
608 12. Linear Prediction

R(0)= σ2
y . You can easily determine Rnorm by doing a maximum entropy extension to

order six, starting with the four reflection coefficients and setting γ5 = γ6 = 0.)

In generating yn make sure that the transients introduced by the filter have died out.
Then, generate the corresponding N samples of the signal xn. On the same graph,
plot xn together with the desired signal sn. On a separate graph (but using the same
vertical scales as the previous one) plot the reference signal yn versus n.

b. For M = 4, design a Wiener filter of order-M based on the generated signal blocks
{xn, yn}, n = 0,1, . . . ,N − 1, and realize it in both the direct and lattice forms.

c. Using the lattice form, filter the signals xn, yn through the designed filter and generate
the outputs x̂n, en. Explain why en should be an estimate of the desired signal sn. On
the same graph, plot en and sn using the same vertical scales as in part (a).

d. Repeat parts (b) and (c) for filter orders M = 5,6,7,8. Discuss the improvement ob-
tained with increasing order. What is the smallest M that would, at least theoretically,
result in en = sn? Some example graphs are included below.

0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4

time samples, n

Wiener filter inputs

 y(n)
 x(n)

0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4

time samples, n

Wiener filter − error output, M=6

 e(n)
 s(n)

13
Kalman Filtering

13.1 State-Space Models

The Kalman filter is based on a state/measurement model of the form:

xn+1 = Anxn +wn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.1)

where xn is ap-dimensional state vector and yn, an r-dimensional vector of observations.
The p×p state-transition matrix An and r×p measurement matrix Cn may depend on
time n. The signals wn,vn are assumed to be mutually-independent, zero-mean, white-
noise signals with known covariance matrices Qn and Rn:

E[wnwT
i] = Qnδni

E[vnvTi] = Rnδni

E[wnvTi] = 0

(13.1.2)

The model is iterated starting at n = 0. The initial state vector x0 is assumed to be
random and independent of wn,vn, but with a known mean x̄0 = E[x0] and covariance
matrix Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]. We will assume, for now, that x0,wn,vn are nor-
mally distributed, and therefore, their statistical description is completely determined
by their means and covariances. A non-zero cross-covariance E[wnvTi]= Snδni may
also be assumed. A scalar version of the model was discussed in Chap. 11.

The covariance matrices Qn,Rn have dimensions p×p and r×r, but they need not
have full rank (which would mean that some of the components of xn or yn would, in
an appropriate basis, be noise-free.) For example, to allow the possibility of fewer state
noise components, the model (13.1.1) is often written in the form:

xn+1 = Anxn +Gnwn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.3)

609

610 13. Kalman Filtering

where the new wn is lower-dimensional with (full-rank) covariance Qn. In this model,
the covariances of the noise components will be E[(Gnwn)(Gnwn)T]= GnQnGT

n , In
addition, external deterministic inputs may be present, for example,

xn+1 = Anxn + Bnun +Gnwn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.4)

where un is the deterministic input. Such modifications do not affect much the essential
form of the Kalman filter and, therefore, we will use the simpler model (13.1.1).

The iterated solution of the state equation (13.1.1) may be obtained with the help of
the corresponding p×p state-transition matrix Φn,k defined as follows:

Φn,k = An−1 · · ·Ak , for n > k

Φn,n = I

Φn,k = Φ−1
k,n , for n < k

(13.1.5)

where I is the p×p identity matrix and the third equation is valid only if the inverse
exists. In particular, we have Φn,0 = An−1 · · ·A0 for n > 0, and Φ0,0 = I. If the state
matrix An is independent of n, then the above definitions imply that Φn,k = An−k. We
note also the properties:

Φn,n−1 = An , n ≥ 1

Φn+1,k = AnΦn,k , n ≥ k

Φn,k = Φn,iΦi,k , n ≥ i ≥ k

(13.1.6)

It is easily verified that the solution of Eq. (13.1.1) is given by:

xn = Φn,0 x0 +
n∑

k=1

Φn,kwk−1 , n ≥ 1 (13.1.7)

so that xn depends only on {x0,w0,w1, . . . ,wn−1}, for example,

x1 = Φ1,0 x0 +Φ1,1w0

x2 = Φ2,0 x0 +Φ2,1w0 +Φ2,2w1

x3 = Φ3,0 x0 +Φ3,1w0 +Φ3,2w1 +Φ3,3w2

...
xn = Φn,0 x0 +Φn,1w0 +Φn,2w1 + · · · +Φn,nwn−1

and more generally, starting at time n = i,

xn = Φn,i xi +
n∑

k=i+1

Φn,kwk−1 , n > i (13.1.8)

Let x̄n = E[xn] and Σn = E[(xn − x̄n)(xn − x̄n)T] be the mean and covariance
matrix of the state vector xn. Then, it follows from Eqs. (13.1.2) and (13.1.7) and the

13.1. State-Space Models 611

independence of x0 and wn that,

x̄n = Φn,0x̄0

Σn = Φn,0Σ0ΦT
n,0 +

n∑
k=1

Φn,kQk−1ΦT
n,k , n ≥ 1

(13.1.9)

It is straightforward to show from (13.1.9) or (13.1.1) that x̄n and Σn satisfy the recur-
sions:

x̄n+1 = Anx̄n
Σn+1 = AnΣnAT

n +Qn , n ≥ 1
(13.1.10)

Indeed, subtracting (13.1.1) and (13.1.10) and using the independence of xn and wn,
we find:

xn+1 − x̄n+1 = An(xn − x̄n)+wn

Σn+1 = E[(xn+1 − x̄n+1)(xn+1 − x̄n+1)T]= E[(An(xn − x̄n)+wn)(An(xn − x̄n)+wn)T]

= AnE[(xn − x̄n)(xn − x̄n)T]AT
n + E[wnwT

n]= AnΣnAT
n +Qn

In a similar fashion, we can obtain the statistical properties of the observations yn
from those of xn and vn:

ȳn = Cnx̄n

yn − ȳn = Cn(xn − x̄n)+vn

Σynyn = E[(yn − ȳn)(yn − ȳn)T]= CnΣnCT
n +Rn , n ≥ 0

(13.1.11)

Example 13.1.1: Local Level Model. The local-level model discussed in Chap. 6 is already in
state-space form:

xn+1 = xn +wn

yn = xn + vn

and represents a random-walk process xn observed in noise. The noise variances are de-
fined as Q = σ2

w and R = σ2
v . ��

Example 13.1.2: Local Trend Model. The local-trend model was discussed in Sec. 6.13. Let
an, bn be the local level and local slope. The model is defined by,

an+1 = an + bn +wn

bn+1 = bn + un

yn = an + vn

with mutually uncorrelated noise components wn,un, vn. The model can be written in
state-space form as follows:[

an+1

bn+1

]
=
[

1 1
0 1

][
an
bn

]
+
[
wn

un

]
, yn = [1,0]

[
an
bn

]
+ vn

The noise covariances are:

wn =
[
wn

un

]
, Q = E[wnwT

n]=
[
σ2
w 0

0 σ2
u

]
, R = σ2

v

612 13. Kalman Filtering

As we mentioned in Sec. 6.13, the steady-state version of the Kalman filter for this model
is equivalent to Holt’s exponential smoothing method. We demonstrate this later. ��

Example 13.1.3: Kinematic Models for Radar Tracking. Consider the one-dimensional motion
of an object moving with constant acceleration, ẍ(t)= a. By integrating this equation, the
object’s position x(t) and velocity ẋ(t) are,

x(t)= x(t0)+(t − t0)ẋ(t0)+1

2
(t − t0)2 a

ẋ(t)= ẋ(t0)+(t − t0)a
(13.1.12)

Suppose the motion is sampled at time intervals T, i.e., at the time instants tn = nT, and
let us assume that the acceleration is not necessarily constant for all t, but is constant
within each interval T, that is, a(t)= a(tn), for tn ≤ t < tn+1. Then, applying Eq. (13.1.12)
at t = tn+1 and t0 = tn, and denoting x(tn)= xn, ẋ(tn)= ẋn, and a(tn)= an, we obtain,

xn+1 = xn +Tẋn + 1

2
T2an

ẋn+1 = ẋn +Tan
(13.1.13)

To describe an object that is trying to move at constant speed but is subject to random
accelerations, we may assume that an is a zero-mean random variable with variance σ2

a. If
the object’s position xn is observed in noise vn, we obtain the model:

xn+1 = xn +Tẋn + 1

2
T2an

ẋn+1 = ẋn +Tan
yn = xn + vn

(13.1.14)

which may be written in state-space form:[
xn+1

ẋn+1

]
=
[

1 T
0 1

][
xn
ẋn

]
+
[
T2/2
T

]
an

yn = [1,0]
[
xn
ẋn

]
+ vn

(13.1.15)

with measurement noise variance R = σ2
v , and state noise vector and covariance matrix:

wn =
[
T2/2
T

]
an ⇒ Q = E[wnwT

n]=
[
T4/4 T3/2
T3/2 T2

]
σ2
a (13.1.16)

This model is, of course, very similar to the local-trend model of the previous example if
we set T = 1, except now the state noise arises from a single acceleration noise an affect-
ing both components of the state vector, whereas in the local-trend model, we assumed
independent noises for the local level and local slope.

We will see later that the steady-state Kalman filter for the model defined by Eqs. (13.1.15)
and (13.1.16) is equivalent to an optimum version of the popular α–β radar tracking filter
[868,869]. An alternative model, which leads to a somewhat different α–β tracking model
[870,874], has state noise added only to the velocity component:[

xn+1

ẋn+1

]
=
[

1 T
0 1

][
xn
ẋn

]
+
[

0
wn

]

yn = [1,0]
[
xn
ẋn

]
+ vn

(13.1.17)

13.1. State-Space Models 613

with R = σ2
v and

wn =
[

0
wn

]
, Q = E[wnwT

n]=
[

0 0
0 σ2

w

]

The models (13.1.15) and (13.1.17) are appropriate for uniformly moving objects subject
to random accelerations. In order to describe a maneuvering, accelerating, object, we may
start with the model (13.1.15) and make the acceleration an part of the state vector and
assume that it deviates from a constant acceleration by an additive white noise term, i.e.,
replace an by an +wn. Denoting an by ẍn, we obtain the model [874,875]:

xn+1 = xn +Tẋn + 1

2
T2(ẍn +wn)

ẋn+1 = ẋn +T(ẍn +wn)

ẍn+1 = ẍn +wn

yn = xn + vn

(13.1.18)

which may be written in the matrix form:⎡
⎢⎣ xn+1

ẋn+1

ẍn+1

⎤
⎥⎦ =

⎡
⎢⎣ 1 T T2/2

0 1 T
0 0 1

⎤
⎥⎦
⎡
⎢⎣ xn
ẋn
ẍn

⎤
⎥⎦+

⎡
⎢⎣ T2/2

T
1

⎤
⎥⎦wn

yn = [1,0,0]

⎡
⎢⎣ xn
ẋn
ẍn

⎤
⎥⎦+ vn

(13.1.19)

This leads to the so-called α–β–γ tracking filter. An alternative model may be derived by
starting with a linearly increasing acceleration ẍ(t)= a(t)= a(t0)+(t − t0)ȧ(t0), whose
integration gives:

x(t)= x(t0)+(t − t0)u(t0)+1

2
(t − t0)2a(t0)+1

6
(t − t0)3ȧ(t0)

ẋ(t)= ẋ(t0)+(t − t0)a(t0)+1

2
(t − t0)2ȧ(t0)

a(t)= a(t0)+(t − t0)ȧ(t0)

(13.1.20)

Its sampled version is obtained by treating the acceleration rate ȧn as a zero-mean white-
noise term with variance σ2

ȧ, resulting in the state model [876]:

⎡
⎢⎣ xn+1

ẋn+1

ẍn+1

⎤
⎥⎦ =

⎡
⎢⎣ 1 T T2/2

0 1 T
0 0 1

⎤
⎥⎦
⎡
⎢⎣ xn
ẋn
ẍn

⎤
⎥⎦+

⎡
⎢⎣ T3/3
T2/2
T

⎤
⎥⎦ ȧn

yn = [1,0,0]

⎡
⎢⎣ xn
ẋn
ẍn

⎤
⎥⎦+ vn

(13.1.21)

Later on we will look at the Kalman filters for such kinematic models and discuss their
connection to the α–β and α–β–γ tracking filters. ��

614 13. Kalman Filtering

13.2 Kalman Filter

The Kalman filter is a time-recursive procedure for estimating the state vector xn from
the observations signal yn. Let Yn = {y0,y1, . . . ,yn} be the linear span of the observa-
tions up to the current time instant n. The Kalman filter estimate of xn is defined as
the optimum linear combination of these observations that minimizes the mean-square
estimation error, and as we already know, it is given by the projection of xn onto the
observation subspace Yn. For the gaussian case, this projection happens to be the con-
ditional mean x̂n/n = E[xn|Yn]. Let us define also the predicted estimate x̂n/n−1 based
on the observations Yn−1 = {y0,y1, . . . ,yn−1}. Again, for the gaussian case we have
x̂n/n−1 = E[xn|Yn−1]. To cover both the gaussian and nongaussian, but linear, cases,
we will use the following notation for the estimates, estimation errors, and mean-square
error covariances:

x̂n/n−1 = Proj[xn|Yn−1]

en/n−1 = xn − x̂n/n−1

Pn/n−1 = E[en/n−1eTn/n−1]

and

x̂n/n = Proj[xn|Yn]

en/n = xn − x̂n/n

Pn/n = E[en/neTn/n]

(13.2.1)

We will first state the estimation algorithm, and then prove it. The Kalman filtering
algorithm for the model (13.1.1)–(13.1.2) is as follows:

Initialize in time by: x̂0/−1 = x̄0, P0/−1 = Σ0

At time n, x̂n/n−1, Pn/n−1, yn are available,

Dn = CnPn/n−1CT
n +Rn innovations covariance

Gn = Pn/n−1CT
nD−1

n Kalman gain for filtering

Kn = AnGn = AnPn/n−1CT
nD−1

n Kalman gain for prediction

ŷn/n−1 = Cnx̂n/n−1 predicted measurement

εεεn = yn − ŷn/n−1 = yn −Cnx̂n/n−1 innovations sequence

Measurement update / correction:

x̂n/n = x̂n/n−1 +Gnεεεn filtered estimate

Pn/n = Pn/n−1 −GnDnGT
n estimation error

Time update / prediction:

x̂n+1/n = Anx̂n/n = Anx̂n/n−1 +Knεεεn predicted estimate

Pn+1/n = AnPn/nAT
n +Qn prediction error

Go to time n+ 1

(13.2.2)
The quantityDn represents the innovations covariance matrix, that is,Dn = E[εεεnεεεTn].

The innovations sequence {εεε0,εεε1, . . . ,εεεn}, constructed recursively by the algorithm, rep-
resents the Gram-Schmidt orthogonalization of the observations {y0,y1, . . . ,yn} in the
sense that the innovations form an orthogonal basis for the observation subspace Yn,
that is, Yn is the linear span of either set:

Yn = {y0,y1, . . . ,yn} = {εεε0,εεε1, . . . ,εεεn}
The orthogonality property of εεεn is expressed by:

13.2. Kalman Filter 615

E[εεεnεεεTi]= Dnδni (13.2.3)

There are some alternative ways of writing the above equations. For example, the
equation for Pn/n may be written in the equivalent ways:

1. Pn/n = Pn/n−1 −GnDnGT
n = (I −GnCn)Pn/n−1

2. Pn/n = Pn/n−1 − Pn/n−1CT
nD−1

n CnPn/n−1 = standard form

3. Pn/n = (I −GnCn)Pn/n−1(I −GnCn)T+GnRnGT
n = Joseph form

4. Pn/n =
[
P−1
n/n−1 +CT

nR−1
n Cn

]−1 = information form

(13.2.4)

with Dn = CnPn/n−1CT
n + Rn and Gn = Pn/n−1CT

nD−1
n . Similarly, we can write the

Kalman gain Gn in its information form:

Gn = Pn/n−1CT
nD−1

n = Pn/nCT
nR−1

n (13.2.5)

It follows from the information forms that the filtered estimate may be re-expressed as:

x̂n/n = x̂n/n−1 +Gnεεεn = x̂n/n−1 + Pn/nCT
nR−1

n (yn −Cnx̂n/n−1)

= Pn/n
[
P−1
n/n −CT

nR−1
n Cn

]
x̂n/n−1 + Pn/nCT

nR−1
n yn

= Pn/nP−1
n/n−1x̂n/n−1 + Pn/nCT

nR−1
n yn

from which we obtain the information form of the updating equation:

P−1
n/n x̂n/n = P−1

n/n−1x̂n/n−1 +CT
nR−1

n yn (13.2.6)

In the relations that involve R−1
n , one must assume that Rn has full rank. The differ-

ence equation for the predicted estimate may be written directly in terms of the current
observation yn and the closed-loop state matrix Fn = An −KnCn, as follows:

x̂n+1/n = Anx̂n/n−1 +Knεεεn = Anx̂n/n−1 +Kn(yn −Cnx̂n/n−1)

= (An −KnCn)x̂n/n−1 +Knyn

that is,

x̂n+1/n = (An −KnCn)x̂n/n−1 +Knyn (13.2.7)

A block diagram realization is depicted in Fig. 13.2.1. The error covariance update
equations,

Pn/n = Pn/n−1 − Pn/n−1CT
nD−1

n CnPn/n−1

Pn+1/n = AnPn/nAT
n +Qn

616 13. Kalman Filtering

Fig. 13.2.1 Kalman filter realization.

may be combined into a single equation known as the discrete-time Riccati difference
equation, to be initialized at P0/−1 = Σ0 :

Pn+1/n = An

[
Pn/n−1 − Pn/n−1CT

n(CnPn/n−1CT
n +Rn)−1CnPn/n−1

]
AT
n +Qn (13.2.8)

which can also be written in the “information” forms (if R−1
n exists):

Pn+1/n = An
[
P−1
n/n−1 +CT

nR−1
n Cn)

]−1AT
n +Qn

Pn+1/n = An
[
I + Pn/n−1CT

nR−1
n Cn)

]−1Pn/n−1AT
n +Qn

(13.2.9)

and in the Joseph-like forms:

Pn+1/n = AnPn/n−1AT
n +Qn −KnDnKT

n , Kn = AnPn/n−1CT
nD−1

n

Pn+1/n =
(
An −KnCn

)
Pn/n−1

(
An −KnCn

)T +KnRnKT
n +Qn

(13.2.10)

Similarly, the closed-loop transition matrix can be written as,

Fn = An −KnCn = An
[
I + Pn/n−1CT

nR−1
n Cn

]−1
(13.2.11)

We note also that since, x̂n+1/n = An x̂n/n and x̂n/n−1 = An−1 x̂n−1/n−1, the difference
equations for the predicted and filtered estimates would read as follows in terms of the
Kalman gains Kn and Gn, respectively,

ŷn/n−1 = Cn x̂n/n−1 = CnAn−1 x̂n−1/n−1 predicted measurement

εεεn = yn − ŷn/n−1 innovations sequence

x̂n+1/n = Anx̂n/n−1 +Knεεεn predicted estimate

x̂n/n = An−1x̂n−1/n−1 +Gnεεεn filtered estimate

(13.2.12)

13.3 Derivation

To derive Eq. (13.2.2), we recall from Chap. 1 that the optimum linear estimate of a zero-
mean random vector x based on a zero-mean random vector y, and the corresponding

13.3. Derivation 617

orthogonality condition and error covariance, are given by:

x̂ = RxyR−1
yyy = E[xyT]E[yyT]−1y

e = x− x̂ , Rey = E[eyT]= 0

Ree = E[eeT]= Rxx −RxyR−1
yyRyx

(13.3.1)

When the vectors have non-zero means, say x̄, ȳ, the same results apply with the
replacement x → x − x̄, y → y − ȳ, and x̂ → x̂ − x̄ in (13.3.1). Under this replacement,
the correlation matrices are replaced by the corresponding covariances, e.g.,

Rxy = E[xyT]→ E[(x− x̄)(y− ȳ)T]= Σxy , etc.

Hence, the optimum estimate is now:

x̂ = x̄+ ΣxyΣ−1
yy (y− ȳ)

e = x− x̂ , Rey = Σey = E[eyT]= 0

Σee = Σxx − ΣxyΣ−1
yy Σyx

(13.3.2)

We note that the estimate is unbiased, that is, E[x̂]= x̄, and therefore, the estimation
error has zero mean, E[e]= 0, its covariance matrix will be Σee = Ree = E[eeT], and
the orthogonality condition may be written as E[e(y− ȳ)T]= E[eyT]= 0.

