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14.1 Spectrum Estimation by Autoregressive Modeling

When a block of signal samples is available, it may be too short to provide enough
frequency resolution in the periodogram spectrum. Often, it may not even be correct
to extend the length by collecting more samples, since this might come into conflict
with the stationarity of the segment. In cases such as these, parametric representation
of the spectra by means of autoregressive models can provide much better frequency
resolution than the classical periodogram method [926]. This approach was discussed
briefly in Sec. 1.13.

The spectrum estimation procedure is as follows: First, the given data segment
{y0, y1, . . . , yN−1} is subjected to one of the analysis methods discussed in Sec. 12.12
to extract estimates of the LPC model parameters {a1, a2, . . . , aM;EM}. The choice of
the order M is an important consideration. There are a number of criteria for model
order selection [926], but there is no single one that works well under all circumstances.
In fact, selecting the right order M is more often an art than science. As an example,
we mention Akaike’s final prediction error (FPE) criterion which selects the M that min-
imizes the quantity

EM · N +M + 1

N −M − 1
= min

where EM is the estimate of the mean-square prediction error for the Mth order predic-
tor, and N is the length of the sequence yn. As M increases, the factor EM decreases
and the second factor increases, thus, there is a minimum value. Then, the spectrum
estimate is given by

SAR(ω)= EM∣∣AM(ω)
∣∣2 =

EM∣∣1+ a1e−jω + a2e−2jω + · · · + aMe−Mjω
∣∣2 (14.1.1)

Note that this would be the exact spectrum if yn were autoregressive with the above
set of model parameters. Generally, spectra that have a few dominant spectral peaks
can be modeled quite successfully by such all-pole autoregressive models. One can also
fit the given block of data to more general ARMA models. The decision to model a spec-
trum by ARMA, AR, or MA models should ultimately depend on some prior information
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regarding the physics of the process yn. The reader is referred to the exhaustive review
article of Kay and Marple [926], and to [1076–1080]

Next, we compare by means of a simulation example the classical periodogram
method, the Yule-Walker method, and Burg’s method of computing spectrum estimates.
Generally, the rule of thumb to follow is that Burg’s method should work better than the
other methods on short records of data, and that all three methods tend to improve as
the data record becomes longer. For our simulation example, we chose a fourth order
autoregressive model characterized by two very sharp peaks in its spectrum. The signal
generator for the sequence yn was

yn + a1yn−1 + a2yn−2 + a3yn−3 + a4yn−4 = εn

where εn was zero-mean, unit-variance, white noise. The prediction-error filter A(z)
was defined in terms of its four zeros:

A(z) = 1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

= (1− z1z−1)(1− z∗1 z−1)(1− z2z−1)(1− z∗2 z−1)

where the zeros were chosen as

z1 = 0.99 exp(0.2πj) , z2 = 0.99 exp(0.4πj)

This gives for the filter coefficients

a1 = −2.2137 , a2 = 2.9403 , a3 = −2.1697 , a4 = 0.9606

The exact spectrum is given by Eq. (14.1.1) with E4 = σ2
ε = 1. Since the two zeros

z1 and z2, are near the unit circle, the spectrum will have two very sharp peaks at the
normalized frequencies

ω1 = 0.2π, ω2 = 0.4π [radians/sample]

Using the above difference equation and a realization of εn, a sequence of length 20
of yn samples was generated (the filter was run for a while until its transients died out
and stationarity of yn was reached). The same set of 20 samples was used to compute the
ordinary periodogram spectrum and the autoregressive spectra using the Yule-Walker
and Burg methods of extracting the model parameters. Then, the length of the data
sequence yn was increased to 100 and the periodogram, Yule-Walker, and Burg spectra
were computed again. Fig. 14.1.1 shows the periodogram spectra for the two signal
lengths of 20 and 100 samples. Fig. 14.1.2 show the Yule-Walker spectra, and Fig. 14.1.3,
the Burg spectra.

The lack of sufficient resolution of both the periodogram and the Yule-Walker spec-
trum estimates for the shorter data record can be attributed to the windowing of the
signal yn. But as the length increases the effects of windowing become less pronounced
and both methods improve. Burg’s method is remarkable in that it works very well
even on the basis of very short data records. The Burg spectral estimate is sometimes
called the “maximum entropy” spectral estimate. The connection to entropy concepts
is discussed in the above references.
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Fig. 14.1.1 Periodogram spectra based on 20 and 100 samples.
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Fig. 14.1.2 Yule-Walker spectra based on 20 and 100 samples.

14.2 Spectral Analysis of Sinusoids in Noise

One of the most important signal processing problems is the estimation of the frequen-
cies and amplitudes of sinusoidal signals buried in additive noise. In addition to its
practical importance, this problem has served as the testing ground for all spectrum
estimation techniques, new or old. In this section we discuss four approaches to this
problem: (1) the classical method, based on the Fourier transform of the windowed
autocorrelation; (2) the maximum entropy method, based on the autoregressive model-
ing of the spectrum; (3) the maximum likelihood, or minimum energy, method; and (4)
Pisarenko’s method of harmonic retrieval which offers the highest resolution.

Consider a signal consisting of L complex sinusoids with random phases in additive
noise:

yn = vn +
L∑
i=1

Aiejωin+jφi (14.2.1)
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Fig. 14.1.3 Burg spectra based on 20 and 100 samples.

where the phases φi are uniformly distributed and independent of each other, and vn
is zero-mean white noise of variance σ2

v , assumed to be independent of the phases φi:

E[v∗nvm]= σ2
vδnm , E[φivn]= 0 (14.2.2)

Under these assumptions, the autocorrelation of yn is easily found to be

R(k)= E[yn+ky∗n ]= σ2
vδ(k)+

L∑
i=1

Piejωik (14.2.3)

where Pi denotes the power of the ith sinusoid; that is, Pi = |Ai|2. The basic problem
is to extract the set of frequencies {ω1,ω2, . . . ,ωL} and powers {P1, P2, . . . , PL} by
appropriate processing a segment of signal samples yn. The theoretical power spectrum
is a line spectrum superimposed on a flat white-noise background:

S(ω)= σ2
v +

L∑
i=1

Pi 2πδ(ω−ωi) (14.2.4)

which is obtained by Fourier transforming Eq. (14.2.3):

S(ω)=
∞∑

k=−∞
R(k)e−jωk (14.2.5)

Given a finite set of autocorrelation lags {R(0), R(1), . . . , R(M)}, the classical spec-
trum analysis method consists of windowing these lags by an appropriate window and
then computing the sum (14.2.5), truncated to −M ≤ k ≤M. We will use the triangular
or Bartlett window which corresponds to the mean value of the ordinary periodogram
spectrum [12]. This window is defined by

wB(k)=

⎧⎪⎪⎨
⎪⎪⎩
M + 1− |k|

M + 1
, if −M ≤ k ≤M

0 , otherwise
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Replacing R(k) by wB(k)R(k) in Eq. (14.2.5), we obtain the classical Bartlett spec-
trum estimate:

ŜB(ω)=
M∑

k=−M
wB(k)R(k)e−jωk (14.2.6)

We chose the Bartlett window because this expression can be written in a compact
matrix form by introducing the (M + 1)-dimensional phase vector

sω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ejω

e2jω

...
eMjω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the (M + 1)×(M + 1) autocorrelation matrix R, defined as

Rkm = R(k−m)= σ2
vδ(k−m)+

L∑
i=1

Piejωi(k−m) , 0 ≤ k,m ≤M

Ignoring the 1/(M+1) scale factor arising from the definition of the Bartlett window,
we may write Eq. (14.2.6) as

ŜB(ω)= s†ωRsω (classical Bartlett spectrum) (14.2.7)

The autocorrelation matrix R of the sinusoids can also be written in terms of the
phasing vectors as

R = σ2
vI +

L∑
i=1

Pi sωis
†
ωi (14.2.8)

where I is the (M+1)×(M+1) identity matrix. It can be written even more compactly
by introducing the L×L diagonal power matrix, and the (M + 1)×L sinusoid matrix

P = diag{P1, P2, . . . , PL} , S = [sω1 , sω2 , . . . , sωL]

Then, Eq. (14.2.8) becomes
R = σ2

vI + SPS† (14.2.9)

Inserting Eq. (14.2.8) into (14.2.7) we find

ŜB(ω)= σ2
v s†ωsω +

L∑
i=1

Pi s†ωsωis
†
ωisω

Defining the function

W(ω)=
M∑

m=0

e−jωm = 1− e−jω(M+1)

1− e−jω
=

sin
(
ω(M + 1)

2

)

sin
(
ω
2

) e−jωM/2 (14.2.10)
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we note that
s†ωsωi =W(ω−ωi) and s†ωsω =W(0)=M + 1

Then, in this notation, the Bartlett spectrum (14.2.7) becomes

ŜB(ω)= σ2
v(M + 1)+

L∑
i=1

Pi
∣∣W(ω−ωi)

∣∣2
(14.2.11)

The effect of W(ω − ωi) is to smear each spectral line δ(ω − ωi) of the true
spectrum. If the frequencies ωi are too close to each other the smeared peaks will
tend to overlap with a resulting loss of resolution. The function W(ω) is the Fourier
transform of the rectangular window and is depicted below:

It has an effective resolution width of Δω = 2π/(M + 1). For fairly large Ms,
the first side lobe is about 13 dB down from the main lobe. As M increases, the main
lobe becomes higher and thinner, resembling more and more a delta function, which
improves the frequency resolution capability of this estimate.

Next, we derive a closed form expression [1085] for the AR, or maximum entropy,
spectral estimate. It is given by Eq. (14.1.1) and is obtained by fitting an order-M au-
toregressive model to the autocorrelation lags {R(0), R(1), . . . , R(M)}. This can be
done for any desired value of M. Autoregressive spectrum estimates generally work
well in modeling “peaked” or resonant spectra; therefore, it is expected that they will
work in this case, too. However, it should be kept in mind that AR models are not re-
ally appropriate for such sinusoidal signals. Indeed, AR models are characterized by
all-pole stable filters that always result in autocorrelation functions R(k) which decay
exponentially with the lag k; whereas Eq. (14.2.3) is persistent in k and never decays.

As a rule, AR modeling of sinusoidal spectra works very well as long as the signal to
noise ratios (SNRs) are fairly high. Pisarenko’s method, to be discussed later, provides
unbiased frequency estimates regardless of the SNRs. The LPC model parameters for the
AR spectrum estimate (14.1.1) are obtained by minimizing the mean-square prediction
error:

E = E[e∗nen]= a†Ra = min , en =
M∑

m=0

amyn−m (14.2.12)

where a = [1, a1, a2, . . . , aM]T is the prediction-error filter and R, the autocorrelation
matrix (14.2.9). The minimization of E must be subject to the linear constraint that the
first entry of a be unity. This constraint can be expressed in vector form

a0 = u†0a = 1 (14.2.13)
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where u0 = [1,0,0, . . . ,0]T is the unit vector consisting of 1 followed byM zeros. Incor-
porating this constraint with a Lagrange multiplier, we solve the minimization problem:

E = a†Ra+ μ(1− u†0a)= min

Differentiating with respect to a we obtain the normal equations:

Ra = μu0

To fix the Lagrange multiplier, multiply from the left by a† and use Eq. (14.2.13) to
get a†Ra = μa†u0, or, E = μ. Thus, μ is the minimized value of E, which we denote by
E. In summary, we have

Ra = Eu0 ⇒ a = ER−1u0 (14.2.14)

Multiplying from the left by u†0, we also find 1 = E(u†0R−1u0), or

E−1 = u†0R−1u0 = (R−1)00 (14.2.15)

which is, of course, the same as Eq. (12.9.18). The special structure of R allows the
computation of a and the AR spectrum in closed form. Applying the matrix inversion
lemma to Eq. (14.2.9), we find the inverse of R:

R−1 = 1

σ2
v
(I + SDS†) (14.2.16)

where D is an L×L matrix given by

D = −[σ2
vP−1 + S†S

]−1
(14.2.17)

Equation (14.2.16) can also be derived directly by assuming such an expression for
R−1 and then fixing D. The quantity σ2

vP−1 in D is a matrix of noise to signal ratios.
Inserting Eq. (14.2.16) into (14.2.14), we find for a :

a = ER−1u0 = E
σ2
v
[u0 + SDS†u0]= E

σ2
v
[u0 + Sd]

where we used the fact that s†ωiu0 = 1, which implies that

S†u0 =

⎡
⎢⎢⎢⎢⎢⎣

s†ω1

s†ω2

...

s†ωL

⎤
⎥⎥⎥⎥⎥⎦u0 =

⎡
⎢⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎥⎦ ≡ v (i.e., a column of L ones)

and defined

d =

⎡
⎢⎢⎢⎢⎢⎣
d1

d2

...
dL

⎤
⎥⎥⎥⎥⎥⎦ = Dv , or, di =

L∑
j=1

Dij
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Using Eq. (14.2.15), we have also

E−1 = u†0R−1u0 = 1

σ2
v

u†0[I + SDS†]= 1

σ2
v
[1+ vTDv]

= 1

σ2
v
[1+ vTd]= 1

σ2
v

[
1+

L∑
i=1

di
]

and, therefore,

E = σ2
v

[
1+

L∑
i=1

di
]−1

(14.2.18)

We finally find for the prediction-error filter

a = u0 + Sd

1+ vTd
=
u0 +

L∑
i=1

disωi

1+
L∑
i=1

di

(14.2.19)

The frequency response A(ω) of the prediction-error filter is obtained by dotting
the phasing vector sω into a :

A(ω)=
M∑

m=0

ame−jωm = s†ωa =
1+

L∑
i=1

dis†ωsωi

1+
L∑
i=1

di

using the result that s†ωsωi =W(ω−ωi), we finally find:

A(ω)=
1+

L∑
i=1

diW(ω−ωi)

1+
L∑
i=1

di

(14.2.20)

and for the AR, or maximum entropy, spectrum estimate:

ŜAR(ω)= E
|A(ω)|2 = σ2

v

∣∣∣∣1+
L∑
i=1

di
∣∣∣∣

∣∣∣∣∣∣1+
L∑
i=1

diW(ω−ωi)

∣∣∣∣∣∣
2 (14.2.21)

The frequency dependence is shown explicitly. Note, that the matrix S†S appearing
in the definition of D, can also be expressed in terms of W(ω). Indeed, the ijth element
of S†S is, for 0 ≤ i, j ≤ L:

(S†S)ij= s†ωisωj =W(ωi −ωj)
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One interesting consequence of Eq. (14.2.21) is that in the limit of very weak noise
σ2
v → 0, it vanishes. In this limit the mean-square prediction error (14.2.18) vanishes.

This is to be expected, since in this case the noise term vn is absent from the sum
(14.2.1), rendering yn a deterministic signal; that is, one that can be predicted from a
few past values with zero prediction error. To avoid such behavior when σ2

v is small,
the factor E is sometimes dropped altogether from the spectral estimate resulting in the
“pseudo-spectrum”

ŜAR(ω)= 1

|A(ω)|2 (14.2.22)

This expression will exhibit fairly sharp peaks at the sinusoid frequencies, but the
magnitude of these peaks will no longer be representative of the power levels Pi. This ex-
pression can only be used to extract the frequenciesωi. Up to a scale factor, Eq. (14.2.22)
can also be written in the form

ŜAR(ω)= 1∣∣s†ωR−1u0
∣∣2

Example 14.2.1: To see the effect of the SNR on the sharpness of the peaks in the AR spectrum,
consider the case M = L = 1. Then,

S†S = s†ω1
sω1 =

[
1, e−jω1

][ 1
ejω1

]
=M + 1 = 2

D = −[σ2
vP−1

1 + 2]−1

a = u0 + d1sω1

1+ d1
=

⎡
⎢⎣ 1

d1

1+ d1
ejω1

⎤
⎥⎦

Using d1 = D, we find

a =
⎡
⎢⎣ 1

− P1

P1 +σ2
v
ejω1

⎤
⎥⎦ , A(z)= 1+ a1z−1

The prediction-error filter has a zero at

z1 = −a1 = P1

P1 +σ2
v
ejω1

The zero z1 is inside the unit circle, as it should. The lower the SNR = P1/σ2
v , the more

inside it lies, resulting in a more smeared peak about ω1. As the SNR increases, the zero
moves closer to the unit circle at the right frequency ω1, resulting in a very sharp peak in
the spectrum (14.2.22). �	

Example 14.2.2: For the case of a single sinusoid and arbitrary order M, compute the 3-dB
width of the spectral peak of AR spectrum and compare it with the width of the Bartlett
spectrum. Using Eq. (14.2.20), we have

A(ω)= 1+ d1W(ω−ω1)
1+ d1

, d1 = −[SNR−1 +M + 1]−1
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where we set SNR = P1/σ2
v . The value of A(ω) at the sinusoid frequency is

A(ω1)= 1+ d1W(0)
1+ d1

= 1

1+ SNR ·M

It is small in the limit of high SNR resulting in a high peak in the spectrum. The half-width
at half-maximum of the AR spectrum is defined by the condition

S(ω1 +Δω)
S(ω1)

= 1

2
, or, equivalently,

|A(ω1 +Δω)|2
|A(ω1)|2 = 2

To first order in Δω, we have

W(Δω)=
M∑

m=0

e−jmΔω =
M∑

m=0

(1− jmΔω)= (M + 1)−1

2
jM(M + 1)Δω

where we used
∑M

m=0 m =M(M + 1)/2. Then, we find

A(ω1 +Δω)
A(ω1)

= 1+ d1W(Δω)
1+ d1W(0)

= 1− 1

2
SNR · jM(M + 1)Δω

The condition for half-maximum requires that the above imaginary part be unity, which
gives for the 3-dB width [1083]

(Δω)3dB= 2Δω = 4

SNR ·M(M + 1)

Thus, the peak becomes narrower both with increasing SNR and with order M. Note that
it depends on M like O(1/M2), which is a factor of M smaller than the Bartlett width that
behaves like O(1/M). �	

More generally, in the case of multiple sinusoids, if the SNRs are high the spectrum
(14.2.22) will exhibit sharp peaks at the desired sinusoid frequencies. The mechanism
by which this happens can be seen qualitatively from Eq. (14.2.20) as follows: The matrix
S†S inD introduces cross-coupling among the various frequenciesωi. However, if these
frequencies are well separated from each other (by more than 2π/(M+1),) then the off-
diagonal elements of S†S, namely W(ωi−ωj) will be small, and for the purpose of this
argument may be taken to be zero. This makes the matrix S†S approximately diagonal.
Since W(0)= M + 1 it follows that S†S = (M + 1)I, and D will become diagonal with
diagonal elements

di = Dii = −[σ2
vP

−1
i +M + 1]−1= − Pi

σ2
v + (M + 1)Pi

Evaluating A(ω) at ωi and keeping only the ith contribution in the sum we find,
approximately,

A(ωi)
 1+ diW(0)

1+
L∑
j=0

dj

= 1

1+
L∑
j=0

dj

1

1+ (M + 1)
(
Pi
σ2
v

)
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which shows that if the SNRs Pi/σ2
v are high, A(ωi) will be very small, resulting in large

spectral peaks in Eq. (14.2.22). The resolvability properties of the AR estimate improve
both when the SNRs increase and when the order M increases. The mutual interaction
of the various sinusoid components cannot be ignored altogether. One effect of this
interaction is biasing in the estimates of the frequencies; that is, even if two nearby
peaks are clearly separated, the peaks may not occur exactly at the desired sinusoid
frequencies, but may be slightly shifted. The degree of bias depends on the relative
separation of the peaks and on the SNRs. With the above qualifications in mind, we can
state that the LPC approach to this problem is one of the most successful ones.

Capon’s maximum likelihood (ML), or minimum energy, spectral estimator is given
by the expression [1081]

ŜML(ω)= 1

s†ωR−1sω
(14.2.23)

It can be justified by envisioning a bank of narrowband filters, each designed to allow
a sinewave through at the filter’s center frequency and to attenuate all other frequency
components. Thus, the narrowband filter with center frequency ω is required to let this
frequency go through unchanged, that is,

A(ω)= s†ωa = 1

while at the same time it is required to minimize the output power

a†Ra = min

The solution of this minimization problem subject to the above constraint is readily
found to be

a = R−1sω

s†ωR−1sω

which gives for the minimized output power at this frequency

a†Ra = 1

s†ωR−1sω

Using Eq. (14.2.16), we find

s†ωR−1sω = 1

σ2
v

[
s†ωsω +

L∑
i,j=1

Dijs
†
ωsωis

†
ωjsω

]

= 1

σ2
v

[
(M + 1)+

L∑
i,j=1

DijW(ω−ωi)W∗(ω−ωj)
]

and the theoretical ML spectrum becomes in this case:

ŜML(ω)= σ2
v[

(M + 1)+
L∑

i,j=1

DijW(ω−ωi)W∗(ω−ωj)
] (14.2.24)
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Example 14.2.3: Determine the matrix D and vector d for the case of L = 2 and arbitrary M.
The matrix S†S is in this case

S†S =
[

W(0) W(ω1 −ω2)
W(ω2 −ω1) W(0)

]
=

[
M + 1 W12

W∗
12 M + 1

]

where W12 =W(ω1 −ω2). Then, D becomes

D = −
[
σ2
vP

−1
1 +M + 1 W12

W∗
12 σ2

vP
−1
2 +M + 1

]−1

, or,

D = 1

|W12|2 − (σ2
vP−1

1 +M + 1)(σ2
vP−1

2 +M + 1)

[
σ2
vP

−1
2 +M + 1 −W12

−W∗
12 σ2

vP
−1
1 +M + 1

]

and, hence

d = D
[

1
1

]
= 1

|W12|2 − (σ2
vP−1

1 +M + 1)(σ2
vP−1

2 +M + 1)

[
σ2
vP

−1
2 +M + 1−W12

σ2
vP

−1
1 +M + 1−W∗

12

]

Using the results of Example 14.2.3, we have carried out a computation illustrating
the three spectral estimates. Fig. 14.2.1 shows the theoretical autoregressive, Bartlett,
and maximum likelihood spectral estimates given by Eqs. (14.2.11), (14.2.22), and (14.2.24),
respectively, for two sinusoids of frequencies

ω1 = 0.4π, ω2 = 0.6π

and equal powers SNR = 10 log10(P1/σ2
v)= 6 dB, and M = 6. To facilitate the com-

parison, all three spectra have been normalized to 0 dB at the frequency ω1 of the first
sinusoid. It is seen that the lengthM = 6 is too short for the Bartlett spectrum to resolve
the two peaks. The AR spectrum is the best (however, close inspection of the graph will
reveal a small bias in the frequency of the peaks, arising from the mutual interaction of
the two sinewaves). The effect of increasing the SNR is shown on the right in Fig. 14.2.1,
where the SNR has been changed to 12 dB. It is seen that the AR spectral peaks become
narrower, thus increasing their resolvability.

To show the effect of increasing M, we kept SNR = 6 dB, and increased the order to
M = 12 and M = 18. The resulting spectra are shown in Fig. 14.2.2. It is seen that all
spectra tend to become better. The interplay between resolution, order, SNR, and bias
has been studied in [1083,1085,1088].

