16.13.24)

where r and R are defined in terms of the backward lattice signals e−p (n) as

r = E[xne−(n)
]
, R = E[e−(n)e−(n)T

]
(16.13.25)

The gradient-descent method applied to the weights g is

g(n+ 1)= g(n)−M ∂E
∂g(n)

(16.13.26)

where, following the discussion of Sec. 16.6, we have used a positive definite symmetric adapta-
tion matrix M, to be chosen below. Then, Eq. (16.13.26) becomes

g(n+ 1)= (I − 2MR)g(n)+2Mr (16.13.27)

The orthogonality of the backward prediction errors e−(n) causes their covariance matrix R
to be diagonal

R = diag{E0, E1, . . . , EM} (16.13.28)

886 16. Adaptive Filters

where Ep is the variance of e−p (n)

Ep = E
[
e−p (n)2

]
, p = 0,1, . . . ,M (16.13.29)

If we choose M to be diagonal, say, M = diag{μ0, μ1, . . . , μM}, then the state matrix (I −
2MR) of Eq. (16.13.27) will also be diagonal and, therefore, Eq. (16.13.27) will decouple into its
individual components

gp(n+ 1)= (1− 2μpEp)gp(n)+2μprp , p = 0,1, . . . ,M (16.13.30)

where rp = E
[
xne−p (n)

]
. Its solution is

gp(n)= gp + (1− 2μpEp)n(gp(0)−gp) (16.13.31)

where gp = rp/Ep are the optimal weights. The convergence rate depends on the quantity (1 −
2μpEp). Choosing μp such that

2μp = α
Ep
, 0 < α < 1 (16.13.32)

implies that all lattice weights gp(n)will have the same rate of convergence. Using Eqs. (16.13.32)
and (16.13.23) we can rewrite Eq. (16.13.26) component-wise as follows

gp(n+ 1)= gp(n)+ αEp E
[
ene−p (n)

]

Ignoring the expectation instruction, and replacing Ep by its time average,

Ep(n)= (1− λ)
n∑
k=0

λn−ke−p (k)2= λEp(n− 1)+(1− λ)e−p (n)2 (16.13.33)

we obtain the adaptation equation for the pth weight

gp(n+ 1)= gp(n)+ α
Ep(n)

ene−p (n) , p = 0,1, . . . ,M (16.13.34)

Defining

d−p (n)=
n∑
k=0

λn−ke−p (k)2= λd−p (n− 1)+e−p (n)2 (16.13.35)

and noting that Ep(n)= (1− λ)d−p (n), we rewrite Eq. (16.13.34) as

gp(n+ 1)= gp(n)+ β
d−p (n)

ene−p (n) , p = 0,1, . . . ,M (16.13.36)

where β = α/(1−λ). Typically, Eq. (16.13.36) is operated with β = 1, orα = 1−λ, [1411–1413].
The realization of the adaptive lattice Wiener filter is shown in Fig. 16.13.2.

A slightly different version of the algorithm is obtained by replacing en in Eq. (16.13.36) by
ep(n), that is, the estimation error based on a pth order Wiener filter:

ep(n)= xn − x̂p(n) , x̂p(n)=
p∑
i=0

gie−i (n)

It satisfies the recursions (12.11.10) through (12.11.11). This version arises by minimizing
the order-p performance index Ep = E

[
ep(n)2

]
rather than the order-M performance index

(16.13.21). This version is justified by the property that all lower order portions of g are already
optimal. If {g0, g1, . . . , gp−1} are already optimal, then to go to the next orderp it is only necessary
to determine the optimal value of the new weight gp, which is obtained by minimizing Ep with
respect to gp. The overall algorithm is summarized below:

16.13. Gradient Adaptive Lattice Filters 887

1. At time n, the quantities γp(n), dp(n− 1), for p = 1,2, . . . ,M and gp(n), d−p (n− 1), for
p = 0,1, . . . ,M, are available, as well as the current input samples xn, yn.

2. Initialize in order by

e±0 (n)= yn , x̂0(n)= g0(n)e−0 (n) , e0(n)= xn − x̂0(n)

d−0 (n)= λd−0 (n− 1)+e−0 (n)2

g0(n+ 1)= g0(n)+ β
d−0 (n)

e0(n)e−0 (n)

3. For p = 1,2, . . . ,M, compute:

e+p (n)= e+p−1(n)−γp(n)e−p−1(n− 1)

e−p (n)= e−p−1(n− 1)−γp(n)e+p−1(n)

dp(n)= λdp(n− 1)+e+p−1(n)2+e−p−1(n− 1)2

γp(n+ 1)= γp(n)+ β
dp(n)

[
e+p (n)e−p−1(n− 1)+e−p (n)e+p−1(n)

]

x̂p(n)= x̂p−1(n)+gp(n)e−p (n)
ep(n)= ep−1(n)−gp(n)e−p (n)
d−p (n)= λd−p (n− 1)+e−p (n)2

gp(n+ 1)= gp(n)+ β
d−p (n)

ep(n)e−p (n)

4. Go to the next time instant, n→ n+ 1.

The adaptation of the reflection coefficients γp(n) provides a gradual orthogonalization of
the backward error signals e−p (n), which in turn drive the adaptation equations for the lattice
weights gp(n).

The algorithm is initialized in time by setting γp(0)= 0, dp(−1)= 0, gp(0)= 0, d−p (−1)= 0.
Because initially all the γs and the delay registers of the lattice are zero, it follows that the
backward output of the pth lattice section, e−p (n), will be zero for n < p. The corresponding

Fig. 16.13.2 Adaptive lattice Wiener filter.

888 16. Adaptive Filters

d−p (n) will also be zero and thus cannot be used in the updating of gp(n). During this startup
period, we keep gp(n)= 0, n < p. A similar problem does not arise for the γs because dp(n)
contains contributions from the forward lattice outputs, which are not zero.

The function glwf is an implementation of the gradient lattice Wiener filter. It is the same
as lwf with the weight adaptation parts added to it. Next, we present a simulation example. The
signals xn and yn were generated by

xn = yn + 1.5yn−1 − 2yn−2 + un , yn = 0.75yn−1 − 0.5yn−2 + εn
where un and εn were mutually independent, zero-mean, unit-variance, white noises. It follows
from our general discussion in Sec. 16.5 that we must use a Wiener filter of order at least M = 2
to cancel completely the y-dependent part of xn. Solving the order-two linear prediction problem
for yn using bkwlev, we find the theoretical L matrix and reflection coefficients

L =
⎡
⎢⎣

1 0 0
−0.5 1 0

0.5 −0.75 1

⎤
⎥⎦ , γ1 = 0.5 , γ2 = −0.5 (16.13.37)

The direct-form coefficients of the Wiener filter are precisely the coefficients of the y-dependent
part of xn. Thus, we have

h =
⎡
⎢⎣

1
1.5
−2

⎤
⎥⎦ , g = L−Th =

⎡
⎢⎣

2
0

−2

⎤
⎥⎦ (16.13.38)

In the simulation we generated 100 samples of xn and yn (after letting the transients of the
difference equation of yn die out). The function glwf was run on these samples with λ = 1 and
β = 1. Fig. 16.13.3 shows the adaptive reflection coefficients γ1(n) and γ2(n) versus iteration
number n. The figure shows on the right the three coefficients gp(n), p = 0,1,2, versus n,
converging to their theoretical values gp above. For comparison purposes, we have also included
the direct-form weight h2(n) adapted according to the standard LMS algorithm with μ = 0.01. It
should be compared to g2(n) because by construction the last elements of g and h are the same;
here, g2 = h2. The LMS algorithm can be accelerated somewhat by using a larger μ, but at the
expense of increasing the noisiness of the weights.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
Gradient Lattice Predictor

n

γ1(n)

γ2(n)

0 20 40 60 80 100
−4

−2

0

2

4
Gradient Lattice Wiener Filter

n

g0(n)

g1(n)

g2(n)

h2(n)LMS

Fig. 16.13.3 Adaptive coefficients γp(n) and gp(n).

16.14. Adaptive Gram-Schmidt Preprocessors 889

16.14 Adaptive Gram-Schmidt Preprocessors

In this section we derive the spatial analogs of the gradient adaptive lattice algorithms. The
main function of the adaptive lattice filter is to decorrelate the tapped delay-line data vector
y(n)= [yn, yn−1, . . . , yn−M]T . In effect, it carries out the Gram-Schmidt orthogonalization of
the components of y(n) at each time instant n. In array processing problems, because the
data vector y(n)= [y0(n), y1(n), . . . , yM(n)]T does not have the tapped-delay line property,
the Gram-Schmidt orthogonalization cannot be done by a simple a lattice filter. It requires a
more complicated structure that basically amounts to carrying out the lower triangular linear
transformation y = Bεεε, which decorrelates the covariance matrix of y.

The Gram-Schmidt construction of an arbitrary random vector y was discussed in Sec. 1.6.
Here, we recast these results in a way that can be used directly in gradient-adaptive implementa-
tions. The Gram-Schmidt construction proceeds recursively starting at one end, say, ε0 = y0.
At the mth step of the recursion, we have available the mutually decorrelated components
{ε0, ε1, . . . , εm−1}. The next component εm is defined by

εm = ym −
m−1∑
i=0

bmiεi , bmi = 1

Ei
E[ymεi] (16.14.1)

where Ei = E[ε2
i]. By construction, εm is decorrelated from all the previous εis, that is, E[εmεi]=

0, i = 0,1 . . . ,m − 1. The summation term in Eq. (16.14.1) represents the optimum estimate of
ym based on the previous εis and εm represents the estimation error. Therefore, the coefficients
bmi can also be derived by the mean-square criterion

Em = E[ε2
m]= min (16.14.2)

The gradient with respect to bmi is

∂Em
∂bmi

= −2E[εmεi]= −2
(
E[ymεi]−bmiEi

)
(16.14.3)

where we used the fact that the previous εis are already decorrelated, so that E[εiεj]= δijEi, for
i, j = 0,1, . . . ,m−1. Setting the gradient to zero gives the optimum solution (16.14.1) for bmi. In
a gradient-adaptive approach, the coefficients bmi will be time-dependent, bmi(n), and updated
by

bmi(n+ 1)= bmi(n)−μmi ∂Em
∂bmi(n)

= bmi(n)+2μmiE[εmεi] (16.14.4)

Using the above expression for the gradient, we find the difference equation

bmi(n+ 1)= (1− 2μmiEi)bmi(n)+2μmiE[ymεi]

with solution, for n ≥ 0

bmi(n)= bmi + (1− 2μmiEi)n(bmi(0)−bmi)
where bmi is the optimum solution (16.14.1). As in Sec. 16.13, because of the diagonal nature
of the covariance matrix of the previous εis, the system of difference equations for the bmis
decouples into separate scalar equations. Choosing μmi by

2μmi = α
Ei
, 0 < α < 1

implies that all coefficients bmi(n) will converge at the same rate. With this choice, Eq. (16.14.4)
becomes

bmi(n+ 1)= bmi(n)+αEi E[εmεi]

890 16. Adaptive Filters

As before, we may replace Ei by its weighted time average Ei(n)= (1− λ)di(n), where

di(n)=
n∑
k=0

λn−kεi(k)2= λdi(n− 1)+εi(n)2

Setting β = α/(1 − λ) and dropping the expectation values, we obtain the adaptive Gram-
Schmidt algorithm:

1. At time n, bmi(n) and di(n − 1) are available, and also the current data vector y(n)=
[y0(n), y1(n), . . . , yM(n)]T . (The algorithm is initialized in time by bmi(0)= 0 and
di(−1)= 0.)