Let us apply now this result to the state model (13.1.1) at n = 0. This will also clarify
the manner in which the algorithm is to be initialized. As part of the model, we assume
that the initial state x0 has a known mean x̄0 and covariance matrix Σ0. According to
(13.3.2), the optimum estimate x̂0/0 of x0 based on the observation y0 will be given by:

x̂0/0 = x̄0 + Σx0y0Σ
−1
y0y0

(y0 − ȳ0)

e0/0 = x0 − x̂0/0 , E[e0/0(y0 − ȳ0)T]= 0

Σe0e0 = E[e0/0eT0/0]= Σx0x0 − Σx0y0Σ
−1
y0y0

Σy0x0

(13.3.3)

with E[x̂0/0]= x̄0 and E[e0/0]= 0. Let us define εεε0 = y0− ȳ0 and G0 = Σx0y0Σ−1
y0y0

. From
the measurement model y0 = C0x0 + v0, we have ȳ0 = C0x̄0, which gives:

εεε0 = y0 − ȳ0 = C0(x0 − x̄0)+v0

Clearly, E[εεε0]= 0. Since v0 is uncorrelated with x0, we will have:

E[εεε0εεεT0]= C0E[(x0 − x̄0)(x0 − x̄0)T]CT
0 + E[v0vT0] , or,

D0 = E[εεε0εεεT0]= Σy0y0 = C0Σ0CT
0 +R0

where Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]= Σx0x0 . Similarly, we find:

Σx0y0 = E[(x0 − x̄0)εεεT0]= E[(x0 − x̄0)(x0 − x̄0)T]CT
0 = Σ0CT

0

618 13. Kalman Filtering

Thus, the Kalman gain becomes,

G0 = Σx0y0Σ
−1
y0y0

= Σ0CT
0D

−1
0

With the definitions x̂0/−1 = x̄0 and P0/−1 = Σ0, we may rewrite (13.3.3) as,

x̂0/0 = x̂0/−1 +G0εεε0 , G0 = P0/−1CT
0D

−1
0 (13.3.4)

The corresponding error covariance matrix will be given by (13.3.3):

Σe0e0 = Σx0x0 − Σx0y0Σ
−1
y0y0

Σy0x0 = Σ0 − Σ0CT
0D

−1
0 C0Σ0 , or,

P0/0 = P0/−1 − P0/−1CT
0D

−1
0 C0P0/−1 = P0/−1 −G0D0GT

0 (13.3.5)

Because e0/0 has zero mean, we may write the orthogonality condition in Eq. (13.3.3) as,

E[e0/0yT0]= E[e0/0(y0 − ȳ0)T]= E[e0/0εεεT0]= 0

which states that the estimation error is orthogonal to the observation y0, or equiva-
lently, to the innovations vector εεε0. To complete the n = 0 step of the algorithm, we
must now determine the prediction of x1 based on y0 or εεε0. We may apply (13.3.2) again,

x̂1/0 = x̄1 + Σx1y0Σ
−1
y0y0

(y0 − ȳ0)= x̄1 + E[x1εεε0]E[εεε0εεεT0]−1εεε0

e1/0 = x1 − x̂1/0 , E[e1/0(y0 − ȳ0)T]= E[e1/0εεεT0]= 0

Σe1e1 = E[e1/0eT1/0]= Σx1x1 − Σx1y0Σ
−1
y0y0

Σy0x1

(13.3.6)

From the state equation x1 = A0x0 +w0 and the independence of w0 and y0, we find,

Σx1y0 = Σ(A0x0+w0)y0 = A0Σx0y0

K0 ≡ Σx1y0Σ
−1
y0y0

= A0Σx0y0Σ
−1
y0y0

= A0G0

Σx1x1 = Σ(A0x0+w0)(A0x0+w0) = A0Σx0x0A
T
0 +Q0

P1/0 = Σe1e1 = Σx1x1 − Σx1y0Σ
−1
y0y0

Σy0x1

= A0Σx0x0A
T
0 +Q0 −A0Σx0y0Σ

−1
y0y0

Σy0x0A
T
0

= A0
[
Σx0x0 − Σx0y0Σ

−1
y0y0

Σy0x0

]
AT

0 +Q0 = A0P0/0AT
0 +Q0

Since, x̄1 = A0x̄0 = A0x̂0/−1, we may rewrite the predicted estimate and its error as,

x̂1/0 = A0x̂0/−1 +K0εεε0 = A0
[
x̂0/−1 +G0εεε0]= A0x̂0/0

P1/0 = A0P0/0AT
0 +Q0

(13.3.7)

This completes all the steps at n = 0. We collect the results together:

13.3. Derivation 619

x̂0/−1 = x̄0 , P0/−1 = Σ0

D0 = C0P0/−1CT
0 +R0

G0 = P0/−1CT
0D

−1
0

K0 = A0G0 = A0P0/−1CT
0D

−1
0

ŷ0/−1 = C0x̂0/−1

εεε0 = y0 − ŷ0/−1 = y0 −C0x̂0/−1

x̂0/0 = x̂0/−1 +G0εεε0

P0/0 = P0/−1 −G0D0GT
0

x̂1/0 = A0x̂0/0 = A0x̂0/−1 +K0εεε0

P1/0 = A0P0/0AT
0 +Q0

Moving on to n = 1, we construct the next innovations vector εεε1 by:

εεε1 = y1 − ŷ1/0 = y1 −C1x̂1/0 (13.3.8)

Since y1 = C1x1 + v1, it follows that,

εεε1 = C1(x1 − x̂1/0)+v1 = C1e1/0 + v1 (13.3.9)

Because εεε0 is orthogonal to e1/0 and v1 is independent of y0, we have:

E[εεε1εεεT0]= 0 (13.3.10)

We also have E[εεε1]= 0 and the covariance matrix:

D1 = E[εεε1εεεT1]= C1P1/0CT
1 +R1 (13.3.11)

Thus, the zero-mean vectors {εεε0,εεε1} form an orthogonal basis for the subspace
Y1 = {y0,y1}. The optimum estimate of x1 based on Y1 is obtained by Eq. (13.3.2), but

with y replaced by the extended basis vector

[
εεε0

εεε1

]
whose covariance matrix is diagonal.

It follows that,

x̂1/1 = Proj[x1|Y1]= Proj[x1|εεε0,εεε1]= x̄1 + E
[
x1[εεεT0 ,εεε

T
1]
][E[εεε0εεεT0] 0

0 E[εεε1εεεT1]

]−1 [
εεε0

εεε1

]

= x̄1 + E[x1εεε0]E[εεε0εεεT0]−1εεε0 + E[x1εεε1]E[εεε1εεεT1]−1εεε1

(13.3.12)
The first two terms are recognized from Eq. (13.3.6) to be the predicted estimate

x̂1/0. Therefore, we have,

x̂1/1 = x̂1/0 + E[x1εεε1]E[εεε1εεεT1]−1εεε1 = x̂1/0 +G1εεε1 (13.3.13)

Since εεε1 ⊥ εεε0, we have E[x̂1/0εεεT1]= 0, and using (13.3.9) we may write:

E[x1εεε1]= E[(x1 − x̂1/0)εεεT1]= E[e1/0εεεT1]= E[e1/0(eT1/0C
T
1 + vT1)]= P1/0CT

1

620 13. Kalman Filtering

Thus, the Kalman gain for the filtered estimate is:

G1 = E[x1εεε1]E[εεε1εεεT1]−1= P1/0CT
1D

−1
1

The corresponding error covariance matrix can be obtained from Eq. (13.3.2), but
perhaps a faster way is to argue as follows. Using Eq. (13.3.13), we have

e1/1 = x1 − x̂1/1 = x1 − x̂1/0 −G1εεε1 = e1/0 −G1εεε1 , or,

e1/0 = e1/1 +G1εεε1 (13.3.14)

The orthogonality conditions for the estimate x̂1/1 are E[e1/1εεεT0]= E[e1/1εεεT1]= 0.
Thus, the two terms on the right-hand-side of (13.3.14) are orthogonal and we obtain
the covariances:

E[e1/0eT1/0]= E[e1/1eT1/1]+G1E[εεε1εεεT1]G
T
1 , or,

P1/0 = P1/1 +G1D1GT
1 , or,

P1/1 = P1/0 −G1D1GT
1 = P1/0 − P1/0CT

1D
−1
1 C1P1/0 (13.3.15)

To complete the n = 1 steps, we must predict x2 from Y1 = {y0,y1} = {εεε0,εεε1}.
From the state equation x2 = A1x1 +w1, we have:

x̂2/1 = Proj[x2|Y1]= Proj[A1x1 +w1|Y1]= A1x̂1/1 = A1(x̂1/0 +G1εεε1)= A1x̂1/0 +K1εεε1

e2/1 = x2 − x̂2/1 = A1(x1 − x̂1/1)+w1 = A1e1/1 +w1

P2/1 = E[e2/1eT2/1]= A1E[e1/1eT1/1]A
T
1 +Q1 = A1P1/1AT

1 +Q1

where we defined K1 = A1G1 and used the fact that w1 is independent of x1 and x̂1/1,
since the latter depends only on x̄0,y0,y1. We collect the results for n = 1 together:

D1 = C1P1/0CT
1 +R1

G1 = P1/0CT
1D

−1
1

K1 = A1G1 = A1P1/0CT
1D

−1
1

ŷ1/0 = C1x̂1/0

εεε1 = y1 − ŷ1/0 = y1 −C1x̂1/0

x̂1/1 = x̂1/0 +G1εεε1

P1/1 = P1/0 −G1D1GT
1

x̂2/1 = A1x̂1/1 = A1x̂1/0 +K1εεε1

P2/1 = A1P1/1AT
1 +Q1

At the nth time instant, we assume that we have already constructed the orthogo-
nalized basis of zero-mean innovations up to time n− 1, i.e.,

Yn−1 = {y0,y1, . . . ,yn−1} = {εεε0,εεε1, . . . ,εεεn−1}
E[εεεiεεεTj]= Diδij , 0 ≤ i, j ≤ n− 1

13.3. Derivation 621

Then, the optimal prediction of xn based on Yn−1 will be:

x̂n/n−1 = Proj[xn|Yn−1]= x̄n +
n−1∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi (13.3.16)

Defining εεεn = yn − ŷn/n−1 = yn −Cnx̂n/n−1, we obtain,

εεεn = yn −Cnx̂n/n−1 = Cn(xn − x̂n/n−1)+vn = Cnen/n−1 + vn (13.3.17)

Therefore, E[εεεn]= 0, and since vn ⊥ en/n−1 (because en/n−1 depends only on x0, . . . ,xn
and y0, . . . ,yn−1), we have:

Dn = E[εεεnεεεTn]= CnPn/n−1CT
n +Rn (13.3.18)

From the optimality of x̂n/n−1, we have the orthogonality property en/n−1 ⊥ εεεi, or,
E[en/n−1εεεTi]= 0, for i = 0,1, . . . , n − 1, and since also vn ⊥ εεεi, we conclude that the
constructed εεεn will be orthogonal to all the previous εεεi, i.e.,

E[εεεnεεεTi]= 0 , i = 0,1, . . . , n− 1

Thus, we may enlarge the orthogonalized basis of the observation subspace to time n:

Yn = {y0,y1, . . . ,yn−1,yn} = {εεε0,εεε1, . . . ,εεεn−1,εεεn}
E[εεεiεεεTj]= Diδij , 0 ≤ i, j ≤ n

We note also that the definition ŷn/n−1 = Cnx̂n/n−1 is equivalent to the conventional
Gram-Schmidt construction process defined in Chap. 1, that is, starting with,

ŷn/n−1 = Proj[yn|Yn−1]= ȳn +
n−1∑
i=0

E[ynεεεTi]E[εεεiεεε
T
i]
−1εεεi

εεεn = yn − ŷn/n−1

then, we may justify the relationship, ŷn/n−1 = Cnx̂n/n−1. Indeed, since, yn = Cnxn+vn,
we have, ȳn = Cnx̄n, and using Eq. (13.3.16), we obtain:

ŷn/n−1 = ȳn +
n−1∑
i=0

E[ynεεεTi]E[εεεiεεε
T
i]
−1εεεi

= Cnx̄n +
n−1∑
i=0

E[(Cnxn + vn)εεεTi]E[εεεiεεε
T
i]
−1εεεi

= Cn

⎡
⎣x̄n +

n−1∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi

⎤
⎦ = Cnx̂n/n−1

Next, we consider the updated estimate of xn based on Yn and given in terms of the
innovations sequence:

x̂n/n = Proj[xn|Yn]= x̄n +
n∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi (13.3.19)

622 13. Kalman Filtering

It follows that, for n ≥ 1,

x̂n/n = x̂n/n−1 + E[xnεεεTn]E[εεεnεεεTn]−1εεεn = x̂n/n−1 +Gnεεεn (13.3.20)

Because εεεn ⊥ εεεi, i = 0,1, . . . , n− 1, we have E[x̂n/n−1εεεTn]= 0, which implies,

E[xnεεεTn] = E[(xn − x̂n/n−1)εεεTn]= E[en/n−1εεεTn]= E[en/n−1(Cnen/n−1 + vn)T]

= E[en/n−1eTn/n−1]C
T
n = Pn/n−1CT

n

Thus, the Kalman gain will be:

Gn = E[xnεεεTn]E[εεεnεεεTn]−1= Pn/n−1CT
nD−1

n = Pn/n−1CT
n
[
CnPn/n−1CT

n +Rn
]−1

(13.3.21)

The estimation errors en/n and en/n−1 are related by,

en/n = xn − x̂n/n = xn − x̂n/n−1 −Gnεεεn = en/n−1 −Gnεεεn , or,

en/n−1 = en/n +Gnεεεn (13.3.22)

and since one of the orthogonality conditions for x̂n/n is E[en/nεεεTn]= 0, the two terms
in the right-hand side will be orthogonal, which leads to the covariance relation:

Pn/n−1 = Pn/n +GnDnGT
n , or,

Pn/n = Pn/n−1 −GnDnGT
n = Pn/n−1 − Pn/n−1CT

nD−1
n CnPn/n−1 (13.3.23)

A nice geometrical interpretation of Eqs. (13.3.17) and (13.3.22) was given by Kron-
hamn [867] and is depicted below (see also Chap. 11):

The similarity of the two orthogonal triangles leads to Eq. (13.3.21). Indeed, for
the scalar case, the lengths of the triangle sides are given by the square roots of the

covariances, e.g.,
√
E[ε2

n] =
√
Dn. Then, the Pythagorean theorem and the similarity of

the triangles give,

E[ε2
n]= C2

nE[e
2
n/n−1]+E[v2

n] ⇒ Dn = CnPn/n−1Cn +Rn

E[e2
n/n−1]= E[e2

n/n]+G2
nE[ε2

n] ⇒ Pn/n−1 = Pn/n +GnDnGn

cosθ = Gn
√
Dn√

Pn/n−1
= Cn

√
Pn/n−1√
Dn

⇒ Gn = Pn/n−1Cn

Dn

sinθ =
√
Pn/n√
Pn/n−1

=
√
Rn√
Dn

⇒ Pn/n−1D−1
n = Pn/nR−1

n ⇒ Eq. (13.2.5)

13.3. Derivation 623

Finally, we determine the next predicted estimate, which may be obtained by using
the state equation xn+1 = Anxn+wn, and noting that E[xn+1εεεTi]= E[(Anxn+wn)εεεTi]=
AnE[xnεεεTi], for 0 ≤ i ≤ n. Then, using x̄n+1 = Anx̄n, we find,

x̂n+1/n = x̄n+1 +
n∑
i=0

E[xn+1εεεTi]E[εεεiεεε
T
i]
−1εεεi

= An

⎡
⎣x̄n +

n∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi

⎤
⎦ = Anx̂n/n = An

[
x̂n/n−1 +Gnεεεn

]

= Anx̂n/n−1 +Knεεεn = (An −KnCn)x̂n/n−1 +Knyn

where we defined Kn = AnGn. The error covariance is obtained by noting that,

en+1/n = xn+1 − x̂n+1/n = Anen/n +wn

and because wn is orthogonal to en/n, this leads to

Pn+1/n = E[en+1/neTn+1/n]= AnE[en/neTn/n]A
T
n + E[wnwT

n]= AnPn/nAT
n +Qn

This completes the operations at the nth time step. The various equivalent expressions
in Eqs. (13.2.4) and (13.2.5) are straightforward to derive. The Joseph form is useful
because it guarantees the numerical positive-definiteness of the error covariance matrix.
The information form is a consequence of the matrix inversion lemma. It can be shown
directly as follows. To simplify the notation, we write the covariance update as,

P̂ = P−GDGT = P− PCTD−1CP , D = R+CPCT

Multiply from the right by P−1 and from the left by P̂−1 to get:

P−1 = P̂−1 − P̂−1PCTD−1C (13.3.24)

Next, multiply from the right by PCT to get:

CT = P̂−1PCT − P̂−1PCTD−1CPCT = P̂−1PCT(I −D−1CPCT)

= P̂−1PCTD−1(D−CPCT)= P̂−1PCTD−1R

which gives (assuming that R−1 exists):

CTR−1 = P̂−1PCTD−1

Inserting this result into Eq. (13.3.24), we obtain

P−1 = P̂−1 − P̂−1PCTD−1C = P̂−1 −CTR−1C ⇒ P̂−1 = P−1 +CTR−1C

and also obtain,
P̂CTR−1 = PCTD−1 = G

624 13. Kalman Filtering

Since the information form works with the inverse covariances, to complete the op-
erations at each time step, we need to develop a recursion for the inverse P−1

n+1/n in terms
of P−1

n/n. Denoting Pn+1/n by Pnext, we have

Pnext = AP̂AT +Q

If we assume that A−1 and Q−1 exist, then the application of the matrix inversion
lemma to this equation allows us to rewrite it in terms of the matrix inverses:

P−1
next = A−TP̂−1A−1 −A−TP̂−1A−1[Q−1 +A−TP̂−1A−1]−1A−TP̂−1A−1

To summarize, the information form of the Kalman filter is as follows:

P−1
n/n = P−1

n/n−1 +CT
nR−1

n Cn

P−1
n/n x̂n/n = P−1

n/n−1x̂n/n−1 +CT
nR−1

n yn

P−1
n+1/n = A−Tn P−1

n/nA
−1
n −A−Tn P−1

n/nA
−1
n
[
Q−1
n +A−Tn P−1

n/nA
−1
n
]−1A−Tn P−1

n/nA
−1
n

(13.3.25)

13.4 Forecasting and Missing Observations

The problem of forecasting ahead from the current time sample n and the problem of
missing observations are similar. Suppose one has at hand the estimate x̂n/n based
on Yn = {y0,y1, . . . ,yn}. Then the last part of the Kalman filtering algorithm (13.2.2)
produces the prediction of xn+1 based on Yn,

x̂n+1/n = Anx̂n/n

This prediction can be continued to future times. For example, since xn+2 = An+1xn+1+
wn+1 and wn+1 is independent of Yn, we have:

x̂n+2/n = Proj
[
xn+2|Yn

]
= Proj

[
An+1xn+1 +wn+1|Yn

]
= An+1x̂n+1/n = An+1Anx̂n/n = Φn+2,nx̂n/n

and so on. Thus, the prediction of xn+p based on Yn is for p ≥ 1,

x̂n+p/n = Φn+p,nx̂n/n (13.4.1)

The corresponding error covariance is found by applying (13.1.8), that is,

xn+p = Φn+p,n xn +
n+p∑

k=n+1

Φn+p,kwk−1 , p ≥ 1 (13.4.2)

which in conjunction with (13.4.1), gives for the forecast error en+p/n = xn − x̂n+p/n,

en+p/n = Φn+p,n en/n +
n+p∑

k=n+1

Φn+p,kwk−1 (13.4.3)

13.5. Kalman Filter with Deterministic Inputs 625

which implies for its covariance:

Pn+p/n = Φn+p,nPn/nΦT
n+p,n +

n+p∑
k=n+1

Φn+p,kQk−1ΦT
n+p,k (13.4.4)

Eqs. (13.4.1) and (13.4.4) apply also in the case when a group of observations, say,
{yn+1,yn+2, . . . ,yn+p−1}, are missing. In such case, one simply predicts ahead from
time n using the observation set Yn. Once the observation yn+p becomes available, one
may resume the usual algorithm using the initial values x̂n+p/n and Pn+p/n.

This procedure is equivalent to setting, in the algorithm (13.2.2), Gn+i = 0 and
εεεn+i = 0 over the period of the missing observations, i = 1,2, . . . , p−1, that is, ignoring
the measurement updates, but not the time updates.