The main motivation behind the definition (14.2.22) for the pseudospectrum was to
obtain an expression that exhibits very sharp spectral peaks at the sinusoid frequencies
ωi. Infinite resolution can, in principle, be achieved if we can find a polynomial A(z)
that has zeros on the unit circle at the desired frequency angles; namely, at

zi = ejωi , i = 1,2, . . . , L (14.2.25)

Pisarenko’s method determines such a polynomial on the basis of the autocorrelation
matrix R. The desired conditions on the polynomial are

A(zi)= A(ωi)= 0 , i = 1,2, . . . , L (14.2.26)
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Fig. 14.2.1 AR, Bartlett, and ML spectrum estimates.
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Fig. 14.2.2 AR, Bartlett, and ML spectrum estimates.

where we slightly abuse the notation and write A(ejω)= A(ω). To satisfy these con-
ditions, the degree M of the polynomial A(z) must necessarily be M ≥ L; then, the
remaining M−L zeros of A(z) could be arbitrary. Let a be the vector of coefficients of
A(z), so that

a =

⎡
⎢⎢⎢⎢⎢⎣
a0

a1

...
aM

⎤
⎥⎥⎥⎥⎥⎦ , A(z)= a0 + a1z−1 + · · · + aMz−M

Noting that A(ω)= s†ωa, Eqs. (14.2.26) may be combined into one vectorial equation

S†a =

⎡
⎢⎢⎢⎢⎢⎣

s†ω1

s†ω2

...

s†ωL

⎤
⎥⎥⎥⎥⎥⎦ a =

⎡
⎢⎢⎢⎢⎢⎣
A(ω1)
A(ω2)

...
A(ωL)

⎤
⎥⎥⎥⎥⎥⎦ = 0 (14.2.27)
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But then, Eq. (14.2.9) implies that

Ra = σ2
va+ SPS†a = σ2

va

or, that σ2
v must be an eigenvalue of R with a the corresponding eigenvector:

Ra = σ2
va (14.2.28)

The quantity σ2
v is actually the smallest eigenvalue of R. To see this, consider any

other eigenvector a of R, and normalize it to unit norm

Ra = λa , with a†a = 1 (14.2.29)

Then, (14.2.9) implies that

λ = λa†a = a†Ra = σ2
va†a+ aSPS†a

= σ2
v +

[
A(ω1)∗, A(ω2)∗, . . . , A(ωL)∗

]
⎡
⎢⎢⎢⎢⎢⎣
P1

P2

. . .

PL

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
A(ω1)
A(ω2)

...
A(ωL)

⎤
⎥⎥⎥⎥⎥⎦

= σ2
v +

L∑
i=1

Pi|A(ωi)|2

which shows that λ is equal to σ2
v shifted by a non-negative amount. If the eigenvector

satisfies the conditions (14.2.26), then the shift in λ vanishes. Thus, the desired polyno-
mial A(z) can be found by solving the eigenvalue problem (14.2.29) and selecting the
eigenvector belonging to the minimum eigenvalue. This is Pisarenko’s method [1084].
As a byproduct of the procedure, the noise power level σ2

v is also determined, which in
turn allows the determination of the power matrix P, as follows. Writing Eq. (14.2.9) as

R−σ2
vI = SPS†

and acting by S† and S from the left and right, we obtain

P = U†(R−σ2
vI)U , where U = S(S†S)−1 (14.2.30)

Since there is freedom in selecting the remaining M − L zeros of the polynomial
A(z), it follows that there are (M − L)+1 eigenvectors all belonging to the minimum
eigenvalueσ2

v . Thus, the (M+1)-dimensional eigenvalue problem (14.2.29) has two sets
of eigenvalues: (a) M + 1 − L degenerate eigenvalues equal to σ2

v , and (b) L additional
eigenvalues which are strictly greater than σ2

v .
The (M+ 1−L)-dimensional subspace spanned by the degenerate eigenvectors be-

longing to σ2
v is called the noise subspace. The L-dimensional subspace spanned by

the eigenvectors belonging to the remaining L eigenvalues is called the signal subspace.
Since the signal subspace is orthogonal to the noise subspace. and the L linearly inde-
pendent signal vectors sωi , i = 1,2, . . . , L are also orthogonal to the noise subspace, it
follows that the signal subspace is spanned by the sωis.

In the special case when L =M (corresponding to the Pisarenko’s method), there is
no degeneracy in the minimum eigenvalue, and there is a unique minimum eigenvector.
In this case, all M = L zeros of A(z) lie on the unit circle at the desired angles ωi.
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Example 14.2.4: Consider the case L =M = 2. The matrix R is written explicitly as:

R = σ2
vI + P1sω1 s†ω1

+ P2sω2 s†ω2
, or,

R =
⎡
⎢⎣ σ2

v + P1 + P2 P1e−jω1 + P2e−jω2 P1e−2jω1 + P2e−2jω2

P1ejω1 + P2ejω2 σ2
v + P1 + P2 P1e−jω1 + P2e−jω2

P1e2jω1 + P2e2jω2 P1ejω1 + P2ejω2 σ2
v + P1 + P2

⎤
⎥⎦

It is easily verified that the (unnormalized) vector

a =
⎡
⎢⎣ a0

a1

a2

⎤
⎥⎦ =

⎡
⎢⎣ 1
−(ejω1 + ejω2)

ejω1ejω2

⎤
⎥⎦

is an eigenvector of R belonging to λ = σ2
v . In this case, the polynomial A(z) is

A(z) = a0 + a1z−1 + a2z−2 = 1− (ejω1 + ejω2)z−1 + ejω1ejω2z−2

= (1− ejω1z−1)(1− ejω2z−1)

exhibiting the two desired zeros at the sinusoid frequencies. �	

Example 14.2.5: Consider the case M = 2, L = 1. The matrix R is

R = σ2
vI + P1sω1 s†ω1

=
⎡
⎢⎣ σ2

v + P1 P1e−jω1 P1e−2jω1

P1ejω1 σ2
v + P1 P1e−jω1

P1e2jω1 P1ejω1 σ2
v + P1

⎤
⎥⎦

It is easily verified that the three eigenvectors of R are

e0 =
⎡
⎢⎣ 1
−ejω1

0

⎤
⎥⎦ , e1 =

⎡
⎢⎣ 0

1
−ejω1

⎤
⎥⎦ , e2 =

⎡
⎢⎣ 1
ejω1

e2jω1

⎤
⎥⎦

belonging to the eigenvalues

λ = σ2
v , λ = σ2

v , λ = σ2
v + 3P1

The first two eigenvectors span the noise subspace and the third, the signal subspace. Any
linear combination of the noise eigenvectors also belongs to λ = σ2

v . For example, if we
take

a =
⎡
⎢⎣ a0

a1

a2

⎤
⎥⎦ =

⎡
⎢⎣ 1
−ejω1

0

⎤
⎥⎦− ρ

⎡
⎢⎣ 0

1
−ejω1

⎤
⎥⎦ =

⎡
⎢⎣ 1
−(ρ+ ejω1)

ρejω1

⎤
⎥⎦

the corresponding polynomial is

A(z)= 1− (ρ+ ejω1)z−1 + ρejω1z−2 = (1− ejω1z−1)(1− ρz−1)

showing one desired zero at z1 = ejω1 and a spurious zero. �	
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The Pisarenko method can also be understood in terms of a minimization criterion
of the type (14.2.12), as follows. For any set of coefficients a, define the output signal

en =
M∑

m=0

amyn−m = a0yn + a1yn−1 + · · · + aMyn−M

Then, the mean output power is expressed as

E = E[e∗nen]= a†Ra = σ2
v a†a+

L∑
i=1

Pi|A(ωi)|2

Imposing the quadratic constraint
a†a = 1 (14.2.31)

we obtain

E = E[e∗nen]= a†Ra = σ2
v +

L∑
i=1

Pi|A(ωi)|2 (14.2.32)

It is evident that the minimum of this expression is obtained when conditions (14.2.26)
are satisfied. Thus, an equivalent formulation of the Pisarenko method is to minimize
the performance index (14.2.32) subject to the quadratic constraint (14.2.31). The AR
and the Pisarenko spectrum estimation techniques differ only in the type of constraint
imposed on the filter weights a.

We observed earlier that the AR spectral peaks become sharper as the SNR increases.
One way to explain this is to note that in the high-SNR limit or, equivalently, in the
noiseless limit σ2

v → 0, the linear prediction filter tends to the Pisarenko filter, which
has infinite resolution. This can be seen as follows. In the limit σ2

v → 0, the matrix D
defined in Eq. (14.2.17) tends to

D→ −(S†S)−1

and therefore, R−1 given by Eq. (14.2.16) becomes singular, converging to

R−1 → 1

σ2
v

[
I − S(S†S)−1S†

]

Thus, up to a scale factor the linear prediction solution, R−1u0 will converge to

a = [I − S(S†S)−1S†
]
u0 (14.2.33)

The matrix [I − S(S†S)−1S†
]

is the projection matrix onto the noise subspace, and
therefore, a will lie in that subspace, that is, S†a = 0. In the limit σ2

v → 0, the noise
subspace of R consists of all the eigenvectors with zero eigenvalue, Ra = 0. We note
that the particular noise subspace eigenvector given in Eq. (14.2.33) corresponds to the
so-called minimum-norm eigenvector, discussed in Sec. 14.6.

In his original method, Pisarenko considered the special case when the number of
sinusoids was equal to the filter order, L = M. This implies that the noise subspace is
one-dimensional, M+1−L = 1, consisting of a single eigenvector with zero eigenvalue,
such that Ra = 0. In this case, the (M + 1)×(M + 1) singular matrix R has rank M
and all its principal submatrices are nonsingular. As we mentioned in Sec. 12.5, such
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singular Toeplitz matrices admit a general sinusoidal representation. It is obtained by
setting σ2

v = 0 and L =M in Eq. (14.2.8):

R =
L∑
i=1

Pisωis
†
ωi , or, R(k)=

L∑
i=1

Piejωik

In summary, we have discussed the theoretical aspects of four methods of estimating
the frequencies of sinusoids in noise. In practice, an estimate of the correlation matrix
R can be obtained in terms of the sample autocorrelations from a block of data values:

R̂(k)= 1

N

N−1−k∑
n=0

yn+ky∗n , k = 0,1, . . . ,M

The quality of the resulting estimates of the eigenvectors will be discussed in Sec-
tion 14.11. The AR and Pisarenko methods can also be implemented adaptively. The
adaptive approach is based on the minimization criteria (14.2.12) and (14.2.32) and will
be discussed in Chap. 16, where also some simulations will be presented.

14.3 Superresolution Array Processing

One of the main signal processing functions of sonar, radar, or seismic arrays of sen-
sors is to detect the presence of one or more radiating point-sources. This is a problem
of spectral analysis, and it is the spatial frequency analog of the problem of extracting
sinusoids in noise discussed in the previous section. The same spectral analysis tech-
niques can be applied to this problem. All methods aim at producing a high-resolution
estimate of the spatial frequency power spectrum of the signal field incident on the ar-
ray of sensors. The directions of point-source emitters can be extracted by identifying
the sharpest peaks in this spectrum.

In this section, we discuss conventional (Bartlett) beamforming, as well as the maxi-
mum likelihood, linear prediction, and eigenvector based methods. We also discuss some
aspects of optimum beamforming for interference nulling [1093–1095,1352,1167–1170].

Consider a linear array of M + 1 sensors equally spaced at distances d, and a plane
wave incident on the array at an angle θ1 with respect to the array normal, as shown
below.
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The conventional beamformer introduces appropriate delays at the outputs of each
sensor to compensate for the propagation delays of the wavefront reaching the array.
The output of the beamformer (the “beam”) is the sum

e(t)=
M∑

m=0

ym(t − τm) (14.3.1)

where ym(t), m = 0,1, . . . ,M is the signal at the mth sensor. To reach sensor 1, the
wavefront must travel an extra distance d sinθ1, to reach sensor 2 it must travel dis-
tance 2d sinθ1, and so on. Thus, it reaches these sensors with a propagation delay of
d sinθ1/c, 2d sinθ1/c, and so on. The last sensor is reached with a delay ofMd sinθ1/c
seconds. Thus, to time-align the first and the last sensor, the output of the first sensor
must be delayed by τ0 =Md sinθ1/c, and similarly, themth sensor is time-aligned with
the last one, with a delay of

τm = 1

c
(M −m)d sinθ1 (14.3.2)

In this case, all terms in the sum (14.3.1) are equal to the value measured at the
last sensor, that is, ym(t − τm)= yM(t), and the output of the beamformer is e(t)=
(M + 1)yM(t), thus enhancing the received signal by a factor of M + 1 and hence its
power by a factor (M + 1)2. The concept of beamforming is the same as that of signal
averaging. If there is additive noise present, it will contribute incoherently to the output
power, that is, by a factor of (M+1), whereas the signal power is enhanced by (M+1)2.
Thus, the gain in the signal to noise ratio at the output of the array (the array gain) is a
factor of M + 1.

In the frequency domain, the above delay-and-sum operation becomes equivalent to
linear weighting. Fourier transforming Eq. (14.3.1) we have

e(ω)=
M∑

m=0

ym(ω)e−jωτm

which can be written compactly as:
e = aTy (14.3.3)

where a and y are the (M + 1)-vectors of weights and sensor outputs:

a =

⎡
⎢⎢⎢⎢⎢⎣
e−jωτ0

e−jωτ1

...
e−jωτM

⎤
⎥⎥⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎢⎢⎣
y0(ω)
y1(ω)

...
yM(ω)

⎤
⎥⎥⎥⎥⎥⎦

From now on, we will concentrate on narrow-band arrays operating at a given fre-
quency ω and the dependence on ω will not be shown explicitly. This assumes that the
signals from all the sensors have been subjected to narrow-band prefiltering that leaves
only the narrow operating frequency band. The beamformer now acts as a linear com-
biner, as shown in Fig. 14.3.1. A plane wave at the operating frequency ω, of amplitude
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Fig. 14.3.1 Beamforming

A1, and incident at the above angle θ1, will have a value at the space-time point (t, r)
given by

A1ejωt−jk·r

Dropping the sinusoidal t-dependence and evaluating this expression on the x-axis,
we have

A1e−jkxx

where kx is the x-components of the wave vector k

kx = ω
c

sinθ1

The value of this field at the mth sensor, xm =md, is then

A1e−jmk1

where k1 denotes the normalized wavenumber

k1 = kxd = ωd
c

sinθ1 = 2πd
λ

sinθ1 , λ = wavelength (14.3.4)

This is the spatial analog of the digital frequency. To avoid aliasing effects arising
from the spatial sampling process, the spatial sampling frequency 1/d must be greater
than or equal to twice the spatial frequency 1/λ of the wave. Thus, we must have
d−1 ≥ 2λ−1, or d ≤ λ/2. Since sinθ1 has magnitude less than one, the sampling
condition forces k1 to lie within the Nyquist interval

−π ≤ k1 ≤ π

In this case the correspondence between k1 and θ1, is unique. For any angle θ and
corresponding normalized wavenumber k, we introduce the phasing, or steering vector

sk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ejk

e2jk

...
eMjk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, k = 2πd

λ
sinθ (14.3.5)
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In this notation, the plane wave measured at the sensors is represented by the vector

y = A1s∗k1
= A1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
e−jk1

e−2jk1

...
e−Mjk1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The steering vector of array weights a, steered towards an arbitrary direction θ, is
also expressed in terms of the phasing vector sk; we have

am = e−jωτm = e−jω(M−m)(d sinθ/c) = e−jMkejmk

or, ignoring the overall common phase e−jMk, we have

a = sk (steering vector towards k = 2πd
λ

sinθ) (14.3.6)

The output of the beamformer, steered towards θ, is

e = aTy = sTky = A1 sTk s∗k1
= A1 s†k1

sk = A1W(k− k1)∗

whereW(·)was defined in Sec. 14.2. The mean output power of the beamformer steered
towards k is

S(k)= E[e∗e]= a†E[y∗yT]a = a†Ra = s†kRsk

Using y = A1s∗k1
, we find R = E[y∗yT]= P1sk1s†k1

, where P1 = E[|A1|2], and

S(k) = s†kRsk = P1s†ksk1s†k1
sk

= P1|W(k− k1)|2

If the beam is steered on target, that is, ifθ = θ1, or, k = k1, then S(k1)= P1(M+1)2

and the output power is enhanced. The response pattern of the array has the same shape
as the function W(k), and therefore its resolution capability is limited to the width
Δk = 2π/(M + 1) of the main lobe of W(k). Setting Δk = (2πd/λ)Δθ, we find the
basic angular resolution to be Δθ = λ/

(
(M+1)d

)
, or, Δθ = λ/D, where D = (M+1)d

is the effective aperture of the array. This is the classical Rayleigh limit on the resolving
power of an optical system with aperture D [1092].

Next, we consider the problem of resolving the directions of arrival of multiple plane
waves incident on an array in the presence of background noise. We assume L planes
waves incident on an array of M+1 sensors from angles θi, i = 1,2, . . . , L. The incident
field is sampled at the sensors giving rise to a series of “snapshots.” At the nth snapshot
time instant, the field received at the mth sensor has the form [1394]

ym(n)= vm(n)+
L∑
i=1

Ai(n)e−jmki , m = 0,1, . . . ,M (14.3.7)
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where Ai(n) is the amplitude of the ith wave (it would be a constant independent of
time if we had exact sinusoidal dependence at the operating frequency), and ki are the
normalized wavenumbers related to the angles of arrival by

ki = 2πd
λ

sinθi , i = 1,2, . . . , L (14.3.8)

and vm(n) is the background noise, which is assumed to be spatially incoherent, and
also uncorrelated with the signal amplitudes Ai(n); that is,

E[vm(n)∗vk(n)]= σ2
vδmk , E[vm(n)∗Ai(n)]= 0 (14.3.9)

Eq. (14.3.7) can be written in vector form as follows

y(n)= v(n)+
L∑
i=1

Ai(n)s∗ki (14.3.10)

The autocorrelation matrix of the signal field sensed by the array is

R = E[y(n)∗y(n)T]= σ2
vI +

L∑
i,j=1

skiPijs
†
kj (14.3.11)

where I is the (M+1)×(M+1) unit matrix, and Pij is the amplitude correlation matrix

Pij = E[Ai(n)∗Aj(n)] , 1 ≤ i, j ≤ L (14.3.12)

If the sources are uncorrelated with respect to each other, the power matrix Pij is
diagonal. Introducing the (M + 1)×L signal matrix

S = [sk1 , sk2 , . . . , skL]

we may write Eq. (14.3.11) as
R = σ2

vI + SPS† (14.3.13)

which is the same as Eq. (14.2.9) of the previous section. Therefore, the analytical ex-
pressions of the various spectral estimators can be transferred to this problem as well.
We summarize the various spectrum estimators below:

ŜB(k)= s†kRsk (conventional Bartlett beamformer)

ŜLP(k)= 1∣∣s†kR−1u0
∣∣2 (LP spectrum estimate)

ŜML(k)= 1

s†kR−1sk
(ML spectrum estimate)

For example, for uncorrelated sources Pij = Piδij, the Bartlett spatial spectrum will be

ŜB(k)= s†kRsk = σ2
v(M + 1)+

L∑
i=1

Pi|W(k− ki)|2
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which gives rise to peaks at the desired wavenumbers ki from which the angles θi can
be extracted. When the beam is steered towards the ith plane wave, the measured power
at the output of the beamformer will be

ŜB(ki)= σ2
v(M + 1)+Pi(M + 1)2+

∑
j �=i

Pj|W(ki − kj)|2

Ignoring the third term for the moment, we observe the basic improvement in the
SNR offered by beamforming:

Pi(M + 1)2

σ2
v(M + 1)

= Pi
σ2
v
(M + 1)

If the sources are too close to each other [closer than the beamwidth of W(k)], the
resolution ability of the beamformer worsens. In such cases, the alternative spectral
estimates offer better resolution, with the LP estimate typically having a better perfor-
mance. The resolution capability of both the ML and the LP estimates improves with
higher SNR, whereas that of the conventional beamformer does not.

The Pisarenko method can also be applied here. As discussed in the previous section,
the (M+ 1)-dimensional eigenvalue problem Ra = λa has an L-dimensional signal sub-
space with eigenvalues greater than σ2

v , and an (M+1−L)-dimensional noise subspace
spanned by the degenerate eigenvectors belonging to the minimum eigenvalue of σ2

v .
Any vector a in the noise subspace will have at least L zeros at the desired wavenumber
frequencies ki, that is, the polynomial

A(z)= a0 + a1z−1 + a2z−2 + · · · + aMz−M

will have L zeros at
zi = ejki , i = 1,2, . . . , L

and (M − L) other spurious zeros. This can be seen as follows: If Ra = σ2
va, then

Eq. (14.3.13) implies that

(σ2
vI + SPS†)a = σ2

va ⇒ SPS†a = 0

Dotting with a†, we find that a†SPS†a = 0, and since P is assumed to be strictly
positive definite, it follows that S†a = 0, or

S†a =

⎡
⎢⎢⎢⎢⎢⎣
A(k1)
A(k2)

...
A(kL)

⎤
⎥⎥⎥⎥⎥⎦ = 0

The L largest eigenvalues of R correspond to the signal subspace eigenvectors and
can be determined by reducing the original (M + 1)×(M + 1) eigenvalue problem for
R into a smaller L×L eigenvalue problem.

Let e be any eigenvector in the signal subspace, that is, Re = λe, with λ > σ2
v . It

follows that SPS†e = (λ−σ2
v)e. Multiplying both sides by S† we obtain (S†SP)(S†e)=

(λ−σ2
v)(S†e), which states that the L-dimensional vector S†e is an eigenvector of the
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L×Lmatrix S†SP. We can turn this into a hermitian eigenvalue problem by factoring the
power matrix P into its square root factors, P = GG†, and multiplying both sides of the
reduced eigenvalue problem by G†. This gives (G†S†SG)(G†S†e)= (λ−σ2

v)(G†S†e).
Thus, we obtain the L×L hermitian eigenvalue problem

F f = (λ−σ2
v)f , where F = G†S†SG , f = G†S†e (14.3.14)

The L signal subspace eigenvalues are obtained from the solution of this reduced
eigenproblem. From each L-dimensional eigenvector f, one can also construct the cor-
responding (M+ 1)-dimensional eigenvector e. Because e lies in the signal subspace, it
can be expressed as a linear combination of the plane waves

e =
L∑
i=1

ciski = [sk1 , sk2 , . . . , skL]

⎡
⎢⎢⎢⎢⎢⎣
c1

c2

...
cL

⎤
⎥⎥⎥⎥⎥⎦ = Sc

It, then, follows from Eq. (14.3.14) that

f = G†S†e = G†S†Sc ⇒ c = (S†S)−1G−†f

and therefore,
e = Sc = S(S†S)−1G−†f (14.3.15)

Example 14.3.1: Using the above reduction method, determine the signal subspace eigenvec-
tors and eigenvalues for the case of two equal-power uncorrelated plane waves and arbi-
trary M. The 2×2 matrix P becomes proportional to the identity matrix P = P1I. The
reduced matrix F is then

F = P1S†S = P1

[
s†1s1 s†1s2

s†2s1 s†2s2

]
= P1

[
M + 1 W12

W∗
12 M + 1

]

where s1 = sk1 , s2 = sk2 , and W12 = W(k1 − k2). In the equal-power case, F is always
proportional to S†S, and therefore, f is an eigenvector of that. It follows that (S†S)−1f will
be a scalar multiple of f and that Eq. (14.3.15) can be simplified (up to a scalar factor) to
e = Sf. The two eigenvalues and eigenvectors of F are easily found to be

λ−σ2
v = P1

(
M + 1± |W12|

)
, f =

[
1

±e−jθ12

]

where θ12 is the phase of W12. Using e = Sf, it follows that the two signal subspace
eigenvectors will be

e = s1 ± e−jθ12 s2

The eigenvalue spread of R is in this case

λmax

λmin
= σ2

v +
(
M + 1+ |W12|

)
P1

σ2
v

= 1+ SNR · (M + 1+ |W12|
)

where SNR = P1/σ2
v . It can be written in the form

λmax

λmin
= 1+ SNReff ·

(
1+ | cosφ12|

)
where SNReff = SNR · (M + 1) is the effective SNR of the array, or the array gain, and φ12

is the angle between the two signal vectors, that is, cosφ12 = s†1s2/
(‖s1‖ · ‖s2‖

)
. �	
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In practice, estimates of the covariance matrix R are used. For example, if the sensor
outputs are recorded over N snapshots, that is, y(n), n = 0,1, . . . ,N − 1, then, the
covariance matrixRmay be estimated by replacing the ensemble average of Eq. (14.3.11)
with the time-average:

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T (empirical R)

Since the empirical R will not be of the exact theoretical form of Eq. (14.3.11) the
degeneracy of the noise subspace will be lifted somewhat. The degree to which this
happens depends on how much the empirical R differs from the theoretical R. One
can still use the minimum eigenvector a to define the polynomial A(z) and from it an
approximate Pisarenko spectral estimator

ŜP(k)= 1

|A(z)|2 , where z = ejk

which will have sharp and possibly biased peaks at the desired wavenumber frequencies.

