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6.11 Moving-Average Filters with Prescribed Moments. The predictive FIR filter of Eq. (6.16.3) has
lag equal to n̄ = −τ by design. Show that its second moment is not independently specified
but is given by,

n2 =
N−1∑
n=0

n2h(n)= −1

6
(N − 1)(N − 2+ 6τ) (6.25.5)

The construction of the predictive filters (6.16.3) can be generalized to allow arbitrary spec-
ification of the first and second moments, that is, the problem is to design a length-N FIR
filter with the prescribed moments,

n0 =
N−1∑
n=0

h(n)= 1 , n1 =
N−1∑
n=0

nh(n)= −τ1 , n2 =
N−1∑
n=0

n2h(n)= τ2 (6.25.6)

Show that such filter is given by an expression of the form,

h(n)= c0 + c1n+ c2n2 , n = 0,1, . . . ,N − 1

where the coefficients c0, c1, c2 are the solutions of the linear system,

⎡
⎢⎣
S0 S1 S2

S1 S2 S3

S2 S3 S4

⎤
⎥⎦
⎡
⎢⎣
λ0

λ1

λ2

⎤
⎥⎦ =

⎡
⎢⎣

1
−τ1

τ2

⎤
⎥⎦

where

Sp =
N−1∑
n=0

np , p = 0,1,2,3,4

Then, show that the Sp are given explicitly by,

S0 = N , S1 = 1

2
N(N − 1) , S2 = 1

6
N(N − 1)(2N − 1)

S3 = 1

4
N2(N − 1)2 , S4 = 1

30
N(N − 1)(2N − 1)(3N2 − 3N − 1)

and that the coefficients are given by,

c0 = 3(3N2 − 3N + 2)+18(2N − 1)τ1 + 30τ2

N(N + 1)(N + 2)

c1 = −18(N − 1)(N − 2)(2N − 1)+12(2N − 1)(8N − 11)τ1 + 180(N − 1)τ2

N(N2 − 1)(N2 − 4)

c2 = 30(N − 1)(N − 2)+180(N − 1)τ1 + 180τ2

N(N2 − 1)(N2 − 4)

Finally, show that the condition c2 = 0 recovers the predictive FIR case of Eq. (6.16.3) with
second moment given by Eq. (6.25.5).

6.12 Consider the Butterworth filter of Eq. (6.20.2). Show that the lag of the first-order section
and the lag of the ith second-order section are given by,

n̄0 = 1

2Ω0
, n̄i = − cosθi

Ω0
, i = 1,2, . . . , K

Using these results, prove Eq. (6.20.8) for the full lag n̄, and show that it is valid for both
even and odd filter orders M.

7
Smoothing Splines

7.1 Interpolation versus Smoothing

Besides their extensive use in drafting and computer graphics, splines have many other
applications. A large online bibliography can be found in [350]. A small subset of
references on interpolating and smoothing splines and their applications is [351–404].

We recall from Sec. 4.2 that the minimum-Rs filters had the property of maximizing
the smoothness of the filtered output signal by minimizing the mean-square value of
the s-differenced output, that is, the quantity E

[
(∇sx̂n)2

]
in the notation of Eq. (4.2.11).

Because of their finite span, minimum-Rs filters belong to the class of local smoothing
methods. Smoothing splines are global methods in the sense that their design criterion
involves the entire data signal to be smoothed, but their objective is similar, that is, to
maximize smoothness.

We assume an observation model of the form y(t)= x(t)+v(t), where x(t) is a
smooth trend to be estimated on the basis ofN noisy observations yn = y(tn)measured
at N time instants tn, for n = 0,1, . . . ,N − 1, as shown below.

The times tn, called the knots, are not necessarily equally-spaced, but are in increas-
ing order and are assumed to lie within a slightly larger interval [ta, tb], that is,

ta < t0 < t1 < t2 < · · · < tN−1 < tb

A smoothing spline fits a continuous function x(t), taken to be the estimate of the
underlying smooth trend, by solving the optimization problem:

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
x(s)(t)

]2dt = min (7.1.1)

where x(s)(t) denotes the s-th derivative of x(t), λ is a positive “smoothing parameter,”
and wn are given non-negative weights.
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316 7. Smoothing Splines

The performance index strikes a balance between interpolation and smoothing. The
first term attempts to interpolate the data by x(t), while the second attempts to min-
imize the roughness or maximize the smoothness of x(t). The balance between the
two terms is controlled by the parameter λ; larger λ increases smoothing, smaller λ
interpolates the data more closely.

Schoenberg [357] has shown that the solution to the problem (7.1.1) is a so-called
natural smoothing spline of polynomial order 2s−1, that is, x(t) has 2s−2 continuous
derivatives, it is a polynomial of degree 2s−1 within each subinterval (tn, tn+1), for
n = 0,1, . . . ,N − 2, and it is a polynomial of order s−1 within the end subintervals
[ta, t0) and (tN−1, tb].

For discrete-time sampled data, the problem was originally posed and solved for
special cases of s by Thiele, Bohlmann, Whittaker, and Henderson [405–412], and is
referred to as Whittaker-Henderson smoothing. We will consider it in Sec. 8.1. In this
case, the performance index becomes:

J =
N−1∑
n=0

wn
(
yn − xn

)2 + λ
N−1∑
n=s

[∇sxn]2 = min (7.1.2)

In this chapter, we concentrate on the case s = 2 for the problem (7.1.1), but allow
an arbitrary s for problem (7.1.2). For s = 2, the performance index (7.1.1) reads:

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.1.3)

Eq. (7.1.3) will be minimized under the assumption that the desired x(t) and its first
and second derivatives ẋ(t), ẍ(t) are continuous over [ta, tb].

In the next section we solve the problem from a variational point of view and derive
the solution as a natural cubic spline.

7.2 Variational Approach

We begin with a short review of variational calculus [354]. Consider first a Lagrangian
L(x, ẋ) that depends on a function x(t) and its first derivative ẋ(t).†

A prototypical variational problem is to find the function x(t) that maximizes or
minimizes the “action” functional:

J(x)=
∫ tb
ta

L(x, ẋ)dt = extremum (7.2.1)

The optimum function x(t) is found by solving the Euler-Lagrange equation for (7.2.1):

∂L
∂x

− d
dt
∂L
∂ẋ

= 0 (7.2.2)

This can be derived as follows. Consider a small deviation from the optimum solu-
tion, x(t)→ x(t)+δx(t). Then, the corresponding first-order variation of the functional

†L can also have an explicit dependence on t, but we suppress it in the notation.
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(7.2.1) will be:

δJ = J(x+ δx)−J(x)=
∫ tb
ta

[L(x+ δx, ẋ+ δẋ)−L(x, ẋ)]dt

=
∫ tb
ta

[
∂L
∂x
δx+ ∂L

∂ẋ
δẋ

]
dt =

∫ tb
ta

[
∂L
∂x
δx−

(
∂L
∂ẋ

)′
δx+

(
∂L
∂ẋ
δx

)′]
dt

where we used the differential identity‡

(
∂L
∂ẋ
δx

)′
= ∂L
∂ẋ
δẋ+

(
∂L
∂ẋ

)′
δx (7.2.3)

Integrating the last term in δJ, we obtain:

δJ =
∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

]
δxdt + ∂L

∂ẋ
δx

∣∣∣∣
tb
− ∂L
∂ẋ
δx

∣∣∣∣
ta

(7.2.4)

The boundary terms can be removed by assuming the condition:

∂L
∂ẋ
δx

∣∣∣∣
tb
− ∂L
∂ẋ
δx

∣∣∣∣
ta
= 0 (7.2.5)

It follows that

δJ =
∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

]
δxdt (7.2.6)

which defines the functional derivative of J(x):
δJ
δx

= ∂L
∂x

− d
dt
∂L
∂ẋ

(7.2.7)

The Euler-Lagrange equation (7.2.2) is obtained by requiring the vanishing of the
functional derivative, or the vanishing of the first-order variation δJ around the opti-
mum solution for any choice of δx subject to (7.2.5).