In some presentations of the Kalman filtering algorithm, it is assumed that the ob-
servations are available from n ≥ 1, i.e., Yn = {y1,y2, . . . ,yn} = {εεε1,εεε2, . . . ,εεεn}, and
the algorithm is initialized at x̂0/0 = x̄0 with P0/0 = Σ0. We may view this as a case of
a missing observation y0, and therefore, from the above rule, we may set εεε0 = 0 and
G0 = 0, which leads to x̂0/0 = x̂0/−1 = x̄0 and P0/0 = P0/−1 = Σ0. The algorithm may be
stated then somewhat differently, but equivalently, to Eq. (13.2.2):

Initialize at n = 0 by: x̂0/0 = x̄0, P0/0 = Σ0

At time n ≥ 1, x̂n−1/n−1, Pn−1/n−1, yn are available,

x̂n/n−1 = An−1x̂n−1/n−1 predicted estimate

Pn/n−1 = An−1Pn−1/n−1AT
n−1 +Qn−1 prediction error

Dn = CnPn/n−1CT
n +Rn innovations covariance

Gn = Pn/n−1CT
nD−1

n Kalman gain for filtering

ŷn/n−1 = Cnx̂n/n−1 predicted measurement

εεεn = yn − ŷn/n−1 = yn −Cnx̂n/n−1 innovations sequence

x̂n/n = x̂n/n−1 +Gnεεεn filtered estimate

Pn/n = Pn/n−1 −GnDnGT
n mean-square error

Go to time n+ 1

13.5 Kalman Filter with Deterministic Inputs

A state/measurement model that has a deterministic input un in addition the noise input
wn can be formulated by,

xn+1 = Anxn + Bnun +wn

yn = Cnxn + vn

(state model)

(measurement model)
(13.5.1)

As we mentioned earlier, this requires a minor modification of the algorithm (13.2.2),
namely, replacing the time-update equation by that in Eq. (13.5.3) below. Using linear
superposition, we may think of this model as two models, one driven by the white noise

626 13. Kalman Filtering

inputs, and the other by the deterministic input, that is,

x(1)n+1 = Anx(1)n +wn

y(1)n = Cnx(1)n + vn
and

x(2)n+1 = Anx(2)n + Bnun

y(2)n = Cnx(2)n

(13.5.2)

If we adjust the initial conditions of the two systems to match that of (13.5.1), that
is, x0 = x(1)0 + x(2)0 , then the solution of the system (13.5.1) will be the sum:

xn = x(1)n + x(2)n , yn = y(1)n + y(2)n

System (2) is purely deterministic, and therefore, we have the estimates,

x̂(2)n/n = Proj
[
x(2)n |Yn

] = x(2)n

x̂(2)n/n−1 = Proj
[
x(2)n |Yn−1

] = x(2)n

and similarly, ŷ(2)n/n−1 = y(2)n . For system (1), we may apply the Kalman filtering algorithm
of Eq. (13.2.2). We note that

εεεn = yn − ŷn/n−1 = y(1)n + y(2)n − ŷ(1)n/n−1 − ŷ(2)n/n−1 = y(1)n − ŷ(1)n/n−1

so that Dn = D(1)
n . Similarly, we find,

en/n−1 = xn − x̂n/n−1 = x(1)n − x̂(1)n/n−1 ⇒ Pn/n−1 = P(1)n/n−1

en/n = xn − x̂n/n = x(1)n − x̂(1)n/n ⇒ Pn/n = P(1)n/n

and similarly, Gn = G(1)
n and Kn = K(1)

n . The measurement update equation remains
the same, that is,

x̂n/n = x̂(1)n/n + x(2)n = x̂(1)n/n−1 +Gnεεεn + x(2)n = x̂n/n−1 +Gnεεεn

The only step of the algorithm (13.2.2) that changes is the time update equation:

x̂n+1/n = x̂(1)n+1/n + x̂(2)n+1/n = x̂(1)n+1/n + x(2)n+1

= [Anx̂(1)n/n−1 +Knεεεn
]+ [Anx(2)n + Bnun

]
= An

(
x̂(1)n/n−1 + x(2)n

)+ Bnun +Knεεεn

= Anx̂n/n−1 + Bnun +Knεεεn = Anx̂n/n + Bnun , or,

x̂n+1/n = Anx̂n/n−1 + Bnun +Knεεεn = Anx̂n/n + Bnun (13.5.3)

13.6 Time-Invariant Models

In many applications, the model parameters {An,Cn,Qn,Rn} are constants in time, that
is, {A,C,Q,R}, and the model takes the form:

xn+1 = Axn +wn

yn = Cxn + vn

(state model)

(measurement model)
(13.6.1)

13.6. Time-Invariant Models 627

The signals wn,vn are again assumed to be mutually-independent, zero-mean, white-
noise signals with known covariance matrices:

E[wnwT
i] = Qδni

E[vnvTi] = Rδni

E[wnvTi] = 0

(13.6.2)

The model is iterated starting at n = 0. The initial state vector x0 is assumed to be
random and independent of wn,vn, but with a known mean x̄0 = E[x0] and covariance
matrix Σ0 = E[(x0− x̄0)(x0− x̄0)T]. The Kalman filtering algorithm (13.2.2) then takes
the form:

Initialize in time by: x̂0/−1 = x̄0, P0/−1 = Σ0

At time n, x̂n/n−1, Pn/n−1, yn are available,

Dn = CPn/n−1CT +R innovations covariance

Gn = Pn/n−1CTD−1
n Kalman gain for filtering

Kn = AGn = APn/n−1CTD−1
n Kalman gain for prediction

ŷn/n−1 = C x̂n/n−1 predicted measurement

εεεn = yn − ŷn/n−1 = yn −C x̂n/n−1 innovations sequence

Measurement update / correction:

x̂n/n = x̂n/n−1 +Gnεεεn filtered estimate

Pn/n = Pn/n−1 −GnDnGT
n estimaton error

Time update / prediction:

x̂n+1/n = A x̂n/n = A x̂n/n−1 +Knεεεn predicted estimate

Pn+1/n = APn/nAT +Q prediction error

Go to time n+ 1

(13.6.3)
Note also that Eqs. (13.2.12) become now,

ŷn/n−1 = C x̂n/n−1 = CA x̂n−1/n−1 predicted measurement

εεεn = yn − ŷn/n−1 innovations sequence

x̂n+1/n = A x̂n/n−1 +Kεεεn predicted estimate

x̂n/n = A x̂n−1/n−1 +Gεεεn filtered estimate

(13.6.4)

The MATLAB function, kfilt.m, implements the Kalman filtering algorithm of Eq. (13.6.3).
It has usage:

[L,X,P,Xf,Pf] = kfilt(A,C,Q,R,Y,x0,S0); % Kalman filtering

628 13. Kalman Filtering

Its inputs are the state-space model parameters {A,C,Q,R}, the initial values x̄0,
Σ0, and the observations yn, 0 ≤ n ≤ N, arranged into an r×(N + 1) matrix:

Y = [y0,y1, . . . ,yn, . . . ,yN
]

The outputs are the predicted and filtered estimates arranged into p×(N+1) matrices:

X = [x̂0/−1, x̂1/0, . . . , x̂n/n−1, . . . , x̂N/N−1
]

Xf =
[
x̂0/0, x̂1/1, . . . , x̂n/n, . . . , x̂N/N

]
whose error covariance matrices are arranged into the p×p×(N+1) three-dimensional
arrays P,Pf , such that (in MATLAB notation):

P(:,:,n+1) = Pn/n−1 , Pf(:,:,n+1) = Pn/n , 0 ≤ n ≤ N

The outputL is the value of the negative-log-likelihood function calculated from Eq. (13.12.2).
Under certain conditions of stabilizability and detectability, the Kalman filter pa-

rameters {Dn,Pn/n−1, Gn,Kn} converge to steady-state values {D,P,G,K} such that P
is unique and positive-semidefinite symmetric and the converged closed-loop state ma-
trix F = A − KC is stable, i.e., its eigenvalues are strictly inside the unit circle. The
steady-state values are all given in terms of P, as follows:

D = CPCT +R

G = PCTD−1 = [I + PCTR−1C]−1PCTR−1

K = AG = A[I + PCTR−1C]−1PCTR−1

F = A−KC = A[I + PCTR−1C]−1

(13.6.5)

and P is determined as the unique positive-semidefinite symmetric solution of the so-
called discrete algebraic Riccati equation (DARE), written in two alternative ways:

P = APAT −APCT(CPCT +R)−1CPAT +Q

P = A[I + PCTR−1C]−1PAT +Q
(DARE) (13.6.6)

The required conditions are that the pair [C,A] be completely detectable and the
pair [A,Q1/2], completely stabilizable,† where Q1/2 denotes a square root of the posi-
tive semidefinite matrix Q. Refs. [863,865] include a literature overview of various con-
ditions for this and related weaker results. The convergence speed of the time-varying
quantities to their steady-state values is determined essentially by the magnitude square
of largest eigenvalue of the closed-loop matrix F = A−KC (see for example [871,872]).
If we define the eigenvalue radius ρ = maxi |λi|, where λi are the eigenvalues of F, then
a measure of the effective time constant is:

neff = ln ε
lnρ2

(13.6.7)

†For definitions of complete stabilizability and detectability see [863], which is available online.

13.6. Time-Invariant Models 629

where ε is a small user-defined quantity, such as ε = 10−2 for the 40-dB time constant,
or ε = 10−3 for the 60-dB time constant.

The MATLAB function, dare(), in the control systems toolbox allows the calculation
of the solution P and Kalman gain K, with usage:

[P,L,KT] = dare(A’, C’, Q, R);

where the output P is the required solution, KT is the transposed of the gain K, and L
is the vector of eigenvalues of the closed-loop matrix F = A−KC. The syntax requires
that the input matrices A,C be entered in transposed form.

Example 13.6.1: Benchmark Example. Solution methods of the DARE are reviewed in [877].
The following two-dimensional model is a benchmark example from the collection [878]:

A =
[

4 −4.5
3 −3.5

]
, C = [1, −1] , Q =

[
9 6
6 4

]
=
[

3
2

]
[3, 2] , R = 1

The MATLAB call,

[P,L,K_tr] = dare(A’, C’, Q, R);

returns the values:

P =
[

14.5623 9.7082
9.7082 6.4721

]
, K = KT

tr =
[

1.8541
1.2361

]
, L =

[
0.3820

−0.5000

]

These agree with the exact solutions:

P = 1+√5

2

[
9 6
6 4

]
, K =

√
5− 1

2

[
3
2

]
, L =

[
(3−√5)/2
−0.5

]

This example does satisfy the stabilizability and detectability requirements for conver-
gence, even though the model itself is uncontrollable and unobservable. Indeed, using the
square root factor q = [3,2]T for Q where Q = qqT , we see that the controllability and
observability matrices are rank defective:

[q , Aq]=
[

3 3
2 2

]
,
[

C
CA

]
=
[

1 −1
1 −1

]

The largest eigenvalue of the matrix F is λ1 = −0.5, which leads to an estimated 40-dB
time constant of neff = log(0.01)/ log

(
(0.5)2

) = 3.3. The time-varying prediction-error
matrix Pn/n−1 can be given in closed form. Using the methods of [871,872], we find:

Pn/n−1 = P+ FnMnFTn , n ≥ 0 (13.6.8)

where, Fn is the nth power of F and can be expressed in terms of its eigenvalues, as follows,

Fn =
[

3λn2 − 2λn1 3λn1 − 3λn2
2λn2 − 2λn1 3λn1 − 2λn2

]
, λ1 = −0.5 , λ2 = 3−√5

2

630 13. Kalman Filtering

This is obtained from the eigenvalue decomposition:

F = VΛV−1 =
[

1 1.5
1 1

][
λ1 0
0 λ2

][
−2 3

2 −2

]
⇒ Fn = VΛnV−1

The matrix Mn is given by:

Mn = 1

ad− bc+ (a+ b+ c+ d)cn

[
cn + d cn − b
cn − c cn + a

]
, cn = 1√

5
(1− λ2n

2)

and the numbers a,b, c, d are related to an arbitrary initial value P0/−1 via the definition:[
a b
c d

]
= (P0/−1 − P)−1 ⇒ P0/−1 − P = 1

ad− bc

[
d −b
−c a

]

provided that the indicated matrix inverse exists. We note that atn = 0,M0 = P0/−1−P and
the above solution for Pn/n−1 correctly accounts for the initial condition. It can be verified
that Eq. (13.6.8) is the solution to the difference equation with the prescribed initial value:

Pn+1/n = A
[
Pn/n−1 − Pn/n−1CT(CPn/n−1CT +R)−1CPn/n−1

]
AT +Q , or,

Pn+1/n = A
[
I + Pn/n−1CTR−1C

]−1Pn/n−1AT +Q

Since |λ2| < |λ1|, it is evident from the above solution that the convergence time-constant
is determined by |λ1|2. As Pn/n−1 → P, so does the Kalman gain:

Kn = APn/n−1CT(CPn/n−1CT +R)−1−→ K = APCT(CPCT +R)−1

The figure below plots the two components of the gain vectorKn = [k1(n), k2(n)]T versus
time n, for the two choices of initial conditions:

P0/−1 =
[

100 0
0 100

]
, P0/−1 =

[
1/100 0

0 1/100

]

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

time samples, n

Kalman Gains

 k
1
(n)

 k
2
(n)

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

time samples, n

Kalman Gains

 k
1
(n)

 k
2
(n)

We note that we did not initialize to P0/−1 = 0 because P is rank defective and the initial
matrix M0 = −P would not be invertible. ��

13.7. Steady-State Kalman Filters 631

Example 13.6.2: Local Level Model. Consider the local-level model of Example 13.1.1 (see also
Problem 11.13),

xn+1 = xn +wn

yn = xn + vn

with Q = σ2
w and R = σ2

v . The Kalman filtering algorithm (13.6.3) has the parameters
A = 1, C = 1, and satisfies the Riccati difference and algebraic equations:

Pn+1/n = Pn/n−1R
Pn/n−1 +R

+Q ⇒ P = PR
P+R

+Q ⇒ P2

P+R
= Q

and has time-varying and steady gains:

Kn = Gn = Pn/n−1

Pn/n−1 +R
⇒ K = G = P

P+R

and closed-loop transition matrix:

Fn = 1−Kn = R
Pn/n−1 +R

⇒ F = 1−K = R
P+R

The positive solution of the algebraic Riccati equation is:

P = Q
2
+
√
QR+ Q2

4

The convergence properties to the steady values depend on the closed-loop matrix (here
scalar) F. Again, using the methods of [871,872], we find the exact solutions:

Pn/n−1 = P+ (P0 − P)F2n

1+ (P0 − P)S(1− F2n)
, n ≥ 0 , S = P+R

P(P+ 2R)

where P0 is an arbitrary positive initial value for P0/−1. Since Pn/n−1 → P as n → ∞, it
follows that also Fn → F and Kn → K, so that the Kalman filtering equations read,

x̂n+1/n = x̂n/n = x̂n/n−1 +Kn(yn − x̂n/n)= Fnx̂n/n−1 + (1− Fn)yn

x̂n+1/n = x̂n/n = x̂n/n−1 +K(yn − x̂n/n)= Fx̂n/n−1 + (1− F)yn

where the second one is the steady-state version, which is recognized as the exponential
smoother with parameter λ = F. We note that because P > 0, we have 0 < F < 1. ��

13.7 Steady-State Kalman Filters

As soon as the Kalman filter gains have converged to their asymptotic values, the Kalman
filter can be operated as a time-invariant filter with the following input/output equations
for the predicted estimate:

x̂n+1/n = Ax̂n/n−1 +K(yn −Cx̂n/n−1)

x̂n+1/n = (A−KC)x̂n/n−1 +Kyn
(steady-state Kalman filter) (13.7.1)

632 13. Kalman Filtering

or, in its prediction-correction form, where K = AG,

x̂n/n = x̂n/n−1 +G(yn −Cx̂n/n−1)

x̂n+1/n = Ax̂n/n
(steady-state Kalman filter) (13.7.2)

or, in its filtered form, using Eq. (13.6.4),

x̂n/n = Ax̂n−1/n−1 +G(yn −CA x̂n−1/n−1)

x̂n/n = (A−GCA)x̂n−1/n−1 +Gyn
(steady-state Kalman filter) (13.7.3)

Since these depend only on the gains K,G, they may be viewed as state-estimators,
or observers, independently of the Kalman filter context.

In cases when one does not know the state-model noise parameters Q,R, non-
optimal values for the gainsK,Gmay be used (as long as the closed-loop state-transition
matrices F = A−KC and A−GCA are stable). Such non-optimal examples include the
single and double exponential moving average filters and Holt’s exponential smoothing
discussed in Chap. 6, as well the general α–β and α–β–γ filters.

The corresponding transfer function matrices from the input yn to the prediction
x̂n/n−1 and to the filtered estimate x̂n/n are found by taking z-transforms of Eqs. (13.7.1)
and (13.7.2). Denoting the identity matrix by I, we have:

Hp(z) = (zI −A+KC)−1K

Hf(z) = z(zI −A+GCA)−1G
(13.7.4)

Example 13.7.1: α–β Tracking Filters. The kinematic state-space models considered in Exam-
ple 13.1.3 for a moving object subject to random accelerations were of the form:[

xn+1

ẋn+1

]
=
[

1 T
0 1

][
xn
ẋn

]
+wn

yn = [1,0]
[
xn
ẋn

]
+ vn

(13.7.5)

with measurement noise variance R = σ2
v and two possible choices for the noise term wn,

wn =
[

0
wn

]
, wn =

[
T2/2
T

]
an

where wn represents a random velocity and an a random acceleration. The corresponding
covariance matrices Q = E[wnwT

n] are,

Q =
[

0 0
0 σ2

w

]
, Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a

An α–β tracking filter is an observer for the model (13.7.5) written in its prediction-
correction form of Eq. (13.7.2) with a gain vector defined in terms of the α,β parameters:

G =
[

α
β/T

]

13.7. Steady-State Kalman Filters 633

Eqs. (13.7.2) then read:[
x̂n/n
ˆ̇xn/n

]
=
[
x̂n/n−1
ˆ̇xn/n−1

]
+
[

α
β/T

]
(yn − x̂n/n−1)

[
x̂n+1/n
ˆ̇xn+1/n

]
=
[

1 T
0 1

][
x̂n/n
ˆ̇xn/n

] (13.7.6)

where we used ŷn/n−1 = C x̂n/n−1 = [1,0]
[
x̂n/n−1
ˆ̇xn/n−1

]
= x̂n/n−1. Explicitly, we write,

x̂n/n = x̂n/n−1 +α(yn − x̂n/n−1)

ˆ̇xn/n = ˆ̇xn/n−1 + β
T
(yn − x̂n/n−1)

x̂n+1/n = x̂n/n +Tˆ̇xn/n

ˆ̇xn+1/n = ˆ̇xn/n

(α–β tracking filter)

These are essentially equivalent to Holt’s exponential smoothing method discussed in
Sec. 6.12. The corresponding prediction and filtering transfer functions of Eq. (13.7.4)
are easily found to be:

Hp(z) = 1

z2 + (α+ β− 2)z+ 1−α

[
(α+ β)z−α
β(z− 1)/T

]

Hf(z) = 1

z2 + (α+ β− 2)z+ 1−α

[
z(β−α+αz)
βz(z− 1)/T

] (13.7.7)

The particular choices α = 1 − λ2 and β = (1 − λ)2 result in the double-exponential
smoothing transfer functions for the local level and local slope of Eq. (6.8.5):

Hf(z)= 1

(1− λz−1)2

[
(1− λ)(1+ λ− 2λz−1)
(1− λ)2(1− z−1)/T

]
(13.7.8)

The noise-reduction ratios for the position and velocity components of H f (z) are easily
found to be [870,874]:

Rx = 2α2 + 2β− 3αβ
α(4− 2α− β

, Rẋ = 2β2/T2

α(4− 2α− β

Example 13.7.2: α–β Tracking Filters as Kalman Filters. Optimum values of the α,β param-
eters can be obtained if one thinks of the α–β tracking filter as the steady-state Kalman
filter of the model (13.7.5). We start with the case defined by the parameters,

A =
[

1 T
0 1

]
, C = [1,0] , wn =

[
0
wn

]
, Q =

[
0 0
0 σ2

w

]
, R = σ2

v

Let P denote the solution of the DARE, P = A(P−GDGT)AT +Q, where the gain G is:

P =
[
P11 P12

P12 P22

]
, D = CPCT +R = P11 +R , G = PCTD−1 = 1

P11 +R

[
P11

P12

]

634 13. Kalman Filtering

and we set P21 = P12. If G is to be identified with the gain of the α–β tracking filter, we
must have:

G = 1

P11 +R

[
P11

P12

]
=
[

α
β/T

]
⇒ P11

P11 +R
= α,

P12

P11 +R
= β
T

which may be solved for P11, P12:

P11 = R
α

1−α
, P12 = R

T
β

1−α
, D = R

1−α
(13.7.9)

The three parametersα,β,P22 fix the matrix P completely. The DARE provides three equa-
tions from which these three parameters can be determined in terms of the model statistics
σ2
w,σ2

v . To this end, let us define the so-called tracking index [869], as the dimensionless
ratio (note that σw has units of velocity, and σv, units of length):

λ2 = σ2
wT2

σ2
v

(tracking index) (13.7.10)

Using Eqs. (13.7.9), we obtain

P−GDGT =
⎡
⎢⎣ Rα Rβ/T

Rβ/T P22 − β2/T2

1−α

⎤
⎥⎦

Then, the DARE, P = A(P−GDGT)AT +Q, reads explicitly,

[
P11 P12

P12 P22

]
=
[

1 T
0 1

]⎡⎣ Rα Rβ/T

Rβ/T P22 − β2/T2

1−α

⎤
⎦[1 0

T 1

]
+
[

0 0
0 σ2

w

]
(13.7.11)

Forming the difference of the two sides, we obtain:

A(P−GDGT)AT +Q − P =

⎡
⎢⎢⎢⎢⎣
P22T2 − R

(
(α+ β)2−2β

)
1− a

P22T − Rβ(α+ β)
T(1−α)

P22T − Rβ(α+ β)
T(1−α)

σ2
w −

Rβ2

T2(1−α)

⎤
⎥⎥⎥⎥⎦

Equating the off-diagonal matrix elements to zero provides an expression for P22:

P22 = Rβ(α+ β)
T2(1−α)

Then, setting the diagonal elements to zero, gives the two equations for α,β:

β = α2

2−α
,

β2

1−α
= σ2

wT2

σ2
v

= λ2 (13.7.12)

The first of these was arrived at by [870] using different methods. The system (13.7.12)
can be solved explicitly in terms of λ2 as follows [873]:

r =
√√√√1

2
+
√

1

4
+ 4

λ2
, α = 2

r + 1
, β = 2

r(r + 1)
(13.7.13)

13.7. Steady-State Kalman Filters 635

Next, consider the alternative kinematic model defined by the parameters [868,869]:

A =
[

1 T
0 1

]
, C = [1,0] , Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a , R = σ2

v

A similar calculation leads to the DARE solution for the covariance matrix:

P11 = R
α

1−α
, P12 = R

T
β

1−α
, P22 = R

2T2

β(2α+ β)
1−α

, D = P11 +R = R
1−α

with α,β satisfying the conditions:

2β−αβ−α2

1−α
= λ2

4
,

β2

1−α
= λ2 (13.7.14)

where now the tracking index is defined as the dimensionless ratio:

λ2 = σ2
aT4

σ2
v

(13.7.15)

The solution of the system (13.7.14) is found to be [868]:

r =
√

1+ 8

λ
, α = 4r

(r + 1)2
, β = 8

(r + 1)2
(13.7.16)

It is easily verified that these satisfy the Kalata relationship [869]:

β = 2(2−α)−4
√

1−α (13.7.17)

For both models, the optimum solutions for α,β given in Eqs. (13.7.13) and (13.7.16) lead
to a stable closed-loop matrix F = A − KC, that is, its eigenvalues lie inside the unit
circle. These eigenvalues are the two roots of the denominator polynomial of the transfer
functions (13.7.7), that is, the roots of z2 + (α+ β− 2)z+ 1−α = 0. The graphs below
show a simulation.

