
9
Periodic Signal Extraction

Many physical, financial, and social time series have a natural periodicity in them, such
as daily, monthly, quarterly, yearly. The observed signal can be regarded as having three
components: a periodic (or nearly periodic) seasonal part sn, a smooth trend tn, and a
residual irregular part vn that typically represents noise,

yn = sn + tn + vn
The model can also be assumed to be multiplicative, yn = sntnvn. The signal processing
task is to extract both the trend and the seasonal components, tn and sn, from the
observed signal yn.

For example, many climatic signals, such as CO2 emissions, are characterized by an
annual periodicity. Government agencies routinely estimate and remove the seasonal
component from business and financial data and only the “seasonally-adjusted” signal
an = tn+vn is available, such as the US GDP that we considered in Example 8.3.1. Further
processing of the deseasonalized signal an, using for example a trend extraction filter
such as the Hodrick-Prescott filter, can reveal additional information, such as business
cycles.

Periodic signals appear also in many engineering applications. Some examples are:
(a) Electrocardiogram recordings are subject to power frequency interference (e.g., 60 Hz
and its higher harmonics) which must be removed by appropriate filters. (b) All biomed-
ical signals require some sort of signal processing for their enhancement. Often weak
biomedical signals, such as brain signals from visual responses or muscle signals, can
be evoked periodically with the responses accumulated (averaged) to enhance their SNR;
(c) TV video signals have two types of periodicities in them, one due to line-scanning
and one due to the frame rate. In the pre-HDTV days, the chrominance (color) TV signals
were put on a subcarrier signal and added to the luminance (black & white) signal, and
the composite signal was then placed on another carrier for transmission. The subcar-
rier’s frequency was chosen carefully so as to shift the line- and frame-harmonics of
the chrominance signal relative to those of the luminance so that at the receiving end
the two could be separated by appropriately designed comb filters [30]. (d) GPS signals
contain a repetitive code word that repeats with a period of one millisecond. The use of
comb filters can enhance their reception. (e) Radars send out repetitive pulses so that

368

9.1. Notch and Comb Filters for Periodic Signals 369

the returns from slowly moving targets have a quasi-periodic character. By accumulat-
ing these return, the SNR can be enhanced. As we see below, signal averaging is a form
of comb filtering.

In this chapter, we discuss the design of comb and notch filters for extracting pe-
riodic signals or canceling periodic interference. We discuss also the specialized comb
filters, referred to as “seasonal filters,” that are used by standard seasonal decomposi-
tion methods, such as the census X-11 method, and others.

9.1 Notch and Comb Filters for Periodic Signals

To get started, we begin with the signal plus interference model yn = sn + vn in which
either the signal or the noise is periodic, but not both.

If the noise vn is periodic, its spectrum will be concentrated at the harmonics of
some fundamental frequency, sayω1. The noise reduction filter must be an ideal notch
filter with notches at the harmonics kω1, k = 0,1, . . . , as shown in Fig. 9.1.1. If the filter
notches are narrow, then the distortion of the desired signal sn will be minimized.

Fig. 9.1.1 Notch filter for reducing periodic interference.

On the other hand, if the desired signal sn is periodic and the noise is a wideband
signal, the signal enhancement filter for extracting sn must be an ideal comb filter with
peaks at the harmonics of the desired signal, as shown in Fig. 9.1.2. If the comb peaks
are narrow, then only a minimal amount of noise will pass through the filter (that is, the
portion of the noise whose power lies within the narrow peaks.)

A discrete-time periodic signal sn with a period of D samples admits the following
finiteD-point DFT and inverse DFT representation [29] in terms of theD harmonics that
lie within the Nyquist interval, ωk = 2πk/D = kω1, for k = 0,1, . . . ,D− 1,

(DFT) Sk =
D−1∑
n=0

sne−jωkn , k = 0,1, . . . ,D− 1

(IDFT) sn = 1

D

D−1∑
k=0

Skejωkn , n = 0,1, . . . ,D− 1

(9.1.1)

370 9. Periodic Signal Extraction

Fig. 9.1.2 Comb filter for enhancing a periodic signal.

where Sk is the D-point DFT of one period [s0, s1, . . . , sD−1] of the time signal. Because
of the periodicity, the IDFT formula is actually valid for all n in the interval−∞ < n <∞.

We note that a periodic continuous-time signal s(t) does not necessarily result into
a periodic discrete-time signal when sampled at some arbitrary rate. For the sampled
signal sn = s(nT) to be periodic innwith a period ofD samples, whereT is the sampling
interval, the sampling rate fs = 1/Tmust beD times the fundamental harmonic f1, that
is, fs = Df1, or equivalently, one periodTper = 1/f1 must containD samples,Tper = DT.
This implies periodicity in n,

sn+D = s
(
(n+D)T) = s(nT +DT)= s(nT +Tper)= s(nT)= sn

The assumed periodicity of sn implies that the sum of any D successive samples,
(sn + sn−1 + · · · + sn−D+1), is a constant independent of n. In fact, it is equal to the
DFT component S0 at DC (ωk = 0),

sn + sn−1 + · · · + sn−D+1 = S0 , −∞ < n <∞ (9.1.2)

In a seasonal+ trend model such as yn = sn+tn+vn, we may be inclined to associate
any DC term with the trend tn rather with the periodic signal sn. Therefore, it is common
to assume that the DC component of sn is absent, that is, the sum (9.1.2) is zero, S0 = 0.
In such cases, the comb filter for extracting sn must be designed to have peaks only at
the non-zero harmonics, ωk = kω1, k = 1,2, . . . ,D − 1. Similarly, the notch filter for
removing periodic noise must not have a notch at DC.

The typical technique for designing notch and comb filters for periodic signals is by
frequency scaling, that is, the mapping of frequencies ω → ωD, or equivalently, the
mapping of the z-domain variable

z→ zD (9.1.3)

The effect of the transformation is to shrink the spectrum by a factor of D and then
replicate itD times to fill the new Nyquist interval. An example is shown in Fig. 9.1.3 for
D = 4. Starting with a lowpass filter HLP(ω), the frequency-scaled filter will be a comb
filter, Hcomb(ω)= HLP(ωD). Similarly, a highpass filter is transformed into a notch
filter Hnotch(ω)= HHP(ωD).

9.1. Notch and Comb Filters for Periodic Signals 371

Fig. 9.1.3 Mapping of a lowpass filter to a comb filter by frequency scaling.

In the z-domain, we have the following simple prescriptions for turning lowpass and
highpass filters into comb and notch filters:

Hcomb(z) = HLP(zD)

Hnotch(z) = HHP(zD)
(9.1.4)

For example, the simplest comb and notch filters are generated by,

HLP(z) = 1

2
(1+ z−1)

HHP(z) = 1

2
(1− z−1)

⇒
Hcomb(z) = 1

2
(1+ z−D)

Hnotch(z) = 1

2
(1− z−D)

(9.1.5)

Their magnitude responses are shown in Fig. 9.1.4 for D = 10. The harmonics
ωk = 2πk/D = 2πk/10, k = 0,1, . . . ,9 are the peaks/notches of the comb/notch
filters. The original lowpass and highpass filter responses are shown as the dashed
lines. The factors 1/2 in Eq. (9.1.5) normalize the peak gains to unity. The magnitude
responses of the two filters are:∣∣Hcomb(ω)

∣∣2 = cos2(ωD/2) ,
∣∣Hnotch(ω)

∣∣2 = sin2(ωD/2) (9.1.6)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
comb filter, D = 10

ω / π

|
H

co
m

b(
ω

)|
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
notch filter, D = 10

ω / π

|
H

n
ot

ch
(ω

)|
2

Fig. 9.1.4 Simple comb and notch filters with D = 10.

The filters are complementary, as well as power-complementary, in the sense,

Hcomb(z)+Hnotch(z)= 1 ,
∣∣Hcomb(ω)

∣∣2 + ∣∣Hnotch(ω)
∣∣2 = 1 (9.1.7)

372 9. Periodic Signal Extraction

The 3-dB widths Δω of the comb peaks or the notch dips are fixed by the period D.
Indeed, they are defined by the condition sin2(DΔω/4)= 1/2, which gives Δω = π/D.
They are indicated on Fig. 9.1.4 as the short horizontal lines at the half-power level.

In order to control the width, we must consider IIR or higher order FIR filters. For
example, we may start with the lowpass filter given in Eq. (2.3.5), and its highpass version,

HLP(z)= b 1+ z−1

1− az−1
, b = 1− a

2
, HHP(z)= b 1− z−1

1− az−1
, b = 1+ a

2
(9.1.8)

where 0 < a < 1. The transformation z→ zD gives the comb and notch filters [30]:

Hcomb(z) = b 1+ z−D
1− az−D , b = 1− a

2

Hnotch(z) = b 1− z−D
1− az−D , b = 1+ a

2

(9.1.9)

The filters remain complementary, and power-complementary, with magnitude responses:

∣∣Hcomb(ω)
∣∣2 = β2

β2 + tan2(ωD/2)
, β ≡ 1− a

1+ a
∣∣Hnotch(ω)

∣∣2 = tan2(ωD/2)
β2 + tan2(ωD/2)

(9.1.10)

Their 3-dB width Δω is controlled by the pole parameter a through the relation [30]:

tan
(
DΔω

4

)
= 1− a

1+ a = β (9.1.11)

The noise reduction ratio of the comb filter is the same as that of the lowpass filter
HLP(z), which was calculated in Chap. 2,

R = 1− a
2

= β
1+ β (9.1.12)

and can be made as small as desired by increasing a towards unity, but at the expense of
also increasing the time constant of the filter. The canonical (direct-form II) realization
of the comb filter and its sample processing algorithm using a circular buffer imple-
mentation of the multiple delay z−D is as follows in the notation of [30], where p is the
circular pointer,

for each x do:
sD = ∗(p+D)
s0 = bx+ asD
y = s0 + sD
∗p = s0

p−−

Example 9.1.1: Fig. 9.1.5 shows two examples designed with D = 10 and 3-dB widths Δω =
0.05π and Δω = 0.01π. By comparison, the simple designs had Δω = π/D = 0.1π. For
Δω = π/D, we have tan(DΔω/4)= tan(π/4)= 1, which implies that a = 0 and b = 1/2,
reducing to the simple designs of Eq. (9.1.5). ��

9.1. Notch and Comb Filters for Periodic Signals 373

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
IIR comb filters, D = 10

ω / π

|
H

co
m

b(
ω

)|
2

 Δω = 0.05π
 Δω = 0.01π

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
IIR notch filters, D = 10

ω / π

|
H

n
ot

ch
(ω

)|
2

 Δω = 0.05π
 Δω = 0.01π

Fig. 9.1.5 Recursive comb and notch filters with D = 10.

Example 9.1.2: Fig. 9.1.6 shows on the left a simulated electrocardiogram (ECG) signal cor-
rupted by 60 Hz power frequency interference and its harmonics. On the right, it shows
the result of filtering by an IIR notch filter. The underlying ECG is recovered well after the
initial transients die out.

The sampling rate was fs = 600 Hz and the fundamental frequency of the noise, f1 = 60
Hz. This gives for the period D = fs/f1 = 10. The ECG beat was taken to be 1 sec and
therefore there were 600 samples in each beat for a total of 1200 samples in the two beats
shown in the figure.

0 1 2

−1

0

1

ECG + 60 Hz noise

t (sec)
0 1 2

−1

0

1

filtered ECG

t (sec)

 filtered
 noise free

Fig. 9.1.6 Eliminating 60 Hz harmonics from ECG signal.

The IIR notch filter was designed to achieve a 3-dB width of Δf = f1/50, that is, a Q-
factor of Q = f1/Δf = 50. Therefore, in units of rads/sample, the notch width is Δω =
2πΔf/fs = 2π/(DQ)= 0.004π, which results in the filter parameters a = 0.9391 and
b = (1+ a)/2 = 0.9695. Thus, the designed notch filter was:

Hnotch(z)= 0.9695
1− z−10

1− 0.9391z−10

374 9. Periodic Signal Extraction

The noise was simulated by adding the following harmonic components,

vn =
D/2−1∑
k=1

Ak sin(ωkn) , with ωk = 2πk
D

, Ak = 1

2k2

where the amplitudes Ak were arbitrarily chosen. Note that only the non-zero harmonics
that lie in the interval 0 < ω < π were used.

The 40-dB time-constant of the notch filter was neff = D ln(0.01)/ ln(a)= 732 samples or
equivalently, τ = neff/fs = 732/600 = 1.22 sec. It is evident from the figure that beyond
this time, the transients essentially die out. The MATLAB code for generating these graphs
was as follows:

nbeats = 2; L = 600; M = 15; % 600 samples per beat

s = ecgsim(nbeats,L,M); % simulated ECG

n = (0:length(s)-1)’; t = n/L; % time in seconds

D = 10; v = 0;
for k=1:D/2-1,

v = v + (0.5/k^2) * sin(2*pi*k*n/D); % generate noise

end

y = s + v; % noisy ECG

Q = 50; beta = tan(pi/2/Q);
a = (1-beta)/(1+beta); b = (1+a)/2; % filter parameters

aD = up([1,-a],D); % upsampled denominator coefficients

bD = up([b,-b],D); % upsampled numerator coefficients

x = filter(bD,aD,y); % filtered ECG

figure; plot(t,y); % left graph

figure; plot(t,x, t,s,’:’); % right graph

The MATLAB function ecgsim, which is part of the OSP toolbox, was used to generate
the simulated ECG. It is based on the function ecg from [30]. The function up is used to
upsample the highpass filter’s coefficient vectors by a factor ofD, generating the coefficient
vectors of the notch filter, so that the built-in filtering function filter can be used. ��

The upsampling operation used in the previous example is the time-domain equiva-
lent of the transformation z → zD and it amounts to inserting D−1 zeros between any
two original filter coefficients. For example, applied to the vector [h0, h1, h2, h3] with
D = 4, it generates the upsampled vector:

[h0, h1, h2, h3] → [h0,0,0,0, h1,0,0,0, h2,0,0,0, h3]

The function up implements this operation,

g = up(h,D); % upsampled vector

It is similar to MATLAB’s built-in function upsample, except it does not appendD−1
zeros at the end. The difference is illustrated by the following example,

up([1,2,3,4],4) = [1 0 0 0 2 0 0 0 3 0 0 0 4]
upsample([1,2,3,4],4) = [1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0]

9.2. Notch and Comb Filters with Fractional Delay 375

In addition to enhancing periodic signals or removing periodic interference, comb
and notch filters have many other applications. The transformation z → zD is widely
used in audio signal processing for the design of reverberation algorithms emulating
the delays arising from reflected signals within rooms or concert halls or in other types
of audio effects [30]. The mapping z → zD is also used in multirate signal process-
ing applications, such as decimation or interpolation [30]. The connection to multirate
applications can be seen by writing the frequency mapping ω′ = ωD in terms of the
physical frequency f in Hz and sampling rate fs,

2πf ′

f ′s
= 2πf

fs
D

In the signal enhancement context, the sampling rates are the same f ′s = fs, but
we have frequency scaling f ′ = fD. On the other hand, in multirate applications, the
frequencies remain the same f ′ = f and the above condition implies the sampling rate
change f ′s = fs/D, which can be thought of as decimation by a factor ofD from the high
rate fs to the low rate f ′s , or interpolation from the low to the high rate.

