5. Local Polynomial Modeling

Fig. 5.6.1 Loess smoothing with \(d = 2 \), \(\alpha = 0.4 \), and different iterations.

The loess fit was performed at all \(t \). We observe how successive iterations gradually diminish the distorting influence of the outliers.

5.7 Problems

5.1 Prove the matrix inversion lemma identity (5.2.8). Using this identity, show that

\[
H_{ii} = \frac{H_{ii}}{1 + H_{ii}}, \quad \text{where} \quad H_{ii} = w_0 u_0^T F_i u_0, \quad F_i = (S_i^T W_i S_i) -
\]

then, argue that \(0 \leq H_{ii} \leq 1 \).

6. Exponential Smoothing

6.1 Mean Tracking

The exponential smoother, also known as an exponentially-weighted moving average (EWMA) or more simply an exponential moving average (EMA) filter is a simple, effective, recursive smoothing filter that can be applied to real-time data. By contrast, the local polynomial modeling approach is typically applied off-line to a block of signal samples that have already been collected.

The exponential smoother is used routinely to track stock market data and in forecasting applications such as inventory control where, despite its simplicity, it is highly competitive with other more sophisticated forecasting methods [232–279].

We have already encountered it in Sec. 2.3 and compared it to the plain FIR averager. Here, we view it as a special case of a weighted local polynomial smoothing problem using a causal window and exponential weights, and discuss some of its generalizations. Both the exponential smoother and the FIR averager are applied to data that are assumed to have the typical form:

\[
y_n = a_n + v_n \quad (6.1.1)
\]

where \(a_n \) is a low-frequency trend component, representing an average or estimate of the local level of the signal, and \(v_n \) a random, zero-mean, broadband component, such as white noise. If \(a_n \) is a deterministic signal, then by taking expectations of both sides we see that \(a_n \) represents the mean value of \(y_n \), that is, \(a_n = E[y_n] \). If \(y_n \) is stationary, then \(a_n \) is a constant, independent of \(n \).

The output of either the FIR or the exponential smoothing filter tracks the signal \(a_n \). To see how such filters arise in the context of estimating the mean level of a signal, consider first the stationary case. The mean \(m = E[y_n] \) minimizes the following variance performance index (e.g., see Example 1.3.5):

\[
\mathcal{J} = E[(y_n - \alpha)^2] = \min \Rightarrow a_{\text{opt}} = m = E[y_n] \quad (6.1.2)
\]

with minimized value \(\mathcal{J}_{\text{min}} = \sigma_y^2 \). This result is obtained by setting the gradient with respect to \(a \) to zero:

\[
\frac{\partial \mathcal{J}}{\partial a} = -2E[y_n - a] = 0 \quad (6.1.3)
\]
6. Exponential Smoothing

In general, given a theoretical performance index \(J \), one must replace it in practice by an experimental one, say \(\hat{J} \), expressible in terms of the actual available data. The minimization of \(\hat{J} \) provides then estimates of the parameters or signals to be estimated.

\[
\hat{J} = \min_{\text{data}} \Rightarrow \text{theoretical optimum solution}
\]

\[
\hat{J} = \min_{\text{estimated}} \Rightarrow \text{estimated optimum solution}
\]

Depending on the index \(\hat{J} \), the estimates may be calculated in a block processing manner using an entire block of data, or, on a sample-by-sample basis with the estimate being updated in real time in response to each new data sample. All adaptive filtering algorithms follow the latter approach.

We illustrate these ideas with the help of the simple performance index (6.1.2). We will apply this approach extensively in Chap. 16. Four possible practical definitions for \(\hat{J} \) that imitate (6.1.2) are:

\[
\hat{J} = \sum_{n=0}^{L-1} (y_n - \hat{a})^2 = \min \quad (6.1.4a)
\]

\[
\hat{J} = \sum_{k=0}^{n} (y_k - \hat{a})^2 = \min \quad (6.1.4b)
\]

\[
\hat{J} = \sum_{k=n-N+1}^{n} (y_k - \hat{a})^2 = \min \quad (6.1.4c)
\]

\[
\hat{J} = \sum_{k=0}^{n} \lambda^{n-k} (y_k - \hat{a})^2 = \min \quad (6.1.4d)
\]

The first assumes a length-\(L \) block of data \([y_0, y_1, \ldots, y_{L-1}]\). The last three are suitable for real-time implementations, where \(n \) denotes the current time. The second and fourth use the first \(n+1 \) data \([y_0, y_1, \ldots, y_n]\), while the third uses a length-\(N \) sliding window \([y_{n-N+1}, \ldots, y_n, y_{n+1}]\). The third choice leads to the FIR averager, also known as the simple moving average (SMA), and the fourth, to the exponential smoother, or, exponential moving average (EMA), where we require that the exponential “forgetting factor” \(\lambda \) be in the range \(0 < \lambda < 1 \). These time ranges are depicted below.

```
  0 1   \ldots   n-1  n   \ldots   L-1
  0 1   \ldots   n-1  n   \ldots   L-1
  0 1   \ldots   n-1  n   \ldots   L-1
```

In order for the \(\hat{J} \)'s to be unbiased estimates of \(J \), the above expressions should have been divided by the sum of their respective weights, namely, the quantities \(L \), \(n \), and \(1 + \lambda + \cdots + \lambda^n \), respectively. However, such factors do not affect the minimization solutions, which are easily found to be:

\[
\hat{a} = \frac{y_0 + y_1 + \cdots + y_{L-1}}{L} \quad (6.1.5a)
\]

\[
\hat{a}_n = \frac{y_0 + y_1 + \cdots + y_n}{n+1} \quad (6.1.5b)
\]

\[
\hat{a}_n = \frac{y_0 + y_{n-1} + \cdots + y_{n-N+1}}{N} \quad (6.1.5c)
\]

\[
\hat{a}_n = \frac{y_0 + \lambda y_{n-1} + \lambda^2 y_{n-2} + \cdots + \lambda^ny_0}{1 + \lambda + \lambda^2 + \cdots + \lambda^n} \quad (6.1.5d)
\]

We have tucked on a subscript \(n \) to the last three to emphasize their dependence in manner using an entire block of data, or, on a sample-by-sample basis with the estimate being updated in real time in response to each new data sample. All adaptive filtering algorithms follow the latter approach.

Four possible practical definitions for \(\hat{J} \) that imitate (6.1.2) are:

\[
\hat{J} = \sum_{n=0}^{L-1} (y_n - \hat{a})^2 = \min \quad (6.1.4a)
\]

\[
\hat{J} = \sum_{k=0}^{n} (y_k - \hat{a})^2 = \min \quad (6.1.4b)
\]

\[
\hat{J} = \sum_{k=n-N+1}^{n} (y_k - \hat{a})^2 = \min \quad (6.1.4c)
\]

\[
\hat{J} = \sum_{k=0}^{n} \lambda^{n-k} (y_k - \hat{a})^2 = \min \quad (6.1.4d)
\]

The first two, corresponding to ordinary sample averaging, are asymptotically consistent estimators having variances that tend to zero as \(L \rightarrow \infty \) or \(n \rightarrow \infty \). The last two are not consistent. However, their variances can be made as small as desired by proper choice of the parameters \(N \) or \(\lambda \).

The exponential smoothing filter may also be derived from a different point of view. The estimates (6.1.5) are the exact least-squares solutions of the indices (6.1.4). An alternative to using the exact solutions is to derive an LMS (least-mean-square) type of adaptive algorithm which minimizes the performance index iteratively using a steepest-descent algorithm that replaces the theoretical gradient (6.1.3) by an “instantaneous” one in which the expectation instruction is ignored:

\[
\frac{\partial J}{\partial a} = -2E[y_n - a] \quad \Rightarrow \quad \frac{\partial J}{\partial a} = -2[y_n - \hat{a}_{n-1}] \quad (6.1.7)
\]

The LMS algorithm then updates the previous estimate by adding a correction in the direction of the negative gradient using a small positive adaptation parameter \(\mu \):

\[
\Delta a = -\mu \frac{\partial J}{\partial a}, \quad \hat{a}_n = \hat{a}_{n-1} + \Delta a \quad (6.1.8)
\]
6. Exponential Smoothing

The resulting difference equation is identical to that of the steady-state exponential smoother (see Eq. (6.1.11) below),

\[\hat{a}_n = \hat{a}_{n-1} + 2\mu (y_n - \hat{a}_{n-1}) \]

In adaptive filtering applications, the use of the exponentially discounted type of performance index (6.1.4d) leads to the so-called recursive least-squares (RLS) adaptive filters, which are in general different from the LMS adaptive filters. They happened to coincide in this particular example because of the simplicity of the problem.

The sample mean estimators (6.1.5a) and (6.1.5b) are geared to stationary data, whereas (6.1.5c) and (6.1.5d) can track nonstationary changes in the statistics of \(y_n \). If \(y_n \) is nonstationary, then its mean \(\bar{d}_n = E[y_n] \) would be varying with \(n \) and a good estimate should be able to track it well and efficiently. To see the problems that arise in using the sample mean estimators in the nonstationary case, let us cast Eqs. (6.1.5b) and (6.1.5d) in recursive form. Both can be written as follows:

\[\tilde{a}_n = (1 - \alpha_n) \tilde{a}_{n-1} + \alpha_n y_n = \tilde{a}_{n-1} + \alpha_n (y_n - \tilde{a}_{n-1}) \]

(6.1.9)

where the gain parameter \(\alpha_n \) is given by

\[\alpha_n = \frac{1}{n+1}, \quad \alpha_n = \frac{1}{1 + \lambda + \cdots + \lambda^n} = \frac{1 - \lambda}{\lambda^{n+1}} \]

(6.1.10)

for (6.1.5b) and (6.1.5d), respectively. The last side of Eq. (6.1.9) is written in a so-called “predictor/corrector” Kalman filter form, where the first term \(\tilde{a}_{n-1} \) is a tentative prediction of \(\tilde{a}_n \) and the second term is the correction obtained by multiplying the “prediction error” \((y_n - \tilde{a}_{n-1}) \) by a positive gain factor \(\alpha_n \). This term always corrects in the right direction, that is, if \(\tilde{a}_{n-1} \) overestimates/underestimates \(y_n \) then the error tends to be negative/positive reducing/increasing the value of \(\tilde{a}_{n-1} \).

There is a dramatic difference between the two estimators. For the sample mean, the gain \(\alpha_n = 1/(n+1) \) tends to zero rapidly with increasing \(n \). For stationary data, the estimate \(\tilde{a}_n \) will converge quickly to the true mean. Once \(n \) is fairly large, the correction term becomes essentially unimportant because the gain is so small. If after converging to the true mean the statistics of \(y_n \) were to suddenly change with a new value of the mean, the sample-mean estimator \(\tilde{a}_n \) would have a very hard time responding to such a change and converging to the new value because the new changes are communicated only through the already very small correction term.

On the other hand, for the exponential smoother case (6.1.5d), the gain tends to a constant for large \(n \), that is, \(\alpha_n \rightarrow \alpha = 1 - \lambda \). Therefore, the correction term remains finite and can communicate the changes in the statistics. The price one pays for that is that the estimator is not consistent. Asymptotically, the estimator (6.1.5d) becomes the ordinary exponential smoothing filter described by the difference equation,

\[\tilde{a}_n = \lambda \tilde{a}_{n-1} + \alpha y_n = \tilde{a}_{n-1} + \alpha (y_n - \tilde{a}_{n-1}) \]

(6.1.11)

Its transfer function and asymptotic variance are:

\[H(z) = \frac{\alpha}{1 - \lambda z^{-1}}, \quad \sigma_{\tilde{a}_n}^2 = E[(\tilde{a}_n - m)^2] = \sigma_y^2 \frac{1 - \lambda}{1 + \lambda} \]

(6.1.12)

6.1. Mean Tracking

The quantity \(\sigma_y^2 / \sigma_\epsilon^2 \) is the NRR of this filter. The differences in the behavior of the sample-mean and exponential smoother can be understood by inspecting the corresponding performance indices, which may be written in an expanded form:

\[\tilde{J} = (y_n - \hat{a})^2 + (y_{n-1} - \hat{a})^2 + (y_{n-2} - \hat{a})^2 + \cdots + (y_0 - \hat{a})^2 \]

(6.1.13)

The first index weighs all terms equally, as it should for stationary data. The second index emphasizes the terms arising from the most recent observation \(y_n \) and exponentially forgets, or discounts, the earlier observations and thus can respond more quickly to new changes. Even though the second index appears to have an ever increasing number of terms, in reality, the effective number of terms that are significant is finite and can be estimated by the formula:

\[\bar{n} = \sum_{n=0}^{\infty} \frac{n \lambda^n}{\lambda^n} = \frac{\lambda}{1 - \lambda} \]

(6.1.14)

This expression is only a guideline and other possibilities exist. For example, one can define \(\bar{n} \) to be the effective time constant of the filter:

\[\lambda^n = \epsilon \Rightarrow \bar{n} = \frac{\ln \epsilon}{\ln \lambda} \approx \frac{\ln(\epsilon^{-1})}{1 - \lambda}, \quad \text{for} \quad \lambda \leq 1 \]

(6.1.15)

where \(\epsilon \) is a small user-specified parameter such as \(\epsilon = 0.01 \). The sliding window estimator (6.1.5c) is recognized as a length-\(N \) FIR averaging filter of the type we considered in Sec. 2.4. It also can track a nonstationary signal at the expense of not being a consistent estimator. Requiring that it achieve the same variance as the exponential smoother gives the conditions:

\[\frac{1}{N} \sigma_{\tilde{a}_n}^2 = \frac{1 - \lambda}{1 + \lambda} \sigma_y^2 \Rightarrow \lambda = \frac{N - 1}{N + 1} \Rightarrow \alpha = 1 - \lambda = \frac{2}{N + 1} \]

(6.1.16)

Such conditions are routinely used to set the parameters of FIR and exponential smoothing filters in inventory control applications and in tracking stock market data. A similar weighted average as in Eq. (6.1.14) can be defined for any filter by:

\[\bar{n} = \frac{\sum_n n h_n}{\sum_n h_n} \quad \text{(effective filter lag)} \]

(6.1.17)

where \(h_n \) is the filter’s impulse response. Eq. (6.1.17) may also be expressed in terms of the filter’s transfer function \(H(z) = \sum_n h_n z^{-n} \) and its derivative \(H'(z) = dH(z)/dz \) evaluated at DC, that is, at \(z = 1 \):

\[\bar{n} = - \frac{H'(z)}{H(z)} \bigg|_{z=1} \quad \text{(effective filter lag)} \]

(6.1.18)
6. Exponential Smoothing

Alternatively, \(n \) is recognized as the filter’s *group delay* at DC, that is, given the frequency response \(H(\omega) = \sum_n h_n e^{-j\omega n} = \frac{H(\omega)}{\omega^2 R(\omega)} \), we have (Problem 6.1):

\[
\hat{n} = -\frac{d}{d\omega} \arg H(\omega) \bigg|_{\omega=0} \quad \text{(group delay at DC)} \tag{6.1.19}
\]

The exponential smoother is a special case of (6.1.17) with \(h_n = \alpha \lambda^n u(n) \), where \(u(n) \) is the unit-step function. We may apply this definition also to the FIR averager filter that has \(h_n = \frac{1}{N} \sum_{n=0}^{N-1} n = \frac{N-1}{2} \).

The FIR averager can be mapped into an "equivalent" exponential smoother by equating the \(\hat{n} \) lags of the two filters, that is,

\[
\hat{n} = \frac{N-1}{2} = \frac{\lambda}{1-\lambda} \tag{6.1.20}
\]

This condition is exactly equivalent to condition (6.1.16) arising from matching the NRRs of the two filters. The two equations,

\[
E[(\hat{a}_n - m)^2] = \frac{1-\lambda}{1+\lambda} \sigma_y^2 = \frac{1}{N} \sigma_y^2, \quad \hat{n} = \frac{\lambda}{1-\lambda} = \frac{N-1}{2} \tag{6.1.21}
\]

capture the main tradeoff between variance and speed in using an exponential smoother or an equivalent FIR averager, that is, the closer \(\lambda \) is to unity or the larger the \(N \), the smaller the variance and the better the estimate, but the longer the transients and the slower the speed of response.

We summarize the difference equations for the exact exponential smoother (6.1.5d) and the steady-state one (6.1.11),

\[
\hat{a}_n = \frac{\lambda}{1-\lambda^n+1} \hat{a}_{n-1} + \frac{\alpha}{1-\lambda^n+1} y_n = \hat{a}_{n-1} + \frac{\alpha}{1-\lambda^n+1} (y_n - \hat{a}_{n-1}) \tag{6.1.22}
\]

Clearly, the second is obtained in the large-\(n \) limit of the first, but in practice the steady one is often used from the start at \(n = 0 \) because of its simplicity.

To start the recursions at \(n = 0 \), one needs to specify the initial value \(\hat{a}_{-1} \). For the exact smoother, \(\hat{a}_{-1} \) can have an arbitrary value because its coefficient vanishes at \(n = 0 \). This gives for the first smoothed value \(\hat{a}_0 = 0 \cdot \hat{a}_{-1} + 1 \cdot y_0 = y_0 \). For the steady smoother it would make sense to also require that \(\hat{a}_0 = y_0 \), which would imply that \(\hat{a}_{-1} = y_0 \) because then

\[
\hat{a}_0 = \lambda \hat{a}_{-1} + \alpha y_0 = \lambda y_0 + \alpha y_0 = y_0
\]

There are other reasonable ways of choosing \(\hat{a}_{-1} \), for example one could take it to be the average of a few initial values of \(y_n \). The convolutional solution of the steady smoother with arbitrary nonzero initial conditions is obtained by convolving the filter’s

\[
\text{6.1. Mean Tracking}
\]

impulse response \(\alpha \lambda^n u(n) \) with the causal input \(y_n \) plus adding a transient term arising from the initial value:

\[
\hat{a}_n = \alpha \sum_{k=0}^{n} \lambda^{n-k} y_k + \lambda^{n+1} \hat{a}_{-1} \tag{6.1.23}
\]

The influence of the initial value disappears exponentially.

Example 6.1.1: Fig. 6.1.1 illustrates the ability of the sample mean and the exponential smoother to track a sudden level change.

![Fig. 6.1.1 Mean tracking with sample mean, exponential smoother, and FIR averager.](image)

The first 1000 samples of the signal \(y_n \) depicted on the upper-left graph are independent gaussian samples of mean and variance \(m_1 = 1, \sigma_1 = 1 \). The last 1000 samples are gaussian samples with \(m_2 = 1.5 \) and \(\sigma_2 = 0.5 \).

The upper-right graph shows the sample mean computed recursively using (6.1.9) with \(\alpha_0 = 1/(n+1) \) and initialized at \(\hat{a}_{-1} = 0 \) (although the initial value does not matter since \(\alpha_0 = 1 \)). We observe that the sample mean converges very fast to the first value of \(m_1 = 1 \), with its fluctuations becoming smaller and smaller because of its decreasing variance (6.1.6b). But it is extremely slow responding to the sudden change in the mean.

The bottom two graphs show the steady-state exponential smoother initialized at \(\hat{a}_{-1} = 0 \) with the two values of the forgetting factor \(\lambda = 0.98 \) and \(\lambda = 0.995 \). For the smaller \(\lambda \) the convergence is quick both at the beginning and after the change, but the fluctuations
6. Exponential Smoothing

6.1. Mean Tracking

which reads as follows where \(s \) is the state:

\[
\begin{align*}
\hat{a} &= a + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

or

\[
\begin{align*}
\hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

Thus, in order for the first pass to give \(\hat{a}_0 = y_0 \), the initial state must be such that \(s_0 = \hat{a}_0 - \alpha y_0 = \lambda y_0 \). The EMA filter was run with zero initial conditions and therefore, the first \(N-1 \) outputs were discarded as transients. After \(n \geq N \), the EMA and the FIR outputs are comparable since they have the same \(\hat{n} \).

Example 6.1.3: It is evident by inspecting the graphs of the previous example that both the EMA and the FIR filter outputs are lagging behind the data signal. To see this lag more clearly, consider a noiseless signal consisting of three straight-line segments defined by,

\[
\begin{align*}
&\text{for } 0 \leq n < 75, \quad s_n = 20 + 0.8n, \\
&\text{for } 75 \leq n < 225, \quad s_n = 80 - 0.3(n - 75), \\
&\text{for } 225 \leq n \leq 300, \quad s_n = 35 + 0.4(n - 225)
\end{align*}
\]

Fig. 6.1.3 shows the corresponding output from an EMA with \(\lambda = 0.9 \) and an equivalent FIR averager with \(N = 19 \) as in the previous example. The dashed line is the signal \(s_n \) and the solid lines, the corresponding filter outputs.

The initial value was set such that to get \(\hat{a}_0 = y_0 \) for the EMA. The built-in function \texttt{filter} allows one to specify the initial state. Because \texttt{filter} uses the transposed realization, in order to have \(a_0 = y_0 \), the initial state must be chosen as \(s_0 = \lambda y_0 \). This follows from the sample processing algorithm of the transposed realization for the EMA filter (6.1.12),

\[
\begin{align*}
\text{for each input sample } y \text{ do:} \\
\hat{a} &= \hat{a} + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

\[
\begin{align*}
\text{or} \quad \hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

\[
\begin{align*}
\sum_{k=0}^{n} h_k x_{n-k} &= \sum_{k=0}^{n} h_k [a + b(n-k)] \\
&= (a + bn) \sum_{k=0}^{n} h_k - b \sum_{k=0}^{n} kh_k
\end{align*}
\]

quantified by (6.1.21) remain finite and do not improve even after convergence. For the larger \(\lambda \), the fluctuations are smaller, but the learning time constant is longer. In the bottom-right graph, we have also added the equivalent FIR averager with \(N \) related to \(\lambda \) by (6.1.16), which gives \(N = 399 \). Its learning speed and fluctuations are comparable to those of the exponential smoother. \(\square \)

Example 6.1.2: Fig. 6.1.2 shows the daily Dow-Jones Industrial Average (DJIA) from Oct. 1, 2007 to Dec. 31, 2009. In the left graph an exponential smoothing filter is used with \(\lambda = 0.9 \). In the right graph, an FIR averager with an equivalent length of \(N = (1 + \lambda)/(1 - \lambda) = 19 \) is used. The data were obtained from http://finance.yahoo.com.

\[
\begin{align*}
\text{for each input sample } y \text{ do:} \\
\hat{a} &= \hat{a} + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

\[
\begin{align*}
\text{or} \quad \hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

Thus, in order for the first pass to give \(\hat{a}_0 = y_0 \), the initial state must be such that \(s_0 = \hat{a}_0 - \alpha y_0 = \lambda y_0 \). The EMA filter was run with zero initial conditions and therefore, the first \(N-1 \) outputs were discarded as transients. After \(n \geq N \), the EMA and the FIR outputs are comparable since they have the same \(\hat{n} \).

Example 6.1.2: Fig. 6.1.2 shows the daily Dow-Jones Industrial Average (DJIA) from Oct. 1, 2007 to Dec. 31, 2009. In the left graph an exponential smoothing filter is used with \(\lambda = 0.9 \). In the right graph, an FIR averager with an equivalent length of \(N = (1 + \lambda)/(1 - \lambda) = 19 \) is used. The data were obtained from http://finance.yahoo.com.

\[
\begin{align*}
\text{for each input sample } y \text{ do:} \\
\hat{a} &= \hat{a} + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

\[
\begin{align*}
\text{or} \quad \hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 6.1.2} \quad \text{Dow-Jones industrial average from 10-Oct-2007 to 31-Dec-2009.}
\end{align*}
\]

The following code fragment generates the two graphs:

\[
\begin{align*}
Y &= \text{loadfile('dow-oct07-dec09.dat');} \\
y &= Y(:,4)/1000; \\
n &= (0:length(y)-1); \\
la &= 0.9; \\
a &= 1-la; \\
s0 &= la*y(1); \\
m &= \text{filter}(a, [1,-la], y, s0); \\
m &= \text{stem}(y,0,a,y(2)); \\
figure; plot(n,m,'-', n,y,':'); \\
end
\end{align*}
\]

\[
\begin{align*}
N &= \text{round}((1+la)/(1-la)); \\
x &= \text{filter}(h,1,y); \\
figure; plot(n(N:end),x(N:end),'-', n,y,':'); \\
end
\end{align*}
\]

Fig. 6.1.3 Lag introduced by EMA and FIR averager filters.

The EMA was run with initial value \(\hat{a}_{-1} = s_0 = 20 \). The FIR filter was run with zero initial conditions, and therefore, its first \(N-1 \) outputs are transients. The amount of delay introduced by the filters is exactly equal to the quantity \(\hat{n} \) of Eq. (6.1.20).

\[
\begin{align*}
\text{for each input sample } y \text{ do:} \\
\hat{a} &= \hat{a} + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

\[
\begin{align*}
\text{or} \quad \hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 6.1.3} \quad \text{Lag introduced by EMA and FIR averager filters.}
\end{align*}
\]

The initial value was set such that to get \(\hat{a}_0 = y_0 \) for the EMA. The built-in function \texttt{filter} allows one to specify the initial state. Because \texttt{filter} uses the transposed realization, in order to have \(a_0 = y_0 \), the initial state must be chosen as \(s_0 = \lambda y_0 \). This follows from the sample processing algorithm of the transposed realization for the EMA filter (6.1.12),

\[
\begin{align*}
\text{for each input sample } y \text{ do:} \\
\hat{a} &= \hat{a} + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

\[
\begin{align*}
\text{or} \quad \hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 6.1.3} \quad \text{Lag introduced by EMA and FIR averager filters.}
\end{align*}
\]

The EMA was run with initial value \(\hat{a}_{-1} = s_0 = 20 \). The FIR filter was run with zero initial conditions, and therefore, its first \(N-1 \) outputs are transients. The amount of delay introduced by the filters is exactly equal to the quantity \(\hat{n} \) of Eq. (6.1.20).

\[
\begin{align*}
\text{for each input sample } y \text{ do:} \\
\hat{a} &= \hat{a} + \alpha y \\
\hat{s} &= \lambda \hat{a}
\end{align*}
\]

\[
\begin{align*}
\text{or} \quad \hat{a}_n &= s_n + \alpha y_n \\
\hat{s}_{n+1} &= \lambda \hat{a}_n
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 6.1.3} \quad \text{Lag introduced by EMA and FIR averager filters.}
\end{align*}
\]
6. Exponential Smoothing

For large \(n \), we may replace the upper limit of the summations by \(k = \infty \),

\[
y_n = (a + bn) \sum_{k=0}^{\infty} h_k - b \sum_{k=0}^{\infty} k h_k = (a + bn) \sum_{k=0}^{\infty} h_k - b n \sum_{k=0}^{\infty} h_k = (a + b n - n) \sum_{k=0}^{\infty} h_k
\]

where we used the definition (6.1.17) for \(\hat{n} \). For filters that have unity gain at DC, the sum of the filter coefficients is unity, and we obtain,

\[
y_n = a + b(n - \hat{n}) = x_{n-n}
\]

(6.1.24)

Such delays are of concern in a number of applications, such as the real-time monitoring of financial data. For FIR filters, the problem of designing noise reducing filters with a prescribed amount of delay \(\hat{n} \) has already been discussed in Sec. 3.8. However, we discuss it a bit further in Sec. 6.10 and 6.15 emphasizing its use in stock market trading. The delay \(\hat{n} \) can also be controlled by the use of higher-order exponential smoothing discussed in Sec. 6.5.