The boundary condition (7.2.5) can be achieved in a number of ways. The typical
one is to assume that the variation δx(t) vanish at the endpoints, δx(ta)= δx(tb)= 0.
Alternatively, if no restrictions are to be made on δx(t), then one must assume the
so-called natural boundary conditions [354]:

∂L
∂ẋ

∣∣∣∣
ta
= ∂L
∂ẋ

∣∣∣∣
tb
= 0 (7.2.8)

A mixed case is also possible in which at one end one assumes the vanishing of δx
and at the other end, the vanishing of ∂L/∂ẋ.

The above results can be extended to the case when the Lagrangian is also a function
of the second derivative ẍ, that is, L(x, ẋ, ẍ). Using Eq. (7.2.3) and the identity,

∂L
∂ẍ
δẍ =

(
∂L
∂ẍ
δẋ−

(
∂L
∂ẍ

)′
δx

)′
+
(
∂L
∂ẍ

)′′
δx

‡primes and dots denote differentiation with respect to t.
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the first-order variation of J becomes

δJ = J(x+ δx)−J(x)=
∫ tb
ta

[L(x+ δx, ẋ+ δẋ, ẍ+ δẍ)−L(x, ẋ, ẍ)]dt

=
∫ tb
ta

[
∂L
∂x
δx+ ∂L

∂ẋ
δẋ+ ∂L

∂ẍ
δẍ

]
dt =

∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

]
δxdt

+
(
∂L
∂ẋ

− d
dt
∂L
∂ẍ

)
δx

∣∣∣∣
tb

ta
+ ∂L
∂ẍ
δẋ

∣∣∣∣
tb

ta

To eliminate the boundary terms, we must assume that(
∂L
∂ẋ

− d
dt
∂L
∂ẍ

)
δx

∣∣∣∣
tb

ta
+ ∂L
∂ẍ
δẋ

∣∣∣∣
tb

ta
= 0 (7.2.9)

Then, the first-order variation and functional derivative of J become:

δJ =
∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

]
δxdt ,

δJ
δx

= ∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

(7.2.10)

Their vanishing leads to the Euler-Lagrange equation for this case:

∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

= 0 (7.2.11)

subject to the condition (7.2.9). In the spline problem, because the endpoints ta, tb
lie slightly outside the knot range, we do not want to impose any restrictions on the
values of δx and δẋ there. Therefore, to satisfy (7.2.9), we will assume the four natural
boundary conditions:

∂L
∂ẋ

− d
dt
∂L
∂ẍ

∣∣∣∣
ta
= 0 ,

∂L
∂ẍ

∣∣∣∣
ta
= 0 ,

∂L
∂ẋ

− d
dt
∂L
∂ẍ

∣∣∣∣
tb
= 0 ,

∂L
∂ẍ

∣∣∣∣
tb
= 0 (7.2.12)

The spline problem (7.1.3) can be put in a variational form as follows,

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt =
∫ tb
ta

Ldt = min (7.2.13)

where the Lagrangian depends only on x and ẍ,

L =
N−1∑
n=0

wn
(
yn − x(t)

)2δ(t − tn) + λ
[
ẍ(t)

]2
(7.2.14)

The Euler-Lagrange equation (7.2.11) then reads:

∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

= −2
N−1∑
n=0

wn
(
yn − x(t)

)
δ(t − tn) + 2λ

....
x (t)= 0 , or,

....
x (t)= λ−1

N−1∑
n=0

wn
(
yn − x(tn)

)
δ(t − tn) (7.2.15)

where we replaced
(
yn−x(t)

)
δ(t− tn) by

(
yn−x(tn)

)
δ(t− tn) in the right-hand side.

The natural boundary conditions (7.2.12) become:
...
x(ta)= 0 , ẍ(ta)= 0 ,

...
x(tb)= 0 , ẍ(tb)= 0 (7.2.16)
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7.3 Natural Cubic Smoothing Splines

Eq. (7.2.15) implies that
....
x (t)= 0 for all t except at the knot times tn. This means

that x(t) must be a cubic polynomial in t. Within each knot interval [tn, tn+1], for
n = 0,1, . . . ,N−2, and within the end-point intervals [ta, t0] and [tN−1, tb], the function
x(t) must be a cubic polynomial, albeit with different coefficients in each interval.

Specifically, the boundary conditions (7.2.16) imply that within [ta, t0] and [tN−1, tb],
the third-degree polynomials must actually be polynomials of first-degree. Thus, x(t)
will have the form:

x(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p−1(t)= a−1 + b−1(t − ta) , ta ≤ t ≤ t0
pn(t)= an + bn(t − tn)+1

2
cn(t − tn)2+1

6
dn(t − tn)3 , tn ≤ t ≤ tn+1

pN−1(t)= aN−1 + bN−1(t − tN−1) , tN−1 ≤ t ≤ tb
(7.3.1)

where n = 0,1, . . . ,N−2 for the interval [tn, tn+1], and we have referred the time origin
to the left end of each subinterval. We note that an = x(tn)= pn(tn), bn = ṗn(tn),
cn = p̈n(tn), and dn =

...
pn(tn), for n = 0,1, . . . ,N−1. The an are the smoothed values.

The polynomial pieces join continuously at the knots. The term “natural” cubic
spline refers to the property that x(t) is a linear function of t outside the knot range,
and consists of cubic polynomial pieces that are continuous and have continuous first
and second derivatives at the knot times. Fig. 7.3.1 illustrates the case ofN = 5 and the
numbering convention that we follow.

Fig. 7.3.1 Smoothing with natural cubic splines.

Although x(t), ẋ(t), ẍ(t) are continuous at the knots, Eq. (7.2.15) implies that the
third derivatives

...
x(t) must be discontinuous. Indeed, integrating (7.2.15) around the

interval [tn − ε, tn + ε] and taking the limit ε → 0, we obtain the N discontinuity
conditions:

...
x(tn)+ − ...

x(tn)− = λ−1wn(yn − an) , n = 0,1, . . . ,N − 1 (7.3.2)

where
...
x(tn)±= limε→0

...
x(tn±ε), and an = x(tn). Expressed in terms of the polynomial

pieces, the continuity and discontinuity conditions can be stated as follows:
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pn(tn)= pn−1(tn) , n = 0,1, . . . ,N − 1

ṗn(tn)= ṗn−1(tn)

p̈n(tn)= p̈n−1(tn)
...
pn(tn)−

...
pn−1(tn)= λ−1wn(yn − an)

(7.3.3)

These provide 4N equations. The number of unknown coefficients is also 4N. In-
deed, there are N−1 strictly cubic polynomials plus the two linear polynomials at the
ends, thus, the total number of coefficients is 4(N − 1)+2 · 2 = 4N.