2. Set ε0(n)= y0(n).

3. For m = 1,2, . . . ,M, compute:

εm(n)= ym(n)−
m−1∑
i=0

bmi(n)εi(n)

dm−1(n)= λdm−1(n)+εm−1(n)2

for i = 0,1 . . . ,m− 1, compute:

bmi(n+ 1)= bmi(n)+ β
di(n)

εm(n)εi(n)

4. Go to the next time instant, n→ n+ 1.

The conventional Gram-Schmidt construction builds up the matrix B row-wise; for example
in the case M = 3

B =

⎡
⎢⎢⎢⎣

1 0 0 0
b10 1 0 0
b20 b21 1 0
b30 b31 b32 1

⎤
⎥⎥⎥⎦

According to Eq. (16.14.1), εm is constructed from the entries of themth row of B. This gives
rise to the block-diagram realization of the Gram-Schmidt construction shown in Fig. 16.14.1. We
will see shortly that each circular block represents an elementary correlation canceling operation
of the type [1355,1417–1421]

e = u− bv

with

E[ev]= 0 ⇒ b = E[uv]
E[v2]

Therefore, each block can be replaced by an ordinary adaptive CCL or by an accelerated CCL,
as discussed below. This point of view leads to an alternative way of organizing the Gram-Schmidt
construction with better numerical properties, known as the modified Gram-Schmidt procedure
[1166], which builds up the matrix B column-wise. Let bi be the ith column of B, so that

y = Bεεε = [b0,b1, . . . ,bM]

⎡
⎢⎢⎢⎢⎢⎣

ε0

ε1

...
εM

⎤
⎥⎥⎥⎥⎥⎦ =

M∑
j=0

bjεj

16.14. Adaptive Gram-Schmidt Preprocessors 891

Fig. 16.14.1 Gram-Schmidt array preprocessor.

Removing the contribution of the first i columns, we define for i = 1,2, . . . ,M

yi = y−
i−1∑
j=0

bjεj =
M∑
j=i

bjεj (16.14.5)

Component-wise, we write

yim =
M∑
j=i
bmjεj , m = 0,1, . . . ,M

It follows from the lower-triangular nature of B that yim = 0 for m < i. Moreover, because B
has unit diagonal, we have at m = i that yii = biiεi = εi. Thus,

εi = yii (16.14.6)

Equation (16.14.5) can be written recursively as follows

yi = biεi +
M∑

j=i+1

bjεj = biεi + yi+1

or,

yi+1 = yi − biεi

and component-wise, yi+1,m = yim−bmiεi. The recursion is initialized by y0 = y. It is evident by
inspecting Fig. 16.14.1 that yi represents the output column vector after each column operation.
It follows also that each circular block is an elementary correlation canceler. This follows by
noting that yi+1 is built out of εj with j ≥ i+ 1, each being uncorrelated with εi. Thus,

E[εiyi+1]= E[εiyi]−biEi = 0 ⇒ bi = 1

Ei
E[εiyi]

or, component-wise

bmi = 1

Ei
E[εiyim] , m = i+ 1, i+ 2, . . . ,M (16.14.7)

An adaptive implementation can be obtained easily by writing

bi(n+ 1)= bi(n)+2μiE[εiyi+1]= (1− 2μiEi)bi(n)+2μiE[εiyi]

As usual, we set 2μi = α/Ei, replace Ei by Ei(n)= (1 − λ)di(n), and drop the expectation
values to obtain the following algorithm, which adapts the matrix elements of B column-wise:

892 16. Adaptive Filters

1. At time n, bmi(n) and di(n − 1) are available, and also the current data vector y(n)=
[y0(n), y1(n), . . . , yM(n)]T .

2. Define y0m(n)= ym(n), for m = 0,1, . . . ,M.

3. For i = 0,1, . . . ,M, compute:

εi(n)= yii(n)
di(n)= λdi(n− 1)+εi(n)2

For i+ 1 ≤m ≤M, compute:

yi+1,m(n)= yim(n)−bmi(n)εi(n)

bmi(n+ 1)= bmi(n)+ β
di(n)

εi(n)yi+1,m(n)

4. Go to the next time instant, n→ n+ 1.

The algorithm may be appended to provide an overall Gram-Schmidt implementation of the
adaptive linear combiner of Sec. 16.4. In the decorrelated basis, the estimate of xn and estimation
error may be written order recursively as

x̂i(n)= x̂i−1(n)+gi(n)εi(n) , ei(n)= ei−1(n)−gi(n)εi(n) (16.14.8)

with the weights gi(n) adapted by

gi(n+ 1)= gi(n)+ β
di(n)

ei(n)εi(n) , i = 0,1, . . . ,M (16.14.9)

The function mgs is an implementation of the adaptive modified Gram-Schmidt procedure.
At each call, the function reads the snapshot vector y, computes the decorrelated vector εεε, and
updates the matrix elements of B in preparation for the next call. An LMS-like version can be
obtained by replacing the accelerated CCLs by ordinary CCLs [1355]

bmi(n+ 1)= bmi(n)+2μεi(n)yi+1,m(n) (16.14.10)

An exact recursive least squares version of the modified Gram-Schmidt algorithm can also be
derived [1421]. It bears the same relationship to the above gradient-based version that the exact
RLS lattice filter bears to the gradient lattice filter. The computational complexity of the algorithm
is high because there are M(M + 1)/2 coefficients to be adapted at each time instant, namely,
the matrix elements in the strictly lower triangular part of B. By contrast, in the lattice structure
there are only M reflection coefficients to be adapted. Despite its computational complexity, the
algorithm is quite modular, built out of elementary CCLs.

Next, we present a simulation example of order M = 2. The vectors y were constructed by

y =
⎡
⎢⎣

1 0 0
−2 1 0

1 2 1

⎤
⎥⎦
⎡
⎢⎣
ε0

ε1

ε2

⎤
⎥⎦ = Bεεε

with the components of εεε having variances E0 = 1, E1 = 4, and E2 = 9. We generated 100
independent snapshots εεε and computed the corresponding y = Bεεε. Fig. 16.14.2 shows the two
matrix elements b10(n) and b21(n) adapted by running mgs on the 100 snapshots with λ = 1
and β = 1. They are converging to the theoretical values b10 = −2 and b21 = 2. On the right,
the figure shows the same two matrix elements adapted by the LMS algorithm (16.14.10) with
μ = 0.01.

16.15. Rank-One Modification of Covariance Matrices 893

0 20 40 60 80 100
−4

−2

0

2

4
Modified Gram− Schmidt

n

b21(n)

b10(n)

0 20 40 60 80 100
−4

−2

0

2

4
Modified Gram− Schmidt with LMS

n

b21(n)

b10(n)

Fig. 16.14.2 Modified Gram-Schmidt algorithm and its LMS version.

16.15 Rank-One Modification of Covariance Matrices

All recursive least-squares (RLS) algorithms, conventional, lattice, and fast direct-form structures,
can be derived from the rank-one updating properties of covariance matrices. In this section we
discuss these properties and derive all the necessary algebraic steps and computational reduc-
tions that make the fast RLS versions possible. In the succeeding sections, we couple these results
with the so-called shift-invariance property to close the loop, as it were, and complete the deriva-
tion of the fast RLS algorithms.

The rank-one modification of a covariance matrix R0 is obtained by adding the rank-one term

R1 = R0 + yyT (16.15.1)

where y is a vector of the same dimension as R0. Similarly, the modification of a cross-correlation
vector r0 will be defined as follows, where x is a scalar

r1 = r0 + xy (16.15.2)

We define the Wiener solutions based on the pairs R0, r0 and R1, r1 by

h0 = R−1
0 r0 , h1 = R−1

1 r1 (16.15.3)

and the corresponding estimates of x and estimation errors

x̂0 = hT0 y , e0 = x− x̂0 and x̂1 = hT1 y , e1 = x− x̂1 (16.15.4)

Similarly, using the notation of Sec. 1.8, we will consider the solution of the forward and
backward prediction problems

R0a0 = E0au , R1a1 = E1au (16.15.5)

and
R0b0 = E0bv , R1b1 = E1bv (16.15.6)

and the corresponding forward and backward prediction errors

e0a = aT0 y , e1a = aT1 y and e0b = bT0 y , e1b = bT1 y (16.15.7)

894 16. Adaptive Filters

The basic question that we pose is how to construct the solution of the filtering and prediction
problems 1 from the solution of the corresponding problems 0; that is, to construct h1 from h0,
a1 from a0, and b1 from b0. We will generally refer to the various quantities of problem-0 as a
priori and to the corresponding quantities of problem-1 as a posteriori. The constructions are
carried out with the help of the so-called a priori and a posteriori Kalman gain vectors defined
by

k0 = R−1
0 y , k1 = R−1

1 y (16.15.8)

We also define the so-called likelihood variables

ν = yTR−1
0 y , μ = 1

1+ ν =
1

1+ yTR−1
0 y

(16.15.9)

Note that the positivity condition ν > 0 is equivalent to 0 < μ < 1. Multiplying Eq. (16.15.1)
from the left by R−1

1 and from the right by R−1
0 , we obtain

R−1
0 = R−1

1 +R−1
1 yyTR−1

0 = R−1
1 + k1kT0 (16.15.10)

Acting on y and using the definitions (16.15.8) and (16.15.9), we find

R−1
0 y = R−1

1 y+ k1kT0 y ⇒ k0 = k1 + k1ν = (1+ ν)k1 = 1

μ
k1

or,
k1 = μk0 (16.15.11)

It follows that

yTR−1
1 y = kT1 y = μkT0 y = μν = ν

1+ ν = 1− 1

1+ ν = 1− μ

Thus, solving for μ

μ = 1− yTR−1
1 y = 1

1+ yTR−1
0 y

(16.15.12)

Solving Eq. (16.15.10) for R−1
1 , we obtain

R−1
1 = R−1

0 − k1kT0 = R−1
0 − μk0kT0 = R−1

0 − 1

1+ yTR−1
0 y

R−1
0 yyTR−1

0 (16.15.13)

which is recognized as the application of the matrix inversion lemma to Eq. (16.15.1). It provides
the rank-one update of the inverse matrices. Denoting P0 = R−1

0 and P1 = R−1
1 , we may rewrite

Eq. (16.15.13) in the form

P1 = P0 − μk0kT0 , k0 = P0y , μ = 1

1+ yTP0y
(16.15.14)

Before we derive the relationship between the Wiener solutions Eq. (16.15.3), we may obtain
the relationship between the a priori and a posteriori estimation errors. Noting that the estimates
can be written as,

x̂0 = hT0 y = rT0R−1
0 y = rT0 k0

x̂1 = hT1 y = rT1R−1
1 y = rT1 k1

and using Eq. (16.15.2), we obtain

x̂1 = kT1 r1 = (μk0)T(r0 + xy)= μx̂0 + μνx = μx̂0 + (1− μ)x = x− μe0

from which it follows that
e1 = μe0 (16.15.15)

16.15. Rank-One Modification of Covariance Matrices 895

The simplest method of determining the relationship between the h1 and h0 is to act on h0

by the covariance matrix R1 of problem-1, and then use the recursions (16.15.1) and (16.15.2),
that is,

R1h0 = (R0 + yyT)h0 = r0 + x̂0y = (r1 − xy)+x̂0y = r1 − e0y

Multiplying by R−1
1 , we find

h0 = R−1
1 r1 − e0R−1

1 y = h1 − e0k1

or, solving for h1 and using Eqs. (16.15.11) and (16.15.15)

h1 = h0 + e0k1 = h0 + μe0k0 = h0 + e1k0 (16.15.16)

Note that the update term can be expressed either in terms of the a priori estimation error e0

and a posteriori Kalman gain k1, or the a posteriori error e1 and a priori Kalman gain k0. Next,
we summarize what may be called the conventional RLS computational sequence:

1. k0 = P0y

2. ν = kT0 y , μ = 1

1+ ν
3. k1 = μk0

4. P1 = P0 − k1kT0

5. x̂0 = hT0 y , e0 = x− x̂0 , e1 = μe0 , x̂1 = x− e1

6. h1 = h0 + e0k1

Because in step 4 an entire matrix is updated, the computational complexity of the algorithm
grows quadratically with the matrix order; that is, O(M2) operations.