6.3 Higher-Order Polynomial Smoothing Filters

The innovations representation model can also be cast in an ordinary Wiener and Kalman filter form of the type discussed in Chap. 11. The state and measurement equations for such a model are:

\[
x_{n+1} = x_n + w_n
\]

\[
y_n = x_n + \nu_n
\]

(6.2.5)

where \(w, \nu \) are zero-mean white-noise signals that are mutually uncorrelated. This model is referred to as a ”constant level” state-space model, and represents a random-walk observed in noise. The optimal prediction estimate \(\hat{x}_{n+1} \) of the state \(x_n \) is equivalent to \(\hat{x}_{n-1} \). The equivalence between EMA and this model results in the following relationship between the parameters \(\alpha \) and \(q = \alpha^2/\sigma_w^2 \):

\[
q = \frac{\alpha^2}{1 - \alpha} \Rightarrow \alpha = \sqrt{q^2 + 4q} - q
\]

(6.2.6)

We defer discussion of such state-space models until chapters 11 and 13.

6.3 Higher-Order Polynomial Smoothing Filters

We recall that in fitting a local polynomial of order \(d \) to a local block of data \(\{y_n-M, \ldots, y_n, \ldots, y_{n+M}\} \), the performance index was

\[
J = \sum_{k=-M}^{M} [y_{n-k} - p(k)]^2 = \sum_{k=-M}^{M} [y_{n-k} - u_k^T c]^2 = \min
\]

where \(p(k) \) is a \(d \)th degree polynomial, representing the estimate \(\hat{y}_{n+k} = p(k) \),

\[
p(k) = u_k^T c = [1, k, \ldots, k^d]^T
\]

and we defined the monomial basis vector \(u_k = [1, k, k^2, \ldots, k^d]^T \). The higher-order exponential smoother is obtained by restricting the data range to \(\{y_0, y_1, \ldots, y_n\} \) and using exponential weights, and similarly, the corresponding FIR version will be restricted to \(\{y_{n-N+1}, \ldots, y_{n-1}, y_n\} \). The resulting performance indices are then,

\[
J_n = \sum_{k=-n}^{0} \lambda^{-k} [y_{n-k} - u_k^T c]^2 = \min
\]

\[
J_n = \sum_{k=-N+1}^{0} \lambda^{-k} [y_{n-k} - u_k^T c]^2 = \min
\]

(6.3.1)

or, replacing the summation index \(k \) by \(-k \), the performance indices read,

\[
\text{(EMA)} \quad J_n = \sum_{k=0}^{n} \lambda^k [y_{n-k} - u_k^T c]^2 = \min
\]

\[
\text{(FIR)} \quad J_n = \sum_{k=0}^{N-1} [y_{n-k} - u_k^T c]^2 = \min
\]
6. Exponential Smoothing

In both cases, we may interpret the quantities \(p(\pm \tau) = u_T^c \) as the estimates \(\hat{y}_{n \pm \tau} \). We will denote them by \(\hat{y}_{n \pm \tau} \) to emphasize their causal dependence only on data up to the current time \(n \). In particular, the quantity \(c_0 = u_0^c = p(0) \) represents the estimate \(\hat{y}_n \), or \(\hat{y}_n/n \), that is, an estimate of the local level of the signal. Similarly, \(c_1 = p(0) = u_1^c \), the local slope, and \(2c_2 = p(0) \), the local acceleration. Eqs. (6.1.4d) and (6.1.4c) are special cases of (6.3.1) corresponding to \(d = 0 \).

Both indices in Eq. (6.3.1) can be written in the following compact vectorial form, whose solution we have already obtained in previous chapters:

\[
J = (y - Sc)^TW(y - Sc) = \min \Rightarrow c = (STW)\omega (STW) y (6.3.2)
\]

where the data vector \(y \) is defined as follows in the EMA and FIR cases,

\[
y(n) = \begin{bmatrix} y_n \\ y_{n-1} \\ \vdots \\ y_0 \end{bmatrix}, \quad y(n) = \begin{bmatrix} y_n \\ y_{n-1} \\ \vdots \\ y_{n-N+1} \end{bmatrix} (6.3.3)
\]

with the polynomial basis matrices \(S \),

\[
S_n = [u_0, u_{-1}, \ldots, u_{-n}]^T, \quad S_N = [u_0, u_{-1}, \ldots, u_{-N+1}]^T = \begin{bmatrix} u_T^0 \\ u_T^{-1} \\ \vdots \\ u_T^{-N+1} \end{bmatrix} (6.3.4)
\]

with, \(u_T^k = [1, (-k), (-k)^2, \ldots, (-k)^d] \), and weight matrices \(W \) in the two cases,

\[
W_n = \text{diag}([1, \lambda, \ldots, \lambda^n]), \quad \text{or}, \quad W = I_N (6.3.5)
\]

The predicted estimates can be written in the filtering form:

\[
\hat{y}_{n \pm \tau/n} = u_T^c(n) = h_T^c(n)y(n) (6.3.6)
\]

where in the exponential smoothing case,

\[
c(n) = (S_N^k W_n S_n)^{-1} u_T^c(n) y(n) \quad \text{(EMA)}
\]

\[
h_T^c(n) = W_n S_n (S_N^k W_n S_n)^{-1} u_T^c (6.3.7)
\]

We will see in Eq. (6.5.19) and more explicitly in (6.6.5) that \(c(n) \) can be expressed recursively in the time \(n \). Similarly, for the FIR case, we find:

\[
c(n) = (S_N^k S_n)^{-1} S_N^k y(n) \quad \text{(FIR)}
\]

\[
h_T^c = S_N (S_N^k S_n)^{-1} u_T^c
\]

6.4 Linear Trend FIR Filters

We note also that the solution for \(c \) in Eq. (6.3.2) can be viewed as the least-squares solution of the over-determined linear system, \(W^{1/2} S \vec{c} = W^{1/2} y \), which is particularly convenient for the numerical solution using MATLAB’s backslash operation,

\[
c = (W^{1/2} S) \backslash (W^{1/2} y) (6.3.9)
\]

In fact, this corresponds to an alternative point of view to filtering and is followed in the so-called “linear regression” indicators in financial market trading, as we discuss in Sec. 6.18, where the issue of the initial transients, that is, the evaluation of \(c(n) \) for \(0 \leq n < N - 1 \) in the FIR case, is also discussed.

In the EMA case, the basis matrices \(S_n \) are full rank for \(n \geq d \). For \(0 \leq n < d \), we may restrict the polynomial order \(d \) to \(d_N = n \) and thus obtain the first \(d_N \) coefficients of the vector \(c(n) \), and set the remaining coefficients to zero. For the commonly used case of \(d = 1 \), this procedure amounts to setting \(c(0) = [y_0, 0]^T \). Similarly, in the FIR case, we must have \(N \geq d + 1 \) to guarantee the full rank of \(S_N \).

6.4 Linear Trend FIR Filters

The exact solutions of the FIR case have already been found in Sec. 3.8. The \(d = 1 \) and \(d = 2 \) closed-form solutions were given in Eqs. (3.8.10) and (3.8.11). The same expressions are valid for both even and odd \(N \). For example, replacing \(M = (N - 1)/2 \) in (3.8.10), we may express the solution for the \(d = 1 \) case as follows,

\[
h_T^c(k) = \frac{2(N - 1)(2N - 1 - 3k) + 6(N - 1 - 2k)\tau}{N(N^2 - 1)} k = 0, \ldots, N - 1 (6.4.1)
\]

A direct derivation of (6.4.1) is as follows. From the definition (6.3.4), we find:

\[
S_N^k S_n = \sum_{k=0}^{N-1} u_{-k} u_T^k = \sum_{k=0}^{N-1} \begin{bmatrix} 1 \\ -k \end{bmatrix}
\]

\[
= \begin{bmatrix} N & -N(N - 1)/2 \\ -N(N - 1)/2 & N(N - 1)(2N - 1)/6 \end{bmatrix} (6.4.2)
\]

\[
(S_N^k S_n)^{-1} = \frac{2}{N(N^2 - 1)} \begin{bmatrix} (N - 1)(2N - 1) & 3(N - 1) \\ 3(N - 1) & 6 \end{bmatrix}
\]

then, from Eq. (6.3.8), because the \(k \)th row of \(S_N \) is \(u_T^k \), we obtain the \(k \)th impulse response coefficient:

\[
h_T^c(k) = u_{-k} (S_N^k S_n)^{-1} u_T^c = \frac{2}{N(N^2 - 1)} \begin{bmatrix} (N - 1)(2N - 1) & 3(N - 1) \\ 3(N - 1) & 6 \end{bmatrix} \begin{bmatrix} 1 \\ \tau \end{bmatrix}
\]

which leads to Eq. (6.4.1). Thus, we obtain,

\[
h_T^c(k) = h_T^d(k) + h_T^b(k)\tau, \quad k = 0, 1, \ldots, N - 1 (6.4.3)
\]

with
These are the FIR filters that generate estimates of the local level and local slope of the input signal. Indeed, setting \(c(n) = [a_n, b_n]^T \), where \(a_n, b_n \) represent the local level and local slope\(^1\) at time \(n \), we obtain from (6.3.8),

\[
\begin{align*}
a_n &= \frac{1}{2(N-1)} \sum_{k=0}^{N-1} h_a(k) y_{n-k} \quad \text{local level} \\
b_n &= \frac{1}{2(N-1)} \sum_{k=0}^{N-1} h_b(k) y_{n-k} \quad \text{local slope}
\end{align*}
\]

which is equivalent, component-wise, to the filtering equations:

\[
a_n = \frac{1}{2(N-1)} \sum_{k=0}^{N-1} h_a(k) y_{n-k} \quad \text{local level} \\
b_n = \frac{1}{2(N-1)} \sum_{k=0}^{N-1} h_b(k) y_{n-k} \quad \text{local slope}
\]

Since, \(\tilde{y}_{n+\tau/n} = a_n + b_n \tau \), it is seen that the local level \(a_n \) is equal to \(\tilde{y}_{n/n} \). Similarly, the sum \(a_n + b_n \tau \) is the one-step-ahead forecast \(\tilde{y}_{n+1/n} \) obtained by extrapolating to time instant \(n + 1 \) by extending the local level \(a_n \) along the straight line with slope \(b_n \). This is depicted in the figure below. The sum, \(a_n + b_n \tau \), can be generated directly by the predictive FIR filter \(h_1(k) = h_a(k) + h_b(k) \), obtained by setting \(\tau = 1 \) in (6.4.1):

\[
h_1(k) = \frac{2(2N-3)}{N(N-1)}, \quad k = 0, 1, \ldots, N-1
\]

(predictive FIR filter) \hspace{1cm} (6.4.6)

\[\text{The filters } h_a(k), h_b(k), \text{ and } h_1(k) \text{ find application in the technical analysis of financial markets [280]. Indeed, the filter } h_a(k) \text{ is equivalent to the so-called linear regression indicator, } h_2(k) \text{ corresponds to the linear regression slope indicator, and } h_1(k), \text{ to the time series forecast indicator. We discuss these in more detail, as well as other indicators, in Sections 6.14–6.24.}\]

\[\text{1} a, b \text{ are the same as the components } c_0, c_1 \text{ of the vector } c.\]

6.5 Higher-Order Exponential Smoothing

More generally, for order \(d \) polynomials, it follows from the solution (6.3.8), that the

\[
\sum_{k=0}^{N-1} (-k)^r h_{\tau}(k) = \tau^r, \quad r = 0, 1, \ldots, d
\]

(6.4.7)

In fact, the solution \(h = S_N(S_N^T S_N)^{-1} u_N \) is recognized (from Chap. 15) to be the minimum-norm, pseudoinverse, solution of the under-determined system \(S_N h = u_N \), that is, it has minimum norm, or, minimum noise-reduction ratio, \(R = h^T h = \min \). A direct derivation is as follows. Introduce a \((d+1) \times 1\) vector of Lagrange multipliers, \(\lambda = [\lambda_0, \lambda_1, \ldots, \lambda_d]^T \), and incorporate the constraint into the performance index,

\[
J = h^T h + 2 \lambda^T (u_T - S_N^T h) = \min
\]

Then, its minimization leads to,

\[
\frac{\partial J}{\partial h} = 2 h - 2 S_N \lambda = 0 \Rightarrow h = S_N \lambda
\]

and, imposing the constraint \(S_N^T h = u_N \) leads to the solutions for \(\lambda \) and for \(h \),

\[
u_T = S_N^T h = S_N^T S_N \lambda \Rightarrow \lambda = (S_N^T S_N)^{-1} u_N \Rightarrow h = S_N \lambda = S_N (S_N^T S_N)^{-1} u_N
\]

Returning to Eq. (6.4.3) and setting \(\tau = 0 \), we note that the \(d = 1 \) local-level filter \(h_a(k) \) satisfies the explicit constraints:

\[
\sum_{k=0}^{N-1} h_a(k) = 1, \quad \sum_{k=0}^{N-1} k h_a(k) = 0
\]

(6.4.8)

The latter implies that its lag parameter \(h \) is zero, and therefore, straight-line inputs will appear at the output undelayed (see Example 6.5.1). It has certain limitations as a lowpass filter that we discuss in Sec. 6.10, but its NRR is decreasing with \(N \):

\[
R = \frac{2(2N-1)}{N(N+1)}
\]

(6.4.9)

A direct consequence of Eq. (6.4.7) is that the filter \(h_{\tau}(k) \) generates the exact predicted value of any polynomial of degree \(d \), that is, for any polynomial \(P(x) \) with degree up to \(d \) in the variable \(x \), we have the exact convolutional result,

\[
\sum_{k=0}^{N-1} P(n-k) h_{\tau}(k) = P(n+\tau), \quad \text{with } \deg(P) \leq d
\]

(6.4.10)

6.5 Higher-Order Exponential Smoothing

For any value of \(d \), the FIR filters \(h_\tau \) have length \(N \) and act on the \(N \)-dimensional data vector \(y(n) = [y_n, y_{n-1}, \ldots, y_{n-N+1}]^T \). By contrast, the exponential smoother weights \(h_\tau(n) \) have an ever increasing length. Therefore, it proves convenient to recast them
6. Exponential Smoothing

6.5. Higher-Order Exponential Smoothing

This implies the following recursion for \(R_n \):

\[
R_n = \sum_{k=0}^{n} \lambda^k u_{-k}^T u_{-k} = u_0 u_0^T + \sum_{k=1}^{n} \lambda^k u_{-k}^T u_{-k}
\]

\[
= u_0 u_0^T + \lambda \sum_{k=1}^{n} \lambda^{k-1} u_{-k-1}^T u_{-k-1}
\]

\[
= u_0 u_0^T + \lambda \left(\sum_{k=0}^{n-1} \lambda^k u_{-k}^T u_{-k} \right) G^T = u_0 u_0^T + \lambda G R_{n-1} G^T
\]

where in the third line we changed summation variables from \(k \) to \(k-1 \), and in the fourth, we used \(u_{-1} = G u_{-k} \). Similarly, we have for \(r_n \):

\[
r_n = \sum_{k=0}^{n} \lambda^k u_{-k} y_{n-k} = u_0 y_n + \sum_{k=1}^{n} \lambda^k u_{-k} y_{n-k}
\]

\[
= u_0 y_n + \lambda \sum_{k=0}^{n-1} \lambda^{k} u_{-k-1} y_{n-k-1}
\]

\[
= u_0 y_n + \lambda G \left(\sum_{k=0}^{n-1} \lambda^k u_{-k} y_{(n-1)-k} \right) = u_0 y_n + \lambda G r_{n-1}
\]

Thus, \(R_n, r_n \) satisfy the recursions:

\[
R_n = u_0 u_0^T + \lambda G R_{n-1} G^T
\]

\[
r_n = u_0 y_n + \lambda G r_{n-1}
\]

and they may be initialized to zero, \(R_{-1} = 0 \) and \(r_{-1} = 0 \). Using \(\hat{y}_{n+\tau/n} = u_0^T c(n) \), we may define the smoothed estimates, predictions, and the corresponding errors:

\[
\hat{y}_{n+\tau/n} = u_0^T c(n), \quad e_{n+\tau/n} = y_n - \hat{y}_{n+\tau/n}
\]

\[
\hat{y}_{n+1/n} = u_0^T c(n) = u_0^T F^T c(n), \quad e_{n+1/n} = y_{n+1} - \hat{y}_{n+1/n}
\]

\[
\hat{y}_{n/n} = u_0^T c(n-1) = u_0^T F^T c(n-1), \quad e_{n/n} = y_n - \hat{y}_{n/n}
\]

where we used \(u_1 = F u_0 \). In the language of RLS adaptive filters, we may refer to \(\hat{y}_{n+\tau/n} \) as the a priori and posteriori estimates of \(y_n \), respectively. Using the recursions (6.5.8), we may now obtain a recursion for \(c(n) \). Using \(c(n-1) = R_{n-1}^{-1} r_{n-1} \) and the matrix relationship \(G F = I \), we have,

\[
R_n c(n) = r_n = u_0 y_n + \lambda G r_{n-1} = u_0 y_n + \lambda G R_{n-1} c(n-1)
\]

\[
= u_0 y_n + \lambda G R_{n-1} G^T F^T c(n-1) = u_0 y_n + (R_n - u_0 u_0^T) F^T c(n-1)
\]

\[
= R_n F^T c(n-1) + u_0 (y_n - u_0^T F^T c(n-1)) = R_n F^T c(n-1) + u_0 (y_n - \hat{y}_{n/n})
\]

\[
= R_n F^T c(n-1) + u_0 e_{n/n}
\]
6. Exponential Smoothing

where in the second line we used $\lambda G R_{n-1} G^T = R_n - u_n u_n^T$. Multiplying both sides by R_n^{-1}, we obtain,

$$c(n) = F^T c(n-1) + R_n^{-1} u_n e_{n/n-1}$$

(6.5.10)

Again, in the language of RLS adaptive filters, we define the so-called a posteriori and a priori “Kalman gain” vectors k_n and $k_{n/n-1}$,

$$k_n = R_n^{-1} u_0, \quad k_{n/n-1} = \lambda^{-1} F^T R_{n-1}^{-1} F u_0$$

(6.5.11)

and the “likelihood” variables,

$$\nu_n = u_0^T k_{n-1} - \lambda^{-1} u_0^T F R_{n-1}^{-1} F u_0 = \lambda^{-1} u_0^T R_{n-1}^{-1} u_0, \quad \mu_n = \frac{1}{1 + \nu_n}$$

(6.5.12)

Starting with the recursion $R_n = u_n u_n^T + \lambda G R_{n-1} F^T$ and multiplying both sides by R_n^{-1} from the left, then by F^T from the right, then by R_n^{-1} from the left, and then by F from the right, we may easily derive the equivalent relationship:

$$\lambda^{-1} F^T R_{n-1}^{-1} F = R_n^{-1} u_0 - \lambda^{-1} u_0^T F R_{n-1}^{-1} F + R_n^{-1}$$

(6.5.13)

Multiplying on the right by u_0 and using the definitions (6.5.11), we find

$$k_{n/n-1} = k_n \nu_n + k_n = (1 + \nu_n) k_n, \quad \text{or,}$$

$$k_n = \mu_n k_{n/n-1}$$

(6.5.14)

Substituting this into (6.5.13), we obtain a recursion for the inverse matrix R_n^{-1}, which is effectively a variant of the matrix inversion lemma:

$$R_n^{-1} = \lambda^{-1} F^T R_{n-1}^{-1} F - \mu_n k_{n/n-1} k_n^T$$

(6.5.15)

This also implies that the parameter μ_n can be expressed as

$$\mu_n = 1 - u_0^T R_n^{-1} u_0 = 1 - u_0^T k_n$$

(6.5.16)

The a priori and a posteriori errors are also proportional to each other. Using (6.5.16), we find,

$$\hat{y}_{n/n} = u_0^T c(n) = u_0^T (F^T c(n-1) + k_n e_{n/n-1}) = \hat{y}_{n-1} + (1 - \mu_n) e_{n/n-1} = \nu_n - \mu_n e_{n/n-1}$$

which implies that

$$e_{n/n} = \mu_n e_{n/n-1}$$

(6.5.17)

The coefficient updates (6.5.10) may now be expressed as:

$$c(n) = F^T c(n-1) + k_n e_{n/n-1}$$

(6.5.18)

We summarize the complete set of computational steps for high-order exponential smoothing. We recall that the invertibility conditions require that we apply the recursions for $n > d$:

6.5. Higher-Order Exponential Smoothing

For $0 \leq n \leq d$, the fitting may be done with polynomials of varying degree $d_n = n$, and the coefficient estimate computed by explicit matrix inversion, $c(n) = R_n^{-1} \tau_n$. The above computational steps and initialization have been incorporated into the MATLAB function ema with usage:

$$C = \text{ema}(y,d,\lambda)$$

The input y is an L-dimensional vector (row or column) of samples to be smoothed, with a total number $L > d$, and C is an $L \times (d+1)$ matrix whose nth row is the coefficient vector $c(n)^T$. Thus, the first column, holds the smoothed estimate, the second column the estimated first derivative, and so on.

To understand the initialization process, consider an input sequence $\{y_0, y_1, y_2, \ldots\}$ and the $d = 1$ smoother. At $n = 0$, we use a smoother of order $d_0 = 0$, constructing the quantities R_0, τ_0 using the definition (6.5.1):

$$R_0 = [1], \quad \tau_0 = [y_0] \Rightarrow c(0) = R_0^{-1} \tau_0 = y_0$$

Next, at $n = 1$ we use a $d_1 = 1$ smoother, and definition (6.5.1) now implies,

$$R_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 + \lambda & \lambda \\ -\lambda & \lambda \end{bmatrix} \Rightarrow c(1) = R_1^{-1} \tau_1 = \begin{bmatrix} y_1 \\ y_1 - y_0 \end{bmatrix}$$

$$\tau_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} y_1 + \lambda \begin{bmatrix} -1 \\ 1 \end{bmatrix} y_0 = \begin{bmatrix} y_1 + \lambda y_0 \\ -\lambda y_0 \end{bmatrix}$$

Starting with R_1, τ_1, the recursion (6.5.8) may then be continued for $n \geq d + 1 = 2$.

If we had instead $d = 2$, then there is one more initialization step, giving

$$R_2 = \begin{bmatrix} 1 + \lambda & \lambda & \lambda + 4 \lambda^2 \\ -\lambda - 2 \lambda^2 & \lambda + 4 \lambda^2 & -\lambda - 8 \lambda^2 \\ -\lambda - 4 \lambda^2 & -\lambda - 8 \lambda^2 & \lambda + 16 \lambda^2 \end{bmatrix}, \quad \tau_2 = \begin{bmatrix} y_2 + \lambda y_1 + \lambda^2 y_0 \\ -\lambda y_1 - 2 \lambda^2 y_0 \\ \lambda y_1 + 4 \lambda^2 y_0 \end{bmatrix}$$

resulting in

$$c(2) = R_2^{-1} \tau_2 = \begin{bmatrix} y_2 \\ 1.5 y_2 - 2 y_1 + 0.5 y_0 \\ 0.5 y_2 - y_1 + 0.5 y_0 \end{bmatrix}$$

We note that the first $d + 1$ smoothed values get initialized to the first $d + 1$ values of the input sequence.
6. Exponential Smoothing

Example 6.5.1: Fig. 6.5.1 shows the output of the exact exponential smoother with \(d = 1 \) and \(\lambda = 0.9 \) applied on the same noiseless input \(s_n \) of Example 6.1.3. In addition, it shows the \(d = 1 \) FIR filter \(h_a(k) \) designed to have zero lag according to Eq. (6.4.4).

Because \(d = 1 \), both filters can follow a linear signal. The input \(s_n \) (dashed curve) is barely visible under the filter outputs (solid curves). The length of the FIR filter was chosen according to the rule

\[
N = \frac{1 + \lambda}{1 - \lambda}
\]

The following MATLAB code generates the two graphs; it uses the function \(\text{upulse} \) which is a part of the OSP toolbox that generates a unit-pulse of prescribed duration.

```matlab
n = 0:300;
s = (20 + 0.8*n) .* upulse(n,75) + ... % upulse is in the OSP toolbox
   (80 - 0.3*(n-75)) .* upulse(n-75,150) + ... % upulse is in the OSP toolbox
   (35 + 0.4*(n-225)) .* upulse(n-225,76);
la = 0.9; a1 = 1-la; d=1;
C = ema(s,d,la); % exact exponential smoother output
x = C(:,1);N = round((1+la)/(1-la)); % equivalent FIR length, N=19
k=0:N-1;
ha = 2*(2*N-1-3*k)/N/(N+1); % zero-lag FIR filter
xh = filter(ha,1,s); % FIR filter output
figure; plot(n,s,'--', n,x,'-'); % left graph
figure; plot(n,s,'--', n,xh,'-'); % right graph
```

Next, we add some noise \(y_n = s_n + 4v_n \), where \(v_n \) is zero-mean, unit-variance, white noise. The top two graphs of Fig. 6.5.2 show the noisy signal \(y_n \) and the response of the exact EMA with \(d = 0 \) and \(\lambda = 0.9 \).