In solving these equations, we follow Reinsch’s procedure [358] that eliminatesbn, dn
in favor of an, cn. We begin by applying the continuity conditions (7.3.3) at t = t0,

a0 = a−1 + b−1(t0 − ta)
b0 = b−1

c0 = 0

d0 = λ−1w0(y0 − a0)

(7.3.4)

where in the last two we used c−1 = d−1 = 0. From the first two, it follows that the
left-most polynomial can be referred to time origin t0 and written alternatively as,

p−1(t)= a−1 + b−1(t − ta)= a0 + b0(t − t0) (7.3.5)

For n = 1,2, . . . ,N − 1, defining hn−1 = tn − tn−1, conditions (7.3.3) read:

an = an−1 + bn−1hn−1 + 1

2
cn−1h2

n−1 +
1

6
dn−1h3

n−1

bn = bn−1 + cn−1hn−1 + 1

2
dn−1h2

n−1

cn = cn−1 + dn−1hn−1

dn − dn−1 = λ−1wn(yn − an)

(7.3.6)

Since cN−1 = dN−1 = 0, we have at n = N − 1:

aN−1 = aN−2 + bN−2hN−2 + 1

2
cN−2h2

N−2 +
1

6
dN−2h3

N−2

bN−1 = bN−2 + cN−2hN−2 + 1

2
dN−2h2

N−2

0 = cN−2 + dN−2hN−2

0− dN−2 = λ−1wN−1(yN−1 − aN−1)
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Using the third into the first two equations, we may rewrite them as,

aN−1 = aN−2 + bN−2hN−2 + 1

3
cN−2h2

N−2

bN−1 = bN−2 + 1

2
cN−2hN−2

cN−2 = −dN−2hN−2

dN−2 = −λ−1wN−1(yN−1 − aN−1)

(7.3.7)

From the third of Eq. (7.3.6), we have

dn−1 = cn − cn−1

hn−1
, n = 1,2, . . . ,N − 1 (7.3.8)

In particular, we obtain at n = 1 and n = N − 1,

d0 = c1 − c0

h0
= c1

h0
= λ−1w0(y0 − a0)

−dN−2 = −cN−1 − cN−2

hN−2
= cN−2

hN−2
= λ−1wN−1(yN−1 − aN−1)

(7.3.9)

where we used Eqs. (7.3.4) and (7.3.7). Inserting Eq. (7.3.8) into the last of (7.3.6), we
obtain for n = 1,2, . . . ,N − 2:

dn − dn−1 = cn+1 − cn
hn

− cn − cn−1

hn−1
= λ−1wn(yn − an) (7.3.10)

Thus, combining these with (7.3.9), we obtain an N×(N−2) tridiagonal system of
equations that relates the (N−2)-dimensional vector c = [c1, c2, . . . , cN−2]T to the N-
dimensional vector a = [a0, a1, . . . , aN−1]T:

c1

h0
= λ−1w0(y0 − a0)

1

hn−1
cn−1 −

(
1

hn−1
+ 1

hn

)
cn + 1

hn
cn+1 = λ−1wn(yn − an) , n = 1,2, . . . ,N − 2

cN−2

hN−2
= λ−1wN−1(yN−1 − aN−1)

(7.3.11)
where we must use c0 = cN−1 = 0. These may be written in a matrix form by defining
the vector y = [y0, y1, . . . , yN−1]T and weight matrix W = diag

(
[w0,w1, . . . ,wN−1]

)
,

Qc = λ−1W(y− a) (7.3.12)

The N×(N−2) tridiagonal matrix Q has non-zero matrix elements:

Qn−1,n = 1

hn−1
, Qn,n = −

(
1

hn−1
+ 1

hn

)
, Qn+1,n = 1

hn
(7.3.13)
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forn = 1,2, . . . ,N−2. We note that the matrix elementsQni were assumed to be indexed
such that 0 ≤ n ≤ N − 1 and 1 ≤ i ≤ N − 2. Next, we determine another relationship
between an and cn. Substituting Eq. (7.3.8) into the first and second of (7.3.6), we obtain:

an − an−1 = bn−1hn−1 + 1

6
(cn + 2cn−1)h2

n−1 , n = 1,2, . . . ,N − 1

bn − bn−1 = 1

2
(cn + cn−1)hn−1

(7.3.14)

The first of these can be solved for bn−1 in terms of an:

bn−1 = an − an−1

hn−1
− 1

6
(cn + 2cn−1)hn−1 , n = 1,2, . . . ,N − 1

bn = an+1 − an
hn

− 1

6
(cn+1 + 2cn)hn , n = 0,1, . . . ,N − 2

(7.3.15)

Substituting these into the second of (7.3.14), we obtain for n = 1,2, . . . ,N − 2:

1

hn−1
an−1 −

(
1

hn−1
+ 1

hn

)
an + 1

hn
an+1 = 1

6
hn−1cn−1 + 1

3
(hn−1 + hn)cn + 1

6
hncn+1

(7.3.16)
This an (N−2)×N tridiagonal system with the transposed of Q appearing on the

left, and the following (N−2)×(N−2) symmetric tridiagonal matrix on the right,

Tn,n = 1

3
(hn−1 + hn) , 1 ≤ n ≤ N − 2

Tn+1,n = Tn,n+1 = 1

6
hn , 1 ≤ n ≤ N − 3

(7.3.17)

Thus, the system (7.3.16) can be written compactly as,

QTa = Tc (7.3.18)

To summarize, the optimal coefficients a, c are coupled by

QTa = Tc

Qc = λ−1W(y− a)
(7.3.19)

To clarify the nature of the matrices Q,T, consider the case N = 6 with data vector
y = [y0, y1, y2, y3, y4, y5]T. The matrix equations (7.3.19) read explicitly,

⎡
⎢⎢⎢⎣
h−1

0 −(h−1
0 + h−1

1 ) h−1
1 0 0 0

0 h−1
1 −(h−1

1 + h−1
2 ) h−1

2 0 0
0 0 h−1

2 −(h−1
2 + h−1

3 ) h−1
3 0

0 0 0 h−1
3 −(h−1

3 + h−1
4 ) h−1

4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

6

⎡
⎢⎢⎢⎣

2(h0 + h1) h1 0 0
h1 2(h1 + h2) h2 0
0 h2 2(h2 + h3) h3

0 0 h3 2(h3 + h4)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
c1

c2

c3

c4

⎤
⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−1
0 0 0 0

−(h−1
0 + h−1

1 ) h−1
1 0 0

h−1
1 −(h−1

1 + h−1
2 ) h−1

2 0
0 h−1

2 −(h−1
2 + h−1

3 ) h−1
3

0 0 h−1
3 −(h−1

3 + h−1
4 )

0 0 0 h−1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
c1

c2

c3

c4

⎤
⎥⎥⎥⎦ = λ−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0(y0 − a0)
w1(y1 − a1)
w2(y2 − a2)
w3(y3 − a3)
w4(y4 − a4)
w5(y5 − a5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In order to have a non-trivial vector c, we will assume that N ≥ 3. Eqs. (7.3.19) can
be solved in a straightforward way. Since T is square and invertible, we may solve the
first for c = T−1QTa and substitute into the second,

QT−1QTa = λ−1W(y− a) ⇒ (W + λQT−1QT)a =Wy or,

a = (W + λQT−1QT)−1Wy (7.3.20)

so that the filtering (the so-called “hat”) matrix for the smoothing operation a = Hy is

H = (W + λQT−1QT)−1W (7.3.21)

Although both Q and T are banded matrices with bandwidth three, the inverse T−1

is not banded and neither is (W + λQT−1QT). Therefore, the indicated matrix inverse
is computationally expensive, requiring O(N3) operations. However, there is an alter-
native algorithm due to Reinsch [358] that reduces the computational cost to O(N)
operations. From the second of (7.3.19), we have after multiplying it by QTW−1,

λW−1Qc = y− a ⇒ λQTW−1Qc = QTy−QTa = QTy−Tc

which may be solved for c

(T + λQTW−1Q)c = QTy ⇒ c = (T + λQTW−1Q)−1QTy

where now becauseW is diagonal, the matrix R = T+λQTW−1Q is banded with band-
width five, and therefore it can be inverted in O(N) operations. This leads to Reinsch’s
efficient computational algorithm:

R = T + λQTW−1Q
c = R−1QTy

a = y− λW−1Qc

(7.3.22)

This implies an alternative expression for the matrix H. Eliminating c, we have,

a = y− λW−1QR−1QTy ⇒ a = (
I − λW−1QR−1QT

)
y , or,

H = I − λW−1QR−1QT = I − λW−1Q(T + λQTW−1Q)−1QT (7.3.23)

The equivalence of Eqs. (7.3.21) and (7.3.23) follows from the matrix inversion lemma.
Once the polynomial coefficients c = [c1, c2, . . . , cN−2]T and a = [a0, a1, . . . , aN−1]T
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have been computed, the bn and dn coefficients can be obtained from Eqs. (7.3.8) and
(7.3.14), and (7.3.7), with c0 = cN−1 = 0,

dn = cn+1 − cn
hn

, n = 0,1, . . . ,N − 2 , and dN−1 = 0

bn = an+1 − an
hn

− 1

6
(cn+1 + 2cn)hn , n = 0,1, . . . ,N − 2

bN−1 = bN−2 + 1

2
cN−2hN−2

(7.3.24)

Eqs. (7.3.22) and (7.3.24) provide the complete solution for the coefficients for all the
polynomial pieces. We note two particular limits of the solution. For λ = 0, Eq. (7.3.22)
gives R = T and

c = T−1QTy , a = y (7.3.25)

Thus, the smoothing spline interpolates the data, that is, x(tn)= an = yn. Interpo-
lating splines are widely used in image processing and graphics applications.