0 50 100 150 200 250 300

20

40

60

80

noisy position measurements

t (sec)

636 13. Kalman Filtering

0 50 100 150 200 250 300

20

40

60

80

true position and its estimate

t (sec)
0 50 100 150 200 250 300

−0.5

0

0.5

1
true velocity and its estimate

t (sec)

The following parameter values were chosen σa = 0.02, σv = 2, T = 1, which lead to
a tracking index (13.7.15) of λ = 0.01, and the value of the parameter r = 28.3019 in
Eq. (13.7.16), which gives the αβ-parameters α = 0.1319 and β = 0.0093. The algorithm
(13.7.6) was iterated with an initial value x̂0/−1 = [y0,0]T .

The following MATLAB code segment shows the generation of the input signal yn, the
computation of α,β, and the filtering operation:

t0 = 0; t1 = 75; t2 = 225; t3 = 300; % turning times
b0 = 0.8; b1 = -0.3; b2 = 0.4; % segment slopes

m0 = 20;
m1 = m0 + b0 * (t1-t0); % segment turning points
m2 = m1 + b1 * (t2-t1);

t = (t0:t3); T=1;

s = (m0+b0*t).*upulse(t,t1) + (m1+b1*(t-t1)).*upulse(t-t1,t2-t1) +...
(m2+b2*(t-t2)).*upulse(t-t2,t3-t2+1);

sdot = b0*upulse(t,t1) + b1*upulse(t-t1,t2-t1) + b2*upulse(t-t2,t3-t2+1);

seed = 1000; randn(’state’,seed);
sv = 2; v = sv * randn(1,length(t));

y = s + v; % noisy position measurements

sa = 0.02; lambda = sa*T^2/sv; r = sqrt(1+8/lambda);

a = 4*r/(r+1)^2; b = 8/(r+1)^2; % alpha-beta parameters

A = [1, T; 0, 1]; C=[1,0]; G = [a; b/T];

xp = [y(1); 0]; % initial prediction

for n=1:length(t),
x(:,n) = xp + G*(y(n) - C*xp);
xp = A*x(:,n);

end

figure; plot(t,y,’b-’); % noisy positions
figure; plot(t,s,’r--’, t,x(1,:),’b-’); % true & estimated position
figure; plot(t,sdot,’r--’, t,x(2,:),’b-’); % true & estimated velocity

13.7. Steady-State Kalman Filters 637

Example 13.7.3: Transients of α–β Tracking Kalman Filters. Here, we look at a simulation of
the random-acceleration model of Eq. (13.1.15) and of the time-varying Kalman filter as it
converges to steady-state. The model is defined by[

xn+1

ẋn+1

]
=
[

1 T
0 1

][
xn
ẋn

]
+
[
T2/2
T

]
an , yn = [1,0]

[
xn
ẋn

]
+ vn

with model matrices:

A =
[

1 T
0 1

]
, C = [1,0] , Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a , R = σ2

v

The corresponding Kalman filter is defined by Eq. (13.6.3). If we denote the elements of
the time-varying Kalman gain Gn by

Gn =
[

αn

βn/T

]

then, we expect αn,βn to eventually converge to the steady-state values given in (13.7.16).
The Kalman filtering algorithm reads explicitly,[

x̂n/n
ˆ̇xn/n

]
=
[
x̂n/n−1
ˆ̇xn/n−1

]
+
[

αn

βn/T

]
(yn − x̂n/n−1) ,

[
x̂n+1/n
ˆ̇xn+1/n

]
=
[

1 T
0 1

][
x̂n/n
ˆ̇xn/n

]

where
Dn = CPn/n−1CT +R , Gn = Pn/n−1CT/Dn

Pn/n = Pn/n−1 −GnDnGT
n , Pn+1/n = APn/nAT +Q

The figures below show a simulation with the same parameter values as in the previous
example, σa = 0.02, σv = 2, and T = 1.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
noisy position measurements

t (sec)

 position
 measurement

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
position and its estimate

t (sec)

 position
 estimate

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5
velocity and its estimate

t (sec)

 velocity
 estimate

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
α −β parameters

t (sec)

 α
 β

638 13. Kalman Filtering

The upper-left graph shows the noisy measurement yn plotted together with the position
xn to be estimated. The upper-right graph plots the estimate x̂n/n together with xn. The
lower-left graph shows the velocity and its estimate, ẋn and ˆ̇xn/n. The lower-right graph
shows αn,βn as they converge to their steady values α = 0.1319, β = 0.0093, which were
calculated from (13.7.16):

λ = σaT2

σv
= 0.01 , r =

√
1+ 8

λ
= 28.3019 , α = 4r

(r + 1)2
, β = 8

(r + 1)2

The model was simulated by generating two independent, zero-mean, gaussian, length-300
acceleration and measurement noise signals an, vn. The initial state vector was chosen at
zero position, but with a finite velocity,

x0 =
[
x0

ẋ0

]
=
[

0
0.1

]

The Kalman filter was initialized to the following predicted state vector and covariance:

x̂0/−1 =
[
x̂0/−1
ˆ̇x0/−1

]
=
[
y0

0

]
, P0/−1 =

[
0.01 0

0 0.01

]

The following MATLAB code illustrates the generation of the graphs:

N = 301; T = 1; Tmax = (N-1)*T; t = 0:T:Tmax;

seed = 1000; randn(’state’,seed);

sv = 2; sa = 0.02; lambda = sa*T^2/sv; r = sqrt(1+8/lambda);
a = 4*r/(r+1)^2; b = 8/(r+1)^2;

v = sv * randn(1,length(t)); % measurement noise
w = [T^2/2; T] * sa * randn(1,length(t)); % state noise

R = sv^2; Q = [T^4/4, T^3/2; T^3/2, T^2]*sa^2;

A = [1,T; 0,1]; C = [1,0];

x0 = [0; 0.1]; x(:,1) = x0; % initial state

for n=1:N-1 % generate states and measurements
x(:,n+1) = A*x(:,n) + w(n);
y(n) = C*x(:,n) + v(n);

end
y(N) = C*x(:,N) + v(N);

xp = [y(1);0]; P0 = diag([1,1]/100); P = P0; % initialize Kalman filter

for n=1:length(t), % run Kalman filter
D = C*P*C’+R;
G(:,n) = P*C’/D; % G = Kalman gain
X(:,n) = xp + G(:,n)*(y(n) - C*xp); % X(:,n) = filtered state
Pf = P - G(:,n)*D*G(:,n)’; % error covariance of X
xp = A*X(:,n); % xp = predicted state
P = A*Pf*A’ + Q; % error covariance of xp

end

13.7. Steady-State Kalman Filters 639

figure; plot(t,x(1,:),’r--’, t,y,’b-’);
figure; plot(t,x(1,:),’r--’, t,X(1,:),’b-’);
figure; plot(t,x(2,:),’r--’, t,X(2,:),’b-’);
figure; plot(t,G(1,:),’b-’, t,G(2,:),’r--’);

The eigenvalues of the asymptotic closed-loop state matrix F = A − KC, which are the
roots of the polynomial, z2 + (α+ β2)z+ (1−α), can be expressed directly in terms of
the parameter r as follows:

λ1 = r2 − 3− 2j
√
r2 − 2

(r + 1)2
, λ2 = r2 − 3+ 2j

√
r2 − 2

(r + 1)2

The eigenvalues are complex conjugates whenever r2 > 2, or equivalently, when the track-
ing index is λ < 8, which is usually the case in practice. For λ ≥ 8, or 1 < r2 ≤ 2, they are
real-valued. For the complex case, the eigenvalues have magnitude:

|λ1| = |λ2| = r − 1

r + 1

One can then determine an estimate of the convergence time-constant of the Kalman filter,

neff = ln ε

2 ln
(
r − 1

r + 1

)

For the present example, we find neff = 49 samples for the 60-dB time constant (ε = 10−3),
which is evident from the above plot of αn,βn. Using the methods of [871,872] one may
also construct closed-form solutions for the time-varying covariance Pn/n−1 and gain Gn.
First, we determine the eigenvector decomposition of F:

F = A−KC = 1

(r + 1)2

[
r2 − 2r − 7 T(r + 1)2

−8T (r + 1)2

]
= VΛV−1

V =
[
v1 v2

1 1

]
, Λ =

[
λ1 0
0 λ2

]
, V−1 = 1

v1 − v2

[
1 −v2

−1 v1

]

v1 = T
4

[
r + 2− j

√
r2 − 2

]
, v2 = T

4

[
r + 2+ j

√
r2 − 2

]
Then, the nth power of F is given by:

F = VΛV−1 = 1

v1 − v2

[
v1λ1 − v2λ2 v1v2(λ2 − λ1)
λ1 − λ2 v1λ2 − v2λ1

]

Fn = VΛnV−1 = 1

v1 − v2

[
v1λn1 − v2λn2 v1v2(λn2 − λn1)
λn1 − λn2 v1λn2 − v2λn1

]

The converged steady-state value of Pn/n−1, which is the solution of the DARE, may also
be expressed in terms of the parameter r, as follows:

P = 4rR
(r + 1)2

⎡
⎢⎢⎢⎣

1
2

Tr

2

Tr
8

T2r(r + 1)

⎤
⎥⎥⎥⎦

640 13. Kalman Filtering

Given an initial 2×2 matrix P0/−1, we construct the matrix E0 = P0/−1−P. Then, the exact
solution of the Riccati difference equation is given by:

Pn/n−1 = P+ FnE0
[
I + SnE0

]−1FTn

where I is the 2×2 identity matrix and Sn is defined as follows, for n ≥ 0,

Sn = S− FTnSFn , S = r2 − 1

8rR

[
1 −T/2

−T/2 T2(r2 + 1)/8

]

These expressions demonstrate why the convergence time-constant depends on the square
of the maximum eigenvalue of F. ��

Example 13.7.4: Local Trend Model. Holt’s exponential smoothing model is an effective way of
tracking the local level an and local slope bn of a signal and represents a generalization of
the double exponential moving average (DEMA) model. Its state-space form was considered
briefly in Sec. 6.13. The following time-invariant linear trend state-space model has steady-
state Kalman filtering equations that are equivalent to Holt’s method,[

an+1

bn+1

]
=
[

1 1
0 1

][
an
bn

]
+
[
wn

un

]
, yn = [1,0]

[
an
bn

]
+ vn (13.7.18)

so that its state-model matrices are,

A =
[

1 1
0 1

]
, C = [1,0]

where an, bn represent the local level and local slope, and wn,un, vn are zero-mean, mutu-
ally uncorrelated, white-noise signals with variances Qa = σ2

w, Qb = σ2
u, R = σ2

v . Denote
the state vector and its filtered and predicted estimates by,

xn =
[
an
bn

]
, x̂n/n =

[
ân/n
b̂n/n

]
, x̂n+1/n =

[
ân+1/n

b̂n+1/n

]
=
[

1 1
0 1

][
ân/n
b̂n/n

]

so that,
ân+1/n = ân/n + b̂n/n , b̂n+1/n = b̂n/n

Then, the predicted measurement can be expressed in two ways as follows,

ŷn/n−1 = C x̂n/n−1 = [1,0]
[
ân/n−1

b̂n/n−1

]
= ân/n−1 = ân−1/n−1 + b̂n−1/n−1

Denote the two-dimensional steady-state Kalman gains G and K = AG by,

G =
[
α
β

]
, K = AG =

[
1 1
0 1

][
α
β

]
=
[
α+ β
β

]

Then, the steady-state Kalman filtering equations Eq. (13.7.1) and (13.7.3) take the form,

x̂n/n = Ax̂n−1/n−1 +G(yn − ŷn/n−1)

x̂n+1/n = Ax̂n/n−1 +K(yn − ŷn/n−1)

13.8. Continuous-Time Kalman Filter 641

which are precisely Holt’s exponential smoothing formulas,[
ân/n
b̂n/n

]
=
[

1 1
0 1

][
ân−1/n−1

b̂n−1/n−1

]
+
[
α
β

](
yn − ân−1/n−1 − b̂n−1/n−1

)
[
ân+1/n

b̂n+1/n

]
=
[

1 1
0 1

][
ân/n−1

b̂n/n−1

]
+
[
α+ β
β

](
yn − ân/n−1

)

The corresponding model parameters Qa,Qb and the error covariance matrix P can be
reconstructed in terms of R and the gains α,β, as follows,

Q =
[
Qa 0
0 Qb

]
= R

1−α

[
α2 +αβ− 2β 0

0 β2

]
, P = R

1−α

[
α β
β β(α+ β)

]

One can easily verify, according to Eq. (13.6.5), that,

D = CPCT +R = R
1−α

, G = PCTD−1 =
[
α
β

]

and that P satisfies the algebraic Riccati equation (13.6.6), that is,

P = APAT −APCT(CPCT +R)−1CPAT +Q

Assuming thatα,β are positive and thatα < 1, the positivity ofQa requires the condition,
α2 +αβ > 2β, which also implies that P is positive definite since its determinant is,

detP = R2 (α2 +αβ− β)β
(1−α)2

= R2 (α2 +αβ− 2β+ β)β
(1−α)2

> 0

Thus, Holt’s method admits a Kalman filtering interpretation. ��

13.8 Continuous-Time Kalman Filter

The continuous-time Kalman filter, known as the Kalman-Bucy filter [853], is based on
the state-space model:

ẋ(t) = A(t)x(t)+w(t)

y(t) = C(t)x(t)+v(t)
(13.8.1)

where w(t),v(t) are mutually uncorrelated white-noise signals with covariances:

E[w(t)w(τ)T] = Q(t)δ(t − τ)

E[v(t)v(τ)T] = R(t)δ(t − τ)

E[w(t)v(τ)T] = 0

(13.8.2)

We assume also that w(t),v(t) are uncorrelated with the initial state vector x(0).
More precisely, one should write the stochastic differential equation for the state in the

642 13. Kalman Filtering

form: dx(t)= A(t)x(t)dt+w(t)dt and view the quantity db(t)= w(t)dt as a vector-
valued Brownian motion, with covariance E[db(t)db(t)T]= Q(t)dt. However, for the
above linear model, the formal manipulations using w(t) lead to equivalent results.

The continuous-time Kalman filter can be obtained from the discrete one in the limit
as the sampling interval T tends to zero. One of the issues that arises is how to define
the white-noise sequences wn,vn of the discrete-time model of Eq. (13.1.1) in terms of
the sampled values of the continuous-time signals w(t),v(t). The covariance matrix at
a single time instant is not well-defined for white noise signals. Indeed, setting t = τ =
tn = nT in Eq. (13.8.2) would give an infinite value for the covariance E[w(tn)w(tn)T].

Since the delta function δ(t) can be thought of as the limit as T → 0 of a square
pulse function pT(t) of width T and height 1/T shown below, we may replace δ(t−τ)
by pT(t − τ) in the right-hand-side of Eq. (13.8.2).

This leads to the approximate but finite values:

E[w(tn)w(tn)T]= Q(tn)
T

, E[v(tn)v(tn)T]= R(tn)
T

(13.8.3)

The same conclusion can be reached from the Brownian motion point of view, which
would give formally,

E[w(t)w(t)T]= E
[
db(t)
dt

db(t)T

dt

]
= E[db(t)db(t)T]

dt2
= Q(t)dt

dt2
= Q(t)

dt

and identifying dt by the sampling timeT. We may apply now Eq. (13.8.3) to the sampled
version of the measurement equation:

y(tn)= C(tn)x(tn)+v(tn)

Thus, the discrete-time measurement noise signal vn is identified as v(tn), with
covariance matrix:

E[vnvTn]= Rn = R(tn)
T

(13.8.4)

To identify wn, we consider the discretized version of the state equation:

ẋ(tn)≈ x(tn+1)−x(tn)
T

= A(tn)x(tn)+w(tn)

which gives,
x(tn+1)=

[
I +TA(tn)

]
x(tn)+Tw(tn)

and we may identify the discrete-time model quantities:

An = I +TA(tn) , wn = Tw(tn)

13.8. Continuous-Time Kalman Filter 643

with noise covariance matrix E[wnwT
n]= T2E[w(tn)w(tn)T], or using (13.8.3),

E[wnwT
n]= T2 · Q(tn)

T
= TQ(tn)≡ Qn (13.8.5)

To summarize, for smallT, the discrete-time and continuous-time signals and model
parameters are related by

xn = x(tn) , wn = Tw(tn) , yn = y(tn) , vn = v(tn)

An = I +TA(tn) , Cn = C(tn) , Qn = TQ(tn) , Rn = R(tn)
T

(13.8.6)

Next, consider the limit of the discrete-time Kalman filter. Since T → 0, there will be
no distinction between Pn/n and Pn/n−1, and we may set P(tn)≈ Pn/n ≈ Pn/n−1. Using
(13.8.6), the innovations covariance and the Kalman gains become approximately (to
lowest order in T):

Dn = CnPn/n−1CT
n +Rn = C(tn)P(tn)C(tn)+R(tn)T

≈ R(tn)
T

Gn = Pn/n−1CT
nD−1

n = P(tn)C(tn)TR(tn)−1T ≡ K(tn)T

Kn = AnPn/n−1CT
nD−1

n = [I +TA(tn)
]
P(tn)C(tn)TR(tn)−1T ≈ K(tn)T

where we set K(tn)= P(tn)C(tn)TR(tn)−1. Setting x̂(tn)= x̂n/n−1 and hence x̂(tn+1)=
x̂n+1/n, the Kalman filtering equation x̂n+1/n = Anx̂n/n−1 +Knεεεn becomes:

x̂(tn+1)=
[
I +TA(tn)

]
x̂(tn)+TK(tn)εεε(tn) , or,

x̂(tn+1)−x̂(tn)
T

= A(tn)x̂(tn)+K(tn)εεε(tn)= A(tn)x̂(tn)+K(tn)
[
y(tn)−C(tn)x̂(tn)

]
which becomes the differential equation in the limit T → 0:

˙̂x(t)= A(t)x̂(t)+K(t)εεε(t)= A(t)x̂(t)+K(t)[y(t)−C(t)x̂(t)]
with a realization depicted below.