9.2 Notch and Comb Filters with Fractional Delay

The implementation of comb and notch filters requires that the sampling rate be related
to the fundamental harmonic by fs = Df1 with D an integer, so that z−D represents a
D-fold multiple delay. In some applications, one may not have the freedom of choosing
the sampling rate and the equation D = fs/f1 may result into a non-integer number.

One possible approach, discussed at the end of this section, is simply to design
individual comb/notch filters for each desired harmonic fk = kf1 = kfs/D, k = 1,2, . . . ,
that lies within the Nyquist interval, and then either cascade the filters together in the
notch case, or add them in parallel in the comb case.

Another approach is to approximate the desired non-integer delay z−D by an FIR
filter and then use the IIR comb/notch structures of Eq. (9.1.9). Separating D into its
integer and fractional parts, we may write:

D = Dint + d (9.2.1)

where Dint = floor(D) and 0 < d < 1. The required multiple delay can be written then
as z−D = z−Dintz−d. The fractional part z−d can be implemented by replacing it with an
FIR filter that approximates it, that is, H(z)≈ z−d, so that z−D ≈ z−DintH(z). Then, the
corresponding IIR comb/notch filters (9.1.9) will be approximated by

Hcomb(z) = b 1+ z−DintH(z)
1− az−DintH(z)

, b = 1− a
2

Hnotch(z) = b 1− z−DintH(z)
1− az−DintH(z)

, b = 1+ a
2

(9.2.2)

Fig. 9.2.1 shows a possible realization. There exist many design methods for such
approximate fractional delay filters [162]. We encountered some in Sec. 3.6. For example,

376 9. Periodic Signal Extraction

Fig. 9.2.1 Comb and notch filters with fractional delay.

the transfer functions of the causal Lagrange interpolation filters of orders 1 and 2
approximating the required non-integer delay d can be obtained from Eq. (3.6.30),

H(z) = d+ (1− d)z−1

H(z) = 1

2
(d− 1)(d− 2)−d(d− 2)z−1 + 1

2
d(d− 1)z−2

(9.2.3)

Such interpolation filters accurately cover only a fraction, typically 10–20%, of the
Nyquist interval, and therefore, would be appropriate only if the first few harmonics are
significant. A more effective approach suggested by [168] is to impose linear constraints
on the design of H(z) that preserve the required filter response at all the harmonics.

For integer delay D, the comb filter peaks or the notch filter nulls occur at the D-th
roots of unity zk = ejωk , ωk = 2πk/D, which satisfy zDk = 1.

For non-integer D, we require the same constraints for the delay filter z−DintH(z),
that is, z−Dint

k H(zk)= 1, or in terms of the frequency response, e−jωkDintH(ωk)= 1,
where again zk = ejωk , ωk = 2πk/D. Since e−jωkD = 1, we have,

e−jωkDintH(ωk)= 1 = e−jωkD = e−jωk(Dint+d) ⇒ H(ωk)= e−jωkd

These are the constraints to be imposed on the design of H(z). In order to obtain
a real-valued impulse response for this filter, we must work with the harmonics that lie
in the symmetric Nyquist interval, that is, −π ≤ωk ≤ π, or,

−π ≤ 2πk
D

≤ π ⇒ −D
2
≤ k ≤ D

2

Writing Dint = 2p + q and D = Dint + d = 2p + q + d, with integer p and q = 0,1,
the above condition reads:

−p− 1

2
(q+ d)≤ k ≤ p+ 1

2
(q+ d)

Since 0 < d < 1 and k must be an integer, we obtain,

− p ≤ k ≤ p (9.2.4)

9.2. Notch and Comb Filters with Fractional Delay 377

Thus, the design problem is to determine an FIR filterH(z) such thatH(ω)≈ e−jωd,
and subject to the constraints:

H(ωk)= e−jωkd , −p ≤ k ≤ p (9.2.5)

When q = d = 0, we must choose −p ≤ k ≤ p−1, because k = ±p both are mapped
onto the Nyquist frequency ω = ±π and need be counted only once. In this case, of
course, we expect the design method to produce the identity filter H(z)= 1.

Following [168], we use a constrained least-squares design criterion with the follow-
ing performance index into which the constraints have been incorporated by means of
complex-valued Lagrange multipliers λk:

J =
∫ απ
−απ

∣∣H(ω)−e−jωd∣∣2 dω
2π

+
p∑

k=−p

[
e−jωkd −H(ωk)

]
λ∗k + c.c. = min (9.2.6)

where “c.c.” denotes the complex conjugate of the second term. The approximation
H(ω)≈ e−jωd is enforced in the least-squares sense over a portion of the Nyquist in-
terval, [−απ,απ], where typically, 0.9 ≤ α ≤ 1, with α = 1 covering the full interval.
Assuming an Mth order filter h = [h0, h1, . . . , hM]T, we can write the frequency re-
sponse in terms of the (M+1)-dimensional vectors,

H(ω)=
M∑
n=0

hne−jnω = s†ωh , sω =

⎡
⎢⎢⎢⎢⎢⎣

1
ejω

...

ejMω

⎤
⎥⎥⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤
⎥⎥⎥⎥⎥⎦ (9.2.7)

Similarly, we can express the gain constraints in the vector form,

S†h = g (9.2.8)

where S is an (M+1)×(2p+1) matrix and g a (2p+1)-dimensional column vector de-
fined component-wise by

Snk = ejnωk , 0 ≤ n ≤M , −p ≤ k ≤ p
gk = e−jωkd , −p ≤ k ≤ p

(9.2.9)

that is,

S = [. . . , sωk , . . .] , g =

⎡
⎢⎢⎢⎢⎣

...

e−jωkd

...

⎤
⎥⎥⎥⎥⎦ (9.2.10)

It follows that the performance index can be written compactly as,

J =
∫ απ
−απ

∣∣s†ωh− e−jωd∣∣2 dω
2π

+λλλ†(g− S†h)+(g− S†h)†λλλ = min (9.2.11)

378 9. Periodic Signal Extraction

where λλλ = [. . . , λk , . . .]T is the vector of Lagrange multipliers. Expanding the first
term of J, we obtain,

J = h†Rh− h†r− r†h+α+λλλ†(g− S†h)+(g† − h†S)λλλ = min (9.2.12)

where the matrix R and vector r are defined by,

R = 1

2π

∫ απ
−απ

sωs†ω dω, r = 1

2π

∫ απ
−απ

sωe−jωd dω (9.2.13)

and component-wise,

Rnm =
∫ απ
−απ

ejω(n−m)
dω
2π

= sin
(
απ(n−m))
π(n−m) , n,m = 0,1, . . . ,M

rn =
∫ απ
−απ

ejω(n−d)
dω
2π

= sin
(
απ(n− d))
π(n− d) , n = 0,1, . . . ,M

(9.2.14)

We note that for α = π, R reduces to the identity matrix. The optimal solution for
h is obtained by setting the gradient of J to zero:

∂J
∂h∗

= Rh− r− Sλλλ = 0 ⇒ h = R−1r+R−1Sλλλ = hu +R−1Sλλλ

where hu = R−1r is the unconstrained solution of the least-squares problem. The La-
grange multiplier λλλ can be determined by multiplying both sides by S† and using the
constraint (9.2.8):

g = S†h = S†hu + S†R−1Sλλλ ⇒ λλλ = (S†R−1S)−1(g− S†hu)

Finally, substituting λλλ into the solution for h, we obtain,

h = hu +R−1S(S†R−1S)−1(g− S†hu) (9.2.15)

This type of constrained least-squares problem appears in many applications. We
will encounter it again in the context of designing linearly constrained minimum vari-
ance beamformers for interference suppression, and in the problem of optimum stock
portfolio design.

The MATLAB function combfd implements the above design method. Its inputs are
the fractional period D, the order M of the filter H(z), the comb/notch pole parameter
a, and the Nyquist factor α,

[bD,aD,h,zmax] = combfd(D,M,a,alpha); % comb/notch filter design with fractional delay

Entering the parameter a as negative indicates the design of a notch filter. The
outputs bD,aD are the coefficients of the numerator and denominator polynomials of
the comb/notch filters (9.2.2):

BD(z) = b
[
1± z−DintH(z)

]
AD(z) = 1− az−DintH(z)= 1− az−Dint

(
h0 + h1z−1 + · · · + hMz−M

) (9.2.16)

9.2. Notch and Comb Filters with Fractional Delay 379

The output h is the impulse response vector h, and zmax is the maximum pole ra-
dius of the denominator filter AD(z), which can be used to monitor the stability of the
designed comb/notch filter. The pole parameter a can be fixed using the bandwidth
equation (9.1.11), which is still approximately valid.

Fig. 9.2.2 shows a design example with fractional period D = 9.1, so that Dint = 9
and d = 0.1. The other parameters were M = 8, a = RD with R = 0.95, and α = 1.

−1 0 1
0

0.5

1

Comb, D = 9.1, M = 8, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

−1 0 1
0

0.5

1

Notch, D = 9.1, M = 8, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

Fig. 9.2.2 Comb and notch filters with D = 9.1, and their pole/zero patterns.

The 3-dB widths obtained from Eq. (9.1.11) are indicated on the graphs by the two
short horizontal lines at the half-power levels. The frequency plots are over the sym-
metric interval −π ≤ ω ≤ π. The comb peaks have unity gain at the harmonics. For
the notch case, the response between the notch dips is not very flat, but can be made
flatter by decreasing the bandwidth, i.e., increasing the parameter a towards unity.

The right graphs depict the pole/zero patterns of the polynomialsBD(z) andAD(z).
These polynomials have orders Dint +M = 9+ 8 = 17. For the comb filter, we observe
how the Dint = 9 poles arrange themselves around the unit circle at the harmonic fre-
quencies, while the remaining 8 poles lie inside the unit circle.

The zeros of BD(z) also arrange themselves in two groups, 8 of them lying on the
unit circle halfway between the comb peak poles, and the remaining 9 lying inside the

380 9. Periodic Signal Extraction

unit circle, with a group of 7 poles and 7 zeros almost falling on top of each other,
almost canceling each other.

A similar pattern occurs for the notch filter, except now the notch zeros at the har-
monics have poles lying almost behind them in order to sharpen the notch widths, while
the remaining pole/zero pairs arrange themselves inside the unit-circle as in the comb
case.

Generally, this design method tends to work well wheneverD is near an odd integer,
such as in the above example and in the top graphs of Fig. 9.2.4, which have D = 9.1
and D = 8.9. The method has some difficulty when D is near an even integer, such as
D = 9.9 or D = 8.1, as shown in Figs. 9.2.3 and the bottom of 9.2.4.

In such cases, the method tends to place a pole or pole/zero pair on the real axis
near z = −1 resulting in an unwanted peak or dip at the Nyquist frequency ω = π.
Such poles are evident in the pole/zero plots of Fig. 9.2.3. If D were exactly an even
integer, then such pole/zero pair at Nyquist would be present, but for non-integer D,
the Nyquist frequency is not one of the harmonics. Removing that pole/zero pair from
the design, does not improve the problem.

−1 0 1
0

0.5

1

Comb, D = 9.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

−1 0 1
0

0.5

1

Notch, D = 9.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

Fig. 9.2.3 Comb and notch filters with D = 9.9, and their pole/zero patterns.

The MATLAB code for generating the magnitude responses and pole/zero plots is
the same for all three figures. In particular, Fig. 9.2.2 was generated by,

9.2. Notch and Comb Filters with Fractional Delay 381

−1 0 1
0

0.5

1

Comb, D = 8.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Notch, D = 8.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Comb, D = 8.1, M = 60, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1

−1 0 1
0

0.5

1

Notch, D = 8.1, M = 60, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 9.2.4 Comb and notch filters with D = 8.9 and D = 8.1.

f = linspace(-1,1,4001); w = pi*f; % frequency range

D=9.1; R=0.95; a=R^D; M=8; alpha=1; % design parameters

beta = (1-a)/(1+a); Dw = 4/D * atan(beta); % bandwidth calculation

[bD,aD,h,zmax] = combfd(D,M,a,alpha); % comb, param a entered as positive

Hcomb = abs(freqz(bD,aD,w)).^2; % comb’s magnitude rresponse

figure; plot(w/pi,Hcomb); figure; zplane(bD,aD); % upper two graphs

[bD,aD,h,zmax] = combfd(D,M,-a,alpha); % notch, param a entered as negative

Hnotch = abs(freqz(bD,aD,w)).^2;

figure; plot(w/pi,Hnotch); figure; zplane(bD,aD); % lower two graphs

Parallel and Cascade Realizations

As we mentioned in the beginning of the previous section, an alternative approach is to
design individual peak or notch filters at the harmonics and then combine the filters in
parallel for the comb case, and in cascade for the notch case. Fig. 9.2.5 illustrates this

382 9. Periodic Signal Extraction

type of design for the two “difficult” cases of D = 9.9 and D = 8.1 using second-order
peak/notch filters designed to have the same bandwidth as in Fig. 9.2.3.

−1 0 1
0

0.5

1

Parallel comb, D = 9.9, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 9.9, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 9.2.5 Second-order parallel comb and cascaded notch filters.

Let Hk(z) be the peak/notch filter for the kth harmonic ωk = kω1 = 2πk/D,
k = 0,1, . . . , p and its negative −ωk. Then, the transfer functions of the comb and
notch filters will be:

Hcomb(z)=
p∑
k=0

Hk(z) , Hnotch(z)=
p∏
k=0

Hk(z) (9.2.17)

In their simplest form, the individual filters Hk(z) are second-order and can be
obtained from the lowpass and highpass filters (9.1.8) by the lowpass-to-bandpass z-
domain transformation [30,595]:

z → z′ = z(cosωk − z)
1− z cosωk

(9.2.18)

9.2. Notch and Comb Filters with Fractional Delay 383

The resulting second-order peaking and notch filters are [30], for k = 1,2, . . . , p:

peak: Hk(z)= b 1− z−2

1− (1+ a)cosωk z−1 + az−2
, b = 1− a

2

notch: Hk(z)= b 1− 2 cosωk z−1 + z−2

1− (1+ a)cosωk z−1 + az−2
, b = 1+ a

2

(9.2.19)

The filter parameter a is fixed in terms of the 3-dB width of the peak or the notch by,

tan
(
Δω

2

)
= 1− a

1+ a = β (9.2.20)

For k = 0, we may use the first-order lowpass/highpass filters of Eq. (9.1.8) with-
out any z-domain transformation. But in order for their 3-dB frequency to match the
specified 3-dB width Δω, their parameter a must be redefined as follows:

tan
(
Δω

4

)
= 1− a

1+ a = β (9.2.21)

To clarify the construction, we give below the MATLAB code for generating the left
graphs of Fig. 9.2.5,

f = linspace(-1,1,4001); w = pi*f; % frequency range −π ≤ω ≤ π

D = 9.9; p = floor(D/2); w1 = 2*pi/D; % design parameters

R = 0.95; a = R^2;

beta = (1-a)/(1+a); dw = 2*atan(beta); % 3-dB width calculation

beta0 = tan(dw/4); a0 = (1-beta0)/(1+beta0); % bandwidth parameter for k = 0 section

A = [1, -a0, 0]; % denominator coefficients for k = 0

Bcomb = [1, 1, 0] * (1-a0)/2; % numerator coefficients for k = 0

Bnotch = [1,-1, 0] * (1+a0)/2;

Hcomb = freqz(Bcomb,A,w); % k = 0 section, H0(ω)
Hnotch = freqz(Bnotch,A,w);

for k=1:p, % non-zero harmonics

A = [1, -(1+a)*cos(k*w1), a]; % denominator of Hk(z)
Bcomb = [1, 0, -1] * (1-a)/2; % numerator of peak Hk(z)
Bnotch = [1, -2*cos(k*w1), 1] * (1+a)/2; % numerator of notch Hk(z)
Hcomb = Hcomb + freqz(Bcomb,A,w); % add in parallel for comb

Hnotch = Hnotch .* freqz(Bnotch,A,w); % cascade for notch

end

figure; plot(w/pi, abs(Hcomb).^2, ’-’); left graphs

figure; plot(w/pi, abs(Hnotch).^2,’-’);

It is evident from Fig. 9.2.5 that this design method is flexible enough to correctly
handle any values of the fractional periodD. However, because of the mutual interaction
between the individual filters, the peaks of the comb do not quite have unity gains, and
the segments between the nulls of the notch filter are not quite flat.