For λ → ∞, the solution corresponds to fitting a straight line to the entire data set.
In this case, Eq. (7.3.23) has a well-defined limit,

H = I − λW−1Q(T + λQTW−1Q)−1QT → I −W−1Q(QTW−1Q)−1QT (7.3.26)

and Eqs. (7.3.22) become:

c = 0 , a = y−W−1Q(QTW−1Q)−1QTy (7.3.27)

Since c = 0, Eqs. (7.3.24) imply that dn = 0, therefore, the polynomial pieces pn(t)
are first-order polynomials, and we also have bn = (an+1−an)/hn. The vector a lies in
the null space of QT. Indeed, multiplying by QT, we have from (7.3.27),

QTa = QTy− (QTW−1Q)(QTW−1Q)−1QTy = QTy−QTy = 0

Component-wise this means that the slopes bn of the pn(t) polynomials are the same,

(QTa)n= an+1 − an
hn

− an − an−1

hn−1
= bn − bn−1 = 0 (7.3.28)

Thus, the polynomials pn(t) represent pieces of the same straight line. Indeed,
setting bn ≡ β, and using an = an−1 + βhn−1, we obtain,

pn(t)= an + β(t − tn)= an−1 + βhn−1 + β(t − tn)= an−1 + β(t − tn−1)= pn−1(t)

This line corresponds to a weighted least-squares straight-line fit through the data
yn, that is, fitting a polynomial p(t)= α+ βt to

J =
N−1∑
n=0

wn
(
yn − p(tn)

)2 = (y− ŷ)TW(y− ŷ)= min

It is easily verified that the coefficients and fitted values ŷ = [
p(t0), p(t1), . . . , p(tn)

]T
are given by [

α
β

]
= (STWS)−1STWy , ŷ = S(STWS)−1STWy (7.3.29)
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where S is the N×2 polynomial basis matrix defined by

S =
[

1 1 · · · 1
t0 t1 · · · tN−1

]T
(7.3.30)

The fitted values ŷ are exactly equal to those of (7.3.27), as can be verified using the
following projection matrix identity, which can be proved using the property QTS = 0,

W−1Q(QTW−1Q)−1QT + S(STWS)−1STW = I (7.3.31)

7.4 Optimality of Natural Splines

The smoothing spline solution just derived is not only an extremum of the performance
index (7.1.3), but also a minimum. To show this, consider a deviation from the optimum
solution, x(t)+f(t), where x(t) is the solution (7.3.1) and f(t) an arbitrary twice dif-
ferentiable function. Then, we must show that J(x+ f)≥ J(x). Noting that an = x(tn)
and denoting fn = f(tn) , we have,

J(x+ f) =
N−1∑
n=0

wn(yn − an − fn)2+λ
∫ tb
ta

[
ẍ(t)+f̈ (t)]2dt

J(x) =
N−1∑
n=0

wn(yn − an)2+λ
∫ tb
ta

[
ẍ(t)

]2dt

and by subtracting,

J(x+ f)−J(x) =
N−1∑
n=0

wn
[
f2
n − 2(yn − an)fn

]+ λ
∫ tb
ta

[
f̈ (t)2+2ẍ(t)f̈(t)

]
dt

=
N−1∑
n=0

wnf2
n + λ

∫ tb
ta
f̈(t)2 dt − 2

N−1∑
n=0

wn(yn − an)fn + 2λ
∫ tb
ta
ẍ(t)f̈(t)dt

The first two terms are non-negative. Therefore, the desired result J(x+ f)≥ J(x)
would follow if we can show that the last two terms that are linear in f cancel each
other. Indeed, this follows from the optimality conditions (7.3.3). Splitting the integra-
tion range as a sum over the subintervals, and replacing ẍ(t) by p̈n(t) over the nth
subinterval, we have,

∫ tb
ta
ẍ(t)f̈(t)dt =

∫ t0
ta
p̈−1(t)f̈(t)dt +

N−2∑
n=0

∫ tn+1

tn
p̈n(t)f̈(t)dt +

∫ tb
tN−1

p̈N−1(t)f̈(t)dt

=
N−2∑
n=0

∫ tn+1

tn

[(
p̈n(t)ḟ(t)

)′ − ...
pn(t)ḟ(t)

]
dt

where we dropped the first an last integrals because p−1(t) and pN−1(t) are linear and
have vanishing second derivatives, and used the identity p̈nf̈ = (p̈nḟ)′−

...
pnḟ . The first
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term is a complete derivative and can be integrated simply. In the second term, we may
use

...
pn(t)= dn over the nth subinterval to obtain,

∫ tb
ta
ẍ(t)f̈(t)dt = p̈N−2(tN−1)ḟ(tN−1)−p̈0(t0)ḟ(t0)−

N−2∑
n=0

∫ tn+1

tn
dnḟ(t)dt

= p̈N−2(tN−1)f̈(tN−1)−p̈0(t0)f̈(t0)−
N−2∑
n=0

dn(fn+1 − fn)

From the continuity at t = t0 and t = tN−1, we have p̈N−2(tN−1)= p̈N−1(tN−1)= 0
and p̈0(t0)= p̈−1(t0)= 0. Thus, we find,

∫ tb
ta
ẍ(t)f̈(t)dt = −

N−2∑
n=0

dn(fn+1 − fn)= d0f0 +
N−2∑
n=1

(dn − dn−1)fn − dN−2fN−1

Using Eqs. (7.3.4), (7.3.6), and (7.3.7), we obtain

∫ tb
ta
ẍ(t)f̈(t)dt = λ−1

N−1∑
n=0

wn(yn − an)fn

Thus, these two terms cancel in the difference of the performance indices,

J(x+ f)−J(x)=
N−1∑
n=0

wnf2
n + λ

∫ tb
ta
f̈(t)2 dt (7.4.1)

Hence, J(x + f)≥ J(x), with equality achieved when f̈ (t)= 0 and fn = f(tn)= 0,
which imply that f(t)= 0.

Although we showed that the interpolating spline case corresponds to the special
case λ = 0, it is worth looking at its optimality properties from a variational point of
view. Simply setting λ = 0 into the performance index (7.1.3) is not useful because it
only implies the interpolation property x(tn)= yn. An alternative point of view is to
consider the following constrained variational problem:

J =
∫ tb
ta

[
ẍ(t)

]2dt = min

subject to x(tn)= yn , n = 0,1, . . . ,N − 1

(7.4.2)

The constraints can be incorporated using a set of Lagrange multipliers μn,

J =
N−1∑
n=0

2μn
(
yn − x(tn)

)+
∫ tb
ta

[
ẍ(t)

]2dt = min (7.4.3)

The corresponding effective Lagrangian is,

L =
N−1∑
n=0

2μn
(
yn − x(t)

)
δ(t − tn)+

[
ẍ(t)

]2
(7.4.4)
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The Euler-Lagrange equation (7.2.11) then gives,

....
x (t)=

N−1∑
n=0

μnδ(t − tn) (7.4.5)

which is to be solved subject to the same natural boundary conditions as (7.2.16),

...
x(ta)= 0 , ẍ(ta)= 0 ,

...
x(tb)= 0 , ẍ(tb)= 0 (7.4.6)

This is identical to the smoothing spline case with the replacement of λ−1(yn−an)
by μn, or, vectorially λ−1W(y− a)→ μμμ. Therefore, the solution will be a natural spline
with Eq. (7.3.19) replaced by

QTy = Tc , Qc = μμμ
which is the same as the λ = 0 smoothing spline case. Thus, the interpolating spline
solution is defined by a = y and c = T−1QTy, with the equation Qc = μμμ fixing the
Lagrange multiplier vector.