Example 14.3.2: Consider the case L = M = 1, defined by the theoretical autocorrelation
matrix

R = σ2
vI + P1sk1 s†k1

=
[
σ2
v + P1 P1e−jk1

P1ejk1 σ2
v + P1

]

Its eigenvectors are:

e0 =
[

1
−ejk1

]
, e1 = sk1 =

[
1
ejk1

]

belonging to the eigenvalues λ0 = σ2
v and λ1 = σ2

v + 2P1, respectively. Selecting as the
array vector

a = e0 =
[

1
−ejk1

]

we obtain a polynomial with a zero at the desired location:

A(z)= a0 + a1z−1 = 1− ejk1z−1

Now, suppose that the analysis is based on an empirical autocorrelation matrix R which
differs from the theoretical one by a small amount:

R̂ = R+ΔR

Using standard first-order perturbation theory, we find the correction to the minimum
eigenvalue λ0 and eigenvector e0

λ̂0 = λ0 +Δλ0 , ê0 = e0 +Δc e1

where the first-order correction terms are

Δλ0 = e†0(ΔR)e0

e†0e0

, Δc = e†1(ΔR)e0

(λ0 − λ1)e
†
1e1
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The change induced in the zero of the eigenpolynomial is found as follows

â = ê0 =
[

1
−ejk1

]
+Δc

[
1
ejk1

]
=

[
1+Δc

−(1−Δc)ejk1

]

so that
Â(z)= (1+Δc)−(1−Δc)ejk1z−1

and the zero is now at

z1 = 1−Δc
1+Δc

ejk1 
 (1− 2Δc)ejk1

to first-order in Δc. Since Δc is generally complex, the factor (1− 2Δc) will cause both a
change (bias) in the phase of the zero ejk1 , and will move it off the unit circle reducing the
resolution. Another way to see this is to compute the value of the polynomial steered on
target; that is,

Â(k1)= s†k1
a = s†k1

(e0 +Δc e1)= Δc s†k1
e1 = 2Δc

which is small but not zero. �	

The high resolution properties of the Pisarenko and other eigenvector methods de-
pend directly on the assumption that the background noise field is spatially incoherent,
resulting in the special structure of the autocorrelation matrix R. When the noise is
spatially coherent, a different eigenanalysis must be carried out. Suppose that the co-
variance matrix of the noise field v is

E[v∗vT]= σ2
vQ

where Q reflects the spatial coherence of v. Then the covariance matrix of Eq. (14.3.13)
is replaced by

R = σ2
vQ + SPS† (14.3.16)

The relevant eigenvalue problem is now the generalized eigenvalue problem

Ra = λQa (14.3.17)

Consider any such generalized eigenvector a, and assume it is normalized such that

a†Qa = 1 (14.3.18)

Then, the corresponding eigenvalue is expressed as

λ = λa†Qa = a†Ra = σ2
va†Qa+ a†SPS†a = σ2

v + a†SPS†a

which shows that the minimum eigenvalue is σ2
v and is attained whenever a†SPS†a = 0,

or equivalently (assuming that P has full rank), S†a = 0, or, A(ki)= 0, i = 1,2, . . . , L.
Therefore, the eigenpolynomial A(z) can be used to determine the wavenumbers ki.

Thus, the procedure is to solve the generalized eigenvalue problem and select the
minimum eigenvector. This eigenvalue problem is also equivalent to the minimization
problem

E = a†Ra = min , subject to a†Qa = 1 (14.3.19)
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This criterion, and its solution as the minimum eigenvector, is equivalent to the
unconstrained minimization of the Rayleigh quotient, that is,

a†Ra

a†Qa
= min � Ra = λminQa (14.3.20)

The practical implementation of the method requires knowledge of the noise covari-
ance matrix Q, which is not always possible to obtain. Covariance difference methods
[1135–1138] can be used in the case of unknown Q. Such methods work with mea-
surements from two different arrays, translated or rotated with respect to each other.
Assuming that the background noise is invariant under translation or rotation, the co-
variance matrices of the two arrays will be R1 = S1P1S

†
1+σ2

vQ and R2 = S2P2S
†
2+σ2

vQ.
The eigenstructure of the covariance difference R1−R2 = S1P1S

†
1−S2P2S

†
2 can be used

to extract the signal information.
The two spectral analysis problems discussed in this and the previous section—

direction finding and harmonic retrieval—are dual to each other; one dealing with spatial
frequencies and the other with time frequencies. The optimum processing part is the
same in both cases. The optimum processor does not care how its inputs are supplied, it
only “sees” the correlations among the inputs and its function is to “break down” these
correlations thereby extracting the sinusoidal components. The two cases differ only in
the way the inputs to the optimum processor are supplied. This conceptual separation
between the input part and the optimum processing part is shown in Fig. 14.3.2. In the
time series case, the correlations among the inputs are sequential correlations in time,
whereas in the array case they are spatial correlations, such as those that exist along a
coherent wavefront.

A problem related, but not identical, to direction finding is that of optimum beam-
forming for interference nulling [1093–1095,1352,1167–1170]. In this case, one of the
plane waves, say, sk1 , is assumed to be a desired plane wave with known direction of
arrival θ1, or wavenumber k1. The other plane waves are considered as interferers or
jammers to be nulled. Assuming for simplicity uncorrelated sources, the covariance
matrix (14.3.11) may be decomposed into a part due to the desired signal and a part due
to the noise plus interference:

R = σ2
vI +

L∑
i=1

Pi sis
†
i = P1s1s†1 +

[
σ2
vI +

L∑
i=2

Pi sis
†
i

]
= P1s1s†1 +Rn

where we denoted si = ski . The output power of the array with weights a will be

E = a†Ra = P1|s†1a|2 + a†Rna (14.3.21)

The first term is the output power due to the desired signal; the second term is
due to the presence of noise plus interference. This expression suggests two possible
optimization criteria for a. First, choose a to maximize the relative signal to noise plus
interference ratio (SNIR):

SNIR = P1|s†1a|2
a†Rna

= max (14.3.22)
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Fig. 14.3.2 Duality between time series and array problems.

The second criterion is to keep the output of the array toward the look direction s1

fixed, while minimizing the output power:

s†1a = 1 and E = a†Ra = P1 + a†Rna = min (14.3.23)

This is equivalent to minimizing the noise plus interference term a†Rna. These
two criteria are essentially equivalent. This is seen as follows. Equation (14.3.22) is
equivalent to minimizing the inverse function SNIR−1. Adding one to it, we obtain the
equivalent criterion

1+ SNIR−1 = 1+ a†Rna

P1|s†1a|2 =
a†Ra

P1|s†1a|2 = min

This is identical to the Rayleigh quotient (14.3.20) with the choice Q = P1s1s†1. It is
equivalent to the minimum eigenvector solution of

Ra = λQa = λP1s1s†1a = μs1 ⇒ a = μR−1s1

where we put all the scalar factors into μ. Similarly, the constraint s†1a = 1 implies
that a†Q1a = 1 with Q1 = s1s†1. It follows from Eq. (14.3.19), applied with Q1, that the
solution of Eq. (14.3.23) is again the generalized eigenvector

Ra = λ1Q1a = λ1s1s†1a = μ1s1 ⇒ a = μ1R−1s1

Thus, up to a scale factor, the optimum solution for both criteria is

a = R−1s1 (14.3.24)

14.3. Superresolution Array Processing 705

This solution admits, yet, a third interpretation as the Wiener solution of an ordinary
mean-square estimation problem. The term y1(n)= A1(n)s∗1 of Eq. (14.3.10) is the
desired signal. A reference signal x(n) could be chosen to correlate highly with this term
and not at all with the other terms in Eq. (14.3.10). For example, x(n)= f(n)A1(n). The
array weights can be designed by demanding that the scalar output of the array, aTy(n),
be the best mean-square estimate of x(n). This gives the criterion

E
[|x(n)−aTy(n)|2] = E

[|x(n)|2]− a†r− r†a+ a†Ra

where we set r = E[x(n)y(n)∗]. Minimizing with respect to a (and a∗) gives the Wiener
solution a = R−1r. Now, because x(n) is correlated only with y1(n), it follows that r
will be proportional to s1:

r = E[x(n)y(n)∗]= E[x(n)y1(n)∗]= E[x(n)A1(n)∗] s1

Thus, again up to a scale, we obtain the solution (14.3.24). Using the matrix inversion
lemma (see Problem 14.6), we can write the inverse of R = P1s1s†1 +Rn, in the form

R−1 = R−1
n − cR−1

n s1s†1R−1
n , c = (P−1

1 + s†1R−1
n s1)−1

Acting by both sides on s1, we find

R−1s1 = c1R−1
n s1 , c1 = cP−1

1

Therefore, the optimal solution can also be written (up to another scale factor) in
terms of the noise plus interference covariance matrix Rn:

a = R−1
n s1 (14.3.25)

These solutions, known as steered solutions, are sometimes modified to include arbi-
trary tapering weights for the array—replacing the steering vector s1 with a generalized
steering vector

s =

⎡
⎢⎢⎢⎢⎢⎣
b0

b1ejk1

...
bMejk1M

⎤
⎥⎥⎥⎥⎥⎦ = B s1 , B = diag{b0, b1, . . . , bM} (14.3.26)

The weightsbm can be chosen to attain a prescribed shape for the quiescent response
of the array in absence of interference. Typical choices are (with k1 = 0)

s =

⎡
⎢⎢⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ , s =

⎡
⎢⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎥⎦

To appreciate the properties of the optimum solution, we consider the case of one
jammer, so that

R = P1s1s†1 +Rn , Rn = σ2
vI + P2s2s†2
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Using the matrix inversion lemma on R−1
n , we obtain

R−1
n = 1

σ2
v

[
I − 1

σ2
vP−1

2 + s†2s2

s2s†2

]

Therefore, the optimum solution given by Eq. (14.3.25) becomes

a = R−1
n s1 = 1

σ2
v

[
s1 − P2W(k2 − k1)

σ2
v + P2(M + 1)

s2

]

where we used s†2s2 = M + 1 and s†2s1 = W(k2 − k1). Dropping the overall factor of
1/σ2

v , we find for the array pattern as a function of wavenumber k or angle θ

A(k)= s†ka =W(k− k1)− P2W(k2 − k1)
σ2
v + P2(M + 1)

W(k− k2) (14.3.27)

In the absence of the jammer, P2 = 0, we obtain the usual quiescent Bartlett response,
W(k− k1). The presence of the second term, called a retrodirective beam, will partially
distort the quiescent pattern but it will suppress the jammer. Indeed, the array response
steered toward the jammer at k = k2, becomes

A(k2)=W(k2 − k1)− P2W(k2 − k1)
σ2
v + P2(M + 1)

W(0)= W(k2 − k1)
σ2
v + P2(M + 1)

The ratio A(k2)/W(k2 − k1) is the array response, in the direction of the jammer,
relative to the quiescent response. Thus, if the signal to noise ratio SNR2 = P2/σ2

v is
large, the jammer will be suppressed. Only in the limit of infinite SNR is the jammer
completely nulled.

The reason for the incomplete nulling can be traced, as in the case of linear pre-
diction, to the linear constraint on the weights (14.3.23). To get exact nulling of the
jammers, we must force the zeros of the polynomial a to lie on the unit circle at the jam-
mer positions. As suggested in Problem 14.13, this can be accomplished by imposing
a quadratic constraint a†Qa = const., where Q must be chosen as Q = σ2

vI + P1s1s†1
instead ofQ = P1s1s†1. The optimum weight is the minimum eigenvector solution of the
generalized eigenproblem Ra = λQa and will have exact zeros at the jammer positions.
As in the linear prediction case, the linearly constrained optimum beamformer solution
tends to this eigenvector solution in the limit σ2

v → 0.

14.4 Eigenvector Methods

The single most important property of eigenvector methods is that, at least in principle,
they produce unbiased frequency estimates with infinite resolution, regardless of the
signal to noise ratios. This property is not shared by the older methods. For example,
the resolution of the Bartlett method is limited by the array aperture, and the resolution
of the linear prediction and maximum likelihood methods degenerates with decreasing
SNRs. Because of this property, eigenvector methods have received considerable atten-
tion in signal processing and have been applied to several problems, such as harmonic
retrieval, direction finding, echo resolution, and pole identification [1084,1109–1163].
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In the remainder of this chapter, we discuss the theoretical aspects of eigenvector
methods in further detail, and present several versions of such methods, such as MUSIC,
Minimum-Norm, and ESPRIT.

We have seen that the eigenspace of the covariance matrixR consists of two mutually
orthogonal parts: the (M+1−L)-dimensional noise subspace spanned by the eigenvec-
tors belonging to the minimum eigenvalue σ2

v , and the L-dimensional signal subspace
spanned by the remaining L eigenvectors having eigenvalues strictly greater than σ2

v .
Let ei, i = 0,1, . . . ,M, denote the orthonormal eigenvectors of R in order of increasing
eigenvalue, and let K = M + 1 − L denote the dimension of the noise subspace. Then,
the first K eigenvectors, ei, i = 0,1, . . . , K − 1, form an orthonormal basis for the noise
subspace, and the last L eigenvectors, ei, i = K,K+1, . . . ,M, form a basis for the signal
subspace. We arrange these basis vectors into the eigenvector matrices:

EN = [e0, e1, . . . , eK−1], ES = [eK, eK+1, . . . , eM] (14.4.1)

Their dimensions are (M + 1)×K and (M + 1)×L. The full eigenvector matrix of R is:

E = [EN, ES]= [e0, e1, . . . , eK−1, eK, eK+1, . . . , eM] (14.4.2)

The orthonormality of the eigenvectors is expressed by the unitarity property E†E =
I, where I is the (M+1)-dimensional unit matrix. The unitarity can be written in terms
of the submatrices (14.4.1):

E†NEN = IK , E†NES = 0 , E†SES = IL (14.4.3)

where IK and IL are the K×K and L×L unit matrices. The completeness of the eigenvec-
tors is expressed also by the unitarity of E, i.e., EE† = I. In terms of the submatrices, it
reads:

ENE
†
N + ESE

†
S = I (14.4.4)

These two terms are the projection matrices onto the noise and signal subspaces.
We have seen that the L signal direction vectors ski belong to the signal subspace, and
therefore, are expressible as linear combinations of ES. It follows that the signal matrix
S = [sk1 , . . . , skL] is a non-orthogonal basis of the signal subspace and must be related
to ES by S = ESC, where C is an L×L invertible matrix. Using the orthonormality of ES,
it follows that S†S = C†E†SESC = C†C. Thus, the projector onto the signal subspace
may be written as

PS = ESE
†
S = (SC−1)(C−†S†)= S(C†C)−1S† = S(S†S)−1S† (14.4.5)

We may also obtain a non-orthogonal, but useful, basis for the noise subspace. We
have seen that an (M+1)-dimensional vector e lies in the noise subspace—equivalently,
it is an eigenvector belonging to the minimum eigenvalue σ2

v—if and only if the corre-
sponding order-M eigenfilter E(z) has L zeros on the unit circle at the desired signal
zeros, zi = ejki , i = 1,2, . . . , L, and has M − L = K − 1 other spurious zeros. Such a
polynomial will factor into the product:

E(z)= A(z)F(z)= A(z)
[
f0 + f1z−1 + · · · + fK−1z−(K−1)] (14.4.6)
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where the zeros of F(z) are the spurious zeros, and A(z) is the reduced-order polyno-
mial of order L whose zeros are the desired zeros; that is,

A(z)=
L∏
i=1

(1− ejkiz−1)= 1+ a1z−1 + · · · + aLz−L (14.4.7)

Introducing the K delayed polynomials:

Bi(z)= z−iA(z) , i = 0,1, . . . , K − 1 (14.4.8)

we may write Eq. (14.4.6) in the form

E(z)= f0B0(z)+f1B1(z)+· · · + fK−1BK−1(z)=
K−1∑
i=0

fiBi(z) (14.4.9)

and in coefficient form

e =
K−1∑
i=0

fi bi = [b0, b1, . . . , bK−1]

⎡
⎢⎢⎢⎢⎢⎣
f0

f1

...
fK−1

⎤
⎥⎥⎥⎥⎥⎦ ≡ B f (14.4.10)

Because each of the polynomials Bi(z) has L desired zeros, it follows that the cor-
responding vectors bi will lie in the noise subspace. Thus, the matrix B defined in
Eq. (14.4.10) will be a non-orthogonal basis of the noise subspace. It is a useful ba-
sis because the expansion coefficients f of any noise subspace vector e are the coef-
ficients of the spurious polynomial F(z) in the factorization (14.4.6). Put differently,
Eq. (14.4.10) parametrizes explicitly the spurious degrees of freedom arising from the
K-fold degeneracy of the minimum eigenvalue. The basis vectors bi, considered as
(M + 1)-dimensional vectors, are simply the delayed versions of the vector of coeffi-
cients, a = [1, a1, . . . , aL]T, of the polynomial A(z), that is,

bi =
[
0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, a1, . . . , aL, 0, . . . , 0︸ ︷︷ ︸
K−1−i zeros

]T
(14.4.11)

For example, in the case L = 2 and M = 5, we have K =M + 1− L = 4 and B is:

B = [b0, b1, b2, b3]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
a1 1 0 0
a2 a1 1 0
0 a2 a1 1
0 0 a2 a1

0 0 0 a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It follows that the basis B must be linearly related to the orthonormal basis EN by
B = ENC, where C is a K×K invertible matrix. Then, B†B = C†C and the projector onto
the noise subspace becomes:

PN = ENE
†
N = (BC−1)(C−†B†)= B(C†C)−1B† = B(B†B)−1B† (14.4.12)
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Combining Eqs. (14.4.12) and (14.4.5), we may write the completeness relation (14.4.4)
in terms of the non-orthogonal bases B and S:

B(B†B)−1B† + S(S†S)−1S† = I (14.4.13)

The objective of all eigenvector methods is to estimate the signal zeros zi = ejki ,
i = 1,2, . . . , L. All methods begin with an eigenanalysis of R, such that EN and ES are
available. In practice, the eigenanalysis is based on the sample covariance matrix R̂
defined on the basis of a finite number of snapshots, say N:

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T (14.4.14)

Sometimes, a symmetrized version is preferred, obtained from R̂ by

R̂s = 1

2
(R̂+ JR̂∗J) (14.4.15)

where J the (M+1)-dimensional reversing matrix. The matrix R̂s is invariant under re-
versal, that is, JR̂sJ = R̂∗s . This version is appropriate when the theoreticalR is Toeplitz.
This case arises if and only if the L×L power matrix P is diagonal; that is, when the L
sources are mutually uncorrelated. As the number of snapshots increases, the eigen-
structure of R̂ or R̂s becomes a better and better approximation of the eigenstructure
of R. Such asymptotic statistical properties will be discussed in Sec. 14.11. Next, we
discuss several practical approaches.

14.5 MUSIC method

Let Ei(z) denote the eigenfilters of the noise subspace eigenvectors ei, i = 0,1, . . . , K−1.
According to Eq. (14.4.5), we can write Ei(z)= A(z)Fi(z), which shows that Ei(z) have
a common set of L zeros at the desired signal locations, but each may have a different
set of K − 1 spurious zeros. It is possible for these spurious zeros to lie very close
to or on the unit circle. Therefore, if only one eigenfilter is used, there may be an
ambiguity in distinguishing the desired zeros from the spurious ones. The multiple
signal classification (MUSIC) method [1110] attempts to average out the effect of the
spurious zeros by forming the sum of the magnitude responses of the K noise subspace
eigenfilters, that is, setting z = ejk,

1

K

K−1∑
i=0

|Ei(k)|2 = |A(k)|2 1

K

K−1∑
i=0

|Fi(k)|2

Because the polynomials Fi(z) are all different, the averaging operation will tend to
smear out any spurious zero of any individual term in the sum. Thus, the above expres-
sion will effectively vanish only at the L desired zeros of the common factor|A(k)|2.
The MUSIC pseudospectrum is defined as the inverse

SMUS(k)= 1

1

K

K−1∑
i=0

|Ei(k)|2
(14.5.1)
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It will exhibit peaks at the L desired wavenumbers ki, i = 0,1, . . . , L. The sum
may also be replaced by a weighted sum [1118]. The sum may be written compactly
in terms of the projection matrices onto the noise or signal subspaces. Noting that
|Ei(k)|2 = s†k(eie

†
i )sk, we find

K−1∑
i=0

|Ei(k)|2 = s†k

⎡
⎣K−1∑
i=0

eie
†
i

⎤
⎦ sk = s†kENE

†
Nsk = s†k(I − ESE

†
S)sk

where we used Eq. (14.4.4). The practical version of the MUSIC method is summarized
below:

1. Based on a finite number of snapshots, compute the sample covariance matrix
R̂, solve its eigenproblem, and obtain the estimated eigenvector matrix E with
eigenvalues arranged in increasing order.

2. Estimate the dimension K of the noise subspace as the number of the smallest,
approximately equal, eigenvalues. This can be done systematically using the AIC
or MDL criteria discussed later. The estimated number of plane waves will be
L =M + 1−K. Divide E into its noise and signal subspace parts, EN and ES.

3. Compute the spectrum (14.5.1) and extract the desired wavenumbers ki from the
L peaks in this spectrum.

The Akaike (AIC) and minimum description length (MDL) information-theoretic cri-
teria have been suggested to determine the number of plane waves that are present, or
equivalently, the dimension of the noise subspace [1125]. They are defined by

AIC(k) = −2NkL(k)+2(M + 1− k)(M + 1+ k)

MDL(k) = −NkL(k)+1

2
(M + 1− k)(M + 1+ k)log(N)

(14.5.2)

for k = 1,2, . . . ,M + 1, where N is the number of snapshots and L(k) is a likelihood
function defined as the log of the ratio of the harmonic and arithmetic means of the
first k estimated eigenvalues {λ̂0, λ̂1, . . . , λ̂k−1} of R̂; namely,

L(k)= ln

⎡
⎢⎢⎣ (λ̂0λ̂1 · · · λ̂k−1)1/k

1

k
(λ̂0 + λ̂1 + · · · + λ̂k−1)

⎤
⎥⎥⎦

The dimension K of the noise subspace is chosen to be that k that minimizes the
functions AIC(k) or MDL(k). The above definition is equivalent to that of [1125], but
produces the value of K instead of L. The function aicmdl takes as inputs the M + 1
estimated eigenvalues in increasing order and the number N, and computes the values
of the AIC and MDL functions. OnceK is known, an estimate of the minimum eigenvalue
can be obtained by

σ̂2
v = λ̂min = 1

K
(λ̂0 + λ̂1 + · · · + λ̂K−1) (14.5.3)

Next, we present some simulation examples. First, we compare the MUSIC method
against the linear prediction method. We considered two uncorrelated equal-power
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plane waves incident on an array of 8 sensors (M = 7). The SNR of the waves, de-
fined by SNRi = 10 log10(Pi/σ2

v), was −5 dB and their wavenumbers k1 = 0.2π and
k2 = 0.4π. For half-wavelength array spacing (d = λ/2), these correspond, through
(14.3.8), to the angles of arrival θ1 = 11.54o and θ2 = 23.58o.