This behavior can be fixed by decreasing the widthΔω. However, for a fixed value of
Δω, the only way to improve the response is by using higher-order filters. For example,

384 9. Periodic Signal Extraction

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 2

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 3

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 2

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 3

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 9.2.6 High-order Butterworth parallel comb and cascaded notch filters.

Fig. 9.2.6 illustrates the cases of designing the individual filters using Butterworth filter
prototypes of orders N = 2 and N = 3, whereas Fig. 9.2.5 corresponds to N = 1.

The following MATLAB code illustrates the generation of the left graphs in Fig. 9.2.6,
and uses the functions hpeq and frespc from the high-order equalizer design toolbox
in [595], which is also included in the OSP toolbox:

f = linspace(-1,1,4001); w = pi*f;

D = 8.1; p = floor(D/2); w1 = 2*pi/D;
R = 0.95; a = R^2;

beta = (1-a)/(1+a); dw = 2*atan(beta); % 3-dB width

N = 2; GB = -20*log10(2); % Butterworth order and bandwidth gain

[B0,A0] = hpeq(N, -inf, 0, GB, 0, dw/2); % k = 0 for comb, cutoff = half-bandwidth

Hcomb = frespc(B0,A0,w);

for k=1:p
[B,A] = hpeq(N, -inf, 0, GB, k*w1, dw); % non-zero harmonics

Hcomb = Hcomb + frespc(B,A,w); % add in parallel

end

9.3. Signal Averaging 385

figure; plot(w/pi,abs(Hcomb).^2,’-’); upper-left graph

[B0,A0] = hpeq(N, 0, -inf, GB, 0, dw/2); % k = 0 for notch

Hnotch = frespc(B0,A0,w);

for k=1:p
[B,A] = hpeq(N, 0, -inf, GB, k*w1, dw);
Hnotch = Hnotch .* frespc(B,A,w); % cascade in series

end

figure; plot(w/pi,abs(Hnotch).^2,’-’); % lower-left graph

The higher-order designs can also be based on Chebyshev or elliptic filters. In all
cases, the starting point is a lowpass (or highpass) analog prototype filter Ha(s), which
is transformed into a peaking (or notch) filter centered at ωk using the s-to-z domain
bandpass transformation [30,595]:

H(z)= Ha(s) , s = z′ − 1

z′ + 1
= z2 − 2 cosωk z+ 1

z2 − 1
(9.2.22)

where z′ is given by Eq. (9.2.18). For example, the analog Butterworth prototype filters
of orders N = 1,2,3 are:

Ha(s)= β
β+ s , Ha(s)= β2

β2 +√2βs+ s2
, Ha(s)= β

β+ s ·
β2

β2 + βs+ s2

Similarly, for the notch filters, the analog prototypes are the highpass filters:

Ha(s)= s
β+ s , Ha(s)= s2

β2 +√2βs+ s2
, Ha(s)= s

β+ s ·
s2

β2 + βs+ s2

For arbitrary N, the Butterworth lowpass and highpass filters are:

Ha(s)=
[

σ
β+ s

]r L∏
i=1

[
σ2

β2 + 2βs sinφi + s2

]
, φi = π(2i− 1)

2N
(9.2.23)

where N = 2L + r, with integer L and r = 0,1, and with σ = β in the lowpass case,
and σ = s in the highpass one. The parameter β is related to the 3-dB width through
β = tan(Δω/2). The filters of Eq. (9.2.19) are obtained by applying the transformation
(9.2.22) to the N = 1 case.

Each peaking or notching filter is the cascade of L second-order sections in s or
fourth-order sections in z (and possibly a second-order section in z if r = 1). The
function frespc is used to calculate the corresponding frequency responses in such
cascaded form. Further details on high-order designs and a description of the function
hpeq can be found in [595].

9.3 Signal Averaging

Signal averaging is a technique for estimating a repetitive signal in noise. Evoked bio-
logical signals, GPS, and radar were some applications mentioned at the beginning of

386 9. Periodic Signal Extraction

this chapter. A variant of the method can also be used to deseasonalize business, social,
and climate data—the difference being here that the non-periodic part of the measured
signal is not only noise but it can also contain a trend component. The typical assumed
noise model in signal averaging has the form:

yn = sn + vn (9.3.1)

where sn is periodic with some periodD, assumed to be an integer, and vn is zero-mean
white noise. The periodic signal sn can be extracted by filtering yn through any comb
filter, such as the IIR filter of Eq. (9.1.9).

Signal averaging is equivalent to comb filtering derived by applying the D-fold repli-
cating transformation z→ zD to an ordinary, length-N, lowpass FIR averaging filter:

HLP(z)= 1

N
[
1+ z−1 + z−2 + · · · + z−(N−1)] = 1

N
1− z−N
1− z−1

(9.3.2)

The definition H(z)= HLP(zD), then gives the comb filter:

H(z)= 1

N
[
1+ z−D + z−2D + · · · + z−(N−1)D] = 1

N
1− z−ND
1− z−D (9.3.3)

The latter equation shows thatH(z) has zeros at all the (ND)-th roots of unity that
are not D-th roots of unity. At the latter, the filter has unity-gain peaks.

An example is shown in Fig. 9.3.1, with period D = 10 and N = 5 and N = 10. The
comb peaks are at the D-th roots of unity ωk = 2πk/D = 2πk/10, k = 0,1, . . . ,9. The
3-dB width of the peaks is indicated on the graphs by the short horizontal lines at the
half-power level centered around the first harmonic.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

ω /π

m
ag

n
it

u
de

 s
qu

ar
e

D = 10, N = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

ω /π

m
ag

n
it

u
de

 s
qu

ar
e

D = 10, N = 10

Fig. 9.3.1 Signal averaging filters with D = 10 and N = 5,10.

The 3-dB width is given by

Δω = 0.886
2π
ND

(9.3.4)

which follows from the frequency response of H(z):

H(ω)= 1

N
1− e−jωND
1− e−jωD = 1

N
sin(NDω/2)
sin(Dω/2)

e−j(ω(N−1)D/2 (9.3.5)

9.3. Signal Averaging 387

Thus, the peaks get narrower with increasing number N of averaging periods. This
has the effect of decreasing the noise, while letting through the periodic signal sn.

The signal averaging interpretation can be seen from the time-domain operation of
the filter. The corresponding output is the estimated periodic signal,

ŝn = 1

N
[
yn + yn−D + yn−2D + · · · + yn−(N−1)D

]
(9.3.6)

Inserting yn = sn + vn and using the periodicity property sn−D = sn, we obtain,

ŝn = sn + 1

N
[
vn + vn−D + · · · + vn−(N−1)D

] ≡ sn + v̂n (9.3.7)

Because vn was assumed to be stationary uncorrelated white noise, the variance of
the filtered noise v̂n will be reduced by a factor of N,

σ2
v̂ =

1

N2

[
var(vn)+var(vn−D]+· · · + var(vn−(N−1)D)

] = 1

N2
(Nσ2

v)=
1

N
σ2
v (9.3.8)

which implies that the NRR of the comb filter is R = 1/N. Thus, by choosing N suffi-
ciently large, the noise can be reduced, enabling the estimation of sn.

Let the signal yn be collected over N periods, that is, 0 ≤ n ≤ ND − 1, and divide
the signal into N length-D period segments as shown below,

The filtering operation (9.3.6) can be thought of as the averaging the N subblocks
together. Indeed, let yi(n)= yiD+n, for n = 0,1, . . . ,D − 1, be the samples within the
i-th subblock, i = 0,1, . . . ,N − 1. Then, we have

1

N

N−1∑
i=0

yi(n)= 1

N

N−1∑
i=0

yiD+n = 1

N

N−1∑
k=0

y(N−1)D+n−kD = ŝ(N−1)D+n (9.3.9)

or, in words, the lastD filter output samples, that is, over the period
[
(N−1)D, ND−1

]
,

are the average of the samples over the lastN periods. This can also be seen more simply
by writing (9.3.6) in recursive form, which follows from Eq. (9.3.3),

ŝn = ŝn−D + 1

N
(
yn − yn−ND

) = ŝn−D + 1

N
yn , 0 ≤ n ≤ ND− 1 (9.3.10)

where the term yn−ND was dropped because of the causal nature of yn and the assumed
range of n, that is, 0 ≤ n ≤ ND−1. Thus, Eq. (9.3.10) shows that ŝn is the accumulation
and averaging of the N period segments of yn.

The MATLAB implementation of signal averaging is straightforward, for example,
assuming that the array y has length at least ND,

s = 0;
for i=0:N-1,

yi = y(i*D+1 : i*D+D); % extract i-th period

s = s + yi; % accumulate i-th period

end
s = s/N; % average of N periods

388 9. Periodic Signal Extraction

So far we have not imposed the constraint S0 = sn + sn−1 + · · · + sn−D+1 = 0. If
in addition to the noise component vn, there is a slowly-varying background or trend
present, say, tn, so that the observation signal is yn = sn+tn+vn, then we may associate
the constant S0 with the trend and assume that S0 = 0. To guarantee this constraint,
we may subtract from each block yi(n) its local average, and compute the estimated
periodic component by:

ŝn = 1

N

N−1∑
i=0

[
yi(n)−μi

]
, μi = 1

D

D−1∑
n=0

yi(n) (9.3.11)

which does satisfy S0 = 0. By replicating the μi by D times within the i-th time period[
iD, iD +D − 1

]
, and stringing the replicated values together over all the periods, we

obtain a step-wise estimate of the trend component tn. The following MATLAB code
illustrates how to do that:

y = y(:);
L = length(y);
N = floor(L/D); % number of periods in y

r = mod(L,D); % L = ND + r

s = 0;
for i=0:N-1,

yi = y(i*D+1 : i*D+D); % i-th period

m(i+1) = mean(yi); % mean to be removed

s = s + yi - m(i+1); % accumulate i-th period

end
s = s / N; % estimated period

ys = repmat(s,N,1); % replicate N periods

ys(end+1:end+r) = s(1:r); % extend to length L by appending a portion of s

yt = repmat(m,D,1); yt = yt(:); % repeat each mean D times within its period

yt(end+1:end+r) = yt(end); % extend to length L by replicating last mean r times

where ys represents the estimated periodic signal, replicated over N periods, and yt is
the estimated step-function trend. These above steps have been incorporated into the
MATLAB function sigav:

[ys,s,yt] = sigav(y,D); % signal averaging

Example 9.3.1: Fig. 9.3.2 shows a simulated signal averaging example. The period is D = 10
and the total number of periods N = 100. The graphs display only the first 10 periods to
improve visibility. The periodic signal was superimposed on a slowly-varying trend and
noise was added:

yn = sn + tn + vn , sn = 0.5 sin
(

4πn
D

)
+ 0.5 sin

(
6πn
D

)
, tn = sin

(
2πn
10D

)

where n = 0,1, . . . ,ND − 1, and vn is zero-mean, unit-variance, white noise. The upper
row shows the noise-free case (with vn = 0). The upper-right graph shows the periodic
signal sn. The estimated one resulting from the output of sigav is essentially identical to
sn and thus not displayed. The step-function estimated trend is shown on the upper-left.

9.3. Signal Averaging 389

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

noise− free periodic signal with trend

 data
 true trend
 step trend

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

periodic component

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

noisy periodic signal with trend

 data
 true trend
 step trend

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

estimated periodic component

 true
 estimated

Fig. 9.3.2 Signal averaging of noisy periodic signal with slowly-varying trend.

The lower-left graph shows the noisy case, including the estimated step-trend signal. The
lower-right graph shows the estimated periodic signal from the output of sigav. The
following MATLAB code illustrates the generation of the bottom graphs:

D = 20; N = 100; n = 0:N*D;

s = (sin(4*pi*n/D) + sin(6*pi*n/D))/2; % periodic component

t = sin(2*pi*n/D/10); % trend component

seed = 2008; randn(’state’,seed);
v = randn(size(n));

y = s + t + v; % noisy observations

[ys,p,yt] = sigav(y,D); % signal averaging, p = one period

figure; plot(n,y,’--’, n,t,’-.’, n,yt,’-’); % yt is the estimated trend

xlim([0,200]); % show only the first 10 periods

figure; plot(n,ys, ’-’); % estimated periodic component

xlim([0,200]);

390 9. Periodic Signal Extraction

Example 9.3.2: Housing Starts. Fig. 9.3.3 shows the application of signal averaging to the
monthly, not seasonally adjusted, new privately-owned housing starts, for the 25 year
period from January 1984 to December 2008. The data are from the US Census Bureau
from the web link: http://www.census.gov/ftp/pub/const/starts_cust.xls.

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal component

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 WH trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal + irregular component

Fig. 9.3.3 Signal averaging and smoothing of monthly housing data.

The upper graphs show the estimated step-wise trend and the seasonal, periodic, compo-
nent. Although there is clear annual periodicity in the data, the signal averaging method
is not the best approach to this application because it does not result into a smooth trend.
We consider better methods to deseasonalize such data in the next sections.

As an alternative method, the bottom graphs show the application of the Whittaker Hender-
son smoothing method to estimate the smooth trend. The optimal smoothing parameter
was determined by the GCV criterion to be λ = 6850 and the smoothing order was s = 2.

The difference between the raw data and the estimated trend represents the seasonal plus
irregular component and is plotted in the bottom-right graph. Further application of signal
averaging to this component will generate an estimate of the seasonal component. It is
not plotted because it is essentially identical to that shown in the upper-right graph.