The bottom two graphs show the exact EMA with \(d = 1 \) as well as the response of the same zero-lag FIR filter to the noisy data.

6.6 Steady-State Exponential Smoothing

Next, we look in more detail at the cases \(d = 0, 1, 2 \), which are the most commonly used in practice, with \(d = 1 \) providing the best performance and flexibility. We denote the polynomial coefficients by:

\[
c(n) = [a_n], \quad c(n) = \begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix}, \quad c(n) = \begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix}
\]

Then, with \(u_{\tau} = [1], \ u_{\tau} = [1, \tau]^T \), and \(u_{\tau} = [1, \tau, \tau^2]^T \), the implied predicted estimates will be for arbitrary \(\tau \):

\[
\hat{y}_{n+\tau/n} = u_{\tau}^T c(n) = a_n \\
\hat{y}_{n+\tau/n} = u_{\tau}^T c(n) = a_n + b_n \tau \\
\hat{y}_{n+\tau/n} = u_{\tau}^T c(n) = a_n + b_n \tau + c_n \tau^2
\]

Thus, \(a_n, b_n \) represent local estimates of the level and slope, respectively, and \(2c_n \) represent...
6. Exponential Smoothing

6.6. Steady-State Exponential Smoothing

\[\hat{y}_{n/n-1} = u_1^T c(n-1) = a_{n-1} \]
\[\hat{y}_{n/n-1} = u_1^T c(n-1) + b_{n-1} \]
\[\hat{y}_{n/n-1} = u_1^T c(n-1) + b_{n-1} + c_{n-1} \] (6.6.3)

Denoting the a posteriori gains \(k_n \) by,
\[k_n = [\alpha(n)] \quad k_n = [\alpha_1(n) \alpha_2(n)], \quad k_n = [\alpha_1(n) \alpha_2(n)] \] (6.6.4)

then, the coefficient updates (6.5.18) take the forms, where \(e_{n/n-1} = y_n - \hat{y}_{n/n-1} \),
\[a_n = a_{n-1} + \alpha(n) e_{n/n-1} \]
\[\begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1} \\ c_{n-1} \end{bmatrix} + \alpha_1(n) e_{n/n-1} \] (6.6.5)

Since \(k_n = R_n^{-1} u_0 \), the gains depend only on \(\lambda \) and \(n \) and converge to steady-state values for large \(n \). For example, for \(d = 0 \), we have,
\[R_n = \sum_{k=0}^{n} \lambda^k = \frac{1 - \lambda^{n+1}}{1 - \lambda} \Rightarrow k_n = R_n^{-1} = \frac{1 - \lambda}{1 - \lambda^{n+1}} - 1 = \lambda \Rightarrow \alpha \]

Thus, the steady-state form of the \(d = 0 \) EMA smoother is as expected:
\[e_{n/n-1} = y_n - \hat{y}_{n/n-1} = y_n - a_{n-1} \]
\[a_n = a_{n-1} + (1 - \lambda) e_{n/n-1} \] (single EMA, \(d = 0 \) \]

initialized as usual at \(a_{-1} = y_0 \). The corresponding likelihood variable \(\mu_n = 1 - u_0^T k_n \) tends to \(\mu = 1 - (1 - \lambda) \lambda \). Similarly, we find for \(d = 1 \),
\[R_n = \sum_{k=0}^{n} \lambda^k \begin{bmatrix} 1 & -k \\ -k & k^2 \end{bmatrix} = \sum_{k=0}^{n} \lambda^k \begin{bmatrix} 1 & -k \\ -k & k^2 \end{bmatrix} = \begin{bmatrix} R_{00}(n) & R_{01}(n) \\ R_{10}(n) & R_{11}(n) \end{bmatrix} \]

where
\[R_{00}(n) = \frac{1 - \lambda^{n+1}}{1 - \lambda}, \quad R_{01}(n) = R_{10}(n) = \frac{-\lambda + \lambda^{n+1} [1 + n (1 - \lambda)]}{(1 - \lambda)^2} \]
\[R_{11}(n) = \frac{\lambda (1 + \lambda) - \lambda^{n+1} [1 + 2 n (1 - \lambda) + n^2 (1 - \lambda)^2]}{(1 - \lambda)^3} \]

which have the limit as \(n \to \infty \),
\[R_n \to R = \begin{bmatrix} \frac{1}{1 - \lambda} & -\frac{\lambda}{(1 - \lambda)^2} & \frac{\lambda (1 + \lambda)}{(1 - \lambda)^3} \\ \frac{-\lambda}{(1 - \lambda)^2} & \frac{\lambda (1 + \lambda)}{(1 - \lambda)^3} & \frac{-\lambda (1 + 4 \lambda + \lambda^2)}{(1 - \lambda)^4} \\ \frac{\lambda (1 + \lambda)}{(1 - \lambda)^3} & \frac{-\lambda (1 + 4 \lambda + \lambda^2)}{(1 - \lambda)^4} & \frac{\lambda (1 + 10 \lambda + \lambda^2)}{(1 - \lambda)^5} \end{bmatrix} \] (6.6.6)

It follows that the asymptotic gain vector \(k = R^{-1} u_0 \) will be the first column of \(R^{-1} \):
\[k_n \to k = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \]
(6.6.8)

and the steady-state version of the \(d = 1 \) EMA smoother becomes:
\[e_{n/n-1} = y_n - \hat{y}_{n/n-1} = y_n - (a_{n-1} + b_{n-1}) \]
\[\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix} + \frac{1 - \lambda^2}{(1 - \lambda)^2} e_{n/n-1} \] (double EMA, \(d = 1 \) \]

with estimated level \(\hat{y}_{1/n} = a_n \) and one-step-ahead prediction \(\hat{y}_{n+1/n} = a_n + b_n \). The corresponding limit of the likelihood parameter is \(\mu = 1 - u_0^T k = 1 - (1 - \lambda^2) = \lambda^2 \).

The difference equation may be initialized at \(a_{-1} = 2 y_0 - y_1 \) and \(b_{-1} = y_1 - y_0 \) to agree with the first outputs of the exact smoother. Indeed, iterating up to \(n = 1 \), we find the same answer for \(c(1) \) as the exact smoother:
\[\begin{bmatrix} a_0 \\ b_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{-1} \\ b_{-1} \end{bmatrix} + \frac{1 - \lambda^2}{(1 - \lambda)^2} e_{1/n} \]
\[\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} + \frac{1 - \lambda^2}{(1 - \lambda)^2} e_{1/0} = \begin{bmatrix} y_0 \\ y_1 - y_0 \end{bmatrix} \]

Of course, other initializations are possible, a common one being to fit a straight line to the first few input samples and choose the intercept and slope as the initial values. This is the default method used by the function stem (see below). For the \(d = 2 \) case, the asymptotic matrix \(R \) is
\[R = \sum_{k=0}^{\infty} \lambda^k u_0 u_0^T = \sum_{k=0}^{\infty} \lambda^k \begin{bmatrix} 1 & -k & k^2 \\ -k & k^2 & -k^3 \\ k^2 & -k^3 & k^4 \end{bmatrix} \] (6.6.9)

which may be summed to
6. Exponential Smoothing

with an inverse

\[
R^{-1} = \begin{bmatrix}
1 - \lambda^3 & \frac{3}{2} (1 + \lambda) (1 - \lambda)^2 & \frac{1}{2} (1 - \lambda)^3 \\
\frac{3}{2} (1 + \lambda) (1 - \lambda)^2 & (1 + \lambda) (1 - \lambda)^3 (1 + 9 \lambda) & \frac{1}{2} (1 - \lambda)^4 (1 + 3 \lambda) \\
\frac{1}{2} (1 - \lambda)^3 & \frac{1}{2} (1 - \lambda)^4 (1 + 3 \lambda) & \frac{1}{2} (1 - \lambda)^5 (1 - \lambda) \\
\end{bmatrix}
\]

The asymptotic gain vector \(k = R^{-1} u_0 \) and \(\mu \) parameter are,

\[
k = \begin{bmatrix}
\alpha_1 \\ \alpha_2 \\ \alpha_3
\end{bmatrix} = \begin{bmatrix}
1 - \lambda^3 \\ \frac{3}{2} (1 + \lambda) (1 - \lambda)^2 \\ \frac{1}{2} (1 - \lambda)^3
\end{bmatrix}, \quad \mu = 1 - \alpha_1 = \lambda^3
\] (6.6.10)

and the steady-state \(d = 2 \) EMA smoother becomes:

\[
\begin{bmatrix}
a_0 \\ b_0 \\ c_0
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
a_{n-1} \\ b_{n-1} \\ c_{n-1}
\end{bmatrix} + \begin{bmatrix}
\alpha_1 \\ \alpha_2 \\ \alpha_3
\end{bmatrix} e_{n/n-1}
\] (6.6.11)

They may be initialized to reach the same values at \(n = 2 \) as the exact smoother, that is, Eq. (6.5.20). This requirement gives:

\[
\begin{bmatrix}
a_0 \\ b_0 \\ c_0
\end{bmatrix} = \begin{bmatrix}
y_2 - 3 y_1 + 3 y_0 \\ -1.5 y_2 + 4 y_1 - 2.5 y_0 \\ 0.5 y_2 - y_1 + 0.5 y_0
\end{bmatrix}
\]

Alternatively, they may be initialized by fitting a second degree polynomial to the first few input samples, as is done by default in the function steama, or they may be initialized to a zero vector, or to any other values, for example, \([a_{-1}, b_{-1}, c_{-1}] = [y_0, 0, 0] \).

For arbitrary polynomial order \(d \), the matrix \(R_n \) converges to a \((d+1) \times (d+1)\) matrix \(R \) that must satisfy the Lyapunov-type equation:

\[
R = u_0 u_0^T + \lambda G R G^T
\] (6.6.12)

where \(G \) is the backward boost matrix, \(G = F^{-1} \). This follows by considering the limit of Eq. (6.5.1) as \(n \to \infty \) and using the property \(u_{-k} = Gu_{-k} \). Multiplying from the left by \(F \), and noting that \(F u_0 = u_1 \), we have

\[
FR = u_1 u_1^T + \lambda G R G^T
\] (6.6.13)

Taking advantage of the unit-lower-triangular nature of \(F \) and \(G \), this equation can be written component-wise as follows:

\[
\sum_{k=0}^{j} F_{ik} R_{kj} = u_1(i) u_0(j) + \lambda \sum_{k=0}^{j} R_{ik} G_{jk}, \quad 0 \leq i, j \leq d
\] (6.6.14)

6.6. Steady-State Exponential Smoothing

Noting that \(u_1(i) = 1 \) and \(u_0(j) = \delta(j) \), and setting first \(i = j = 0 \), we find

\[
R_{00} = 1 + \lambda R_{00} \Rightarrow R_{00} = \frac{1}{1 - \lambda}
\] (6.6.15)

Then, setting \(i = 0 \) and \(1 \leq j \leq d \),

\[
R_{0j} = \lambda \sum_{k=0}^{j-1} R_{ik} G_{jk} = \lambda R_{0j} + \lambda \sum_{k=0}^{j-1} R_{ik} G_{jk}
\]

which can be solved recursively for \(R_{0j} \):

\[
R_{0j} = R_{j0} = \frac{\lambda}{1 - \lambda} \sum_{k=0}^{j-1} R_{0k} G_{jk}, \quad j = 1, 2, \ldots, d
\] (6.6.16)

Next, take \(i \geq 1 \) and \(j \geq i \), and use the symmetry of \(R \):

\[
R_{ij} = \sum_{k=0}^{j-1} F_{ik} R_{kj} = \lambda R_{ij} + \lambda \sum_{k=0}^{j-1} R_{ik} G_{jk}
\]

or, for \(i = 1, 2, \ldots, d, \quad j = i, i + 1, \ldots, d \),

\[
R_{ij} = R_{ji} = \frac{1}{1 - \lambda} \left[\lambda \sum_{k=0}^{j-1} R_{0k} G_{jk} - \sum_{k=0}^{i-1} F_{ik} R_{kj} \right]
\] (6.6.17)

To clarify the computations, we give the MATLAB code below:

```matlab
R(1,1) = 1/(1-lambda); 
for j=2:d+1, 
R(1,j) = lambda*R(1,1:j-1) + G(j,1:j-1)'/(1-lambda); 
R(j,1) = R(j,1); 
end 
for i=2:d+1, 
R(i,j) = (lambda*R(i,1:j-1)*G(j,1:j-1)' - F(i,1:i-1)*R(i,1:j-1))/lambda; 
R(j,1) = R(j,1); 
end 
```

Once \(R \) is determined, one may calculate the gain vector \(k = R^{-1} u_0 \). Then, the overall filtering algorithm can be stated as follows, for \(n \geq 0 \),

\[
\hat{y}_{n/n-1} = u_1^T c(n-1) \\
\epsilon_{n/n-1} = y_n - \hat{y}_{n/n-1} \\
c(n) = F^T c(n-1) + k \epsilon_{n/n-1}
\] (steady-state EMA) (6.6.18)

which requires specification of the initial vector \(c(-1) \). The transfer function from the input \(y_n \) to the signals \(c(n) \) can be determined by taking z-transforms of Eq. (6.6.18):

\[
C(z) = z^{-1} F^T C(z) + k (Y(z) - z^{-1} u_1^T C(z)), \quad \text{or},
\]
6. Exponential Smoothing

\[H(z) = \frac{C(z)}{Y(z)} = \left[I - (F^T - ku^T)z^{-1}\right]^{-1}k \]

(6.6.19)

The computational steps (6.6.18) have been incorporated in the MATLAB function `stema`, with usage,

\[C = \text{stema}(y,d,\lambda,\text{cinit}); \quad \text{% steady-state exponential moving average} \]

where \(C, y, d, \lambda \) have the same meaning as in the function `ema`. The parameter `cinit` is a \((d+1)\times1\) column vector that represents the initial vector \(c(-1) \). If omitted, it defaults to fitting a polynomial of order \(d \) to the first \(L \) input samples, where \(L \) is the effective length corresponding to \(\lambda \), that is, \(L = (1 + \lambda)/(1 - \lambda) \). The fitting is carried out with the help of the function `lpbasis` from Chap. 3, and is given in MATLAB notation by:

\[\text{cinit} = \text{lpbasis}(L,d,0) \setminus y(1:L); \quad \text{% fit order-}d \text{ polynomial to first } L \text{ inputs} \]

where the fit is carried out with respect to the time origin \(n = -1 \). The length \(L \) must be less than the length of the input vector \(y \). If not, another, shorter \(L \) can be used. Other initialization possibilities for \(\text{cinit} \) are summarized in the help file for `stema`.

To clarify the fitting operation, we note that fitting the first \(L \) samples \(y_n, n = 0,1,\ldots,L - 1 \), to a polynomial of degree \(d \) centered at \(n = -1 \) amounts to the minimization of the performance index:

\[J = \sum_{n=0}^{L-1} (y_n - p_n)^2 = \min, \quad p_n = \sum_{i=0}^{d} (n+1)^i c_i = u_n^T c \]

which can be written compactly as

\[J = \|y - Sc\|^2 = \min, \quad S = [u_1, u_2, \ldots, u_{n-1}, \ldots, u_L]^T \]

with solution \(c = (S^TS)^{-1}S^Ty = S\hat{y} \) in MATLAB notation.\(^1\) The actual fitted values \(p = [p_0, p_1, \ldots, p_{L-1}] \) are then computed by \(p = Sc \).

Selecting \(n = -1 \) as the centering time, assumes that the filtering operation will start at \(n = 0 \) requiring therefore the value \(c(-1) \). The centering can be done at any other reference time \(n = n_0 \), for example, one would choose \(n_0 = L - 1 \) if the filtering operation were to start at \(n = L \). The performance index would be then,

\[J = \sum_{n=0}^{L-1} (y_n - p_n)^2 = \min, \quad p_n = \sum_{i=0}^{d} (n-n_0)^i c_i = u_{n-n_0}^T c \]

with another set of coefficients \(\hat{c} \). The MATLAB implementation is in this case,

\[\text{cinit} = \text{lpbasis}(L,d,n_0) \setminus y(1:L); \quad \text{% fit order-}d \text{ polynomial to first } L \text{ inputs} \]

From \(u_{n+1} = Fu_n \), we obtain \(u_{n+1} = F^{n+1}u_{n-n_0} \). By requiring that the fitted polynomials be the same, \(p_n = u_{n+1}^T c = u_{n-n_0}^T \hat{c} \), it follows that,

\[\hat{c} = (F^T)^{n+1}c \]

(6.6.20)

6.7. Smoothing Parameter Selection

In Sec. 6.8, we discuss the connection to conventional multiple exponential smoothing obtained by filtering in cascade through \(d + 1 \) copies of a single exponential smoothing filter \(H(z) = \alpha/(1 - \lambda z^{-1}) \), that is, through \([H(z)]^d \). Example 6.11.1 illustrates the above initialization methods, as well as how to map the initial values of \(c(n) \) to the initial values of the cascaded filter outputs.

6.7.1 Smoothing Parameter Selection

The performance of the steady-state EMA may be judged by computing the covariance of the estimates \(c(n) \), much like the case of the \(d = 0 \) smoother. Starting with \(c(n) = R_n^{-1}r_n \) and \(r_n = S_n^2 W_n y(n) \), we obtain for the correlation matrix,

\[E[c(n)c^T(n)] = R_n^{-1}S_n^2 W_n E[y(n)y^T(n)] W_n S_n R_n^{-1} \]

and for the corresponding covariance matrix,

\[\Sigma_{cc} = R_n^{-1}S_n^2 W_n S_{yy} W_n S_n R_n^{-1} \]

(6.7.1)

Under the typical assumption that \(y_n \) is white noise, we have \(\Sigma_{yy} = \sigma_y^2 I_{d+1} \), where \(I_{d+1} \) is the \((d+1)\)-dimensional unit matrix. Then,

\[\Sigma_{cc} = \sigma_y^2 R_n^{-1}Q_n R_n^{-1}, \quad Q_n = S_n^2 W_n S_n \]

(6.7.2)

In the limit \(n \rightarrow \infty \), the matrices \(R_n, Q_n \) tend to steady-state values, so that

\[\Sigma_{cc} = \sigma_y^2 R^{-1}Q R^{-1} \]

(6.7.3)

where the limit matrices \(R, Q \) are given by

\[R = \sum_{k=0}^{\infty} \lambda^k u_{-k} u_{-k}^T, \quad Q = \sum_{k=0}^{\infty} \lambda^{2k} u_{-k} u_{-k} \]

(6.7.4)

Since \(y_{n/n} = u_n^T c(n) \) and \(\hat{y}_{n+1/n} = u_{n+1}^T \hat{c}(n) \), the corresponding variances will be:

\[\sigma_{y_{n/n}}^2 = u_n^T \Sigma_{cc} u_n, \quad \sigma_{\hat{y}_{n+1/n}}^2 = u_{n+1}^T \Sigma_{cc} u_{n+1} = \sigma_y^2 \]

(6.7.5)

Because \(y_n \) was assumed to be an uncorrelated sequence, the two terms in the prediction error \(e_{n+1/n} = y_{n+1} - \hat{y}_{n+1/n} \) will be uncorrelated since \(\hat{y}_{n+1/n} \) depends only on data up to \(n \). Therefore, the variance of the prediction error \(e_{n+1/n} \) will be:

\[\sigma_{e_{n+1/n}}^2 = \sigma_y^2 + \sigma_{\hat{y}_{n+1/n}}^2 \]

(6.7.6)

For the case \(d = 0 \), we have

\[R = \sum_{k=0}^{\infty} \lambda^k = \frac{1}{1 - \lambda}, \quad Q = \sum_{k=0}^{\infty} \lambda^{2k} = \frac{1}{1 - \lambda^2} \]

which gives the usual results:

\[\sigma_{e_{n+1/n}}^2 = \frac{1 - \lambda}{1 + \lambda} \sigma_y^2, \quad \sigma_y^2 = \sigma_y^2 + \sigma_{\hat{y}_{n+1/n}}^2 = \frac{2}{1 + \lambda} \sigma_y^2 \]

\(^1\)assuming that \(S \) has full rank, which requires \(L > d \).
6. Exponential Smoothing

For $d = 1$, we have as in Eq. (6.6.7),
\[
R = \frac{1}{(1 - \lambda)^2} \begin{bmatrix} (1 - \lambda)^2 & (1 - \lambda) \\ (1 - \lambda) & \lambda(1 + \lambda) \end{bmatrix},
\]
with the Q matrix being obtained from R by replacing $\lambda \to \lambda^2$,
\[
Q = \frac{1}{(1 - \lambda^2)^2} \begin{bmatrix} (1 - \lambda^2)^2 & -\lambda^2(1 - \lambda^2) \\ -\lambda^2(1 - \lambda^2) & \lambda^2(1 + \lambda^2) \end{bmatrix}
\]
It follows then that
\[
\Sigma_{cc} = \sigma_y^2 R^{-1} Q R^{-1} = \frac{1 - \lambda}{(1 + \lambda)^3} \begin{bmatrix} 1 + 4\lambda + 5\lambda^2 & (1 - \lambda)(1 + 3\lambda) \\ (1 - \lambda)(1 + 3\lambda) & 2(1 - \lambda^2) + \lambda \end{bmatrix}
\]
(6.7.7)
The diagonal entries are the variances of the level and slope signals a_n, b_n:
\[
\sigma_a^2 = \frac{(1 - \lambda)(1 + 4\lambda + 5\lambda^2)(1 - \lambda)}{(1 + \lambda)^3} \sigma_y^2, \quad \sigma_b^2 = \frac{2(1 - \lambda)^3}{(1 + \lambda)^3} \sigma_y^2
\]
(6.7.8)
For the prediction variance, we find
\[
\sigma_y^2 = \sigma_y^2 u_1^T (R^{-1} Q R^{-1}) u_1 = \frac{(1 - \lambda)(\lambda^2 + 4\lambda + 5)}{(1 + \lambda)^3} \sigma_y^2
\]
(6.7.9)
which gives for the prediction error:
\[
\sigma_y^2 = \sigma_y^2 + \sigma_e^2 = \left[1 + \frac{(1 - \lambda)(\lambda^2 + 4\lambda + 5)}{(1 + \lambda)^3} \right] \sigma_y^2 = 2\frac{(3 + \lambda)}{(1 + \lambda)^3} \sigma_y^2
\]
(6.7.10)
In order to achieve an equivalent smoothing performance with a $d = 0$ EMA, one must equate the corresponding prediction variances, or mean-square errors. If λ_0, λ_1 denote the equivalent $d = 0$ and $d = 1$ parameters, the condition reads:
\[
\frac{2}{1 + \lambda_0} = \frac{2(3 + \lambda_1)}{(1 + \lambda_1)^3} \quad \Rightarrow \quad \lambda_0 = \frac{1 + \lambda_1}{3 + \lambda_1} - 1
\]
(6.7.11)
Eq. (6.7.11) may also be solved for λ_1 in terms of λ_0,
\[
\lambda_1 = \frac{1}{3} D_0 + \frac{1 + \lambda_0}{D_0} - 1, \quad D_0 = \left[27(1 + \lambda_0) + \sqrt{27(1 + \lambda_0)^2(26 - \lambda_0)} \right]^{1/3}
\]
(6.7.12)
Setting $\lambda_0 = 0$ gives $D_0 = (27 + 3\sqrt{171})^{1/3}$ and $\lambda_1 = 0.5214$. For all $\lambda_1 \geq 0.5214$, the equivalent λ_0 is non-negative and the NRR σ_y^2/σ_e^2 of the prediction filter remains less than unity.

The corresponding FIR averager would have length $N_0 = (1 + \lambda_0)/(1 - \lambda_0)$, whereas an equivalent zero-lag FIR filter should have length N_1 that matches the corresponding NRRs. We have from Eq. (6.4.9):
\[
2(2N_1 - 1) \frac{N_1(N_1 + 1)}{1 + \lambda_0} = 1 - \lambda_0
\]

6.7. Smoothing Parameter Selection

which gives,
\[
\lambda_0 = \frac{N_1^2 - 3N_1 + 2}{N_1^2 + 5N_1 - 2} \quad \Rightarrow \quad N_1 = \frac{3 + 5\lambda_0 + \sqrt{33\lambda_0^2 + 30\lambda_0 + 1}}{2(1 - \lambda_0)}
\]
(6.7.13)
The MATLAB function `emap` implements Eq. (6.7.12),
\[
\text{la1 = emap(la0); % mapping equivalent } \lambda_1 	ext{’s between } d = 0 \text{ and } d = 1 \text{ EMAs}
\]
The computed λ_1 is an increasing function of λ_0 and varies over $0.5214 \leq \lambda_1 \leq 1$ as λ_0 varies over $0 \leq \lambda_0 \leq 1$.

Example 6.7.1: The lower-right graph of Fig. 6.7.1 shows a zero-lag FIR filter defined by Eq. (6.4.4) with length $N_1 = 100$ and applied to the noisy signal shown on the upper-left graph. The noisy signal was $y_n = 20 + 0.2n + 4\nu_n$, for $0 \leq n \leq 300$, with zero-mean, unit-variance, white noise ν_n.