Finally, we consider the limiting form of the Riccati difference equation:

Pn+1/n = An
[
Pn/n−1 −GnDnGT

n
]
AT
n +Qn

Using Eqs. (13.8.6) and noting that Pn+1/n = P(tn+1), we obtain:

P(tn+1)=
[
I +TA(tn)

][
P(tn)−K(tn)TR(tn)T−1TK(tn)T

][
I +TA(tn)T

]+TQ(tn)

644 13. Kalman Filtering

which may be written to order T as follows:

P(tn+1)−P(tn)
T

= A(tn)P(tn)+P(tn)A(tn)T−K(tn)R(tn)K(tn)T+Q(tn)

which becomes the differential equation in the limit T → 0,

Ṗ(t)= A(t)P(t)+P(t)A(t)T−K(t)R(t)K(t)T+Q(t)

Substituting K(t)= P(t)C(t)TR(t)−1, we obtain the Riccati differential equation:

Ṗ(t)= A(t)P(t)+P(t)A(t)T−P(t)C(t)TR(t)−1C(t)P(t)+Q(t)

To summarize, the continuous-time Kalman filter for the model (13.8.1) is given by:

K(t) = P(t)C(t)TR(t)−1

˙̂x(t) = A(t)x̂(t)+K(t)[y(t)−C(t)x̂(t)]
Ṗ(t) = A(t)P(t)+P(t)A(t)T−P(t)C(t)TR(t)−1C(t)P(t)+Q(t)

(13.8.7)

whereP(t) represents the covarianceE[e(t)e(t)T] of the estimation error e(t)= x(t)−x̂(t),
and the initial conditions are taken to be:

x̂(0)= E[x(0)] , P(0)= E
[
(x(0)−x̂(0))(x(0)−x̂(0))T

]
For time-invariant models, i.e. with time-independent model parameters {A,C,Q,R},

and under the same type of complete stabilizability and detectability assumptions as in
the discrete-time case, the Riccati solutionP(t) tends to the unique positive-semidefinite
symmetric solution P of the continuous-time algebraic Riccati equation (CARE):

AP+ PAT − PCTR−1CP+Q = 0 (CARE) (13.8.8)

and the Kalman gain tends to the corresponding steady gain K(t)→ K ≡ PCTR−1,
resulting in a strictly stable closed-loop state matrix F = A−KC, i.e., with eigenvalues
in the left-hand s-plane.

Example 13.8.1: Local Level Model. The continuous-time version of the local-level model of
Example 13.6.2 is defined by the one-dimensional model:

ẋ(t)= w(t) , E[w(t)w(τ)]= Qδ(t − τ)

y(t)= x(t)+v(t) , E[v(t)v(τ)]= Rδ(t − τ)

It represents a Wiener (Brownian) process x(t) observed in noise. The Kalman filtering
algorithm (13.8.7) has parameters A = 0, C = 1, and satisfies the Riccati differential and
algebraic equations:

Ṗ(t)= Q − P2(t)
R

, Q − P2

R
= 0 ⇒ P =

√
QR

13.9. Equivalence of Kalman and Wiener Filtering 645

and has time-varying and steady gains:

K(t)= P(t)
R

⇒ K = P
R
=
√
Q
R

and closed-loop transition matrices:

F(t)= −K(t) ⇒ F = −K = −
√
Q
R

and time-varying and steady Kalman filtering equations:

ˆ̇x(t) = −K(t)x̂(t)+K(t)y(t)
ˆ̇x(t) = −Kx̂(t)+Ky(t)

with the latter representing a continuous-time version of the exponential smoother. The
convergence properties to the steady values depend on F. Using the methods of [871,872],
we find the exact solution for P(t), and hence K(t)= P(t)/R:

P(t)= P+ 2P(P0 − P)e2Ft

P0 + P− (P0 − P)e2Ft , t ≥ 0

where P0 is an arbitrary positive initial value for P(0), and e2Ft = e−2Kt, which decays
to zero exponentially with a time constant determined by 2F, a result analogous to the
discrete-time case. ��

13.9 Equivalence of Kalman and Wiener Filtering

We saw in Chap. 11 that for the case of a simple scalar state-space model the steady-state
Kalman filter was equivalent to the corresponding Wiener filter, and that the innovations
signal model of the observation signal was embedded in the Kalman filter. Similar results
can be derived in the multichannel case.

Consider the problem of estimating a p-dimensional vector-valued signal xn from an
r-dimensional signal of observations yn. In the stationary case, the solution of this prob-
lem depends on the following p×r cross-correlation and r×r autocorrelation functions
and corresponding z-transform spectral densities:

Rxy(k)= E[xnyTn−k] , Sxy(z)=
∞∑

k=−∞
Rxy(k)z−k

Ryy(k)= E[ynyTn−k] , Syy(z)=
∞∑

k=−∞
Ryy(k)z−k

(13.9.1)

The desired causal estimate of xn is given by the convolutional equation:

x̂n =
∞∑
k=0

hkyn−k , H(z)=
∞∑
k=0

hkz−k (13.9.2)

646 13. Kalman Filtering

where hk is the optimum p×r causal impulse response matrix to be determined. The
optimality conditions are equivalent to the orthogonality between the estimation error
en = xn − x̂n and the observations yn−k, k ≥ 0, that make up the estimate:

Rey(k)= E[enyTn−k]= 0 , k ≥ 0 (13.9.3)

These are equivalent to the matrix-valued Wiener-Hopf equations for hk:

∞∑
m=0

hmRyy(k−m)= Rxy(k) , k ≥ 0 (13.9.4)

The solution can be constructed in the z-domain with the help of a causal and
causally invertible signal modelB(z) for the observations yn, driven by an r-dimensional
white-noise sequence εεεn of (time-independent) covariance E[εεεnεεεTn−k]= Dδ(k), that is,

yn =
∞∑
k=0

bkεεεn−k , B(z)=
∞∑
k=0

bkz−k (13.9.5)

where bk is the causal r×r impulse response matrix of the model. The model implies
the spectral factorization of observations spectral density Syy(z):

Syy(z)= B(z)DBT(z−1) (13.9.6)

We will construct the optimal filter H(z) using the gapped-function technique of
Chap. 11. To this end, we note that for any k,

Rey(k) = E[enyTn−k]= E[(xn − x̂n)yTn−k]= E

⎡
⎣
⎛
⎝xn −

∞∑
m=0

hmyn−m

⎞
⎠yTn−k

⎤
⎦

= Rxy(k)−
∞∑

m=0

hmRyy(k−m)

and in the z-domain:

Sey(z)= Sxy(z)−H(z)Syy(z)= Sxy(z)−H(z)B(z)DBT(z−1)

The orthogonality conditions (13.9.3) require that Sey(z) be a strictly left-sided, or an-
ticausal z-transform, and so will be the z-transform obtained by multiplying both sides
by the matrix inverse of BT(z−1) because we assumed the B(z) and B−1(z) are causal,
the therefore, B(z−1) and B−1(z−1) will be anticausal. Thus,

Sey(z)B−T(z−1)= Sxy(z)B−T(z−1)−H(z)B(z)D = strictly anticausal

and therefore, its causal part will be zero:[
Sxy(z)B(z−1)−T−H(z)B(z)D

]
+ =

[
Sxy(z)B−T(z−1)

]
+ − [H(z)B(z)D]+ = 0

13.9. Equivalence of Kalman and Wiener Filtering 647

Removing the causal instruction from the second term because it is already causal,
we may solve for the optimum Wiener filter for estimating xn from yn:

H(z)=
[
Sxy(z)B−T(z−1)

]
+D

−1B−1(z) (multichannel Wiener filter) (13.9.7)

This generalizes the results of Chap. 11 to vector-valued signals. Similarly, we may
obtain for the minimized value of the estimation error covariance:

E[eneTn]= Ree(0)=
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

(13.9.8)

The results may be applied to the one-step-ahead prediction problem by replacing
the signal xn by the signal x1(n)= xn+1. Noting that X1(z)= zX(z), we have:

H1(z)=
[
Sx1y(z)B

−T(z−1)
]
+D

−1B−1(z)

and since Sx1y(z)= zSxy(z), we find:

H1(z)=
[
zSxy(z)B−T(z−1)

]
+D

−1B−1(z) (prediction filter) (13.9.9)

and for the covariance of the error en+1/n = xn − x̂1(n)= xn − x̂n+1/n ,

E[en+1/neTn+1/n]=
∮ [

Sxx(z)−H1(z)Syx(z)z−1
] dz

2πjz
(13.9.10)

where in the first term we used Sx1x1(z)= zSxx(z)z−1 = Sxx(z), and in the second term,
Syx1(z)= Syx(z)z−1.

Next, we show that Eqs. (13.9.9) and (13.9.10) agree with the results obtained from the
steady-state Kalman filter. In particular, we expect the contour integral in Eq. (13.9.10)
to be equal to the steady-state solution P of the DARE. We recall from Sec. 13.6 that the
steady-state Kalman filter parameters are, where D = CPCT +R:

K = APCTD−1 = FPCTR−1 , F = A−KC = A−APCTD−1C (13.9.11)

where P is the unique positive-semidefinite symmetric solution of the DARE:

P = APAT −APCT(CPCT +R)−1CPAT +Q (13.9.12)

which can also be written as
Q = P− FPAT (13.9.13)

The state-space model for the Kalman filter can be written in the z-domain as follows:

xn+1 = Axn +wn

yn = Cxn + vn
⇒

X(z) = (zI −A)−1W(z)

Y(z) = C(zI −A)−1W(z)+V(z)

from which we obtain the spectral densities:

Sxx(z) = (zI −A)−1Q(z−1I −AT)−1

Sxy(z) = Sxx(z)CT = (zI −A)−1Q(z−1I −AT)−1CT

Syy(z) = CSxx(z)CT +R = C(zI −A)−1Q(z−1I −AT)−1CT +R

(13.9.14)

648 13. Kalman Filtering

The steady-state Kalman prediction filter is given by

x̂n+1/n = Ax̂n/n−1 +Kεεεn = Ax̂n/n−1 +K(yn −Cx̂n/n−1)= Fx̂n/n−1 +Kyn

which may be rewritten in terms of x̂1(n)= x̂n+1/n, or, x̂1(n− 1)= x̂n/n−1,

x̂1(n)= Ax̂1(n− 1)+Kεεεn = Fx̂1(n− 1)+Kyn (13.9.15)

and in the z-domain, noting that ŷn/n−1 = Cx̂n/n−1 = Cx̂1(n− 1),

X̂1(z) = (I − z−1A)−1KEEE(z)= (I − z−1F)−1KY(z)

Ŷ(z) = z−1CX̂1(z)= C(zI −A)−1KEEE(z)= C(zI − F)−1KY(z)
(13.9.16)

From the first of these, we obtain the prediction filter transfer function H1(z) relat-
ing the observations yn to the prediction x̂1(n)= x̂n+1/n, i.e., X̂1(z)= H1(z)Y(z):

H1(z)= (I − z−1F)−1K (13.9.17)

Since εεεn = yn − ŷn/n−1, or, EEE(z)= Y(z)−Ŷ(z), the second of Eqs. (13.9.16) allows
us to determine the signal model transfer function matrix B(z), i.e., Y(z)= B(z)EEE(z):

Y(z) = EEE(z)+Ŷ(z)=
[
I +C(zI −A)−1K

]
EEE(z)

EEE(z) = Y(z)−Ŷ(z)=
[
I −C(zI − F)−1K

]
Y(z)

from which we obtain B(z) and its inverse B−1(z):

B(z) = I +C(zI −A)−1K

B−1(z) = I −C(zI − F)−1K
(13.9.18)

It can easily be verified that
[
I + C(zI −A)−1K

][
I − C(zI − F)−1K

] = I by direct
multiplication, using the fact that F = A − KC. Next, we must verify the spectral
factorization of Syy(z) and show that Eq. (13.9.17) agrees with (13.9.9). We will make
use of the following relationships:

(zI − F)−1KB(z)= (zI −A)−1K

B(z)C(zI − F)−1= C(zI −A)−1

(z−1I − FT)−1CTBT(z−1)= (z−1I −AT)−1CT

(13.9.19)

where the third is obtained by transposing the second and replacing z by z−1. These
can be shown in a straightforward way, for example,

B(z)C(zI − F)−1 = [I +C(zI −A)−1K
]
C(zI − F)−1

= [C+C(zI −A)−1KC
]
(zI − F)−1

= C(zI −A)−1(zI −A+KC)(zI − F)−1

= C(zI −A)−1(zI − F)(zI − F)−1= C(zI −A)−1

13.9. Equivalence of Kalman and Wiener Filtering 649

We will also need the following relationship and its transposed/reflected version:

(zI − F)−1Q(z−1I −AT)−1= (I − z−1F)−1P+ PAT(z−1I −AT)−1

(zI −A)−1Q(z−1I − FT)−1= P(I − zFT)−1+(zI −A)−1AP
(13.9.20)

These are a consequence of the DARE written in the form of Eq. (13.9.13). Indeed,

(I − z−1F)−1P+ PAT(z−1I −AT)−1=
= (I − z−1F)−1[P(z−1I −AT)+(I − z−1F)PAT](z−1I −AT)−1

= (I − z−1F)−1[z−1P− PAT + PAT − z−1FPAT](z−1I −AT)−1

= (I − z−1F)−1z−1(P− FPAT)(z−1I −AT)−1= (zI − F)−1Q(z−1I −AT)−1

Next, we verify the spectral factorization (13.9.6). Using (13.9.19) we have:

Syy(z) = C(zI −A)−1Q(z−1I −AT)−1CT +R

= B(z)C(zI − F)−1Q(z−1I −AT)−1+R

Multiplying from the left by B−1(z) and using (13.9.18) and (13.9.20), we obtain:

B−1(z)Syy(z)= C(zI − F)−1Q(z−1I −AT)−1+B−1(z)R

= C
[
(I − z−1F)−1P+ PAT(z−1I −AT)−1]CT + [I −C(z− F)−1K

]
R

= C
[
(I − z−1F)−1P+ PAT(z−1I −AT)−1]CT +R−Cz−1(I − z−1F)−1KR

= C
[
(I − z−1F)−1P+ PAT(z−1I −AT)−1]CT +R−Cz−1(I − z−1F)−1FPCT

= C(I − z−1F)−1(I − z−1F)PCT +CPAT(z−1I −AT)−1CT +R

= CPCT +CPAT(z−1I −AT)−1CT +R

= CPAT(z−1I −AT)−1CT +D = DKT(z−1I −AT)−1CT +D

= D
[
I +KT(z−1I −AT)−1CT] = DBT(z−1)

where we replaced KR = FPCT and CPAT = DKT from Eq. (13.9.11). This verifies
Eq. (13.9.6). Next, we obtain the prediction filter using the Wiener filter solution (13.9.9).
Using (13.9.19), we have:

Sxy(z)= (zI −A)−1Q(z−1I −AT)−1CT = (zI −A)−1Q(z−1I − FT)−1CTBT(z−1)

Multiplying by the inverse of BT(z) from the right and using (13.9.20), we obtain:

zSxy(z)B−T(z−1) = z(zI −A)−1Q(z−1I − FT)−1CT

= zP(I − zFT)−1CT + z(zI −A)−1APCT

= zP(I − zFT)−1CT + (I − z−1A)−1KD

650 13. Kalman Filtering

where we replaced APCT = KD. The first term is anti-causal (if it is to have a stable
inverse z-transform), while the second term is causal (assuming here that A is strictly
stable). Thus, we find the causal part:[

zSxy(z)B−T(z−1)
]
+ = (I − z−1A)−1KD = (I − z−1F)−1KB(z)D (13.9.21)

where we used the first of Eqs. (13.9.19). It follows that the Wiener prediction filter is:

H1(z)=
[
zSxy(z)B−T(z−1)

]
+D

−1B−1(z)= (I − z−1F)−1K (13.9.22)

and agrees with (13.9.17). Finally, we consider the prediction error covariance given by
(13.9.10). Noting that Syx(z)= CSxx(z), the integrand of (13.9.10) becomes:

Sxx(z)−H1(z)Syx(z)z−1 = [I − z−1H1(z)C
]
Sxx(z)=

[
I − (zI − F)−1KC

]
Sxx(z)

= (zI − F)−1(zI − F −KC)Sxx(z)= (zI − F)−1(zI −A)Sxx(z)

= (zI − F)−1(zI −A)(zI −A)−1Q(z−1I −AT)−1= (zI − F)−1Q(z−1I −AT)−1

= (I − z−1F)−1P+ PAT(z−1I −AT)−1= z(zI − F)−1P+ zPAT(I − zAT)−1

and the contour integral (13.9.10) becomes:∮
u.c.

[
Sxx(z)−H1(z)Syx(z)z−1

] dz
2πjz

=
∮

u.c.

[
(zI − F)−1P+ PAT(I − zAT)−1

] dz
2πj

The poles of the second term lie outside the unit circle and do not contribute to the
integral. The poles of the first term are the eigenvalues of the matrix F, which all lie
inside the unit circle. It is not hard to see (e.g., using the eigenvalue decomposition of
F) that the first term integrates into:∮

u.c.

[
(zI − F)−1P

] dz
2πj

= P

Thus, as expected the Wiener and Kalman expressions for E[en+1/neTn+1/n] agree
with each other.

13.10 Fixed-Interval Smoothing

The Kalman filtering algorithm proceeds recursively in time using an ever increasing
observations subspace:

Yn = {y0,y1, . . . ,yn} = {εεε0,εεε1, . . . ,εεεn} , n = 0,1,2, . . .

with the current estimate x̂n/n based on Yn. In the fixed-interval Kalman smoothing
problem, the observations yn are available over a fixed time interval 0 ≤ n ≤ N, so that
the observation subspace is:

YN = {y0,y1, . . . ,yN} = {εεε0,εεε1, . . . ,εεεN}

13.10. Fixed-Interval Smoothing 651

and the estimate of xn, for 0 ≤ n ≤ N, is based on the entire subspace YN. The two
cases are depicted below:

At each n, the subspace YN can be decomposed in the direct sums:

YN = {εεε0,εεε1, . . . ,εεεn} ⊕ {εεεn+1, . . . ,εεεN} = Yn ⊕ {εεεn+1, . . . ,εεεN}
YN = {εεε0,εεε1, . . . ,εεεn−1} ⊕ {εεεn, . . . ,εεεN} = Yn−1 ⊕ {εεεn, . . . ,εεεN}

(13.10.1)

and therefore, we expect the estimate of xn based on YN to be equal to the sum of the
filtered estimate x̂n/n, or the predicted estimate x̂n/n−1, plus a correction coming from
the rest of the subspace. We will work with the latter decomposition. We will find that
once the ordinary Kalman filter has been run forward from n = 0 to n = N, and we
have constructed the innovations basis for YN and the estimates x̂n/n−1, the required
correction can be constructed recursively, but running backwards from N down to n.

We begin by noting that at each n within 0 ≤ n ≤ N, the state vector xn can be
written in its unique orthogonal decomposition relative to the subspace Yn−1:

xn = x̂n/n−1 + en/n−1 (13.10.2)

where x̂n/n−1 is the ordinary predicted estimate of xn as defined in the forward Kalman
algorithm (13.2.2), and en/n−1 is the prediction error whose covariance matrix is Pn/n−1.
We observe that x̂n/n−1 can be expressed in terms of the innovations basis of Yn−1, as
in Eq. (13.3.16):

x̂n/n−1 = x̄n +
n−1∑
m=0

E[xnεεεTm]D−1
m εεεm (13.10.3)

where Dm = E[εεεmεεεTm]. The smoothed estimate of xn based on the full subspace YN is
the projection of xn onto YN. Denoting this estimate by x̂n/N, it is given in the innova-
tions basis for YN = {εεε0,εεε1, . . . ,εεεN}:

x̂n/N = Proj
[
xn|YN

] = x̄n +
N∑

m=0

E[xnεεεTm]D−1
m εεεm (13.10.4)

The summation may be split into two terms:

x̂n/N = x̄n +
n−1∑
m=0

E[xnεεεTm]D−1
m εεεm +

N∑
m=n

E[xnεεεTm]D−1
m εεεm

= x̂n/n−1 +
N∑

m=n
E[xnεεεTm]D−1

m εεεm

652 13. Kalman Filtering

The second term is recognized as the estimate of en/n−1 based on YN, that is,

ên/n−1 =
N∑

m=0

E[en/n−1εεεTm]D−1
m εεεm

=
n−1∑
m=0

E[en/n−1εεεTm]D−1
m εεεm +

N∑
m=n

E[en/n−1εεεTm]D−1
m εεεm

=
N∑

m=n
E[(xn − x̂n/n−1)εεεTm]D−1

m εεεm =
N∑

m=n
E[xnεεεTm]D−1

m εεεm

where we dropped the terms E[en/n−1εεεTm]= 0 for 0 ≤m ≤ n−1, because of the orthog-
onality conditions for the estimate x̂n/n−1 (i.e., the estimation error must be orthogonal
to the observations that make up the estimate), and then we dropped E[x̂n/n−1εεεTm]= 0
for n ≤m ≤ N because these εεεms are orthogonal to the εεεms making up x̂n/n−1, as seen
from the direct sum (13.10.1). Thus, we have:

x̂n/N = x̂n/n−1 + ên/n−1 (13.10.5)

ên/n−1 =
N∑

m=n
E[en/n−1εεεTm]D−1

m εεεm (13.10.6)

In other words, the term ên/n−1 is the correction to the predicted estimate x̂n/n−1 and
represents the estimate of the prediction error en/n−1 based on the subspace {εεεn, . . . ,εεεN}
that lies in the future of x̂n/n−1. The same result can be obtained by taking the projec-
tions of both sides of Eq. (13.10.2) onto YN and noting that the projection of x̂n/n−1 is
itself becauseYn−1 is a subspace ofYN. The estimation error for the smoothed estimate
is equal to the estimation error for en/n−1, indeed,

en/N = xn − x̂n/N = xn − x̂n/n−1 − ên/n−1 , or,

en/N = en/n−1 − ên/n−1 (13.10.7)

The error covariance matrices can be obtained by writing en/n−1 = en/N+ ên/n−1 and
noting that the two terms on the right-hand-side are orthogonal because ên/n−1 is com-
posed of observations that appear in the x̂n/N and therefore, they must be orthogonal
to the corresponding estimation error en/N. Let,

Pn/N = E[en/NeTn/N] , P̂n/n−1 = E[ên/n−1êTn/n−1] (13.10.8)

then, the above orthogonality property implies:

E[en/n−1eTn/n−1]= E[en/NeTn/N]+E[ên/n−1êTn/n−1] , or,

Pn/N = Pn/n−1 − P̂n/n−1 (13.10.9)

The term P̂n/n−1 quantifies the improvement in the estimate of xn afforded by using
all the data YN instead of only Yn−1.