The following MATLAB code illustrates the generation of the four graphs, including, but
commented out, the computation of the seasonal part for the bottom graphs:

Y = loadfile(’newhouse.dat’); % data file available in the OSP toolbox

9.4. Ideal Seasonal Decomposition Filters 391

i = find(Y(:,1)==109.1); % finds the beginning of the year 1984

y = Y(i:end-4,1); % keep data from Jan.1984 to Dec.2008

t = taxis(y,12,1984); % define time axis

[ys,s,yt] = sigav(y,12); % signal averaging with period 12

figure; plot(t,y,’--’, t,yt,’-’); % upper-left graph

figure; plot(t,ys,’-’); % upper-right graph

s = 2; la = 6800:2:6900; % smoothing order and search-range of λ’s

[gcv,lopt] = whgcv(y,la,s); % optimum smoothing parameter, λopt = 6850

yt = whsm(y,lopt,s); % Whittaker-Henderson smoothing

ysi = y-yt; % seasonal + irregular component

% ys = sigav(ysi,12); % seasonal component, not shown

figure; plot(t,y,’--’, t,yt,’-’); % bottom-left graph

figure; plot(t,ysi,’-’); % bottom-right graph

% figure; plot(t,ys,’-’); % essentially the same as upper-right graph

9.4 Ideal Seasonal Decomposition Filters

A possible approach for separating the three components of the signal yn = sn+tn+vn
is to first estimate the trend tn using a lowpass filter, and then extract the seasonal
component sn by applying a comb filter to the residual rn = yn − tn = sn + vn, which
consists of the seasonal and irregular parts.

The technique assumes of course that the trend is a slowly-varying, low-frequency,
signal. Fig. 9.4.1 illustrates some typical frequency spectra for the three components
and the ideal filters that might be used to extract them.

Fig. 9.4.1 Ideal filters for decomposition into trend and seasonal components.

Let Htrend(z) be the trend-extraction filter and Hcomb(z) the comb filter with peaks
at the seasonal harmonics (excluding the one at DC). Then, the filtering equations for

392 9. Periodic Signal Extraction

extracting the three components from yn can be expressed in the z-domain as follows:

T(z) = Htrend(z)Y(z)

R(z) = S(z)+V(z)= Y(z)−T(z)= [1−Htrend(z)
]
Y(z)

S(z) = Hcomb(z)R(z)= Hcomb(z)
[
1−Htrend(z)

]
Y(z)≡ HS(z)Y(z)

V(z) = R(z)−S(z)= [1−Hcomb(z)
][

1−Htrend(z)
]
Y(z)≡ HI(z)Y(z)

where Y(z), S(z),T(z),V(z),R(z) are the z-transforms of yn, sn, tn, vn, rn. Thus, the
filters for extracting the three components are:

HT(z)= Htrend(z) (trend)

HS(z)= Hcomb(z)
[
1−Htrend(z)

]
(seasonal)

HI(z)=
[
1−Hcomb(z)

][
1−Htrend(z)

]
(irregular)

(9.4.1)

The three filters satisfy the complementarity property:

HT(z)+HS(z)+HI(z)= 1 (9.4.2)

In Example 9.3.2, we followed exactly this approach where the trend filter was im-
plemented as a Whittaker-Henderson smoother and the comb filter as a signal averager.
Other possibilities exist for these filters and a lot of research has gone into making
choices that try to balance a good filter response versus the ability to work well with
short data records, including the handling of the end-point problem.

Example 9.4.1: Housing Starts. The housing starts signal considered in Example 9.3.2 displays
the typical frequency spectra shown in Fig. 9.4.1.

The left graph in Fig. 9.4.2 shows the corresponding magnitude spectrum of the original
data signal yn, normalized to unity maximum and plotted over the symmetric Nyquist
interval [−π,π] in units of the fundamental harmonic ω1 = 2π/12. The spectrum is
dominated by the low-frequency trend signal. The right graph shows the spectrum of the
seasonal plus irregular component rn = yn − tn = sn + vn, which displays the harmonics
more clearly.

The following MATLAB code illustrates the computation of the spectra:

Y = loadfile(’newhouse.dat’); % data file available in the OSP toolbox

i = find(Y(:,1)==109.1); % finds the beginning of the year 1984

y = Y(i:end-4,1); % keep data from Jan.1984 to Dec.2008

s = 2; lopt = 6850 % use optimum λ from Example 9.3.2

yt = whsm(y,lopt,s); % Whittaker-Henderson smoothing

ysi = y - yt; % seasonal + irregular component

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency ω = kω1

L = length(y);
wind = 0.54 - 0.46*cos(2*pi*(0:L-1)/(L-1))’; % Hamming window

Y = abs(freqz(y.*wind,1,w)); Y = Y/max(Y); % normalized spectrum

Ysi = abs(freqz(ysi.*wind,1,w)); Ysi = Ysi/max(Ysi);

figure; plot(k,Y); figure; plot(k,Ysi); % left and right graphs

9.5. Classical Seasonal Decomposition 393

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

ω / ω
1

m
ag

n
it

u
de

 s
pe

ct
ru

m

spectrum of original signal yn

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

ω / ω
1

m
ag

n
it

u
de

 s
pe

ct
ru

m

spectrum of seasonal + irregular part rn

Fig. 9.4.2 Spectra of monthly housing data with and without trend.

The signals were windowed by a Hamming window prior to computing their DTFTs. ��

Ideally, it does not matter if Hcomb(z) excludes or not the peak at DC because it
would be canceled from HS(z) by the presence of the factor

[
1−Htrend(z)

]
. However,

in practice because the filters are non-ideal, an extra step is usually taken to ensure that
this peak is absent or minimized from sn. For example, an additional de-trending step
may be applied to S(z), that is,

Sprelim(z)= Hcomb(z)R(z)

S(z)= Sprelim(z)−Htrend(z)Sprelim(z)= Hcomb(z)
[
1−Htrend(z)

]2Y(z)
(9.4.3)

This results in the modified extraction filters, which still satisfy (9.4.2):

HT(z)= Htrend(z) (trend)

HS(z)= Hcomb(z)
[
1−Htrend(z)

]2
(seasonal)

HI(z)=
[
1−Htrend(z)

]{
1−Hcomb(z)

[
1−Htrend(z)

]}
(irregular)

(9.4.4)

Further refinements will be discussed later on.

9.5 Classical Seasonal Decomposition

The classical seasonal decomposition method is the simplest realization of the proce-
dure outlined in the previous section. Consider the following two possible lowpass
trend-extraction filters:

Htrend(z) = 1

D
[
1+ z−1 + z−2 + · · · + z−(D−1)]

Htrend(z) = 1

D
[
1+ z−1 + z−2 + · · · + z−(D−1)] · 1

2
(1+ z−1)

(9.5.1)

where D is the period of the seasonal component. The first is typically used when D is
odd, and the second, when D is even. They are referred to as the 1×D and 2×D trend

394 9. Periodic Signal Extraction

filters, the notation N1×N2 denoting the convolution of a length-N1 with a length-N2

averaging filter:

1

N1

[
1+ z−1 + · · · + z−(N1−1)] · 1

N2

[
1+ z−1 + · · · + z−(N2−1)] (9.5.2)

The filters (9.5.1) are not perfect but are widely used. They have the desirable prop-
erty of having nulls at the non-zero harmonicsωk = kω1 = 2πk/D, k = 1,2, . . . ,D−1.
Their 3-dB cutoff frequency is about one-half the fundamental harmonic ω1, that is,

ωc = 0.886
π
D

(9.5.3)

Eq. (9.5.3) can easily be derived for the 1×D case and is a good approximation for
the 2×D case. Fig. 9.5.1 shows the magnitude response

∣∣Htrend(ω)
∣∣ versusω over the

symmetric Nyquist interval, −π ≤ω ≤ π. The 3-dB frequency is indicated on the graph
at the 1/

√
2 level.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

ω / ω
1

m
ag

n
it

u
de

 r
es

po
n

se

trend filter, D = 12

 2 x 12
 1 x 12

Fig. 9.5.1 Trend-extraction filters with D = 12.

In order to avoid delays introduced by the filters, the filters can be made symmetric
with respect to the time origin. LetD = 2p+1 orD = 2p in the even or odd case. Then,
the symmetrized versions of the filters (9.5.1) are obtained by advancing them by p time
units, that is, multiplying them by a factor of zp:

D = 2p+ 1 , Htrend(z)= zp 1

D
[
1+ z−1 + · · · + z−(D−1)]

D = 2p , Htrend(z)= zp 1

D
[
1+ z−1 + · · · + z−(D−1)] · 1

2
(1+ z−1)

(9.5.4)

The corresponding frequency responses are obtained by setting z = ejω:

D = 2p+ 1 , Htrend(ω)= sin(Dω/2)
D sin(ω/2)

D = 2p , Htrend(ω)= sin(Dω/2)
D sin(ω/2)

· cos(ω/2)
(9.5.5)

9.5. Classical Seasonal Decomposition 395

where we used the identity 1+z−1+· · ·+z−(D−1) = (1−z−D)/(1−z−1). The symmetric
impulse responses are:

D = 2p+ 1 , h trend = 1

D
[
1, 1, . . . , 1︸ ︷︷ ︸

2p−1 ones

, 1
]

D = 2p , h trend = 1

D
[
0.5, 1, . . . , 1︸ ︷︷ ︸

2p−1 ones

, 0.5
] (9.5.6)

In both cases, the filter length is 2p+1, and the time-domain operation for calculating
the estimated trend is by the symmetric convolutional equation:

t̂n =
p∑

i=−p
htrend(i)yn−i (9.5.7)

The issues of filtering with double-sided filters were discussed in Sec. 3.9. We recall
that for a length-L input signal yn, the steady-state filtered output is over the time
range p ≤ n ≤ L−1−p. The first p and last p output transients can be computed using
appropriate asymmetric filters, and there exist many possibilities for these. Musgrave’s
minimum-revision method, discussed in Sec. 9.8, constructs such asymmetric filters
from a given symmetric filter such as h trend.

The calculation of the trend estimate, incorporating also the end-point asymmetric
filters, can be carried out with the MATLAB functions trendma, minrev, and lpfilt,

htrend = trendma(D); % trend filters of Eq. (9.5.6)

B = minrev(htrend,R); % corresponding smoothing matrix

t_hat = lpfilt(B,y); % filtering operation

where y denotes the input data vector, and R is the Musgrave parameter to be explained
in Sec. 9.8. The use of asymmetric filters affects only the first p and last p outputs.

In the so-called classical decomposition method, we apply the above filtering proce-
dure to calculate the trend, and then apply ordinary signal averaging on the residual
rn = yn − tn to calculate the seasonal component. The following computational steps
describe the method:

B = minrev(trendma(D),R); % trend moving-average, with minimum-revision end-filters

yt = lpfilt(B,y); % trend component

yr = y - yt; % seasonal + irregular components

ys = sigav(yr,D); % seasonal component

yi = yr - ys; % irregular component

For a multiplicative decomposition, yn = sntnvn, the last three steps are replaced by,

yr = y ./ yt; % seasonal + irregular components

ys = sigav(yr,D); % seasonal component

yi = yr ./ ys; % irregular component

The function cldec implements the above steps,

[yt,ys,yi] = cldec(y,D,R,type); % classical decomposition method

396 9. Periodic Signal Extraction

where the string type takes on the values ’a’ or ’m’ for additive (the default) or mul-
tiplicative decomposition. The default value of R is zero, which simply omits the com-
putation of the first and last p transients and replaces them with the corresponding
samples of the input signal yn.

Example 9.5.1: Housing Starts. Fig. 9.5.2 the trend and seasonal components of the housing
starts data extracted by the classical decomposition method versus the methods discussed
in Example 9.3.2.

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal component

Fig. 9.5.2 Classical decomposition of monthly housing data.

The Musgrave parameter was chosen to be R = 10. Since D = 12, the value of R affects
only the first and last 6 outputs. The MATLAB code for generating these graphs was,

Y = loadfile(’newhouse.dat’);
i = find(Y(:,1)==109.1);
y = Y(i:end-4,1); t = taxis(y,12,1984);

D=12; R=10;
[yt,ys,yi] = cldec(y,D,R); % classical decomposition method

figure; plot(t,y,’--’, t,yt,’-’); % left graph

figure; plot(t,ys,’-’); % right graph

The estimated trend is not as smooth as that of the Whittaker-Henderson method, but the
estimated seasonal component is essentially the same as that of Example 9.3.2. ��

Example 9.5.2: Global Carbon Dioxide Data. Figure 9.5.3 shows on the upper-left the monthly
global CO2 data for the period of January 1980 to March 2009, obtained from the NOAA
web site: http://www.esrl.noaa.gov/gmd/ccgg/trends/.

The vertical axis is in parts per million (ppm), which represents the dry air mole fraction,
that is, the number of CO2 molecules divided by the number of all air molecules, after
water vapor has been removed.

The upper graphs show the application of the classical seasonal decomposition method.
The upper-left graph shows the trend tn extracted by a 2×12 moving-average filter, while
the right graph shows the seasonal component sn.

9.5. Classical Seasonal Decomposition 397

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
classical seasonal decomposition

year

pp
m

 data
 trend

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4
seasonal component

year

pp
m

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−120

−100

−80

−60

−40

−20

0

ω / ω
1

dB

spectrum of original signal yn

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

ω / ω
1

m
ag

n
it

u
de

spectrum of seasonal + irregular part rn

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
local polynomial smoothing, N = 59, d = 2

year

pp
m

 data
 trend

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
Whittaker− Henderson, λ = 4000, s = 3

year

pp
m

 data
 trend

Fig. 9.5.3 Monthly global CO2 data and spectra.

The middle graphs show the spectra of the original data on the left, and of the residual
part rn = yn − tn = sn + vn on the right. The frequency axis is the symmetric Nyquist
interval [−π,π] in units of the fundamental harmonicω1 = 2π/12. The trend dominates
the spectrum of yn and swamps the smaller harmonic peaks of the seasonal part. Indeed,
the level of the seasonal component relative to the trend can be estimated in dB to be:

20 log10

(
std(sn)

mean(yn)

)
= 20 log10

(
1.46

360

)
= −47.8 dB

398 9. Periodic Signal Extraction

Therefore, the spectrum of the seasonal component is too small to be visible if plotted in
absolute units. In order to make it visible, a Kaiser window with an 80-dB sidelobe level
was applied to yn prior to computing its spectrum and then plotted in dB. On the other
hand, after the trend is removed, the harmonics in the residual component rn are quite
visible if plotted in absolute units as in the middle-right graph.

The bottom two graphs show the trend component tn extracted by a local polynomial
smoothing filter on the left (with length N = 59 and length d = 2), and by a Whittaker-
Henderson smoother on the right (with λ = 4000 and s = 3). The corresponding seasonal
components obtained by signal averaging of the residual rn = yn − tn are not shown
because they are essentially the same as that of the upper-right graph. The MATLAB code
used to generate these six graphs was as follows:

Y = loadfile(’co2_mm_gl.dat’); % data file in the OSP toolbox

t = Y(:,3); y = Y(:,4); yt0 = Y(:,5); % extract times and signals

R = 15; [yt,ys,yi] = cldec(y,12,R); % classical decomposition

figure; plot(t,y, t,yt); % upper-left graph

figure; plot(t,ys); upper-right graph

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency in units of ω1

L = length(y); Rdb = 80; % Kaiser window parameters

wind = kwindow(L,Rdb)’; % Kaiser window in the OSP toolbox

ysi = y - yt; % seasonal + irregular component

Y = abs(freqz(y.*wind,1,w)); Y = Y/max(Y); % DTFT computation

Ysi = abs(freqz(ysi.*wind,1,w)); Ysi = Ysi/max(Ysi);

figure; plot(k, 20*log10(Y)); % middle-left graph

figure; plot(k, Ysi); % middle-right graph

N=59; d=2; yt = lpfilt(lpsm(N,d),y); % LPSM smoother

figure; plot(t,y, t,yt); % bottom-left graph

% ys = sigav(y-yt,12); % seasonal part, not shown

% figure; plot(t,ys);

la=4000; s=3; yt = whsm(y,la,s); % Whittaker-Henderson smoother

figure; plot(t,y, t,yt); % bottom-right graph

The signal yt0 extracted from the 5th column of the data file (as in the second line of code
above) represents the already de-seasonalized data, and therefore, we can compare it to
the trend extracted by the above three methods. It is not plotted because it is virtually
identical to the above extracted trends.