![Figure 6.7.1 Comparison of two equivalent steady-state EMAs with equivalent zero-lag FIR.](image)

The equivalent EMA parameter for $d = 0$ was found from (6.7.13) to be $\lambda_0 = 0.9242$, which was then mapped to $\lambda_1 = 0.9693$ of an equivalent $d = 1$ EMA using Eq. (6.7.12). The upper-right graph shows the $d = 0$ EMA output, and the lower-left graph, the $d = 1$ EMA. The steady-state version was used for both EMAs with default initializations. The following MATLAB code illustrates the calculations:
6. Exponential Smoothing

6.7. Smoothing Parameter Selection

EMA with \(d = 1, \lambda = \lambda_{opt} \)

EMA with \(d = 1, \lambda = 0.9 \)

EMA with \(d = 1, \lambda = 0.95 \)

Fig. 6.7.2 MSE criterion for the DJIA data.

\[
\begin{align*}
\text{MSE} & = \text{mean}(e^2_{n/n-1}) , & \text{(mean square error)} \\
\text{MAE} & = \text{mean}(|e_{n/n-1}|) , & \text{(mean absolute error)} \\
\text{MAPE} & = \text{mean}(100 |e_{n/n-1}/y_{n}|) , & \text{(mean absolute percentage error)}
\end{align*}
\]

where the mean may be taken over the entire data set or over a portion of it. Usually, the criteria are evaluated over a range of \(\lambda \)'s and the minimum is selected. Typically, the criteria tend to underestimate the value of \(\lambda \), that is, they produce too small a \(\lambda \) to be useful for smoothing purposes. Even so, the optimum \(\lambda \) has been used successfully for forecasting applications. The MATLAB function \(\text{emaerr} \) calculates these criteria for any vector of \(\lambda \)'s and determines the optimum \(\lambda \) in that range:

\[
[\text{err,lopt}] = \text{emaerr}(y,d,\lambda,\text{type}); \quad \% \text{mean error criteria}
\]

where \(\text{type} \) takes one of the string values 'mse', 'mae', 'mape' and \(\text{err} \) is the criterion evaluated at the vector \(\lambda \) and \(\text{lopt} \) is the corresponding optimum \(\lambda \).

Example 6.7.2: Fig. 6.7.2 shows the same Dow-Jones data of Example 6.1.2. The MSE criterion was searched over the range 0.1 \(\leq \lambda \leq 0.9 \). The upper-left graph shows the MSE versus \(\lambda \). The minimum occurs at \(\lambda_{opt} = 0.61 \).

The upper-right graph shows the \(d = 1 \) exact EMA run with \(\lambda = \lambda_{opt} \). The EMA output is too rough to provide adequate smoothing. The other criteria are even worse. The MAE and MAPE optima both occur at \(\lambda_{opt} = 0.56 \). For comparison, the bottom two graphs show the \(d = 1 \) exact EMA run with the two higher values \(\lambda = 0.90 \) and \(\lambda = 0.95 \). The MATLAB code generating these graphs was as follows:

```matlab
Y = loadfile('dow-oct07-dec09.dat');
y = Y(:,1)/1000; n = (0:length(y)-1)';
d = 1; u1 = ones(d+1,1);
la = linspace(0.1, 0.9, 81);
[err,lopt] = emaerr(y,d,la,'mse');
figure; plot(lopt, err, lopt, min(err), '.'); % upper-left graph
C = ema(y,d,lopt); yhat = C*u1;
figure; plot(n,y,'-', n,yhat,'-'); % upper-right graph
la=0.90; C = ema(y,d,la); yhat = C*u1;
figure; plot(n,y,'-', n,yhat,'-'); % bottom-left graph
use la=0.95 for bottom-right
```

We note that the \(d = 1 \) smoother is more capable in following the signal than the \(d = 0 \) EMA. Suffers from the expected delay. Both the \(d = 0 \) EMA and the zero-lag FIR filter follow the straight-line input with no delay, after the initial transients have subsided. \(\square \)
6. Exponential Smoothing

6.8 Single, Double, and Triple Exponential Smoothing

Single exponential smoothing is the same as first-order, \(d = 0 \), steady-state exponential smoothing. We recall its filtering equation and corresponding transfer function:

\[
a_n^{[1]} = \lambda a_{n-1}^{[1]} + \alpha y_n, \quad H^{[1]}(z) = H(z) = \frac{\alpha}{1 - \frac{\lambda}{\alpha}} \quad (6.8.1)
\]

where \(\alpha = 1 - \lambda \). Double smoothing refers to filtering \(a_n^{[1]} \) one more time through the same filter \(H(z) \); and triple smoothing, two more times. The resulting filtering equations and transfer functions (from the overall input \(y_n \) to the final outputs) are:

\[
a_n^{[2]} = \lambda a_{n-1}^{[2]} + \alpha a_n^{[1]}, \quad H^{[2]}(z) = \left(\frac{\alpha}{1 - \frac{\lambda}{\alpha^2}} \right) \quad (6.8.2)
\]

\[
a_n^{[3]} = \lambda a_{n-1}^{[3]} + \alpha a_n^{[2]}, \quad H^{[3]}(z) = \left(\frac{\alpha}{1 - \frac{\lambda}{\alpha^3}} \right)^3 \quad (6.8.3)
\]

Thus, the filter \(H(z) \) acts once, twice, three times, or in general \(d+1 \) times, in cascade, producing the outputs,

\[
y_n \rightarrow \frac{H}{a_n^{[1]} \rightarrow H} \rightarrow \frac{H}{a_n^{[2]} \rightarrow H} \rightarrow \frac{H}{a_n^{[3]} \rightarrow H} \rightarrow \cdots \rightarrow \frac{H}{a_n^{[d]} \rightarrow H} \rightarrow a_n^{[d+1]} \quad (6.8.3)
\]

The transfer function and the corresponding causal impulse response from \(y_n \) to the \(r \)-th output \(a_n^{[r]} \) are, for \(r = 1, 2, \ldots, d+1 \) with \(u(n) \) denoting the unit-step function:

\[
H^{[r]}(z) = [H(z)]^{r} = \left(\frac{\alpha}{1 - \frac{\lambda}{\alpha^r}} \right)^r \quad (6.8.4)
\]

Double and triple exponential smoothing are in a sense equivalent to the \(d = 1 \) and \(d = 2 \) steady-state EMA filters of Eq. (6.6.9) and (6.6.11). From Eq. (6.6.19), which in this case reads \(H(z) = [H_a(z), H_b(z)]^T \), we may obtain the transfer functions from \(y_n \) to the outputs \(a_n \) and \(b_n \):

\[
H_a(z) = \frac{\alpha (1 + \lambda) (1 - 2\lambda z^{-1})}{(1 - \frac{\lambda}{\alpha})^2 (1 - \frac{\lambda}{\alpha^2})}, \quad H_b(z) = \frac{(1 - \lambda)(1 - 2\lambda z^{-1})}{(1 - \frac{\lambda}{\alpha})^2 (1 - \frac{\lambda}{\alpha^2})} \quad (6.8.5)
\]

It is straightforward to verify that \(H_a \) and \(H_b \) are related to \(H \) and \(H^2 \) by

\[
\begin{aligned}
H_a &= 2H - H^2 = 1 - (1 - H)^2 \\
H_b &= \frac{\alpha}{\lambda} (H - H^2)
\end{aligned}
\]

(6.8.6)

In the time domain this implies the following relationships between the \(a_n, b_n \) signals and the cascaded outputs \(a_n^{[1]}, a_n^{[2]} \):

\[
\begin{aligned}
a_n &= 2a_n^{[1]} - a_n^{[2]} = \text{local level} \\
b_n &= \alpha \left(a_n^{[1]} - a_n^{[2]} \right) = \text{local slope}
\end{aligned}
\]

(6.8.7)

6.8. Single, Double, and Triple Exponential Smoothing

which can be written in a 2\(\times \)2 matrix form:

\[
\begin{bmatrix}
a_n \\
b_n
\end{bmatrix} = \begin{bmatrix}
2 & -1 \\
\alpha/\lambda & -\alpha/\lambda
\end{bmatrix} \begin{bmatrix}
a_n^{[1]} \\
a_n^{[2]}
\end{bmatrix} \Rightarrow \begin{bmatrix}
a_n^{[1]} \\
a_n^{[2]}
\end{bmatrix} = \begin{bmatrix}
1 & -\lambda/\alpha \\
1 & -2\lambda/\alpha
\end{bmatrix} \begin{bmatrix}
a_n \\
b_n
\end{bmatrix} (6.8.8)
\]

Similarly, for the \(d = 2 \) case, the transfer functions from \(y_n \) to \(a_n, b_n, c_n \) are:

\[
\begin{aligned}
H_a(z) &= \frac{\alpha [1 + \lambda + \lambda^2 - 3(1 + \lambda) z^{-1} + 3\lambda^2 z^{-2}]}{(1 - \frac{\lambda}{\alpha})^3} \\
H_b(z) &= \frac{\alpha^2 (2 - 2\lambda) [1 + \lambda + (5\lambda + 1) z^{-1}]}{(1 - \frac{\lambda}{\alpha})^3} \\
H_c(z) &= \frac{\alpha^3 (1 - \lambda)^2}{2 (1 - \frac{\lambda}{\alpha^3})^3}
\end{aligned}
\]

(6.8.9)

which are related to \(H, H^2, H^3 \) by the matrix transformation:

\[
\begin{bmatrix}
H_a \\
H_b \\
H_c
\end{bmatrix} = \begin{bmatrix}
1 & -\lambda/\alpha & \lambda (1 + \lambda)/\alpha^2 \\
1 & -2\lambda/\alpha & 2\lambda (2 + \lambda)/\alpha^2 \\
1 & -3\lambda/\alpha & 3\lambda (3 + \lambda)/\alpha^2
\end{bmatrix} \begin{bmatrix}
a_n \\
b_n \\
c_n
\end{bmatrix} (6.8.10)
\]

implying the transformation between the outputs:

\[
\begin{aligned}
a_n^{[1]} &= 1 - \lambda/\alpha \lambda (1 + \lambda)/\alpha^2 \\
a_n^{[2]} &= 1 - 2\lambda/\alpha 2\lambda (2 + \lambda)/\alpha^2 \\
a_n^{[3]} &= 1 - 3\lambda/\alpha 3\lambda (3 + \lambda)/\alpha^2
\end{aligned}
\]

(6.8.11)

with corresponding inverse relationships,

\[
\begin{bmatrix}
H_a \\
H_b \\
H_c
\end{bmatrix} = \begin{bmatrix}
\alpha (1 + 5\lambda) & -2\alpha (1 + 4\lambda) & \alpha (1 + 3\lambda) \\
\alpha^2 & -2\alpha^2 & \alpha^2 \\
\alpha (1 + 5\lambda) & -2\alpha (1 + 4\lambda) & \alpha (1 + 3\lambda)
\end{bmatrix} \begin{bmatrix}
a_n^{[1]} \\
a_n^{[2]} \\
a_n^{[3]}
\end{bmatrix} (6.8.12)
\]

In particular, we have:

\[
H_a = 3H - 3H^2 + H^3 = 1 - (1 - H)^3 (6.8.14)
\]

and

\[
\hat{y}_{n|n} = a_n = 3a_n^{[1]} - 3a_n^{[2]} + a_n^{[3]} (6.8.15)
\]

More generally, for an order-\(d \) polynomial EMA, we have [243],

\[
H_a = 1 - (1 - H)^{d+1} (6.8.16)
\]

and

\[
\hat{y}_{n|n} = a_n = \sum_{r=1}^{d} (-1)^r \binom{d + 1}{r} a_n^{[r]} (6.8.17)
\]
6. Exponential Smoothing

6.9 Exponential Smoothing and Tukey’s Twicing Operation

There is an interesting interpretation [255] of these results in terms of Tukey’s twicing operation [257] and its generalizations to thricing, and so on. To explain twicing, consider a smoothing operation, which for simplicity we may assume that it can be represented by the matrix operation \(\hat{Y}(z) = H(z)Y(z) \), where now both the passband and stopband ripples are replaced by a generally, it can be shown [258] that the filter that achieves \(p \)th order tangency at \(H = 1 \) is given by

\[
H^{\text{impr}}(z) = H^{p+1} \sum_{k=0}^{q} \frac{(p+k)!}{p!k!}(1-H)^k
\]

(6.9.5)

The multiple exponential moving average case corresponds to \(p = 0 \) and \(q = d \), resulting in \(H^{\text{impr}} = 1 - (1-H)^{d+1} \), whereas Eq. (6.9.4) corresponds to \(p = q = 1 \).

6.10 Twicing and Zero-Lag Filters

Another advantage of twicing and, more generally, filter sharpening is that the resulting improved smoothing filter always has zero lag, that is, \(\tilde{n} = 0 \).

Indeed, assuming unity DC gain for the original filter, \(H(z) \big|_{z=1} = 1 \), it is straightforward to show that the general formula (6.9.5) gives for the first derivative:

\[
H^{\text{impr}}(z) \big|_{z=1} = 0
\]

(6.10.1)

which implies that its lag is zero, \(\tilde{n} = 0 \), by virtue of Eq. (6.11.18). The twicing procedure, or its generalizations, for getting zero-lag filters is not limited to the exponential moving average. It can be applied to any other lowpass filter. For example, if we apply it to an ordinary length-\(N \) FIR averager, we would obtain:

\[
H(z) = \frac{1}{N} \sum_{n=0}^{N-1} z^{-n} = \frac{1}{N} \frac{1 - z^{-N}}{1 - z^{-1}} \Rightarrow H_a(z) = 2H(z) - H^2(z)
\]

(6.10.2)

The impulse response of \(H_a(z) \) can be shown to be, where \(0 \leq n \leq 2(N-1) \),

\[
h_a(n) = \left(\frac{2N - 1 - n}{N^2} \right) \left[u(n) - 2u(n - N) + u(n - 2N + 1) \right]
\]

(6.10.3)

It is straightforward to show that \(\tilde{n}_a = 0 \) and that its noise-reduction ratio is

\[
R = \frac{8N^2 - 6N + 1}{3N^3}
\]

(6.10.4)

Because of their zero-lag property, double and triple EMA filters are used as trend indicators in the financial markets [297,298]. The application of twicing to the modified exponential smoother of Eq. (2.3.5) gives rise to a similar indicator called the instantaneous trendline [285], and further discussed in Problem 6.8. We discuss such market indicators in Sections 6.14–6.24.

The zero-lag property for a causal lowpass filter comes at a price, namely, that although its magnitude response is normalized to unity at \(\omega = 0 \) and has a flat derivative there, it typically bends upwards developing a bandpass peak near DC before it attenuates to smaller values at higher frequencies. See, for example, Fig. 6.10.1.

This behavior might be deemed to be objectionable since it tends to unevenly amplify the low-frequency passband of the filter.
6. Exponential Smoothing

To clarify these remarks, consider a lowpass filter $H(\omega)$ (with real-valued impulse response h_n) satisfying the gain and flatness conditions $H(0) = 1$ and $H'(0) = 0$ at $\omega = 0$. The flatness condition implies the zero-lag property $\bar{n} = 0$. Using these two conditions, it is straightforward to verify that the second derivative of the magnitude response at DC is given by:

$$\frac{d^2}{d\omega^2} |H(\omega)|^2 |_{\omega=0} = 2 \Re[H''(0)] + 2 |H'(0)|^2 = 2 \Re[H''(0)] = -2 \sum_{n=0}^{\infty} n^2 h_n$$

(6.10.5)

Because $\bar{n} = \sum_n n h_n = 0$, it follows that some of the coefficients h_n must be negative, which can cause (6.10.5) to become positive, implying that $\omega = 0$ is a local minimum and hence the response will rise for ω immediately beyond DC. This is demonstrated for example in Problem 6.7 by Eq. (6.25.1), so that,

$$\frac{d^2}{d\omega^2} |H(\omega)|^2 |_{\omega=0} = -2 \sum_{n=0}^{\infty} n^2 h_n = \frac{4 \lambda^2}{(1-\lambda)^2}$$

A similar calculation yields the result,

$$\frac{d^2}{d\omega^2} |H(\omega)|^2 |_{\omega=0} = -2 \sum_{n=0}^{\infty} n^2 h_n = \frac{1}{3} (N - 1)(N - 2)$$

for the optimum zero-lag FIR filter of Eq. (6.4.4),

$$h_a(k) = \frac{2 (2N - 1 - 3k)}{N(N + 1)}, \quad k = 0, 1, \ldots, N - 1$$

(6.10.6)

We note that the first derivative of the magnitude response $|H(\omega)|^2$ is always zero at DC, regardless of whether the filter has zero lag or not. Indeed, it follows from $H(0) = 1$ and the reality of h_n that,

$$\frac{d}{d\omega} |H(\omega)|^2 |_{\omega=0} = 2 \Re[H'(0)] = 0$$

(6.10.7)

Example 6.10.1: Zero-Lag Filters. In Problem 6.7, we saw that the double EMA filter has transfer function and magnitude response:

$$H_a(z) = \frac{(1-\lambda) + (1+\lambda-2\lambda z^{-1})}{1-\lambda z^{-1}}$$

$$|H_a(\omega)|^2 = \frac{(1-\lambda)^2 [1 + 2\lambda + 5\lambda^2 - 4\lambda (1+\lambda) \cos \omega]}{1 - 2\lambda \cos \omega + \lambda^2}$$

and that a secondary peak develops at,

$$\cos \omega_{\text{max}} = \frac{1 + 4\lambda - \lambda^2}{2(1+\lambda)}, \quad |H_a(\omega_{\text{max}})|^2 = \frac{(1+\lambda)^2}{1 + 2\lambda}$$

The left graph of Fig. 6.10.1 shows the magnitude responses for the two cases of $\lambda = 0.8$ and $\lambda = 0.9$. The calculated peak frequencies are $\omega_{\text{max}} = 0.1492$ and $\omega_{\text{max}} = 0.0726$ rads/sample, corresponding to periods of $2\pi/\omega_{\text{max}} = 42$ and 86 samples/cycle. The peak points are indicated by black dots on the graph.

6.10. Twicing and Zero-Lag Filters

The right graph shows the magnitude responses of the optimum zero-lag FIR filter $h_a(k)$ of Eq. (6.10.6) for the two lengths $N = 15$ and $N = 33$. The lengths N were calculated to achieve equivalent behavior in the vicinity of DC, i.e., equal second derivatives at $\omega = 0$,

$$\frac{4 \lambda^2}{(1-\lambda)^2} \Rightarrow N = \frac{3}{2} + \sqrt{\frac{12 \lambda^2}{(1-\lambda)^2} + \frac{1}{4}}$$

The magnitude responses were computed from the above formulas for the double EMA cases, and by the following MATLAB code in the FIR cases:

- $w = \text{linspace}(0,1,1001); \quad % \omega \text{ in units of } \pi$
- $N = 15; \quad k = (0:N-1);$
- $h = 2*(2*N-1-3*k)/N/(N+1);$
- $H2 = \text{abs(freqz(h,1,pi*w)}.^2;$
- max

We observe from these examples that the zero-lag filters have less than desirable passbands. However, they do act as lowpass filters, attenuating the high frequencies and thereby smoothing the input signal.

Local Level, Local Slope, and Local Acceleration Filters

Since the twicing operation can be applied to any lowpass filter $H(z)$ resulting in the zero-lag local-level filter $H_a(z) = 2H(z) - H^2(z)$, it raises the question as to what would be the corresponding local-slope filter $H_b(z)$, in other words, what is the generalization of Eqs. (6.8.6) for an arbitrary filter $H(z)$, and similarly, what is the generalization of Eq. (6.8.12) for the thricing operations.

Starting with an arbitrary causal lowpass filter $H(z)$, with impulse response $h(n)$, and assuming that it has unity gain at DC, the local level, slope, and acceleration filters depend on the following two filter moments:

$$\mu_1 = \bar{n} = \sum_{n=0}^{\infty} nh(n), \quad \mu_2 = \sum_{n=0}^{\infty} n^2 h(n)$$

(6.10.8)
6. Exponential Smoothing

In terms of these parameters, the generalization of Eq. (6.8.6) is then,

\[
H_a(z) = 2H(z) - H^2(z) \\
H_b(z) = \frac{1}{\mu_1} [H(z) - H^2(z)]
\]

(local level filter)

(6.10.9)

while the generalization of (6.8.12) is,

\[
\begin{bmatrix}
H_a(z) \\
H_b(z) \\
H_c(z)
\end{bmatrix} = \frac{1}{2\mu_1} \begin{bmatrix}
6\mu_1^3 & -6\mu_1^2 & 2\mu_1 \\
\mu_1 & -2(\mu_2 + 3\mu_1) & \mu_2 + 2\mu_1 \\
-2\mu_1 & \mu_1 & \mu_1
\end{bmatrix} \begin{bmatrix}
H(z) \\
H^2(z) \\
H^3(z)
\end{bmatrix}
\]

(6.10.10)

and in particular,

\[
H_a = 3H - 3H^2 + H^3 = 1 - (1 - H)^3
\]

(6.10.11)

For an EMA filter, \(h(n) = (1 - \lambda)\lambda^n u(n) \), we have,

\[
\mu_1 = \frac{\lambda}{1 - \lambda}, \quad \mu_2 = \frac{\lambda(1 + \lambda)}{(1 - \lambda)^2}
\]

and Eqs. (6.10.9) and (6.10.10) reduce to (6.8.6) and (6.8.12), respectively. To justify (6.10.9), consider a noiseless straight-line input signal, \(y_n = a + bn \). Since it is linearly rising and noiseless, the local-level will be itself, and the local-slope will be constant, that is, we may define,

\[
a_n = a + bn, \quad b_n \equiv b
\]

Following the calculation leading to Eq. (6.1.24), we can easily verify that the two successive outputs, \(a_n^{[1]}, a_n^{[2]} \), from the twice-cascaded filter \(h(n) \), will be,

\[
a_n^{[1]} = a + b(n - \mu_1) = (a - \mu_1 b) + bn = a + bn - \mu_1 b = a_n - \mu_1 b_n \\
a_n^{[2]} = (a - \mu_1 b - \mu_2 b) + bn = (a - 2\mu_1 b) + bn = a_n - 2\mu_1 b_n
\]

These may be solved for \(a_n, b_n \) in terms of \(a_n^{[1]}, a_n^{[2]} \), leading to the following time-domain relationships, which are equivalent to Eqs. (6.10.9),

\[
a_n = 2a_n^{[1]} - a_n^{[2]} \\
b_n = \frac{1}{\mu_1} (a_n^{[1]} - a_n^{[2]})
\]

For the thrice case, consider a noiseless input that is quadratically varying with time, \(y_n = a + bn + cn^2 \), so that its local level, local slope, and local acceleration may be defined as,\(^{1}\)

\[
a_n = a + bn + cn^2, \quad b_n = b + 2cn, \quad c_n = c
\]

\(^{1}\)true acceleration would be represented by \(2c \).

6.11 Basis Transformations and EMA Initialization

Upon passing through the first stage of \(h(n) \), the output will be,

\[
a_n^{[1]} = \sum_k [a + b(n - k) + c(n - k)^2] h(k) \\
= \sum_k [a + b(n - k) + c(n^2 - 2nk + k^2)] h(k) \\
= a + b(n - \mu_1) + c(n^2 - 2\mu_1 n + \mu_2) \\
= (a - b\mu_1 + c\mu_2) + (b - 2c\mu_1)n + cn^2
\]

and applying the same formula to the second and third stages of \(h(n) \), we find the outputs,

\[
a_n^{[1]} = (a - b\mu_1 + c\mu_2) + (b - 2c\mu_1)n + cn^2 \\
a_n^{[2]} = (a - 2b\mu_1 + 2c\mu_2 + 2c\mu_2^2) + (b - 4c\mu_1)n + cn^2 \\
a_n^{[3]} = (a - 3b\mu_1 + 3c\mu_2 + 6c\mu_2^2) + (b - 6c\mu_1)n + cn^2
\]

which can be re-expressed in terms of the \(a_n, b_n, c_n \) signals,

\[
a_n^{[1]} = a_n - \mu_1 b_n + \mu_2 c_n \\
a_n^{[2]} = a_n - 2\mu_1 b_n + 2(\mu_2 + \mu_2^2) c_n \\
a_n^{[3]} = a_n - 3\mu_1 b_n + 3(\mu_2 + 2\mu_2^2) c_n
\]

Solving these for \(a_n, b_n, c_n \) leads to the time-domain equivalent of (6.10.10),

\[
\begin{bmatrix}
a_n \\
b_n \\
c_n
\end{bmatrix} = \frac{1}{2\mu_1} \begin{bmatrix}
6\mu_1^3 & -6\mu_1^2 & 2\mu_1 \\
\mu_1 & -2(\mu_2 + 3\mu_1) & \mu_2 + 2\mu_1 \\
-2\mu_1 & \mu_1 & \mu_1
\end{bmatrix} \begin{bmatrix}
a_n^{[1]} \\
a_n^{[2]} \\
a_n^{[3]}
\end{bmatrix}
\]

and in particular,

\[
a_n = 3a_n^{[1]} - 3a_n^{[2]} + a_n^{[3]}
\]

6.11 Basis Transformations and EMA Initialization

The transformation matrix between the \(c(n) = [c_0(n), c_1(n), \ldots, c_d(n)]^T \) basis and the cascaded basis \(a(n) = [a_n^{[1]}, a_n^{[2]}, \ldots, a_n^{[d+1]}]^T \) can be written in the general form:

\[
a(n) = M c(n) \Rightarrow a_n^{[r]} = \sum_{i=0}^{d} M_{ri} c_i(n), \quad r = 1, 2, \ldots, d+1
\]

(6.11.1)

The matrix elements \(M_{ri} \) can be found by looking at the special case when the input is a polynomial of degree \(d \),

\[
x_{n+r} = \sum_{i=0}^{d} t^i c_i(n)
\]
6.11. Basis Transformations and EMA Initialization

The convolutional output of the filter $H^{[r]}(z)$ is then,

$$a_n^{[r]} = \sum_{k=0}^{\infty} h^{[r]}(k) x_{n-k} = \sum_{k=0}^{\infty} h^{[r]}(k) \sum_{i=0}^{d} (-k)^i c_i(n)$$

It follows that,

$$M_{ri} = \sum_{k=0}^{\infty} h^{[r]}(k) (-k)^i = \sum_{k=0}^{\infty} \alpha^r \lambda^k \frac{(k + r - 1)!}{k!(r - 1)!} (-k)^i$$

(6.11.2)

with $1 \leq r \leq d + 1$ and $0 \leq i \leq d$. The matrices for $d = 1$ and $d = 2$ in Eqs. (6.8.8) and (6.8.11) are special cases of (6.11.2). The function `emat` calculates M numerically,

```plaintext
M = emat(d, lambda); % polynomial to cascaded basis transformation matrix
```

One of the uses of this matrix is to determine the initial condition vector in the $a_n^{[r]}$ basis, $a_{init} = M c_{init}$, where c_{init} is more easily determined, for example, using the default method of the function `stema`.