Next, we consider the forward and backward prediction solutions. Equations (1.8.28) and
(1.8.35) applied to R0 become

R−1
0 =

[
0 0T

0 R̃−1
0

]
+ 1

E0a
a0aT0 =

[
R̄−1

0 0
0T 0

]
+ 1

E0b
b0bT0

Acting on y and using Eq. (16.15.7), we find

k0 =
[

0
k̃0

]
+ e0a

E0a
a0 =

[
k̄0

0

]
+ e0b

E0b
b0 (16.15.17)

where k̃0 = R̃−1
0 ỹ and k̄0 = R̄−1

0 ȳ, where we recall the decompositions (1.8.2) and (1.8.3)

y =
[
ya
ỹ

]
=

[
ȳ
yb

]

Similarly, we obtain for the a posteriori gains

k1 =
[

0
k̃1

]
+ e1a

E1a
a1 =

[
k̄1

0

]
+ e1b

E1b
b1 (16.15.18)

Because b0 and b1 have last coefficients of unity, it follows that the last coefficients of the
Kalman gains will be

k0b = e0b

E0b
, k1b = e1b

E1b
(16.15.19)

Similarly, the first coefficients will be

k0a = e0a

E0a
, k1a = e1a

E1a
(16.15.20)

896 16. Adaptive Filters

Taking the dot product of Eq. (16.15.17) with y and using the definition (16.15.9) and (16.15.7),
we obtain

ν = ν̃+ e2
0a
E0a

= ν̄+ e2
0b
E0b

or,
ν = ν̃+ e0ak0a = ν̄+ e0bk0b (16.15.21)

where ν̃ = k̃
T
0 ỹ and ν̄ = k̄

T
0 ȳ. Similarly, using kT1 y = 1 − μ and taking the dot product of

Eq. (16.15.18) with y, we find

1− μ = 1− μ̃+ e2
1a
E1a

= 1− μ̄+ e2
1b
E1b

or,

μ = μ̃− e2
1a
E1a

= μ̄− e2
1b
E1b

(16.15.22)

This is equivalent to Eq. (16.15.21). To relate a1 and a0, we apply the usual method of acting
on the a priori solution a0 by the a posteriori covariance matrix R1:

R1a0 = (R0 + yyT)a0 = R0a0 + y(yTa0)= E0au+ e0ay

Multiplying by R−1
1 and using R−1

1 u = a1/E1a, we obtain

a0 = E0a

E1a
a1 + e0ak1 (16.15.23)

This has five useful consequences. First, equating first coefficients and using Eq. (16.15.20),
we obtain

1 = E0a

E1a
+ e0ak1a = E0a

E1a
+ e0ae1a

E1a
(16.15.24)

or,
E1a = E0a + e0ae1a (16.15.25)

Second, writing Eq. (16.15.24) in the form E0a/E1a = 1− e0ak1a, we rewrite Eq. (16.15.23) as

a0 = (1− e0ak1a)a1 + e0ak1 = a1 + e0a(k1 − k1aa1)= a1 + e0a

[
0
k̃1

]

where we used Eq. (16.15.18). Thus,

a1 = a0 − e0a

[
0
k̃1

]
(16.15.26)

Third, taking the dot product with y and using k̃
T
1 ỹ = 1− μ̃, we find

e1a = aT1 y = aT0 y− e0a(k̃
T
1 ỹ)= e0a − (1− μ̃)e0a = μ̃e0a or,

e1a = μ̃e0a (16.15.27)

This is analogous to Eq. (16.15.15). Fourth, writing e0a = e1a/μ̃ = (1+ν̃)e1a, it follows by adding
one to Eq. (16.15.21) that

(1+ ν)= (1+ ν̃)+(1+ ν̃)e1a
e0a

E0a
= (1+ ν̃)E0a + e0ae1a

E0a
= (1+ ν̃)E1a

E0a

and inverting,

μ = μ̃ E0a

E1a
(16.15.28)

16.15. Rank-One Modification of Covariance Matrices 897

This, in turn, is equivalent to Eq. (16.15.22) as can be seen by

μ = μ̃ E1a − e0ae1a

E1a
= μ̃− (μ̃e0a)

e1a

E1a
= μ̃− e2

1a
E1a

Fifth, using Eq. (16.15.27) and the result k̃1 = μ̃k̃0, we may rewrite Eq. (16.15.26) in terms of
the a posteriori error e1a and the a priori gain k̃0 as follows

a1 = a0 − e1a

[
0
k̃0

]
(16.15.29)

Defining the inverse matrices P̃0 = R̃−1
0 and P̃1 = R̃−1

1 , we summarize the conventional RLS
computational sequence for the forward predictor:

1. k̃0 = P̃0ỹ

2. ν̃ = k̃
T
0 ỹ , μ̃ = 1

1+ ν̃
3. k̃1 = μ̃ k̃0

4. P̃1 = P̃0 − k̃1k̃
T
0

5. e0a = aT0 y , e1a = μ̃e0a

6. a1 = a0 − e0a

[
0
k̃1

]

The fast RLS algorithms make use also of the backward predictors. Starting with R1b0 =
(R0 + yyT)b0 = E0bv + e0by, and following similar steps as for the forward case, we obtain
parallel results for the backward predictor, that is,

b0 = E0b

E1b
b1 + e0bk1 (16.15.30)

from which it follows that

1 = E0b

E1b
+ e0bk1b = E0b

E1b
+ e0be1b

E1b
(16.15.31)

or,
E1b = E0b + e0be1b (16.15.32)

Similarly, we have k̄1 = μ̄ k̄0, and
e1b = μ̄e0b (16.15.33)

and the equivalencies

ν = ν̄+ e2
0b
E0b

� μ = μ̄− e2
1b
E1b

� μ = μ̄ E0b

E1b
(16.15.34)

Finally, the update equations of b1 are

b1 = b0 − e0b

[
k̄1

0

]
= b0 − e1b

[
k̄0

0

]
(16.15.35)

Writing Eq. (16.15.31) in the form E1b/E0b = 1/(1 − e0bk1b), and solving Eq. (16.15.30) for
b1, we have the alternative expression

b1 = E1b

E0b
(b0 − e0bk1)= b0 − e0bk1

1− e0bk1b
(16.15.36)

This is used in the so-called fast Kalman (FK) [1422,1423] computational sequence, which we
summarize below

898 16. Adaptive Filters

1. e0a = aT0 y

2. a1 = a0 − e0a

[
0
k̃1

]

3. e1a = aT1 y

4. E1a = E0a + e0ae1a

5. Compute the first element of k1, k1a = e1a

E1a

6. k1 =
[

0
k̃1

]
+ k1aa1 , and extract the last element of k1, k1b

7. e0b = bT0 y

8. b1 = b0 − e0bk1

1− e0bk1b

9.

[
k̄1

0

]
= k1 − k1bb1

10. x̂0 = hT0 y , e0 = x− x̂0 , h1 = h0 + e0k1 , x̂1 = hT1 y , e1 = x− x̂1

Step 9 is obtained from Eq. (16.15.18). Steps 1–9 perform the calculation and update of the
Kalman gain vector k1, which is used in step 10 for the Wiener filtering part. This algorithm avoids
the updating of the inverse autocorrelation matrices P0 and P1. The computationally intensive
parts of the algorithm are the computation of the inner products and the vector updates. Steps
1, 2, 3, 6, 7, and 9 require M operations each, and step 8 requires 2M operations. Thus, the gain
calculation in steps 1–9 requires a total of 8M operations. The Wiener filtering and updating
part in step 10 require an additional 3M operations. Thus, the overall complexity grows like
8M + 3M = 11M operations; that is, linearly in the order M.

Several of the above operations can be avoided. In particular, the computation of the error
e1a in step 3 can be done by Eq. (16.15.27), thus, avoiding the inner product. Similarly, the inner
product in step 7 can be avoided by solving Eq. (16.15.19) for e0b, that is, e0b = k0bE0b. Also, the
division by the overall scalar factor 1/(1−e0bk1b) in step 8 can be avoided by using Eq. (16.15.35)
instead. This saves 3M out of the 8M computations—a 40% reduction. Similarly, the operation
x̂1 = hT1 y in the Wiener filtering part can be avoided by e1 = μe0 and x̂1 = x− e1. The resulting
computational sequence is the so-called fast a posteriori error sequential technique (FAEST) [1424].
It uses the a posteriori errors and the a priori Kalman gains, and is summarized below

1. e0a = aT0 y

2. e1a = μ̃e0a = e0a/(1+ ν̃)
3. Compute the first element of k0, k0a = e0a

E0a

4. E1a = E0a + e0ae1a

5. k0 =
[

0
k̃0

]
+ k0aa0 , and extract the last element of k0, k0b

6. e0b = k0bE0b

7.

[
k̄0

0

]
= k0 − k0bb0

8. ν = ν̃+ e0ak0a , ν̄ = ν− e0bk0b

9. e1b = μ̄e0b = e0b/(1+ ν̄)
10. E1b = E0b + e0be1b

16.15. Rank-One Modification of Covariance Matrices 899

11. a1 = a0 − e1a

[
0
k̃0

]

12. b1 = b0 − e1b

[
k̄0

0

]

13. x̂0 = hT0 y , e0 = x− x̂0 , e1 = μe0 = e0/(1+ ν) , x̂1 = x− e1

14. h1 = h0 + e1k0

Step 8 was obtained from Eq. (16.15.21). Steps l, 5, 7, 11, and 12 require M operations each.
Therefore, the gain calculation can be done with 5M operations. The last two Wiener filtering steps
require an additional 2M operations. Thus, the total operation count grows like 5M+ 2M = 7M.
The so-called fast transversal filter (FTF) [1425] computational sequence is essentially identical
to FAEST, but works directly with the variables μ instead of ν. The only change is to replace step
8 by the following:

8. μ = μ̃ E0a

E1a
, μ̄ = μ

1− e0bk0bμ
(FTF)

The second equation is obtained from (16.15.34), (16.15.31), and the proportionality k1 =
μk0, which implies the same for the last elements of these vectors, k1b = μk0b. We have

μ̄ = μ E1b

E0b
= μ

1− e0bk1b
= μ

1− e0bk0bμ

The above computational sequences are organized to start with the tilde quantities, such as
ν̃ and k̃0, and end up with the bar quantities such as ν̄ and k̄0. The reason has to do with the
shift-invariance property, which implies that all bar quantities computed at the present iteration
become the corresponding tilde quantities of the next iteration; for example,

ν̃(n+ 1)= ν̄(n) , k̃0(n+ 1)= k̄0(n)

This property allows the repetition of the computational cycle from one time instant to the
next. As we have seen, the computational savings of FAEST over FK, and FK over conventional RLS,
have nothing to do with shift invariance but rather are consequences of the rank-one updating
properties.

The FAEST, FTF, and FK algorithms are the fastest known RLS algorithms. Unfortunately,
they can exhibit numerically unstable behavior and require the use of rescue devices and re-
initializations for continuous operation [1426–1435]. Next, we consider the lattice formulations.
Equations (1.8.50) can be applied to the a priori lattice

e0a = ē0a − γ0bẽ0b

e0b = ẽ0b − γ0aē0a
(16.15.37)

and a posteriori lattice
e1a = ē1a − γ1bẽ1b

e1b = ẽ1b − γ1aē1a
(16.15.38)

with the reflection coefficients computed by

γ0a = Δ0

Ē0a
, γ0b = Δ0

Ẽ0b
and γ1a = Δ1

Ē1a
, γ1b = Δ1

Ẽ1b
(16.15.39)

To find the relationship between Δ1 and Δ0, we use Eq. (1.8.44) applied to R1

R1

[
0
b̃1

]
= Δ1u+ Ẽ1bv , R1

[
ā1

0

]
= Δ1v+ Ē1au (16.15.40)

900 16. Adaptive Filters

Applying Eq. (1.8.44) also to R0, we obtain

R1

[
ā0

0

]
= (

R0 + yyT
)[ā0

0

]
= Δ0v+ Ē0au+ ē0ay (16.15.41)

and

R1

[
0
b̃0

]
= (

R0 + yyT
)[0

b̃0

]
= Δ0u+ Ẽ0bv+ ẽ0by (16.15.42)

Forming the dot products,

[0, b̃
T
1]R1

[
ā0

0

]
and [0, b̃

T
0]R1

[
ā1

0

]

we obtain the two alternative expressions

Δ1 = Δ0 + ē0aẽ1b , Δ1 = Δ0 + ē1aẽ0b (16.15.43)

They represent the least-squares modifications of the partial correlation (1.8.53). The two
expressions are equivalent. Applying Eq. (16.15.33) to ẽ1b, we have ẽ1b = ¯̃μẽ0b. Applying
Eq. (16.15.27) to ē1a, we have ē1a = ˜̄μē0a. But, ¯̃ν = ˜̄ν because, as is evident from Eq. (1.8.51),
the tilde part of ȳ is the same as the bar part of ỹ, namely, yc. Thus, ¯̃ν = ˜̄ν = yTc R

−1
0c yc, which

implies ¯̃μ = ˜̄μ. Applying Eq. (16.15.34), we have the updating equation μ̃ = ¯̃μ− ẽ2
1b/Ẽ1b.