The percentage error defined as 100*norm(yt-yt0)/norm(yt0) is found to be 0.05%,
0.07%, and 0.05% for the classical, LPSM, and WH methods, respectively. ��

To gain some further insight into the nature of the filtering operations for the classi-
cal decomposition method, we show in Fig. 9.5.4 the magnitude responses of the filters
HS(ω), HT(ω), and HI(ω) for extracting the seasonal, trend, and irregular compo-

9.5. Classical Seasonal Decomposition 399

nents, as defined by Eq. (9.4.1). The trend filterHtrend(ω) is given by Eq. (9.5.5), and the
comb filterHcomb(ω) by Eq. (9.3.5) with the phase factor removed to make it symmetric.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|, N = 15, uniform

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 ω /ω1

|HI (ω)| and |HT (ω)|

 irregular
 trend

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|, N = 15, Kaiser

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 ω /ω1

|HI (ω)| and |HT (ω)|

 irregular
 trend

Fig. 9.5.4 Component extraction filters HS(ω), HT(ω), and HI(ω).

The upper graphs in Fig. 9.5.4 show the case of D = 12 and N = 15. We observe
the absence of the harmonic at DC in HS(ω). The irregular filter does not quite extract
the noise component vn, but rather a filtered version thereof. Ideally, the irregular filter
HI(ω) should have zeros at the harmonics, be very small in the passband of HT(ω),
and be flat between the harmonics. The actual filter HI(ω) does approximate these
features.

The sidelobe behavior about the harmonics in HS(ω), or about the nulls in HI(ω),
is due to the sidelobes introduced by the signal averaging filterHcomb(ω) of Eq. (9.3.5),
which was obtained by applying the seasonalizing transformation z→ zD to a length-N
FIR filter with uniform weights—the sidelobes being effectively the D-fold replicated
versions of the sidelobes of a length-N rectangular window.

Such sidelobes are suppressed only by about 13 dB relative to the main peaks and are
quire visible (at the level of 10−13/20 = 0.22). The sidelobes can be suppressed further
by replacing the rectangular FIR filter by a length-N windowed version thereof, using for
example a Hamming or a Kaiser window. To be precise, the comb filter obtained from a

400 9. Periodic Signal Extraction

window w(n), −M ≤ n ≤M, where N = 2M + 1, is defined by

W(z)=
M∑

n=−M
w(n)z−n ⇒ Hcomb(z)=W(zD)=

M∑
n=−M

w(n)z−nD (9.5.8)

where w(n) must be normalized to add up to unity. The two lower graphs of Fig. 9.5.4
show the filters obtained from a Kaiser window of length N = 15 and sidelobe level
RdB = 50 dB. The sidelobes are suppressed to the level of 10−50/20 = 0.003 and are not
visible if plotted in absolute scales. The price one pays for suppressing the sidelobes
is, of course, the widening of the harmonic peaks. To clarify these ideas, we give below
the MATLAB code for generating the graphs in Fig. 9.5.4:

D = 12; N = 15;
k = linspace(-6,6,1201); w = 2*pi*k/D; % frequency axis

ht = trendma(D); Ht = abs(freqz(ht,1,w)); % trend filter Htrend(ω)
hc = up(ones(1,N)/N, D); Hc = abs(freqz(hc,1,w)); % comb filter Hcomb(ω)
hs = conv(hc, compl(ht)); Hs = abs(freqz(hs,1,w)); % seasonal filter HS(ω)
hi = conv(compl(hs), compl(ht)); Hi = abs(freqz(hi,1,w)); % irregular filter HI(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % seasonal adjustment filter

figure; plot(k, Hs); figure; plot(k, Hi, k,Ht,’r--’); % upper graphs

figure; plot(k, Ha); % left graph in Fig. 9.5.5

Rdb=50; hk = kwindow(N,Rdb); hk = hk/sum(hk); % Kaiser window

hc = up(hk, D); Hc = abs(freqz(hc,1,w)); % new Hcomb(ω)
hs = conv(hc, compl(ht)); Hs = abs(freqz(hs,1,w)); % new HS(ω)
hi = conv(compl(hs), compl(ht)); Hi = abs(freqz(hi,1,w)); % new HI(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % seasonal adjustment filter

figure; plot(k, Hs); figure; plot(k, Hi, k,Ht,’r--’); % lower graphs

figure; plot(k, Ha); % right graph in Fig. 9.5.5

The impulse response definitions in this code implement Eq. (9.4.1) in the time do-
main. The upsampling function up was described in Sec. 9.1. The function compl com-
putes the impulse response of the complement of a double-sided symmetric filter, that
is, H(z)→ 1 − H(z), or hn → δn − hn. The function kwindow computes the Kaiser
window (for spectral analysis) [604] for a given length N and sidelobe level Rdb in dB,
and it is part of the OSP toolbox.

Fig. 9.5.5 illustrates the complementarity property more clearly by showing the sea-
sonal adjustment filter HA(ω)= 1 −HS(ω)= HT(ω)+HI(ω), that is, the filter that
removes the seasonal component from the data. As expected, the filter has nulls at the
harmonics and is essentially flat in-between.

9.6 Seasonal Moving-Average Filters

Signal averaging can be thought of as ordinary filtering by the seasonalized FIR averager
filter of Eq. (9.3.3). However, as we saw in Eq. (9.3.9), the averaged period builds up
gradually at the filter output and becomes available only as the last D output points.
This is so because the filter length ND is essentially the same as the signal length so

9.6. Seasonal Moving-Average Filters 401

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 ω /ω1

|HA (ω)|, N = 15, uniform

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 ω /ω1

|HA (ω)|, N = 15, Kaiser

Fig. 9.5.5 Seasonal adjustment filter HA(ω)= 1−HS(ω)= HT(ω)+HI(ω).

that the filter operates mostly in its transient state. Indeed, if L is the length of the
signal yn, the number of periods is N = floor(L/D) so that L ≈ ND.

In the classical decomposition method, the final accumulated period is replicatedN
times to make up the seasonal component sn. This procedure is appropriate only if sn
is truly periodic. However, in many practical applications sn is only quasi-periodic with
slowly changing periods. In order to be able to estimate sn more accurately we must
use a shorter seasonal moving-average filter that tracks the local (i.e., within the filter’s
moving window) periodic component.

Example 9.6.1: Fig. 9.6.1 illustrates the filtering point of view for extracting the seasonal part
sn. The same CO2 data are used as in Example 9.5.2. The classical decomposition method is
applied first to determine the trend tn, and then the residual signal is formed rn = yn− tn.
In this example, the number of periods contained in the yn signal is N = 29.

The upper-left graph shows the result of ordinary causal filtering of the residual signal rn
by the signal averaging comb filter (9.3.3) using MATLAB’s built-in function filter. We
observe that the transients eventually build up to the same final period as that obtained
by signal averaging (shown as the dotted line.)

In the upper-right graph, the residual rn was filtered by the double-sided filtering function
filtdbl discussed in Sec. 3.9, which is ordinary causal convolution followed by advancing
the result by (N−1)D/2 samples. Again, we observe the input-on and input-off transients
and the build-up of the correct period at the middle.

The transient portions of the double-sided filter output can be adjusted by using Mus-
grave’s minimum-revision asymmetric filters for the left and right end points. The result-
ing filter output is shown in the lower-left graph, in which the Musgrave parameter was
chosen to be R = ∞ (see Sec. 9.8 for more on that.)

The lower-right graph shows the result of filtering rn through a so-called 3×3 double-sided
seasonal moving-average filter, which is discussed below. The MATLAB code for generating
these graphs is as follows:

Y = loadfile(’co2_mm_gl.dat’);
t = Y(:,3); y = Y(:,4); % CO2 data

402 9. Periodic Signal Extraction

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

causal filtering

 filter
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

double− sided filtering

 filtdbl
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

double− sided with end− point filters

 lpfilt
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

3x3 seasonal moving− average

 3x3
 cldec

Fig. 9.6.1 Filtering versions of seasonal filter.

D=12; N=floor(length(y)/D); M=33; R=inf; % filter parameters

[yt,ys,yi] = cldec(y,D,R); yr = y - yt; % yr = residual component rn

h = ones(1,N)/N; % length-N moving-average

hc = up(h, D); % seasonalized comb filter obtained from h

Bc = upmat(minrev(h,R), D); % seasonalized minimum-revision filter matrix

ys1 = filter(hc,1,yr); % ordinary causal filtering by the comb filter hc

ys2 = filtdbl(hc,yr); % double-sided filtering

ys3 = lpfilt(Bc, yr); % double-sided filtering and end-point filters

[yt4,ys4] = smadec(y, D, M, R); % ys4 is the 3×3 moving-average output

figure; plot(t,ys1, t,ys,’:’); figure; plot(t,ys2, t,ys,’:’); % upper graphs

figure; plot(t,ys3, t,ys,’:’); figure; plot(t,ys4, t,ys,’:’); % lower graphs

The smadec function is a simple alternative to cldec and is discussed below. The
function upmat upsamples a filter matrix by a factor ofD for its use in comb filtering. It
upsamples each row and then each column by D and then, it replaces each group of D
columns by the corresponding convolution matrix arising from the first column in each
group. It can be passed directly into the filtering function lpfilt,

9.6. Seasonal Moving-Average Filters 403

Bup = upmat(B,D; % upsampling a filtering matrix

For example, the asymmetric filters associated with the 3×3 seasonal moving-average
filter [618] are as follows for D = 3, where the middle column is the 3×3 filter and the
other columns, the asymmetric filters to be used at the ends of the data record, and the
function smat is described below:

B = smat(1,33) = 1

27

⎡
⎢⎢⎢⎢⎢⎢⎣

11 7 3 0 0
11 10 6 3 0

5 7 9 7 5
0 3 6 10 11
0 0 3 7 11

⎤
⎥⎥⎥⎥⎥⎥⎦

Bup = upmat(B,3)= 1

27

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 0 0 7 0 0 3 0 0 0 0 0 0
0 11 0 0 7 0 0 3 0 0 0 0 0
0 0 11 0 0 7 0 0 3 0 0 0 0

11 0 0 10 0 0 6 0 0 3 0 0 0
0 11 0 0 10 0 0 7 0 0 5 0 0
0 0 11 0 0 10 0 0 7 0 0 5 0
5 0 0 7 0 0 9 0 0 7 0 0 5
0 5 0 0 7 0 0 10 0 0 11 0 0
0 0 5 0 0 7 0 0 10 0 0 11 0
0 0 0 3 0 0 6 0 0 10 0 0 11
0 0 0 0 3 0 0 7 0 0 11 0 0
0 0 0 0 0 3 0 0 7 0 0 11 0
0 0 0 0 0 0 3 0 0 7 0 0 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.6.1)

The simple 3×3, 3×5, and 3×9 seasonal moving-average filters are widely used in
de-seasonalizing business, government, and census data. They are obtained by sym-
metrizing theN1×N2 filters of Eq. (9.5.2) and then applying the transformation z→ zD.
For example, the resulting 3×3 and 3×5 comb filters are:

H33(z) = 1

3
(zD + 1+ z−D)·1

3
(zD + 1+ z−D)

H35(z) = 1

3
(zD + 1+ z−D)·1

5
(z2D + zD + 1+ z−D + z−2D)

(9.6.2)

with symmetric impulse responses,

h33 = 1

9
[1, 0, . . . ,0︸ ︷︷ ︸

D−1 zeros

,2,0, . . . ,0,3,0, . . . ,0,2,0, . . . ,0,1]

h35 = 1

15
[1,2,0, . . . ,0,3,0, . . . ,0,3,0, . . . ,0,3,0, . . . ,0,2,0, . . . ,0,1]

(9.6.3)

The MATLAB function smav calculates such impulse responses,

h = smav(N1,N2,D); % seasonal moving-average filters

404 9. Periodic Signal Extraction

It is simply:

h = up(conv(ones(1,N1), ones(1,N2))/(N1*N2), D);

These filters are to be applied to the residual signal rn = yn − tn. Their end-point
effects can be handled by using Musgrave’s minimum-revision filters or by any other
appropriate asymmetric filters. In fact, the census X-11/X-12 methods use asymmetric
filters that are specially constructed for the 3×3, 3×5, and 3×9 filters, and may be found
in Ref. [618]. They have been incorporated into the smadec and x11dec. For example,
Eq. (9.6.1) shows the 3×3 filter matrix before and after it is upsampled.

To summarize, the filtering approach for de-seasonalizing a signal yn = sn+ tn+vn
with period D consists of the following two basic steps:

1. Apply a lowpass filter to extract the trend component tn, incorporating also asym-
metric end-point filters. The trend-extraction filter can be a simple 1×D or 2×D
moving average, or, any other lowpass filter such as a local-polynomial or Whittaker-
Henderson smoother.

2. Apply a comb filter to the de-trended residual signal rn = yn − tn to extract the
seasonal part sn, incorporating asymmetric filters for the end-points. The comb
filter can be a simple seasonalized 3×3, 3×5, or 3×9 lowpass filter, or a more
general seasonalized filter such as one obtained from a non-rectangular window.
The de-seasonalized, or seasonally adjusted, signal is then an = yn − sn.

The MATLAB function smadec carries out this program using the simple 1×D or
2×D moving-average filter for de-trending and the 3×3, 3×5, or 3×9 comb filters for
the seasonal part. It has usage:

[yt,ys,yi] = smadec(y,D,M,R,iter,type); % seasonal moving-average decomposition

where yt, ys, yi are the estimated components tn, sn, vn, and y is the input data
vector. The integer values M = 33,35,39 select the 3×3, 3×5, or 3×9 seasonal comb
filters, other values of M can also be used. The Musgrave parameter defaults to R = ∞,
the parameter iter specifies the number of iterations of the filtering process, which
correspond to applying the trend filter iter times. The string type takes on the values
’a’, ’m’ for additive or multiplicative decomposition. To clarify the operations, we
give below the essential part of the code in smadec for the additive case:

F = minrev(trendma(D),R); % trend moving-average, with minimum-revision end-filters

B = smat(D,M,R); % seasonal moving averages, with end-filters

yt = y; % initialize iteration

for i=1:iter,
yt = lpfilt(F,yt); % T component

yr = y - yt; % S+I component

ys = lpfilt(B,yr); % S component

yi = yr - ys; % I component

end

The function smat generates the filtering matrix of the seasonalized comb filters,
including the specific asymmetric filters for the 3×3, 3×5, or 3×9 cases, as well for
other cases.