Next, we develop the backward recursions satisfied by ên/n−1 and P̂n/n−1, which will
allow the calculation of x̂n/N and Pn/N. We recall that εεεm = ym−Cmx̂m/m−1 = Cmxm+

13.10. Fixed-Interval Smoothing 653

vm −Cmx̂m/m−1 = Cmem/m−1 + vm. This implies E[en/n−1εεεTm]= E[en/n−1eTm/m−1]CT
m.

And it is straightforward to show that for m ≥ n:

E[en/n−1eTm/m−1]= Pn/n−1Ψn,m , Ψn,m =
⎧⎨
⎩F

T
nF

T
n+1 · · ·FTm−1 , m > n

I , m = n
(13.10.10)

where Fn = An −KnCn is the closed-loop transition matrix. For example, consider the
case m = n+ 1. Then, en+1/n = xn+1 − x̂n+1/n = Anxn +wn −Anx̂n/n−1 −Knεεεn, or,

en+1/n = Anen/n−1 +wn −Knεεεn = Anen/n−1 +wn −Kn(Cnen/n−1 + vn)

= (An −KnCn)en/n−1 +wn −Knvn = Fnen/n−1 +wn −Knvn

and because en/n−1 depends on {x0,w0, . . . ,wn−1,v0, . . . ,vn−1}, it will be orthogonal to
wn,vn, and we find:

E[en/n−1eTn+1/n]= E[en/n−1eTn/n−1]F
T
n = Pn/n−1FTn (13.10.11)

For m = n+ 2, we have similarly, en+2/n+1 = Fn+1en+1/n +wn+1 −Kn+1vn+1, and,

E[en/n−1eTn+2/n+1]= E[en/n−1eTn+1/n]F
T
n+1 = Pn/n−1FTnF

T
n+1

and so on for m > n. Thus, we can write ên/n−1 in the form:

ên/n−1 = Pn/n−1

N∑
m=n

Ψn,mCT
mD−1

m εεεm (13.10.12)

Separating out the first term and recalling the Kalman gainGn = Pn/n−1CT
nD−1

n , we have:

ên/n−1 = Gnεεεn + Pn/n−1

N∑
m=n+1

Ψn,mCT
mD−1

m εεεm (13.10.13)

On the other hand, we have:

ên+1/n = Pn+1/n

N∑
m=n+1

Ψn+1,mCT
mD−1

m εεεm ⇒
N∑

m=n+1

Ψn+1,mCT
mD−1

m εεεm = P−1
n+1/n ên+1/n

Noting that Ψn,m = FTnΨn+1,m, for m ≥ n+ 1, we obtain:

N∑
m=n+1

Ψn,mCT
mD−1

m εεεm = FTn
N∑

m=n+1

Ψn+1,mCT
mD−1

m εεεm = FTnP
−1
n+1/n ên+1/n

and using this into Eq. (13.10.13), we find:

ên/n−1 = Gnεεεn + Pn/n−1FTnP
−1
n+1/n ên+1/n (13.10.14)

Thus, the required backward recursion for ên/n−1 may be written as:

Ln = Pn/n−1FTnP
−1
n+1/n

ên/n−1 = Gnεεεn + Ln ên+1/n
(13.10.15)

654 13. Kalman Filtering

for n = N,N − 1, . . . ,0. At n = N, Eq. (13.10.12) gives:

êN/N−1 = PN/N−1

N∑
m=N

ΨN,mCT
mD−1

m εεεm = PN/N−1ΨN,NCT
ND

−1
N εεεN = GNεεεN

Therefore, the initialization of the recursion (13.10.15) at n = N is:

êN+1/N = 0

The covariance P̂n/n−1 satisfies a similar recursion. Since εεεn is orthogonal to all the
terms of ên+1/n, which depend on εεεm, m ≥ n + 1, it follows by taking covariances of
both sides of (13.10.15) that:

P̂n/n−1 = GnDnGT
n + LnP̂n+1/nLTn , n = N,N − 1, . . . ,0 (13.10.16)

and initialized with P̂N+1/N = 0.
To summarize, the smoothed estimate x̂n/N is computed by first running the ordi-

nary Kalman filtering algorithm (13.2.2) forward in time for n = 0,1, . . . ,N, saving the
quantities x̂n/n−1,εεεn, along with Pn/n−1, Gn,Dn, Fn = An − KnCn, and then, carrying
out the following backward recursions from n = N down to n = 0,

Initialize: êN+1/N = 0, P̂N+1/N = 0

for n = N,N − 1, . . . ,0, do:

Ln = Pn/n−1FTnP
−1
n+1/n

ên/n−1 = Gnεεεn + Ln ên+1/n

P̂n/n−1 = GnDnGT
n + LnP̂n+1/nLTn

x̂n/N = x̂n/n−1 + ên/n−1

Pn/N = Pn/n−1 − P̂n/n−1

(13.10.17)

We note also that Ln may be written in the form:

Ln = Pn/nAT
nP

−1
n+1/n (13.10.18)

Indeed,

Ln = Pn/n−1FTnP
−1
n+1/n = Pn/n−1(An −KnCn)TP−1

n+1/n

= Pn/n−1
(
AT
n −CT

nD−1
n CnPn/n−1AT

n
)
P−1
n+1/n

= (Pn/n−1 − Pn/n−1CT
nD−1

n CnPn/n−1
)
AT
nP

−1
n+1/n = Pn/nAT

nP
−1
n+1/n

There exist a number of alternative re-formulations of the smoothing problem that
can be derived from algorithm (13.10.17). The so-called Rauch-Tung-Striebel (RTS) ver-
sion [883,884] is obtained by eliminating the variable ên/n−1 in favor of x̂n/N. Applying
the equations for the estimate and estimation error at time n+ 1, we have:

x̂n+1/N = x̂n+1/n + ên+1/n

Pn+1/N = Pn+1/n − P̂n+1/n
⇒

ên+1/n = x̂n+1/N − x̂n+1/n

P̂n+1/n = Pn+1/n − Pn+1/N

13.10. Fixed-Interval Smoothing 655

and substituting these into the recursions in (13.10.17), we obtain:

ên/n−1 = Gnεεεn + Ln(x̂n+1/N − x̂n+1/n)

P̂n/n−1 = GnDnGT
n + Ln(Pn+1/n − Pn+1/N)LTn

x̂n/N = x̂n/n−1 + ên/n−1 = x̂n/n−1 +Gnεεεn + Ln(x̂n+1/N − x̂n+1/n)

Pn/N = Pn/n−1 − P̂n/n−1 = Pn/n−1 −GnDnGT
n + Ln(Pn+1/N − Pn+1/n)LTn

but from the ordinary Kalman filter, we have the filtered estimate and its covariance:

x̂n/n = x̂n/n−1 +Gnεεεn

Pn/n = Pn/n−1 −GnDnGT
n

Hence, the above smoothed estimates can be written in the RTS form:

Ln = Pn/nAT
nP

−1
n+1/n

x̂n/N = x̂n/n + Ln(x̂n+1/N − x̂n+1/n)

Pn/N = Pn/n + Ln(Pn+1/N − Pn+1/n)LTn

(RTS smoothing) (13.10.19)

This is to be iterated from n = N down to n = 0, where the differences in the second
terms are initialized to zero, e.g., at n = N, we have LN(x̂N+1/N − x̂N+1/N)= 0.

A disadvantage of the algorithm (13.10.17) and of the RTS form is that the computa-
tion of Ln requires an additional matrix inversion of the quantity Pn+1/n. Such inversion
is avoided in the so-called Bryson-Frazier (BF) smoothing formulation [881,882]. To de-
rive it, we use Eq. (13.10.12) to define the quantity:

gn = P−1
n/n−1ên/n−1 =

N∑
m=n

Ψn,mCT
mD−1

m εεεm (13.10.20)

It follows from Eq. (13.10.14) and Gn = Pn/n−1CT
nD−1

n , and gn+1 = P−1
n+1/n ên+1/n, that

gn = P−1
n/n−1ên/n−1 = P−1

n/n−1

(
Gnεεεn + Pn/n−1FTnP

−1
n+1/n ên+1/n

)
, or,

gn = CT
nD−1

n εεεn + FTn gn+1 (13.10.21)

with initial value gN+1 = 0, which follows from ên+1/N = 0. From Eq. (13.10.20) we note
that the two terms εεεn and gn+1 in the right-hand-side are orthogonal, and therefore, we
obtain the following recursion for the covariance Γn = E[gngTn]:

Γn = CT
nD−1

n Cn + FTnΓn+1Fn (13.10.22)

where we used CT
nD−1

n E[εεεnεεεTn]D−1
n Cn = CT

nD−1
n DnD−1

n Cn = CT
nD−1

n Cn. The recursion
is to be initialized at ΓN+1 = 0. Noting that,

P̂n/n−1 = E[ên/n−1êTn/n−1]= Pn/n−1E[gngTn]Pn/n−1 = Pn/n−1ΓnPn/n−1

656 13. Kalman Filtering

we obtain the Bryson-Frasier smoothing algorithm:

Initialize: gN+1 = 0, ΓN+1 = 0

for n = N,N − 1, . . . ,0, do:

gn = CT
nD−1

n εεεn + FTn gn+1

Γn = CT
nD−1

n Cn + FTnΓn+1Fn
x̂n/N = x̂n/n−1 + Pn/n−1 gn
Pn/N = Pn/n−1 − Pn/n−1ΓnPn/n−1

(BF smoothing) (13.10.23)

The algorithm requires no new inversions—the quantity D−1
n Cn was computed as

part of the forward Kalman algorithm. The RTS and BF algorithms have also been studied
within the statistical time-series analysis literature [885,886,903,904]. Further details on
smoothing algorithms may be found in [865].

The MATLAB function, ksmooth.m, implements the Kalman smoothing algorithm of
Eq. (13.10.23). It has usage:

[L,Xs,Ps,V] = ksmooth(A,C,Q,R,Y,x0,S0); % Bryson-Frazier smoothing

Its inputs are the state-space model parameters {A,C,Q,R}, the initial values x̄0,
Σ0, and the observations yn, 0 ≤ n ≤ N, arranged into a r×(N + 1) matrix:

Y = [y0,y1, . . . ,yn, . . . ,yN
]

The outputs are the smoothed estimates arranged into the p×(N + 1) matrix:

Xs =
[
x̂0/N, x̂1/N, . . . , x̂n/N, . . . , x̂N/N

]
with corresponding error covariance matrices arranged into the p×p×(N + 1) three-
dimensional array Ps, such that (in MATLAB notation):

Ps(:,:,n+1) = Pn/N , 0 ≤ n ≤ N

The output L is the value of the negative-log-likelihood function calculated from
Eq. (13.12.2). The quantity V is an optional output that stores the matrix Vn+1,n =
E[en+1/N eTn/N] into a p×p×(N + 1) array. This quantity is used in Sec. 13.13 in the
maximum likelihood estimation of the state-space model parameters using the EM algo-
rithm. A convenient expression for it can be derived as follows. We rewrite Eq. (13.10.7)
in its orthogonal decomposition forms:

en/n−1 = en/N + ên/n−1

en+1/n = en+1/N + ên+1/n
(13.10.24)

whereE[en+1/N êTn/n−1]= E[en/N êTn+1/n]= 0, which follow from the fact that en/N, en+1/N
are estimation errors and must be orthogonal to all the observations Y, and therefore,
must also be orthogonal to ên/n−1, ên+1/n because the latter are made up from a subset
of Y. Then, we find for the cross-covariance:

E[en+1/neTn/n−1] = E[en+1/N eTn/N]+E[ên+1/nêTn/n−1] , or,

Vn+1,n = E[en+1/N eTn/N] = E[en+1/neTn/n−1]−E[ên+1/nêTn/n−1]

13.11. Square-Root Algorithms 657

From Eq. (13.10.11) we have, E[en+1/neTn/n−1]= FnPn/n−1, and from Eq. (13.10.20) we
may replace ên+1/n = Pn/n−1gn , to obtain:

Vn+1,n = E[en+1/N eTn/N]= FnPn/n−1 − Pn+1/nE[gn+1gTn]Pn/n−1

From the recursion (13.10.21), gn = CT
nD−1

n εεεn + FTn gn+1, and E[gn+1εεεTn]= 0, we find:

E[gn+1gTn]= E[gn+1(CT
nD−1

n εεεn + FTn gn+1)T]= E[gn+1gTn+1]Fn = Γn+1Fn

It follows then that:

Vn+1,n = E[en+1/N eTn/N] = FnPn/n−1 − Pn+1/nΓn+1FnPn/n−1

= [I − Pn+1/nΓn+1
]
FnPn/n−1

(13.10.25)

13.11 Square-Root Algorithms

In its most basic form the Kalman filtering algorithm reads:

D = CPCT +R

G = PCTD−1, K = AG

Pf = P− PCTD−1CP , x̂f = x̂+G(y−Cx̂)= (I −GC)x̂+Gy

Pnew = APfAT +Q , x̂new = Ax̂f = (A−KC)x̂+Ky

(13.11.1)

where x̂, x̂f , x̂new denote the current prediction, filtered estimate, and next prediction,
x̂n/n−1, x̂n/n, x̂n+1/n, and P,Pf , Pnew denote the corresponding mean-square error co-
variance matrices Pn/n−1, Pn/n, Pn+1/n, and we dropped the time indices to simplify the
notation. The matrices P,Pf , Pnew must remain positive semi-definite during the itera-
tion of the algorithm. Because of the subtraction required to calculate Pf , it is possible
that rounding errors may destroy its positivity. The “square-root” formulations operate
on the square-root factors of the covariance matrices, and thus, guarantee the positivity
at each iteration step.

A positive semi-definite symmetric matrix P can always be written as the product of
a lower triangular square-root factor S and its transpose ST:

P = SST (13.11.2)

For example in MATLAB, one may use the built-in Cholesky factorization function
chol, if P is strictly positive definite, with S constructed as:

S = chol(P)’; % S = lower triangular such that P = S*S’

If P is semi-definite with some positive and some zero eigenvalues, then one can
apply the QR factorization to the square root of P obtained from its eigenvalue or SVD
decomposition, with the following MATLAB construction:

[v,s] = eig(P); % v = eigenvector matrix, s = eigenvalues

P_sqrt = v*real(sqrt(s))*v’; % eigenvalues s are non-negative

[q,r] = qr(P_sqrt); % QR-factorization, P_sqrt = q*r

S = r’; % S = lower triangular such that P = S*S’

658 13. Kalman Filtering

Example 13.11.1: For the following positive-definite case, we find:

P =
⎡
⎢⎣ 6 5 4

5 6 4
4 4 3

⎤
⎥⎦ =

⎡
⎢⎣ 2.4495 0 0

2.0412 1.3540 0
1.6330 0.4924 0.3015

⎤
⎥⎦
⎡
⎢⎣ 2.4495 0 0

2.0412 1.3540 0
1.6330 0.4924 0.3015

⎤
⎥⎦
T

This P has full rank as the product of two rank-3 matrices:

P =
⎡
⎢⎣ 6 5 4

5 6 4
4 4 3

⎤
⎥⎦ =

⎡
⎢⎣ 2 −1 1

1 −2 1
1 −1 1

⎤
⎥⎦
⎡
⎢⎣ 2 −1 1

1 −2 1
1 −1 1

⎤
⎥⎦
T

Similarly, for the following semi-definite P, we have:

P =
⎡
⎢⎣ 5 4 3

4 5 3
3 3 2

⎤
⎥⎦ =

⎡
⎢⎣ 2.2361 0 0

1.7889 1.3416 0
1.3416 0.4472 0

⎤
⎥⎦
⎡
⎢⎣ 2.2361 0 0

1.7889 1.3416 0
1.3416 0.4472 0

⎤
⎥⎦
T

This P has rank two as the product of the rank-2 matrices:

P =
⎡
⎢⎣ 5 4 3

4 5 3
3 3 2

⎤
⎥⎦ =

⎡
⎢⎣ 2 1

1 2
1 1

⎤
⎥⎦
[

2 1 1
1 2 1

]

and has eigenvalues {0,1,11}. ��

The Joseph forms of the covariance updating equations promote the numerical sta-
bility of the algorithm because they consist of the sum of positive semidefinite terms
(provided of course that P is already positive semidefinite), but require twice as many
operations as the conventional forms:

Pf = (I −GC)P(I −GC)T+GRGT

Pnew = APfAT +Q = (A−KC)P(A−KC)T+KRKT +Q
(13.11.3)

Let R̄, Q̄ be lower-triangular square root factors for R,Q, so that R = R̄R̄T and
Q = Q̄Q̄T, and substitute the factorizations P = SST and Pf = SfSTf in Eq. (13.11.3):

SfSTf = (I −GC)SST(I −GC)T+GR̄R̄TG = [(I −GC)S,GR̄
][ST(I −GC)T

R̄TGT

]

Then, Sf can be obtained from the upper-triangular factor resulting by applying the
QR-factorization to the (p+ r)×p matrix:[

ST(I −GC)T

R̄TGT

]
= U

[
STf
0

]
, STf = upper-triangular

where U is a (p + r)×(p + r) orthogonal matrix. The lower-triangular version of this
relationship reads: [

(I −GC)S, GR̄
] = [Sf ,0]UT (13.11.4)

13.11. Square-Root Algorithms 659

where the Sf is lower-triangular and the dimensions of the matrices are:[
(I −GC)S︸ ︷︷ ︸

p×p
, GR̄︸︷︷︸
p×r

] = [Sf︸︷︷︸
p×p

, 0︸︷︷︸
p×r

]UT

Since UTU = I, we verify:

[
(I −GC)S,GR̄

][ST(I −GC)T

R̄TGT

]
= [Sf ,0]UTU

[
STf
0

]
= SfSTf

For the time-update step, we note that,

Pnew = SnewSTnew = APfAT +Q = ASfSTf + Q̄Q̄T = [ASf , Q̄]
[
STf A

T

Q̄T

]

so that we may obtain Snew from the lower-triangular version of the QR-algorithm applied
to the p×(2p) matrix: [

ASf , Q̄
] = [Snew, 0]UT (13.11.5)

with another (2p)×(2p) orthogonal matrix U. Combining Eqs. (13.11.4) and (13.11.5),
we summarize the measurement and time updating algorithm that propagates the square-
root lower-triangular factors S, Sf , Snew:

P = SST , D = CPCT +R , G = PCTD−1

[
(I −GC)S, GR̄

] = [Sf ,0]UT

[
ASf , Q̄

] = [Snew, 0]UT

The intermediate step of computingSf can be avoided by applying the lower-triangular
version of the QR-algorithm to the larger p×(2p+ r) matrix:[

(A−KC)S, KR̄, Q̄
] = [Snew, 0, 0]UT , Snew = lower-triangular (13.11.6)

which is equivalent to the second Joseph form in Eq. (13.11.3):

(A−KC)SST(A−KC)T+KR̄R̄TKT + Q̄Q̄T = [(A−KC)S, KR̄, Q̄
]⎡⎢⎣ S

T(A−KC)T

R̄TKT

Q̄T

⎤
⎥⎦

= [Snew, 0, 0]UTU

⎡
⎢⎣ S

T
new

0
0

⎤
⎥⎦ = SnewSTnew

Restoring the time-indices, we obtain the following square-root algorithms based on
the Joseph forms. Given Sn/n−1, calculate:

Pn/n−1 = Sn/n−1STn/n−1

Dn = CnPn/n−1CT
n +Rn , Gn = Pn/n−1CT

nD−1
n[

(I −GnCn)Sn/n−1, GnR̄n
] = [Sn/n ,0]UT

[
AnSn/n, Q̄n

] = [Sn+1/n, 0]UT

(13.11.7)