As for the Wiener filtering part, we can apply the order-updating equations (1.8.24) through
(1.8.27) to the a priori and a posteriori problems to get

x̂0 = x̄0 + g0be0b , e0 = ē0 − g0be0b

x̂1 = x̄1 + g1be1b , e1 = ē1 − g1be1b
(16.15.44)

where g0b and g1b are the last components of the lattice weight vectors g0 and g1. Because of
the relationship h = LTg, it follows that the last component of h is equal to the last component
of g. Thus, extracting the last components of the relationship h1 = h0 + e0k1, we find

g1b = g0b + e0k1b = g0b + e0
e1b

E1b
(16.15.45)

This provides a direct way to update the gs. The more conventional updating method is
indirect; it is obtained by writing

g0b = ρ0b

E0b
, g1b = ρ1b

E1b
(16.15.46)

Using Eq. (16.15.44), we can find a recursion for the ρs as follows

ρ1b = E1bg1b = E1bg0b + (ē0 − g0be0b)e1b = (E1b − e0be1b)g0b + ē0e1b

or, using E1b − e0be1b = E0b and ρ0b = E0bg0b, we obtain

ρ1b = ρ0b + ē0e1b = ρ0b + 1

μ̄
ē1e1b (16.15.47)

The conventional RLS lattice (RLSL) computational sequence is summarized below [1436–
1444]:

1. Δ1 = Δ0 + ẽ1bē0a = Δ0 + ẽ1bē1a/¯̃μ

2. γ1a = Δ1

Ē1a
, γ1b = Δ1

Ẽ1b

16.15. Rank-One Modification of Covariance Matrices 901

3. e1a = ē1a − γ1bẽ1b , e1b = ẽ1b − γ1aē1a

4. E1a = Ē1a − γ1bΔ1 , E1b = Ẽ1b − γ1aΔ1

5. μ̃ = ¯̃μ− ẽ2
1b

Ẽ1b

6. ρ1b = ρ0b + ē1e1b/μ̄

7. g1b = ρ1b

E1b

8. e1 = ē1 − g1be1b , x̂1 = x− e1

This is referred to as the a posteriori RLS lattice because it uses the a posteriori lattice equa-
tions (16.15.38). There are 14 multiplication/division operations in this sequence. We will see
later that the use of the so-called forgetting factor λ requires 2 more multiplications. Thus, the
total number of operations is 16. Because this sequence must be performed once per order, it
follows that, for an order-M problem, the computational complexity of the RLS lattice will be
16M operations per time update. This is to be compared with 7M for the FAEST direct-form
version. However, as we have already mentioned, the direct-form versions can exhibit numerical
instabilities. By contrast, the lattice algorithms are numerically stable [1431,1445].

Many other variations of the RLS lattice are possible. For example, there is a version based on
Eq. (16.15.37), called the a priori RLS lattice algorithm [1358,1444], or a version called the double
(a priori/a posteriori) RLS algorithm [1441,1444] that uses Eqs. (16.15.37) and (16.15.38) simulta-
neously. This version avoids the computation of the likelihood parameter μ. Like Eq. (16.15.45),
we can also obtain direct updating formulas for the reflection coefficients, thereby avoiding the
recursion (16.15.43) for the partial correlations Δ. Using the second term of Eqs. (16.15.43) and
(16.15.25) applied to Ē1a, that is, Ē1a + Ē0a + ē0aē1a. we find

γ1a = Δ1

Ē1a
= Δ0 + ē1aẽ0b

Ē1a
= γ0aĒ0a + ē1aẽ0b

Ē1a

= γ0a(Ē1a − ē0aē1a)+ē1aẽ0b

Ē1a
= γ0a + ē1a

Ē1a
(ẽ0b − γ0aē0a)

and using Eq. (16.15.37), we obtain

γ1a = γ0a + e0b
ē1a

Ē1a
(16.15.48)

Similarly, working with the first term of Eq. (16.15.43), we find

γ1b = γ0b + e0a
ẽ1b

Ẽ1b
(16.15.49)

Replacing ē1a = ˜̄μē0a and ẽ1b = ¯̃μẽ0b in the above equations gives rise to the so-called a
priori direct-updating RLS lattice [1445], also called the a priori error-feedback lattice because the
outputs e0a and e0b of the a priori lattice equations (16.15.37) are used to update the reflection
coefficients.

An a posteriori direct or error-feedback algorithm [1445] can also be obtained by working
with the a posteriori lattice Eq. (16.15.38). In this case, we must express e0a and e0b in terms of
the a posteriori quantities as follows:

e0a = ē0a − γ0bẽ0b = (ē1a − γ0bẽ1b)/˜̄μ and e0b = (ẽ1b − γ0aē1a)/¯̃μ

The a priori and a posteriori error-feedback lattice algorithms are computationally somewhat
more expensive—requiring O(20M) operations—than the conventional RLS lattice. But, they

902 16. Adaptive Filters

have much better numerical accuracy under quantization [1445] and, of course, their long-term
behavior is numerically stable.

Below we list the computational sequence of what may be called the double/direct RLS lattice
algorithm that, on the one hand, uses direct-updating for increased numerical accuracy, and on
the other, has the same computational complexity as the conventional a posteriori RLS lattice,
namely, 16M operations [1487]:

1. e0a = ē0a − γ0bẽ0b , e0b = ẽ0b − γ0aē0a

2. γ1a = γ0a + e0b
ē1a

Ē1a
, γ1b = γ0b + e0a

ẽ1b

Ẽ1b

3. e1a = ē1a − γ1bẽ1b , e1b = ẽ1b − γ1aē1a

4. E1a = E0a + e1ae0a , E1b = E0b + e1be0b

5. e0 = ē0 − g0beeb

6. g1b = g0b + e0
e1b

E1b

7. e1 = ē1 − g1be1b , x̂1 = x− e1

It uses simultaneously the a priori and a posteriori lattice equations (16.15.37) and (16.15.38).
There are 14 operations (plus 2 for the forgetting factor) per order per time update, that is, a total
of 16M per time update.

Finally, we discuss the sense in which the a priori and a posteriori backward errors e0b and
e1b provide a decorrelation of the covariance matrices R0 and R1. Following Eqs. (1.8.13) and
(1.8.17), we write the LU factorizations of the a priori and a posteriori problems

L0R0LT0 = D0b , L1R1LT1 = D1b (16.15.50)

where L0 and L1 have as rows the backward predictors bT0 = [βββT0 ,1] and bT1 = [βββT1 ,1].

L0 =
[
L̄0 0
βββT0 1

]
, L1 =

[
L̄1 0
βββT1 1

]
(16.15.51)

The corresponding backward basis vectors are constructed by

e0b = L0y =
[
L̄0 0
βββT0 1

][
ȳ
yb

]
=

[
L̄0ȳ
bT0 y

]
=

[
ē0b

e0b

]
(16.15.52)

and

e1b = L1y =
[
L̄1 0
βββT1 1

][
ȳ
yb

]
=

[
L̄1ȳ
bT1 y

]
=

[
ē1b

e1b

]
(16.15.53)

The rank-one updating property (16.15.1) for the Rs can be translated into an updating equa-
tion for the LU factorizations[112–114], in the following form:

L1 = LL0 (16.15.54)

It turns out that the unit lower triangular matrix L can be built entirely out of the a priori
backward errors e0b, as we show below. The determining equation for L may be found by

D1b = L1R1LT1 = LL0(R0 + yyT)LT0 LT = L(D0b + e0beT0b)L
T (16.15.55)

Thus, L performs the LU factorization of the rank-one update of a diagonal matrix, namely,
D0b + e0beT0b. The solution is easily found by introducing the block decompositions

L =
[
L̄ 0
βββT 1

]
, D1b =

[
D̄1b 0
0T E1b

]
, D0b + e0beT0b =

[
D̄0b + ē0bēT0b e0bē0b

e0bēT0b E0b + e2
0b

]

16.15. Rank-One Modification of Covariance Matrices 903

Using the methods of Sec. 1.8, e.g., Eqs. (1.8.7) and (1.8.11) applied to this problem, we find
the solution

βββ = −μ̄e0bD̄−1
0b ē0b , μ̄ = 1

1+ ēT0bD̄
−1
0b ē0b

(16.15.56)

Using R̄−1
0 = L̄T0 D̄−1

0b L̄0, we recognize

ēT0bD̄
−1
0b ē0b = ȳTL̄T0 D̄

−1
0b L̄0ȳ = ȳTR̄−1

0 ȳ = ν̄

Therefore, the quantity μ̄ defined above is the usual one. Similarly, we find

E1b = (E0b + e2
0b)+e0bēT0b βββ = E0b + e2

0b − μ̄e2
0bν̄

Noting that 1− μ̄ν̄ = μ̄, this reduces to Eq. (16.15.32). Writing D̄−1
0b ē0b = L̄−T0 R̄−1

0 ȳ = L̄−T0 k̄0,
we may express βββ in terms of the Kalman gain vector:

βββ = −μ̄e0bL−T0 k̄0 (16.15.57)

It easy to verify that the block-decomposed form of Eq. (16.15.54) is equivalent to

L̄1 = L̄L̄0 , βββ1 = βββ0 + L̄T0βββ (16.15.58)

Because of Eq. (16.15.57), the updating equation for the βββs is equivalent to Eq. (16.15.35).
Using this formalism, we may show the proportionality between the a posteriori and a priori
backward errors. We have e1b = L1y = LL0y = Le0b, and in block form

e1b =
[
L̄ 0
βββT 1

][
ē0b

e0b

]
=

[
L̄e0b

e0b +βββTē0b

]

Therefore, e1b = e0b + βββTē0b = e0b − μ̄e0bν̄ = μ̄e0b. It follows that L acting on e0b can be
replaced by the diagonal matrix of μ̄s acting on e0b. The double/direct lattice algorithm effectively
provides the error signals required to build L. For example, Eq. (16.15.56) can be written in a form
that avoids the computation of the μs

βββ = −μ̄e0bD̄−1
0b ē0b = −e1bD̄−1

0b ē0b (16.15.59)

The a priori and a posteriori estimates x̂0 and x̂1 may also be expressed in the backward bases.
Defining g0 = L−T0 h0, we find x̂0 = hT0 y = gT0 L0y = gT0 e0b, and similarly, defining g1 = L−T1 h1, we
find x̂1 = gT1 e1b. Thus,

g1 = L−T1 h1 , g0 = L−T0 h0 (16.15.60)

and
x̂1 = gT1 e1b , x̂0 = gT0 e0b (16.15.61)

Finally, the updating equation (16.15.16) for the direct-form weights translates into an up-
dating equation for the lattice weights:

g1 = L−T1 h1 = L−T1 (h0 + e0k1)= L−TL−T0 h0 + e0L−T1 k1

where we used the factorization (16.15.54) for the first term. Using R−1
1 = LT1D−1

1b L1, we find for
the second term L−T1 k1 = L−T1 R−1

1 y = D−1
1b L1y = D−1

1b e1b. Therefore,

g1 = L−Tg0 + e0D−1
1b e1b (16.15.62)

Extracting the last elements we obtain Eq. (16.15.45).

904 16. Adaptive Filters

16.16 RLS Adaptive Filters

The LMS and gradient lattice adaptation algorithms, based on the steepest descent method, pro-
vide a gradual, iterative, minimization of the performance index. The adaptive weights are not
optimal at each time instant, but only after convergence. In this section, we discuss recursive least-
squares (RLS) adaptation algorithms that are based on the exact minimization of least-squares
criteria. The filter weights are optimal at each time instant n.

Adaptive RLS algorithms are the time-recursive analogs of the block processing methods of
linear prediction and FIR Wiener filtering that we discussed in Sections 12.12 and 12.14. They may
be used, in place of LMS, in any adaptive filtering application. Because of their fast convergence
they have been proposed for use in fast start-up channel equalizers [1448–1451]. They are also
routinely used in real-time system identification applications. Their main disadvantage is that
they require a fair amount of computation, O(M2) operations per time update. In biomedical
applications, they can be easily implemented on minicomputers. In other applications, such as
the equalization of rapidly varying channels or adaptive arrays [1355,1453–1455], they may be
too costly for implementation.

The fast reformulations of RLS algorithms, such as the RLSL, FK, FAEST, and FTF, have O(M)
computational complexity. The fast RLS algorithms combine the best of the LMS and RLS, namely,
the computational efficiency of the former and the fast convergence of the latter. Among the fast
RLS algorithms, the RLS lattice has better numerical stability properties than the direct-form
versions.