The function `mema` implements the multiple exponential moving average in cascade form, generating the individual outputs $a_n^{[r]}$:

```plaintext
[a,A] = mema(x,d,1,lambda,ainit); % multiple exponential moving average
```

where A is an $N \times (d + 1)$ matrix whose nth row is $a(n)^T = [a_1, a_2, \ldots, a_{d+1}]$, and a_n is the nth output of Eq. (6.8.17). The $(d+1) \times 1$ vector a_{init} represents the initial values of $a(n)$, that is, $a_{init} = [a_{init,1}, a_{init,2}, \ldots, a_{init,d+1}]^T$. If the argument a_{init} is omitted, it defaults to the following least-squares fitting procedure:

```plaintext
L = round((1+la)/(1-la)); % effective length of single EMA
cinit = lpbasis(L,d,1) \ y(1:L); % fit order-d polynomial to first L inputs
M = emat(d,la); % transformation matrix to cascaded basis
ainit = M*cinit; % (d+1) x 1 initial vector
```

The function `mema` calculates the filter outputs using the built-in function `filter` to implement filtering by the single EMA filter $H(z) = \alpha/(1 - \lambda z^{-1})$ and passing each output to the next stage, for example, with $a_{n+1}^{[0]} = y_n$,

$$a^{[r]} = \text{filter}(\alpha, [1,-\lambda], a_{r-1}^{[r-1]}, \lambda a_{init}^{[r]}) \quad r = 1, 2, \ldots, d + 1 \quad \text{(6.11.3)}$$

The last argument of `filter` imposes the proper initial state on the filtering operation (the particular form is dictated from the fact that `filter` uses the transposed realization.) Eq. (6.11.3) is equivalent to the operations:

$$a_n^{[r]} = \lambda a_{n-1}^{[r]} + \alpha a_{n-1}^{[r-1]} \quad r = 1, 2, \ldots, d + 1 \quad \text{(6.11.4)}$$

Example 6.11.1: EMA Initialization. To clarify these operations and the initializations, we consider a small example using $d = 1$ (double EMA) and $\lambda = 0.9$, $\alpha = 1 - \lambda = 0.1$. The data vector y has length 41 and is given in the code segment below.

The top two graphs in Fig. 6.11.1 show the default initialization method in which a linear fit (because $d = 1$) is performed to the first $L = (1 + \lambda) / (1 - \lambda) = 19$ data samples. In the bottom two graphs, the initialization is based on performing the linear fit to just the first $L = 5$ samples.

In all cases, the linearly-fitted segments are shown on the graphs (short dashed lines). In the left graphs, the initialization parameters $c_{init,1, a_{init}}$ were determined at time $n = -1$ and processing began at $n = 0$. In the right graphs, the $c_{init,1, a_{init}}$ were recalculated to correspond to time $n = L-1$ (i.e., $n = 18$ and $n = 4$ for the top and bottom graphs), and processing was started at $n = L$. The table below displays the computations for the left and right bottom graphs.

For both the left and right tables, the same five data samples $\{y_n, 0 \leq n \leq 4\}$ were used to determine the initialization vectors c_{init}, which were then mapped into $a_{init} = M c_{init}$. The transformation matrix M is in this example (cf. Eq. (6.8.8)):

$$M = \begin{bmatrix} 1 & -\lambda/\alpha \\ 1 & -2\lambda/\alpha \end{bmatrix} = \begin{bmatrix} 1 & -9 \\ 1 & -18 \end{bmatrix}$$

![Fig. 6.11.1 Double-EMA initialization examples.](image-url)
6. Exponential Smoothing

6.11. Basis Transformations and EMA Initialization

Alternatively, \(\bar{c}_{init} \) can be computed from \(c_{init} = lpbasis(L, d, -1) \backslash y(1:L) \), i.e.,

\[
S = \begin{bmatrix}
1 & -4 \\
1 & -3 \\
1 & -2 \\
1 & -1 \\
0 & 1 \\
\end{bmatrix} \Rightarrow \bar{c}_{init} = (S^T S)^{-1} S^T y_{1:L} =
\begin{bmatrix}
-0.2 & 0.0 & 0.2 & 0.4 & 0.6 \\
-0.2 & -0.1 & 0.0 & 0.1 & 0.2 \\
\end{bmatrix}
\]

The \(\bar{a}_{init} \) values are shown on the right table at the \(n = 4 \) line. The rest of the table is computed by cranking the above difference equations starting at \(n = 5 \). For example,

\[
a^{(1)}_i = \lambda a^{(1)}_{i-1} + \alpha y_i \\
\]

The filtered values at \(n = L - 1 = 4 \) on the left table and the initial values on the right table are very close to each other, and therefore, the two initialization methods produce very comparable results for the output segments \(n \geq L \). The following MATLAB code illustrates the generation of the bottom graphs in Fig. 6.11.1:

\[
y = [7 14 12 19 12 14 16 26 24 22 13 22 26 15 22 28 28 29 34 23 26 ... 39 29 34 32 38 40 40 35 32 41 45 41 46 48 42 44 52 44 47 39];
\]

\[
f = (0:length(y)-1)';
\]

\[
d=1; F=binmat(d,1); L=5;
la = 0.9; al = 1-la;
\]

\[
% L = round((1+la)/(1-la));
\]

\[
cinit = lpbasis(L, d, -1) \backslash y(1:L);
\]

\[
ainit = M*cinit;
\]

\[
C = stema(y,d,la,cinit);
[\alpha A] = mema(y,d,la,ainit);
\]

\[
N1 = norm(A-C*\alpha A) + norm(\alpha A-C(:,1));
\]

\[
t = (0:L-1); p = lpbasis(L,d,-1)*cinit;
\]

\[
figure; plot(y,'-', n,a,'-', t,p,'--', n,y,:');
\]

\[
% bottom left graph
\]

\[
cinit = lpbasis(L,d,-1) \backslash y(1:L);
\]

\[
ainit = M*cinit;
\]

\[
nL = norm(A-C*\alpha A) + norm(\alpha A-C(:,1));
\]

\[
t = (0:L-1); p = lpbasis(L,d,-1)*cinit;
\]

\[
figure; plot(y,'-', n,a,'-', t,p,'--', n,y,:');
\]

\[
% bottom right graph
\]

\[
Nt = N1 + N2
\]

% overall test - should be zero
6. Exponential Smoothing

The first initialization scheme (finding c_{init}, a_{init} at $n = -1$ and starting filtering at $n = 0$) is generally preferable because it produces an output of the same length as the input.

An alternative initialization scheme that is more common in financial market trading applications of EMA is discussed in Sec. 6.17.

6.12 Holt’s Exponential Smoothing

We recall that the $d = 1$ steady-state EMA was given by

\[
\begin{bmatrix}
 a_n \\
 b_n
\end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 0 & 1
\end{bmatrix} \begin{bmatrix}
 a_{n-1} \\
 b_{n-1}
\end{bmatrix} + \begin{bmatrix}
 \alpha_1 \\
 \alpha_2
\end{bmatrix} (y_n - a_{n-1} - b_{n-1}) \tag{6.12.1}
\]

with asymptotic gain factors $\alpha_1 = 1 - \lambda^2$ and $\alpha_2 = (1 - \lambda)^2$, which are both computable from a single λ parameter.

Holt [240] has generalized (6.12.1) to allow arbitrary values for α_1, α_2. The additional flexibility has been found to be effective in applications. There is an alternative way of writing (6.12.1). From the first equation, we have

\[a_n = a_{n-1} + b_{n-1} + \alpha_1 (y_n - a_{n-1} - b_{n-1}) \Rightarrow y_n - a_{n-1} - b_{n-1} = \frac{1}{\alpha_1} (a_n - a_{n-1} - b_{n-1})\]

and substituting into the second,

\[b_n = b_{n-1} + \alpha_2 (y_n - a_{n-1} - b_{n-1}) = b_{n-1} + \frac{\alpha_2}{\alpha_1} (a_n - a_{n-1} - b_{n-1})\]

Defining $\alpha_2 = \alpha_2/\alpha_1$, we may write the new system as follows:

\[a_n = a_{n-1} + b_{n-1} + \alpha_1 (y_n - a_{n-1} - b_{n-1}) \]

\[b_n = b_{n-1} + \alpha_2 (a_n - a_{n-1} - b_{n-1}) \tag{6.12.2}\]

and defining the effective λ-parameters $\lambda_1 = 1 - \alpha_1$ and $\lambda_2 = 1 - \alpha_2$,

\[\begin{bmatrix}
 a_n \\
 b_n
\end{bmatrix} = \begin{bmatrix}
 \lambda_1 (a_{n-1} + b_{n-1}) + \alpha_1 y_n \\
 \lambda_2 b_{n-1} + \alpha_2 (a_n - a_{n-1})
\end{bmatrix} \tag{Holt’s exponential smoothing} \tag{6.12.3}\]

Eq. (6.12.1) is referred to as an exponential smoothing with “local trend”. The first equation tracks the local level a_n, and the second, the local slope b_n, which is being determined by smoothing the first-order difference of the local level $a_n - a_{n-1}$.

The predicted value is as usual $\hat{y}_{n+1/n} = a_n + b_n$, and for the next time instant, $\hat{y}_{n+1/n} = a_n + b_n$, and τ steps ahead, $\hat{y}_{n+\tau/n} = a_n + b_n \tau$. The MATLAB function holt implements Eq. (6.12.1):

\[
C = \text{holt}(y, a1, a2, cinit); \quad \% \text{Holt’s exponential smoothing}
\]

6.13 State-Space Models for Holt’s Method

where C has the same meaning as stema, its nth row $c^T(n) = [a_n, b_n]$ holding the local level and slope at time n. The initialization vector c_{init} can be chosen as in stema by a linear fit to the first L samples of y, where $L = (1 + \lambda)/(1 - \lambda)$, with λ determined from α_1 from the relationship $\alpha_1 = 1 - \lambda^2$ or $\lambda = \sqrt{1 - \alpha_1}$. Another possibility is to choose $c_{\text{init}} = \{y_0, 0\}^T$, or, $[y_0, y_1 - y_0]^T$.

Like emaerr, the MATLAB function holterr evaluates the MSE/MAE/MAPE errors over any set of parameter pairs (α_1, α_2) and produces the corresponding optimum pair $(\alpha_{1,\text{opt}}, \alpha_{2,\text{opt}})$:

\[
\begin{bmatrix}
 \text{err}, a1_{\text{opt}}, a2_{\text{opt}}
\end{bmatrix} = \text{holterr}(y, a1, a2, \text{type}, cinit); \quad \% \text{mean errors}
\]

By taking z-transforms of Eq. (6.12.1), we obtain the transfer functions from y_n to the two outputs a_n, b_n:

\[
\begin{align*}
 H_a(z) &= \frac{\alpha_1 + (\alpha_2 - \alpha_1)z^{-1}}{1 + (\alpha_1 + \alpha_2 - 2)z^{-1} + (1 - \alpha_1)z^{-2}} \\
 H_b(z) &= \frac{\alpha_2 (1 - z^{-1})}{1 + (\alpha_1 + \alpha_2 - 2)z^{-1} + (1 - \alpha_1)z^{-2}} \tag{6.12.4}
\end{align*}
\]

The transfer function from y_n to the predicted output $\hat{y}_{n+1/n}$ is $H(z) = H_a(z) + H_b(z)$. Making the usual assumption that y_n is a white noise sequence, the variance of $\hat{y}_{n+1/n}$ will be $\alpha_n^2 = R \sigma_n^2$, where R is the NRR of $H(z)$:

\[
R = \sum_{n=0}^{\infty} h^2(n) = \frac{2\alpha_1^2 + \alpha_2 \alpha_1 + 2 \alpha_2}{\alpha_1 (4 - 2 \alpha_1 - \alpha_2)} \tag{6.12.5}
\]

This reduces to Eq. (6.7.9) in the EMA case of $\alpha_1 = 1 - \lambda^2$ and $\alpha_2 = (1 - \lambda)^2$, while Eq. (6.12.4) reduces to (6.8.5). It can be shown that R remains less than unity for $0 \leq \alpha_1 \leq 1$ and $0 \leq \alpha_2 \leq 2 \alpha_1 (1 - \alpha_1)/(1 + \alpha_1)$, with R reaching unity at $\alpha_1 = \sqrt{2} - 1 = 0.4142$ and $\alpha_2 = 2 \alpha_1 (1 - \alpha_1)/(1 + \alpha_1) = 2 (3 - 2 \sqrt{2}) = 0.3431$.

6.14 State-Space Models for Holt’s Method

Just like the $d = 0$ local level case could be represented by an innovations model, so can the linear trend model. We may define the model by assuming that the prediction is perfect and thus, the prediction error $\epsilon_{n+1/n} = y_n - \hat{y}_{n+1/n} \equiv \epsilon_n$ is a white noise signal. The state vector may be defined as $x_n = [a_n, b_n]^T$, leading to the innovations state-space model,

\[
\begin{bmatrix}
 y_n \\
 x_n
\end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 0 & 1
\end{bmatrix} \begin{bmatrix}
 a_{n-1} + \epsilon_n \\
 \alpha_2 \epsilon_n
\end{bmatrix} \tag{6.13.1}
\]

Eliminating the state vector, we may obtain the transfer function from the innovations sequence ϵ_n to the observation y_n,

\[
\frac{Y(z)}{\xi(z)} = \frac{1 + (\alpha_1 + \alpha_2 - 2)z^{-1} + (1 - \alpha_1)z^{-2}}{(1 - z^{-1})^2} \tag{6.13.2}
\]
6. Exponential Smoothing

which leads to an ARIMA($0,2,2$) or IMA($2,2$) equivalent signal model:

\[\nabla^2 y_n = y_n - 2y_{n-2} + y_{n-2} = \varepsilon_n + (\alpha_1 + \alpha_2 - 2) \varepsilon_{n-1} + (1 - \alpha_1) \varepsilon_{n-2} \]

(6.13.2)

For $\alpha_1 = 1 - \lambda^2$ and $\alpha_2 = (1 - \lambda)^2$, we obtain the special case [253],

\[\frac{Y(z)}{E(z)} = \frac{(1 - \lambda z^{-1})^2}{(1 - z^{-1})^2} \quad \nabla^2 y_n = \varepsilon_n - 2\lambda \varepsilon_{n-1} + \lambda^2 \varepsilon_{n-2} \]

(6.13.3)

The following more conventional formulation of the linear trend state-space model has steady-state Kalman filtering equations that are equivalent to Holt’s method:

\[
\begin{bmatrix}
\hat{a}_{n+1} \\
\hat{b}_{n+1}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\hat{a}_n \\
\hat{b}_n
\end{bmatrix} +
\begin{bmatrix}
w_n \\
u_n
\end{bmatrix}, \quad y_n = [1,0] \begin{bmatrix}
\hat{a}_n \\
\hat{b}_n
\end{bmatrix} + v_n
\]

(6.14.1)

where a_n, b_n represent the local level and local slope, respectively, and w_n, u_n, v_n are zero-mean, mutually uncorrelated, white-noise signals of variances $\sigma_w^2, \sigma_u^2, \sigma_v^2$. Denoting the state vector and its filtered and predicted estimates by,

\[
X_n = \begin{bmatrix} a_n \\ b_n \end{bmatrix}, \quad \hat{X}_{n/n} = \begin{bmatrix} \hat{a}_n \\ \hat{b}_n \end{bmatrix}, \quad \hat{X}_{n+1/n} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{a}_n \\ \hat{b}_n \end{bmatrix}
\]

it turns out that the steady-state Kalman filtering equations take exactly the innovations form of Eq. (6.13.1):

\[\varepsilon_n = y_n - (\hat{a}_{n-1} + \hat{b}_{n-1}) \]

\[
\begin{bmatrix}
\hat{a}_n \\
\hat{b}_n
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\hat{a}_{n-1} \\
\hat{b}_{n-1}
\end{bmatrix} +
\begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix} \varepsilon_n
\]

(6.13.5)

where α_1, α_2 are related to the noise variances by:

\[\frac{\sigma_w^2}{\sigma_v^2} = \frac{\alpha_1^2 + \alpha_1 \alpha_2 - 2 \alpha_2}{1 - \alpha_1}, \quad \frac{\sigma_u^2}{\sigma_v^2} = \frac{\alpha_2}{1 - \alpha_1} \]

(6.13.6)

State-space models provide a modern way of thinking about exponential smoothing and will be explored further in Chap. 13.

There is an extensive literature on exponential smoothing, a subset of which is [232–279]. There are many other variants (no less than 15), such as multiplicative, seasonal, adaptive versions. A recent review of all cases that emphasizes the state-space point of view is found in [239].

We finish by mentioning the Holt-Winters generalization [241] of Holt’s method to seasonal data. In addition to tracking the level and slope signals a_n, b_n the method also tracks the local seasonal component, say s_n. For the additive version, we have:

\[
\begin{align*}
a_n &= \lambda_1 (a_{n-1} + b_{n-1}) + \alpha_1 (y_n - s_{n-D}) \\
b_n &= \lambda_2 b_{n-1} + \alpha_2 (a_n - a_{n-1}) \\
s_n &= \lambda_3 s_{n-D} + \alpha_3 (y_n - a_{n-1} - b_{n-1})
\end{align*}
\]

(Holt-Winters)

(6.13.7)

where D is the assumed periodicity of the seasonal data, and α_3 and $\lambda_3 = 1 - \lambda_3$ are the smoothing parameters associated with the seasonal component. The predicted estimate is obtained by $\hat{y}_{n+1/n} = a_n + b_n + s_{n-D}$.

6.14 Filtering Methods in Financial Market Trading

6.14 Filtering Methods in Financial Market Trading

Technical analysis of financial markets refers to a family of signal processing methods and indicators used by stock market traders to make sense of the constantly fluctuating market data and arrive at successful “buy” or “sell” decisions.

Both linear and nonlinear filtering methods are used. A comprehensive reference on such methods is the Achelis book [280]. Some additional references are [281–347].

Here, we look briefly at some widely used indicators arising from FIR or EMA filters, and summarize their properties and their MATLAB implementation. In order to keep the discussion self-contained, some material from the previous sections is repeated.

6.15 Moving Average Filters – SMA, WMA, TMA, EMA

Among the linear filtering methods are smoothing filters that are used to smooth out the daily fluctuations and bring out the trends in the data. The most common filters are the simple moving average (SMA) and the exponentially weighted moving average (EMA), and variations, such as the weighted or linear moving average (WMA) and the triangular moving average (TMA). The impulse responses of these filters are:

\[
\text{(SMA)} \quad h(n) = \frac{1}{N}, \quad 0 \leq n \leq N - 1
\]

(6.15.1)

\[
\text{(WMA)} \quad h(n) = \frac{2(N-n)}{N(N+1)}, \quad 0 \leq n \leq N - 1
\]

\[
\text{(TMA)} \quad h(n) = \frac{N - |n - N+1|}{N^2}, \quad 0 \leq n \leq 2N - 2
\]

\[
\text{(EMA)} \quad h(n) = (1 - \lambda) \lambda^n, \quad 0 \leq n < \infty
\]

with transfer functions,

\[
\text{(SMA)} \quad H(z) = \frac{1 + z^{-1} + \cdots + z^{-N+1}}{N} = \frac{1}{N} \left(1 - z^{-N} \right)
\]

(6.15.2)

\[
\text{(WMA)} \quad H(z) = \frac{2}{N(N+1)} \left(1 - z^{-1} \right)^{-N-1}
\]

\[
\text{(TMA)} \quad H(z) = \left[\frac{1}{N} \left(1 - z^{-N} \right)^{-2} \right]^{-1} = \frac{1}{1 - z^{-1} \left(1 - z^{-N} \right)^{-N-1}}
\]

(6.15.3)

\[
\text{(EMA)} \quad H(z) = \frac{\alpha}{1 - \lambda z^{-1}}, \quad \alpha = 1 - \lambda
\]

where N denotes the filter span for the SMA and WMA cases, while for the EMA case, λ is a forgetting factor such that $0 < \lambda < 1$, which is usually specified in terms an equivalent FIR length N given by the following condition, which implies that the SMA and the EMA filters have the same lag and the same noise reduction ratio, as discussed in Sec. 6.1,

\[
N = \frac{1 + \lambda}{1 - \lambda} \Rightarrow \lambda = \frac{N-1}{N+1} \Rightarrow \alpha = 1 - \lambda = \frac{2}{N+1}
\]
6. Exponential Smoothing

The TMA filter has length $2N - 1$ and is evidently the convolution of two length-N SMAs. Denoting by y_n the raw data, where n represents the nth trading day (or, weekly, monthly, or quarterly sample periods), we will denote the output of the moving average filters by a_n representing the smoothed local level of y_n. The corresponding I/O filtering equations are then,

(SMA) \[a_n = \frac{y_n + y_{n-1} + y_{n-2} + \cdots + y_{n-N+1}}{N} \]

(WMA) \[a_n = \frac{2}{N(N+1)} \sum_{k=0}^{N-1} (N-k) y_{n-k} \]

(TMA) \[a_n = \frac{1}{N^2} \sum_{k=0}^{2N-2} (N - |k - N + 1|) y_{n-k} \]

(EMA) \[a_n = \lambda a_{n-1} + (1 - \lambda) y_n \]

The typical trading rule used by traders is to “buy” when a_n is rising and y_n lies above a_n, and to “sell” when a_n is falling and y_n lies below a_n.

Unfortunately, these widely used filters have an inherent lag, which can often result in false buy/sell signals. The basic tradeoff is that longer lengths N result in longer lags, but at the same time, the filters become more effective in smoothing and reducing noise in the data. The noise-reduction capability of any filter is quantified by its noise-reduction ratio \mathcal{R} defined by,

\[\mathcal{R} = \sum_{n=0}^{\infty} h^2 (n) \tag{6.15.5} \]

with smaller \mathcal{R} corresponding to more effective noise reduction. By construction, the above filters are lowpass filters with unity gain at DC, therefore, satisfying the constraint,

\[\sum_{n=0}^{\infty} h(n) = 1 \tag{6.15.6} \]

The “lag” is defined as the group delay at DC which, after using Eq. (6.15.6), is given by,

\[\tilde{n} = \sum_{n=0}^{\infty} n h(n) \tag{6.15.7} \]

One can easily verify that the noise-reduction ratios and lags of the above filters are:

(SMA) \[\mathcal{R} = \frac{1}{N} \], \[\tilde{n} = \frac{N - 1}{2} \]

(WMA) \[\mathcal{R} = \frac{4N + 2}{3N(N+1)} \], \[\tilde{n} = \frac{N - 1}{3} \]

(TMA) \[\mathcal{R} = \frac{2N^2 + 1}{3N^3} \], \[\tilde{n} = 1 \]

(EMA) \[\mathcal{R} = \frac{1 - \lambda}{1 + \lambda} \], \[\tilde{n} = \frac{\lambda}{1 - \lambda} = \frac{N - 1}{2} \], for equivalent N

6.15. Moving Average Filters - SMA, WMA, TMA, EMA

The tradeoff is evident, with \mathcal{R} decreasing and \tilde{n} increasing with N.

We include one more lowpass smoothing filter, the integrated linear regression slope (ILRS) filter [307] which is developed in Sec. 6.16. It has unity DC gain and its impulse response, transfer function, lag, and NRR are given by,

\[h(n) = \frac{6(n+1)(N-n)}{N(N^2 - 1)} \], \[n = 0, 1, \ldots, N-1 \]

\[H(z) = \frac{6}{N(N^2 - 1)} \left(1 + z^{-1} - 1 - z^{-N} - (1 + z^{-1}) (1 + z^{-N}) \right) \tag{6.15.9} \]

\[\tilde{n} = \frac{N - 2}{2} \], \[\mathcal{R} = \frac{6(N^2 + 1)}{5N(N^2 - 1)} \]

Fig. 6.15.1 compares the frequency responses of the above filters. We note that the ILRS has similar bandwidth as the WMA, but it also has a smaller NRR and more suppressed high-frequency range, thus, resulting in smoother output.

As a small example, we also give for comparison the impulse responses, $h = [h_0, h_1, \ldots]$ of the SMA, WMA, TMA, and ILRS filters for the case $N = 5$,

(SMA) \[h = \frac{1}{15} [1, 1, 1, 1, 1] \]

(WMA) \[h = \frac{1}{15} [5, 4, 3, 2, 1] \]

(TMA) \[h = \frac{1}{15} [1, 2, 3, 4, 5, 4, 3, 2, 1] \]

(ILRS) \[h = \frac{1}{10} [2, 3, 3, 2, 0] \]

with the SMA having constant weights, the WMA having linearly decreasing weights, the TMA has triangular weights, and the last coefficient h_{N-1} of the ILRS always being zero.
The following MATLAB functions implement the SMA, WMA, TMA, and ILRS moving averages. The input array y represents the financial data to be filtered.

```matlab
a = sma(y,N,yin); % simple moving average
a = wma(y,N,yin); % weighted moving average
a = tma(y,N,yin); % triangular moving average
a = ilrs(y,N,yin); % integrated linear regression slope
```

The string variable yin specifies the way the filters are initialized and can take on the following values as explained further in Sec. 6.19.

- `yin = 'f'`, % progressive filtering (default method)
- `yin = 'n'`, % initial transients are NaNs (facilitates plotting)
- `yin = 'c'`, % standard convolutional transients

Some comparisons of these and other moving average indicators are presented in Figures 6.18.2 and 6.21.1.

6.16 Predictive Moving Average Filters

The **predictive FIR** and **double EMA** filters discussed in Sects. 6.4 and 6.8 find application in stock market trading. Their main property is the elimination or shortening of the lag, which is accomplished by tracking both the local level and the local slope of the data. More discussion of these filters and their application in the trading context may be found in Refs. [297-308].