The number of snapshots was N = 500. The snapshots were simulated using
Eq. (14.3.10). Each v(n) was generated as a complex vector of M + 1 zero-mean in-
dependent gaussian components of variance σ2

v = 1.
Note that to generate a zero-mean complex random variable v of variance σ2

v , one
must generate two zero-mean independent real random variables v1 and v2, each with
variance σ2

v/2 and set v = v1 + jv2; then, E[v∗v]= E[v2
1]+E[v2

2]= 2(σ2
v/2)= σ2

v .
The amplitudes Ai(n) were assumed to have only random phases; that is, Ai(n)=
(Pi)1/2ejφin , where φin, were independent angles uniformly distributed in [0,2π]. The
function snap takes as input an integer seed, generates a snapshot vector y, and up-
dates the seed. Successive calls to snap, in conjunction with the (complex version) of
the function sampcov, can be used to generate the sample covariance matrix R̂. In this
particular example, we used the symmetrized version R̂s, because the two sources were
uncorrelated.

Fig. 14.5.1 shows the MUSIC spectrum computed using Eq. (14.5.1) together with the
LP spectrum SLP(k)= 1/|s†ka|2, where a = R̂−1

s u0. Because each term in the sum (14.5.1)
arises from a unit-norm eigenvector, we have normalized the LP vector a also to unit
norm for the purpose of plotting the two spectra on the same graph. Increasing the
number of snapshots will improve the MUSIC spectrum because the covariance matrix
R̂s will become a better estimate of R, but it will not improve the LP spectrum because
the theoretical LP spectrum does not perform well at low SNRs.
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Fig. 14.5.1 MUSIC and LP spectra.

To facilitate the computation and manipulation of spectra, we have included the
following small functions. The built-in function norm converts a vector a to a unit-norm
vector and the function freqz computes the magnitude response squared, |A(k)|2 =
|s†ka|2, of an Mth order filter a at a specified number of equally-spaced frequency points
within the right-half of the Nyquist interval, 0 ≤ k ≤ π. It can be modified easily to
include the entire Nyquist interval or any subinterval. The function invresp inverts a
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given spectrum, S(k)→ 1/S(k). The functions abs2db and db2abs convert a spectrum
from absolute units to decibels and back, S(k)= 10 log10 S(k). The function select picks
out any eigenvector from theM+1 ones of the eigenvector matrix E. The function music
computes Eq. (14.5.1) over a specified number of frequency points. It is built out of the
functions select, freqz, and invresp.

In the second simulation example, we increased the SNR of the two plane waves to
10 dB and reduced the number of snapshots to N = 100. The theoretical and empirical
eigenvalues of R and R̂s, were found to be

i 0 1 2 3 4 5 6 7

λi 1 1 1 1 1 1 61.98 100.02

λ̂i 0.70 0.76 0.83 0.87 1.05 1.28 64.08 101.89

The values of the AIC and MDL functions were

k 1 2 3 4 5 6 7 8

AIC(k) 126.0 120.3 111.4 98.7 87.2 81.1 2544.2 3278.2
MDL(k) 145.1 138.3 127.4 111.9 94.4 77.0 1291.6 1639.1
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Fig. 14.5.2 Spectra of the first three noise subspace eigenvectors.

Both functions achieve their minimum value at K = 6 and therefore, L = M +
1 − K = 2. The estimated value of σ2

v , computed by Eq. (14.5.3), was σ̂2
v = 0.915.

Fig. 14.5.2 shows the spectra of the first three noise subspace eigenvectors; namely,
Si(k)= 1/|Ei(k)|2 = 1/|s†kei|2, for i = 0,1,2. We note the presence of a common set
of peaks at the two desired wavenumbers and several spurious peaks. The spurious
peaks are different, however, in each spectrum and therefore, the averaging operation
will tend to eliminate them. The averaged MUSIC spectrum, based on all K = 6 noise
subspace eigenvectors, is plotted in Fig. 14.6.1 using the same scale as in Fig. 14.5.2.

The averaging operation has had two effects. First, the removal of all spurious peaks
and second, the broadening and reduction in sharpness of the two desired peaks. This
broadening is the result of statistical sampling; that is, using R̂ instead ofR, causes small
biases in the peaks of individual eigenvectors about their true locations. These biases
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are not inherent in the theoretical method, as they are in the linear prediction case;
they are statistical in nature and disappear in the limit of large number of snapshots.
Fig. 14.6.1 also shows the performance of the minimum-norm method, which we discuss
next. It appears to produce somewhat sharper peaks than MUSIC, but it can sometimes
exhibit higher levels of spurious peaks.

14.6 Minimum-Norm Method

The minimum-norm method [1117] attempts to eliminate the effect of spurious zeros
by pushing them inside the unit circle, leaving the L desired zeros on the circle. This
is accomplished by finding a noise subspace vector d = [d0, d1, . . . , dM]T such that
the corresponding eigenfilter D(z) will have all its spurious zeros within the unit circle.
This means that in the factorization (14.4.6),D(z)= A(z)F(z), the spurious polynomial
F(z) must be chosen to have all its zeros strictly inside the unit circle, equivalently,
F(z) must be a minimum-phase polynomial. If F(z) were the prediction-error filter of
a linear prediction problem, then it would necessarily be a minimum-phase filter. Thus,
the design strategy for d is to make F(z) a linear prediction filter. This can be done by
requiring that d have minimum norm subject to the constraint that its first coefficient
be unity; that is,

d†d = min , subject to u†0d = d0 = 1 (14.6.1)

The minimization is carried over the noise subspace vectors. In the B basis (14.4.10),
the vector d is expressed by d = B f, where f are the coefficients of F(z), and the
constraint equation becomes u†0B f = 1. With the exception of b0, all basis vectors bi
start with zero; therefore, u†0B = [u†0b0,u

†
0b1, . . . ,u

†
0bK−1]= [1,0, . . . ,0]≡ u†, that is, a

K-dimensional unit vector. Therefore, in the B basis Eq. (14.6.1) becomes

d†d = f†Raa f = min , subject to u†f = 1 (14.6.2)

where we set Raa = B†B. This is recognized as the Toeplitz matrix of autocorrelations
of the filter a, as defined in Eq. (1.19.5) of Sec. 1.19. For the 6×4 example above, we
verify,

Raa = B†B =

⎡
⎢⎢⎢⎣
Raa(0) Raa(1)∗ Raa(2)∗ 0
Raa(1) Raa(0) Raa(1)∗ Raa(2)∗

Raa(2) Raa(1) Raa(0) Raa(1)∗

0 Raa(2) Raa(1) Raa(0)

⎤
⎥⎥⎥⎦

where Raa(0)= |a0|2 + |a1|2 + |a2|2, Raa(1)= a1a∗0 + a2a∗1 , Raa(2)= a2a∗0 , and
Raa(3)= 0. Note that the autocorrelation function of an order-M filter a vanishes for
lags greater than M+1. It follows that Eq. (14.6.2) represents an ordinary linear predic-
tion problem and its solution f will be a minimum-phase filter with all its zeros inside
the unit circle. Up to a scale factor, we may write this solution as f = R−1

aau = (B†B)−1u.
Writing u = B†u0, we have f = (B†B)−1B†u0, and the solution for d becomes

d = B f = B(B†B)−1B†u0 = ENE
†
Nu0 (14.6.3)
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This is the solution of criterion (14.6.1) up to a scale. Interestingly, the locations
of the spurious zeros do not depend on the signal to noise ratios, but depend only on
the desired zeros on the unit circle. This follows from the fact that the solution for
f depends only on B. Using Eq. (14.4.13), we may also write d in terms of the signal
subspace basis

d = [
I − ESE

†
S
]
u0 =

[
I − S(S†S)−1S†

]
u0

Recall from Sec. 14.2 that this is the large-SNR limit of the LP solution. Noting that
E†Nu0, is the complex conjugate of the top row of the eigenvector matrix EN, we write
Eq. (14.6.3) explicitly as a linear combination of noise subspace eigenvectors

d =
K−1∑
i=0

E∗0iei (14.6.4)

whereE∗0i the conjugate of the 0i-th matrix element ofE. The function minorm computes
d using Eq. (14.6.4). The corresponding pseudospectrum estimate is defined as the
inverse magnitude response of the filter d

SMIN(k)= 1

|D(k)|2 =
1

|s†kd|2 (14.6.5)

The practical implementation of this method requires the same two initial steps as
MUSIC; namely, eigenanalysis of R̂ and estimation of K. In Fig. 14.6.1, the minimum-
norm spectrum was computed by calling the functions minorm. The vector d was nor-
malized to unit norm to make a fair comparison with the MUSIC spectrum. Looking at
the spectra is not the best way to evaluate this method because the spurious zeros—even
though inside the unit circle—interact with the desired zeros to modify the shape of the
spectrum. The minimum-norm method is better judged by comparing the theoretical
and empirical zeros of the polynomial D(z), computed from R and R̂. They are shown
in the following table. The first two zeros are the desired ones.

zeros of D(z)
theoretical empirical

|zi| arg(zi)/π |zi| arg(zi)/π
1.0000 0.2000 0.9989 0.2020
1.0000 0.4000 1.0059 0.4026
0.8162 −0.1465 0.8193 −0.1441
0.7810 −0.4251 0.7820 −0.4227
0.7713 −0.7000 0.7759 −0.6984
0.8162 0.7465 0.8188 0.7481
0.7810 −0.9749 0.7832 −0.9729

The main idea of the minimum-norm method was to separate the desired zeros from
the spurious ones by pushing the latter inside the unit circle. In some applications of
eigenvector methods, such as pole identification, the desired zeros lie themselves inside
the unit circle (being the poles of a stable and causal system) and therefore, cannot be
separated from the spurious ones. To separate them, we need a modification of the
method that places all the spurious zeros to the outside of the unit circle. This can be
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Fig. 14.6.1 MUSIC and min-norm spectra.

done by replacing the vector f by its reverse fR = J f∗, where J is the K×K reversing
matrix. The resulting polynomial will be the reverse of F(z), with all its zeros reflected
to the outside of the unit circle. The reverse vector fR is the backward prediction filter
obtained by minimizing (14.6.2) subject to the constraint that its last element be unity.
Using the reversal invariance of Raa, namely, JRaaJ = R∗aa, we find

fR = J f∗ = J(R−1
aa)∗u = R−1

aaJu = R−1
aav

where v = Ju = [0, . . . ,0,1]T is the reverse of u. With the exception of bK−1, the last
element of all basis vectors bi is zero. Denoting by v0, the reverse of u0, it follows that
v†0B = [0,0, . . . ,0, aL]= aLv†. Thus, up to a scale factor, v can be replaced by B†v0,
and hence, The vector d becomes

d = B fR = B(B†B)−1B†v0 = ENE
†
Nv0 (14.6.6)

Up to a scale, this is the minimum-norm vector subject to the constraint that its
last element be unity; that is, v†0d = dM = 1. In terms of the matrix elements of the
eigenvector matrix E it reads

d =
K−1∑
i=0

E∗Miei (14.6.7)

where E∗Mi is the conjugate of the last row of E. The spurious zeros of this vector will
lie outside the unit circle. We may refer to this method as the modified minimum-norm
method.

14.7 Reduced-Order Method

The basis B of the noise subspace has very special structure, being constructed in terms
of the delayed replicas of the same reduced-order vector a. It is evident from Eq. (14.4.11)
that a can be extracted from any column bi or B by advancing it by i units. The B basis
is linearly related to the orthonormal eigenvector basis by B = ENC with some K×K
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invertible matrix C. Thus, the vector bi is expressible as a linear combination of the
noise subspace eigenvectors

bi =
K−1∑
j=0

ejCji , i = 0,1, . . . , K − 1

This vector has a total of K−1 vanishing coefficients, namely, the first i and the last
K−1− i coefficients. Component-wise, we may write bim = 0, for 0 ≤m ≤ i−1 and for
i+ L+ 1 ≤ m ≤ M. This vector may be specified up to an overall scale factor because
we are interested only in the zeros of the reduced-order vector a. Therefore, we may
arbitrarily fix one of the coefficients Cji to unity. For example, we may single out the
0th eigenvector:

bi = e0 +
K−1∑
j=1

ejCji (14.7.1)

If e0 happens to be absent from the sum, we may single out e1 and so on. The
coefficient bii will no longer be unity, but may be normalized so later. TheK−1 unknown
coefficients Cji, j = 1,2, . . . , K − 1 can be determined by the K − 1 conditions that the
first i and lastK−1−i coefficients of bi be zero. Written in terms of the matrix elements
of the eigenvector matrix E, these conditions read for each i = 0,1, . . . , K − 1:

Em0 +
K−1∑
j=1

EmjCji = 0 , for 0 ≤m ≤ i− 1 and i+ L+ 1 ≤m ≤M (14.7.2)

Thus, solving the linear Eqs. (14.7.2) for the coefficients Cji and substituting in Eq.
(14.7.1), we obtain bi and, advancing it by i units, the reduced-order vector a. Because
Bi(z)= z−iA(z), the polynomial Bi(z) has no spurious zeros. In effect, forming the
linear combination Eq. (14.7.1) of noise subspace eigenvectors removes the spurious
zeros completely by placing them at the origin of the z-plane. In a sense, this procedure
carries the philosophy of the minimum-norm method further.

When the theoretical R is replaced by the empirical R̂ and the corresponding EN is
replaced by the estimated ÊN, it is no longer possible to linearly transform the basis
ÊN to a B basis constructed from a single reduced-order vector a. It is still possible,
however, to form linear combinations of the estimated eigenvectors.

b̂i =
K−1∑
j=0

êjCji , i = 0,1, . . . , K − 1 (14.7.3)

such that the resulting vectors b̂i will have vanishing first i and lastK−1−i coefficients;
that is, of the form

b̂i =
[
0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, ai1, . . . , aiL, 0, . . . , 0︸ ︷︷ ︸
K−1−i zeros

]T
(14.7.4)

This can be done by solving Eq. (14.7.2) with E replaced by its estimate, Ê, obtained
from R̂. The resultingK reduced-order vectors ai = [1, ai1, . . . , aiL]T, i = 0,1, . . . , K−1,
will not be the same necessarily. But, each can be considered to be an approximate
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estimate of the true reduced-order vector a, and its L zeros will be estimates of the true
desired zeros.

It turns out that individually none of the ai is a particularly good estimate of a. They
may be combined, however, to produce a better estimate. This is analogous to MUSIC,
where individual spectra of noise eigenvectors are not good, but combining them by
averaging produces a better spectrum. To see how we may best combine the ai, we
form a new basis of the estimated noise subspace in terms of the vectors b̂i, namely,
B̂ = [b̂0, b̂1, . . . , b̂K−1]. For our 6×4 example, we have

B̂ = [b̂0, b̂1, b̂2, b̂3]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
a01 1 0 0
a02 a11 1 0
0 a12 a21 1
0 0 a22 a31

0 0 0 a32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The linear transformations (14.7.3) may be written compactly as B̂ = ÊNC. Note that
B̂†B̂ is no longer Toeplitz and therefore, the LP solution f of (14.6.2) will not necessarily
have minimum phase. Thus, the empirical minimum-norm solution can have spurious
zeros outside or near the unit circle. Because the basis B̂ is an estimate of the true B,
we may try to fit B̂ to a matrix of the type B having the special structure (14.4.11) by
minimizing the distance between the two matrices according to some matrix norm. For
example, we may minimize the Frobenius matrix distance [1166]:

‖B̂− B‖2 = tr
[
(B̂− B)†(B̂− B)

] = K−1∑
i=0

‖b̂i − bi‖2 = min

Because b̂i and bi are the delayed versions of the reduced-order vectors ai and a , it
follows that ‖b̂i − b̂i‖2 = ‖ai − a‖2. Therefore,

‖B̂− B‖2 = tr
[
(B̂− B)†(B̂− B)

] = K−1∑
i=0

‖ai − a‖2 = min (14.7.5)

Minimizing with respect to a gives the result:

â = 1

K

K−1∑
i=0

ai , Â(z)= 1

K

K−1∑
i=0

Ai(z) (14.7.6)

that is, the average of the K filters. Thus, we obtain the following reduced-order or,
reduced-MUSIC algorithm [1139]:

1. Solve the eigenproblem for the estimated covariance matrix R̂.

2. Using the estimated noise subspace eigenvectors, solve (14.7.2) for the coefficients
Cji and using Eq. (14.7.3) obtain the basis vectors b̂i and hence the reduced-order
vectors ai, i = 0,1, . . . , K − 1.
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3. Use the average (14.7.6) to get an estimate Â(z) of the reduced-order polynomial
A(z). Obtain estimates of the desired zeros by a root-finding procedure on Â(z),
or, by finding the peaks in the pseudospectrum

Ŝ(k)= 1

|Â(k)|2 =
1

|s†kâ|2 (14.7.7)

The MATLAB function rmusic implements this algorithm. Fig. 14.7.1 shows a com-
parison between the reduced-order algorithm and MUSIC for the same example con-
sidered in Fig. 14.6.1, where, again, for the purposes of comparison the vector â was
normalized to unit norm. As in the case of MUSIC, the spectrum of any individual
reduced-order vector ai is not good, but the spectrum based on the average â is better.
This can be appreciated by comparing the two zeros (L = 2) of the six (K = 6) indi-
vidual filters Âi(z), i = 0,1, . . . ,5 with the two zeros of the averaged polynomial Â(z)
and with the theoretical zeros. They are shown in the table below.

zeros Â0 Â1 Â2 Â3 Â4 Â5 Â A
|z1| 0.976 1.032 0.964 1.038 0.969 1.025 0.999 1.000
arg(z1)/π 0.197 0.203 0.199 0.199 0.203 0.197 0.201 0.200

|z2| 1.056 0.944 1.115 0.896 1.059 0.947 1.002 1.000
arg(z2)/π 0.393 0.407 0.402 0.402 0.407 0.393 0.399 0.400
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Fig. 14.7.1 MUSIC and reduced-order method.

An alternative method of combining the K estimates is as follows [1163]. Form the
(L+ 1)×K matrix A = [a0, a1, . . . , aK−1] and note that if the ai were computed on the
basis of the theoretical covariance matrix R, then A would have rank one because each
ai would be exactly equal to a. But if the empirical matrix R̂ is used, then the matrix A
will only approximately have rank one, in the sense of its singular value decomposition
(SVD). Thus, we may replace A by its rank-one SVD approximant, namely, the rank-
one matrix closest to A with respect to the Frobenius or Euclidean matrix norms. This
amounts to finding the largest eigenvalue of the (L+ 1)×(L+ 1) matrix

AA† =
K−1∑
i=0

aia
†
i (14.7.8)
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and choosing the corresponding eigenvector to be the estimate of a. This eigenvector is
expressible as a weighted sum of the ai but with different weights than Eq. (14.7.6). To
see this, letσ and â be the largest eigenvalue and eigenvector ofAA†. UsingAA†â = σâ,
and defining w = σ−1A†â, we find

â = Aw =
K−1∑
i=0

wiai (14.7.9)

where wi are the components of w = [w0,w1, . . . ,wK−1]T. The constraint that â and
ai, have first coefficients of unity implies the normalization condition

∑K−1
i=0 wi = 1.

Even though this method is computationally more complex than Eq. (14.7.6), it allows
one to judge the quality of the resulting estimate. This may be done by inspecting the
relative magnitudes of the singular values of A, equivalently, the L + 1 eigenvalues
of AA†. Theoretically, all but the maximum eigenvalue must be zero. Applying this
method to the above simulation example, we find the estimated zeros:

z1 = 0.9985ej0.2011π , z2 = 1.0037ej0.3990π

and the theoretical and empirical SVD values of the matrix A:

theoretical 5.8059 0 0
empirical 5.8139 0.1045 0.0187

14.8 Maximum Likelihood Method

The maximum likelihood method is not, strictly speaking, an eigenvector method; how-
ever, some of the ideas we have been discussing apply to it. The method determines the
plane wave frequencies and amplitudes by fitting them directly to the measured snap-
shot data using a criterion, such as maximum likelihood or least-squares. Each snapshot
is modeled according to Eq. (14.3.10), which can be written compactly as

y(n)= [
s∗k1

, . . . , s∗kL
]
⎡
⎢⎢⎣
A1(n)

...
AL(n)

⎤
⎥⎥⎦+ v(n)= S∗A(n)+v(n) (14.8.1)

The unknown amplitudes A(n) and wavenumbers ki, i = 1,2, . . . , L are treated as
deterministic parameters to be fitted to the snapshot data Y = {y(n), 0 ≤ n ≤ N − 1}.
The maximum likelihood estimates of these parameters are obtained by maximizing the
joint density of the snapshots, p(Y)= max. If the wave parameters are deterministic,
then the randomness in y(n) arises only from v(n). Assuming that v(n) are complex
gaussian (see Problem 14.16) and independent, the joint density of Y is the product of
marginal densities:

p(Y) =
N−1∏
n=0

p
(
v(n)

) = 1

(πσ2
v)N(M+1) exp

⎡
⎣− 1

σ2
v

N−1∑
n=0

‖v(n)‖2

⎤
⎦

= 1

(πσ2
v)N(M+1) exp

⎡
⎣− 1

σ2
v

N−1∑
n=0

‖y(n)−S∗A(n)‖2

⎤
⎦
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Thus, under gaussian statistics, the maximum likelihood criterion is equivalent to
the least-squares minimization criterion:

J =
N−1∑
n=0

‖y(n)−S∗A(n)‖2 = min (14.8.2)

According to the general discussion of [1165], the simultaneous minimization of J
with respect to ki and A(n) can be done in two steps. First, minimize with respect to
the amplitudes A(n) and then, minimize with respect to the wavenumbers ki. Setting
the gradients with respect to A(n) to zero, we obtain

∂J
∂A(n)

= −S†[y(n)∗−SA∗(n)
] = 0 ⇒ A(n)∗= (S†S)−1S†y(n)∗

Inserting this solution into Eq. (14.8.2), we obtain

J =
N−1∑
n=0

‖y(n∗)−SA(n)∗‖2 =
N−1∑
n=0

∥∥[I − S(S†S)−1S†]y(n)∗
∥∥2

Using Eq. (14.4.13), we may rewrite it in terms of the projector onto the noise sub-
space, namely, PN = B(B†B)−1B† = I − S(S†S)−1S†

J =
N−1∑
n=0

∥∥B(B†B)−1B†y(n)∗
∥∥2 =

N−1∑
n=0

∥∥PNy(n)∗
∥∥2

Using the projection property P†NPN = PN, and the definition (14.4.14) of the sample
covariance matrix, we find

J =
N−1∑
n=0

y(n)TPNy(n)∗= tr

⎡
⎣N−1∑
n=0

PNy(n)Ty(n)∗
⎤
⎦ = N tr[PNR̂]

The minimization of J with respect to the coefficients of the reduced-order vector
a is a highly nonlinear problem. It may be solved, however, iteratively by the solution
of a succession of simpler problems, by the following procedure [1141–1143,1159,1161].
Write y(n)TB = [y(n)Tb0,y(n)Tb1, . . . ,y(n)TbK−1] and note that y(n)Tbi = aTyi(n),
where yi(n) is the (L + 1)-dimensional portion of y(n) starting at the ith position,
namely,

yi(n)=
[
yi(n), yi+1(n), . . . , yi+L(n)

]T , i = 0,1, . . . , K − 1

Then, y(n)TB = aT[y0(n),y1(n), . . . ,yK−1(n)]≡ aTY(n). And, J can be written as

J =
N−1∑
n=0

y(n)TB(B†B)−1B†y(n)∗= aT

⎡
⎣N−1∑
n=0

Y(n)(B†B)−1Y(n)†
⎤
⎦ a∗

The minimization of J is obtained by solving the succession of problems, for i = 1,2, . . . ,

Ji = aTi

⎡
⎣N−1∑
n=0

Y(n)(B†i−1Bi−1)−1Y(n)†
⎤
⎦ a∗i = min (14.8.3)
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where B†i−1Bi−1 is constructed from the solution ai−1 of the previous iteration. The
iteration is initialized by a0 = [1,0, . . . ,0]T, which gives B†0B0 = IK. At each iteration,
Eq. (14.8.3) is subject to an appropriate constraint on ai such as that its first coefficient
be unity, or, that its zeros lie on the unit circle. Note that B†B is Toeplitz and therefore,
its inverse can be computed efficiently by the Levinson recursion.