7.5 Generalized Cross Validation

The cross-validation and generalized cross-validation criteria are popular ways of choos-
ing the smoothing parameter λ. We encountered these criteria in sections 4.5 and 5.2.

The cross-validation criterion selects the λ that minimizes the weighted sum of
squared errors [352]:

CV(λ)= 1

N

N−1∑
i=0

wi(yi − a−i )2= min (7.5.1)

where a−i is the estimate of the sample yi obtained by deleting the ith observation yi and
basing the spline smoothing on the remaining observations. As was the case in Sec. 5.2,
we may show that

yi − a−i =
yi − ai
1−Hii (7.5.2)

whereHii is the ith diagonal element of the filtering matrixH of the smoothing problem
with the observation yi included, and ai, the corresponding estimate of yi. Thus, the
CV index can be expressed as:

CV(λ)= 1

N

N−1∑
i=0

wi(yi − a−i )2= 1

N

N−1∑
i=0

wi
(
yi − ai
1−Hii

)2

= min (7.5.3)

The generalized cross-validation criterion replaces Hii by its average over i, that is,

GCV(λ)= 1

N

N−1∑
i=0

wi
(
yi − ai
1− H̄

)2

= min , H̄ = 1

N

N−1∑
i=0

Hii = 1

N
tr(H) (7.5.4)

The GCV can be evaluated efficiently withO(N) operations for each value of λ using
the algorithm of [377]. Noting that 1−H̄ = (

N−tr(H)
)
/N = tr(I−H)/N, and defining

e = y− a = (I −H)y, the GCV can be written in a slightly different form,
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1

N
GCV(λ)=

∑N−1
i=0 wi(yi − ai)2[

tr(I −H)]2 = eTWe[
tr(I −H)]2 = min (7.5.5)

To show Eq. (7.5.2), consider the index (7.1.3) with the i-th observation yi deleted:

J− =
N−1∑
n=0
n
=i

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.5.6)

The i-th term can be included provided we attach zero weight to it, that is, we may
define w−n = wn, if n 
= i, and w−i = 0:

J− =
N−1∑
n=0

w−n
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.5.7)

It follows from Eq. (7.3.20) that the optimum solutions with and without the i obser-
vation are given by

a = Hy = F−1Wy , F =W + λQT−1QT

a− = H−y = F−1− W−y , F− =W− + λQT−1QT
(7.5.8)

whereW− is the diagonal matrix of the w−n . Defining the i-th unit vector that has one in
its i-th slot, ui = [0, . . . ,0,1,0, . . . ,0]T, then W− is related to the original W by

W− =W −wi uiuTi ⇒ F− = F −wi uiuTi
It follows from Eq. (7.5.8) that,

F−a− =W−y ⇒ (F −wi uiuTi )a− = (W −wi uiuTi )y

Noting that yi = uTi y and a−i = uTi a−, we have after multiplying by F−1,

a− −wiF−1ui a−i = a−wiF−1uiyi ⇒ a− a− = wiF−1ui(yi − a−i )

Multiplying by uTi and noting that Hii = uTi Hui = uTi F−1Wui = (uTi F−1ui)wi, we find,

ai − a−i = Hii(yi − a−i ) (7.5.9)

which is equivalent to (7.5.2). An intuitive interpretation [352] of a− is that it is obtain-
able by the original filtering matrixH acting on a modified observation vector y∗ whose
i-th entry has been replaced by the estimated value y∗i = a−i , and whose other entries
agree with those of y. To show it, we note that Wy∗ =W−y+wiuiy∗i . Then, we have

F−a− =W−y ⇒ (F−wi uiuTi )a− =Wy∗−wiuiy∗i ⇒ Fa− =Wy∗−wiui(y∗i −a−i )

Thus, if we choose y∗i = a−i , we haveFa− =Wy∗, which gives a− = F−1Wy∗ = Hy∗.
A similar result was obtained in Sec. 4.5.
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7.6 Repeated Observations

We discussed how to handle repeated observations in local polynomial modeling in
Sec. 5.5, replacing the repeated observations by their averages and using their multi-
plicities to modify the weighting function. A similar procedure can be derived for the
spline smoothing case.

Assuming that at each knot time tn there aremn observations, yni with weightswni,
i = 1,2, . . . ,mn, the performance index (7.1.3) may be modified as follows:

J =
N−1∑
n=0

mn∑
i=1

wni
(
yni − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.6.1)

Let us define the weighted-averaged observations and corresponding weights by:

ȳn = 1

w̄n

mn∑
i=1

wniyni , w̄n =
mn∑
i=1

wni (7.6.2)

If the weightswni are unity, ȳn and w̄n reduce to ordinary averages and multiplicities.
It is easily verified that J can be written in the alternative form:

J =
N−1∑
n=0

w̄n
(
ȳn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt + const. = min (7.6.3)

up to a constant that does not depend on the unknown function x(t) to be determined.
Thus, the case of multiple observations may be reduced to an ordinary spline smoothing
problem.

7.7 Equivalent Filter

The filtering equation of a smoothing spline, a = Hy, raises the question of whether it
is possible to view it as an ordinary convolutional filtering operation. Such a viewpoint
indeed arises if we replace the performance index (7.1.3) with the following one, which
assumes the availability of continuous-time observations y(t) for −∞ < t <∞,

J =
∫∞
−∞

∣∣y(t)−x(t)∣∣2dt + λ
∫∞
−∞

∣∣ẍ(t)∣∣2dt = min (7.7.1)

The solution can be carried out easily in the frequency domain. Using Parseval’s
identity and denoting the Fourier transforms of y(t), x(t) by Y(ω),X(ω), and noting
that the transform of ẍ(t) is −ω2X(ω), we obtain the equivalent criterion,

J =
∫∞
−∞

∣∣Y(ω)−X(ω)∣∣2 dω
2π

+ λ
∫∞
−∞
ω4

∣∣X(ω)∣∣2 dω
2π

= min (7.7.2)

Setting the functional derivative of J with respect to X∗(ω) to zero,† we obtain the
Euler-Lagrange equation in this case:‡

δJ
δX∗(ω)

= −[Y(ω)−X(ω)]+ λω4X(ω)= 0 (7.7.3)

†X(ω) and its complex conjugateX∗(ω) are treated as independent variables in Eqs. (7.7.2) and (7.7.3).
‡The boundary conditions for this variational problem are that X(ω)→ 0 for ω→ ±∞.
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which leads to the transfer functionH(ω)= X(ω)/Y(ω) between the inputY(ω) and
the output X(ω):

H(ω)= 1

1+ λω4
(equivalent smoothing filter) (7.7.4)

Its impulse response (i.e., the inverse Fourier transform) is

h(t)= a
2

(
sina|t| + cosat

)
e−a|t| , −∞ < t <∞ (7.7.5)

where a = (4λ)−1/4. The impulse response h(t) is double-sided, and therefore, it
cannot be used in real-time applications. However, it is evident that the filter is a lowpass
filter with a (6-dB) cutoff frequency of ω0 = λ−1/4. Fig. 7.7.1 depicts h(t) and H(ω)
for three values of the smoothing parameter, λ = 1, λ = 1/5, and λ = 5.
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Fig. 7.7.1 Effective impulse and frequency responses in spline smoothing.

One can also work in the time-domain with similar results. The Euler-Lagrange equa-
tion (7.2.11) leads to,

x(t)−y(t)+λ....
x (t)= 0 ⇒ x(t)+λ....

x (t)= y(t) (7.7.6)

Fourier transforming both sides we obtain (1+λω4)X(ω)= Y(ω), which leads to
Eq. (7.7.4) by solving for H(ω)= X(ω)/Y(ω).