The local-level and local-slope FIR filters \(h_a(k) \) and \(h_b(k) \) were given in Eq. (6.4.4), and their filtering equations by (6.4.5). They define the following market indicators:

\[
\begin{align*}
 a_n &= \sum_{k=0}^{N-1} h_a(k) y_{n-k} = \text{linear regression indicator} \\
 b_n &= \sum_{k=0}^{N-1} h_b(k) y_{n-k} = \text{linear regression slope indicator} \\
 a_n + b_n &= \sum_{k=0}^{N-1} h_1(k) y_{n-k} = \text{time-series forecast indicator}
\end{align*}
\]

where \(h_1(k) = h_a(k) + h_b(k) \). The quantity \(a_n + b_n \), denoted by \(\hat{y}_{n+1/n} \), represents the one-step-ahead forecast or prediction to time \(n+1 \) based on the data up to time \(n \). More generally, the prediction \(\tau \) steps ahead from time \(n \) is given by the following indicator, which we will refer to as the **predictive moving average** (PMA),

\[
\hat{y}_{n+\tau/n} = a_n + \tau b_n = \sum_{k=0}^{N-1} h_\tau(k) y_{n-k} \quad \text{(PMA)}
\]

where, as follows from Eq. (6.4.4), we have for \(n = 0, 1, \ldots, N-1, \)

\[
\begin{align*}
 h_\tau(n) &= h_a(n) + \tau h_b(n) = \frac{2(2N-1-3n)}{N(N+1)} + \frac{6(N-1-2n)}{N^2-N} \\
 a_n &= \sum_{k=0}^{N-1} h_\tau(k) y_{n-k}
\end{align*}
\]

The time "advance" \(\tau \) can be non-integer, positive, or negative. Positive \(\tau \)s correspond to forecasting, negative \(\tau \)s to delay or lag. In fact, the SMA and WMA are special cases of Eq. (6.16.3) for the particular choices of \(\tau = -(N-1)/2 \) and \(\tau = -(N-1)/3 \), respectively.

The phrase "linear regression indicators" is justified in Sec. 6.18. The filters \(h_\tau(n) \) are very flexible and useful in the trading context, and are actually the

optimal filters that have minimum noise-reduction ratio subject to the two constraints of having unity DC gain and lag equal to \(-\tau \), that is, for fixed \(N, h_\tau(n) \) is the solution of the optimization problem (for \(N = 1 \), we ignore the lag constraint to get, \(h_\tau(n) = 1 \), for \(n = 0 \), and all \(\tau \)):

\[
R = \sum_{n=0}^{N-1} h^2(n) = \min \quad \text{subject to} \quad \sum_{n=0}^{N-1} h(n) = 1, \quad \sum_{n=0}^{N-1} nh(n) = -\tau \quad (6.16.4)
\]

This was solved in Sec. 6.4. The noise-reduction-ratio of these filters is,

\[
R_{\text{opt}} = \frac{1}{N}, \quad R_{\text{SM}} = \frac{4N-2}{N(N+1)}
\]

The transfer functions of the FIR filters \(h_a(n), h_b(n) \) are not particularly illuminating, however, they are given below in rational form,

\[
\begin{align*}
 H_a(z) &= \sum_{n=0}^{N-1} h_a(n) z^{-n} = \frac{2}{N(N+1)} \frac{N(1-z^{-1})(2+z^{-N})-(1+2z^{-1})(1-z^{-N})}{(1-z^{-1})^2} \\
 H_b(z) &= \sum_{n=0}^{N-1} h_b(n) z^{-n} = \frac{6}{N(N^2-1)} \frac{N(1-z^{-1})(1+z^{-N})-(1+z^{-1})(1-z^{-N})}{(1-z^{-1})^2}
\end{align*}
\]

By a proper limiting procedure, one can easily verify the unity-gain and zero-lag properties, \(H_a(z) \big|_{z=1} = 1 \), and, \(H_a(z) \big|_{z=1} = 0 \).

The ILRS filter mentioned in the previous section is defined as the integration, or cumulative sum, of the slope filter, which can be evaluated explicitly resulting in (6.15.9),

\[
h(n) = \sum_{k=0}^{n} h_b(k) = \frac{6(N-1-2k)}{N(N^2-1)} = \frac{6(n+1)(N-1-n)}{N(N^2-1)}
\]

where \(0 \leq n \leq N-1 \). For \(n > N \), since \(h_b(k) \) has duration \(N \), the above sum remains constant and equal to zero, i.e., equal to its final value,

\[
\sum_{k=0}^{N-1} h_b(k) = 0
\]
6. Exponential Smoothing

The corresponding transfer function is the integrated (accumulated) form of \(H_b(z) \) and is easily verified to be as in Eq. (6.15.9),

\[
H(z) = \frac{H_b(z)}{1 - z^{-1}}
\]

The following MATLAB function, \(\text{pma} \), implements Eq. (6.16.2) and the related indicators, where the input array \(y \) represents the financial data to be filtered. The function, \(\text{pmaimp} \), implements the impulse response of Eq. (6.16.3).

```matlab
at = pma(y,N,tau,yin); % at = a + tau*b, prediction distance tau
a = pma(y,N,0,yin); % local-level indicator
b = pma(y,N,1,yin)-pma(y,N,0,yin); % local-slope indicator
af = pma(y,N,1,yin); % time-series forecast indicator, af=a+b
ht = pmaimp(N,tau); % impulse response of predictive filter
ha = pmaimp(N,0); % impulse response of local level filter
hb = pmaimp(N,1)-pmaimp(N,0); % impulse response of local slope filter
```

and again, the string variable \(yin \) specifies the way the filters are initialized and can take on the following values,

\(yin = 'f' \), % progressive filtering (default method)
\(yin = 'n' \), % initial transients are NaNs (facilitates plotting)
\(yin = 'c' \), % standard convolutional transients

A few examples of impulse responses are as follows, for \(N = 5, 8, 11 \),

\[
N = 5, \quad h_a = \frac{1}{3} [3, 2, 1, 0, -1] \quad \text{(local level)}
\]
\[
h_b = \frac{1}{10} [2, 1, 0, -1, -2] \quad \text{(local slope)}
\]
\[
h_l = \frac{1}{10} [8, 5, 2, -1, -4] \quad \text{(time-series forecast)}
\]

\[
N = 8, \quad h_a = \frac{1}{12} [5, 4, 3, 2, 1, 0, -1, -2]
\]
\[
h_b = \frac{1}{84} [7, 5, 3, 1, -1, -3, -5, -7]
\]
\[
h_l = \frac{1}{28} [14, 11, 8, 5, 2, -1, -4, -7]
\]

\[
N = 11, \quad h_a = \frac{1}{22} [7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3]
\]
\[
h_b = \frac{1}{110} [5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]
\]
\[
h_l = \frac{1}{55} [20, 17, 14, 11, 8, 5, 2, -1, -4, -7, -10]
\]

Some comparisons of PMA with other moving average indicators are shown in Figures 6.18.2 and 6.21.1.

6.17. Single, Double, and Triple EMA Indicators

As discussed in Sec. 6.6, the single EMA (SEMA), double EMA (DEMA), and triple EMA (TEMA) steady-state exponential smoothing recursions are as follows,

\[
e_{n/n-1} = y_n - \hat{y}_{n/n-1} = y_n - (a_{n-1} + (1 - \lambda) e_{n/n-1})
\]

(SEMA) \hspace{1cm} (6.17.1)

\[
e_{n/n-1} = y_n - \hat{y}_{n/n-1} = (a_{n-1} + b_{n-1}) e_{n/n-1}
\]

(DEMA) \hspace{1cm} (6.17.2)

\[
\begin{bmatrix}
a_n \\
b_n \\
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
a_{n-1} \\
b_{n-1} \\
\end{bmatrix} +
\begin{bmatrix}
1 - \lambda^2 \\
(1 - \lambda) \\
\end{bmatrix} e_{n/n-1}
\]

(TEMA) \hspace{1cm} (6.17.3)

where

\[
\alpha_1 = 1 - \lambda^2, \quad \alpha_2 = \frac{3}{2} (1 - \lambda) (1 - \lambda^2), \quad \alpha_3 = \frac{1}{2} (1 - \lambda)^3
\]

and \(\hat{y}_{n/n-1} \) represents the forecast of \(y_n \) based on data up to time \(n-1 \). More generally, the forecast ahead by a distance \(\tau \) is given by,

\[
(\text{SEMA}) \quad \hat{y}_{n+\tau/n} = a_n
\]
\[
(\text{DEMA}) \quad \hat{y}_{n+\tau/n} = a_n + b_n \tau
\]
\[
(\text{TEMA}) \quad \hat{y}_{n+\tau/n} = a_n + b_n \tau + c_n \tau^2
\]

We saw in Sec. 6.8 that an alternative way of computing the local level and local slope signals \(a_n, b_n \) in the DEMA case is in terms of the outputs of the cascade of two single EMAs, that is, with \(\alpha = 1 - \lambda \),

\[
\begin{align*}
y_n & \rightarrow \text{EMA} \rightarrow a_n^{[1]} \\
a_n^{[1]} & = \lambda a_n^{[1]} + \alpha y_n \\
\end{align*}
\]
\[
\begin{align*}
a_n^{[2]} & = \lambda a_n^{[2]} + \alpha a_n^{[1]} \\
\end{align*}
\]

(6.17.5)

Where

\[
a_n = 2a_n^{[1]} - a_n^{[2]} \quad \text{local level DEMA indicator}
\]
\[
b_n = \frac{\alpha}{\lambda} (a_n^{[1]} - a_n^{[2]}) \quad \text{local slope DEMA indicator}
\]

(6.17.6)

The transfer functions from \(y_n \) to the signals \(a_n, b_n \) were given in Eq. (6.8.5), and are expressible as follows in terms of the transfer function of a single EMA, \(H(z) = \alpha/(1 - \lambda z^{-1}) \),
6. Exponential Smoothing

\[H_a(z) = \frac{\alpha(1 + \lambda - 2\lambda z^{-1})}{(1 - \lambda z^{-1})^2} = 2H(z) - H^2(z) = 1 - [1 - H(z)]^2 \]

\[H_b(z) = \frac{\alpha^2(1 - z^{-1})}{(1 - \lambda z^{-1})^2} = \frac{\alpha}{\lambda} [H(z) - H^2(z)] \]

(6.17.7)

Similarly, in the TEMA case, the signals \(a_n, b_n, c_n\) can be computed from the outputs of three successive single EMAs via the following relationships,

\[
\begin{align*}
a_n^{[1]} &= \lambda a_{n-1}^{[1]} + \alpha y_n \\
a_n^{[2]} &= \lambda a_{n-1}^{[1]} + \alpha a_n^{[1]} \\
a_n^{[3]} &= \lambda a_{n-1}^{[1]} + \alpha a_n^{[2]} \\
\end{align*}
\]

(6.17.8)

\[
\begin{bmatrix}
a_n \\
b_n \\
c_n
\end{bmatrix} = \frac{1}{2\lambda^2} \begin{bmatrix}
6\lambda^2 & -6\lambda^2 & 2\lambda^2 \\
\alpha(1 + 5\lambda) & -2\alpha(1 + 4\lambda) & \alpha(1 + 3\lambda) \\
\frac{\alpha^2}{\lambda} & -2\alpha^2 & \frac{\alpha^2}{\lambda}
\end{bmatrix} \begin{bmatrix}
a_n^{[1]} \\
a_n^{[2]} \\
a_n^{[3]}
\end{bmatrix}
\]

(6.17.9)

where \(\alpha = 1 - \lambda\). See also Eqs. (6.8.9)-(6.8.13). In particular, we have,

\[a_n = 3a_n^{[1]} - 3a_n^{[2]} + a_n^{[3]} \]

(6.17.10)

6.18. Linear Regression and R-Square Indicators

In the literature of technical analysis, the PMA indicators of Eq. (6.16.1) are usually not implemented as FIR filters, but rather as successive fits of straight lines to the past \(N\) data from the current data point, that is, over the time span, \([n-N+1,n]\), for each \(n\). This is depicted Fig. 6.18.1 below.

They have been rediscovered many times in the past and different names given to them. For example, Lafferty [300] calls them “end-point moving averages”, while Rafter [303] refers to them as “moving trends.” Their application as a forecasting tool was discussed first by Chande [299].

Because of the successive fitting of straight lines, the signals \(a_n, b_n\) are known as the “linear regression” indicator and the “linear regression slope” indicator, respectively. The \(a_n\) indicator is also known as “least-squares moving average” (LSMA).

For each \(n \geq N - 1\), the signals \(a_n, b_n\) can be obtained as the least-squares solution of the following \(N\times2\) overdetermined system of linear equations in two unknowns:

\[a_n - k b_n = y_{n-k}, \quad k = 0, 1, \ldots, N - 1 \]

(6.18.1)

which express the fitting of a straight line, \(a + b\tau\), to the data \(\{y_{n-N+1}, \ldots, y_{n-1}, y_n\}\), that is, over the time window, \([n-N+1,n]\), where \(\alpha\) is the intercept at the end of the line. The overdetermined system (6.18.1) can be written compactly in matrix form by defining the length-\(N\) column vectors,

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
\vdots \\
1
\end{bmatrix}, \quad \begin{bmatrix}
k \\
1 \\
2 \\
\vdots \\
N - 1
\end{bmatrix}, \quad \begin{bmatrix}
y_n \\
y_{n-1} \\
y_{n-2} \\
\vdots \\
y_{n-N+1}
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
1 \\
\vdots \\
1
\end{bmatrix} \begin{bmatrix}
a_n \\
b_n
\end{bmatrix} = y_n
\]

(6.18.2)

with the least-squares solution expressed in the following MATLAB-like vectorial notation using the backslash operator,
6.18. Linear Regression and R-Square Indicators

For each, \(n = 0, 1, 2, \ldots, L - 1 \), do:

\[
K_n = \min (n, N - 1) + 1 = \text{fitting length, } K_n = N \text{ when } n \geq N - 1
\]

\[
k = [0 : K_n - 1]' = \text{column vector, length } K_n
\]

\[
y_n = y(n - k) = \text{column vector, } [y_n, y_{n-1}, \ldots, y_{n-K_n+1}]'
\]

\[
u = \text{ones}(K_n, 1) = \text{column vector}
\]

\[
\begin{bmatrix}
a_n \\
b_n
\end{bmatrix} = [u, -k] \backslash y_n = \text{linear regression indicators}
\]

\[
R^2(n) = \left(\frac{\text{corr}(-k, y_n)'}{1 - \text{det}(\text{corrof}(-k, y_n))} \right) = R^2 \text{ indicator}
\]

where we also included the so-called R-square indicator,\(^*\) which is the coefficient of determination for the linear fit, and quantifies the strength of the linear relationship, that is, higher values of \(R^2 \) suggest that the linear fit is statistically significant with a certain degree of confidence (usually taken to be at the 95% confidence level).

The MATLAB function, \(\text{r2crit} \) in the OSP toolbox, calculates the critical values \(R^2.c \) of \(R^2 \) for a given \(N \) and given confidence level \(p \), such that if \(R^2(n) > R^2.c \), then the linear fit is considered to be statistically significant for the \(n \)th segment. Some typical critical values of \(R^2.c \) at the \(p = 0.95 \) and \(p = 0.99 \) levels are listed below in Eq. (6.18.7), and were computed with the following MATLAB commands (see also [280]),

\[
\begin{array}{c|c|c}
N & p = 0.95 & p = 0.99 \\
\hline
5 & 0.7711 & 0.9180 \\
10 & 0.3993 & 0.5846 \\
14 & 0.2835 & 0.4374 \\
20 & 0.1969 & 0.3152 \\
25 & 0.1569 & 0.2552 \\
30 & 0.1303 & 0.2143 \\
50 & 0.0777 & 0.1303 \\
60 & 0.0646 & 0.1090 \\
120 & 0.0322 & 0.0549 \\
\end{array}
\]

The standard errors for the successive linear fits, as well as the standard errors for the quantities \(a_n, b_n \), can be computed by including the following lines within the for-loop in Eq. (6.18.6),

\[
\begin{bmatrix}
a_n \\
b_n
\end{bmatrix} = [u, -k] \backslash y_n = \text{fitting error, column vector}
\]

\[
\sigma_e(n) = \sqrt{\frac{\mathbf{e}_n' \mathbf{e}_n}{K_n - 2}} = \text{standard error}
\]

\[
\sigma_a(n) = \frac{\sqrt{2(2K_n - 1)}}{K_n(K_n + 1)} \sigma_e(n) = \text{standard error for } a_n
\]

\[
\sigma_b(n) = \frac{\sqrt{12}}{K_n(K_n - 1)} \sigma_e(n) = \text{standard error for } b_n
\]

The derivation of the expressions for \(\sigma_e, \sigma_a, \sigma_b \) follows from the standard theory of least-squares linear regression. For example, linear regression based on the \(K \) pairs, \((x_k, y_k), k = 0, 1, \ldots, K - 1 \), results in the estimates, \(\hat{y}_k = a + b x_k \), and error residuals, \(\mathbf{e}_k = y_k - \hat{y}_k \), from which the standard errors can be calculated from the following expressions [349],

\[
\sigma_e^2 = \frac{1}{K - 2} \sum_{k=0}^{K-1} \mathbf{e}_k^2, \quad \sigma_a^2 = \sigma_e^2 \frac{\overline{x}^2}{K \sigma_e^2}, \quad \sigma_b^2 = \frac{\sigma_e^2}{K \sigma_e^2}
\]

For our special case of equally-spaced data, \(x_k = -k \), we easily find,

\[
\overline{x} = \frac{-K}{K} = -\frac{1}{K} \sum_{k=0}^{K-1} k = -\frac{K - 1}{2}
\]

\[
\overline{x}^2 = \frac{1}{K} \sum_{k=0}^{K-1} k^2 = \frac{(K - 1)(2K - 1)}{6} \Rightarrow \sigma_a^2 = \frac{2(2K - 1)}{K(K + 1)} \sigma_e^2, \quad \sigma_b^2 = \frac{12 K^2}{K(K^2 - 1)} \sigma_e^2
\]

\[
\sigma_x^2 = \sigma_a^2 = \sigma_b^2 = \frac{K^2 - 1}{12}
\]

\(^*\) where, \(\text{corr}, \text{det}, \text{and corrcoef} \), are built-in MATLAB functions.
6. Exponential Smoothing

Standard error bands [329], as well as other types of bands and envelopes, and their use as market indicators, are discussed further in Sec. 6.22. The MATLAB function, \texttt{lreg}, implements Eqs. (6.18.6) and (6.18.8) with usage,

\[
[a, b, R^2, se, sa, sb] = \texttt{lreg}(y, N, \text{init}); \quad \% \text{linear regression indicators}
\]

\[
y = \text{data} \quad a = \text{local level} \quad se = \text{standard error}
\]

\[
N = \text{window length} \quad b = \text{local slope} \quad sa = \text{standard error for } a
\]

\[
\text{init} = \text{initialization} \quad R^2 = \text{R-square} \quad sb = \text{standard error for } b
\]

where \text{init} specifies the initialization scheme and takes on the following values,

\[
\text{init} = 'f', \quad \text{progressive linear fitting of initial } N-1 \text{ samples, default}
\]

\[
\text{init} = 'n', \quad \text{replacing initial } N-1 \text{ samples of } a, b, R^2, se, sa, sb \text{ by NaNs}
\]

The local level and local slope outputs \(a_n, b_n\) are identical to those produced by the function \texttt{pma} of Sec. 6.16.

Generally, these indicators behave similarly to the DEMA indicators, but both indicator types should be used with some caution since they are too quick to respond to price changes and sometimes tend to produce false buy/sell signals. In other words, some delay may miss the onset of a trend but provides more safety.

Example 6.18.1: Fig. 6.18.2 compares the SMA, EMA, WMA, PMA/linear regression, DEMA, TEMA indicators. The data are from [305] and represent daily prices for Nicor-Gas over 130 trading days starting on Sept. 1, 2006. The included excel file, \texttt{nicor.xls}, contains the open-high-low-close prices in its first four columns. The left graphs were produced by the following MATLAB code, in which the function, \texttt{ohlc}, from the OSP toolbox, makes an OHLC\(^1\) bar chart,

\[
Y = \text{xlsread('nicor.xls');} \quad \% \text{read Nicor-Gas data}
Y = Y(1:130,:); \quad \% \text{keep only 130 trading days}
y = Y(:,4); \quad \% \text{closing prices}
t = 0:length(y)-1; \quad \% \text{trading days}
N = 20; \quad \% \text{filter length}
figure; \quad \% \text{SMA, EMA, WMA}
plot(t,sma(y,N),'r-', t,sema(y,N),'k--', t,wma(y,N),'g-.'); \quad \% \text{add OHLC bar chart}
hold on; \quad \%
\]

\[
\text{figure;} \quad \% \text{PMA/LREG, DEMA, TEMA}
\]

\[
\text{plot(t,pma(y,N,0),'r-', t,dema(y,N),'k--', t,tema(y,N),'g-.');} \quad \% \text{add OHLC bar chart}
\]

The filter length was \(N = 20\). The right graphs are an expanded view of the range \([45, 90]\) days and show more clearly the reduced lag of the PMA, DEMA, and TEMA indicators. At about the 57th trading day, these indicators turn downwards but still lie above the data, therefore, they would correctly issue a "sell" signal. By contrast, the SMA, EMA, and WMA indicators are rising and lie below the data, and they would issue a "buy" signal.

\(^1\)Open-High-Low-Close
Fig. 6.18.3 PMA/linear regression, R-squared, and linear regression slope indicators.

When $R^2(n)$ is small, below R^2_N, it indicates lack of a trend with the data moving sideways, and corresponds to slope b_n near zero. When $R^2(n)$ rises near unity, it indicates a strong trend, but it does not indicate the direction, upwards or downwards. This is indicated by the slope indicator b_n, which is positive when the signal is rising, and negative, when it is falling. More discussion on using these three indicators in conjunction may be found in [305]. □

6.19 Initialization Schemes

In Eq. (6.18.6), one solves a shorter linear fitting problem of progressively increasing length during the transient period, $0 \leq n < N - 1$, and then switches to fixed length N for $n \geq N - 1$.

6.19 Initialization Schemes

The same idea can be applied to all FIR filters, such as the SMA, WMA, TMA, and the PMA filter, $h_\tau(n)$, that is, to use the same type of filter, but of progressively increasing length, during the period $0 \leq n < N - 1$, and then switch to using the filters of fixed length N for $n \geq N - 1$. The first $N - 1$ outputs computed in this manner are not the same as the standard convolutional outputs obtained from the built-in function `filter`, because the latter uses the same length-N filter and assumes zero initial internal states.

To clarify this, consider the SMA case with $N = 5$, then the above procedure and the standard convolutional one compute the outputs in the following manner, agreeing only after $n \geq N - 1 = 4$.

<table>
<thead>
<tr>
<th>progressive</th>
<th>convolutional</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 = y_0$</td>
<td>$a_0 = \frac{1}{5} y_0$</td>
</tr>
<tr>
<td>$a_1 = \frac{1}{2} (y_1 + y_0)$</td>
<td>$a_1 = \frac{1}{5} (y_1 + y_0)$</td>
</tr>
<tr>
<td>$a_2 = \frac{1}{3} (y_2 + y_1 + y_0)$</td>
<td>$a_2 = \frac{1}{5} (y_2 + y_1 + y_0)$</td>
</tr>
<tr>
<td>$a_3 = \frac{1}{4} (y_3 + y_2 + y_1 + y_0)$</td>
<td>$a_3 = \frac{1}{5} (y_3 + y_2 + y_1 + y_0)$</td>
</tr>
<tr>
<td>$a_4 = \frac{1}{5} (y_4 + y_3 + y_2 + y_1 + y_0)$</td>
<td>$a_4 = \frac{1}{5} (y_4 + y_3 + y_2 + y_1 + y_0)$</td>
</tr>
<tr>
<td>$a_5 = \frac{1}{5} (y_5 + y_4 + y_3 + y_2 + y_1)$</td>
<td>$a_5 = \frac{1}{5} (y_5 + y_4 + y_3 + y_2 + y_1)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Similarly, the local level PMA filters, h_σ, of lengths up to $N = 5$ can be determined from Eq. (6.16.3), leading to the following progressive initializations,

$N = 1, \quad h_\sigma = [1], \quad a_0 = y_0$

$N = 2, \quad h_\sigma = [1, 0], \quad a_1 = y_1$

$N = 3, \quad h_\sigma = \frac{1}{6} [5, 2, -1], \quad a_2 = \frac{1}{6} (5y_2 + 2y_1 - y_0)$

$N = 4, \quad h_\sigma = \frac{1}{10} [7, 4, 1, -2], \quad a_3 = \frac{1}{10} (7y_3 + 4y_2 + y_1 - 2y_0)$

$N = 5, \quad h_\sigma = \frac{1}{5} [3, 2, 1, -1], \quad a_4 = \frac{1}{5} (3y_4 + 2y_3 + y_2 - y_0)$

and for the local slope filters h_b,

$N = 1, \quad h_b = [0], \quad b_0 = 0$

$N = 2, \quad h_b = [1, -1], \quad b_1 = y_1 - y_0$

$N = 3, \quad h_b = \frac{1}{2} [1, 0, -1], \quad b_2 = \frac{1}{2} (y_2 - y_0)$

$N = 4, \quad h_b = \frac{1}{10} [3, 1, -1, -3], \quad b_3 = \frac{1}{10} (3y_3 + y_2 - y_1 - 3y_0)$

$N = 5, \quad h_b = \frac{1}{10} [2, 1, 0, -1, -2], \quad b_4 = \frac{1}{10} (2y_4 + y_3 - y_1 - 2y_0)$
where, we arbitrarily set \(h_b = [0] \) for the case \(N = 1 \), since the slope is meaningless for a single data point. To see the equivalence of these with the least-square criterion of Eq. (6.18.5) consider, for example, the case \(N = 5 \) and \(n = 2 \),

\[
J_2 = (a - y_2)^2 + (a - b - y_1)^2 + (a - 2b - y_0)^2 = \min
\]

with minimization conditions,

\[
\frac{\partial J_2}{\partial a} = 2(a - y_2) + 2(a - b - y_1) + 2(a - 2b - y_0) = 0 \Rightarrow 3a - 3b = y_2 + y_1 + y_0
\]

\[
\frac{\partial J_2}{\partial b} = -2(a - b - y_1) - 4(a - 2b - y_0) = 0 \Rightarrow 3a - 5b = y_1 + 2y_0
\]

resulting in the solution,

\[
a = \frac{1}{3}(y_2 + 2y_1 - y_0), \quad b = \frac{1}{2}(y_2 - y_0)
\]

Similarly we have for the cases \(n = 0 \) and \(n = 1 \),

\[
J_0 = (a - y_0)^2 = \min \Rightarrow a = y_0, \quad b = \text{indeterminate}
\]

\[
J_1 = (a - y_1)^2 + (a - b - y_0)^2 = \min \Rightarrow a = y_1, \quad b = y_1 - y_0
\]

EMA Initializations

The single, double, and triple EMA difference equations (6.17.1)-(6.17.3), also need to be properly initialized at \(n = -1 \). For the single EMA case, a good choice is \(a_{-1} = y_0 \), which leads to the same value at \(n = 0 \), that is,

\[
a_0 = \lambda a_{-1} + \alpha y_0 = \lambda y_0 + \alpha y_0 = y_0
\]

This is the default initialization for our function, \(\text{sema} \). Another possibility is to choose the mean of the first \(N \) data samples, \(a_{-1} = \text{mean}(\{y_0, y_1, \ldots, y_{N-1}\}) \).