9.6. Seasonal Moving-Average Filters 405

Example 9.6.2: Unemployment Data 1965–1979. The data set representing the monthly num-
ber of unemployed 16–19 year old men for the period Jan. 1965 to Dec. 1979 has served as
a benchmark for comparing seasonal adjustment methods [633,637]. The data set is avail-
able from the US Bureau of Labor Statistics web site: http://www.bls.gov/data/ (series
ID: LNU03000013, under category: Unemployment > Labor Force Statistics > on-screen
data search).

The upper graphs of Fig. 9.6.2 illustrate the application of the smadec function using D =
12, M = 35 (which selects the 3×5 comb), one iteration, Musgrave parameter R = ∞ for
the 2×D trend filter, and additive decomposition type. The left graph shows the trend
tn and the right, the estimated seasonal component sn, which is not exactly periodic but
exhibits quasi-periodicity. The results are comparable to those of Refs. [633,637].

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

2x12 trend moving− average

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal 3x5 filter

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

Whittaker− Henderson trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal Kaiser filter

Fig. 9.6.2 Trend/seasonal decomposition of monthly unemployment data for 1965–1979.

The lower graphs show the decomposition obtained by de-trending using a Whittaker-
Henderson smoother of order s = 2, followed by a Kaiser comb filter. The function whgcv

was used to determine the optimum smoothing parameter, λopt = 2039. The Kaiser win-
dow had length N = 15 and relative sidelobe level of Rdb = 50 dB. The MATLAB code for
generating these graphs was as follows:

Y = loadfile(’unemp-1619-nsa.dat’); % data file in OSP toolbox

i=find(Y==1965); Y = Y(i:i+14,2:13)’; % extract 1965-1979 data

406 9. Periodic Signal Extraction

y = Y(:)/1000; t = taxis(y,12,65); % y units in millions

D=12; M=35; R=inf; iter=1; type=’a’; % smadec input parameters

[yt,ys,yi] = smadec(y,D,M,R,iter,type); % yt,ys represent tn, sn

figure; plot(t,y, t,yt); figure; plot(t,ys); % upper graphs

s = 2; la = 2000:2050; % search range of λ’s

[gcv,lopt] = whgcv(y,la,s); % optimum λopt = 2039

yt = whsm(y,lopt,s); % extract tn component

yr = y-yt; % residual S+I component

Rdb=50; N=15; h = kwindow(N,Rdb); hk = h/sum(h); % Kaiser window

B = upmat(minrev(hk,R), D); % Kaiser comb with end-filters

ys = lpfilt(B, yr); % extract sn component

figure; plot(t,y, t,yt); figure; plot(t,ys); % bottom graphs

The Whittaker-Henderson method results in a smoother trend. However, the trend from
smadec can be made equally smooth by increasing the number of iterations, for example,
setting iter=3. The frequency responses of the various filters are shown in Eq. (9.6.3).

The filters HT(ω),HS(ω) for extracting the trend and seasonal components, and the
seasonal-adjustment filter HA(ω)= 1 − HS(ω) are constructed from Eq. (9.4.1). The
MATLAB code for generating these graphs was:

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency range [−π,π]

ht = trendma(12); Ht = abs(freqz(ht,1,w)); % 2×12 trend filter

hc = smav(3,5,12); % upsampled 3×5 comb filter

hs = conv(hc,compl(ht)); Hs = abs(freqz(hs,1,w)); % seasonal filter, HS(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % adjustment filter, 1−HS(ω)

figure; plot(k,Hs, k,Ht,’--’); figure; plot(k,Ha); % upper graphs

Ht = 1 ./ (1 + lopt * (2*sin(w/2)).^(2*s)); % Whittaker-Henderson trend filter

hc = up(hk,12); % Kaiser comb impulse response

Hc = freqz(hc,1,w) .* exp(j*(N-1)*D*w/2); % Kaiser comb frequency response

Hs = Hc .* (1-Ht); Ha = 1 - Hs; % HS(ω) and HA(ω)= 1−HS(ω)
Hs = abs(Hs); Ha = abs(Ha);

figure; plot(k,Hs, k,Ht,’--’); figure; plot(k,Ha); % bottom graphs

The Whittaker-Henderson trend filter was computed using Eq. (8.2.7). The frequency re-
sponse of the Kaiser comb filter was multiplied by ejω(N−1)D/2 to make the filter symmetric.
It is evident that the WH/Kaiser filters perform better. ��

The steps implementing the Whittaker-Henderson/Kaiser decomposition have been
incorporated into the MATLAB function whkdec,

[yt,ys,yi] = whkdec(y,D,s,la,N,Rdb,R,type); % WH/Kaiser decomposition

9.7. Census X-11 Decomposition Filters 407

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

|HS (ω)| and |HT (ω)| with 3x5 comb

 seasonal filter
 trend filter

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

seasonal adjustment filter |HA (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

|HS (ω)| and |HT (ω)| with Kaiser comb

 seasonal filter
 trend filter

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

seasonal adjustment filter |HA (ω)|

Fig. 9.6.3 Frequency responses of trend, seasonal, and seasonal-adjustment filters.

The WH parameters s,la must be selected in advance, for example, λ can be ten-
tatively estimated using the GCV function whgcv, but it should be noted that the GCV
does not always give a “good” value for λ. The Kaiser window length N must be odd and
the sidelobe level must be restricted to the range [13,120] dB. The Musgrave parameter
R affects only the Kaiser comb filter because the WH trend already takes into account
the end points. The parameter type is as in the function smadec.

9.7 Census X-11 Decomposition Filters

The Census X-11/X-12 seasonal adjustment procedures have become a standard for de-
seasonalizing economic data [605–621]. They are based on a series of filtering operations
that represent a refined version of the procedures outlined in the previous section.

Here, we only discuss the relevant filtering operations, leaving out details such as
adjustments for outliers or calendar effects. The most recent version, X-12-ARIMA, is
available from the web site [607]. The web pages [608,609] contain a number of papers
on the development of the X-11/X-12 methods.

408 9. Periodic Signal Extraction

As outlined in [610,613], the X-11 method involves the repeated application of the
2×12 trend filter of Eq. (9.5.1), the 3×3 and 3×5 comb filters of Eq. (9.6.2), and the
Henderson filters of lengths 9, 13, or 25, with polynomial and smoothing orders d =
s = 3 given by Eq. (4.2.29) of Chap. 4. The basic X-11 filtering steps are as follows,
assuming an additive model yn = sn + tn + vn,

1. Apply a 2×12 trend filter to yn to get a preliminary estimate of the trend tn.

2. Subtract tn from yn to get a preliminary estimate of the residual rn = yn − tn.

3. Apply the 3×3 comb filter to rn to get a preliminary estimate of sn.

4. Get an improved sn by removing its filtered version by the 2×12 trend filter.

5. Subtract sn from yn to get a preliminary adjusted signal an = yn − sn = tn + vn.

6. Filter an by a Henderson filter to get an improved estimate of the trend tn.

7. Subtract tn from yn to get an improved residual rn = yn − tn.

8. Apply the 3×5 comb filter to rn to get an improved estimate of sn.

9. Get the final sn by removing its filtered version by the 2×12 trend filter.

10. Subtract sn from yn to get the final adjusted signal an = yn − sn = tn + vn.

11. Filter an by a Henderson filter to get the final estimate of the trend tn.

12. Subtract tn from an to get the final estimate of the irregular component vn.

These steps are for monthly data. For quarterly data, replace the 2×12 trend filter
by a 2×4 filter. The steps can be expressed concisely in the z-domain as follows:

1. Ypre
T = FY

2. Ypre
R = Y −Ypre

T = (1− F)Y
3. Ypre

S = H33Y
pre
R = H33(1− F)Y

4. Yimp
S = Ypre

S − FYpre
S = H33(1− F)2Y

5. Ypre
A = Y −Yimp

S = [1−H33(1− F)2
]
Y

6. Yimp
T = HYpre

A = H[1−H33(1− F)2
]
Y

7. Yimp
R = Y −Yimp

T =
[

1−H[1−H33(1− F)2
]]
Y

8. Yimp
S = H35Y

imp
R = H35

[
1−H[1−H33(1− F)2

]]
Y

9. YS = Yimp
S − FYimp

S = (1− F)H35

[
1−H[1−H33(1− F)2

]]
Y ≡ HSY

10. YA = Y −YS = (1−HS)Y ≡ HAY
11. YT = HYA = H(1−HS)Y ≡ HTY
12. YI = YA −YT = (1−H)(1−HS)Y ≡ HIY

(9.7.1)

where Ypre
T = FY stands for Ypre

Y (z)= F(z)Y(z), etc., and F(z),H33(z),H35(z),H(z)
denote the 2×12 trend filter, the 3×3 and 3×5 comb filters, and the Henderson filter,
and the z-transforms of the data, trend, seasonal, adjusted, and irregular components
are denoted by Y(z), YT(z), YS(z), YA(z), and YI(z).

9.7. Census X-11 Decomposition Filters 409

It follows that the effective filters for extracting the seasonal, seasonally-adjusted,
trend, and irregular components are:

HS = (1− F)H35

[
1−H[1−H33(1− F)2

]]
(seasonal)

HA = 1−HS (seasonally-adjusted)

HT = H(1−HS) (trend)

HI = (1−H)(1−HS) (irregular)

(9.7.2)

They satisfy the complementarity property HT(z)+HS(z)+HI(z)= 1.

Example 9.7.1: X-11 Filters. The construction of the time-domain impulse responses of the X-
11 decomposition filters (9.7.2) is straightforward. For example, the following MATLAB
code evaluates the impulse responses (using a 13-term Henderson filter), as well as the
corresponding frequency responses shown in Fig. 9.7.1,

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency axis −π ≤ω ≤ π

hf = trendma(12); % 2×12 trend filter, F
hfc = compl(hf); % complement of trend filter, 1− F
h33 = smav(3,3,12); % 3×3 comb filter, H33

h35 = smav(3,5,12); % 3×5 comb filter, H35

N=13; he = lprs2(N,3,3); % 13-term Henderson filter, H
g = conv(hfc,hfc); % G = (1− F)2, G is temporary variable

g = compl(conv(h33, g)); % G = 1−H33(1− F)2

g = compl(conv(he,g)); % G = 1−H[1−H33(1− F)2]
g = conv(h35,g); % G = H35

{
1−H[1−H33(1− F)2]}

% HS = (1− F)H35
{
1−H[1−H33(1− F)2]}

hs = conv(hfc,g); Hs = abs(freqz(hs,1,w)); % seasonal

ha = compl(hs); Ha = abs(freqz(ha,1,w)); % adjustment

ht = conv(he,ha); Ht = abs(freqz(ht,1,w)); % trend

hi = conv(compl(he),ha); Hi = abs(freqz(hi,1,w)); % irregular

figure; plot(k, Hs); figure; plot(k, Ht); % upper graphs

figure; plot(k, Ha); figure; plot(k, Hi); % lower graphs

We note that the filters have the expected shapes. All cases described in [613] can be
generated by variations of this code. ��

The MATLAB function x11dec implements the above steps, amended by the use of
asymmetric filters to handle the end-points of the time series,

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 decomposition method

where D is the seasonal period, M1,M2 the sizes of the first and second comb filters
(entered as 33, 35, or 39), N1,N2 are the lengths of the first and second Henderson filters,
R is the Musgrave minimum-revision parameter affecting both the Henderson filters and
the trend filter, and type designates an additive or multiplicative decomposition. The
Musgrave parameter R is usually assigned the following values, depending on the length

410 9. Periodic Signal Extraction

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HT (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HA (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HI (ω)|

Fig. 9.7.1 X-11 decomposition filters (with 13-term Henderson).

N of the Henderson filter [618]:
N R
5 0.001
7 4.5
9 1.0

13 3.5
23 4.5

(9.7.3)

Example 9.7.2: Unemployment Data 1980–2008. Fig. 9.7.2 shows the X-11 decomposition of
the monthly unemployment data for 20 year and older men for the period Jan. 1980 to
Dec. 2008. The data are from the US BLS web site: http://www.bls.gov/data/, series
LNU03000025, under category: Unemployment > Labor Force Statistics > on-screen data
search. The already seasonally adjusted data are also available as series LNS13000025.

The upper-left graph shows the original data and the extracted trend tn assuming an addi-
tive model yn = tn+sn+vn. The lower-left graph is the extracted seasonal component sn.
The upper-right graph shows the seasonally-adjusted signal an = yn − sn = tn + vn to be
compared with that of the lower-right graph, which shows the already available adjusted
signal— the two agreeing fairly well. The graphs were generated by the following code:

Y = loadfile(’unemp-20-nsa.dat’); % not-seasonally adjusted data

9.7. Census X-11 Decomposition Filters 411

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

X− 11 trend

 data
 trend

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

computed seasonally adjusted

1980 1984 1988 1992 1996 2000 2004 2008
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

year

m
il

li
on

s

seasonal component

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

available seasonally adjusted

Fig. 9.7.2 X-11 decomposition of unemployment data 1980-2008.

i = find(Y==1980); Y = Y(i:end,2:13)’; % select years 1980-2008

y = Y(:)/1000; t = taxis(y,12,1980); % data vector y, and time axis

% data sets available in the OSP toolbox

Y = loadfile(’unemp-20-sa.dat’); % seasonally adjusted data

i = find(Y==1980); Y = Y(i:end,2:13)’;
yadj = Y(:)/1000; % yadj = already available adjusted data

D=12; M1=33; M2=35; N1=13; N2=13; R=3.5; type=’a’; % X-11 parameters

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 method

ya = y-ys; % seasonally adjusted

%s = 2; la = 1000; N=15; Rdb=50; % WH/K parameters

%[yt,ys,yi] = whkdec(y,D,s,la,N,Rdb,R,type); % Whittaker-Henderson/Kaiser

%ya = y-ys; % seasonally adjusted

figure; plot(t,y,’:’, t,yt,’-’); figure; plot(t,ya); % upper graphs

figure; plot(t,ys); figure; plot(t,yadj); % lower graphs

The value of R was 3.5 because a 13-term Henderson filter was used. The purpose of this
example was to compare the performance of our simplified X-11 implementation with the
results that are already available from the Bureau of Labor Statistics. We note that the use
of the Whittaker-Henderson/Kaiser decomposition method also works comparably well,

412 9. Periodic Signal Extraction

for example with parameters s = 2, λ = 1000, Kaiser lengthN = 15, and Rdb = 50 dB. The
code for that is included above but it is commented out. ��

9.8 Musgrave Asymmetric Filters

The handling of the end-point problem by the use of asymmetric filters was discussed in
Sec. 3.9. We saw that the output yn of filtering a length-L signal xn, 0 ≤ n ≤ L− 1, by a
double-sided filter hm, −M ≤m ≤M, using for example the function filtdbl, consists
ofM initial andM final transient output samples, and L−2M steady-state samples, the
latter being computed by the steady-state version of the convolutional equation:

yn =
M∑

m=−M
hmxn−m , M ≤ n ≤ L− 1−M (9.8.1)

The overall operation can be cast in convolution matrix form. For example, for L = 8
and M = 2, we have:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

. . .
x2

x3

x4

x5

. . .
x6

x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.8.2)

The middle L − 2M = 4 output samples are steady, while the first and last M = 2
are transient and are computed by using fewer filter weights that the steady ones. The
transient and steady filters can be arranged into a matrix B, which is for the above
example,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 0 0
h−1 h0 h1 h2 0
h−2 h−1 h0 h1 h2

0 h−2 h−1 h0 h1

0 0 h−2 h−1 h0

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.8.3)

The convolution matrix H can be built from the knowledge of B as described in
Sec. 3.9. The matrix B conveniently summarizes the relevant filters and can be used as
an input to the filtering function lpfilt.