660 13. Kalman Filtering

or, going directly to Sn+1/n:

[
(An −KnCn)Sn/n−1, KnR̄n, Q̄n

] = [Sn+1/n, 0, 0]UT (13.11.8)

Example 13.11.2: Consider a system with constant model parameters:

A =
[

0.5 0.1
0.2 0.4

]
, C =

[
1 1
0 1

]
, Q =

[
1 2
2 5

]
, R =

[
9 6
6 8

]

and lower-triangular square-root factors Q̄, R̄ such that Q = Q̄Q̄T and R = R̄R̄T :

Q̄ =
[

1 0
2 1

]
, R̄ =

[
3 0
2 2

]

and initial square-root factor S and covariance matrix P:

S =
[

1.3184 0
1.8820 1.4731

]
, P = SST =

[
1.7383 2.4813
2.4813 5.7118

]

Then, we calculate D and G:

D = CPCT +R =
[

21.4126 14.1931
14.1931 13.7118

]
, G = PCTD−1 =

[
0.2457 −0.0733
0.3393 0.0653

]

and the covariance matrices Pf , Pnew from the conventional algorithm:

Pf = P−GDGT =
[

0.8836 0.8874
0.8874 2.5585

]
, Pnew = APfAT +Q =

[
1.3352 2.3859
2.3859 5.5867

]

Next, we form the matrix X ≡ [(I−GC)S, GR̄] and apply the QR-algorithm to its transpose
to get the factorization:

X = [(I −GC)S, GR̄
] =

[
0.6702 −0.2539 0.5903 −0.1467
0.6730 0.8770 1.1486 0.1306

]

=
[

0.9400 0 0 0
0.9440 1.2913 0 0

]
UT = [Sf , 0]UT ≡ LUT

U =

⎡
⎢⎢⎢⎣

0.7130 −0.0000 −0.3139 −0.6270
−0.2701 0.8766 0.1350 −0.3747

0.6280 0.4304 0.1856 0.6212
−0.1560 0.2152 −0.9213 0.2839

⎤
⎥⎥⎥⎦

This was obtained from the MATLAB code:

[U,r] = qr(X’); L = r’;

Thus, we determine Sf , and verify that Pf = SfSTf is the same as above:

Sf =
[

0.9400 0
0.9440 1.2913

]
, Pf = SfSTf =

[
0.8836 0.8874
0.8874 2.5585

]

13.11. Square-Root Algorithms 661

Next, with this Sf , we calculate the matrix X = [ASf , Q̄] and apply the QR-factorization
to its transpose to get:

X = [ASf , Q̄] =
[

0.5644 0.1291 1 0
0.5656 0.5165 2 1

]

=
[

1.1555 0 0 0
2.0648 1.1503 0 0

]
UT = [Snew, 0]≡ LUT

U =

⎡
⎢⎢⎢⎣

0.4884 −0.3851 0.5883 0.5168
0.1117 0.2484 −0.5947 0.7564
0.8654 0.1852 −0.2552 −0.3894
0.0000 0.8693 0.4849 0.0957

⎤
⎥⎥⎥⎦

with L,U obtained from the same MATLAB code as above. Thus, we identify,

Snew =
[

1.1555 0
2.0648 1.1503

]
⇒ Pnew = SnewSTnew =

[
1.3352 2.3859
2.3859 5.5867

]

For the direct method of Eq. (13.11.8), we calculate the gain K = AG,

K =
[

0.1568 −0.0301
0.1849 0.0115

]

and the matrix:

[(A−KC)S, KR̄, Q̄] =
[

0.4024 −0.0392 0.4100 −0.0603 1 0
0.4033 0.3000 0.5775 0.0229 2 1

]

=
[

1.1555 0 0 0 0 0
2.0648 1.1503 0 0 0 0

]
UT = [Snew, 0,0]UT

which generates the same Snew as the two-step procedure. ��

Using the Joseph forms in conjunction with the square root factorizations provides,
in effect, double protection at the expense of increased computation. There exist a vari-
ety of other square-root algorithms [863,865,888–896], including some for the smooth-
ing problem. One of the standard ones [889] employs the triangularization:[

R̄ CS
0 S

]
=
[

D̄ 0
PCTD̄−T Sf

]
UT (13.11.9)

where D̄ is a lower-triangular square root factor of D = CPCT +R = D̄D̄T. Its correct-
ness can be verified by noting that Pf = P− PCTD−1CP and by forming the products:

[
R̄ CS
0 S

][
R̄ CS
0 S

]T
=
[

D CP
PCT P

]

[
D̄ 0

PCTD̄−T Sf

]
UTU

[
D̄ 0

PCTD̄−T Sf

]T
=
[

D CP
PCT Pf + PCTD−1CP

]

The triangularization operation produces D̄, Sf , and PCTD̄−T, the latter being part
of the required Kalman gain G = PCTD−1 = [PCTD̄−T

]
D̄−1, where the division by the

662 13. Kalman Filtering

lower-triangular matrix D̄ is an efficient operation. Therefore, the computation of the
filtered estimate can also be done efficiently:

x̂f = x̂+G(y−Cx̂)= x̂+ [PCTD̄−T
]
D̄−1(y−Cx̂)

A direct-updating version [891] is possible in this case too by the triangularization
of the following matrix:[

R̄ CS 0
0 AS Q̄

]
=
[

D̄ 0 0
APCTD̄−T Snew 0

]
UT

Its correctness follows from Pnew = SnewSTnew = APAT −APCTD−1CPAT +Q and
by comparing the products:

[
R̄ CS 0
0 AS Q̄

]⎡⎢⎣ R̄T 0
STCT STAT

0 Q̄T

⎤
⎥⎦ =

[
D CPAT

APCT APAT +Q

]

[
D̄ 0 0

APCTD̄−T Snew 0

]
UTU

⎡
⎢⎣ D̄

T D̄−1CPAT

0 STnew

0 0

⎤
⎥⎦ =

[
D CPAT

APCT Pnew +APCTD−1CPAT

]

This factorization allows also the efficient computation of the predicted estimate:

x̂new = Ax̂+ [APCTD̄−T
]
D̄−1(y−Cx̂)

Restoring the time indices, we summarize the two-step algorithm for the computa-
tion of the square-root factors of the covariances and the estimates:

[
R̄n CnSn/n−1

0 Sn/n−1

]
=
[

D̄n 0
Pn/n−1CT

nD̄−Tn Sn/n

]
UT

x̂n/n = x̂n/n−1 +
[
Pn/n−1CT

nD̄−Tn
]
D̄−1
n (yn −Cnx̂n/n−1)[

AnSn/n, Q̄n
] = [Sn+1/n, 0]UT

x̂n+1/n = An x̂n/n

(13.11.10)

and for the direct method:

[
R̄n CnSn/n−1 0
0 AnSn Q̄n

]
=
[

D̄n 0 0
AnPn/n−1CT

nD̄−Tn Sn+1/n 0

]
UT

x̂n+1/n = Anx̂n/n−1 +
[
AnPn/n−1CT

nD̄−Tn
]
D̄−1
n (yn −Cnx̂n/n−1)

(13.11.11)

13.12. Maximum Likelihood Parameter Estimation 663

Example 13.11.3: For the model defined in Example 13.11.2 and the given starting S, we carry
out the triangularization of the following matrix using the QR-factorization:

[
R̄ CS
0 S

]
=

⎡
⎢⎢⎢⎣

3 0 3.2004 1.4731
2 2 1.8820 1.4731

0 0 1.3184 0
0 0 1.8820 1.4731

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

4.6274 0 0 0
3.0672 2.0746 0 0

0.9119 −0.1521 0.9400 0
1.7706 0.1355 0.9440 1.2913

⎤
⎥⎥⎥⎦UT =

[
D̄ 0

PCTD̄−T Sf

]
UT

from which we extract:

D̄ =
[

4.6274 0
3.0672 2.0746

]
, PCTD̄−T =

[
0.9119 −0.1521
1.7706 0.1355

]
, Sf =

[
0.9400 0
0.9440 1.2913

]

Using the quantities D,P computed in Example 13.11.2, we verify the factorization:

D =
[

21.4126 14.1931
14.1931 13.7118

]
=
[

4.6274 0
3.0672 2.0746

][
4.6274 0
3.0672 2.0746

]T
= D̄D̄T

Similarly, we may verify the correctness of PCTD̄−T and Sf . Next, we illustrate the direct
method. We form the following matrix and triangularize it by applying the QR-factorization
to its transpose:

[
R̄ CS 0
0 AS Q̄

]
=

⎡
⎢⎢⎢⎣

3 0 3.2004 1.4731 0 0
2 2 1.8820 1.4731 0 0

0 0 0.8474 0.1473 1 0
0 0 1.0165 0.5892 2 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

4.6274 0 0 0 0 0
3.0672 2.0746 0 0 0 0

0.6330 −0.0625 1.1555 0 0 0
0.8906 0.0238 2.0648 1.1503 0 0

⎤
⎥⎥⎥⎦UT =

[
D̄ 0 0

APCTD̄−T Snew 0

]
UT

and we extract the same D̄ as above and the same Snew as in Example 13.11.2. ��

13.12 Maximum Likelihood Parameter Estimation

One issue in applying the Kalman filter is the determination of the state-space model
parameters {A,C,Q,R} and the initial values {x̄0, Σ0}. If the dynamics is known, as for
example in α−β radar tracking, then {A,C} are known, but not necessarily the noise
covariances {Q,R} or the initial values. If the dynamics is not known, as for example
in the so-called unobserved components models for microeconomic applications, then
all the parameters must be estimated.

Maximum likelihood (ML) is a commonly used method for estimating the model pa-
rameters. Assuming a time-invariant model, then given a set of N + 1 observations,
Y = {y0,y1, . . . ,yN}, one determines the parameters {A,C,Q,R, x̄0, Σ0} that maximize

664 13. Kalman Filtering

the joint probability density p(y0,y1, . . . ,yN) or p(Y) for short. Equivalently, one may
minimize the negative of the log-likelihood function:

L(Y)= − logp(Y)= min (13.12.1)

This problem becomes tractable under the gaussian assumption for the state-space
model. The Kalman filtering algorithm generates the equivalent orthogonalized obser-
vation basis of innovations Y = {y0,y1, . . . ,yN} = {εεε0,εεε1, . . . ,εεεN}, which are mutually
uncorrelated and gaussian, and hence, mutually independent. Therefore, the joint den-
sity factors into the marginal densities:

p(y0,y1, . . . ,yN)= p(εεε0,εεε1, . . . ,εεεN)=
N∏
n=0

p(εεεn)=
N∏
n=0

exp
(−εεεTnD−1

n εεεn/2
)

(2π)r/2(detDn)1/2

where r = dim(yn) and Dn is the covariance of εεεn generated by the Kalman filtering
algorithm. Thus, the log-likelihood function can be expressed up to a constant by [897]:

L(Y)= − logp(Y)= 1

2

N∑
n=0

[
log(detDn)+εεεTnD−1

n εεεn
]
+ const. (13.12.2)

Let θ denote all or a subset of the model parameters {A,C,Q,R, x̄0, Σ0} that one
wishes to estimate. The dependence of L(Y) on θ will be indicated explicitly by Lθ(Y).

There exist several methods [897–911] of minimizing Lθ(Y), some requiring only
the evaluation of the function Lθ(Y) for various values θ, some requiring also the first,
and some the second, derivatives of Lθ(Y) with respect to θ. The EM algorithm is an
alternative, iterative, minimization method and we discuss it in the next section.

The MATLAB function kfilt can evaluate Lθ(Y) at any θ, and thus, it can be used,
in conjunction with the built-in function fminsearch of MATLAB’s optimization toolbox
to perform the minimization. This function uses the Nelder-Mead simplex direct search
method in which the derivatives of Lθ are not required. We illustrate the approach with
two examples.

Example 13.12.1: The Nile River data set has been used as a benchmark in a variety of statistical
methods [912]. It represents the annual volume of the Nile River (discharged at Aswan, in
units of 108 m3) from 1871 to 1970. It is depicted in the left figure below (dotted line of
observations).

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14
filtered and smoothed estimates

n, time samples

y(
n

)
/ 1

00

 filtered
 smoothed
 observations

0 10 20 30 40 50 60 70 80 90 100
0

3

6

9

12

15
filtered and smoothed mean−square errors

n, time samples

P
 /

10
00

 P(n/n)
 P(n/N)

13.12. Maximum Likelihood Parameter Estimation 665

Following [903], we model it as a local-level (random walk in noise) model:

xn+1 = xn +wn

yn = xn + vn

with noise variances Q = σ2
w and R = σ2

v to be estimated, so that the parameter vector is
θ = [σ2

w,σ2
v]T . The MATLAB code below defines the function Lθ with the help of kfilt,

with the Kalman filter initialized to the arbitrary values x̄0 = 0 and Σ0 = 107. It then calls
fminsearch with the arbitrary initial values of the parameters θ0 = [1,1]T , and returns
the “optimum” values:

θ =
[
σ2
w

σ2
v

]
=
[

1468.5
15099.7

]

y = [1120 1160 963 1210 1160 1160 813 1230 1370 1140 ...
995 935 1110 994 1020 960 1180 799 958 1140 ...
1100 1210 1150 1250 1260 1220 1030 1100 774 840 ...
874 694 940 833 701 916 692 1020 1050 969 ...
831 726 456 824 702 1120 1100 832 764 821 ...
768 845 864 862 698 845 744 796 1040 759 ...
781 865 845 944 984 897 822 1010 771 676 ...
649 846 812 742 801 1040 860 874 848 890 ...
744 749 838 1050 918 986 797 923 975 815 ...
1020 906 901 1170 912 746 919 718 714 740];

A = 1; C = 1; x0 = 0; S0 = 1e7; % fixed model parameters

L = @(th) kfilt(A, C, th(1), th(2), y, x0, S0); % likelihood function

th0 = [1; 1]; % initialize search
th = fminsearch(L, th0); % Nelder-Mead search

Q = th(1); R = th(2); % estimated Q,R

[Lmin,x,P,xf,Pf] = kfilt(A,C,Q,R,y,x0,S0); % run Kalman filter
[Lmin,xs,Ps] = ksmooth(A,C,Q,R,y,x0,S0); % run Kalman smoother

t = 0:length(y)-1;
figure; plot(t,xf/100,’--’,t,xs/100,’-’ ,t,y/100,’k:’);
figure; plot(t,Pf(:)/1e3,’--’,t,Ps(:)/1e3,’-’);

The Kalman filter and smoother are then run with the optimum parameter values for Q,R,
and the resulting filtered and smoothed estimates, x̂n/n and x̂n/N are plotted on the left
figure. The right figure plots the corresponding mean-square errors, Pn/n and Pn/N . We
note that Pn/N is smaller than Pn/n since it uses all the observations. It rises up at the end
to agree with the filtered error, that is, Pn/n = Pn/N , when n = N. ��

Example 13.12.2: Consider the α–β tracking model discussed in Example 13.7.3 and defined
by the state-space model:[

xn+1

ẋn+1

]
=
[

1 T
0 1

][
xn
ẋn

]
+
[
T2/2
T

]
an , yn = [1,0]

[
xn
ẋn

]
+ vn

with model matrices:

666 13. Kalman Filtering

A =
[

1 T
0 1

]
, C = [1,0] , Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a ≡ QTσ2

a , R = σ2
v

The model is simulated with the following values of the parameters T = 1, σa = 0.02,
σv = 2, and generating N + 1 noisy position measurements, yn, 0 ≤ n ≤ N, where
N = 300, starting with the initial state-vector x̄0 = [0, 0.1]T . The generated observations
yn are then used to estimate the model parameters θ = [σa,σv]T starting from the initial
values θ0 = [0,0]T . The likelihood function is defined as in the previous example, with
the Kalman filter run with the initial values:

x̄0 =
[

0
0.1

]
, Σ0 =

[
0.1 0
0 0.1

]

The resulting estimated parameters returned from mfinsearch, and the corresponding
estimated covariance matrices Q,R, are:

θ =
[
σa

σv

]
=
[
−0.0199

2.0237

]
⇒ Q = QTσ2

a , R = σ2
v

The absolute value |σa| is close to the true value of 0.02. The sign does not matter since
Q,R depend on the squares of σa,σv.

The Kalman filter and smoother are then run with the estimated Q,R and the resulting
filtered and smoothed estimates are shown in the figure below.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
filtered position estimate

n, time samples

 observations
 estimate

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
smoothed position estimate

n, time samples

 observations
 estimate

The MATLAB code used to generate these graphs is as follows:

N = 301; T = 1; Tmax = (N-1)*T; t = 0:T:Tmax;

sa = 0.02; sv = 2;
A = [1, T; 0, 1]; C = [1, 0]; % model parameters
QT = [T^4/4, T^3/2; T^3/2, T^2];
Q = QT*sa^2; R = sv^2;

seed = 100; randn(’state’,seed); % generate noise inputs
v = sv * randn(1,length(t));
w = [T^2/2; T] * sa * randn(1,length(t));

13.13. Parameter Estimation with the EM Algorithm 667

x0 = [0; 0.1]; S0 = 0.1 * eye(2);

x(:,1) = x0;
for n=1:N-1 % generate model signals

x(:,n+1) = A*x(:,n) + w(n);
y(n) = C*x(:,n) + v(n);

end
y(N) = C*x(:,N) + v(N);

L = @(th) kfilt(A,C, QT * th(1)^2, th(2)^2, y,x0,S0); % likelihood

th0 = [0, 0]’; % initialize search
th = fminsearch(L, th0); % Nelder-Mead search

Q = QT * th(1)^2; R = th(2)^2; % estimated Q,R

[Lmin,X,P,Xf,Pf] = kfilt(A, C, Q, R, y, x0, S0); % run Kalman filter
[Lmin,Xs,Ps] = ksmooth(A, C, Q, R, y, x0, S0); % run Kalman smoother

figure; plot(t,y,’:’, t,Xf(1,:),’-’); % plot position only
figure; plot(t,y,’:’, t,Xs(1,:),’-’);

13.13 Parameter Estimation with the EM Algorithm

The application of the Expectation-Maximization (EM) algorithm [905,906] to the esti-
mation of the state-space model parameters has been discussed in [909–911].