For DEMA, if we initialize both the first and the second EMAs as in Eq. (6.19.1), then we must choose, \(a_{-1}^{[1]} = y_0 \), which leads to \(a_0^{[1]} = y_0 \), which then would require that, \(a_{-1}^{[2]} = a_0^{[1]} = y_0 \). Thus, in this scheme, we would choose,

\[
\begin{bmatrix}
a_{-1}^{[1]} \\
a_{-1}^{[2]}
\end{bmatrix}
= \begin{bmatrix} y_0 \\ y_0 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{-1} \\ b_{-1}
\end{bmatrix} = \begin{bmatrix} 2 & -1 \\ \alpha/\lambda & -\alpha/\lambda \end{bmatrix} \begin{bmatrix} a_{-1}^{[1]} \\
a_{-1}^{[2]}
\end{bmatrix} = \begin{bmatrix} y_0 \\ 0
\end{bmatrix}
\]

This is the default initialization method for our function, \(\text{dema} \). Another possibility is to fit a straight line to a few initial data [297,348], such as the first \(N \) data, and then extrapolate the line backwards to \(n = -1 \). This can be accomplished in MATLAB-like notation as follows,

\[
n = [1:N]' = \text{column vector}
\]

\[
y = [y_0, y_1, \ldots, y_{N-1}]' = \text{column vector}
\]

\[
u = \text{ones(size}(n))
\]

\[
\begin{bmatrix} a_{-1} \\ b_{-1}
\end{bmatrix} = [u, n] \backslash y
\]

6.19. Initialization Schemes

If one wishes to use the cascade of two EMAs, then the EMA signals, \(a_{n}^{[1]}, a_{n}^{[2]} \), must be initialized by first applying Eq. (6.19.3), and then using the inverse matrix relationship of Eq. (6.17.6), i.e.,

\[
\begin{bmatrix} a_{n}^{[1]} \\
a_{n}^{[2]}
\end{bmatrix} = \begin{bmatrix} 1 & -\lambda/\alpha \\ 1 & -2\lambda/\alpha \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1}
\end{bmatrix}
\]

A third possibility [280] is to initialize the first EMA with \(a_{n}^{[1]} = y_0 \), then calculate the output at the time instant \(n = N - 1 \) and use it to initialize the second EMA at \(n = N \), that is, define \(a_{n}^{[2]} = a_{n-1}^{[1]} \). This value can be iterated backwards to \(n = -1 \) to determine the proper initial value \(a_{n}^{[2]} \) such that, if iterated forward, it would arrive at the chosen value \(a_{N}^{[2]} = a_{N-1}^{[1]} \). Thus, the steps in this scheme are as follows,

\[
\begin{bmatrix} a_{n}^{[1]} \\
a_{n}^{[2]}
\end{bmatrix} = \begin{bmatrix} y_0 \\ a_{n-1}^{[1]} = a_{n-1}^{[1]}
\end{bmatrix}
\]

for \(n = 0, 1, \ldots, N-1 \),

\[
a_{n}^{[1]} = \lambda a_{n-1}^{[1]} + \alpha y_n \Rightarrow a_{n}^{[2]} = \frac{1}{\lambda} (a_{n}^{[2]} - \alpha a_{n}^{[1]})
\]

end

Upon exit from the second loop, one has \(a_{n}^{[2]} \), then, one can transform the calculated \(a_{n}^{[1]}, a_{n}^{[2]} \) to the \(a_n, b_n \) basis in order to get the DEMA recursion started,

\[
\begin{bmatrix} a_{-1} \\ b_{-1}
\end{bmatrix} = \begin{bmatrix} 2 & -1 \\ \alpha/\lambda & -\alpha/\lambda \end{bmatrix} \begin{bmatrix} a_{n-1}^{[1]} \\
a_{n-1}^{[2]}
\end{bmatrix}
\]

Such cascaded initialization scheme for DEMA (and TEM below) is somewhat ad hoc since the EMA filters are IIR and there is nothing special about the time \(n = N \); one, could just as well wait until about \(n = 6N \) when typically all transient effects have disappeared. We have found that the schemes described in Eqs. (6.19.2) and (6.19.3) work the best.

Finally, we note that for ordinary convolutional output, one would choose zero initial values,

\[
\begin{bmatrix} a_{-1} \\ b_{-1}
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{n}^{[1]} \\
a_{n}^{[2]}
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

All of the above initialization choices are incorporated in the function, \(\text{dema} \). For TEM, the default initialization is similar to that of Eq. (6.19.2), that is,

\[
\begin{bmatrix} a_{-1} \\ a_{-2} \\ a_{-3}
\end{bmatrix} = \begin{bmatrix} y_0 \\ y_0 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{n-1}^{[1]} \\
a_{n-1}^{[2]} \\
a_{n-1}^{[3]}
\end{bmatrix} = \begin{bmatrix} y_0 \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

Alternatively, one can fit a second-order polynomial to the first few data samples, such as the first \(2N \) samples [297], and extrapolate them back to \(n = -1 \). The fitting can be done with the following MATLAB code,
6. Exponential Smoothing

\[n = [1 : 2N - 1] \] = column vector
\[y = [y_0, y_1, \ldots, y_{2N-1}] \] = column vector
\[u = \text{ones}(\text{size}(n)) \]

\[
\begin{bmatrix}
 a_{-1} \\
 b_{-1} \\
 c_{-1}
\end{bmatrix} = [u, n, n^2] \setminus y
\]

The cascaded initialization scheme is also possible in which the output of the first EMA at time \(n = N - 1 \) serves to initialize the second EMA at \(n = N \), and the output of the second EMA at \(n = 2N - 1 \) serves to initialize the third EMA at \(n = 2N \). This, as well as the second-order polynomial fitting initialization schemes are incorporated in the function, \texttt{tema}.

A special case of the EMA indicator is “Wilder’s Exponential Moving Average” [281], known as WEMA. It is used widely and appears in several other indicators, such as the “Relative Strength Index” (RSI), the “Average True Range” (ATR), and the “Directional Movement System” (+DMI and ADX), discussed in Sec. 6.23. An \(N \)-point WEMA is defined to be an ordinary EMA with \(\lambda, \alpha \) parameters,

\[
\alpha = \frac{1}{N}, \quad \lambda = 1 - \alpha = 1 - \frac{1}{N} \quad \text{(WEMA parameters)} \tag{6.19.7}
\]

It is equivalent to an EMA with effective length, \(N_e \), determined as follows,

\[
\lambda = \frac{N_e - 1}{N_e + 1} = 1 - \frac{1}{N} \Rightarrow N_e = 2N - 1 \tag{6.19.8}
\]

The corresponding filtering equation for calculating the smoothed local-level signal \(a_n \) from the input data \(y_n \), will be,

\[
a_n = \lambda a_{n-1} + \alpha y_n = a_{n-1} + \alpha (y_n - a_{n-1})
\]
or, for \(n \geq 0 \),

\[
a_n = a_{n-1} + \frac{1}{N} (y_n - a_{n-1}) \quad \text{(WEMA)} \tag{6.19.9}
\]

The required initial value \(a_{-1} \) can be chosen in a variety of ways, just as in EMA. However, by convention [281], the default way of fixing it is similar to that in Eq. (6.19.5). It is defined by choosing the value of \(a_n \) at time \(n = N - 1 \) to be the mean of first \(N \) input values, then, \(a_{N-1} \) is back-tracked to time \(n = -1 \); thus, we have,

\[
a_{N-1} = \frac{1}{N} (y_0 + y_1 + \cdots + y_{N-1})
\]

for \(n = N - 1, \ldots, 1, 0 \),

\[
a_{n-1} = \frac{1}{\lambda} (a_n - \alpha y_n)
\]

end

6.20. Butterworth Moving Average Filters

Upon exit from the loop, one has the proper starting value of \(a_{-1} \). The following MATLAB function, \texttt{wema}, implements WEMA with such default initialization scheme,

\[
a = \text{wema}(y,N,a_{-1}); \quad \% \text{Wilder's EMA}
\]

\[y = \text{signal to be smoothed} \]
\[N = \text{effective length, (EMA alpha = 1/N, lambda = 1-1/N)} \]
\[a_{-1} = \text{any initial value} \]
\[= 'm', \text{default, as in Eq. (6.19.10)} \]
\[= 0, \text{for standard convolutional output} \]
\[a = \text{smoothed version of } y \]

6.20. Butterworth Moving Average Filters

Butterworth moving average (BMA) lowpass filters, are useful alternatives [285] to the first-order EMA filters, and have comparable smoothing properties and shorter lag. Here, we summarize their properties and filtering implementation, give explicit design equations for orders \(M = 1, 2, 3 \), and derive a general expression for their lag.

Digital Butterworth filters are characterized by two parameters, the filter order \(M \), and the 3-dB cutoff frequency \(f_0 \) in Hz, or, the corresponding digital frequency in units of radians per sample, \(\omega_0 = 2\pi f_0 / f_s \), where \(f_s \) is the sampling rate in Hz. We may also define the period of \(f_0 \) in units of samples/cycle, \(N = f_s / f_0 \), so that, \(\omega_0 = 2\pi / N \).

We follow the design method of Ref. [30] based on the bilinear transformation, although the matched z-transform method has also been used [285]. If the filter order is even, say, \(M = 2K \), then, there are \(K \)-second-order sections, and if it is odd, \(M = 2K + 1 \), there is an additional first-order section. Both cases can be combined into one by writing,

\[M = 2K + r, \quad r = 0, 1 \tag{6.20.1} \]

Then, the transfer function can be expressed in the following cascaded and direct forms,

\[
H(z) = \left[\frac{G_0 (1 + z^{-1})}{1 + a_0 z^{-1}} \right] T \prod_{i=1}^K \left[\frac{G_i (1 + z^{-1})^2}{1 + a_i z^{-1} + a_2 z^{-2}} \right]
\]

or,

\[
G(z) = \frac{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_M z^{-M}}
\]

where the notation \([\cdot]^T \) means that the first-order factor is absent if \(r = 0 \) and present if \(r = 1 \). The corresponding first-order coefficients are,

\[
G_0 = \frac{\Omega_0}{\Omega_0 + 1}, \quad a_0 = \frac{\Omega_0 - 1}{\Omega_0 + 1} \tag{6.20.3}
\]

The second-order coefficients are, for \(i = 1, 2, \ldots, K \),

\[
a_i = \frac{\Omega_i}{\Omega_i + 1}, \quad a_{i+1} = \frac{\Omega_i - 1}{\Omega_i + 1}
\]
6. Exponential Smoothing

\[G_i = \frac{\Omega_0^i}{1 - 2\Omega_0 \cos \theta_i + \Omega_0^2} \quad (6.20.4) \]

\[a_{i1} = \frac{2(\Omega_0^i - 1)}{1 - 2\Omega_0 \cos \theta_i + \Omega_0^2}, \quad a_{i2} = \frac{1 + 2\Omega_0 \cos \theta_i + \Omega_0^2}{1 - 2\Omega_0 \cos \theta_i + \Omega_0^2} \]

where the angles \(\theta_i \) are defined by,

\[\theta_i = \frac{\pi}{2M} (M - 1 + i), \quad i = 1, 2, \ldots, K \quad (6.20.5) \]

and the quantity \(\Omega_0 \) is the equivalent analog 3-dB frequency defined as,

\[\Omega_0 = \tan \left(\frac{\omega_0}{2} \right) = \tan \left(\frac{\pi f_0}{f_s} \right) = \tan \left(\frac{\pi}{N} \right) \quad (6.20.6) \]

We note that the filter sections have zeros at \(z = -1 \), that is, at the Nyquist frequency, \(f = f_s/2 \), or, \(\omega = \pi \). Setting \(\Omega = \tan(\omega/2) \), the magnitude response of the designed digital filter can be expressed simply as follows:

\[|H(\omega)|^2 = \frac{1}{1 + (\Omega/\Omega_0)^{2M}} = \frac{1}{1 + (\tan(\omega/2)/\Omega_0)^{2M}} \quad (6.20.7) \]

Each section has unity gain at DC. Indeed, setting \(z = 1 \) in Eq. (6.20.2), we obtain the following condition, which can be verified from the given definitions,

\[\frac{4G_i}{1 + a_{i1} + a_{i2}} = 1 \quad \text{and} \quad \frac{2G_0}{1 + a_{01}} = 1 \]

Moreover, the filter lag can be shown to be (cf. Problem 6.12), for any \(M \geq 1 \) and \(N > 2 \),

\[\hat{n} = \frac{1}{2\Omega_0 \sin \left(\frac{\pi}{2M} \right)} = \frac{1}{2 \tan \left(\frac{\pi}{N} \right) \sin \left(\frac{\pi}{2M} \right)} \quad \text{(lag)} \quad (6.20.8) \]

For \(M \geq 2 \) and \(N \geq 5 \), it can be approximated well by [284],

\[\hat{n} = \frac{MN}{\pi^2} \]

The overall numerator gain in the direct form is the product of gains,

\[G = G_0' G_1 G_2 \cdots G_K \]

and the direct-form numerator coefficients are the coefficients of the binomial expansion of \((1 + z^{-1})^M\) times the overall gain \(G \). The direct-form denominator coefficients are obtained by convolving the coefficients of the individual sections, that is, setting, \(a = [1] \) if \(M \) is even, and, \(a = [1, a_0] \) if \(M \) is odd, then the vector, \(a = [1, a_1, a_2, \ldots, a_M] \), can be constructed recursively by,

\[a = \text{conv}(a, [1, a_{i1}, a_{i2}]) \quad (6.20.9) \]

6.20. Butterworth Moving Average Filters

For example, we have,

\[M = 2, \quad a = [1, a_{11}, a_{12}] \]
\[M = 3, \quad a = \text{conv}([1, a_{01}], [1, a_{11}, a_{12}]) = [1, a_{01} + a_{11}, a_{12} + a_{01}a_{11}, a_{01}a_{12}] \]

From these, we obtain the following explicit expressions, for \(M = 2 \),

\[G = \frac{\Omega_0^2}{\Omega_0^2 + \sqrt{2}\Omega_0 + 1}, \quad a_1 = \frac{2(\Omega_0^2 - 1)}{\Omega_0^2 + \sqrt{2}\Omega_0 + 1}, \quad a_2 = \frac{\Omega_0^2 - \sqrt{2}\Omega_0 + 1}{\Omega_0^2 + \sqrt{2}\Omega_0 + 1} \quad (6.20.10) \]

\[H(z) = \frac{(1 + 2z^{-1} + z^{-2})}{1 + a_1z^{-1} + a_2z^{-2}}, \quad \hat{n} = \frac{1}{\sqrt{2}\Omega_0} \]

and, for \(M = 3 \),

\[G = \frac{\Omega_0^3}{(\Omega_0 + 1)(\Omega_0^2 + \Omega_0 + 1)}, \quad a_1 = \frac{(\Omega_0 - 1)(3\Omega_0^2 + 5\Omega_0 + 3)}{(\Omega_0 + 1)(\Omega_0^2 + \Omega_0 + 1)}, \quad a_2 = \frac{(3\Omega_0^2 - 5\Omega_0 + 3)}{\Omega_0^3 + \Omega_0 + 1}, \quad a_3 = \frac{(\Omega_0 - 1)(\Omega_0^2 - \Omega_0 + 1)}{(\Omega_0 + 1)(\Omega_0^2 + \Omega_0 + 1)} \quad (6.20.11) \]

\[H(z) = \frac{G(1 + 3z^{-1} + 3z^{-2} + z^{-3})}{1 + a_1z^{-1} + a_2z^{-2} + a_3z^{-3}}, \quad \hat{n} = \frac{1}{\Omega_0} \]

We note also that the \(M = 1 \) case has lag, \(\hat{n} = 1/(2\Omega_0) \), and is equivalent to the modified EMA of Eq. (2.3.5). This can be seen by rewriting \(H(z) \) in the form,

\[H(z) = \frac{G_0(1 - z^{-1})}{1 + a_0z^{-1}}, \quad \lambda = -a_0 = \frac{1 - \Omega_0}{1 + \Omega_0} \]

where \(0 < \lambda < 1 \) for \(\Omega < 1 \), which requires \(N > 4 \).

The MATLAB function, \texttt{bma}, implements the design and filtering operations for any filter order \(M \) and any period \(N > 2 \), with usage,

\[[y, nlag, b, a] = \text{bma}(x, N, M, yin); \quad \% \text{Butterworth moving average} \]

\[[y, nlag, b, a] = \text{bma}(x, N, M); \]

\[x = \text{input signal} \]
\[N = 3\text{-dB period, need not be integer, but } N > 2 \]
\[M = \text{filter order} \]
\[yin = \text{any } N \times 1 \text{ vector of initial values of the output } y \]
\[\text{default, } yin = \text{repmat(x(1), M, 1)} \]
\[yin = 'c' \text{ for standard convolutional output} \]
\[y = \text{output signal} \]
\[nlag = \text{filter lag} \]
\[b = [b_0, b_1, b_2, \ldots, b_M], \text{ numerator filter coefficients} \]
\[a = [1, a_1, a_2, \ldots, a_M], \text{ denominator filter coefficients} \]

\[\text{†the sampling theorem requires, } f_0 < f_s/2, \text{ or, } N = f_s/f_0 > 2 \]
6. Exponential Smoothing

Fig. 6.20.1 shows the BMA output for Butterworth orders $M = 2, 3$ applied to the same Nicor-Gas data of Fig. 6.18.2. It has noticeably shorter lag than SMA. The graphs were produced by the MATLAB code,

```matlab
Y = xlsread('nicor.xls'); % load Nicor-Gas data
y = Y(:,4); % closing prices
y = y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
t = 0:length(y)-1; % trading days

Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices

N = 20; % period, SMA lag = (N-1)/2 = 9.50
[y2,n2] = bma(y,N,2); % order-2 Butterworth, lag n2 = 4.46
[y3,n3] = bma(y,N,3); % order-3 Butterworth, lag n3 = 6.31
```

where v is a positive constant. One may view $H_a(z)$ as the smoothed, by $H_1(z)$, version of $(1 + v)H_2(z) - vH_3(z)$. The filter $H_a(z)$ will still have unity DC gain as follows by evaluating Eq. (6.21.1) at $z = 1$, that is,

$$H_a(1) = (1 + v)H_1(1)H_2(1) - vH_1(1)H_3(1) = (1 + v) - v = 1$$

Using the fact that the lag of a product of filters is the sum of the corresponding lags (cf. Problem 6.2), we find that the lag of $H_a(z)$ is,

$$\hat{n}_a = (1 + v) (\hat{n}_1 + \hat{n}_2) - v(\hat{n}_1 + \hat{n}_3), \text{ or,}$$

$$\hat{n}_a = \hat{n}_1 + (1 + v)\hat{n}_2 - v\hat{n}_3$$

By appropriately choosing the parameters $v, \hat{n}_1, \hat{n}_2, \hat{n}_3$, the lag \hat{n}_a can be made very small, even zero. Indeed, the following choice for v will generate any particular \hat{n}_a,

$$v = \frac{\hat{n}_1 + \hat{n}_2 - \hat{n}_a}{\hat{n}_3 - \hat{n}_2}$$

Below we list a number of examples that are special cases of the above constructions. In this list, the filter $H(z)$, whose lag is denoted by \hat{n}, represents any unity-gain lowpass filter, such as WMA, EMA, or SMA and similarly, $H_N(z)$ represents either a length-N FIR filter such as WMA or SMA, or an EMA filter with SMA-equivalent length N. Such filters have a lag related to N via a relationship of the form, $\hat{n} = r \cdot (N - 1)$, for example, $r = 1/3$, for WMA, and, $r = 1/2$, for EMA and SMA.

<table>
<thead>
<tr>
<th>reduced-lag filters</th>
<th>lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>(twicing) $H_a(z) = 2H(z) - H^2(z)$,</td>
<td>$\hat{n}_a = 0$</td>
</tr>
<tr>
<td>(GDEMA) $H_a(z) = (1 + v)H(z) - vH^2(z)$,</td>
<td>$\hat{n}_a = (1 - v)\hat{n}$</td>
</tr>
<tr>
<td>(KH) $H_a(z) = (1 + v)H(z) - vH^2(z)$,</td>
<td>$\hat{n}_a = (2 - v)\hat{n}$</td>
</tr>
<tr>
<td>(HMA) $H_a(z) = H(z) - H_N(z)$, $H = H(z)$, $H_N(z)$,</td>
<td>$\hat{n}_a = r[\sqrt{N} - 2]$</td>
</tr>
<tr>
<td>(ZEMA) $H_a(z) = 2H(z) - H^2(z)$,</td>
<td>$\hat{n}_a = \hat{n} - d$</td>
</tr>
<tr>
<td>(ZEMA) $H_a(z) = (1 + v)H(z) - vz^2H(z)$,</td>
<td>$\hat{n}_a = \hat{n} - v\hat{d}$</td>
</tr>
</tbody>
</table>

The corresponding local-slope filters are as follows (they do not depend on v),
6. Exponential Smoothing

6.21. Moving Average Filters with Reduced Lag

It is straightforward to show that the following procedure will generate the desired lag value, where the required \(v \) is evaluated from Eq. (6.21.3),

\[
N_1 = \text{round}(\sqrt{N}) \quad \varepsilon_1 = N_1 - \sqrt{N} = \text{rounding error}
\]

\[
N_2 = \text{round}\left(\frac{N}{2}\right) \quad \varepsilon_2 = N_2 - \frac{N}{2} = \text{rounding error}
\]

\[
v = \frac{\bar{n}_a + \bar{n}_d - \bar{n}_a}{\bar{n}_a - \bar{n}_a} = \frac{N/2 + \varepsilon_1 + \varepsilon_2}{N/2 - \varepsilon_2}
\]

\[
\bar{n}_d = N_1 - 1 + (1 + v)\frac{N_2 - 1}{3} - v\frac{N - 1}{3} = \sqrt{N} - \frac{2}{3}
\]

\[
\bar{n}_3 = \bar{n}_2 = \frac{N - N_2}{3}
\]

with transfer functions,

\[
H_a(z) = H_{N_1}(z)\left[(1 + v)H_{N_2}(z) - vH_N(z)\right] = \text{local level}
\]

\[
H_b(z) = H_{N}(z)\left[H_{N_2}(z) - H_N(z)\right] = \text{local slope}
\]

The WMA filters in the HMA indicator can be replaced with EMA filters resulting in the so-called “exponential Hull moving average” (EHMA), which has been found to be very competitive with other indicators [347]. Because \(N \) does not have to be an integer in EMA, it is not necessary to round the lengths \(N_1 = \sqrt{N} \) and \(N_2 = N/2 \), and one can implement the indicator as follows, where \(H_N \) denotes the single EMA of Eq. (6.21.6),

\[
\bar{n}_a = \sqrt{\frac{N - 2}{2}}, \quad \bar{n}_1 - \bar{n}_2 = N \quad \frac{N}{4}
\]

\[
H_a(z) = H_{\sqrt{N}}(z)\left[2H_{N/2}(z) - H_N(z)\right]
\]

\[
H_b(z) = 4H_{\sqrt{N}}(z)\left[H_{N/2}(z) - H_N(z)\right]
\]

One can also replace the WMA filters by SMAs leading to the “simple Hull moving average” (SHMA). The filter \(H_N \) now stands for a length-\(N \) SMA filter, resulting in \(\bar{n}_d = (\sqrt{N} - 1)/2 \), and \(\bar{n}_3 - \bar{n}_2 = (N - N_2)/2 \). Except for these changes, the computational procedure outlined in Eq. (6.21.9) remains the same.

The following MATLAB code illustrates the computation of the local-level output signal \(a_n \) from the data \(y_n \), for the three versions of HMA and a given value of \(N > 1 \),

\[
N_1 = \text{round}(\sqrt{N}) \quad \varepsilon_1 = N_1 - \sqrt{N} = \text{rounding error}
\]

\[
N_2 = \text{round}\left(\frac{N}{2}\right) \quad \varepsilon_2 = N_2 - \frac{N}{2} = \text{rounding error}
\]

\[
v = \frac{(N/2 + \varepsilon_1 + \varepsilon_2)}{(N/2 - \varepsilon_2)}
\]

\[
a = \text{wma}(1+v)*\text{wma}(y,N2) - v*\text{wma}(y,N1), \quad \% \text{ HMA}
\]

\[
a = \text{wma}(1+v)*\text{wma}(y,N2) - v*\text{wma}(y,N1), \quad \% \text{ SHMA}
\]

\[
a = \text{sema}(2*\text{sema}(y,N/2) - \text{sema}(y,N), \quad \% \text{ EHMA}
\]
6. Exponential Smoothing

The functions, \texttt{hma}, \texttt{shma}, \texttt{ehma}, which are discussed below, implement these operations but offer more options, including the computation of the slope signals.

In the zero-lag EMA (ZEMA or ZLEMA) indicator \[284\], \(H_a(z) = 2H(z) - z^{-d}H(z) \), the filter \(H(z) \) is chosen to be a single EMA filter of the form of Eq. (6.21.6), and the delay \(d \) is chosen to coincide with the filter lag, that is, \(d = \hat{n} = (N - 1)/2 \). It follows from Eq. (6.21.4) that the lag will be exactly zero, \(\hat{n}_a = \hat{n} - d = 0 \). This assumes that \(\hat{n} \) is an integer, which happens only for odd \(N \). For even \(N \), the delay \(d \) may be chosen as the rounded-up version of \(\hat{n} \), that is, \(d = \text{round}(\hat{n}) = \text{round}\left(\frac{N - 1}{2}\right) = \frac{N}{2} \).