As discussed in Sec. 3.9, local polynomial smoothing filters, including Henderson
filters, generate their own matrix B to handle the series end-points, with the non-central
columns of B consisting of the corresponding prediction filters.

However, when one does not have available such prediction filters, but only the
central filter hm, −M ≤m ≤M, one must use appropriately designed end-point filters.

9.8. Musgrave Asymmetric Filters 413

For example, Eq. (9.8.2) would change to:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0
0 f0

−1 f0
−2 0 0 0 0 0

f1
1 f1

0 f1−1 f1−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 g1

2 g1
1 g1

0 g1−1

0 0 0 0 0 g0
2 g0

1 g0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

. . .
x2

x3

x4

x5

. . .
x6

x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.8.4)

where the filters f0
m and f1

m are used for computing the first two transient outputs y0, y1,
and the filters g0

m and g1
m are for the last two outputs y7, y6. The correspondingBmatrix

would be in this case:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f0
0 f1

1 h2 0 0

f0
−1 f1

0 h1 g1
2 0

f0
−2 f1−1 h0 g1

1 g0
2

0 f1−2 h−1 g1
0 g0

1

0 0 h−2 g1−1 g0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.8.5)

More generally, the filters f im , gim , i = 0,1, . . . ,M − 1, compute the first M and last
M output samples yi , yL−1−i , respectively, through the convolutional equations:

yi =
i∑

m=−M
fimxi−m =

M∑
m=−i

f i−mxi+m = f ii x0 + · · · + f i0xi + · · · + f i−Mxi+M

yL−1−i =
M∑

m=−i
gimxL−1−i−m = giMxL−1−i−M + · · · + gi0xL−1−i + · · · + gi−ixL−1

(9.8.6)

for i = 0,1, . . . ,M − 1, where the limits of summations follow by the requirement that
only available xn samples appear in the sums.

Musgrave’s method [615,616] constructs such asymmetric filters from the knowledge
only of the central filter hm. The construction applies to filters hm that are symmetric,
hm = h−m, and are normalized to unity gain at DC, such as lowpass trend filters,

M∑
m=−M

hm = 1 (9.8.7)

The asymmetric filters f im, gim are required to satisfy similar moment constraints:

i∑
m=−M

fim = 1 ,
M∑

m=−i
gim = 1 (9.8.8)

The design is based on a minimum-revision criterion. When the data record has
length L, the ith output from the end, yL−1−i, is computed with the filter gim. If or

414 9. Periodic Signal Extraction

when the series is extended to length L− 1+M, then the same output can actually be
computed with the symmetric filter hm resulting in a revised output yrev

L−1−i, that is,

yL−1−i =
M∑

m=−i
gimxL−1−i−m , yrev

L−1−i =
M∑

m=−M
hmxL−1−i−m

Musgrave’s criterion selectsgim to minimize the mean-square revision errorE[e2
L−1−i],

where eL−1−i = yL−1−i−yrev
L−1−i, under the assumption that locally the input series is lin-

ear, that is, xL−1−i−m = a+bm+vm, with a,b constant parameters, and vm zero-mean
white noise with variance σ2. The mean-square error becomes then,

E[e2
L−1−i] = E

[[M∑
m=−i

gim(a+ bm+ vm)−
M∑

m=−M
hm(a+ bm+ vm)

]2
]

= E
[[
b

M∑
m=−i

mgim +
M∑

m=−i
(gim − hm)vm −

−i−1∑
m=−M

hmvm
]2
]

= σ2
M∑

m=−i
(gim − hm)2+b2

(M∑
m=−i

mgim
)2

+ const.

(9.8.9)

where “const.” is a positive term independent of gim. In deriving this, we used the mo-
ment constraints (9.8.7) and (9.8.8), and the property

∑M
m=−Mmhm = 0, which follows

from the assumed symmetry of hm. Defining the constant β2 = b2/σ2, it follows that
the optimum filter gim will be the solution of the following optimization criterion, which
incorporates the constraint (9.8.8) by means of a Lagrange multiplier λ:

J =
M∑

m=−i
(gm − hm)2+β2

(M∑
m=−i

mgm
)2

+ λ
(

1−
M∑

m=−i
gm
)
= min (9.8.10)

In a similar fashion, we can show that the filters f im are the solutions of

J =
i∑

m=−M
(fm − hm)2+β2

(i∑
m=−M

mfm
)2

+ λ
(

1−
i∑

m=−M
fm
)
= min (9.8.11)

Because hm is even inm it follows (by changing variablesm→ −m in the sums) that
f im = gi−m, that is, the beginning filters are the reverse of the end filters. Thus, only gim
need be determined and is found to be [616]:

gim = hm +
Ai

M + i+ 1
+ β

2Bi
Di

(m− μi) , −i ≤m ≤M (9.8.12)

for i = 0,1, . . . ,M − 1, with the constants Ai, Bi,Di, μi defined by,

Ai =
−i−1∑
m=−M

hm , Bi =
−i−1∑
m=−M

(m− μi)hm , i = 0,1, . . . ,M − 1

μi = M − i
2

, Di = 1+ β
2

12
(M + i)(M + i+ 1)(M + i+ 2)

(9.8.13)

9.8. Musgrave Asymmetric Filters 415

To show Eq. (9.8.12), we set the gradient of J in (9.8.10) to zero, ∂J/∂gm = 0, to get,

gm = hm + λ− β2Gm, G =
M∑

m=−i
mgm (9.8.14)

Summing up over m and using the constraint (9.8.8), and then, multiplying by m
and summing up over m, results in two equations for the two unknowns λ,G:

1 =
M∑

m=−i
hm +

(M∑
m=−i

1
)
λ−

(M∑
m=−i

m
)
β2G

G =
M∑

m=−i
mhm +

(M∑
m=−i

m
)
λ−

(M∑
m=−i

m2
)
β2G

(9.8.15)

Using the properties,

1−
M∑

m=−i
hm =

−i−1∑
m=−M

hm ,
M∑

m=−i
mhm = −

−i−1∑
m=−M

mhm

and the identities,

M∑
m=−i

1 =M + i+ 1

M∑
m=−i

m = 1

2
(M + i+ 1)(M − i)= (M + i+ 1)μi

M∑
m=−i

m2 = (M + i+ 1)μ2
i +

1

12
(M + i)(M + i+ 1)(M + i+ 2)

(9.8.16)

and solving Eqs. (9.8.15) for the constants λ,G and substituting them in (9.8.14), gives
the solution (9.8.12). The parameter β is usually computed in terms of the Musgrave
parameter R, the two being related by

R2 = 4

πβ2
⇒ β2 = 4

πR2
(9.8.17)

The MATLAB function minrev implements Eq. (9.8.12) and arranges the asymmetric
filters into a filtering matrix B, which can be passed into the filtering function lpfilt,

B = minrev(h,R); % minimum-revision asymmetric filters

The input is any odd-length symmetric filter hm and the parameterR. Typical values
of R are given in Eq. (9.7.3). The value R = ∞ corresponds to slope β = 0. For R = 0
or β = ∞, the limit of the solution (9.8.12) is ignored and, instead, the function minrev
generates the usual convolutional transients for the filter hm, resulting in a matrix B
such that in Eqs. (9.8.3).

We have made extensive use of this function since Chap. 3. As a further example,
we compare the filtering matrix B for a 7-term Henderson filter resulting from minrev

416 9. Periodic Signal Extraction

with the standard value R = 4.5 to that resulting from the function lprs using the
corresponding prediction filters for the same Henderson filter:

h = lprs2(7,3,3)=[−0.0587, 0.0587, 0.2937, 0.4126, 0.2937, 0.0587, −0.0587]

B = minrev(h,4.5)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5345 0.2892 0.0336 −0.0587 0 0 0
0.3833 0.4103 0.2747 0.0587 −0.0531 0 0
0.1160 0.2937 0.3997 0.2937 0.0582 −0.0542 0

−0.0338 0.0610 0.2870 0.4126 0.2870 0.0610 −0.0338
0 −0.0542 0.0582 0.2937 0.3997 0.2937 0.1160
0 0 −0.0531 0.0587 0.2747 0.4103 0.3833
0 0 0 −0.0587 0.0336 0.2892 0.5345

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B = lprs(7,3,3)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8182 0.1836 −0.0587 −0.0587 0.0336 0.0682 −0.1049
0.4895 0.4510 0.2741 0.0587 −0.0951 −0.0874 0.1818
−0.2448 0.4283 0.5245 0.2937 −0.0140 −0.1486 0.1399
−0.2797 0.1049 0.3357 0.4126 0.3357 0.1049 −0.2797

0.1399 −0.1486 −0.0140 0.2937 0.5245 0.4283 −0.2448
0.1818 −0.0874 −0.0951 0.0587 0.2741 0.4510 0.4895
−0.1049 0.0682 0.0336 −0.0587 −0.0587 0.1836 0.8182

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The mean-square revision error (9.8.9) was calculated assuming a local linear func-
tion of time for the input. The criterion can be generalized to higher-order polynomials.
For example, for a second-order polynomial,

xL−1−i−m = a+ bm+ cm2 + vm
the mean-square revision error will be:

E[e2
L−1−i] = E

[[M∑
m=−i

gm(a+ bm+ cm2 + vm)−
M∑

m=−M
hm(a+ bm+ cm2 + vm)

]2
]

= σ2
M∑

m=−i
(gm − hm)2+c2

(M∑
m=−i

m2gm
)2

+ const.

(9.8.18)
where we assumed that hm is symmetric, has unity gain at DC, and zero second moment
(i.e., it reproduces second-order polynomials). Similarly, we assumed that gm has unity
gain at DC and zero first moment (so that it reproduces first-order polynomials). Thus,
the expression (9.8.18) was obtained under the constraints:

hm = h−m ,
M∑

m=−M

⎡
⎢⎣ 1
m
m2

⎤
⎥⎦hm =

⎡
⎢⎣ 1

0
0

⎤
⎥⎦ , M∑

m=−i

[
1
m

]
gm =

[
1
0

]
(9.8.19)

Defining γ2 = c2/σ2, we obtain the following optimization criterion, which incorporates
the above constraints on gm with two Lagrange multipliers λ1, λ2:

J =
M∑

m=−i
(gm−hm)2+γ2

(M∑
m=−i

m2gm
)2

+λ1

(
1−

M∑
m=−i

gm
)
−λ2

(M∑
m=−i

mgm
)

(9.8.20)

9.9. Seasonal Whittaker-Henderson Decomposition 417

The vanishing of the gradient gives:

gm = hm + λ1 + λ2m− γ2Gm2 , G =
M∑

m=−i
m2gm (9.8.21)

By multiplying by m0,m1,m2 and summing up over m, we obtain three equations
for the three unknowns λ1, λ2, G,

1 =
M∑

m=−i
hm +

(M∑
m=−i

1
)
λ1 +

(M∑
m=−i

m
)
λ2 −

(M∑
m=−i

m2
)
γ2G

0 =
M∑

m=−i
mhm +

(M∑
m=−i

m
)
λ1 +

(M∑
m=−i

m2
)
λ2 −

(M∑
m=−i

m3
)
γ2G

G =
M∑

m=−i
m2hm +

(M∑
m=−i

m2
)
λ1 +

(M∑
m=−i

m3
)
λ2 −

(M∑
m=−i

m4
)
γ2G

(9.8.22)

Substituting the solutions for λ1, λ2, G into (9.8.21) gives the solution:

gim = hm +
Ai

M + i+ 1
+ Bi
Σi
(m− μi)+γ

2Ci
Δi

[
(m− μi)2−ν2

i
]
, −i ≤m ≤M (9.8.23)

for i = 0,1, . . . ,M − 1, with the same constants Ai, Bi, μi as in Eq. (9.8.13), and with
Σi,Δi, νi, Ci are defined by

Σi = 1

12
(M + i)(M + i+ 1)(M + i+ 2) , ν2

i =
1

12
(M + i)(M + i+ 2)

Δi = 1+ γ2

180
(M + i− 1)(M + i)(M + i+ 1)(M + i+ 2)

Ci =
−i−1∑
m=−M

[
(m− μi)2−ν2

i
]
hm

(9.8.24)

9.9 Seasonal Whittaker-Henderson Decomposition

There are several other seasonal decomposition methods. The Holt-Winters exponential
smoothing method [239–241], which was briefly discussed in Eq. (6.13.7), is a simple,
effective, method of simultaneously tracking trend and seasonal components.

Another method is based on a seasonal generalization of the Whittaker-Henderson
method [622–625] and we discuss it a more detail in this section.

Model-based methods of seasonal adjustment [626–642] are widely used and are
often preferred over the X-11/X-12 methods. They are based on making ARIMA-type
models for the trend and seasonal components and then estimating the components
using optimum Wiener filters, or their more practical implementation as Kalman filters
[643–664]. We encountered some examples in making signal models of exponential-
smoothing, spline, and Whittaker-Henderson filters. We will be discussing the state-
space approach in a later chapter.

418 9. Periodic Signal Extraction

The seasonal generalization of the Whittaker-Henderson method, which was origi-
nally introduced by Leser, Akaike, and Schlicht [622–624], differs from the Whittaker-
Henderson/Kaiser method that we discussed earlier in that the latter determines the
trend tn using ordinary Whittaker-Henderson smoothing, and then applies a Kaiser-
window comb filter to the residual rn = yn − tn to extract the seasonal part sn. By
contrast, in the seasonalized version, tn and sn are determined simultaneously from a
single optimization criterion. We recall that the ordinary Whittaker-Henderson perfor-
mance index for estimating the trend tn is,

J =
N−1∑
n=0

(yn − tn)2+λ
N−1∑
n=s

(∇stn)2 = min (9.9.1)

where s is the smoothing order and N, the length of yn. The seasonalized version with
period D replaces this by,

J =
N−1∑
n=0

(yn−tn−sn)2+λ
N−1∑
n=s
(∇stn)2+α

N−1∑
n=D−1

(sn+sn−1+· · ·+sn−D+1)2= min (9.9.2)

A fourth term, β
∑N−1
n=D(sn − sn−D)2, may be added [623,624], but it is generally not

necessary for the following reason. The minimization of J forces the sum

Sn = sn + sn−1 + · · · + sn−D+1 (9.9.3)

to become small, ideally zero, and as a consequence the quantity sn− sn−D = Sn−Sn−1

will also be made small. Nevertheless, such a term has been implemented as an option
in the function swhdec below. Eq. (9.9.2) can be written in a compact vectorial form as,

J = (y−t−s)T(y−t−s)+λ tT(DTs Ds) t+α sT(ATA)s = min (9.9.4)

where, as discussed in general terms in Sec. 8.1, the matrices Ds,A have dimensions
(N−s)×N and (N−D+1)×N, respectively, and are the steady-state versions of the
convolution matrices of the corresponding filters, that is,

Ds(z)= (1− z−1)s , ds = binom(s) , Ds = convmat
(
flip(ds), N − s

)T
A(z)=

D−1∑
k=0

z−k , a = [1, 1, . . . ,1︸ ︷︷ ︸
D ones

] , A = convmat
(
flip(a), N−D+1

)T (9.9.5)

For example, we have for N = 7, s = 2, and D = 4:

Ds =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎥⎦ (9.9.6)

The solution of the minimization problem (9.9.4) is obtained from the vanishing of
the gradient of J with respect to t and s, which results in the system and its solution:

(I + P)t+ s = y

t+ (I +Q)s = y
⇒

t = (Q + P+QP)−1Qy

s = y− (I + P)t
(9.9.7)

9.9. Seasonal Whittaker-Henderson Decomposition 419

where we defined P = λ(DTs Ds) and Q = α(ATA). The matrices P,Q and (Q + P +
QP) are banded sparse matrices and therefore the indicated inverse† in (9.9.7) can be
computed very efficiently with O(N) operations (provided it is implemented by the
backslash operator in MATLAB.)