We start with the RLS formulation of the FIR Wiener filtering problem. The estimation crite-
rion, E = E[e(n)2]= min, is replaced with a least-squares weighted time-average that includes all
estimation errors from the initial time instant to the current time n, that is, e(k), k = 0,1, . . . , n:

En =
n∑
k=0

e2(k)= min (16.16.1)

where
e(k)= x(k)= x̂(k)

and x̂(k) is the estimate of x(k) produced by the order-M Wiener filter

x̂(k)=
M∑
m=0

hmyk−m = [h0, h1, . . . , hM]

⎡
⎢⎢⎢⎢⎢⎣

yk
yk−1

...
yk−M

⎤
⎥⎥⎥⎥⎥⎦ = hTy(k)

Note that in adaptive array problems, y(k) represents the vector of measurements at the array
elements, namely, y(k)= [y0(k), y1(k), . . . , yM(k)]. To better track possible non-stationarities
in the signals, the performance index may be modified by introducing exponential weighting

En =
n∑
k=0

λn−ke2(k)= e2(n)+λe2(n− 1)+λ2e2(n− 2)+· · · + λne2(0) (16.16.2)

where the forgetting factor λ is positive and less than one. This performance index emphasizes
the most recent observations and exponentially ignores the older ones. We will base our discus-
sion on this criterion. Setting the derivative with respect to h to zero, we find the least-square
analogs of the orthogonality equations

∂En
∂h

= −2
n∑
k=0

λn−ke(k)y(k)= 0

16.16. RLS Adaptive Filters 905

which may be cast in a normal equation form

n∑
k=0

λn−k
[
x(k)−hTy(k)

]
y(k)= 0 , or,

⎡
⎣ n∑
k=0

λn−ky(k)y(k)T
⎤
⎦h =

n∑
k=0

λn−kx(k)y(k)

Defining the quantities

R(n) =
n∑
k=0

λn−ky(k)y(k)T

r(n) =
n∑
k=0

λn−kx(k)y(k)

(16.16.3)

we write the normal equations as R(n)h = r(n), with solution h = R(n)−1r(n). Note that the
n-dependence of R(n) and r(n) makes h depend on n; we shall write, therefore,

h(n)= R(n)−1r(n) (16.16.4)

These are the least-squares analogs of the ordinary Wiener solution, with R(n) and r(n)
playing the role of the covariance matrix R = E[y(n)yT(n)] and cross-correlation vector r =
E[x(n)y(n)]. These quantities satisfy the rank-one updating properties

R(n)= λR(n− 1)+y(n)y(n)T (16.16.5)

r(n)= λr(n− 1)+x(n)y(n) (16.16.6)

Thus, the general results of the previous section can be applied. We have the correspon-
dences:

y → y(n) x → x(n)
R1 → R(n) R0 → λR(n− 1)
P1 → P(n)= R(n)−1 P0 → λ−1P(n− 1)= λ−1R(n− 1)−1

r1 → r(n) r0 → λr(n− 1)
h1 → h(n)= R(n)−1r(n) h0 → h(n− 1)= R(n− 1)−1r(n)
x̂1 → x̂(n)= h(n)Ty(n) x̂0 → x̂(n/n− 1)= h(n− 1)Ty(n)
e1 → e(n)= x(n)−x̂(n) e0 → e(n/n− 1)= x(n)−x̂(n/n− 1)
k1 → k(n)= R(n)−1y(n) k0 → k(n/n− 1)= λ−1R(n− 1)−1y(n)
ν → ν(n)= k(n/n− 1)Ty(n) μ → μ(n)= 1/

(
1+ ν(n))

We used the notation x̂(n/n−1), e(n/n−1), and k(n/n−1) to denote the a priori
estimate, estimation error, and Kalman gain. Note thatR0, r0 are the quantitiesR(n−1),
r(n−1) scaled by the forgetting factor λ. In the a priori solution h0 = R−1

0 r0, the factors

λ cancel to give
[
λR(n − 1)

]−1[λr(n − 1)
] = R(n − 1)−1r(n − 1)= h(n − 1). Thus,

the a priori Wiener solution is the solution at the previous time instant n− 1. With the
above correspondences, the conventional RLS algorithm listed in the previous section
becomes

1. k(n/n− 1)= λ−1P(n− 1)y(n)

2. ν(n)= k(n/n− 1)Ty(n) , μ(n)= 1

1+ ν(n)

906 16. Adaptive Filters

3. k(n)= μ(n)k(n/n− 1)

4. P(n)= λ−1P(n− 1)−k(n)k(n/n− 1)T

5. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

6. e(n)= μ(n)e(n/n− 1) , x̂(n)= x(n)−e(n)
7. h(n)= h(n− 1)+e(n/n− 1)k(n)

The algorithm may be initialized in time by taking R(−1)= 0, which would imply
P(−1)= ∞. Instead, we may use P(−1)= δ−1I, where δ is a very small number, and I
the identity matrix. The algorithm is quite insensitive to the choice of δ. Typical values
are δ = 0.1, or δ = 0.01.

The function rls is an implementation of the algorithm. Because the algorithm can
also be used in array problems, we have designed the function so that its inputs are
the old weights h(n− 1), the current sample x(n), and the entire data vector y(n) (in
time series problems only the current time sample yn is needed, the past samples yn−i,
i = 1,2, . . . ,M being stored in the tapped delay line). The outputs of the function are
h(n), x̂(n), and e(n). A simulation example will be presented in the next section.

The term Kalman gain arises by interpreting h(n)= h(n−1)+e(n/n−1)k(n) as a
Kalman predictor/corrector algorithm, where the first term h(n− 1) is a prediction of
the weight h(n) based on the past, e(n/n− 1)= x(n)−h(n− 1)Ty(n) is the tentative
estimation error made on the basis of the prediction h(n − 1), and the second term
e(n/n− 1)k(n) is the correction of the prediction. The fast convergence properties of
the algorithm can be understood by making the replacement k(n)= R(n)−1y(n) in the
update equation

h(n)= h(n− 1)+R(n)−1y(n)e(n/n− 1) (16.16.7)

It differs from the LMS algorithm by the presence of R(n)−1 in the weight update
term. Because R(n) is an estimate of the covariance matrix R = E[y(n)y(n)T], the
presence of R(n)−1 makes the RLS algorithm behave like Newton’s method, hence its
fast convergence properties [1456,1457]. Another important conceptual difference with
the LMS algorithm is that in the RLS algorithm the filters h(n) and h(n−1) are the exact
Wiener solutions of two different minimization criteria; namely, En = min and En−1 =
min, whereas in the LMS algorithm they are successive gradient-descent approximations
to the optimum solution.

The role of the forgetting factor λ may be understood qualitatively, by considering
the quantity

nλ =

∞∑
n=0

nλn

∞∑
n=0

λn
= λ

1− λ

to be a measure of the effective memory of the performance index En. Smaller λs cor-
respond to shorter memory nλ, and can track better the non-stationary changes of the
underlying signals. The memory nλ of the performance index should be as short as the
effective duration of the non-stationary segments, but not shorter because the perfor-
mance index will not be taking full advantage of all the available samples (which could

16.17. Fast RLS Filters 907

extend over the entire non-stationary segment); as a result, the computed weights h(n)
will exhibit more noisy behavior. In particular, if the signals are stationary, the best
value of λ is unity.

In Sec. 16.12, we considered the adaptive implementation of eigenvector methods
based on an LMS gradient-projection method. Adaptive eigenvector methods can also
be formulated based on the rank-one updating property (16.16.5). For example, one may
use standard numerical methods for the rank-one updating of the entire eigenproblem
of R(n) [1166,1458,1459].

If one is interested only in a few largest or smallest eigenvalues and corresponding
eigenvectors, one can use the more efficient power method or inverse power method
and their generalizations, such as the simultaneous and subspace iterations, or Lanc-
zos methods, which are essentially the subspace iteration improved by Rayleigh-Ritz
methods [1246,1460].

The basic procedure for making these numerical methods adaptive is as follows
[1461–1467]. The power method generates the maximum eigenvector by the iteration
e(n)= Re(n− 1), followed by normalization of e(n) to unit norm. Similarly, the mini-
mum eigenvector may be generated by the inverse power iteration e(n)= R−1e(n− 1).
Because R and R−1 are not known, they may be replaced by their estimates R(n)
and P(n)= R(n)−1, which are being updated from one time instant to the next by
Eq. (16.16.5) or by step 4 of the RLS algorithm, so that one has e(n)= R(n)e(n−1) for
the power iteration, or e(n)= P(n)e(n− 1) for the inverse power case.

This can be generalized to the simultaneous iteration case. For example, to generate
adaptively the K minimum eigenvectors spanning the noise subspace one starts at each
iterationnwithKmutually orthonormalized vectors ei(n−1), i = 0,1, . . . , K−1. Each is
subjected to the inverse power iteration ei(n)= P(n)ei(n−1) and finally, theK updated
vectors ei(n) are mutually orthonormalized using the Gram-Schmidt or modified Gram-
Schmidt procedure for vectors. Similar simultaneous iteration methods can also be
applied to the gradient-projection method of Sec. 16.12. The main limitation of applying
the simultaneous iteration methods is that one must know in advance the dimension K
of the noise subspace.

16.17 Fast RLS Filters

In this section, we present fast RLS algorithms based on a direct-form realization [1422–
1424,1436–1445,1468–1477]. Fast RLS lattice filters are discussed in the next section.
The fast direct-form RLS algorithms make use of the forward and backward predictors.
The subblock decompositions of the (M + 1)-dimensional data vector y(n) are

y(n)=

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦ =

[
ȳ(n)
yn−M

]
=

[
yn

ỹ(n)

]
(16.17.1)

908 16. Adaptive Filters

Therefore, the two M-dimensional parts of y(n) are

ȳ(n)=

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M+1

⎤
⎥⎥⎥⎥⎥⎦ , ỹ(n)=

⎡
⎢⎢⎢⎢⎢⎣

yn−1

yn−2

...
yn−M

⎤
⎥⎥⎥⎥⎥⎦ (16.17.2)

The covariance matrices of these subvectors will be

R̄(n)=
n∑
k=0

λn−kȳ(k)ȳ(k)T , R̃(n)=
n∑
k=0

λn−kỹ(k)ỹ(k)T (16.17.3)

The definitions (16.17.2) imply the shift-invariance property

ỹ(n+ 1)= ȳ(n) (16.17.4)

Using this property, we find

R̃(n+ 1) =
n+1∑
k=0

λn+1−kỹ(k)ỹ(k)T=
n∑

k=−1

λn−kỹ(k+ 1)ỹ(k+ 1)T

=
n∑

k=−1

λn−kȳ(k)ȳ(k)T= R̄(n)+λn+1ȳ(−1)ȳ(−1)T

If we make the prewindowing assumption that ȳ(−1)= 0, we obtain the shift-invariance
property for the covariance matrices

R̃(n+ 1)= R̄(n) (16.17.5)

Before we use the shift-invariance properties, we make some additional correspon-
dences from the previous section:

ȳ → ȳ(n)
ỹ → ỹ(n)
R1a1 = E1au → R(n)a(n)= E+(n)u
R1b1 = E1bv → R(n)b(n)= E−(n)v
R0a0 = E0au → λR(n− 1)a(n− 1)= λE+(n− 1)u
R0b0 = E0bv → λR(n− 1)b(n− 1)= λE−(n− 1)v
e1a = aT1 y → e+(n)= a(n)Ty(n)
e1b = bT1 y → e−(n)= b(n)Ty(n)
e0a = aT0 y → e+(n/n− 1)= a(n− 1)Ty(n)
e0b = bT0 y → e−(n/n− 1)= b(n− 1)Ty(n)
E1a = E0a + e1ae0a → E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)
E1b = E0b + e1be0b → E−(n)= λE−(n− 1)+e−(n)e−(n/n− 1)
k̃1 = R̃−1

1 ỹ → k̃(n)= R̃(n)−1ỹ(n)
k̄1 = R̄−1

1 ȳ → k̄(n)= R̄(n)−1ȳ(n)
k̃0 = R̃−1

0 ỹ → k̃(n/n− 1)= λ−1R̃(n− 1)−1ỹ(n)
k̄0 = R̄−1

0 ȳ → k̄(n/n− 1)= λ−1R̄(n− 1)−1ȳ(n)
ν̃ = k̃

T
0 ỹ → ν̃(n)= k̃(n/n− 1)Tỹ(n)

ν̄ = k̄
T
0 ȳ → ν̄(n)= k̄(n/n− 1)Tȳ(n)

μ̃ = 1/(1+ ν̃) → μ̃(n)= 1/
(
1+ ν̃(n))

μ̄ = 1/(1+ ν̄) → μ̄(n)= 1/
(
1+ ν̄(n))

16.17. Fast RLS Filters 909

We have used the superscripts ± to indicate the forward and backward quantities.
Again, note the cancellation of the factors λ from the a priori normal equations, which
implies that the a priori predictors are the predictors of the previous time instant; that
is, a0 → a(n− 1) and b0 → b(n− 1).