A similar approach will be used in the Whittaker-Henderson discrete-time case dis-
cussed in Sec. 8.1 The resulting filter is often referred to in the business and finance
literature as the Hodrick-Prescott filter.

Variants of the Whittaker-Henderson approach were first introduced in 1880 by
Thiele [405,406] and in 1899 by Bohlmann [407]. Bohlmann considered and solved both
the discrete- and continuous-time versions of the performance index,

J =
N−1∑
n=0

(yn − xn)2+λ
N−1∑
n=1

(xn − xn−1)2= min

J =
∫ tb
ta

∣∣y(t)−x(t)∣∣2dt + λ
∫ tb
ta

∣∣ẋ(t)∣∣2dt = min

(7.7.7)
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In the continuous-time case, the Euler-Lagrange equation, transfer function, and im-
pulse response of the resulting smoothing filter are:

x(t)−λẍ(t)= y(t) ⇒ H(ω)= 1

1+ λω2
, h(t)= 1

2
√
λ
e−|t|/

√
λ (7.7.8)

Thiele considered the unequally-spaced knot case and the weighted performance index:

J =
N−1∑
n=0

1

σ2
n

[
yn − x(tn)

]2 +
N−1∑
n=1

1

w2
n

[
x(tn)−x(tn−1)

]2 = min (7.7.9)

It is remarkable that Thiele formulated this problem as a state-space model—to use
modern parlance—and solved it recursively using essentially the Kalman filter and asso-
ciated smoother. Moreover, he showed how to estimate the unknown model parameters
using the EM algorithm. We will be discussing these ideas later on.

7.8 Stochastic Model

Like the exponential smoothing case, spline smoothing can be given a stochastic state-
space model interpretation [397–404]. The spline function solution x(t) of Eq. (7.3.1)
can be regarded as an optimum linear estimate of the underlying stochastic process
based on theN observations {y0, y1, . . . , yN−1} subject to some additional assumptions
on the initial conditions [399].

The state-space model allows the use of Kalman filtering techniques resulting in
efficient computational algorithms, which like the Reinsch algorithm are alsoO(N). But
in addition, the state-space model allows the estimation of the smoothing parameter.

The basis of such a stochastic model (for the cubic spline case) is the stochastic
differential equation:

ẍ(t)= w(t) (7.8.1)

where w(t) is a zero-mean white-noise process of variance σ2
w, that is, its autocorrela-

tion function is E
[
w(t)w(τ)

] = σ2
wδ(t − τ).

In the observation model y(t)= x(t)+v(t), we may assume that v(t) is uncorrelated
withw(t) and is white noise with varianceσ2

v . It turns out that the smoothing parameter
can be identified as the ratio λ = σ2

v/σ2
w. The N actual observed values are yn =

x(tn)+v(tn). Integrating Eq. (7.8.1) over the interval [tn, t], we obtain,

ẋ(t) = ẋ(tn)+
∫ t
tn
w(τ)dτ

x(t) = x(tn)+(t − tn)ẋ(tn)+
∫ t
tn
(t − τ)w(τ)dτ

(7.8.2)

The process ẋ(t) is integrated white noise, or a Wiener or Brownian process. The
process x(t) is an integrated Wiener process. We may write these in vector form by
defining the state and noise vectors,

x t =
[
x(t)
ẋ(t)

]
, xn =

[
x(tn)
ẋ(tn)

]
, wt =

∫ t
tn

[
t − τ

1

]
w(τ)dτ (7.8.3)
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and the state transition matrix,

A(t, tn)=
[

1 t − tn
0 1

]
(7.8.4)

Then, Eq. (7.8.2) can be written compactly as

x t = A(t, tn)xn +wt (7.8.5)

The covariance matrix of the noise component wt is:

E[wtw
T
t ] =

∫ t
tn

∫ t
tn

[
t − τ

1

][
t − τ′, 1

]
E
[
w(τ)w(τ′)

]
dτdτ′

=
∫ t
tn

∫ t
tn

[
t − τ

1

][
t − τ′, 1

]
σ2
w δ(τ− τ′)dτdτ′

= σ2
w

⎡
⎢⎢⎣

1

3
(t − tn)3 1

2
(t − tn)2

1

2
(t − tn)2 (t − tn)

⎤
⎥⎥⎦

(7.8.6)

At t = tn+1, we obtain the state equation,

xn+1 = A(tn+1, tn)xn +wn+1 , wn+1 =
∫ tn+1

tn

[
tn+1 − τ

1

]
w(τ)dτ (7.8.7)

where, using hn = tn+1 − tn,

A(tn+1, tn)=
[

1 hn
0 1

]
, E[wn+1wT

n+1]= σ2
w

⎡
⎢⎢⎣

1

3
h3
n

1

2
h2
n

1

2
h2
n hn

⎤
⎥⎥⎦ (7.8.8)

In terms of the spline coefficients, we have an = x(tn) and bn = ẋ(tn) at t = tn,
and similarly at t = tn+1. Following [28], we would like to show the following estimation
result. Given the state-vectors xn,xn+1 at the two end points of the interval [tn, tn+1],
the spline function x(t) of (7.3.1), and its derivative ẋ(t), can be regarded as the mean-
square estimates of the state-vector x t based on xn,xn+1, that is, assuming gaussian
noises, given by the conditional mean,

x̂ t = E[x t|xn,xn+1] (7.8.9)

If we orthogonalize xn+1 with respect to xn, that is, replacing it by the innovations
vector εεεn+1 = xn+1 − E[xn+1|xn], then we may use the regression lemma from Chap. 1
to write (7.8.9) in the form:

x̂ t = E[x t|xn,xn+1]= E[x t|xn]+Σxtεn+1Σ
−1
εn+1εn+1

εεεn+1 (7.8.10)

We have from Eq. (7.8.5) and (7.8.7),

E[x t|xn]= A(t, tn)xn , E[xn+1|xn]= A(tn+1, tn)xn (7.8.11)
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the latter implying,

εεεn+1 = xn+1 − E[xn+1|xn]= xn+1 −A(tn+1, tn)xn = wn+1 (7.8.12)

and therefore, we have for the covariance matrices:

Σxtεn+1 = E[x tεεεTn+1]= E[x twT
n+1]= E[wtw

T
n+1] , Σεn+1εn+1 = E[wn+1wT

n+1]

The latter has already been calculated in (7.8.7). For the former, we split the integra-
tion range of wn+1 as follows,

wn+1 =
∫ tn+1

tn

[
tn+1 − τ

1

]
w(τ)dτ =

(∫ t
tn
+
∫ tn+1

t

)[
tn+1 − τ

1

]
w(τ)dτ

and note that only the first term is correlated with wt, thus, resulting in

Σxtεn+1 = E[wtw
T
n+1]=

∫ t
tn

∫ t
tn

[
t − τ

1

][
tn+1 − τ′, 1

]
E
[
w(τ)w(τ′)

]
dτdτ′

= σ2
w

∫ t
tn

[
t − τ

1

][
tn+1 − τ ,1

]
dτ

=

⎡
⎢⎢⎣

1

6
(t − tn)2(tn + 2hn − t) 1

2
(t − tn)2

1

2
(t − tn)(tn + 2hn − t) (t − tn)

⎤
⎥⎥⎦

(7.8.13)

We may now calculate the estimation matrix Hn+1 = Σxtεn+1Σ−1
εn+1εn+1

,

Hn+1 =

⎡
⎢⎢⎢⎣

1

h3
n
(t − tn)2(2tn + 3hn − 2t)

1

h2
n
(t − tn)2(t − tn − hn)

6

h3
n
(t − tn)(tn + hn − t) 1

h2
n
(t − tn)(3t − 3tn − 2hn)

⎤
⎥⎥⎥⎦ (7.8.14)

It follows that the estimate x̂ t is

x̂ t = E[x t|xn]+Hn+1εεεn+1 = A(t, tn)xn +Hn+1
(
xn+1 −A(tn+1, tn)xn

)
(7.8.15)