14.9 ESPRIT Method

There exist a number of eigenvector methods that employ two or more sets of snapshot
measurements obtained from two or more arrays related to each other either by trans-
lation or by rotation. Examples are the estimation of signal parameters via rotational
invariance techniques (ESPRIT) method [1145], the covariance difference method [1135–
1138], and the spatial smoothing method for dealing with coherent signals [1119,1126].

Consider two arrays related to each other by an overall translation by distance Δ
along the x-axis. The effect of translation shows up as an overall phase change in each
direction vector. For example, the value of a wave on the x-axis with respect to the
original and the translated x-axes will be:

A1e−jkxx → A1e−jkx(x+Δ) = A1e−jkxxe−jkxΔ

Setting xm = md and letting δ = Δ/d be the displacement in units of d, we obtain
at the original and translated mth array elements

A1e−jk1m → A1e−jk1me−jk1δ

or, in terms of the direction vectors

A1s∗1 → A1s∗1 e−jk1δ

It follows that the matrix S = [sk1 , . . . , skL] transforms under translation as

S → SDδ , Dd = diag
{
ejk1δ, ejk2δ, . . . , ejkLδ

}
(14.9.1)

Therefore, the snapshot measurements at the original and translated arrays are

y(n) = S∗A(n)+v(n)

yδ(n) = S∗D∗δA(n)+vδ(n)
(14.9.2)

The covariance and cross-covariance matrices are

Ryy = E[y(n)∗y(n)T]= SPS† +σ2
vI

Ryδyδ = E[yδ(n)∗yδ(n)T]= SDδPD
†
δS
† +σ2

vI
(14.9.3)

Ryyδ = E[y(n)∗yδ(n)T]= SPD†δS
† (14.9.4)

where we used E[vδ(n)∗vδ(n)T]= E[v(n)∗v(n)T]= σ2
vI and E[v(n)∗vδ(n)T]= 0.
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The ESPRIT method works with the matrix pencil, C(λ)= C − λCδ, defined by the
pair of matrices

C = Ryy −σ2
vI = SPS† , Cδ = Ryyδ = SPD†δS

† (14.9.5)

The generalized eigenvalues of this matrix pencil are, by definition [102], the so-
lutions of det(C − λCδ)= 0, and the corresponding generalized eigenvectors satisfy
Ce = λCδe. The ESPRIT method is based on the observation that the nonzero general-
ized eigenvalues of C(λ) are simply

λi = ejkiδ , i = 1,2, . . . , L (14.9.6)

and therefore, the desired wavenumbers ki can be extracted from the knowledge of the
λi. Note that λ = 0 is a generalized eigenvalue because det(C)= det(SPS†)= 0. This
follows from the fact that SPS† is an (M + 1)×(M + 1) matrix of rank L < M + 1.
The generalized eigenvectors corresponding to λ = 0 are the vectors in the null space
of SPS†; namely, they satisfy SPS†e = 0, or, equivalently, S†e = 0. These are the
noise subspace eigenvectors of Ryy. Next, we show that the only nonzero generalized
eigenvalues are those in Eq. (14.9.6). The corresponding generalized eigenvector e must
satisfy

SPS†e = λSPD†δS
†e

Multiplying both sides by S† and removing the common matrix factor (S†S)P, we
obtain S†e = λD†δS

†e. Using the fact that D†δ = D−1
δ , and defining the L-dimensional

vector f = S†e, we obtain
Dδf = λf

Clearly, if e is not in the noise subspace, then f = S†e �= 0; therefore, λ must be an
eigenvalue of Dδ, which is already diagonal. This proves Eq. (14.9.6). The eigenvectors
of Dδ will be the L-dimensional unit vectors; that is, the columns of the L×L unit ma-
trix, fi = ui, i = 1,2, . . . , L. The generalized eigenvectors will be ei = S(S†S)−1ui. These
are obtained by an argument similar to Eq. (14.3.15). Thus, the L columns of the ma-
trix S(S†S)−1 are simply the generalized eigenvectors corresponding to the generalized
eigenvalues (14.9.6).

In the practical implementation of the method, we assume we have two sets of snap-
shots, y(n) and yδ(n), for n = 0,1, . . . ,N− 1, measured at the original and translated
arrays. The covariance matrix Ryy is estimated by Eq. (14.4.14) and the cross-covariance
matrix by

Ĉδ = R̂yyδ =
1

N

N−1∑
n=0

y(n)∗yδ(n)T

From the eigenproblem of R̂yy, we obtain an estimate of σ̂2
v , either as the mini-

mum eigenvalue or, as the average of the eigenvalues of the noise subspace. Then, set
Ĉ = R̂yy − σ̂2

vI and solve the generalized eigenproblem for the pair {Ĉ, Ĉδ}. The L
generalized eigenvalues closest to the unit circle are used to extract estimates of the
desired wavenumbers ki by Eq. (14.9.6).

Unlike the minimum-norm and reduced-order methods that require equally spaced
linear arrays, the MUSIC and ESPRIT methods can be applied to arrays of arbitrary ge-
ometry.
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14.10 Spatial Smoothing

Eigenvector methods rely on the property that the noise subspace eigenvectors have at
least L zeros on the unit circle at the desired frequency locations. As we saw in Sec. 14.3,
this property requires that the L×L power matrix P have full rank equal to L. To repeat
the argument, the condition Ra = σ2

va implies that SPS†a = 0, but what we want is
S†a = 0. Multiplying by a†, we obtain (S†a)†P(S†a)= 0, but this does not necessarily
imply that S†a = 0 unless P has full rank.

The case of diagonal P corresponds to mutually uncorrelated sources for the L plane
waves. The case of a nondiagonal P of full rank implies that the sources are partially
correlated. The case of a non-diagonal P with less than full rank implies that some or
all of the sources are coherent with each other. This case commonly arises in multipath
situations, as shown in the following diagram

To see how eigenvector methods fail if P does not have full rank, consider the worst
case when all the sources are coherent, which means that the wave amplitudes Ai(n)
are all proportional to each other, say, Ai(n)= ciA1(n), i = 1,2, . . . , L, where the ci �= 0
(with c1 = 1) are attenuation factors corresponding to the different paths. Compactly,
we may write A(n)= A1(n)c. Then, the power matrix becomes

P = E
[
A(n)∗A(n)T

] = E
[|A1(n)|2

]
c∗cT = P1c∗cT (14.10.1)

It has rank one. The corresponding covariance matrix is

R = SPS† +σ2
vI = P1Sc∗cTS† +σ2

vI = P1ss† +σ2
vI (14.10.2)

where s = Sc∗. Similarly,

y(n)= A1(n)S∗c+ v(n)= A1(n)s∗ + v(n)

Because R is a rank-one modification of the identity matrix, it will have a one-
dimensional signal subspace spanned by s and a noise subspace of dimension K =
M + 1− 1 = M spanned by the eigenvectors belonging to the minimum eigenvalue σ2

v .
Thus, although we have L different signals, the solution of the eigenproblem will result
in a one-dimensional signal subspace. Moreover, the noise eigenvectors, will not neces-
sarily have zeros at the L desired locations. This can be seen as follows. If Ra = σ2

va,
then P1ss†a = 0, or, s†a = cTS†a = 0, which gives

cTS†a = [c1, . . . , cL]

⎡
⎢⎢⎣
A(k1)

...
A(kL)

⎤
⎥⎥⎦ =

L∑
i=1

ciA(ki)= 0
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This does not imply that the individual terms in the sum are zero. One solution to
this problem is the method of spatial smoothing [1119,1126], which restores P to full
rank, so that the eigenstructure methods can be applied as usual. The method is as
follows. The given array of M + 1 sensors is subdivided into J subarrays each having
M̄+1 sensors. The first subarray consists of the first M̄+1 elements of the given array.
Each subsequent subarray is obtained by shifting ahead one array element at a time, as
shown in the following diagram

Formally, we define the J subarrays by

ȳi(n)= [yi(n), yi+1(n), . . . , yi+M̄(n)]T , i = 0,1, . . . , J − 1 (14.10.3)

where the bar indicates that the size of the subarray is M̄ + 1. That is the (M̄ + 1)-
dimensional portion of y(n) starting at the ith array element. Using Eq. (14.9.2), we
may write compactly

ȳi(n)= S̄∗D∗i A(n)+v̄i(n)

where S̄ is the same as S but of dimension M̄+ 1. The matrix Di is given by Eq. (14.9.1)
with δ = i, corresponding to translation by i units. The covariance matrix of the ith
subarray will be

R̄i = E[ȳi(n)∗ȳi(n)T]= S̄DiPD
†
i S̄
† +σ2

vĪ

where Ī is the (M̄+1)-dimensional identity matrix. The average of the subarray covari-
ances is

R̄ = 1

J

J−1∑
i=0

R̄i = S̄P̄S̄† +σ2
vĪ (14.10.4)

where

P̄ = 1

J

J−1∑
i=0

DiPD
†
i (14.10.5)

To be able to resolve L sources by the (M̄+ 1)-dimensional eigenproblem (14.10.4),
we must have M̄ ≥ L, and the rank of P̄ must be L. It has been shown [1126] that if
the number of subarrays J is greater than the number of signals, J ≥ L, then, P̄ has full
rank. If the J subarrays are to fit within the original array of length M+1, then we must
have M + 1 ≥ (M̄ + 1)+(J − 1), that is, the length of the first subarray plus the J − 1
subsequent shifts. Thus, M + 1 ≥ M̄ + J. If both J and M̄ are greater than L, then we
must have M + 1 ≥ 2L. Therefore, the price for restoring the rank of P is that we must
use twice as long an array as in the ordinary full-rank case with L sources. A somewhat
stronger result is that J ≥ L + 1 − ρ, where ρ is the rank of P [1150]; equivalently, we
have J ≥ ν + 1, where ν = L − ρ is the nullity of P. This would give for the minimum
number of array elements, M+ 1 ≥ 2L+ 1− ρ, [1127,1143,1150]. Following [1126], we
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derive the condition J ≥ L for the worst case, when all the signals are coherent. In that
case, P has rank one (ρ = 1) and is given by Eq. (14.10.1); P̄ becomes

P̄ = P1

J

J−1∑
i=0

Dic
∗cTD†i =

P1

J

J−1∑
i=0

did
†
i , di = Dic

∗

Writing
∑J−1

i=0 did
†
i = DD†, where D = [d0,d1, . . . ,dJ−1], it follows that the rank of

P̄ is the same as the rank of D. The matrix element Dli is the lth component of the ith
column; that is, Dli = (di)l= c∗l ejkli. Thus, D can be written as the product, D = C∗V,
of the diagonal matrix C∗ = diag{c∗1 , . . . , c∗L } and the L×J Vandermonde matrix V with
matrix elements Vli = ejkli; for example, if L = 3 and J = 4,

V =
⎡
⎢⎣ 1 ejk1 e2jk1 e3jk1

1 ejk2 e2jk2 e3jk2

1 ejk3 e2jk3 e3jk3

⎤
⎥⎦

The rank of Vandermonde matrices is always full; that is, it is the minimum of the col-
umn and row dimensions, min(L, J). It follows that the rank of P̄ is equal to min(L, J),
therefore, it is equal to L only if J ≥ L.

To appreciate the mechanism by which the rank is restored, let us consider an ex-
ample with two (L = 2) fully coherent sources. The minimum number of subarrays
needed to decohere the sources is J = L = 2. This implies M̄ =M+ 1− J =M− 1. The
covariance matrix of the full array is

R = P1[s1, s2]
[
c∗1
c∗2

]
[c1, c2]

[
s†1
s†2

]
+σ2

vI

The covariance matrices of the two subarrays are

R̄0 = P1[s̄1, s̄2]
[
c∗1
c∗2

]
[c1, c2]

[
s̄†1
s̄†2

]
+σ2

vĪ

R̄1 = P1[s̄1, s̄2]
[
ejk1c∗1
ejk2c∗2

]
[e−jk1c1, e−jk2c2]

[
s̄†1
s̄†2

]
+σ2

vĪ

Their average becomes

R̄ = 1

2
(R̄0 + R̄1)= [s̄1, s̄2]P̄

[
s̄†1
s̄†2

]
+σ2

vĪ

where

P̄ = P1

2

[
c∗1
c∗2

]
[c1, c2]+P1

2

[
ejk1c∗1
ejk2c∗2

]
[e−jk1c1, e−jk2c2]

= P1

[
c∗1 c1 c∗1 c2

(
1+ ej(k1−k2)

)
/2

c1c∗2
(
1+ ej(k2−k1)

)
/2 c∗2 c2

]

Clearly, P̄ is non-singular. The presence of the translation phases makes the two
column vectors [c∗1 , c∗2 ]T and [ejk1c∗1 , ejk2c∗2 ]T linearly independent. The determinant
of P̄ is easily found to be

det P̄ = |c1c2|2 sin2
(
k1 − k2

2

)
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Perhaps, an even simpler example is to consider the two quadratic forms

Q0 = (f1 + f2)2= fT
[

1
1

]
[1,1]f , f =

[
f1

f2

]

Q1 = f2
1 = fT

[
1
0

]
[1,0]f

Separately, they have rank one, but their sum has full rank

Q = Q0 +Q1 = (f1 + f2)2+f2
1 = 2f2

1 + 2f1f2 + f2
2 = fT

[
2 1
1 1

]
f

where the 2×2 coefficient matrix has rank two, being the sum of two rank-one matrices
defined by two linearly independent two-dimensional vectors[

2 1
1 1

]
=

[
1
1

]
[1,1]+

[
1
0

]
[1,0]

Such quadratic forms can be formed, for example, by a†SPS†a = f†Pf, where f = S†a.
In the practical implementation of the method, the subarray covariances are computed
by sample averages over N snapshots; that is,

R̄i = 1

N

N−1∑
n=0

ȳi(n)∗ȳi(n)T

and then forming the average

R̄ = 1

J

J−1∑
i=0

R̄i

In addition to spatial smoothing, there exist other methods for dealing with the
problem of coherent signal sources [1147,1148,1151,1152].

14.11 Asymptotic Properties

Statistically, the sample covariance matrix R̂ approximates the theoretical R, and there-
fore, the linear predictor based on R̂ will approximate the one based on R. Similarly, the
eigenstructure of R̂ will approximate that of R. In this section, we derive the asymptotic
statistical properties that justify such approximations [1179–1205].

The basic technique for deriving asymptotic results is to perform a linearization of
the empirical solution about the theoretical one and then use the asymptotic statistical
properties of R̂. In Sec. 1.6, we obtained the asymptotic covariance of R̂ for a large
number of snapshots N:

E[ΔRijΔRkl]= 1

N
(RikRjl +RilRjk) (14.11.1)
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where ΔR = R̂−R is the deviation of R̂ from its mean. This was valid in the real-valued
case; the complex-valued version will be considered shortly. The normal equations of
linear prediction based on R̂ and R are

R̂â = Êu0 , â =
[

1
α̂αα

]
and Ra = Eu0 , a =

[
1
ααα

]

where Ê and E are the minimized values of the mean-square prediction errors given by
Ê = âTR̂â and E = aTRa. Setting â = a+Δa and Ê = E +ΔE, we obtain

(R+ΔR)(a+Δa)= (E +ΔE)u0 ⇒ R(Δa)+(ΔR)a = (ΔE)u0 (14.11.2)

where we kept only the first-order terms. Because â and a have first coefficient of unity,
Δa = â− a will have zero first coefficient, that is, uT0 (Δa)= 0. Multiplying both sides of
Eq. (14.11.2) by aT, we obtain aTR(Δa)+aT(ΔR)a = ΔE. Using the normal equations
for a, we have aTR(Δa)= EuT0 (Δa)= 0. Thus, ΔE = aT(ΔR)a. Solving Eq. (14.11.2) for
Δa and using R−1u0 = E−1a, we find

Δa = E−1(ΔE)a−R−1(ΔR)a , ΔE = aT(ΔR)a (14.11.3)

For the purpose of computing the asymptotic covariances of Δa and ΔE, it proves
convenient to express Eq. (14.11.3) in terms of the vector δa ≡ (ΔR)a. Then,

Δa = E−1(ΔE)a−R−1(δa) , ΔE = aT(δa) (14.11.4)

Using Eq. (14.11.1), we find for the covariance of δa

E[δaiδak] = E
[∑

j
ΔRijaj

∑
l
ΔRklal

] =∑
jl
E[ΔRijΔRkl]ajal

= 1

N

∑
jl
(RikRjl +RjkRil)ajal = 1

N
[
Rik(aTRa)+(Ra)i(aTR)k

]

or,

E[δaδaT]= 1

N
[ER+Ra aTR] (14.11.5)

Writing ΔE = δaTa, we find

E[δaΔE]= E[δaδaT]a = 1

N
[ER+Ra aTR]a = 1

N
[
ERa+Ra(aTRa)

] = 2E
N
Ra

Using this result, we find for the asymptotic variance of Ê:

E
[
(ΔE)2] = aTE[δaΔE]= 2E

N
aTRa = 2E2

N
(14.11.6)

This generalizes Eq. (1.16.4). Similarly, we find for the cross-covariance between Ê
and â:

E[ΔaΔE]= E
[
(E−1ΔEa−R−1δa)ΔE

] = E−1E
[
(ΔE)2]a−R−1E[δaΔE] , or,
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E[ΔaΔE]= E−1 2E2

N
a−R−1(2E

N
Ra

) = 0 (14.11.7)

Finally, we find for the covariance of the predictor â

E[ΔaΔaT]= E
[
Δa(E−1ΔEaT − δaR−1)

] = −E[ΔaδaT]R−1

= −E[(E−1aΔE −R−1δa)δaT
]
R−1 = −[E−1a

2E
N

aTR−R−1 1

N
(ER+Ra aTR)

]
R−1

= E
N
(R−1 − E−1a aT)= E

N

[
0 0T

0 R̃−1

]

where we used Eq. (12.9.16) or (1.8.35), and R̃ is the lower-order portion of R. Such

result was expected because Δa is of the form Δa =
[

0
Δααα

]
. Thus,

E[ΔαααΔαααT]= E
N
R̃−1 (14.11.8)

This is a well-known result, and although we obtained it for sample covariance ma-
trices of the type (1.6.21), where the snapshots y(n) were assumed to be independent,
it can be proved in the case of autoregressive models where R̂ is built out of the sample
autocorrelation function [1171,1181–1191].

It can also be shown that asymptotically Ê and α̂αα are the maximum likelihood esti-
mates of the LP parameters E and ααα, having all the good properties of such estimates,
namely, asymptotic unbiasedness, consistency, efficiency, and gaussian distribution
about the theoretical values with covariances given by Eqs. (14.11.6)–(14.11.8), which
are none other than the Cramér-Rao bounds of these parameters. It is instructive to
use the general formula (1.18.17) to derive these bounds, where the parameter vector is
defined as λλλ = [E,αααT]T. We must determine the dependence of R on these parameters
and then compute the derivatives ∂R/∂E and ∂R/∂ααα. We write the UL factorization of
R in the form of Eq. (1.8.33):

R =
[
ρa rTa
ra R̃

]
= U−1DaU−T =

[
1 αααT

0 Ũ

]−1 [
E 0T

0 D̃

][
1 0T

ααα ŨT

]

The parametrization ofR on the parameters E andααα is shown explicitly. It is evident
that the entries ρa and ra depend on E and ααα, whereas R̃ does not. We have

ra = −R̃ααα , ρa = E −αααTra = E +αααTR̃ααα

Working with differentials, we find dra = −R̃dααα and dρa = dE + 2αααTR̃dααα. Differ-
entiating R entry-by-entry and using Eq. (1.8.35) for R−1, we find

R−1dR = E−1

[
dE +αααTR̃dααα −dαααTR̃

(dE +αααTR̃dααα)ααα− Edααα −αααdαααTR̃

]
(14.11.9)

Writing a similar expression for a second differential R−1δR, multiplying the two,
and taking the trace, we find

tr(R−1dRR−1δR)= E−2dEδE + 2E−1dαααTR̃δααα (14.11.10)
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This gives for the matrix elements of the Fisher information matrix

JEE = 1

2
N tr

[
R−1∂R

∂E
R−1∂R

∂E

]
= N

2E2

JαE = 1

2
N tr

[
R−1 ∂R

∂ααα
R−1∂R

∂E

]
= 0

Jαα = 1

2
N tr

[
R−1 ∂R

∂ααα
R−1 ∂R

∂αααT

]
= N

E
R̃

As we know, the inverse of the information matrix is the Cramér-Rao bound for
unbiased estimates. This inverse agrees with Eqs. (14.11.6)–(14.11.8).

Following the discussion of [1186,1192], we may also derive the asymptotic covari-
ances of the reflection coefficients. The forward and backward Levinson recursion es-
tablishes a one-to-one correspondence between the prediction coefficients ααα and the
vector of reflection coefficients γγγ. Therefore, we have the differential correspondence
Δγγγ = ΓΔααα, where Γ is the matrix of partial derivatives Γij = ∂γi/∂αj. It follows that
the asymptotic covariance of γγγ will be

E[ΔγγγΔγγγT]= ΓE[ΔαααΔαααT]ΓT = E
N
ΓR̃−1ΓT (14.11.11)

Example 14.11.1: For the first-order case, we have R̃ = [R(0)] and E1 = (1−γ2
1)R(0), where

γ1 = −a11. Thus, we obtain Eq. (1.16.4) as a special case

E
[
(Δa11)2

] = E
[
(Δγ1)2

] = 1− γ2
1

N

For the second-order case, Δααα = [Δa12, Δa22]T , and we have E2 = R(0)(1−γ2
1)(1−γ2

2)
and R̃ is the order-one autocorrelation matrix. Thus, we find

E[ΔαααΔαααT] = E2

N
R̃−1 = E2

N

[
R(0) R(1)
R(1) R(0)

]−1

= (1− γ2
1)(1− γ2

2)
N(1− γ2

1)

[
1 −γ1

−γ1 1

]
= 1− γ2

2

N

[
1 −γ1

−γ1 1

]

From the Levinson recursion, we find for the second-order predictor a22 = −γ1(1 − γ2)
and a22 = −γ2. Differentiating, we have

dααα =
[
da12

da22

]
=

[
−(1− γ2) γ1

0 −1

][
dγ1

dγ2

]

Inverting, we find

dγγγ =
[
dγ1

dγ2

]
= 1

1− γ2

[
−1 −γ1

0 −(1− γ2)

]
dααα = Γdααα

Forming the product ΓR̃−1ΓT , we finally find

E[ΔγγγΔγγγT]= 1

N
1− γ2

2

(1− γ2)2

[
1− γ2

1 0
0 (1− γ2)2

]
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which gives component-wise

E
[
(Δγ1)2

] = 1

N
(1+ γ2)(1− γ2

1)
1− γ2

, E[Δγ1Δγ2]= 0 , E
[
(Δγ2)2

] = 1− γ2
2

N

Setting γ2 = 0, the variance of γ1 becomes equal to that of the first-order case and
E
[
(Δγ2)2

] = 1/N. More generally, for an autoregressive process of order M, all reflection
coefficients of order greater than M vanish, but their asymptotic variances are equal to
1/N, that is, E

[
(Δγp)2

] = 1/N, for p > M, [1186,1192]. �	

Next, we consider the asymptotic properties of the eigenstructure of R̂ [1197–1205].
In the complex-valued case R̂ is given by Eq. (14.4.14), and Eq. (14.11.1) is replaced by

E[ΔRij ΔRkl]= 1

N
RilRkj (14.11.12)

where again ΔR = R̂ − R. This can be shown in the same way as Eq. (1.6.23) using the
following expression for the expectation value of the product of four complex gaussian
random variables arising from the (independent) snapshots y(n) and y(m):

E
[
yi(n)∗yj(n)yk(m)∗yl(m)

] = RijRkl + δnmRilRkj

Equation (14.11.12) may be written more conveniently in the form

E
[
(a†ΔRb)(c†ΔRd)

] = 1

N
(a†Rd)(c†Rb) (14.11.13)

for any four (M+1)-dimensional vectors a,b, c,d. In particular, we may apply it to four
eigenvectors of R. Let ei denote the orthonormal eigenvectors of R, Rei = λiei, with
eigenvalues arranged in increasing order. Then,

E
[
(e†i ΔRej)(e

†
kΔRel)

] = 1

N
(e†i Rel)(e

†
kRej)= 1

N
λiλjδilδkj

where we used (e†i R)el = λie
†
i el = λiδil. Arranging the eigenvectors into the eigenvec-

tor matrix E = [e0, e1, . . . , eM], we recognize that the quantities eiΔRej, are the matrix
elements of ΔR in the E basis; that is, the elements of the matrix ΔV = E†ΔRE. Thus,
we obtain the diagonalized version of Eq. (14.11.12)

E[ΔVij ΔVkl]= 1

N
λiλjδilδkj (14.11.14)

The asymptotic properties of the eigenstructure of R̂ are obtained by using Eq. (14.11.14)
and standard first-order perturbation theory. The eigenproblems for R and R̂ are,

RE = EΛ and R̂Ê = ÊΛ̂ (14.11.15)

where Ê, E are the eigenvector matrices and Λ̂,Λ the diagonal matrices of the eigenval-
ues. Because the eigenvectors E form a complete set, it follows that the eigenvectors
Ê can be expanded as linear combinations of the former; that is, Ê = EF. The or-
thonormality and completeness of Ê and E require that F be a unitary matrix, satisfying
F†F = FF† = I. This is easily shown; for example, I = Ê†Ê = F†E†EF = F†IF = F†F.
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In carrying out the first-order perturbation analysis, we shall assume initially that
all the eigenvalues of R are distinct. This corresponds to the Pisarenko case, where the
noise subspace is one-dimensional and thus, L =M.