Using the shift-invariance properties (16.17.4) and (16.17.5), we find that all the tilde
quantities at the next time instant n + 1 are equal to the bar quantities at the present
instant n; for example,

k̃(n+ 1)= R̃(n+ 1)−1ỹ(n+ 1)= R̄(n)−1ȳ(n)= k̄(n)

Similarly,

k̃(n+ 1/n)= λ−1R̃(n)−1ỹ(n+ 1)= λ−1R̄(n− 1)−1ȳ(n)= k̄(n/n− 1)

and for the likelihood variables

ν̃(n+ 1)= k̃(n+ 1/n)Tỹ(n+ 1)= k̄(n/n− 1)Tȳ(n)= ν̄(n)

and similarly for the μs. We summarize:

k̃(n+ 1) = k̄(n) , k̃(n+ 1/n)= k̄(n/n− 1)

ν̃(n+ 1) = ν̄(n) , μ̃(n+ 1)= μ̄(n)
(16.17.6)

These equations can be added at the ends of the computational sequences of the
previous section to complete the computational cycle at each time instant. In the present
notation, the complete fast Kalman algorithm [1422,1423] is:

0. At time n, we have available the quantities h(n − 1), a(n − 1), b(n − 1), k̃(n),
E+(n− 1), x(n), and y(n)

1 . e+(n/n− 1)= a(n− 1)Ty(n)

2. a(n)= a(n− 1)−e+(n/n− 1)
[

0
k̃(n)

]

3. e+(n)= a(n)Ty(n)

4. E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)

5. Compute the first element of k(n), k0(n)= e+(n)
E+(n)

6. k(n)=
[

0
k̃(n)

]
+ k0(n)a(n), extract the last element of k(n), kM(n)

7. e−(n/n− 1)= b(n− 1)Ty(n)

8. b(n)= b(n− 1)−e−(n/n− 1)k(n)
1− e−(n/n− 1)kM(n)

9.

[
k̄(n)

0

]
= k(n)−kM(n)b(n)

910 16. Adaptive Filters

10. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

11. h(n)= h(n− 1)+e(n/n− 1)k(n)

12. x̂(n)= h(n)Ty(n) , e(n)= x(n)−x̂(n)
13. k̃(n+ 1)= k̄(n)

14. Go to the next time instant, n→ n+ 1

The first and last entries of the a posteriori Kalman gain vector k(n) were denoted
by k0(n) and kM(n), that is, k(n)= [k0(n), k1(n), . . . , kM(n)]T. Similarly, we obtain
the complete FAEST algorithm [1424]:

0. At time n, we have available the quantities h(n−1), a(n−1), b(n−1), k̃(n/n−1),
ν̃(n), E±(n− 1), x(n), and y(n)

1 . e+(n/n− 1)= a(n− 1)Ty(n)

2. e+(n)= e+(n/n− 1)/
(
1+ ν̃(n)) = μ̃(n)e+(n/n− 1)

3. Compute the first element of k(n/n− 1), k0(n/n− 1)= e+(n/n− 1)
λE+(n− 1)

4. E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)

5. k(n/n− 1)=
[

0
k̃(n/n− 1)

]
+ k0(n/n− 1)a(n− 1)

6. Extract the last element of k(n/n− 1), kM(n/n− 1)

7. e−(n/n− 1)= kM(n/n− 1)
[
λE−(n− 1)

]

8.

[
k̄(n/n− 1)

0

]
= k(n/n− 1)−kM(n/n− 1)b(n− 1)

9. ν(n)= ν̃(n)+e+(n/n−1)k0(n/n−1) , ν̄(n)= ν(n)−e−(n/n−1)kM(n/n−1)

10. e−(n)= e−(n/n− 1)/
(
1+ ν̄(n)) = μ̄(n)e−(n/n− 1)

11. E−(n)= λE−(n− 1)+e−(n)e−(n/n− 1)

12. a(n)= a(n− 1)−e+(n)
[

0
k̃(n/n− 1)

]

13. b(n)= b(n− 1)−e−(n)
[

k̄(n/n− 1)
0

]

14. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

15. e(n)= e(n/n− 1)/
(
1+ ν(n)) = μ(n)e(n/n− 1) , x̂(n)= x(n)−e(n)

16. h(n)= h(n− 1)+e(n)k(n/n− 1)

16.18. RLS Lattice Filters 911

17. k̃(n+ 1/n)= k̄(n) , ν̃(n+ 1)= ν̄(n)
19. Go to the next time instant, n→ n+ 1

The algorithm is initialized in time by clearing the tapped delay line of the filter and
setting h(−1)= 0, a(−1)= u = [1,0T]T, b(−1)= v = [0T,1]T, k̃(0/−1)= 0, ν̃(0)= 0,
and E±(−1)= δ, where δ is a small constant. Exact initialization procedures have been
discussed in [1426]. The FTF algorithm [1426] is obtained by replacing step 9 by the
following:

μ(n)= μ̃(n) λE
+(n− 1)
E+(n)

, μ̄(n)= μ(n)
1− e−(n/n− 1)kM(n/n− 1)μ(n)

(FTF)

The function faest is an implementation of the FAEST algorithm. The function trans-
forms an input pair of samples {x, y} into an output pair {x̂, e}, updates the tapped delay
line of the filter, and updates the filter h(n).

Next, we present a simulation example comparing the FAEST and LMS algorithms.
The example is the same as that discussed in Sec. 16.13 and defined theoretically by
Eqs. (16.13.37) and (16.13.38). Fig. 16.17.1 shows two of the adaptive weights, h1(n)
and h2(n), adapted by FAEST and LMS. The weights are converging to their theoretical
values of h1 = 1.5 and h2 = −2. The RLS parameters were λ = 1 and δ = 0.01; the LMS
parameter was μ = 0.01.

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
FAEST and LMS Adaptive Weights

n

h1(n)FAEST

h2(n)FAEST

h1(n)LMS

h2(n)LMS

Fig. 16.17.1 Comparison of FAEST and LMS adaptive weights.

16.18 RLS Lattice Filters

The fast direct-form RLS filters were fixed-order filters. By contrast, the RLS lattice algo-
rithms [1436–1445], for each time instant n, do a recursion in the order, p = 0,1, . . . ,M.
Therefore, it is necessary to indicate the order p by using an extra index in all the quan-
tities of the past two sections. For example, the order-p data vector and its bar and tilde

912 16. Adaptive Filters

parts will be denoted by

yp(n)=

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−p

⎤
⎥⎥⎥⎥⎥⎦ , ȳp(n)=

⎡
⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−p+1

⎤
⎥⎥⎥⎥⎥⎦ , ỹp(n)=

⎡
⎢⎢⎢⎢⎢⎣

yn−1

yn−2

...
yn−p

⎤
⎥⎥⎥⎥⎥⎦ (16.18.1)

Therefore, we have

ȳp(n)= yp−1(n) , ỹp(n)= ȳp(n− 1)= yp−1(n− 1) (16.18.2)

Similarly, the covariance matrices will be

R̄p(n)= Rp−1(n) , R̃p(n)= Rp−1(n− 1) (16.18.3)

The order-p predictors will be denoted by ap(n) and bp(n), with error signals
e+p (n)= ap(n)Typ(n) and e−p (n)= bp(n)Typ(n) The corresponding mean-square er-
rors will be denoted by E±p (n). Similarly, the a priori estimation errors are denoted by
e+p (n/n−1)= ap(n−1)Typ(n) and e−p (n/n−1)= bp(n−1)Typ(n). Using Eq. (16.18.3),
we find the following correspondences between the order-(p−1) and order-p problems:

R̄1 → Rp−1(n), ā1 → ap−1(n), Ē1a → E+p−1(n)
R̄0 → λRp−1(n− 1), ā0 → ap−1(n− 1), Ē0a → λE+p−1(n− 1)
R̃1 → Rp−1(n− 1), b̃1 → bp−1(n− 1), Ẽ1b → E−p−1(n− 1)
R̃0 → λRp−1(n− 2), b̃0 → bp−1(n− 2), Ẽ0b → λE−p−1(n− 1)

ē1a = āT1 ȳ → e+p−1(n)= ap−1(n)Typ−1(n)
ẽ1b = b̃

T
1 ỹ → e−p−1(n− 1)= bp−1(n− 1)Typ−1(n− 1)

ē0a = āT0 ȳ → e+p−1(n/n− 1)= ap−1(n− 1)Typ−1(n)
ẽ0b = b̃

T
0 ỹ → e−p−1(n− 1/n− 2)= bp−1(n− 2)Typ−1(n− 1)

γ1a → γ+p (n)
γ0a → γ+p (n− 1)
γ1b → γ−p (n)
γ0b → γ−p (n− 1)

e1a = ē1a − γ1bẽ1b → e+p (n)= e+p−1(n)−γ−p (n)e−p−1(n− 1)

e1b = ẽ1b − γ1aē1a → e−p (n)= e−p−1(n− 1)−γ+p (n)e+p−1(n)

e0a = ē0a − γ0bẽ0b → e+p (n/n− 1)= e+p−1(n/n− 1)−γ−p (n− 1)e−p−1(n− 1/n− 2)

e0b = ẽ0b − γ0aē0a → e−p (n/n− 1)= e−p−1(n− 1/n− 2)−γ+p (n− 1)e+p−1(n/n− 1)

a1 =
[

ā1

0

]
− γ1b

[
0
b̃1

]
→ ap(n)=

[
ap−1(n)

0

]
− γ−p (n)

[
0

bp−1(n− 1)

]

b1 =
[

0
b̃1

]
− γ1a

[
ā1

0

]
→ bp(n)=

[
0

bp−1(n− 1)

]
− γ+p (n)

[
ap−1(n)

0

]

a0 =
[

ā0

0

]
− γ0b

[
0
b̃0

]
→ ap(n− 1)=

[
ap−1(n− 1)

0

]
− γ−p (n− 1)

[
0

bp−1(n− 2)

]

b0 =
[

0
b̃0

]
− γ0a

[
ā0

0

]
→ bp(n− 1)=

[
0

bp−1(n− 2)

]
− γ+p (n− 1)

[
ap−1(n− 1)

0

]

16.18. RLS Lattice Filters 913

γ1a = γ0a + e0b
ē1a

Ē1a
→ γ+p (n)= γ+p (n− 1)+e−p (n/n− 1)

e+p−1(n)
E+p−1(n)

γ1b = γ0b + e0a
ẽ1b

Ẽ1b
→ γ−p (n)= γ−p (n− 1)+e+p (n/n− 1)

e−p−1(n− 1)
E−p−1(n− 1)

e0 = ē0 − g0be0b → ep(n/n− 1)= ep−1(n/n− 1)−gp(n− 1)e−p (n/n− 1)

g1b = g0b + e0
e1b

E1b
→ gp(n)= gp(n− 1)+ep(n/n− 1)

e−p (n)
E−p (n)

e1 = ē1 − g1be1b → ep(n)= ep−1(n)−gp(n)e−p (n)
We have denoted the forward/backward reflection coefficients by γ±p (n), and the

lattice Wiener weights by gp(n). The order-p a priori and a posteriori estimation errors
are ep(n/n−1)= x(n)−x̂p(n/n−1) and ep(n)= x(n)−x̂p(n). The likelihood variable
μ = 1− yTR−1

1 y is
μp(n)= 1− yp(n)TRp(n)−1yp(n) (16.18.4)

and can also be written as

μp(n)= 1

1+ νp(n) =
1

1+ λ−1yp(n)TRp(n− 1)−1yp(n)

Similarly, we have

μ̃p(n) = 1− ỹp(n)TR̃p(n)−1ỹp(n)

= 1− yp−1(n− 1)TRp−1(n− 1)−1yp−1(n− 1)

= μp−1(n− 1)

and
μ̄p(n) = 1− ȳp(n)TR̄p(n)−1ȳp(n)

= 1− yp−1(n)TRp−1(n)−1yp−1(n)

= μp−1(n)

Therefore,
μ̃p(n)= μp−1(n− 1) , μ̄p(n)= μp−1(n) (16.18.5)