We begin by developing a solution for the model parameters {A,C,Q,R, x̄0, Σ0}
in terms of the signals xn,yn of the state-space model, then convert that into a com-
putable iterative algorithm, and then show that it is equivalent to the EM algorithm. The
approach allows us to handle also the case of a noise covariance matrix Q of less than
full rank. We start with a standard time-invariant state-space model iterated over the
time interval 0 ≤ n ≤ N:

xn+1 = Axn +wn
yn = Cxn + vn

(13.13.1)

with start-up value x0 with mean and covariance x̄0, Σ0. The noise covariances are:

E[wnwT
i]= Qδni , E[vnvTi]= Rδni , E[wnvTi]= 0

E[wnxT0]= 0 , E[vnxT0]= 0
(13.13.2)

These assumptions imply that E[vnxTn]= 0, which leads to

E[vnxTn]= E
[
(yn −Cxn)xTn

] = 0 ⇒ E[ynxTn]= CE[xnxTn]

and using this result, we obtain:

R = E[vnvTn]= E
[
(yn −Cxn)(yn −Cxn)T

] =
= E[ynyTn]−CE[xnyTn]−E[ynxTn]CT +CE[xnxTn]CT = E[ynyTn]−CE[xnyTn]

Similarly, using E[wnxTn]= 0, we find:

668 13. Kalman Filtering

E[wnxTn]= E
[
(xn+1 −Axn)xTn

] = 0 ⇒ E[xn+1xTn]= AE[xnxTn]

Q = E[wnwT
n]= E

[
(xn+1 −Axn)(xn+1 −Axn)T

] =
= E[xn+1xTn+1]−AE[xnxTn+1]−E[xn+1xTn]AT +AE[xnxTn]AT

= E[xn+1xTn+1]−AE[xnxTn+1]

We collect the above together,

E[ynxTn]= CE[xnxTn]

R = E[ynyTn]−CE[xnyTn]−E[ynxTn]CT +CE[xnxTn]CT =
= E[ynyTn]−CE[xnyTn]

E[xn+1xTn]= AE[xnxTn]

Q = E[xn+1xTn+1]−AE[xnxTn+1]−E[xn+1xTn]AT +AE[xnxTn]AT =
= E[xn+1xTn+1]−AE[xnxTn+1]

(13.13.3)

Since these are valid for each n in the interval 0 ≤ n ≤ N, they will also be valid if
we form the average sums over the same interval, for example,

N∑
n=0

E[ynxTn]= C
N∑
n=0

E[xnxTn] and
N−1∑
n=0

E[xn+1xTn]= A
N−1∑
n=0

E[xnxTn]

This leads us to define the average quantities:

Uxx = 1

N + 1

N∑
n=0

E[xnxTn]

Uyx = 1

N + 1

N∑
n=0

E[ynxTn]

Uyy = 1

N + 1

N∑
n=0

E[ynyTn]

Vxx = 1

N

N−1∑
n=0

E[xnxTn]

Vx1x =
1

N

N−1∑
n=0

E[xn+1xTn]

Vx1x1 =
1

N

N−1∑
n=0

E[xn+1xTn+1]

(13.13.4)

with Uxy = UT
yx and Vxx1 = VT

x1x. Then, the summed form of Eqs. (13.13.3) read:

Uyx = CUxx

R = Uyy −CUxy −UyxCT +CUxxCT = Uyy −CUxy

Vx1x = AVxx

Q = Vx1x1 −AVxx1 −Vx1xA
T +AVxxAT = Vx1x1 −AVxx1

which may be solved for the model parameters:

13.13. Parameter Estimation with the EM Algorithm 669

C = UyxU−1
xx

R = Uyy −CUxy

A = Vx1xV
−1
xx

Q = Vx1x1 −AVxx1

(13.13.5)

If A,C are known, then one can compute R,Q from the alternative quadratic expres-
sions, which guarantee the (semi) positive-definiteness property of R,Q:

R = Uyy −CUxy −UyxCT +CUxxCT

Q = Vx1x1 −AVxx1 −Vx1xA
T +AVxxAT

(13.13.6)

The above can be turned into an iterative estimation algorithm as follows. We start
with the set of observations, Y = {y0,y1, . . . ,yN}, and an initial choice for the model
parameters, say,

θold = {Aold, Cold,Qold, Rold, x̄old
0 , Σold

0

}
The Kalman smoother is run on the data Y using this set of model parameters, and the
estimated smoothed state vectors x̂n/N and corresponding mean-square error covari-
ances are computed. The expectation values in Eq. (13.13.4) are then replaced by the
conditional ones based on Y and θold, that is,

Ûxx = 1

N + 1

N∑
n=0

E[xnxTn |Y]

Ûyx = 1

N + 1

N∑
n=0

E[ynxTn |Y]

Ûyy = 1

N + 1

N∑
n=0

E[ynyTn |Y]

V̂xx = 1

N

N−1∑
n=0

E[xnxTn |Y]

V̂x1x =
1

N

N−1∑
n=0

E[xn+1xTn |Y]

V̂x1x1 =
1

N

N−1∑
n=0

E[xn+1xTn+1 |Y]

(13.13.7)

Using the orthogonal decomposition for the smoothed states, we have:

xn = x̂n/N + en/N , E[x̂n/NeTn/N]= 0

xn+1 = x̂n+1/N + en+1/N , E[x̂n+1/NeTn+1/N]= 0 , E[x̂n/NeTn+1/N]= 0

which give:
E[xnxTn]= E[x̂n/N x̂Tn/N]+E[en/N eTn/N]

E[xn+1xTn]= E[x̂n+1/N x̂Tn/N]+E[en+1/N eTn/N]

E[xn+1xTn+1]= E[x̂n+1/N x̂Tn+1/N]+E[en+1/N eTn+1/N]

Replacing these by the conditional expectations, we obtain:

670 13. Kalman Filtering

E[xnxTn |Y]= E[x̂n/N x̂Tn/N |Y]+E[en/N eTn/N |Y]= x̂n/N x̂Tn/N + Pn/N

E[xn+1xTn |Y]= E[x̂n+1/N x̂Tn/N |Y]+E[en+1/N eTn/N |Y]= x̂n+1/N x̂Tn/N +Vn+1,n

E[xn+1xTn+1 |Y]= E[x̂n+1/N x̂Tn+1/N |Y]+E[en+1/N eTn+1/N |Y]= x̂n+1/N x̂Tn+1/N + Pn+1/N

where we set Vn+1,n = E[en+1/N eTn/N |Y], given by Eq. (13.10.25). Similarly, we have:

E[ynxTn |Y]= ynx̂n/N

E[ynyTn |Y]= ynyTn

Thus, we may replace Eqs. (13.13.4) by their estimated versions based on Y and θold:

Ûxx = 1

N + 1

N∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

]

Ûyx = 1

N + 1

N∑
n=0

ynx̂Tn/N

Ûyy = 1

N + 1

N∑
n=0

ynyTn

V̂xx = 1

N

N−1∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

]

V̂x1x =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn/N +Vn+1,n

]

V̂x1x1 =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn+1/N + Pn+1/N

]
(13.13.8)

Eqs. (13.13.5) can be used now to compute a new set of model parameters:

Cnew = ÛyxÛ−1
xx

Rnew = Ûyy −Cnew Ûxy

Anew = V̂x1xV̂
−1
xx

Qnew = V̂x1x1 −Anew V̂xx1

(13.13.9)

or, if A,C are known, only Q,R are updated:

Rnew = Ûyy −CÛxy − ÛyxCT +CÛxxCT

Qnew = V̂x1x1 −AV̂xx1 − V̂x1xA
T +AV̂xxAT

(13.13.10)

The initial values x̄0, Σ0 are also estimated in the same way:

x̄0 = E[x0]

Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]
⇒

x̄new
0 = E[x0 |Y]= x̂0/N

Σ̂new
0 = E[(x0 − x̄0)(x0 − x̄0)T |Y]= P0/N , or,

x̄new
0 = x̂0/N , Σ̂new

0 = P0/N (13.13.11)

13.13. Parameter Estimation with the EM Algorithm 671

Thus, Eqs. (13.13.9)–(13.13.11) define a new set of model parameters:

θnew = {Anew, Cnew,Qnew, Rnew, x̄new
0 , Σnew

0

}
and the iteration can be repeated until convergence by monitoring the value of the like-
lihood function Lθ(Y). Of course, all or any subset of the model parameters θ may be
iterated through this algorithm.

The outputs Xs, Ps, V of the MATLAB function ksmooth and can be used to efficiently
calculate the quantities of Eq. (13.13.8). For example, we have in MATLAB notation:

Ûxx = 1

N + 1

N∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

] = 1

N + 1

(
Xs ∗X′s + sum(Ps,3)

)

Ûyx = 1

N + 1

N∑
n=0

ynx̂Tn/N =
1

N + 1

(
Y ∗X′s

)

Ûyy = 1

N + 1

N∑
n=0

ynyTn =
1

N + 1

(
Y ∗Y′

)

V̂xx = 1

N

N−1∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

] = 1

N
(
Xs0 ∗X′s0 + sum(Ps0,3)

)

V̂x1x =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn/N +Vn+1,n

] = 1

N
(
Xs1 ∗X′s0 + sum(V0,3)

)

V̂x1x1 =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn+1/N + Pn+1/N

] = 1

N
(
Xs1 ∗X′s1 + sum(Ps1,3)

)

where we used the definitions:

Y = [y0,y1, . . . ,yN
]

Xs =
[
x̂0/N, x̂1/N, . . . , x̂N−1/N, x̂N/N

] = [Xs0, x̂N/N
] = [x̂0/N, Xs1

]
Xs0 =

[
x̂0/N, x̂1/N, . . . , x̂N−1/N

]
Xs1 =

[
x̂1/N, . . . , x̂N−1/N, x̂N/N

]
(13.13.12)

and Ps0, Ps1, V0 are sub-arrays of Ps and V matching the indexing of (13.13.12).

Example 13.13.1: We apply the estimation algorithm to the Nile River data of Example 13.12.1
by keeping A,C fixed, and only estimating Q,R, x̄0, Σ0. We allow 300 iterations, with
starting values chosen to be the same as those of Example 13.12.1. The following MATLAB
code illustrates the implementation of the algorithm:

K = 300; N = length(y)-1; % use same y as in Example 15.12.1

x0 = 0; S0 = 1e7; Q = 1; R = 1; % initial values for the EM iteration

672 13. Kalman Filtering

for i=1:K, % EM iteration
[L(i),Xs,Ps,V] = ksmooth(A,C,Q,R,y,x0,S0); % E-step of the algorithm

Uxx = (Xs*Xs’ + sum(Ps,3))/(N+1); % construct U,V matrices
Uyx = (y*Xs’)/(N+1);
Uyy = (y*y’)/(N+1);
Vxx = (Xs(:,1:end-1)*Xs(:,1:end-1)’ + sum(Ps(:,:,1:end-1),3))/N;
V1x = (Xs(:,2:end)*Xs(:,1:end-1)’ + sum(V(:,:,1:end-1),3))/N;
V11 = (Xs(:,2:end)*Xs(:,2:end)’ + sum(Ps(:,:,2:end),3))/N;

R = Uyy - C*Uyx’ - Uyx*C’ + C*Uxx*C’; % M-step of the algorithm
Q = V11 - A*V1x’ - V1x*A’ + A*Vxx*A’;

% x0 = Xs(:,1); % uncomment to also estimate x0,S0
% S0 = Ps(:,:,1);

end

k = 0:K-1; figure; plot(k,L); % plot likelihood function

0 50 100 150 200 250 300
540

545

550

555

560

iterations

likelihood function

0 50 100 150 200 250 300
540

545

550

555

560

iterations

likelihood function

The left graph shows the negative-log-likelihood function of Eq. (13.12.2) plotted versus
iteration number for the case when only Q,R are being estimated, with A,C, x̄0, Σ0 held
fixed. The right graphs shows the case when Q,R, x̄0, Σ0 are estimated. The estimated
quantities at the last iteration are:

Q = 1468.5 , R = 15099.0

Q = 1294.7 , R = 15252.4 , x̄0 = 1118.4 , Σ0 = 0.6

The results for the first case are to be compared with those of Example 13.12.1, that is,
Q = 1468.5, R = 15099.7. The second case is different because four model parameters
are being iterated, which lead to a smaller value of the likelihood function.

We note that in both cases, the likelihood function converges very fast initially, and then
reaches a slowly-decreasing plateau. One could perhaps stop the iteration as soon the
plateau is reached and use the slightly suboptimal estimates. ��

13.13. Parameter Estimation with the EM Algorithm 673

The above estimation method can be extended to handle the case of a rank-defective
noise covariance matrix Q. This arises for the following type of state-space model:

xn+1 = Axn + Bwn
yn = Cxn + vn

(13.13.13)

where xn is p-dimensional and B is a p×q matrix with q < p, assumed to have full rank
(i.e., q), and wn is a q-dimensional white-noise signal with non-singular q×q covariance
matrix Qw. The corresponding Q that appears in the Kalman filtering algorithm is then
Q = BQwBT, and has rank q.

Assuming a known B, the iterative algorithm can be modified to estimate Qw. Given
an initial Qold

w , we calculate Qold = BQold
w BT, and then carry out the usual iteration step

to determine Qnew from Eq. (13.13.9) or (13.13.10). To find Qnew
w , we solve the equation

BQnew
w BT = Qnew using the pseudoinverse of B, that is, B+ = (BTB)−1BT,

Qnew
w = B+QnewB+T (13.13.14)

Example 13.13.2: Consider the α–β tracking model discussed in Example 13.12.2 and defined
by the state-space model:[

xn+1

ẋn+1

]
=
[

1 T
0 1

][
xn
ẋn

]
+
[
T2/2
T

]
an , yn = [1,0]

[
xn
ẋn

]
+ vn

with model matrices:

A =
[

1 T
0 1

]
, C = [1,0] , B =

[
T2/2
T

]
, Qw = σ2

a , Q = BQwBT , R = σ2
v

The following figure shows the likelihood as a function of iteration number for the two
cases of estimating only Qw,R (left graph), or, Qw,R, x̄0, Σ0 (right graph), using 300 it-
erations. The data yn are generated by exactly the same code (not repeated here) as in
Example 13.12.2. We note again the rapid initial decrease, followed by a plateau.

0 50 100 150 200 250 300
350

370

390

410

430

450

iterations

likelihood function

0 50 100 150 200 250 300
350

370

390

410

430

450

iterations

likelihood function

The MATLAB code used to generate the right graph is shown below.

674 13. Kalman Filtering

K = 300; N = length(y)-1; t =0:N; % data y generated as in Ex. 15.12.2

B = [T^2/2; T]; Binv = pinv(B);

Qw = 0.1; R = 1; % initial values for the iteration
x0 = [0; 0.1]; S0 = 0.1 * eye(2);

for i=1:K,
Q = B*Qw*B’; % construct Q_old
[L(i),Xs,Ps,V] = ksmooth(A,C,Q,R,y,x0,S0);

Uxx = (Xs*Xs’ + sum(Ps,3))/(N+1); % compute U,V matrices
Uyx = (y*Xs’)/(N+1);
Uyy = (y*y’)/(N+1);
Vxx = (Xs(:,1:end-1)*Xs(:,1:end-1)’ + sum(Ps(:,:,1:end-1),3))/N;
V1x = (Xs(:,2:end)*Xs(:,1:end-1)’ + sum(V(:,:,1:end-1),3))/N;
V11 = (Xs(:,2:end)*Xs(:,2:end)’ + sum(Ps(:,:,2:end),3))/N;

R = Uyy - C*Uyx’ - Uyx*C’ + C*Uxx*C’; % construct R_new
Q = V11 - A*V1x’ - V1x*A’ + A*Vxx*A’; % construct Q_new
Qw = Binv * Q * Binv’; % construct Q_w_new

x0 = Xs(:,1); % comment out to skip estimation
S0 = Ps(:,:,1);

end

k = 0:K-1; figure; plot(k,L);

[Lmin,X,P,Xf,Pf] = kfilt(A,C,Q,R,y,x0,S0); % use estimated Q,R,x0,S0
[Lmin,Xs,Ps] = ksmooth(A,C,Q,R,y,x0,S0);

figure; plot(t,y,’:’, t,Xf(1,:),’-’);
figure; plot(t,y,’:’, t,Xs(1,:),’-’);

Once the parametersQw,R, x̄0, Σ0 have been estimated, the Kalman filter and smoother are
run to determine the filtered and smoothed state estimates, x̂n/n and x̂n/N . Their position
components are shown in the figure below.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
filtered position estimate

n, time samples

 observations
 estimate

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
smoothed position estimate

n, time samples

 observations
 estimate

The estimated parameters in Example 13.12.2 were Qw = (0.0199)2 and R = (2.0237)2,

13.13. Parameter Estimation with the EM Algorithm 675

compared with the theoretical values that were simulated Qw = (0.02)2 and R = (2.0)2.
By comparison, the present method gives the estimates: Qw = (0.0201)2 andR = (2.0235)2

if onlyQw,R are estimated, andQw = (0.0193)2 andR = (2.0221)2, if all four parameters
Qw,R, x̄0, Σ0 are estimated. In the latter case, the estimated initial values were:

x̄0 =
[
−0.4468

0.0791

]
, Σ0 =

[
0.00199 −0.00015

−0.00015 0.00003

]

Connection to the EM Algorithm

Consider a realization of the states and observations of the state-space model (13.13.1),

X = [x0,x1, . . . ,xN
]
, Y = [y0,y1, . . . ,yN

]
(13.13.15)

Ideally, the maximum likelihood method would maximize the joint probability den-
sity pθ(X,Y), or equivalently the log density, lnpθ(X,Y), with respect to the model
parameters θ. However, in practice only the observations Y are available and not the
states X, and one chooses to maximize instead the marginal density pθ(Y):

pθ(Y)=
∫
pθ(X,Y)dX (13.13.16)

The EM algorithm for maximizing (13.13.16) is based on the following inequality:

∫
p(X|Y,θold) ln

[
pθ(X,Y)

p(X|Y,θold)

]
dX ≤ lnpθ(Y) (13.13.17)

where p(X|Y,θold) is the conditional density of X given Y and the parameter set θold.
Eq. (13.13.17) is a consequence of Jensen’s inequality, which implies:

∫
p(X|Y,θold) ln

[
pθ(X,Y)

p(X|Y,θold)

]
dX ≤ ln

[∫
p(X|Y,θold)

pθ(X,Y)
p(X|Y,θold)

dX
]

= ln
[∫

pθ(X,Y)dX
]
= lnpθ(Y)

It follows from Bayes’s rule, pθ(X,Y)= pθ(X|Y)pθ(Y), that (13.13.17) becomes an
equality at θ = θold. Eq. (13.13.17) can now be re-written in the form:

Q(θ,θold)+I(θold)≤ lnpθ(Y) (13.13.18)

where we defined the following conditional expectation and entropy with respect to the
conditional density p(X|Y,θold):

Q(θ,θold) =
∫
p(X|Y,θold) lnpθ(X,Y)dX ≡ E

[
lnpθ(X,Y)| Y,θold]

I(θold) = −
∫
p(X|Y,θold) lnp(X|Y,θold)dX

(13.13.19)

We note that I(θold) is a positive quantity. The EM algorithm chooses that θ that
maximizes the left bound in (13.13.17). More precisely, the EM algorithm consists of the
repetition the the following two steps:

676 13. Kalman Filtering

a. The expectation step (E-step), in which the conditional expectation Q(θ,θold) is
calculated.

b. The maximization step (M-step), in which Q(θ,θold) is maximized resulting into
a new θ:

θnew = arg max
θ

Q(θ,θold)

The convergence properties of the EM algorithm have been discussed in the literature
[905,906], and its application to state-space models, in [909–911] and others.

The advantage of the EM algorithm is that, although pθ(Y) is hard to calculate and
maximize, the joint density pθ(X,Y) is straightforward to calculate before the E-step
is carried out. Indeed, successively applying Bayes’s rule we have:

pθ(X,Y)= p(x0)
N−1∏
n=0

p(xn+1|xn)
N∏
n=0

p(yn|xn)

Assuming Gaussian statistics and full-rank covariance matrices Q,R,Σ0, we find for the
negative-log-likelihood function up to a constant:

− lnpθ(X,Y) = 1

2

[
ln detΣ0 + (x0 − x̄0)TΣ−1

0 (x0 − x̄0)
]

+ 1

2

N−1∑
n=0

[
ln detQ + (xn+1 −Axn)TQ−1(xn+1 −Axn)

]

+ 1

2

N∑
n=0

[
ln detR+ (yn −Cxn)TR−1(yn −Cxn)

]
(13.13.20)

and using the identity, ln detQ = tr lnQ, we obtain:

− lnpθ(X,Y) = 1

2
tr
[

lnΣ0 + Σ−1
0 (x0 − x̄0)(x0 − x̄0)T

]

+ 1

2
tr
[

lnQ +Q−1 1

N

N−1∑
n=0

(xn+1 −Axn)(xn+1 −Axn)T
]

+ 1

2
tr
[

lnR+R−1 1

N + 1

N∑
n=0

(yn −Cxn)(yn −Cxn)T
]

(13.13.21)

Taking conditional expectations with respect to p(X|Y,θold), we have:

−Q(θ,θold) = 1

2
tr
[

lnΣ0 + Σ−1
0 E

[
(x0 − x̄0)(x0 − x̄0)T |Y,θold]]

+ 1

2
tr
[

lnQ +Q−1 1

N

N−1∑
n=0

E
[
(xn+1 −Axn)(xn+1 −Axn)T |Y,θold]]

+ 1

2
tr
[

lnR+R−1 1

N + 1

N∑
n=0

E
[
(yn −Cxn)(yn −Cxn)T |Y,θold]]

13.13. Parameter Estimation with the EM Algorithm 677

which can be written in terms of the definitions (13.13.8),

−Q(θ,θold) = 1

2
tr
[

lnΣ0 + Σ−1
0

[
(x̄0 − x̂0/N)(x̄0 − x̂0/N)T+P0/N

]]

+ 1

2
tr
[

lnQ +Q−1[V̂x1x1 −AV̂xx1 − V̂x1xA
T +AV̂xxAT]]

+ 1

2
tr
[

lnR+R−1[Ûyy −CÛxy − ÛyxCT +CÛxxCT]]
(13.13.22)

This represents the E-step of the algorithm. The M-step leads to the same equations
as (13.13.9)–(13.13.11). Indeed, the minimization of−Q(θ,θold)with respect to x̄0 gives
x̄0 = x̂0/N. Similarly, the first-order differentials with respect to A and C are:

−dQ = 1

2
tr
[
Q−1[(AV̂xx − V̂x1x)dA

T + dA(V̂xxAT − V̂xx1)
]]

−dQ = 1

2
tr
[
R−1[(CÛxx − Ûyx)dCT + dC(Ûxx − Ûxy)

]]

Since the variations dA,dC are arbitrary, the vanishing of their coefficients leads to
the solutions given in Eq. (13.13.9). The minimizations of −Q(θ,θold) with respect to
Q,R,Σ0 are similar and have the generic form of finding R that minimizes:

F = tr
[
lnR+R−1U

]
If all entries of R are treated as independent variables, then the vanishing of the

first-order differential of F gives:

dF = tr
[
R−1dR−R−1dRR−1U

] = 0 ⇒ R = U

where we used d(R−1)= −R−1dRR−1. In our case, Q,R,Σ0 are symmetric matrices and
only their lower (or upper) triangular parts may be regarded as independent variables.
However, the answer turns out to be the same as if all matrix elements were treated as
independent. Thus, the minimization of −Q(θ,θold) gives the same answers as those
of Eqs. (13.13.9)–(13.13.11).