The assumption of distinct eigenvalues means that, under a perturbation, R̂ = R+
ΔR, each eigenvector changes by a small correction of the form Ê = E + ΔE. By the
completeness of the basis E we may write ΔE = EΔC so that Ê = E(I + ΔC)= EF.
The unitarity of the matrix F = I + ΔC requires that ΔC be anti-hermitian; that is,
ΔC+ΔC† = 0. This follows from the first-order approximation F†F = I +ΔC+ΔC†.
The perturbation changes the eigenvalues by λ̂i = λi + Δλi, or, Λ̂ = Λ + ΔΛ. To
determine the first-order corrections we use Eq. (14.11.15)

(R+ΔR)(E +ΔE)= (E +ΔE)(Λ+ΔΛ) ⇒ (ΔR)E +R(ΔE)= (ΔE)Λ+ E(ΔΛ)

where we kept only the first-order terms. Multiplying both sides by E† and using E†RE =
Λ and the definition ΔV = E†(ΔR)E, we obtain

ΔV +Λ(ΔC)= (ΔC)Λ+ΔΛ ⇒ ΔΛ+ (ΔC)Λ−Λ(ΔC)= ΔV

or, component-wise
Δλiδij + (λj − λi)ΔCij = ΔVij

Setting i = j and then i �= j, we find

Δλi = ΔVii , ΔCij = − ΔVij

λi − λj
, for i �= j (14.11.16)

Using Eq. (14.11.14), we obtain the asymptotic variances of the eigenvalues

E
[
(Δλi)2] = E[ΔVii ΔVii]= λ2

i
N

(14.11.17)

For the eigenvectors, we write

Δei = êi − ei =
∑
j �=i

ejΔCji

and their covariances are

E[ΔeiΔe†i ]=
∑
j �=i

∑
k�=i

eje
†
kE[ΔCjiΔC∗ki]

Using the anti-hermiticity of ΔC and Eq. (14.11.14), we find

E[ΔCjiΔC∗ki]= −
E[ΔVjiΔVik]

(λj − λi)(λi − λk)
= 1

N
λiλj

(λi − λj)2
δjk

which gives

E[ΔeiΔe†i ]=
1

N

∑
j �=i

λiλj
(λi − λj)2

eje
†
j (14.11.18)
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Separating out the minimum eigenvalue λ0 and eigenvector e0, and denoting the
remaining signal subspace eigenvectors and eigenvalues by ES = [e1, . . . , eM] and ΛS =
diag{λ1, . . . , λM}, we may write Eq. (14.11.18) compactly

E[Δe0Δe†0]=
λ0

N
ESΛS(ΛS − λ0IM)−2E†S (14.11.19)

where IM is the M-dimensional unit matrix. The zeros of the polynomial e0 contain the
desired frequency information. The asymptotic variances for the zeros can be obtained
by writing

Δzi =
(
∂zi
∂e0

)T
Δe0

which gives

E
[|Δzi|2] =

(
∂zi
∂e0

)T
E[Δe0Δe†0]

(
∂zi
∂e0

)∗
(14.11.20)

Example 14.11.2: In the L =M = 1 Example 14.3.1, we have for the eigenvalues and orthonor-
mal eigenvectors of R

λ0 = σ2
v , λ1 = σ2

v + 2P1 , e0 = 1√
2

[
1

−ejk1

]
, e1 = 1√

2

[
1
ejk1

]

It follows from Eq. (14.11.19) that

E[Δe0Δe†0]=
1

N
e1e†1

λ1λ0

(λ1 − λ0)2

Using the general formula for the sensitivities of zeros with respect to the coefficients of
a polynomial [12].

∂zi
∂am

= − 1

a0

zM−mi∏
j �=i(zi − zj)

we find for the zero z1 = ejk1 of e0

∂z1

∂e0
= −√2

[
z1

1

]

Using this into Eq. (14.11.20), we find

E
[|Δzi|2] = 1

N
4λ1λ0

(λ1 − λ0)2
= 1

N
1+ 2SNR

SNR2 , SNR = P1

σ2
v

This implies that the quality of the estimated zero improves either by increasing the num-
ber of snapshots N or the signal to noise ratio. For low SNR, the denominator (λ1 − λ0)2

becomes small and the variance of z1 increases, resulting in degradation of performance.
For a given level of quality there is a tradeoff between the number of snapshots and SNR.
In general, the signal subspace eigenvalues ΛS will be separated from λ0 = σ2

v by a term
that depends on the signal powers, say, ΛS = λ0IM + PS. Then,

λ0ΛS(ΛS − λ0IM)−2= (IM + PS/σ2
v)(PS/σ2

v)−2

and Eq. (14.11.19) implies that the estimate of e0 becomes better for higher SNRs. �	
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When the noise subspace has dimension K =M+1−L and the minimum eigenvalue
λ0 hasK-fold degeneracy, the first-order perturbation analysis becomes somewhat more
complicated. The eigenproblem for R is divided into its noise and signal subspace parts

REN = λ0EN , RES = ESΛS

where EN consists of the K degenerate eigenvectors belonging to the minimum eigen-
value λ0 = σ2

v and ES consists of the remaining L signal subspace eigenvectors. Under
a perturbation R̂ = R + ΔR, the degeneracy of EN is lifted and the noise subspace
eigenvalues become unequal λ̂i = λ0 +Δλi, i = 0,1, . . . , K − 1, or, Λ̂N = λ0IK +ΔΛN.
Similarly, the signal subspace eigenvalues change to Λ̂S = ΛS +ΔΛS.

The signal subspace eigenvectors, belonging to distinct eigenvalues, change in the
usual way; namely, each eigenvector changes by receiving small contributions from all
other eigenvectors. The noise subspace eigenvectors, however, being degenerate, are
mixed up by the perturbation into linear combinations of themselves, and in addition,
they receive small corrections from the signal subspace eigenvectors. Thus, the eigen-
problem for the perturbed matrix R̂ is

R̂ÊN = ÊNΛ̂N , R̂ÊS = ÊSΛ̂S (14.11.21)

where the corrections of the eigenvectors are of the form

ÊN = ENC+ ESΔC , ÊS = ES + ESΔB+ ENΔD (14.11.22)

In absence of the perturbation ΔR, the choice of the degenerate basis EN is arbitrary
and can be replaced by any linear combination ENC. The presence of the perturbation
fixes this particular linear combination by the requirement that the change in the eigen-
vectors be small. Combining the two equations into the full eigenvector matrices, we
have

Ê = [ÊN, ÊS]= [EN, ES]
[

C ΔD
ΔC IL +ΔB

]
= EF

The orthonormality and completeness requirements for Ê imply that F†F = FF† = I.
To first order, these conditions are equivalent to

C†C = IK , ΔC+ΔD†C = 0 , ΔB+ΔB† = 0 (14.11.23)

Thus, C must be unitary. Inserting Eq. (14.11.22) into the first term of (14.11.21) and
using (14.11.23), we find

(R+ΔR)(ENC− ESΔD†C)= (ENC− ESΔD†C)(λ0IK +ΔΛN)

and equating first-order terms,

ΔRENC− ESΛSΔD†C = ENCΔΛN − ESΔD†Cλ0

Multiplying both sides first by E†N and then by E†S and using the orthonormality
properties (14.4.3), we obtain

ΔVNNC = CΔΛN (14.11.24)
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where ΔVNN = E†NΔREN, and

ΔVSNC−ΛSΔD†C = −ΔD†Cλ0

where ΔVSN = E†SΔREN, and solving for ΔD†

ΔD† = (ΛS − λ0IL)−1ΔVSN (14.11.25)

Similarly, from the second term of Eq. (14.11.21), we find for ΔB

ΔΛS +ΔBΛs −ΛsΔB = ΔVSS , ΔVSS = E†SΔRES (14.11.26)

which can be solved as in Eq. (14.11.16). To summarize, the corrections to the noise
subspace eigenvalues ΔΛN and the unitary matrix C are obtained from the solution of
theK×K eigenproblem (14.11.24),ΔD constructed by (14.11.25), thenΔC is constructed
by (14.11.23), and ΔB by (14.11.26).

Because the corrections to the signal subspace eigenvectors are obtained from the
non-degenerate part of the perturbation analysis, it follows that (14.11.18) is still valid
for the signal eigenvectors. More specifically, because we index the noise subspace
eigenvectors for 0 ≤ i ≤ K − 1 and the signal subspace eigenvectors for K ≤ i ≤M, we
may split the sum over the noise and signal subspace parts

E[ΔeiΔe†i ]=
1

N
λ0λi

(λ0 − λi)2

K−1∑
j=0

eje
†
j +

1

N

M∑
j �=i
j=K

λiλj
(λi − λj)2

eje
†
j

where we used the fact that all noise subspace eigenvalues are equal to λ0. The first
term is recognized as the projector onto the noise subspace. Thus, for K ≤ i ≤M,

E[ΔeiΔe†i ]=
1

N
λ0λi

(λ0 − λi)2
ENE

†
N +

1

N

M∑
j �=i
j=K

λiλj
(λi − λj)2

eje
†
j (14.11.27)

Because most eigenvector methods can also be formulated in terms of the signal
subspace eigenvectors, it is enough to consider only the asymptotic covariances of
these eigenvectors. For example, in the reduced-order method of Sec. 14.7, the reduced-
order polynomials ai may alternatively be computed by requiring that the correspond-
ing shifted vectors bi be orthogonal to the signal subspace [1139]; namely, E†Sbi = 0,

i = 0,1, . . . , K − 1, and similarly, for the empirical quantities Ê†S b̂i = 0. If we denote by
Gi the part of ES consisting of L+1 rows starting with the ith row, then, these conditions
become G†i ai = 0. Because the first coefficient of ai is unity, these give rise to L linear
equations for the L last coefficients ai. It follows that ai can be constructed as a function
of the signal eigenvectors, and thus, one can obtain the corresponding covariance of ai
using Eq. (14.11.27). An example will illustrate this remark.

Example 14.11.3: Consider the case of one plane wave (L = 1) and arbitraryM. The covariance
matrix R = σ2

vI + P1sk1 s†k1
has a one-dimensional signal subspace so that ES = [eM], Its
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eigenvalue is λM = σ2
v + (M+1)P1. The matrix Gi is formed by row i to row i+L = i+1,

that is,

Gi =
[

eM,i

eM,i+1

]
= 1√

M + 1

[
ejk1i

ejk1(i+1)

]

The equation G†i ai = 0 becomes for the first-order filters ai,

G†i ai = 1√
M + 1

[
e−jk1i, e−jk1(i+1)][ 1

ai1

]
= 0 ⇒ ai1 = −ejk1

and hence, all the reduced-order polynomials are equal to the theoretical one, Ai(z)=
1 − ejk1z−1. Now, if the empirical êM is used , then a similar calculation gives ai1 =
−e∗M,i/e

∗
M,i+1, and therefore, the estimated zero will be ẑ1 = e∗M,i/e

∗
M,i+1. Differentiating,

we obtain dẑ1 = de∗M,i/e
∗
M,i+1 − e∗M,ide

∗
M,i+1/e

∗2
M,i+1; therefore, its covariance will be

E
[|Δz1|2

] = 1

|eM,i+1|2 E
[|ΔeM,i|2

]+ |eM,i|2
|eM,i+1|4 E

[|ΔeM,i+1|2
]

− 2 Re

[
e∗M,i

eM,i+1e∗2
M,i+1

E
[
ΔeM,iΔe∗M,i+1

]]

This simplifies to

E
[|Δz1|2

] = (M + 1)
[
E
[|ΔeM,i|2

]+ E
[|ΔeM,i+1|2

]− 2 Re
(
ejk1E

[
ΔeM,iΔe∗M,i+1

])]

Because the signal subspace is one-dimensional, the second term in Eq. (14.11.27) is absent.
The noise-subspace projector can be expressed in terms of the signal-subspace projector
ENE

†
N = I − ESE

†
S . Thus, Eq. (14.11.27) gives

E[Δe0Δe†0]=
1

N
λMλ0

(λM − λ0)2

(
I − 1

M + 1
sk1 s†k1

)

Extracting the ith and (i+ 1)st components, we get for the variance of the estimated zero

E
[|Δz1|2

] = 1

N
2(M + 1)λMλ0

(λM − λ0)2
= 1

N
2
[
1+ (M + 1)SNR

]
(M + 1)SNR2

where SNR = P1/σ2
v . Setting M = 1, we recover the result of Example 14.11.2. �	

14.12 Computer Project – LCMV Beamforming and GSC

This computer project, divided into separate parts, deals with the theory of linearly-
constrained minimum-variance (LCMV) beamforming and its equivalence to the gen-
eralized sidelobe canceler [1209–1221]. The problem also has application in linearly-
constrained time-series Wiener filtering, and other applications, such as optimum minimum-
variance Markowitz portfolios in finance (those are discussed in the following project).
The following topics are included,

• Linearly-constrained Wiener filtering problem.

• Linearly-constrained minimum-variance beamforming.
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• Retrodirective beams towards multiple interferers.

• Quiescent pattern control with linear constraints.

• Equivalence of LCMV and the generalized sidelobe canceler.

1. Linearly-constrained Wiener filtering problem. LetR be a givenM×M positive-definite
Hermitian matrix and r be a given M×1 complex-valued vector. It is desired to find
the weight vector a that minimizes:

E = a†Ra− r†a− a†r = min (14.12.1)

subject to the K linear constraints:

C†a = g (14.12.2)

where K < M, and C is a M×K matrix with linearly independent columns, and g
is a given K×1 vector of “gains”. Component-wise, Eq. (14.12.2) reads c†i a = gi,
i = 1,2, . . . , K, where ci is the ith column of C, and gi the ith component of g.

(a) Show that the unconstrained minimization of Eq. (14.12.1) gives the solution:

au = R−1r (14.12.3)

(b) Introduce a K-dimensional complex-valued vector of Lagrange multipliers λλλ and
minimize the modified performance index:

J = a†Ra− r†a− a†r+λλλ†(g−C†a)+(g† − a†C)λλλ = min

Show that the solution the solution of this problem is the solution of the con-
strained problem of Eqs. (14.12.1) and (14.12.2) can be expressed in terms of au
as follows:

a = au +R−1C(C†R−1C)−1(g−C†au
)

(14.12.4)

Many of the subsequent questions are special cases of this result.

2. LCMV Beamforming. Consider an array of M antennas equally-spaced at distance d
(in units of the wavelength λ) along the x-axis. The array response is to be designed
to achieve K prescribed gain values gi at the directions θi corresponding to the
steering vectors:

si = ski , ki = 2πd sinθi , i = 1,2, . . . , K (14.12.5)

where

sk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ejk

e2jk

...
e(M−1)jk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Thus, the constraint matrix C and gain vector are:

C = [s1, s2, . . . , sK] , g =

⎡
⎢⎢⎢⎢⎢⎣
g1

g2

...
gK

⎤
⎥⎥⎥⎥⎥⎦

We assume that L plane waves are incident on the array from L directions which may
or may not coincide with the above constraint angles. Let S be the M×L steering
matrix of the incident plane waves and let P be their L×L power matrix, assumed to
have full rank. The M×M autocorrelation matrix of the array output in the presence
of uncorrelated noise is:

R = σ2
vI + SPS† (14.12.6)

(a) Using the results of the previous question, show that the optimum array weights
that minimize the output power subject to the K constraints:

E = a†Ra = min , subject to C†a = g (14.12.7)

are given by:

a = R−1C(C†R−1C)−1g (LCMV) (14.12.8)

This is known as the linearly-constrained minimum variance (LCMV) beamformer.
See Frost [1209] for its LMS adaptive implementation. The corresponding array
response towards an angle θ is defined as follows in absolute units and in dB

A(θ)= |s†ka| , AdB(θ)= 20 log10 A(θ) , k = 2πd sinθ (14.12.9)

(b) With R given by Eq. (14.12.6), show that if C = S, then, Eq. (14.12.8) reduces to

a = S(S†S)−1g (14.12.10)

which is recognized as the minimum-norm solution of the equation S†a = g.
Being the minimum-norm solution implies that it minimizes a†a. How is this
reconciled with the fact that a minimizes Eq. (14.12.7)?

(c) Retrodirective Beamforming towards Multiple Interferers. An example of retrodi-
rective beamforming was given in Eq. (14.3.27). In the present notation, this
corresponds to the case C = [s1], g = [1], and S = [s1, s2] with s1 being the
desired look-direction and s2 representing a jammer.

Suppose that the incident signals are divided into two groups, the desired signals
S1 and the interferers S2, so that S = [S1, S2], where S1 and S2 have L1 and
L2 columns, respectively, such that L1 + L2 = L, and let us assume that the
corresponding power matrices are P1 and P2 and that the S1 and S2 are spatially
uncorrelated so that the full power matrix is block-diagonal so thatR is expressed
in the form:

R = σ2
vI + S2P2S

†
2 + S1P1S

†
1 ≡ Rn + S1P1S

†
1
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whereRn = σ2
vI+S2P2S

†
2 is the noise-plus-interference covariance matrix. Using

the matrix inversion lemma, show the identity:

R−1S1(S
†
1R−1S1)−1= R−1

n S1(S
†
1R−1

n S1)−1

Thus, if we choose C = S1 and g being an arbitrary vector of responses towards
the desired look directions, the optimum weights will be given by:

a = R−1C(C†R−1C)−1g = R−1
n S1(S

†
1R−1

n S1)−1g

Using the matrix inversion lemma on Rn, show the following results:

R−1
n S1 = 1

σ2
v

[
S1 − S2(σ2

vP
−1
2 + S†2S2)−1S†2S1

]
S†2R−1

n S1 = P−1
2 (σ2

vP
−1
2 + S†2S2)−1S†2S1

Thus, the array gain steered towards the interferers, S†2a, becomes smaller with
increasing interferer power P2.

(d) Consider an array of 10 antennas equally-spaced at half-wavelength spacings
(d = 0.5). The array is designed to receive two desired signals from angles
θ1 = 20o and θ2 = 40o and reject five interferers coming in from the directions:

{θ3, θ4, θ5, θ6, θ7} = {−40o, −30o, −20o, 60o, 70o}
The response towards θ1 is to be double that towards θ2, while the responses
towards the interferers must be zero. Thus, the constraint matrix and gain vector
must be chosen as:

C = [s1, s2, s3, s4, s5, s6, s7] , g = [2,1,0,0,0,0,0]T

Assume that all plane waves have 10-dB power levels (and P is diagonal). De-
sign the optimum weight vector and calculate and plot the array response of
Eq. (14.12.9) in absolute units over the angle range −90o ≤ θ ≤ 90o. Indicate on
the graph the values of the gain vector g. Plot it also in dB with a vertical scales
ranging from [−70,10] dB.
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(e) To see the retrodirective action of the optimum beamformer, redesign the opti-
mum weights based only on the desired signal constraints:

C = [s1, s2] , g = [2,1]T

and plot the array response in dB using the same vertical dB scales as before.
Note the nulls at the interferer directions.

Repeat when the interferer powers are increased to 20 dB. In this case, you should
expect the interferer nulls to be deeper.
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(f) Repeat when the interferer at θ4 is to be nulled exactly and the other interferers
nulled approximately by the retrodirective action of the beamformer, that is,
choose

C = [s1, s2, s4] , g = [2,1,0]T

Plot the array gain in dB using the same vertical scales as before. Assume 10-dB
power levels for all signals.
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(g) Repeat the design and the gain plot for the following two cases. When interferes
3,4,5 are to be nulled exactly, and when 6,7 are to be nulled, that is, for the two
cases defined by:

C = [s1, s2, s3, s4, s5] , g = [2,1,0,0,0]T

C = [s1, s2, s6, s7] , g = [2,1,0,0]T
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Note that the construction of the steering matrix S and constraint matrix C can
be done with the help of the MATLAB function steermat, and the array gain can
be calculated with the help of the dtft function, both of which may be found in
the collection osp-toolbox. For example, in the very last case, we may define,

Pdb = [10 10 10 10 10 10 10]; P = diag(10.^(Pdb/10));
S = steermat(M-1, exp(j*[k1, k2, k3, k4, k5, k6, k7]));
C = steermat(M-1, exp(j*[k1, k2, k6, k7]));
R = eye(M) + S*P*S’; % assume unit-variance noise

where ki = 2πd sinθi. For the gain computation, you may use:

th = linspace(-90,90,1001); thr = pi*th/180; d=0.5;
k = 2*pi*d*sin(thr);
A = abs(dtft(a,k)); % array response, |A(theta)|
plot(th,A);

3. Quiescent Pattern Control. Next, we consider the proper design of the quiescent
response of an array that achieves a desired shape and respects the beam constraints.
The method is discussed by Griffiths and Buckley [1213].

Consider an antenna array defined by Eqs. (14.12.6)–(14.12.9). The quiescent weights
aq correspond to the case when the incident signals are absent and only noise is
present, that is, whenR = σ2

vI. In this case, show that the optimum weights (14.12.8)
are given by

aq = C(C†C)−1g (14.12.11)

They correspond to the minimum-norm solution of the constraints, C†a = g.
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(a) Suppose that the array is to be steered towards a desired look-direction θ1 cor-
responding to a steering vector s1. If we choose C = s1 for the constraint matrix
and g = [1], that is, s†1a = 1 for the constraint, then show that the quiescent
weights are:

aq = 1

M
s1 (14.12.12)

and that the array response becomes

A(θ)= |s†kaq| = 1

M
∣∣W(k− k1)

∣∣ (14.12.13)

where k = 2πd sinθ , k1 = 2πd sinθ1, and W(k) is the response of the rect-
angular window of length M.