Thus, the proportionality between a posteriori and a priori errors will be

e+p (n)= μ̃p(n)e+p (n/n− 1) , e−p (n)= μ̄p(n)e−p (n/n− 1) (16.18.6)

Using either of Eq. (16.18.5), we find for the quantity ¯̃μ = ˜̄μ

¯̃μp(n)= μ̄p−1(n− 1)= μ̃p−1(n)= μp−2(n− 1) (16.18.7)

Based on the above correspondences, we can obtain all versions of RLS lattice al-
gorithms, such as the conventional a posteriori, a priori, double, and a priori and a
posteriori error-feedback. In particular, we summarize the complete double/direct RLS
lattice algorithm [156]:

0. At time n, we have available the quantities γ±p (n− 1), gp(n− 1), E±p (n− 1), and
x(n), y(n).

914 16. Adaptive Filters

1. Initialize in order by

e±0 (n/n− 1)= e±0 (n)= y(n)
E±0 (n)= λE±0 (n− 1)+e±0 (n)e±0 (n/n− 1)

e0(n/n− 1)= x(n)−g0(n− 1)e−0 (n/n− 1)

g0(n)= g0(n− 1)+e0(n/n− 1)
e−0 (n)
E−0 (n)

e0(n)= x(n)−g0(n)e−0 (n)

2. For p = 1,2, . . . ,M, compute

e+p (n/n− 1)= e+p−1(n/n− 1)−γ−p (n− 1)e−p−1(n− 1/n− 2)

e−p (n/n− 1)= e−p−1(n− 1/n− 2)−γ+p (n− 1)e+p−1(n/n− 1)

γ+p (n)= γ+p (n− 1)+e−p (n/n− 1)
e+p−1(n)
E+p−1(n)

γ−p (n)= γ−p (n− 1)+e+p (n/n− 1)
e−p−1(n− 1)
E−p−1(n− 1)

e+p (n)= e+p−1(n)−γ−p (n)e−p−1(n− 1)

e−p (n)= e−p−1(n− 1)−γ+p (n)e+p−1(n)

E±p (n)= λE±p (n− 1)+e±p (n)e±p (n/n− 1)

ep(n/n− 1)= ep−1(n/n− 1)−gp(n− 1)e−p (n/n− 1)

gp(n)= gp(n− 1)+ep(n/n− 1)
e−p (n)
E−p (n)

ep(n)= ep−1(n)−gp(n)e−p (n)

3. x̂M(n)= x(n)−eM(n), and go to the next time instant, n→ n+ 1.

The algorithm is initialized in time by clearing the delay registers of both lattices
and setting γ±p (−1)= 0, E±p (−1)= 0, and gp(−1)= 0. As in the case of the gradient
lattice, it follows that the backward outputs from the pth lattice section, e−p (n/n− 1),
will be zero for n < p; therefore, we must keep γ−p (n)= gp(n)= 0 for n < p because
these quantities require divisions by E−p (n). There are 16 multiplications/divisions in
step 2; therefore, the complexity of the algorithm grows like 16M per time update.

The rlsl is an implementation of the above algorithm. It is essentially the same as
lwf used twice for the a priori and a posteriori lattices and with the weight adaptation
parts added to it.

Fig. 16.18.1 shows the reflection coefficients γ±1 (n) and γ±2 (n) adapted by the RLS
lattice algorithm, for the same example presented in Sec. 16.13, which was also used in

16.18. RLS Lattice Filters 915

the FAEST simulation. Note that, after some initial transients, the forward and backward
reflection coefficients become more or less the same as they converge to their theoretical
values. Compare also with the reflection coefficients of Fig. 16.13.3 adapted by the
gradient lattice. The version of the gradient lattice that we presented uses one set of
reflection coefficients, which may be thought of as some sort of average combination
of the forward/backward ones. Indeed, the curves for the gradient lattice reflection
coefficients fall mostly between the curves of the forward and backward ones. Similarly,
the lattice Wiener weights gp(n) have almost the same behavior as those of Fig. 16.13.3.
We finish this section by discussing LU factorizations. Equations (16.15.20) become

Lp(n)Rp(n)Lp(n)T= D−p (n) , λLp(n− 1)Rp(n− 1)Lp(n− 1)T= λD−p (n− 1)
(16.18.8)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
RLSL Predictor

n

γ1
±(n)

γ2
±(n)

Fig. 16.18.1 Reflection coefficients adapted by the double/direct RLSL algorithm.

where
D−p (n)= diag{E−0 (n), E−1 (n), . . . , E−p (n)}

The vectors of a posteriori and a priori backward error signals are constructed by

e−p (n)=

⎡
⎢⎢⎢⎢⎢⎣

e−0 (n)
e−1 (n)

...
e−p (n)

⎤
⎥⎥⎥⎥⎥⎦ = Lp(n)yp(n) ,

e−p (n/n− 1)=

⎡
⎢⎢⎢⎢⎢⎣

e−0 (n/n− 1)
e−1 (n/n− 1)

...
e−p (n/n− 1)

⎤
⎥⎥⎥⎥⎥⎦ = Lp(n− 1)yp(n)

This follows from the fact that the rows of the matrices Lp(n) are the backward
predictors of successive orders. The Lp(n)matrices are related by Eq. (16.15.54), which
reads

Lp(n)= Lp(n/n− 1)Lp(n− 1) (16.18.9)

916 16. Adaptive Filters

The rows of the unit lower triangular updating matrix Lp(n/n− 1) are constructed
by (16.15.59), that is,

βββp = −e−p (n)
[
λD−p−1(n− 1)

]−1
e−p−1(n/n− 1) (16.18.10)

or, component-wise

βpi = −e−p (n)
e−i (n/n− 1)
λE−i (n− 1)

= −μ̄p(n)e−p (n/n− 1)
e−i (n/n− 1)
λE−i (n− 1)

, i = 0,1, . . . , p− 1

The direct and lattice Wiener weights are related by Eq. (16.15.60), i.e., gp(n)=
Lp(n)−Thp(n), and the a posteriori and a priori estimation errors are given by (16.15.61)

x̂p(n)= gp(n)Tep(n) , x̂p(n/n− 1)= gp(n− 1)Te−p (n/n− 1) (16.18.11)

and satisfy the recursions in order

x̂p(n)= x̂p−1(n)+gp(n)e−p (n) , x̂p(n/n−1)= x̂p−1(n/n−1)+gp(n−1)e−p (n/n−1)

This implies the following recursions for the estimation errors

ep(n)= ep−1(n)−gp(n)e−p (n) , ep(n/n−1)= ep−1(n/n−1)−gp(n−1)e−p (n/n−1)

Finally, the time updating equation (16.15.62) for the lattice weights takes the form

gp(n)= Lp(n/n− 1)−Tgp(n− 1)+ep(n/n− 1)D−p (n)−1e−p (n)

and extracting the last component, we obtain

gp(n)= gp(n− 1)+ep(n/n− 1)
e−p (n)
E−p (n)

RLS lattice and gradient adaptive lattice filters may be used in any Wiener filtering
application. Their attractive features are: (a) computational efficiency; (b) very fast rate
of convergence, which is essentially independent of the eigenvalue spread of the input
covariance matrix; (c) modularity of structure admitting parallel VLSI implementations;
and (d) numerical stability and accuracy under quantization.

16.19 Computer Project – Adaptive Wiener Filters

It is desired to design an adaptive Wiener filter to enhance a sinusoidal signal buried in
noise. The noisy sinusoidal signal is given by

xn = sn + vn, where sn = sin(ω0n)

with ω0 = 0.075π. The noise vn is related to the secondary signal yn by

vn = yn + yn−1 + yn−2 + yn−3 + yn−4 + yn−5 + yn−6

The signal yn is assumed to be an order-4 AR process with reflection coefficients:

{γ1, γ2, γ3, γ4} = {0.5,−0.5,0.5,−0.5}
The variance σ2

ε of the driving white noise of the model must be chosen in such a
way as to make the variance σ2

v of the noise component vn approximately unity.

16.19. Computer Project – Adaptive Wiener Filters 917

a. For a Wiener filter of orderM = 6, determine the theoretical direct-form Wiener filter
coefficient vector:

h = [h0, h1, . . . , h6]

for estimating xn (or, rather vn) from yn. Determine also the theoretical lattice/ladder
realization coefficients:

γ = [γ1, γ2, . . . , γ6], g = [g0, g1, . . . , g6]

b. Generate input pairs {xn, yn} (making sure that the transients introduced by the
filter have died out), and filter them through the LMS algorithm to generate the filter
output pairs {x̂n, en}. On the same graph, plot en together with the desired signal
sn.

Plot also a few of the adaptive filter coefficients such as h4(n), h5(n), and h6(n).
Observe their convergence to the theoretical Wiener solution.

You must generate enough input pairs in order to achieve convergence of the LMS
algorithm and observe the steady-state converged output of the filter.

Experiment with the choice of the adaptation parameter μ. Start by determining
λmax, λmin, the eigenvalue spread λmax/λmin of R and the corresponding time con-
stant.

c. Repeat (b), using the gradient lattice adaptive filter. Plot all of the adaptive reflection
coefficients γp(n) versus n, and a few of the ladder coefficients, such as g4(n),
g5(n), and definitely g6(n).

(Because theoretically g6 = h6 (why?), plotting h6(n) and g6(n)will let you compare
the convergence speeds of the LMS and lattice adaptive filters.)

You must experiment with a couple of values of λ (use β = 1). You must work of
course with exactly the same set of input pairs as in part (b).

d. Next, we change this experiment into a non-stationary one. Suppose the total number
of input pairs that you used in parts (b) and (c) isN. And suppose that at time n = N,
the input statistics changes suddenly so that the primary signal is given now by the
model:

xn = sn + vn, where vn = yn + yn−1 + yn−2 + yn−3

and yn changes from a fourth-order AR model to a second-order model with reflec-
tion coefficients (use the same σ2

ε

{γ1, γ2} = {0.5,−0.5}

Repeat parts (a,b,c), keeping the filter order the same, M = 6. Use 2N input pairs,
such that the first N follow the original statistics and the second N follow the
changed statistics. Compare the capability of the LMS and lattice adaptive filters
in tracking such changes.

Here, the values of μ for the LMS case and λ for the lattice case, will make more of a
difference in balancing the requirements of learning speed and quality of estimates.

918 16. Adaptive Filters

e. Finally, feel free to “tweak” the statements of all of the above parts as well as the
definition of the models in order to show more clearly and more dramatically the
issues involved, namely, LMS versus lattice, learning speed versus quality, and the
effect of the adaptation parameters, eigenvalue spread, and time constants. One
other thing to notice in this experiment is that, while the adaptive weights tend to
fluctuate a lot as they converge, the actual filter outputs x̂n, en behave better and are
closer to what one might expect.

16.20 Problems

16.1 Computer Experiment. (a) Reproduce the results of Fig. 16.3.2.

(b) On the same graph of part (a), plot the theoretical convergence curve of the weight
h(n) obtained by using Eq. (16.2.8).

(c) Using 10 different realizations of xn and yn, compute 10 different realizations of the
adaptive weight of Eq. (16.3.2). Compute the average weight over the 10 realizations
and plot it versus n, together with the theoretical weight of Eq. (16.2.8). Use μ = 0.03.

(d) Reproduce the results of Fig. 16.5.2.

16.2 In steered adaptive arrays [1093] and other applications, one has to solve a constrained
Wiener filtering problem. Suppose the (M+1)-dimensional weight vector h = [h0, h1, . . . , hM]T

satisfies the L linear constraints cTi h = fi, i = 1,2, . . . , L, where L ≤ M and the ci are given
(M+1)-dimensional vectors, and fi are given scalars. The set of constraints may be written
compactly as CTh = f, where C = [c1, c2, . . . , cL] and f = [f1, f2, . . . , fL]T .

(a) Show that the solution of the minimization problem E = E[e2
n]= min, subject to the

constraint CTh = f, is given by

h = hu +R−1C(CTR−1C)−1(f−CThu)

where hu = R−1r is the unconstrained Wiener solution and R = E[y(n)y(n)T], r =
E[xny(n)].

(b) In an adaptive implementation, h(n+ 1)= h(n)+Δh(n), the constraint must be sat-
isfied at each iteration. The time update term, therefore, must satisfy CTΔh(n)= 0.
Show that the following (gradient projection) choice satisfies this condition

Δh(n)= −μP ∂E
∂h(n)

, P = I −C(CTC)−1CT

Moreover, show that this choice moves the performance index closer to its minimum
at each iteration.