Setting

x̂ t =
[
x̂(t)
ˆ̇x(t)

]
, xn =

[
an
bn

]
, xn+1 =

[
an+1

bn+1

]

we obtain

x̂(t) = an + bn(t − tn)+ 1

h3
n
(t − tn)2(2tn + 3hn − 2t)(an+1 − an − bnhn)

+ 1

h2
n
(t − tn)2(t − tn − hn)(bn+1 − bn)

ˆ̇x(t) = bn + 6

h3
n
(t − tn)(tn + hn − t)(an+1 − an − bnhn)

+ 1

h2
n
(t − tn)(3t − 3tn − 2hn)(bn+1 − bn)
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Using the continuity relationships (7.3.6),

an+1 = an + bnhn + 1

2
cnh2

n +
1

6
dnh3

n

bn+1 = bn + cnhn + 1

2
dnh2

n

it follows that the expressions for x̂(t) and ˆ̇x(t) reduce to those of Eq. (7.3.1),

x̂(t) = an + bn(t − tn)+1

2
cn(t − tn)2+1

6
dn(t − tn)3

ˆ̇x(t) = bn + cn(t − tn)+1

2
dn(t − tn)2

the second being of course the derivative of the first. The asymptotic filter (7.7.4) may
also be given a stochastic interpretation in the sense that it can be regarded as the
optimum double-sided (i.e., unrealizable) Wiener filter of estimating x(t) from y(t) of
the signal model,

y(t)= x(t)+v(t) , ẍ(t)= w(t) (7.8.16)

We will see in Chap. 11 that for stationary signals x(t), y(t), with power spectral
densities Sxy(ω) and Syy(ω), the optimum double-sided Wiener filter has frequency
response:

H(ω)= Sxy(ω)
Syy(ω)

(7.8.17)

Because x(t) is an integrated Wiener process, it is not stationary, and therefore,
Sxy(ω) and Syy(ω) do not exist. However, it has been shown [643–649] that for cer-
tain types of nonstationary signals, which have the property that they become stationary
under a suitable filtering transformation, Eq. (7.8.17) remains valid in the following mod-
ified form:

H(ω)= Sx̄ȳ(ω)
Sȳȳ(ω)

(7.8.18)

where x̄(t), ȳ(t) are the stationary filtered versions of x(t), y(t). For the model of
Eq. (7.8.16), the necessary filtering operation is double differentiation, x̄(t)= ẍ(t)=
w(t), which can be expressed in the frequency domain as X̄(ω)= D(ω)X(ω), with
D(ω)= (jω)2= −ω2. For the observation signal, we have similarly ȳ(t)= ÿ = ẍ + v̈.
Since w(t), v(t) are uncorrelated, we find

Sx̄ȳ(ω) = Sww(ω)= σ2
w

Sȳȳ(ω) = Sww(ω)+Svv(ω)|D(ω)|2 = σ2
w +σ2

v ω4

which leads to

H(ω)= Sx̄ȳ(ω)
Sȳȳ(ω)

= σ2
w

σ2
w +σ2

v ω4
= 1

1+ λω4
, λ = σ2

v

σ2
w

(7.8.19)

This can be written in the form,

H(ω)= σ2
w/ω4

σ2
w/ω4 +σ2

v
(7.8.20)
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which is what we would get from Eq. (7.8.17) had we pretended that the spectral densities
did exist. Indeed it would follow in such a case from Eq. (7.8.16) that Sxy(ω)= σ2

w/ω4

and Syy(ω)= σ2
w/ω4 +σ2

v .

7.9 Computational Aspects

Eqs. (7.3.22) and (7.3.24) describing the complete spline solution have been implemented
by the MATLAB function splsm,

P = splsm(t,y,lambda,w); % spline smoothing

where t,y are the knot times [t0, t1, . . . , tN−1] and data [y0, y1, . . . , yN−1] (entered as
row or column vectors), lambda is the smoothing parameter λ, and w the vector of
weights [w0,w1, . . . ,wN−1], which default to unity values. The output P is an N×4
matrix whose n-th row are the polynomial coefficients [an, bn, cn, dn]. Thus, the vector
a is the first column of P. Internally, the matrices T,Q are computed as sparse banded
matrices with the help of the function splmat,

[T,Q] = splmat(h); % spline sparse matrices T,Q

where h is the vector of knot spacings [h0, h1, . . . , hN−1], which is simply computed by
the diff operation on the knot times t, that is, h=diff(t). The smoothing spline may
be evaluated at any value of t in the range ta ≤ t ≤ tb using Eq. (7.3.1). The function
splval performs the evaluation of x(t) at any vector of t’s,

ys = splval(P,t,ts); % spline evaluation at a vector of grid points ts

where ys is the vector of values x(ts), and P,t are the spline coefficients and knot times.
The GCV criterion (7.5.5) (with the 1/N factor removed) may be calculated for any vector
of λ values by the function splgcv:

gcv = splgcv(t,y,lambda,w); % GCV evaluation at a vector of λ’s

The optimum λ may be selected by finding the minimum of the GCV over the com-
puted range. Alternatively, the optimum λ may be computed by the related function
splambda, which performs a golden-mean search over a given interval of λ’s,

[lopt,gcvopt] = splambda(t,y,la,lb,Nit,w); % determine optimum λ

The starting interval is [λa, λb] and Nit denotes the number of golden-mean itera-
tions (typically, 10–20). The function splsm2 is a “robustified” version of splsm,

[P,ta] = splsm2(t,y,la,w,Nit); % robust spline smoothing

The function starts with the original triplet [t,y,w] and uses the LOESS method of
repeatedly modifying the weights (with a total of Nit iterations), with the outliers being
given smaller weights. Because of the modification and zeroing of some of the weights,
the output matrix P will have dimensionNa×4 withNa ≤ N. The function also outputs
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the corresponding knot times ta (alsoNa-dimensional) that survive the down-weighting
process.

All of the above functions assume that the observations yn are unique at the knot
times tn. If there are repeated observations, then the weighted observations and their
weights given by Eq. (7.6.2) must be the inputs to the above functions. They may be
determined with the function splav, which is similar in spirit to the function avobs,
except that it computes weighted averages instead of plain averages:

[ta,ya,wa] = splav(t,y,w); % weighted averages of repeated observations

where the outputs [ta,ya,wa] are the resulting unique knot times, observations, and
weights.

Example 7.9.1: Motorcycle data. The usage of these functions is illustrated by the motorcycle
data that we considered earlier in local polynomial modeling. The upper-left graph of
Fig. 7.9.1 shows a plot of the GCV calculated with the function splgcv. The optimum
value was found to be λopt = 15.25 by the function splambda and placed on the graph.
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Fig. 7.9.1 Spline smoothing of motorcycle data.

The MATLAB code used for this graph was:
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Y = loadfile(’mcyc.dat’); % load data

tobs = Y(:,1); yobs = Y(:,2); % extract knot times and observations

[t,y,w] = splav(tobs,yobs); % average repeated observations

la1=1; la2=50; Nit=30; % search interval and no. of iterations

[lopt,gcvopt] = splambda(t,y,la1,la2,Nit,w); % determine optimum λ

la = linspace(la1,la2,100); % evaluate GCV over λ1 ≤ λ ≤ λ2

gcv = splgcv(t,y,la,w);

figure; plot(la,gcv, lopt,gcvopt, ’.’); % plot GCV versus λ

The upper-right graph shows the smoothing spline corresponding to λ = λopt, and eval-
uated at a uniform grid of time points. The lower two graphs depict the special cases of
λ = 0 corresponding to spline interpolation, and λ = ∞ corresponding to a linear fit. The
following MATLAB code generates these graphs:

P = splsm(t,y,lopt,w); % spline coefficients

ts = locgrid(t,1001); % grid time points

ys = splval(P,t,ts); % evaluate spline at grid

figure; plot(tobs,yobs,’.’, ts,ys,’-’); % upper-right graph

la = 0; P = splsm(t,y,la,w); % spline coefficients for λ = 0

ys = splval(P,t,ts); % evaluate spline at grid

figure; plot(t,y,’.’, ts,ys,’-’); % lower-left graph

la = inf; P = splsm(t,y,la,w); % spline coefficients for λ = ∞
ys = splval(P,t,ts);

figure; plot(t,y,’.’, ts,ys,’-’); % lower-right graph

Because the motorcycle data have repeated observations, the actual observations were
replaced by their averaged values prior to evaluating the splines. The solid-line curves
represent the evaluated splines, and the dots are the original data points, except for the
lower-left graph in which the dots represent the averaged observations with the spline
curve interpolating through them instead of the original points. �
.