(b) IfC = s1 as above, but only the desired signal is present, that is,R = σ2
vI+P1s1s†1,

then show that the optimum weights are again given by Eq. (14.12.12).

(c) Consider an array of 21 antennas spaced at half-wavelength intervals. The de-
sired signal comes from the direction θ1 = 30o and has 0-dB signal to noise
ratio.

Plot the quiescent response (14.12.13) versus angle using dB scales with a vertical
range of [−80,5] dB. Notice the usual 13-dB level of the highest sidelobes. This
corresponds to a steered uniform array.

(d) It is anticipated that one or more interferers may come on in the angular range
of −50o ≤ θ ≤ −30o. To mitigate their effect, we try to force the array gain to
be −60 dB at the following angles:

{θ2, θ3, θ4, θ5, θ6} = {−50o ,−45o ,−40o ,−35o ,−30o}
Thus, we may choose the constraint matrix and gain vector to be:

C = [s1, s2, s3, s4, s5, s6] , g = [1, g, g, g, g, g]T (14.12.14)

where g = 10−60/20 = 10−3. Compute the corresponding quiescent weights
using Eq. (14.12.11) and plot the corresponding array angular pattern in dB as
above. Place the points θi on the graph.
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(e) The quiescent responses of the uniform array considered above are not very good
because of their substantial sidelobe level. As an example of a better response,
consider the design of a 21-element Dolph-Chebyshev array that is steered to-
wards the angle θ1 = 30o and has a sidelobe level of −40 dB. Such an array can
be designed with the MATLAB function dolph. The MATLAB code is as follows:

d = 0.5; th1 = 30; k1 = 2*pi*d*sin(pi*th1/180);
s1 = steermat(M-1, exp(j*k1));
a = dolph(d, 90-th1, M, 40)’;
ad = a/(s1’*a);

where the calling convention of dolph, and the conjugation implied by the prime
operation, have to do with the conventions used in that toolbox. The last line
normalizes the designed array vector ad so that s†1ad = 1 and have unity gain
towards s1.

Plot the array response of the desired weights ad using the same scales as the
above two graphs. Note the −40 dB sidelobe level and the gains at the five con-
straint points θ2–θ6, with the constraints yet to be enforced.

(f) The main idea of Ref. [1213] is to find that weight vector ā that satisfies the
constraints C†ā = g and is closest to the desired weight ad with respect to the
Euclidean norm, that is, find ā that is the solution of the minimization problem:

J = (ā− ad)†(ā− ad)= min , subject to C†ā = g (14.12.15)

Using the results of Eq. (14.12.4), show that the optimum solution is

ā = ad +C(C†C)−1(g−C†ad
)

(14.12.16)

which can be written in the form:

ā = [
I −C(C†C)−1C†

]
ad +C(C†C)−1g ≡ a⊥ + aq (14.12.17)

Note that C†a⊥ = 0 and that aq and a⊥ are orthogonal, a†qa⊥ = 0. Show that ā
can also be written in the form:

ā = a⊥ +C(C†C)−1g = [C, a⊥]
[
(C†C)−1 0

0 (a†⊥a⊥)−1

][
g

a†⊥a⊥

]

Using the orthogonality property C†a⊥ = 0, show that the above expression can
be written in the form:

ā = C̄(C̄†C̄)−1ḡ , C̄ = [C, a⊥] , ḡ =
[

g

a†⊥a⊥

]
(14.12.18)

Therefore, the modified weights ā may be thought of as the quiescent weights
with respect to the constraints C̄†ā = ḡ, which involve one more constraint equa-
tion appended to the old ones.
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(g) Using the constraints defined by Eq. (14.12.14) and the conventional Chebyshev
weights ad computed in part (e), construct the new quiescent “constrained Cheby-
shev” weights according to Eq. (14.12.16) and plot the corresponding array pat-
tern using the same scales as before. Place the constrained points on the graph.
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(h) The previous question dealt with the quiescent pattern. Here, assume that there
are actually four incident plane waves, one from the desired look-directionθ1 and
three interferers from the directions θ2, θ3, θ4 as defined in part (d). Thus, the
steering matrix used to construct the covariance matrixRwill beS = [s1, s2, s3, s4].
All four SNRs are assumed to be 20 dB.

However in this part, we wish to clamp down the three interferers at the −70
dB level. The constraint matrix C remains the same as in Eq. (14.12.14), but the
gain vector g needs to be modified appropriately so that its entries 2–4 reflect
the −70 dB requirement.

Construct the extended constraint set C̄, ḡ as in Eq. (14.12.18) and then construct
the corresponding optimum weights using Eq. (14.12.8) (with C̄, ḡ in place ofC,g).
Plot the corresponding angular pattern using the same scales as before, and place
the constraint points on the graph.

(i) In this part, in addition to the four plane waves of the part (h), there are also
incident the following interferers:

{θ7, θ8, θ9, θ10, θ11} = {−15o ,−10o ,−5o ,0o ,+60o}

Again, all SNRs are 20 dB. We wish to meet the following requirements: (1) s1

is the desired incident signal with unity gain, (2) s2, s3, s4 are incident waves to
be clamped down at −70 dB, (3) s5, s6 whose angles were defined in part (d) are
constraint directions clamped at −60 dB but they do not correspond to incident
waves, (4) s7, s8, s9, s10 are incident and will be nulled by the retrodirective action
of the array, and (5) s11 is incident and also to be clamped at −70 dB.

Construct the covariance matrix R and the new constraints C,g. Then, con-
struct the extended constraint set C̄, ḡ, calculate the optimum weights from
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Eq. (14.12.8), and plot the corresponding array pattern using the same scales as
before. Indicate the constraint points on the graph. Label the four retrodirective
beam points at the bottom of the graph, that is, at the −80 dB level.

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

Jammers constrained at −70 dB

jammers at −50o,−45o,−350

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

constrained and retrodirective

constrained at −50o,−45o,−350,+60o

retrodirective at 0o,−5o,−10o,−15o

4. Equivalence of LCMV and the Generalized Sidelobe Canceler. Finally, we look at the
equivalence of the LCMV beamformer and the generalized sidelobe canceler (GSC).
Consider the LCMV problem defined by Eq. (14.12.7) and its solution, Eq. (14.12.8).
The constraints C†a = g can be regarded as a full-rank under-determined system of
equations.

(a) Show that the pseudoinverse of the constraint matrix C† is:

(C†)+= C(C†C)−1

(b) Show that the most general solution of C†a = g can be expressed in the form:

a = aq − Bc (14.12.19)

where aq = (C†)+g = C(C†C)−1g is the minimum-norm solution and B is an
M×(M−K) matrix that forms a basis for the (M−K)-dimensional null space of
C†, that is, the space N(C†), and c is an arbitrary (M−K)-dimensional vector
of coefficients. Thus, B must satisfy

C†B = 0 (14.12.20)

For example, B may be constructed from the full SVD, C = UΣV†, where the
M×M unitary matrix U can be decomposed into its M×K and M×(M−K) parts,
U = [U1, U2]. One can choose then B = U2, or more generally, B = U2F, where
F is any (M−K)×(M−K) invertible matrix.

(c) Because a = aq−Bc already satisfies the constraints, the LCMV problem (14.12.7)
can be replaced by the following unconstrained minimization problem for the
determination of the coefficients c:

J = a†Ra = (aq − Bc)†R(aq − Bc)= min (14.12.21)

14.12. Computer Project – LCMV Beamforming and GSC 745

Show that the optimum c is given by

c = (B†RB)−1B†Raq (14.12.22)

and hence the optimum a can be written in the form:

a = aq − Bc = [
I − B(B†RB)−1B†R

]
aq (14.12.23)

The solution (14.12.23) must be the same as that of Eq. (14.12.8).

(d) Show that the orthogonality condition (14.12.20) and the fact that the two ma-
trices C,B together form a basis for CM, imply that B and C must satisfy the
following relationships:

C(C†C)−1C† + B(B†B)−1B† = I (14.12.24)

and
R−1C(C†R−1C)−1C† + B(B†RB)−1B†R = I (14.12.25)

Hints: For the first one, use the full SVD of C and the fact that B = U2F. For the
second one, work with the matrices C̄ = R−1/2C and B̄ = R1/2B, where R1/2 is
a hermitian positive square root of R, and then apply the same argument as for
the first part.

(e) Using Eq. (14.12.25) show the equivalence of Eqs. (14.12.8) and (14.12.23).

(f) The above results lead to the following block diagram realization of the LCMV,
known as the generalized sidelobe canceler:

where y is the overall input vector at the M antennas, and the other variables are
defined as follows:

x = aTqy

ỹ = BTy

x̂ = cTỹ

e = x− x̂ = aTqy− cTBTy = (aq − Bc)Ty = aTy

(14.12.26)

The portion of the block diagram to the right of the vertical dividing line may
be thought of as an ordinary Wiener filtering problem of estimating the signal x
from the vector ỹ. This follows by noting that the output power minimization of
e is equivalent to the estimation problem:

J = aTRa = E[|e|2]= E
[|x− x̂|2] = min
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where R = E[y∗yT]. Let R̃ = E[ỹ∗ỹT] and r̃ = E[x ỹ∗]. Then, show that the
optimum c of Eq. (14.12.22) is indeed the Wiener solution:

c = R̃−1r̃ (14.12.27)

The great advantage of the GSC is that this unconstrained Wiener filtering part
can be implemented adaptively using any adaptive method such as LMS or RLS,
applied to the signals x(n), ỹ(n). For example, the complete LMS algorithm
would be as follows. At each time n, the input y(n) and weights c(n) are avail-
able, then,

x(n)= aTqy(n)

ỹ(n)= BTy(n)

x̂(n)= cT(n)ỹ(n)

e(n)= x(n)−x̂(n)
c(n+ 1)= c(n)+μe(n)ỹ∗(n)

(adaptive GSC)

with the vector a(n)= aq−Bc(n) converging to the desired optimum constrained
solution of Eq. (14.12.8).

14.13 Computer Project – Markowitz Portfolio Theory

This project, divided into separate questions, deals with Markowitz’s optimum mean-
variance portfolio theory. [1222–1233]. It can be considered to be a special case of
the linearly-constrained quadratic optimization problem of the previous project. The
project develops the following topics from financial engineering:

• optimum mean-variance Markowitz portfolios

• efficient frontier between risk and return

• quantifying risk aversion

• two mutual fund theorem

• inequality-constrained portfolios without short selling

• risk-free assets and tangency portfolio

• capital asset line and the Sharp ratio

• market portfolios and capital market line

• stock’s beta, security market line, risk premium

• capital asset pricing model (CAPM)

• minimum-variance with multiple constraints

1. Mean-Variance Portfolio Theory. The following constrained optimization problem
finds application in investment analysis and optimum portfolio selection in which
one tries to balance return versus risk.†

†Harry Markowitz received the Nobel prize in economics for this work.
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Suppose one has identified M stocks or assets y = [y1, y2, . . . , yM]T into which
to invest. From historical data, the expected returns of the individual stocks are
assumed to be known, E[y]= m = [m1,m2, . . . ,mM]T, as are the cross-correlations
between the assets, Rij = E

[
(yi −mi)(yj −mj)

]
, or, R = E

[
(y − m)(y − m)T

]
,

assumed to have full rank. The variance σ2
i = Rii is a measure of the volatility, or

risk, of the ith asset.

A portfolio is selected by choosing the percentage ai to invest in the ith asset yi.
The portfolio is defined by the random variable:

y =
M∑
i=1

aiyi = [a1, a2, . . . , aM]

⎡
⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤
⎥⎥⎥⎥⎥⎦ = aTy

where the weights ai must add up to unity (negative weights are allowed, describing
so-called “short sells”):

M∑
i=1

ai = [a1, a2, . . . , aM]

⎡
⎢⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎥⎦ = aTu = 1

The expected return of the portfolio and its variance or risk are given by:

μ = E[y]= E[aTy]= aTm

σ2 = E
[
(y − μ)2] = aTRa

An optimum portfolio may be defined by finding the weights that minimize the risk
σ2 for a given value of the return μ, that is,

σ2 = aTRa = min , subject to aTm = μ , aTu = 1 (14.13.1)

(a) Incorporate the constraints by means of two Lagrange multipliers, λ1, λ2, and
minimize the modified performance index:

J = 1

2
aTRa+ λ1(μ− aTm)+λ2(1− aTu)= min

Show that the quantities {a, λ1, λ2} can be obtained from the solution of the
(M + 2)×(M + 2) linear system of equations:⎡

⎢⎣R −m −u
mT 0 0
uT 0 0

⎤
⎥⎦
⎡
⎢⎣ a
λ1

λ2

⎤
⎥⎦ =

⎡
⎢⎣ 0
μ
1

⎤
⎥⎦

where the invertibility of this matrix requires that the vectors m and u be not
collinear.
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(b) Show that the solution of this system for a takes the form:

a = λ1R−1m+ λ2R−1u (14.13.2)

and that λ1, λ2 can be obtained from the reduced 2×2 linear system:

[
A B
B C

][
λ1

λ2

]
=

[
μ
1

]
⇒

λ1 = μC− B
D

λ2 = A− μB
D

where A,B,C,D are defined in terms of m, R by

A = mTR−1m

B = mTR−1u

C = uTR−1u

and D = AC− B2

(c) Show that the quantities A,C,D are non-negative.

(d) Show that the minimized value of the risk σ2 = aTRa can be written in the form:

σ2 = μλ1 + λ2 = Cμ2 − 2Bμ+A
D

(14.13.3)

Thus, the dependence of the variance σ2 on the return μ has a parabolic shape,
referred to as the efficient frontier.

(e) The apex of this parabola is obtained by minimizing Eq. (14.13.3) with respect
to μ. Setting ∂σ2/∂μ = 0, show that the absolute minimum is reached for the
following values of the return, risk, and weights:

μ0 = B
C
, σ2

0 =
1

C
, a0 = R−1u

uTR−1u
(14.13.4)

(f) Show that Eq. (14.13.3) can be re-expressed as

σ2 = σ2
0 +

C
D
(μ− μ0)2 (14.13.5)

which can be solved for μ in terms of σ2, as is common in practice:

μ = μ0 ±
√
D
C

√
σ2 −σ2

0 (14.13.6)

Of course, only the upper sign corresponds to the efficient frontier because it
yields higher return for the same risk. (See some example graphs below.)

(g) Show that the optimum portfolio of Eq. (14.13.2) can be written in the form:

a = a0 + C
D
(μ− μ0)R−1(m− μ0 u) (14.13.7)

where a0 was defined in Eq. (14.13.4). Thus, as expected, a = a0, if μ = μ0.
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(h) Show that the optimum portfolio of Eq. (14.13.2) can be written in the form

a = μg+ h

where g,h depend only on the asset statistics m, R and are independent of μ.
Moreover, show that mTg = 1 and mTh = 0, and that uTg = 0 and uTh = 1. In
particular, show that g,h are given by,

g = C
D
R−1m− B

D
R−1u

h = A
D
R−1u− B

D
R−1m

(i) Consider two optimal portfolios a1 and a2 having return-risk values that lie on
the efficient frontier, μ1, σ1 and μ2, σ2, satisfying Eq. (14.13.5), and assume that
μ1 < μ2. Using the results of the previous question, show that any other opti-
mum portfolio with return-risk pair μ,σ, such that μ1 < μ < μ2, can be con-
structed as a linear combination of a1, a2 as follows, with positive weights p1, p2,
such that, p1 + p2 = 1,

a = p1a1 + p2a2 , p1 = μ2 − μ
μ2 − μ1

, p2 = μ− μ1

μ2 − μ1

Thus, the investor need only invest in the two standard portfolios a1 and a2 in
the proportions p1 and p2, respectively. This is known as the two mutual fund
theorem. The restriction μ1 < μ < μ2 can be relaxed if short selling of the funds
is allowed.

(j) Consider a portfolio of four assets having return (given as annual rate) and co-
variance matrix:

m =

⎡
⎢⎢⎢⎣

0.02
0.03
0.01
0.05

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣

0.10 −0.02 0.04 −0.01
−0.02 0.20 0.05 0.02

0.04 0.05 0.30 0.03
−0.01 0.02 0.03 0.40

⎤
⎥⎥⎥⎦

Make a plot of the efficient frontier of μ versus σ according to Eq. (14.13.6).
To do so, choose 51 equally-spaced μs in the interval

[
min(m), max(m)

]
and

calculate the corresponding σs.

Compute the risk σ and weight vector a that would achieve a return of μ = 0.04
and indicate that point on the efficient frontier. Why wouldn’t an investor want
to put all his/her money in stock y4 since it has a higher return of m4 = 0.05?

(k) Generate 100 weight vectors a randomly (but such that aTu = 1), compute the
values of the quantities μ = aTm and σ2 = aTRa and make a scatterplot of the
points (μ,σ) to see that they lie on or below the efficient frontier.
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2. Risk aversion. A somewhat different minimization criterion is often chosen for the

portfolio selection problem, that is,

J = 1

2
aTRa− γaTm = min , subject to uTa = 1 (14.13.8)

where γ is a positive parameter that quantifies the investor’s aversion for risk versus
return—small γ emphasizes low risk, larger γ, high return.

For various values of γ, the optimum weights a are determined and then the corre-
sponding return μ = aTm and risk σ2 = aTΣa are calculated. The resulting plot of
the pairs (μ,σ) is the efficient frontier in this case.

Given the parameters γ,m, R, incorporate the constraint, aTu = 1, with a Lagrange
multiplier and work with the modified performance index:

J = 1

2
aTRa− γaTm+ λ2(1− uTa)= min

Show that one obtains exactly the same solution for a as in the previous problem
and that the correspondence between the assumed γ and the realized return μ is
given by

μ = μ0 + D
C
γ

3. Portfolio with inequality constraints. If short sales are not allowed, the portfolio
weights ai must be restricted to be in the interval 0 ≤ ai ≤ 1. In this case, the
following optimization problem must be solved:

σ2 = aTRa = min , subject to

⎧⎪⎪⎨
⎪⎪⎩

aTm = μ
aTu = 1

0 ≤ ai ≤ 1 , i = 1,2, . . . ,M
(14.13.9)

This is a convex optimization problem that can be solved conveniently using the
CVX package.† For example, given a desired value for μ, the following CVX code will
solve for a:

†http://cvxr.com/cvx
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% define M, m, R, mu
cvx_begin

variable a(M)
minimize( a’*R*a );
subject to

a’*u == 1;
a’*m == mu;
a <= ones(M,1);
-a <= zeros(M,1);

cvx_end

(a) For the numerical example of Question (1.j), choose 51 equally-spaced μs in the
interval

[
min(m), max(m)

]
and calculate the corresponding a and σs, and plot

the efficient frontier, that is the pairs (μ,σ). Superimpose on this graph the
efficient frontier of the unconstrained case from Question 1.

(b) Compute the risk σ and weight vector a that would achieve a return of μ = 0.04
and indicate that point on the efficient frontier of part (a). Place on the graph
also the unconstrained solution for the same μ, and explain why the inequality-
constrained case is slightly worse.
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4. Capital Asset Line. A variation of the mean-variance portfolio theory was considered
by W. F. Sharpe, who in addition to the collection of risky assets, allowed the presence
of a risk-free asset, such as a Treasury T-bill, that has a fixed guaranteed return, say
μ = μf , and no risk, σf = 0.

Let us assume again that we also have M risky assets y = [y1, y2, . . . , yM]T with
expected returns E[y]= m = [m1,m2, . . . ,mM]T, and known covariance matrix
R = E

[
(y −m)(y −m)T

]
. Clearly, we must assume that μf < mi, i = 1,2, . . . ,M,

otherwise, we would put all our money into the risk-free asset. We form an optimum
portfolio of risky assets y = aTy by choosing a point on the efficient frontier, for
example, the indicated point b on the figure below.
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Then, we join with a straight line the point b to the risk-free point μf (the dashed
line on the figure), and we allocate a fraction wf of our total funds to the risk-free
asset and hence a fraction (1−wf) to the portfolio y, that is, the combined portfolio
will be:

ytot = wfμf + (1−wf)y = wfμf + (1−wf)aTy

with mean and variance:

μ = E[ytot]= wfμf + (1−wf)aTm

σ2 = E
[
(ytot − μ)2] = (1−wf)2 aTRa

(14.13.10)

The lowest location for b is at the apex of the frontier, for which we have a = a0.
It should be evident from the figure that if we move the point b upwards along the
efficient frontier, increasing the slope of the straight line, we would obtain a better
portfolio having larger μ.

We may increase the slope until the line becomes tangent to the efficient frontier,
say at the point a, which would correspond to an optimum portfolio a with mean
and variance μa,σa.

This portfolio is referred to as the tangency portfolio and the tangent line (red line)
is referred to as the capital asset line and its maximum slope, say β, as the Sharpe
ratio. Eqs. (14.13.10) become now:

μ = wfμf + (1−wf)μa

σ = (1−wf)σa
(14.13.11)

where μa = aTm and σ2
a = aTRa. Solving the second of Eq. (14.13.11) for wf , we

find 1 − wf = σ/σa, and substituting in the first, we obtain the equation for the
straight line on the (μ,σ) plane:

μ = μf + βσ , β = μa − μf
σa

= slope (14.13.12)

This line is the efficient frontier for the combined portfolio. Next we impose the
condition that the point a be a tangency point on the efficient frontier. This will
fix μa,σa. We saw that the frontier is characterized by the parabolic curve of
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Eq. (14.13.5) with the optimum weight vector given by (14.13.7). Applying these
to the pair (μa,σa), we have:

σ2
a = σ2

0 +
C
D
(μa − μ0)2

a = a0 + C
D
(μa − μ0)R−1(m− μ0 u)

(14.13.13)

The slope of the tangent at the point a is given by the derivative dμa/dσa, and it
must agree with the slope β of the line (14.13.12):

dμa
dσa

= β = μa − μf
σa

(14.13.14)

(a) Using condition (14.13.14) and Eq. (14.13.13), show the following relationships:

C
D
(μa − μ0)(μ0 − μf)= 1

C

σ2
a =

C
D
(μa − μ0)(μa − μf)

β = σaC(μ0 − μf)

(14.13.15)

The first can be solved for μa, and show that it can be expressed as:

μa = A− μfB
C(μ0 − μf)

(14.13.16)

(b) Using Eqs. (14.13.13) and (14.13.15), show that the optimum weights are given
by

a = 1

C(μ0 − μf)
R−1(m− μfu) (14.13.17)

and verify that they satisfy the constraints aTm = μa and aTu = 1.

(c) Show that the slope β can also be expressed by:

β2 =
(μa − μf

σa

)2

= (m− μfu)TR−1(m− μfu) (14.13.18)

(d) Define w = (1−wf)a to be the effective weight for the total portfolio:

ytot = wfμf + (1−wf)aTy = wfμf +wTy (14.13.19)

Show that w is given in terms of the return μ = wfμf + (1−wf)μa as follows:

w = (1−wf)a = μ− μf
β2

R−1(m− μfu) (14.13.20)
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(e) The optimality of the capital asset line and the tangency portfolio can also be
derived directly by considering the following optimization problem. Let wf and
w be the weights to be assigned to the risk-free asset μf and the risky assets y.
Then the total portfolio, its mean μ, and variance σ2 are given by:

ytot = wfμf +wTy

μ = wfμf +wTm

σ2 = wTRw

(14.13.21)

where the weights must add up to unity: wf + wTu = 1. Given μ, we wish to
determine the weights wf ,w to minimize σ2. Incorporating the constraints by
two Lagrange multipliers, we obtain the performance index:

J = 1

2
wTRw+ λ1(μ−wfμf −wTm)+λ2(1−wf −wTu)= min

Show that the minimization of J with respect to wf ,w results in:

w = λ1R−1(m− μfu) , λ2 = −λ1μf

(f) Imposing the constraints show that,

wT(m− μfu)= μ− μf , λ1 = μ− μf
β2

where β2 is given as in Eq. (14.13.18),

β2 = (m− μfu)TR−1(m− μfu)

and hence, show that w is given by Eq. (14.13.20)

w = μ− μf
β2

R−1(m− μfu)

(g) Show that σ2 = wTRw is given by,

σ2 =
(
μ− μf
β

)2

which corresponds to the straight-line frontier on the μ,σ plane:

μ = μf + βσ

(h) For the numerical example of Question (1.j) and for a fixed-asset return of μf =
0.005, connect the points (μa,σa) and (μf ,0) by a straight line and plot it to-
gether with the parabolic efficient frontier of the risky assets, and verify the
tangency of the line.
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5. Security market line and CAPM. When the collection of risky stocks of the previous
problem are taken to be representative of the market, such as for example, the stocks
in the S&P 500 index, the tangency portfolio at point a is referred to as the market
portfolio, and the capital asset line, as the capital market line.