(c) Show that the resulting difference equation can be written as

h(n+ 1)= P[h(n)−2μRh(n)+2μr
]+ hLS

where hLS = C(CTC)−1f is recognized as the least-squares solution of the linear equa-
tion CTh = f. And, show that CTh(n+ 1)= f.

(d) Show that the LMS adaptive algorithm resulting by dropping the expectation values is,
with en = xn − x̂n = xn − h(n)Ty(n)

h(n+ 1)= P[h(n)+2μeny(n)
]+ hLS

16.20. Problems 919

16.3 Rederive the results in parts (c) and (d) of Problem 16.2 using the following approach. In-
troduce a Lagrange multiplier vector λλλ = [λ1, λ2, . . . , λL]T into the performance index en-
forcing the constraint equations; that is, E = E[e2

n]+λλλT(f − CTh). Show that the ordinary
unconstrained gradient descent method h(n+ 1)= h(n)−μ∂E/∂h(n) gives rise to the dif-
ference equation

h(n+ 1)= (I − 2μR)h(n)+2μr− μCλλλ(n)
Impose the constraint CTh(n+1)= f, eliminate λλλ(n), and show that this equation is equiv-
alent to that in part (c) of the previous problem.

16.4 Verify that Eq. (16.6.5) is the solution of Eq. (16.6.4).

16.5 Consider an adaptive filter with two taps:

x̂n = h0(n)yn + h1(n)yn−1 =
[
h0(n), h1(n)

][yn
yn−1

]
= h(n)Ty(n)

The optimal filter weights are found adaptively by the gradient descent algorithm

h(n+ 1)= h(n)−μ ∂E
∂h(n)

where E = E[e2
n] and en is the estimation error.

(a) Show that the above difference equation may be written as

h(n+ 1)= h(n)+2μ
(
r−Rh(n)

)

where

r =
[
Rxy(0)
Rxy(1)

]
, R =

[
Ryy(0) Ryy(1)
Ryy(1) Ryy(0)

]

(b) Suppose Rxy(0)= 10, Rxy(1)= 5, Ryy(0)= 3, Ryy(1)= 2. Find the optimal weights
h = lim h(n) as n→∞.

(c) Select μ = 1/6. Explain why such a value is sufficiently small to guarantee conver-
gence of the difference equation of part (a). What other values of μ also guarantee
convergence?

(d) With μ = 1/6, solve the difference equation of part (a) in closed form for n ≥ 0.
Discuss the rate of convergence.

16.6 Consider a single CCL as shown in Fig. 16.3.1.

(a) Suppose the reference signal is set equal to a unit step signal; that is, y(n)= u(n).
Show that the CCL will behave as a time-invariant linear filter with input xn and output
en. Determine the transfer function H(z) from xn to en.

(b) Find and interpret the poles and zeros of H(z).

(c) Determine the range of μ-values for which H(z) is stable.

16.7 Repeat Problem 16.6 when the reference signal is the alternating unit step; that is, y(n)=
(−1)nu(n).

920 16. Adaptive Filters

16.8 Let hR and hI be the real and imaginary parts of the complex weight vector h = hR + jhI .
Show that

∂E
∂h∗

= 1

2

[
∂E
∂hR

+ j ∂E
∂hI

]

Consider the simultaneous gradient descent with respect to hR and hI , that is, hR → hR+ΔhR
and hI → hI +ΔhI , with

ΔhR = −μ ∂E∂hR
, ΔhI = −μ ∂E∂hI

Show that it is equivalent to the gradient descent h → h+Δh, where

Δh = −2μ
∂E
∂h∗

Note the conjugation and the factor of two.

16.9 Using the transfer function of Eq. (16.9.1), derive an approximate expression for the 3-dB
width of the notch. You may work to lowest order in μ.

16.10 Computer Experiment. Consider the noise canceling example discussed in Sec. 12.11 and in
Problems 12.25–12.27 and defined by the following choice of parameters:

ω0 = 0.075π [rads/sample] , φ = 0 , a1 = −0.5 , a2 = 0.8 , M = 4

(a) Generate a realization of the signals x(n) and y(n) and process them through the
adaptive noise canceler of Sec. 16.9, using anMth order adaptive filter and adaptation
parameter μ. By trial and error select a value for μ that makes the LMS algorithm
convergent, but not too small as to make the convergence too slow. Plot one of the
filter weights hm(n) versus iteration number n, and compare the asymptotic value
with the theoretical value obtained in Problem 12.26.

(b) After the weights have converged, plot 100 output samples of the error signal e(n),
and observe the noise cancellation property.

(c) Repeat (a) and (b) using an adaptive filter of order M = 6.

16.11 Computer Experiment. (a) Plot the magnitude of the frequency response of the adaptive
noise canceler notch filter of Eq. (16.9.1) versus frequency ω (z = ejω). Generate several
such plots for various values of μ and observe the effect of μ on the width of the notch.

(b) Let x(n)= ejω0n and y(n)= Aejω0n, and select the parameters as

ω0 = 0.075π, M = 2 , A = 0.01 , μ = 0.1

Process x(n) and y(n) through the adaptive noise canceler of Sec. 16.9, and plot the
output e(n) versus n and observe the cancellation of the signal x(n) due to the notch
filter created by the presence of the weak sinusoidal reference signal y(n).

16.12 Computer Experiment. Let x(n)= x1(n)+x2(n), where x1(n) is a narrowband component
defined by

x1(n)= sin(ω0n+φ) , ω0 = 0.075π [rads/sample]

where φ is a random phase uniformly distributed over [0,2π], and x2(n) is a fairly broad-
band component generated by sending zero-mean, unit-variance, white noise ε(n) through
the filter

x2(n)= ε(n)+2ε(n− 1)+ε(n− 2)

16.20. Problems 921

(a) Compute the autocorrelation functions of x1(n) and x2(n) and sketch them versus lag
k. Based on this computation, select a value for the delay Δ to be used in the adaptive
line enhancer discussed in Sec. 16.10.

(b) Generate a realization of x(n) and process it through the ALE with an appropriately
chosen adaptation parameter μ. Plot the output signals x̂(n) and e(n), and compare
them with the components x1(n) and x2(n), respectively.

16.13 The response of the ALE to an input sinusoid in noise can be studied as follows: Let the
input be

xn = A1ejω1n+jφ + vn
where φ is a random phase independent of the zero-mean white noise vn. The optimum
Wiener filter weights of the ALE are given by

h = R−1r

where Rij = Rxx(i− j) and ri = Rx(i+Δ), as discussed in Sec. 16.10.

(a) Using the methods of Sec. 14.2, show that the optimum filter h is given by

h = ejω1Δ

σ2
v
P1
+M + 1

sω1

where the phasing vector sω1 was defined in Sec. 14.2, and P1 = |A1|2 is the power of
the sinusoid.

(b) Show that the mean output power of the ALE is given by

E
[|x̂n|2] = h†Rh = σ2

v h†h+ P1|h†sω1 |2

(c) Show that the SNR at the output is enhanced by a factor M + 1 over the SNR at the
input; that is, show that

(SNR)out= P1|h†sω1 |2
σ2
v h†h

= P1

σ2
v
(M + 1)= (M + 1)(SNR)in

(d) Derive an expression for the eigenvalue spread λmax/λmin in terms of the parameters
σ2
v , P1, and M.

(e) Show that if the delay Δ is removed; that is, Δ = 0, then the optimal weight vector
becomes equal to the unit vector

h = [1,0,0, . . . ,0]T

and that this choice corresponds to complete cancellation of the input signal x(n)
from the output e(n).

16.14 Computer Experiment. Consider the autoregressive process yn generated by the difference
equation

yn = −a1yn−1 − a2yn−2 + εn
where a1 = −1.6, a2 = 0.8, and εn is zero-mean, unit-variance, white noise. Generate a
realization of yn and process it through the LMS adaptive predictor of order 2, as discussed
in Sec. 16.11. Use a value for the adaptation parameter μ of your own choice. Plot the
adaptive prediction coefficients a1(n) and a2(n) versus n, and compare their converged
values with the theoretical values given above.

922 16. Adaptive Filters

16.15 The adaptive predictor may be considered as the linearly constrained minimization problem
E = E[e2

n]= min, subject to the constraint that the first element of a = [1, a1, . . . , aM]T be
unity. This constraint may be written compactly as uTa = 1, where u = [1,0, . . . ,0]T .
Rederive the adaptation equations of Sec. 16.11 using the formalism and results of Problem
16.2.

16.16 Computer Experiment. A complex-valued version of the LMS adaptive predictor of Sec. 16.11
is defined by

en = yn + a1(n)yn−1 + a2(n)yn−2 + · · · + aM(n)yn−M
am(n+ 1)= am(n)−2μeny∗n−m , m = 1,2, . . . ,M

Let yn consist of two complex sinusoids in zero-mean white noise

yn = A1ejω1n +A2ejω2n + vn

where the frequencies and the SNRs are

ω1 = 0.3π, ω2 = 0.7π [radians/sample]

10 log10

[|A1|2/σ2
v
] = 10 log10

[|A2|2/σ2
v
] = 20 dB

(a) Generate a realization of yn (using a complex-valued vn) and process it through anMth
order LMS adaptive predictor using an adaptation constant μ. Experiment with several
choices of M and μ. In each case, stop the algorithm after convergence has taken
place and plot the AR spectrum S(ω)= 1/|A(ω)|2 versus frequencyω. Discuss your
results.

(b) Using the same realization of yn, iterate the adaptive Pisarenko algorithm defined
by Eqs. (16.12.5) and (16.12.6). After convergence of the Pisarenko weights, plot the
Pisarenko spectrum estimate S(ω)= 1/|A(ω)|2 versus frequency ω.

(c) Repeat (a) and (b) when the SNR of the sinewaves is lowered to 0 dB. Compare the
adaptive AR and Pisarenko methods.

16.17 Computer Experiment. Reproduce the results of Figs. 7.19 and 7.20.

16.18 Derive Eqs. (16.14.8) and (16.14.9) that describe the operation of the adaptive linear combiner
in the decorrelated basis provided by the Gram-Schmidt preprocessor.

16.19 Computer Experiment. Reproduce the results of Fig. 16.14.2.

16.20 What is the exact operational count of the conventional RLS algorithm listed in Sec. 16.15?
Note that the inverse matrices P0 and P1 are symmetric and thus only their lower-triangular
parts need be updated.

16.21 Verify the solution (16.15.56) for the rank-one updating of the LU factors L0 and L1. Also
verify that Eq. (16.15.58) is equivalent to (16.15.54).

16.22 Computer Experiment. Reproduce the results of Fig. 16.17.1. Carry out the same experiment
(with the same input data) using the conventional RLS algorithm and compare with FAEST.
Carry out both experiments with various values of λ and comment on the results.

16.23 Computer Experiment. Reproduce the results of Fig. 16.18.1.

17
Appendices

A Matrix Inversion Lemma

The matrix inversion lemma, also known as Woodbury’s identity, is useful in Kalman
filtering and recursive least-squares problems. Consider the matrix relationship,

R = A+UBV (A.1)

where
A ∈ CN×N , U ∈ CN×M , B ∈ CM×M , V ∈ CM×N

and assume that A,B are both invertible and thatM ≤ N. Then, the term UBV has rank
M, while R,A have rankN. The matrix inversion lemma states that the inverse of R can
be obtained from the inverses of A,B via the formula,

R−1 = (A+UBV)−1= A−1 −A−1U
[
B−1 +VA−1U

]−1VA−1 (A.2)

Proof: Multiply both sides of (A.1) by R−1 from the right, and then by A−1 from the left
to obtain,

A−1 = R−1 +A−1UBVR−1 (A.3)

then, multiply both sides from the left by V,

VA−1 = VR−1 +VA−1UBVR−1 ⇒ VA−1 = [
IM +VA−1UB

]
VR−1

where IM is the M ×M identity matrix, and solve for BVR−1,

VA−1 = [
B−1 +VA−1U

]
BVR−1 ⇒ BVR−1 = [

B−1 +VA−1U
]−1VA−1

and substitute back into (A.3), after solving for R−1,

R−1 = A−1 −A−1UBVR−1 = A−1 −A−1U
[
B−1 +VA−1U

]−1VA−1

Thus givenA−1 and B−1, the inverse of theN×Nmatrix R requires only the inverse
of the smaller M ×M matrix, B−1 +VA−1U.

923