From the above system we also have, t = (I+ P)−1(y− s), which has the appealing
interpretation that the trend is obtained by an ordinary Whittaker-Henderson smoother,
i.e., the operator (I + P)−1, applied to the seasonally-adjusted signal (y − s), which is
similar to how the X-11 method obtains the final trend by applying a Henderson filter.

The function swhdec implements this method. It has an optional argument for the
fourth β-term mentioned above:

[yt,ys,yi] = swhdec(y,D,s,lambda,alpha,beta); % seasonal Whittaker-Henderson

The larger the parametersα,β, the closer to zero the quantity (9.9.3), and the “more
periodic” the seasonal component. Thus, if one wants to extract a slowly evolving pe-
riodic component, one should choose smaller values for these parameters, relative to
λ. The latter, can be estimated using the GCV criterion. The simultaneous estimation
of λ,α,β can be accomplished by maximizing an appropriate likelihood function in a
Bayesian formulation of this method [623,636,638].

The �1-regularized version can be obtained by replacing the �2 norms of the regu-
larizing parts by their �1 norms, that is,

J =
N−1∑
n=0

(yn − tn − sn)2+λ
N−1∑
n=s

∣∣∇stn∣∣+α N−1∑
n=D−1

∣∣sn + sn−1 + · · · + sn−D+1
∣∣ = min

J = ∥∥y− t− s)
∥∥2

2 + λ
∥∥Ds t

∥∥
1 +α

∥∥A s
∥∥

1 = min (9.9.8)

and can be solved easily with the CVX package.‡

Example 9.9.1: We revisit the unemployment data for 16–19 year old men for the 1965–79
period, which we encountered in Example 9.6.2. Fig. 9.9.1 compares the trend/seasonal
decomposition obtained by the X-11 method (top graphs) and by the seasonal Whittaker-
Henderson (middle graphs), as well as the corresponding L1 version (bottom graphs). The
input parameters were as follows, where λ was determined in Example 9.6.2 by the GCV
criterion,

D = 12, s = 2, λ = 2039, α = 10, β = 0

The MATLAB code used to generate the six graphs was as follows:

Y = loadfile(’unemp-1619-nsa.dat’); i=find(Y==1965); % read data

Y = Y(i:i+14,2:13)’; y = Y(:)/1000; t = taxis(y,12,65); % extract 1965-79 range

D=12; M1=33; M2=35; N1=13; N2=13; R=3.5; type=’a’; % X-11 input parameters

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 decomposition

figure; plot(t,y, t,yt); figure; plot(t,ys); % upper graphs

†It can be shown [624] that the inverse exists for all positive values of λ,α.
‡http://cvxr.com/cvx

420 9. Periodic Signal Extraction

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

X− 11 trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

seasonal WH trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

seasonal WH trend, L1 version

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component, L1 version

Fig. 9.9.1 X-11 and seasonal Whittaker-Henderson decomposition methods.

D=12; s=2; la=2039; alpha=10; % input parameters

[yt,ys,yi] = swhdec(y,D,s,la,alpha); % seasonal WH decomposition

figure; plot(t,y, t,yt); figure; plot(t,ys); % middle graphs

la=5; alpha=10; % L1 version

9.9. Seasonal Whittaker-Henderson Decomposition 421

N = length(y); s=2; Ds = diff(eye(N),s); % construct matrices Ds and A
A = convmat(ones(1,D), N-D+1)’;

cvx_quiet(true); % CVX package

cvx_begin
variable X(2*N) % pack trend and seasonal into X

T = X(1:N); S = X(N+1:2*N);
minimize(sum_square(y-T-S) + la * norm(Ds*T,1) + alpha * norm(A*S,1));

cvx_end

yt = X(1:N); ys = X(N+1:2*N); % extract trend and seasonal parts

figure; plot(t,y, t,yt); figure; plot(t,ys); % lower graphs

The seasonal components extracted by the methods are comparable, as are the outputs of
this method and the Whittaker-Henderson/Kaiser method plotted in Fig. 9.6.2. ��

In Sec. 8.2 we obtained the equivalent Whittaker-Henderson trend-extraction filter
and showed that it could be thought of as the optimum unrealizable Wiener filter of a
particular state-space model. The optimum filter had frequency response:

H(ω)= 1

1+ λ∣∣Ds(ω)∣∣2 , where Ds(ω)=
(
1− e−jω)s (9.9.9)

and the state-space model was defined by

yn = tn + vn , ∇stn = wn (9.9.10)

where vn,wn were zero-mean, mutually-uncorrelated, white-noise signals of variances
σ2
v,σ2

w, and the smoothing parameter was identified as λ = σ2
v/σ2

w.
All of these results carry over to the seasonal case. First, we obtain the effective trend

and seasonal filters HT(ω),HS(ω) for extracting tn, sn. Then, we show that they are
optimal in the Wiener sense. As we did in Sec. 8.2, we consider a double-sided infinitely-
long signal yn and using Parseval’s identity, we may write the performance index (9.9.2)
in the frequency domain, as follows:

J =
∫ π
−π

[∣∣Y(ω)−T(ω)−S(ω)∣∣2 + λ∣∣Ds(ω)T(ω)∣∣2 +α∣∣A(ω)S(ω)∣∣2
] dω

2π
(9.9.11)

where Ds(ω) and A(ω) are the frequency responses of the filters in Eq. (9.9.5). From
the vanishing of the gradients ∂J/∂T∗ and ∂J/∂S∗, we obtain the equations:

T(ω)+λ∣∣Ds(ω)∣∣2T(ω)+S(ω) = Y(ω)

S(ω)+α∣∣A(ω)∣∣2S(ω)+T(ω) = Y(ω)
(9.9.12)

which may be solved for the transfer functions HT(ω)= T(ω)/Y(ω) and HS(ω)=
S(ω)/Y(ω), resulting in,

HT(ω) = α
∣∣A(ω)∣∣2

λ
∣∣Ds(ω)∣∣2 +α∣∣A(ω)∣∣2 + λα∣∣Ds(ω)∣∣2∣∣A(ω)∣∣2

HS(ω) = λ
∣∣Ds(ω)∣∣2

λ
∣∣Ds(ω)∣∣2 +α∣∣A(ω)∣∣2 + λα∣∣Ds(ω)∣∣2∣∣A(ω)∣∣2

(9.9.13)

422 9. Periodic Signal Extraction

with
∣∣Ds(ω)∣∣2

and
∣∣A(ω)∣∣2

given by,

∣∣Ds(ω)∣∣2 = ∣∣1− e−jω∣∣2s = ∣∣2 sin(ω/2)
∣∣2s

∣∣A(ω)∣∣2 = ∣∣1+ e−jω + · · · + e−j(D−1)ω∣∣2 =
∣∣∣∣sin(ωD/2)

sin(ω/2)

∣∣∣∣2 (9.9.14)

The filters (9.9.13) generalize the Whittaker-Henderson, or Hodrick-Prescott filter
(9.9.9) to the seasonal case. The filters may be identified as the optimum Wiener filters
for the following signal model:

yn = tn + sn + vn , ∇stn = wn , sn + sn−1 + · · · + sn−D+1 = un (9.9.15)

where vn,wn, un are mutually-uncorrelated, zero-mean, white noises. The model can be
written symbolically in operator form:

yn = tn + sn + vn , Ds(z)tn = wn , A(z)sn = un (9.9.16)

The signals tn, sn are not stationary, but nevertheless the optimum Wiener filters can
be derived as though the signals were stationary [643–649]. Alternatively, multiplication
byDs(z)A(z) acts as a stationarity-inducing transformation, resulting in the stationary
signal model,

ȳn = Ds(z)A(z)yn = t̄n + s̄n + v̄n = A(z)wn +Ds(z)un +Ds(z)A(z)vn
t̄n = Ds(z)A(z)tn = A(z)wn
s̄n = Ds(z)A(z)sn = Ds(z)un
v̄n = Ds(z)A(z)vn

(9.9.17)

with spectral densities:

St̄ȳ(ω) = St̄t̄(ω)= σ2
w
∣∣A(ω)∣∣2

Ss̄ȳ(ω) = Ss̄s̄(ω)= σ2
u
∣∣Ds(ω)∣∣2

Sȳȳ(ω) = σ2
u
∣∣Ds(ω)∣∣2 +σ2

w
∣∣A(ω)∣∣2 +σ2

v
∣∣Ds(ω)A(ω)∣∣2

It follows from [643–649] that the optimum Wiener filters for estimating tn, sn will be:

HT(ω) = St̄ȳ(ω)
Sȳȳ(ω)

= σ2
w
∣∣A(ω)∣∣2

σ2
u
∣∣Ds(ω)∣∣2 +σ2

w
∣∣A(ω)∣∣2 +σ2

v
∣∣Ds(ω)A(ω)∣∣2

HS(ω) = Ss̄ȳ(ω)
Sȳȳ(ω)

= σ2
u
∣∣Ds(ω)∣∣2

σ2
u
∣∣Ds(ω)∣∣2 +σ2

w
∣∣A(ω)∣∣2 +σ2

v
∣∣Ds(ω)A(ω)∣∣2

(9.9.18)

It is evident that these are identical to (9.9.13) with the identifications λ = σ2
v/σ2

w
and α = σ2

v/σ2
u. For a finite, length-N, signal yn, the model (9.9.15) has been used to

derive Kalman smoothing algorithms for estimating tn, sn with O(N) operations, and
for efficiently evaluating the model’s likelihood function [636,638]. We note, however,
that the matrix solutions (9.9.7) are equally efficient.

9.9. Seasonal Whittaker-Henderson Decomposition 423

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HT (ω)|, α = 10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HS (ω)|, α = 10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HI (ω)|, α = 100

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HS (ω)|, α = 100

Fig. 9.9.2 Frequency responses of seasonal Whittaker-Henderson filters.

Example 9.9.2: Fig. 9.9.2 plots the frequency responsesHT(ω) andHS(ω) of Eq. (9.9.13). For
the upper graphs, the parameter values were the same as those of Example 9.9.1, that is,
D = 12, s = 2, λ = 2039, α = 10. We note that the responses have the expected shapes.

In the lower graphs, we increased the parameter α to 100 in order to sharpen the comb
peaks. The lower-left graph depicts the filter HI(ω)= 1−HT(ω)−HS(ω) for extracting
the irregular component, and the right graph depictsHS(ω). The trend filter is not shown
since it is virtually identical to that of the upper-left graph. The MATLAB code used to
generate the upper graphs was as follows:

k = linspace(-6,6,2401); w = 2*pi*k/12; % frequencies −π ≤ ω ≤ π

D = 12; s = 2; la = 2039; alpha = 10;

a = ones(D,1); A = freqz(a,1,w); % calculate A(ω)

P = la * abs(1 - exp(-j*w)).^(2*s); % evaluate P(ω) = λ |Ds(ω)|2
Q = alpha * abs(A).^2; % evaluate Q(ω) = α |A(ω)|2
R = Q + P + Q.*P;

HT = Q./R; HS = P./R; HI = 1-HS-HT;

424 9. Periodic Signal Extraction

figure; plot(k,HT); figure; plot(k,HS); % upper graphs

9.10 Problems

9.1 First prove Eq. (9.1.2) for all n. Then, using the DFT/IDFT pair in Eq. (9.1.1), show that a more
general form of (9.1.2) is,

D−1∑
m=0

sn−mejωkm = ejωknSk , k = 0,1, . . . ,D− 1, −∞ < n <∞

9.2 Consider the analog signal s(t)= cos(2πf1t) and its sampled version sn = cos(2πf1nT),
where T is the sampling interval related to the sampling rate by fs = 1/T. It is required that
sn be periodic in n with period of D samples, that is, cos

(
2πf1(n+D)T

) = cos(2πf1nT),
for all n. How does this requirement constrain fs and f1?

9.3 Show that the IIR comb and notch filters defined in Eq. (9.1.9) are complementary and power
complementary in the sense that they satisfy Eqs. (9.1.7).

Working with the magnitude response
∣∣Hcomb(ω)

∣∣2
show that the 3-dB width of the comb

peaks is given by Eq. (9.1.11).

9.4 Show that the solution of the system (9.9.7) can be written in the more symmetric, but
computationally less efficient, form:

t = (Q + P+QP)−1Qy

s = (P+Q + PQ)−1Py

10
Wavelets

Over the past two decades, wavelets have become useful signal processing tools for sig-
nal representation, compression, and denoising [665–833]. There exist several books on
the subject [665–686], and several tutorial reviews [687–708]. The theory of wavelets
and multiresolution analysis is by now very mature [709–761] and has been applied
to a remarkably diverse range of applications, such as image compression and cod-
ing, JPEG2000 standard, FBI fingerprint compression, audio signals, numerical analy-
sis and solution of integral equations, electromagnetics, biomedical engineering, astro-
physics, turbulence, chemistry, infrared spectroscopy, power engineering, economics
and finance, bioinformatics, characterization of long-memory and fractional processes,
and statistics with regression and denoising applications [762–833].

In this chapter, we present a short review of wavelet concepts, such as multires-
olution analysis, dilation equations, scaling and wavelet filters, filter banks, discrete
wavelet transforms in matrix and convolutional forms, wavelet denoising, and undeci-
mated wavelet transforms. Our discussion emphasizes computational aspects.

10.1 Multiresolution Analysis

Wavelet multiresolution analysis expands a time signal into components representing
different scales—from a coarser to a finer resolution. Each term in the expansion cap-
tures the signal details at a particular scale level. The expansion is defined in terms
of a sequence of nested closed subspaces Vj of the space L2(R) of square integrable
functions on the real line R:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R) (10.1.1)

The space Vj approximates a signal at a scale j with a resolution of 2−j time units.
Roughly speaking, if T0 is the sampling time interval in subspace V0, then the sampling
interval in Vj will be Tj = 2−jT0, which is coarser if j < 0, and finer if j > 0. The union
of the Vj subspaces is the entire L2(R) space, and their intersection, the zero function:

lim
j→∞

Vj =
∞⋃

j=−∞
Vj = L2(R) , lim

j→−∞
Vj =

∞⋂
j=−∞

Vj = {0} (10.1.2)

425