Let ya = aTy be the linear combination of stocks for the market portfolio, and
consider another stock yi with return and risk μi,σi. The stock yi is arbitrary and
not necessarily belonging to those that make up the representative market. Define
the beta for the stock as the ratio of the following covariances relative to the market
portfolio:

βi = Ria

Raa

where Ria = E
[
(yi − μi)(ya − μa)

]
and Raa = σ2

a = E
[
(ya − μa)2

]
.

Let us now make a portfolio y consisting of a percentage w of the stock yi and a
percentage (1 − w) of the market ya. Then, y and its mean and variance will be
given as follows, where Rii = σ2

i .

y = wyi + (1−w)ya

μ = wμi + (1−w)μa

σ2 = w2Rii + 2w(1−w)Ria + (1−w)2Raa

(14.13.22)

As w varies, the pair (μ,σ) varies over its own parabolic efficient frontier.

The capital asset pricing model (CAPM) asserts that the tangent line at the market
point y = ya on this frontier obtained whenw = 0, coincides with the capital market
line between the risk-free asset μf and the market portfolio. This establishes the
following relationship to be proved below:

μi − μf = βi(μa − μf) (14.13.23)

so that the excess return above μf , called the risk premium, is proportional to the
stock’s beta. The straight line of μi vs. βi is referred to as the security market line.
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(a) Using the differentiation rule,

dσ
dμ

= dσ
dw

· dw
dμ

show that the slope at the market point, i.e., at w = 0, is given by

dμ
dσ

∣∣∣∣
w=0

= μi − μa
(βi − 1)σa

(14.13.24)

(b) Then, derive Eq. (14.13.23) by equating (14.13.24) to the slope (14.13.12).

6. Minimum-variance with multiple constraints. A generalization of the portfolio con-
strained minimization problem involves more that two constraints:

J = 1

2
aTRa− bTa = min

subject to K linear constraints:

cTi a = μi , i = 1,2, . . . , K

where R is an M×M positive definite symmetric matrix, b is a given M×1 vector,
and we assume that K < M and that the M×1 vectors ci are linearly independent.
Defining theM×K matrix of constraintsC and theK-dimensional vector of “returns”
μμμ,

C = [c1, c2, . . . , cK] , μμμ =

⎡
⎢⎢⎢⎢⎢⎣
μ1

μ2

...
μK

⎤
⎥⎥⎥⎥⎥⎦

the above minimization problem can be cast compactly in the form:

J = 1

2
aTRa− bTa = min , subject to CTa = μμμ

(a) Introduce a K-dimensional vector of Lagrange multipliers λλλ and replace the per-
formance index by:

J = 1

2
aTRa− bTa+λλλT(μμμ−CTa)= min

Show that the quantities a,λλλmay be obtained as the solution of the (M+K)×(M+
K) linear system of equations:[

R −C
CT 0

][
a
λλλ

]
=

[
b
μμμ

]
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(b) Show that the above matrix has the following inverse:

[
R−1 −R−1C(CTR−1C)−1CTR−1 R−1C(CTR−1C)−1

−(CTR−1C)−1CTR−1 (CTR−1C)−1

]

and explain why the assumed full rank ofC guarantees the existence of the matrix
inverse (CTR−1C)−1.

(c) Show that the solution for a and λλλ can be obtained by:

λλλ = (CTR−1C)−1[μμμ−CTR−1b
]

a = R−1[b+Cλλλ]

(d) Show that the “variance”σ2 = aTRa is parabolic in the “returns”, like Eq. (14.13.3),
thus defining a generalized “efficient frontier”:

σ2 = σ2
0 +μμμT(CTR−1C)−1μμμ

where the constant σ2
0 is defined by:

σ2
0 = bT

[
R−1 −R−1C(CTR−1C)−1CTR−1]b

Note that if additional inequality constraints are included, such as for exampleai > 0
for the weights, then this becomes a much harder problem that must be solved
with quadratic programming techniques. The CVX package or MATLAB’s function
quadprog from the optimization toolbox solves such problems. The antenna or
sensor array version of this problem is LCMV beamforming.

14.14 Problems

14.1 Computer Experiment. A fourth-order autoregressive process is defined by the difference
equation

yn + a1yn−1 + a2yn−2 + a3yn−3 + a4yn−4 = εn

where εn is zero-mean, unit-variance, white gaussian noise. The filter parameters {a1, a2,
a3, a4} are chosen such that the prediction error filter

A(z)= 1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

has zeros at the locations

0.99 exp(±0.2πj) and 0.99 exp(±0.4πj)

(a) Determine {a1, a2, a3, a4}.
(b) Using a random number generator for εn, generate a realization of yn consisting of 50

samples. To avoid transient effects, be sure to let the filter run for a while. For instance,
discard the first 500 or 1000 outputs and keep the last 50.

(c) Compute the sample autocorrelation of yn based on the above block of data.
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(d) Solve the normal equations by means of Levinson’s algorithm to determine the Yule-
Walker estimates of the model parameters {a1, a2, a3, a4;σ2

ε} and compare them with
the exact values.

(e) Compute the corresponding Yule-Walker spectrum and plot it together with the exact
autoregressive spectrum versus frequency. Be sure to allow for a sufficiently dense grid
of frequencies to be able to resolve the narrow peaks of this example. Plot all spectra in
decibels.

(f) Using the same finite block of yn data, determine estimates of the model parameters
{a1, a2, a3, a4;σ2

ε} using Burg’s method, and compare them with the Yule-Walker esti-
mates and with the exact values.

(g) Compute the corresponding Burg spectrum and plot it together with the exact spectrum
versus frequency.

(h) Using the same block of yn data, compute the ordinary periodogram spectrum and plot
it together with the exact spectrum.

(i) Window the yn data with a Hamming window and then compute the corresponding pe-
riodogram spectrum and plot it together with the exact spectrum.

(j) Repeat parts (b) through (i) using a longer realization of length 100.

(k) Repeat parts (b) through (i) using a length-200 realization of yn.

(l) Evaluate the various results of this experiment.

14.2 Show that the classical Bartlett spectrum of Eq. (14.2.6) can be written in the compact matrix
form of Eq. (14.2.7).

14.3 Show that in the limit of large M, the first sidelobe of the smearing function Wω) of
Eq. (14.2.10) is approximately 13 dB down from the main lobe.

14.4 Computer Experiment. (a) Reproduce the spectra shown in Figs. 14.2.1 and 14.2.2.

(b) For the AR case, let M = 6, and take the SNRs of both sinusoids to be 6 dB, but change
the sinusoid frequencies to

ω1 = 0.5+Δω, ω2 = 0.5−Δω

where Δω is variable. Study the dependence of bias of the spectral peaks on the fre-
quency separation Δω by computing and plotting the spectra for various values of Δω.
(Normalize all spectra to 0 dB at the sinusoid frequency ω1).

14.5 Derive Equation (14.2.30).

14.6 Let

R = σ2
vI +

L∑
i=1

Pisωis
†
ωi

be the autocorrelation matrix of Eq. (14.2.8). Show that the inverse R−1 can be computed
recursively as follows:

R−1
k = R−1

k−1 −
R−1
k−1sωks†ωkR

−1
k−1

s†ωkR
−1
k−1sωk + P−1

k

for k = 1,2, . . . , L, initialized by R0 = σ2
vI.

14.7 Consider the case of one sinusoid (L = 1) in noise and arbitrary filter order M > 2, so that
the (M + 1)×(M + 1) autocorrelation matrix is

R = σ2
vI + P1sω1 s†ω1
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(a) Show that the (L = 1)-dimensional signal subspace is spanned by the eigenvector

eM = sω1

and determine the corresponding eigenvalue.

(b) Show that the M+ 1− L =M dimensional noise subspace is spanned by the M linearly
independent eigenvectors, all belonging to the minimum eigenvalue σ2

v :

e0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−ejω1

0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−ejω1

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

−ejω1

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , eM−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
1

−ejω1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) Show that the eigenpolynomial A(z) corresponding to an arbitrary linear combination
of the M noise eigenvectors

a = e0 + c1e1 + c2e2 + · · · + cM−1eM−1

can be factored in the form

A(z)= (1− ejω1z−1)(1+ c1z−1 + c2z−2 + · · · + cM−1z−(M−1))

exhibiting one zero at the desired sinusoid frequency ejω1 on the unit circle, and M− 1
additional spurious zeros with arbitrary locations that depend on the particular choice
of the coefficients ci.

14.8 The constraint (14.2.31) can be incorporated into the performance index (14.2.32) by means
of a Lagrange multiplier

E = a†Ra+ λ(1− a†a)

Show that the minimization ofE is equivalent to the Pisarenko eigenvalue problem of Eq. (14.2.29),
with the multiplier λ playing the role of the eigenvalue. Show that the minimum of E is the
minimum eigenvalue.

14.9 Show Eq. (14.3.11).

14.10 Consider a singular (M+1)×(M+1) autocorrelation matrixR having non-singular principal
submatrices, and let a be the symmetric or antisymmetric order-M prediction filter satisfying
Ra = 0, as discussed in Sec. 12.5. First, argue that the M zeros of this filter lie on the unit
circle zi = ejωi , i = 1,2, . . . ,M. Then, consider the eigenvalue decomposition of this matrix
in the form R = EΛE†, where Λ is the diagonal matrix of the M nonzero eigenvalues of R
and E is the (M + 1)×M matrix whose columns are the M corresponding eigenvectors. Let
S = [sω1 , sω2 , . . . , sωM] be the matrix of phasing vectors defined by the zeros of a. Argue
that E is linearly related to S and that R can be written in the form R = SPS†, where P is an
M×M positive-definite matrix. Finally, show that the requirement that R be Toeplitz implies
that P must be diagonal, and therefore, R admits the sinusoidal representation

R =
M∑
i=1

Pisωis
†
ωi , with Pi > 0
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14.11 Computer Experiment. To simulate Eq. (14.3.7), the amplitudes Ai(n) may be generated by

Ai(n)= Aiejφin

where φin are independent random phases distributed uniformly over the interval [0,2π],
and Ai are deterministic amplitudes related to the assumed signal to noise ratios (SNR) in
units of decibels by

SNRi = 10 log10

[
|Ai|2
σ2
v

]

(a) Consider one plane wave incident on an array of seven sensors from an angle θ1 = 30o.
The sensors are equally spaced at half-wavelength spacings; i.e., d = λ/2. For each of
the following values of the SNR of the wave

SNR = 0 dB, 10 dB, 20 dB

generate N = 1000 snapshots of Eq. (14.3.7) and compute the empirical spatial correla-
tion matrix across the array by

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T

Compute and plot on the same graph the three spatial spectra: Bartlett, autoregressive
(AR), and maximum likelihood (ML), versus wavenumber k.

(b) Repeat for two plane waves incident from angles θ1 = 25o and θ2 = 35o, and with equal
powers of 30 dB.

(c) Repeat part (b) for angles θ1 = 28o and θ2 = 32o.

(d) Repeat part (c) by gradually decreasing the (common) SNR of the two plane waves to the
values of 20 dB, 10 dB, and 0 dB.

(e) For parts (a) through (d), also plot all the theoretical spectra.

14.12 Consider L plane waves incident on a linear array of M+1 sensors (L ≤M) in the presence
of spatially coherent noise. As discussed in Sec. 14.3, the corresponding covariance matrix
is given by

R = σ2
vQ +

L∑
i=1

Piskis
†
ki

where the waves are assumed to be mutually uncorrelated.

(a) Show that the generalized eigenvalue problem

Ra = λQa

has (1) an (M + 1 − L)-dimensional noise subspace spanned by M + 1 − L linearly
independent degenerate eigenvectors, all belonging to the eigenvalue λ = σ2

v , and (2) an
L-dimensional signal subspace with L eigenvalues greater than σ2

v .

(b) Show that any two eigenvectors a1 and a2 belonging to distinct eigenvalues λ1 and λ2

are orthogonal to each other with respect to the inner product defined by the matrix Q,
that is, show that a†1Qa2 = 0.

(c) Show that the L-dimensional signal subspace is spanned by the L vectors

Q−1ski , i = 1,2, . . . , L
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(d) Show that any vector a in the noise subspace corresponds to a polynomial A(z) that has
L of its M zeros on the unit circle at locations

zi = ejki , i = 1,2, . . . , L

The remaining M − L zeros can have arbitrary locations.

14.13 The previous problem suggests the following approach to the problem of “selectively nulling”
some of the sources and not nulling others. Suppose L1 of the sources are not to be nulled
and have known SNRs and directions of arrival, and L2 of the sources are to be nulled. The
total number of sources is then L = L1 + L2, and assuming incoherent background noise,
the incident field will have covariance matrix

R = σ2
vI +

L1∑
i=1

Piskis
†
ki +

L1+L2∑
i=L1+1

Piskis
†
ki

Define Q by

σ2
vQ = σ2

vI +
L1∑
i=1

Piskis
†
ki

so that we may write R as follows

R = σ2
vQ +

L1+L2∑
i=L1+1

Piskis
†
ki

Then, the nulling of the L2 sources at wavenumbers ki, i = L1+1, . . . , L1+L2, can be effected
by the (M + 1− L2)-dimensional noise subspace of the generalized eigenvalue problem

Ra = λQa

having minimum eigenvalue equal to σ2
v .

(a) As an example, consider the case M = 2, L1 = L2 = 1. Then,

R = σ2
vQ + P2sk2 s†k2

, σ2
vQ = σ2

vI + P1sk1 s†k1

Show that the (M + 1 − L2 = 2)-dimensional noise subspace is spanned by the two
eigenvectors

e1 =
⎡
⎢⎣ 1
−ejk2

0

⎤
⎥⎦ , e2 =

⎡
⎢⎣ 0

1
−ejk2

⎤
⎥⎦

(b) Show that an arbitrary linear combination

a = e1 + ρe2

corresponds to a filter A(z) having one zero at the desired location z2 = ejk2 , and a
spurious zero with arbitrary location.

(c) Show that the (L2 = 1)-dimensional signal subspace is spanned by the vector

e3 = Q−1sk2

and that the corresponding generalized eigenvalue is

λ = σ2
v + P2s†k2

Q−1sk2
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(d) Verify the orthogonality properties e†i Qe3 = 0, i = 1,2, for the three eigenvectors
e1, e2, e3 defined in parts (a) and (c).

(e) As another example, consider the case M = 3 and L1 = L2 = 1. Show that the (M+ 1−
L2 = 3)-dimensional noise subspace is spanned by the three eigenvectors

e1 =

⎡
⎢⎢⎢⎣

1
−ejk2

0
0

⎤
⎥⎥⎥⎦ , e2 =

⎡
⎢⎢⎢⎣

0
1

−ejk2

0

⎤
⎥⎥⎥⎦ , e3 =

⎡
⎢⎢⎢⎣

0
0
1

−ejk2

⎤
⎥⎥⎥⎦

and the signal eigenvector is e4 = Q−1sk2 . Generalize this part and part (a), to the case
of arbitrary M and L1 = L2 = 1.

(f) As a final example that corresponds to a unique noise eigenvector, consider the case
M = 2, L1 = 1, and L2 = 2, so that

R = σ2
vQ + P2sk2 s†k2

+ P3sk3 s†k3
, σ2

vQ = σ2
vI + P1sk1 s†k1

with k2 and k3 to be nulled. Show that the (M+1−L2 = 1)-dimensional noise subspace
is spanned by

a = e1 =
⎡
⎢⎣ 1
−(ejk2 + ejk3)

ejk2ejk3

⎤
⎥⎦

and that the corresponding polynomial A(z) factors into the two desired zeros

A(z)= (1− ejk2z−1)(1− ejk3z−1)

14.14 Computer Experiment. Consider a nine-element (M = 8) linear array with half-wavelength
spacing and two mutually uncorrelated incident plane waves with wavenumbers k1 = 0.3π,
k2 = 0.5π and equal powers of 20 dB. The background noise is incoherent with variance
σ2
v = 1.

(a) Construct the theoretical matrix R of Eq. (14.3.13) and solve its eigenproblem determin-
ing the nine eigenvectors and eigenvalues. Using a root finder (see e.g., [1206]), compute
the eight zeros of each of the seven noise subspace eigenvectors and verify that the
desired zeros lie on the unit circle.

(b) Generate N = 100 snapshots, construct the sample covariance matrix R of Eq. (14.4.14),
solve its eigenproblem, use the AIC and MDL criteria to check the dimension of the noise
subspace, but regardless of these criteria take that dimension to be seven. Compare
the empirical eigenvalues with the theoretical ones found above. Compute the zeros of
the noise subspace eigenvectors and decide if the desired zeros are among them and if
any spurious ones lie close to the unit circle. Also, compute the zeros of the Min-Norm
vector d.

(c) On the same graph, plot in dB the pseudospectra of a few of the noise subspace eigen-
vectors, say, the first three. On a separate graph, but using the same vertical scales as
the previous one, plot the MUSIC and Min-Norm spectra.

(d) Using the same set of snapshots, repeat parts (b,c) for the symmetrized sample covari-
ance matrix of Eq. (14.4.15).

(e) For fixed SNR, repeat parts (b,c,d) for the following choices of number of snapshots:
N = 20, 50, 150, 200, 500.
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(f) With the number of snapshots fixed at N = 100, repeat parts (a,b,c,d) for the following
values of the signal to noise ratio: SNR = −10, −5, 0, 5, 10, 30 dB.

(g) Repeat parts (a–f) for three 20-dB plane waves with k1 = 0.3π, k2 = 0.4π, k3 = 0.5π.

14.15 Show Eqs. (14.11.9) and (14.11.10).

14.16 Consider an M-dimensional complex random vector y with real and imaginary parts ξξξ and
ηηη, so that y = ξξξ + jηηη. With the complex vector y we associate a (2M)-dimensional real

random vector ȳ =
[
ξξξ
ηηη

]
. The corresponding covariance matrices are defined by

R = E[y∗yT] , R̄ = E[ȳȳT]

(a) Show that the conditions E[ξξξξξξT]= E[ηηηηηηT] and E[ξξξηηηT]= −E[ηηηξξξT] are equivalent to
the condition E[yyT]= 0, and that in this case the covariance matrices can be written
as follows:

R = 2(A+ jB) , R̄ =
[

A B
−B A

]
, A = E[ξξξξξξT] , B = E[ξξξηηηT]

The matrix A is symmetric and B antisymmetric. Show the equality of the quadratic
forms

yTR−1y∗ = 1

2
ȳTR̄−1ȳ

Also, show the relationship between the determinants detR = 2M(det R̄)1/2.
Hint: Apply a correlation canceling transformation on R̄ and use the matrix identity
A+ BA−1B = (A+ jB)A−1(A− jB).

(b) A complex gaussian random vector y is defined by the requirement that the corre-
sponding real vector ȳ be gaussian [1207,1208]. Equating the elemental probabilities
p(y)d2My = p(ȳ)d2Mȳ and using the results of part (a), show that if p(ȳ) is an ordi-
nary (zero-mean) gaussian with covariance R̄, then the density of y is

p(ȳ)= 1

(2π)M(det R̄)1/2
exp

(−1

2
ȳTR̄−1ȳ

) ⇒ p(y)= 1

πM detR
exp(−yTR−1y∗)

(c) Using this density show for any four components of y

E[y∗i yjy
∗
k yl]= RijRkl +RilRkj

(d) Use this result to prove Eq. (14.11.12)

14.17 Show that the log-likelihood function based on N independent complex gaussian snapshots
is given by (up to a constant)

lnp = −N tr
[
lnR+R−1R̂

]
where R̂ is given byEq. (14.4.14). Note that it differs by a factor of two from the real-valued
case. From the discussion of Sec. 1.18, it follows that R̂ is the maximum likelihood estimate
of R. Moreover, the trace formula for the Fisher information matrix also differs by a factor
of two, namely,

Jij = N tr

[
R−1 ∂R

∂λi
R−1 ∂R

∂λj

]
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14.18 Using Eq. (14.11.12), show that the covariances of the LP parameters E and a are in the
complex-valued case:

E
[
(ΔE)2

] = E2

N
, E

[
ΔaΔE

] = 0 , E
[
ΔaΔa†

] = E
N

(
R−1 − E−1a a†

)

14.19 Let S(k)= s†kRsk be the Bartlett spectrum. Using Eq. (14.11.13), show that its variance is

E
[(
ΔS(k)

)2] = 1

N
S(k)2

Show that the variance of the ML spectrum S(k)= 1/s†kR−1sk is also given by a similar
formula.

14.20 (a) Let A(k)= s†ka be the frequency response of the LP polynomial in the complex-valued
case. Using the results of Problem 14.18, show that its variance is

E
[|ΔA(k)|2] = E

N
[
s†kR

−1sk − E−1|A(k)|2]
Use the kernel representation of Problem 12.17 to argue that the right-hand side is positive.
Alternatively, show that it is positive by writing A(k)= E(s†kR−1u0) and E = (u†0R−1u0)−1,
and using the Schwarz inequality.

(b) In the complex case, show that E[ΔaΔaT]= 0. Then, show that the variance of the AR
spectrum S(k)= E/|A(k)|2 is given by

E
[(
ΔS(k)

)2] = 1

N
S(k)2

[
2S(k)(s†kR

−1sk)−1
]

and show again that the right-hand side is positive.

15
SVD and Signal Processing

15.1 Vector and Matrix Norms

The three most widely used vector norms [1234,1235] are the L2 or Euclidean norm, the
L1 and the L∞ norms, defined for a vector x ∈ RN by:

‖x‖2 =
√
|x1|2 + |x2|2 + · · · + |xN|2 =

√
xTx

‖x‖1 = |x1| + |x2| + · · · + |xN|
‖x‖∞ = max

(|x1|, |x2|, . . . , |xN|
) where x =

⎡
⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤
⎥⎥⎥⎥⎥⎦ (15.1.1)

All vector norms satisfy the triangle inequality :

‖x+ y‖ ≤ ‖x‖ + ‖y‖ , for x,y ∈ RN (15.1.2)

Unless otherwise specified, from now on the notation ‖x‖ will denote the Euclidean
norm. The Cauchy-Schwarz inequality for the Euclidean norm reads:

∣∣xTy
∣∣ ≤ ‖x‖‖y‖ (15.1.3)

where equality is achieved when y is any scalar multiple of x, that is, y = cx. The “angle”
between the two vectors x,y is defined through:

cosθ = xTy

‖x‖‖y‖ (15.1.4)

An N×M matrix A is a linear mapping from RM to RN, that is, for each x ∈ RM, the
vector y = Ax is in RN. For each vector norm, one can define a corresponding matrix
norm through the definition:

‖A‖ = sup
‖x‖�=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ (15.1.5)

We will see later that the Euclidean matrix norm ‖A‖2 is equal to the largest singular
value of the SVD decomposition of A, or equivalently, the square-root of the largest
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