Example 7.9.2: Robust spline smoothing. Fig. 7.9.2 shows an example of robust spline smooth-
ing. It is the same example considered earlier in Figs. 4.5.3 and 5.6.1.

The optimum value of λ was determined by the function splambda to be λ = 3.6562, but
neighboring value would be just as good. The left graph shows the case of ordinary spline
smoothing with no robustness iterations, and the right graph, using Nit = 10 iterations.
The MATLAB code generating the right graph was as follows,

t = (0:50)’; u = t/max(t);
x0 = (1-cos(2*pi*u))/2; % noise-free signal

seed=2005; randn(’state’,seed);
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Fig. 7.9.2 Robust spline smoothing.

y = x0 + 0.1 * randn(size(x0)); % noisy observations

m = [-1 0 1 3]; % outlier indices relative to n0, n1

n0=25; y(n0+m+1)=0.0;
n1=10; y(n1+m+1)=1.0;

la = splambda(t,y,1,10,30); % optimum λ = 3.6562

w = ones(size(t)); Nit = 10; % initial weights

[P,ta] = splsm2(t,y,la,w,Nit); % robust spline smoothing

ya = P(:,1); % smoothed values

plot(t,x0,’--’, t,y,’.’, ta,ya,’-’); % right graph

The optimum λ was searched for in the interval 1 ≤ λ ≤ 10 calling splambda with 30

golden-mean iterations. The resulting knot vector ta has length 42, while the original

vector t had length 51. The missing knot times correspond to the positions of the outliers.

Example 7.9.3: NIST ultrasonic data. We apply spline smoothing to a nonlinear least-squares
benchmark example from the NIST Statistical Reference Dataset Archives. The data file
Chwirut1.dat is available online from the NIST web sites:

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

http://www.itl.nist.gov/div898/strd/nls/data/chwirut1.shtml

The data are from a NIST study involving ultrasonic calibration and represent ultrasonic
response versus metal distance. There are multiple observations for each distance. In fact,
there are 214 observation pairs (xn, yn), but only 22 unique xns. The data have been fit
by NIST using a nonlinear least squares method to a function of the form:

y = exp(−b1x)
b2 + b3x

(NIST fit)

with the following fitted parameter values:

b1 = 0.19027818370 , b2 = 0.0061314004477 , b3 = 0.0010530908399
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The right graph in Fig. 7.9.3 compares the smoothing spline curve (solid line) with the
above NIST fit (dotted line). Except for the rightmost end of the curves, the agreement is
very close and the curves are almost indistinguishable.
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Fig. 7.9.3 Spline smoothing vs. Nonlinear fitting.

The function splav is called first to determine the unique xns and the corresponding aver-
aged observations and their multiplicities. These are then used in splambda to determine
the optimum GCV smoothing parameter, λopt = 0.1425, which is used by the function
splsm to perform the spline smoothing fit. The GCV is evaluated and plotted at a range of
λs to illustrate its minimum. Finally, the spline is evaluated at dense grid of x-abscissas
for plotting. The following code segment illustrates the computations:

Y = loadfile(’Chwirut1.dat’); % data file in OSP toolbox

x = Y(:,2); y = Y(:,1); % read (x, y) observation pairs

[x,i] = sort(x); y = y(i); % sort x’s in increasing order

b1 = 1.9027818370E-01; b2 = 6.1314004477E-03; b3 = 1.0530908399E-02;

yf = exp(-b1*x)./(b2+b3*x); % NIST fit

[xa,ya,wa] = splav(x,y); % unique x’s, averaged observations, and multiplicities

la1=0.01; la2=1; Nit=20; % search interval

[lopt,gopt] = splambda(xa,ya,la1,la2,Nit,wa); % determine optimum λ

la = linspace(0.05,0.4,51); % range of λ’s

gcv = splgcv(xa,ya,la,wa); % evaluate GCV

figure; plot(la,gcv, lopt,gopt,’.’); % left graph

P = splsm(xa,ya,lopt,wa); % spline smoothing coefficients

xs = locgrid(xa,200); % evaluation grid of abscissas

ys = splval(P,xa,xs); % evaluate spline at xs

figure; plot(x,y,’.’, xs,ys,’-’, x,yf,’:’); % right graph
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7.10 Problems

7.1 Show that the matrices Q,S defined in Eqs. (7.3.13) and (7.3.30) satisfy the orthogonality
property QTS = 0. Assuming that the weighting diagonal matrix W has positive diagonal
entries, argue that the N×N matrix A = [W−1/2Q,W1/2S] is non-singular. Using this fact,
prove the projection matrix property (7.3.31). [Hint: work with A(ATA)−1AT .]

7.2 Show that the Euler-Lagrange equation for the variational problem (7.6.1) is:

....
x (t)= λ−1

N−1∑
n=0

mn∑
i=1

wni
(
yni − x(tn)

)
δ(t − tn)

and show that it is equivalent to

....
x (t)= λ−1

N−1∑
n=0

w̄n
(
ȳn − x(tn)

)
δ(t − tn)

where w̄n, ȳn were defined in (7.6.2). This is an alternative way to establish the equivalence
of the variational problems (7.6.1) and (7.6.3).

7.3 First prove the following Fourier transform pair:

exp
(−b|t|)←→ 2b

b2 +ω2

where b is any complex number with Re(b)> 0. Then, use it to prove that Eqs. (7.7.4) and
(7.7.5) are a Fourier transform pair. Show the same for the pair in Eq. (7.7.8).

8
Whittaker-Henderson Smoothing

8.1 Whittaker-Henderson Smoothing Methods

Whittaker-Henderson smoothing is a discrete-time version of spline smoothing for equa-
lly spaced data. Some of the original papers by Bohlmann, Whittaker, Henderson and
others,† and their applications to trend extraction in the actuarial sciences, physical
sciences, and business and finance, are given in [405–438], including Hodrick-Prescott
filters in finance [439–467], and recent realizations in terms of the �1 norm [468–478],
as well as extensions to seasonal data [622–625,636,638]. The performance index was
defined in Eq. (7.1.2),

J =
N−1∑
n=0

wn
∣∣yn − xn∣∣2 + λ

N−1∑
n=s

∣∣∇sxn∣∣2 = min (8.1.1)

where ∇sxn represents the backward-difference operator ∇xn = xn − xn−1 applied s
times. We encountered this operation in Sec. 4.2 on minimum-Rs Henderson filters. The
corresponding difference filter and its impulse response are

Ds(z)= (1− z−1)s

ds(k)= (−1)k
(
s
k

)
, 0 ≤ k ≤ s

(8.1.2)

For example, we have for s = 1,2,3,

d1 =
[

1
−1

]
, d2 =

⎡
⎢⎣

1
−2

1

⎤
⎥⎦ , d3 =

⎡
⎢⎢⎢⎣

1
−3

3
−1

⎤
⎥⎥⎥⎦

Because Ds(z) is a highpass filter, the performance index attempts, in its second
term, to minimize the spectral energy of xn at the high frequency end, while attempt-
ing to interpolate the noisy observations with the first term. The result is a lowpass,

†Bohlmann considered the case s = 1, Whittaker and Henderson, s = 3, and Hodrick-Prescott, s = 2.
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