Then, the lag \(\hat{n}_a \) can still be made to be zero by choosing the parameter \(v \) such that \(\hat{n}_a = \hat{n} - vd = 0 \), or, \(v = \hat{n}/d \). Thus, the generalized form of the ZEMA indicator is constructed by,

\[
\hat{n} = \frac{N - 1}{2}, \quad d = \text{round}(\hat{n}), \quad v = \frac{\hat{n}}{d} \]

\[
H_a(z) = (1 + v)H(z) - vz^{-d}H(z)
\]

The code segment below illustrates the computation of the local-level ZEMA signal. It uses the function, \texttt{delay}, which implements the required delay.

\[
nbar = (N-1)/2; \\
d = \text{round}(nbar); \\
v = nbar/d; \\
a = (1+v)*sema(y,N) - v*delay(sema(y,N), d); \quad \text{ZEMA}
\]

The following MATLAB functions implement the reduced-lag filters discussed above, where the input array \(y \) represents the financial data to be filtered, and the outputs \(a, b \) represent the local-level and local-slope signals.

\[
[a, b] = \text{hma}(y,N,yin); \quad \% \text{Hull moving average}
[a, b] = \text{ehma}(y,N,yin); \quad \% \text{exponential Hull moving average}
[a, b] = \text{shma}(y,N,yin); \quad \% \text{simple Hull moving average}
[a, b] = \text{zema}(y,N,yin); \quad \% \text{zero-lag EMA}
\]

\[
y = \text{delay}(x,d); \quad \% \text{d-fold delay}, \quad y(n) = x(n-d)
\]

\[
a = \text{gdem}(y,v,N,v,N); \quad \% \text{generalized DEMA}
\]

The following MATLAB functions implement the reduced-lag filters discussed above, where the input array \(y \) represents the financial data to be filtered, and the outputs \(a, b \) represent the local-level and local-slope signals.

The input variable \(yin \) defines the initialization and defaults to progressive filtering for \texttt{hma}, \texttt{shma}, and \texttt{zema}, \(yin='f' \), and to, \(yin = y_0 \), for \texttt{ehma}.

Fig. 6.21.1 compares the PMA/linear regression indicator with HMA, EHMA, and ZEMA on the same Nicor-Gas data, with filter length \(N = 20 \). Fig. 6.21.2 compares the corresponding slope indicators. The MATLAB code below illustrates the computation.
6. Exponential Smoothing

We note that the reduced-lag HMA, EHMA, and ZEMA local-level and local-slope filters have comparable performance as the PMA/linear regression and DEMA/TEMA filters, with a comparable degree of smoothness.

6.22 Envelopes, Bands, and Channels

In this section we discuss the following types of bands and their computation,

- Bollinger bands
- Standard-error bands
- Projection bands
- Donchian channels
- Fixed-width bands
- Keltner bands
- Starc bands
- Parabolic SAR

Examples of these are shown in Figs. 6.22.1 and 6.22.2 applied to the same Nicor data that we used previously. Below we give brief descriptions of how such bands are computed. We use our previously discussed MATLAB functions, such as SMA, LREG, etc., to summarize the computations. Further references are given in [323–334].

Bollinger Bands

Bollinger bands [323–327] are defined relative to an \(N \)-day SMA of the closing prices, where typically, \(N = 14 \). The two bands are taken to be two standard deviations above and below the SMA. The following MATLAB code clarifies the computation,

```matlab
M = sma(y,N); % N-point SMA of closing prices y
S = std(y,N); % std-dev relative to M
L = M - 2*S; % lower bound
U = M + 2*S; % upper bound
```

where the function, \(\text{std} \), uses the built-in function \(\text{std} \) to calculate the standard deviation over each length-\(N \) data window, and its essential code is,

```matlab
for n=1:length(y),
    S(n) = std(y(max(1,n-N+1):n));
end
```

where the data window length is \(N \) for \(n \geq N \), and \(n \) during the initial transients \(n < N \).

Standard-Error Bands

Standard-error bands [329] use the PMA/linear-regression moving average as the middle trendline and shift it by two standard errors up and down. The calculation is summarized below with the help of the function \(\text{lreg} \), in which the quantities, \(y, a, se \), represent the closing prices, the local level, and the standard error,

```matlab
[a,~,~,se] = lreg(y,N); % N-point linear regression
L = a - 2*se; % lower bound
U = a + 2*se; % upper bound
```

where \(y \) is the closing price time series, \(a \) is the local level, and \(se \) is the standard error.
6. Exponential Smoothing

6.22. Envelopes, Bands, and Channels

Projection Bands

Projection bands [328] also use the linear regression function `lreg` to calculate the local slopes for the high and low prices, H, L. The value of the upper (lower) band at the \(n \)-th time instant is determined by considering the values of the highs \(H \) (lows \(L \)) over the look-back period, \(n - N + 1 \leq t \leq n \), extrapolating each of them linearly according to their slope to the current time instant \(n \), and taking the maximum (minimum) among them. The following MATLAB code implements the procedure,

```matlab
[-,bL] = lreg(L,N); % linear regression slope for Low
[-,bH] = lreg(H,N); % linear regression slope for High
for n=0:length(H)-1,
    t = (max(0,n-N+1) : n)'; % look-back interval
    Lo(n+1) = min(L(t+1) + bL(n+1)*(n-t)); % lower band
    Up(n+1) = max(H(t+1) + bH(n+1)*(n-t)); % upper band
end
```

Donchian Channels

Donchian channels [331] are constructed by finding, at each time instant \(n \), the highest high (resp. lowest low) over the past time interval, \(n - N \leq t \leq n - 1 \), that is, the value of the upper bound at the \(n \)-th day, is the maximum of the highs over the previous \(N \)
days, not including the current day, i.e., max \([H_{n-1}, H_{n-2}, \ldots, H_{n-N}] \). The code below describes the procedure:

```matlab
for n = 2:length(H) % n is MATLAB index
    t = max(1,n-N) : n-1; % past N days
    Lo(n) = min(L(t)); % lower band
    Up(n) = max(H(t)); % upper band
end
Mid = (Up + Lo)/2; % middle band
```

Fixed-Width Bands

Fixed-width bands or envelopes [330] shift an \(N \)-point SMA of the closing prices by a certain percentage, such as, typically, 3 percent,

```matlab
M = sma(C,N); % N-point SMA of closing prices C
L = M - p*M; % lower band, e.g., p = 0.03
U = M + p*M; % upper band
```

Keltner Bands

Keltner bands or channels [330], use as the middle trendline an \(N \)-point SMA of the average of the high, low, and closing prices, \((H + L + C)/3 \), and use an \(N \)-point SMA of the difference \((H - L) \) as the bandwidth, representing a measure of volatility. The code below implements the operations,

```matlab
M = sma((H+L+C)/3,N); % SMA of (H+L+C)/3
D = sma(H-L,N); % SMA of (H-L)
L = M - D; % lower band
U = M + D; % upper band
```

The typical value of \(N \) is 10, and the trading rule is that a “buy” signal is generated when the closing price \(C \) lies above the upper band, and a “sell” signal when \(C \) lies below the lower band.

Starc Bands

In Starc\(^\dagger\) bands [330] all three prices, high, low, and closing, \(H, L, C \), are used. The middle band is an \(N \)-point SMA of the closing prices \(C \), but the bandwidth is defined in terms of an \(N_a \)-point of the so-called “average true range” (ATR), which represents another measure of volatility. The code below describes the computation,

```matlab
M = sma(C,N); % SMA of closing prices
R = atr([H,L,C],Na); % ATR = average true range
L = M - 2*R; % lower and
U = M + 2*R; % upper band
```

\(^\dagger\)Stoller Average Range Channels

6.22. Envelopes, Bands, and Channels

The ATR [281] is an \(N_a \)-point WEMA of the “true range”, defined as follows, at each time \(n \),

\[
T_n = \max[H_n - L_n, H_n - C_{n-1}, C_{n-1} - L_n] = \text{true range in } n\text{-th day}
\]

\[
R_n = \text{wema}(T_n, N_d) = \text{ATR}
\]

and is implemented by the function `atr`, with the help of the `delay` function. Its essential MATLAB code is as follows, where \(H, L, C \) are column vectors,

\[
T = \max([H-L, H\text{-delay}(C,1), \text{delay}(C,1)-L], [], 2); % row-wise max
R = \text{wema}(T,N);
\]

MATLAB Functions

The following MATLAB functions implement the band indicators discussed above, where the various parameters are fully explained in the help files for these functions,

```matlab
[L,U,M] = bbands(y,N,d); % Bollinger bands
[L,U,a] = sebands(y,N,d,init); % standard-error bands
[L,U,Rs] = pbands(Y,N,Ns); % projection bands & oscillator
[L,U,M] = donch(Y,N); % Donchian channels
[L,U,M] = kbands(Y,N); % Keltner bands
[L,U,M] = stbands(Y,N,Na); % Starc bands
S = stdev(y,N,flag); % standard deviation
[R,TR] = atr(Y,N); % average true range
```

The essential MATLAB code for generating Figs. 6.22.1 and 6.22.2 is as follows,

```matlab
Y = xlsread('nicor.xls'); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and \([O,H,L,C]\) prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days
N = 20; % used in Fig.6.22.1
[L,U,M] = bbands(y,N); % Bollinger bands
figure; ohlc(t,Y); hold on;
plot(t,M,'g-', t,U,'r--', t,L,'r--'); % make OHLC bar chart
figure; ohlc(t,Y); hold on;
plot(t,a,'g-', t,U,'r--', t,L,'r--'); % make OHLC bar chart
```
6. Exponential Smoothing

6.22. Envelopes, Bands, and Channels

301

\[\alpha_n = \begin{cases}
\alpha_n + \Delta \alpha, & \text{if } E_{n+1} \neq E_n \\
\alpha_n, & \text{if } E_{n+1} = E_n
\end{cases} \]

(6.22.3)

where we note that \(E_{n+1} \neq E_n \) happens when \(E_{n+1} \) is strictly greater than \(E_n \) during an up-trend, or, \(E_{n+1} \) is strictly less than \(E_n \) during a down-trend. Moreover, an additional constraint is that \(\alpha_n \) is not allowed to exceed a certain maximum value, \(\alpha_m \). The values recommended by Wilder [281] are,

\[\alpha_i = 0.02, \quad \Delta \alpha = 0.02, \quad \alpha_m = 0.2 \]

Because of the increasing \(\alpha_n \) parameter, the EMA has a time-varying decreasing lag,† thus, tracking more quickly the extreme prices as time goes by. As a result, \(S_n \) has a particular curved shape that resembles a parabola, hence the name "parabolic" SAR.

The essential steps in the calculation of the SAR are summarized in the following MATLAB code, in which the inputs are the quantities, \(H_n, L_n \), representing the high and low price signals, \(S_n, E_n, a_n, R_n \), represent, \(S_n \), \(E_n \), \(a_n \), \(R_n \), while the output quantities, \(S, E, a, R \), represent, \(S_n, E_n, a_n, R_n \), where \(R_n \) holds the current position and is equal to \(\pm 1 \) for long/short.

\[
\begin{align*}
S(n+1) &= S(n) + a(n) \times (E(n) - S(n)); \quad \text{SAR update} \\
r &= R(n); \quad \text{current position} \\
if (r = -1 \land L(n+1) <= S(n+1)) \lor (r = 1 \land H(n+1) >= S(n+1)) \quad \text{reversal} \\
r &= -r; \\
S(n+1) &= E(n); \quad \text{reset new } S \\
E(n+1) &= H(n+1); \quad \text{reset new } E \\
a(n+1) &= a(i); \quad \text{reset new } a \\
else \quad \text{no reversal} \\
if n=2 \quad \text{new } S \\
S(n+1) &= \min([S(n+1), L(n-1), L(n)]) \times (r = 1) \ldots \text{additional} \\
&\quad + \max([S(n+1), H(n-1), H(n)]) \times (r = -1); \quad \text{conditions} \\
end \\
E(n+1) &= \max(E(n), H(n)); \quad \text{new } E \\
&\quad + \min(E(n), L(n)); \quad \text{new } a \\
a(n+1) &= \min(\alpha(n) + (E(n+1) - E(n)) \times Da, am); \quad \text{new } a \\
end \\
R(n+1) &= r; \quad \text{new } R
\end{align*}
\]

†The EMA equivalent length decreases from, \(N_l = 2/\alpha_l - 1 = 99 \), down to, \(N_m = 2/\alpha_m - 1 = 9 \).
If the current trading position is long \((r = 1)\), corresponding to an up-trending market, then, a reversal of position to short \((r = -1)\) will take place at time \(n + 1\) if the low price \(L_{n+1}\) touches or becomes less than the SAR, that is, \(S_{n+1} \leq L_{n+1}\). Similarly, if the current position is short, corresponding to a down-trending market, then, a reversal of position to long will take place at time \(n + 1\) if the high price \(H_{n+1}\) touches or becomes greater than the SAR, that is, \(H_{n+1} \geq S_{n+1}\). At such reversal point, the SAR is reset to be equal to the extreme price of the previous trend, that is, \(S_{n+1} = E_n\), and the \(E_{n+1}\) is reset to be either \(L_{n+1}\) if reversing to short, or \(H_{n+1}\) if reversing to long, and the EMA parameter is reset to, \(\alpha_{n+1} = \alpha_r\).

An additional condition is that during an up-trend, the SAR for tomorrow, \(S_{n+1}\), is not allowed to become greater that today’s or yesterday’s lows, \(L_n, L_{n-1}\), and in such case it is reset to the minimum of the two lows. Similarly, during a down-trend, the \(S_{n+1}\) is not allowed to become less that either today’s or yesterday’s highs, \(H_n, H_{n-1}\), and is reset to the maximum of the two highs. This is enforced by the code line,

\[
S_{n+1} = \min\{(S_{n+1}, L_{n-1}, L_n)\} \cdot \max\{(S_{n+1}, H_{n-1}, H_n)\} \cdot \max\{(S_{n+1}, L_{n+1}, L_n)\} \cdot \min\{(S_{n+1}, H_{n+1}, H_n)\}
\]

The parabolic SAR is implemented with the MATLAB function \texttt{psar}, with usage,

\[
[S,E,a,R] = \text{psar}(H,L,Ri,ni,af,Hi,Li);
\]

\(H\) = vector of High prices, column
\(L\) = vector of Low prices, column, same length as \(H\)
\(Ri\) = starting position, long \(Ri = 1\), short \(Ri = -1\)
\(ni\) = starting time index, default \(ni = 1\), all outputs are NaNs for \(n < ni\)
\(af\) = [\(ai,da,am\)] = [initial EMA factor, increment, maximum factor]
\(Hi\), \(Li\) = initial high and low used to initialize \(S(n), E(n)\) at \(n = ni\),
\(E\) = extremal price, same size as \(H\)
\(a\) = vector of EMA factors, same size as \(H\)
\(R\) = vector of positions, \(R = +1/-1\) for long/short, same size as \(H\)

The first up-trending period ends at day \(n = 9\) at which the would be SAR, shown as an opened-circle, lies above the low of that day, thus, causing a reversal to short and that SAR is then replaced with the filled-circle value that lies above the highs, and corresponds to the highest high of the previous period that had occurred on day \(n = 6\).

The second down-trending period ends at \(n = 15\) at which point the SAR, shown as an opened-circle, is breached by the high on that day, thus causing a reversal to short, and the SAR is reset to the filled-circle value on that day lying below the data, and corresponds to the lowest low of the previous period that had been reached on day \(n = 12\). Finally, another such reversal takes place on day \(n = 27\) and the SAR is reset to the highest high that had occurred on day \(n = 18\). To clarify, we list below the values of the SAR at the reversal points before and after the reversal takes place,

<table>
<thead>
<tr>
<th>(n)</th>
<th>(S_{\text{before}}(n))</th>
<th>(S_{\text{after}}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>91.5448</td>
<td>95.1875</td>
</tr>
<tr>
<td>15</td>
<td>92.3492</td>
<td>85.0625</td>
</tr>
<tr>
<td>27</td>
<td>89.8936</td>
<td>95.2500</td>
</tr>
</tbody>
</table>

6.2.3. Momentum, Oscillators, and Other Indicators

There exist several other indicators that are used in technical analysis, many of them built on those we already discussed. The following MATLAB functions implement some
of the more popular ones, several are also included in MATLAB’s financial toolbox. Additional references can be found in the Achelis book [280] and in [281–347].

```matlab
R = rsi(y,N,type); % relative strength index, RSI
R = cmo(y,N); % Chande momentum oscillator, CMO
R = vhfilt(y,N); % Vertical Horizontal Filter, VHF
[Dp,Dm,DX,ADX] = dirmov(Y,N); % directional movement system, ±DI,DX,ADX
[y,yr,ypr] = mom(x,d,xin); % momentum and price rate of change
[y,ys,ypr] = prosc(x,N1,N2,N3); % price oscillator & MACD
[pK,pD] = stoch(Y,K,Ks,D,M); % stochastic, %K, %D oscillators
R = accdist(Y); % accumulation/distribution line
R = chosc(Y,N1,N2); % Chaikin oscillator
R = cmflow(Y,N); % Chaikin money flow
R = chvol(Y,N); % Chaikin volatility
[P,N] = pnvi(Y,P0); % positive/negative volume indices, PVI/NVI
R = cci(Y,N); % commodity channel index, CCI
R = dpo(Y,N); % detrended price oscillator, DPO
[R,N] = dmi(y,Nr,Ns,Nm); % dynamic momentum index, DMI
[R,Rs] = forosc(y,N,Ns); % forecast oscillator
[R,Rs] = trix(y,N,Ns,yin); % TRIX oscillator
a = vema(y,N,Nv); % variable-length EMA
```

Below we discuss briefly their construction. Examples of their use are included in their respective help files. Several online examples can be found in the Fidelity Guide [345] and in the TradingView Wiki [346].

Relative Strength Index, RSI

The relative strength index (RSI) was introduced by Wilder [281] to be used in conjunction with the parabolic SAR to confirm price trends. It is computed as follows, where \(y \) is the column vector of daily closing prices,

```matlab
x = diff(y); % price differences
xu = +x.*(x>0); % upward differences
xd = -x.*(x<=0); % downward differences
su = wema(xu,N); % smoothed differences
sd = wema(xd,N);
RSI = 100*su/(su+sd); % RSI
```

Chande Momentum Oscillator, CMO

If the `wema` function is replaced by `sma`, one obtains the Chande momentum oscillator,

```matlab
x = diff(y); % price differences
xu = +x.*(x>0); % upward differences
xd = -x.*(x<=0); % downward differences
su = sma(xu,N); % smoothed differences
sd = sma(xd,N);
CMO = 100*(su-sd)/(su+sd); % CMO
```

Thus, the SMA-based RSI is related to CMO via,

\[
CMO = 2\cdot RSI - 100
\]

\[
RSI = \frac{CMO + 100}{2}
\]

Vertical Horizontal Filter, VHF

The vertical horizontal filter (VHF) is similar to the RSI or CMO and helps to confirm a trend in trending markets. It is computed as follows, where the first \(N \) outputs are NaNs,

```matlab
x = diff(y); % price differences
xu = +x.*(x>0); % upward differences
xd = -x.*(x<=0); % downward differences
su = sma(xu,N); % smoothed differences
sd = sma(xd,N);
```

Directional Movement System

The directional movement system was also proposed by Wilder [281] and consists of several indicators, the plus/minus directional indicators, (±DI), the directional index (DX), and the average directional index (ADX). These are computed as follows,

```matlab
R = atr(Y,N); % average true range
DH = [0; diff(H)]; % high price differences
DL = [0; -diff(L)]; % low price differences
Dp = DH .^ (DH>DL) .* (DH>0); % daily directional movements
Dm = DL .^ (DL>DH) .* (DL>0); %
Dp = wema(Dp,N); % averaged directional movements
Dm = wema(Dm,N); %
Dp = 100 .^ Dp ./ R; % +DI,-DI directional indicators
Dm = 100 .^ Dm ./ R;
DX = 100*abs(Dp - Dm)./(Dp + Dm); % directional index, DI
ADX = wema(DX,N); % average directional index, ADX
```

Momentum and Price Rate of Change

In its simplest form a momentum indicator is the difference between a price today, \(x(n) \), and the price \(d \) days ago, \(x(n-d) \), but it can also be expressed as a ratio, or as a
6. Exponential Smoothing

percentage, referred to as *price rate of change*,

\[y(n) = x(n) - x(n - d) = \text{momentum} \]

\[y_r(n) = 100 \cdot \frac{x(n) - x(n - d)}{x(n - d)} = \text{momentum as ratio} \]

\[y_p(n) = 100 \cdot \frac{x(n) - x(n - d)}{x(n - d)} = \text{price rate of change} \]

It can be implemented simply with the help of the function, delay,

\[y = x - \text{delay}(x,d); \]
\[yr = \frac{x}{\text{delay}(x,d)} \cdot 100; \]
\[yp = \frac{x - \text{delay}(x,d)}{\text{delay}(x,d)} \cdot 100; \]

Price Oscillator and MACD

The standard moving average convergence/divergence (MACD) indicator is defined as the difference between two EMAs of the daily closing prices: a length-12 shorter/faster EMA and a length-26 longer/slower EMA. A length-9 EMA of the MACD difference is also computed as a trigger signal.

Typically, a buy (sell) signal is indicated when the MACD rises above (falls below) zero, or when it rises above (falls below) its smoothed signal line.

The MACD can also be represented as a percentage resulting into the price oscillator, and also, different EMA lengths can be used. The following code segment illustrates the computation, where \(x \) are the closing prices,

\[y_1 = \text{sema}(x,N1); \quad \% \text{fast EMA, default } N1=12 \]
\[y_2 = \text{sema}(x,N2); \quad \% \text{slow EMA, default } N2=26 \]
\[y = y_1 - y_2; \quad \% \text{MACD} \]
\[y_{pr} = 100 \cdot \frac{y}{y_2}; \quad \% \text{price oscillator} \]

Stochastic Oscillator

\[H = \text{Y(:,1)}; \quad L = \text{Y(:,2)}; \quad C = \text{Y(:,3)}; \quad \% \text{extract } H,L,C \text{ inputs} \]

\[\text{Lmin} = \text{NaN}(ext{size}(C)); \quad \text{Hmax} = \text{NaN}(ext{size}(C)); \quad \% \text{NaNs for } n<K \]

for \(n = K:\text{length}(C), \) \%
\[\text{Lmin}(n) = \min(L(n-K+1:n)); \quad \% \text{begins at } n=K \]
\[\text{Hmax}(n) = \max(H(n-K+1:n)); \]
end

\[pk = 100 \cdot \frac{\text{sema}(\text{C-Lmin}, \text{Ks})}{\text{sema}(ext{Hmax-Lmin}, \text{Ks})}; \quad \% \text{percent-K} \]
\[pD = \frac{\text{sema}(\text{PK}, \text{D})}{\% \text{percent-D} \]

Accumulation/Distribution

\[H = \text{Y(:,1)}; \quad L = \text{Y(:,2)}; \quad C = \text{Y(:,3)}; \quad V = \text{Y(:,4)}; \quad \% \text{extract } H,L,C,V \]
\[R = \text{cumsum}(2*\text{C-H-L})./(\text{H-L}).*\text{V}); \quad \% \text{ACCDIST} \]

Chaiikin Oscillator

\[y = \text{accdist}(Y); \quad \% Y = [H,L,C,V] \text{ data matrix} \]
\[R = \text{sema}(y,N1) - \text{sema}(y,N2); \quad \% \text{CHOCS, default, } N1=3, N2=10 \]

Chaiikin Money Flow

\[H = \text{Y(:,1)}; \quad L = \text{Y(:,2)}; \quad C = \text{Y(:,3)}; \quad V = \text{Y(:,4)}; \quad \% \text{extract } H,L,C,V \]
\[R = \frac{\text{sema}(\text{2}*(\text{C-H-L})./(\text{H-L}).*\text{V})}{\% \text{CMFLOW}} \]

Chaiikin Volatility

\[S = \text{sema}(H-L,N); \quad \% H,L \text{ given} \]
\[R = (S - \text{delay}(S,N)) ./ \text{delay}(S,N) \cdot 100; \quad \% \text{volatility} \]

Positive/Negative Volume Indices, PNVI

These are defined recursively as follows, in MATLAB-like notation, where \(C_n, V_n \) are the closing prices and the volume,

\[P_n = P_{n-1} + (V_n > V_{n-1}) \cdot \left(\frac{C_n - C_{n-1}}{C_{n-1}} \cdot P_{n-1} \right)^{(V_n > V_{n-1})} = \text{PVI} \]
\[N_n = N_{n-1} + (V_n < V_{n-1}) \cdot \left(\frac{C_n - C_{n-1}}{C_{n-1}} \cdot N_{n-1} \right)^{(V_n < V_{n-1})} = \text{NVI} \]

and initialized to some arbitrary initial value, such as, \(P_0 = N_0 = 1000. \) The MATLAB implementation uses the function, delay,

\[P = P_0 \cdot \text{cumprod(} (C./\text{delay}(C,1)).^\text{V>({V}_1<\text{delay}(V,1))}; \quad \% \text{PNVI} \]
\[N = P_0 \cdot \text{cumprod(} (C./\text{delay}(C,1)).^\text{V>({V}_1<\text{delay}(V,1))}; \quad \% \text{PNVI} \]

Commodity Channel Index, CCI

\[T = (H+L+C)/3; \quad \% H,L,C \text{ given} \]

\[M = \text{sema}(T,N); \]

for \(n=N+1:\text{length}(C), \)
\[D(n) = \text{mean}(\text{abs}(T(n-N+1:n) - M(n))); \quad \% \text{mean deviation} \]
end

\[R = (T-M)./D/0.015; \quad \% \text{CCI} \]
Detrended Price Oscillator, DPO

\[
S = \text{sma}(y, N, 'n'); \quad \% \text{y = column of closing prices}
\]
\[
M = \text{floor}(N/2) + 1; \quad \% \text{advancing time}
\]
\[
R = y - \text{delay}(S-M, 'n'); \quad \% \text{DPO, i.e., } R(n) = y(n) - S(n+M)
\]

Dynamic Momentum Index, DMI

\[
x = [\text{NaN}; \ \text{diff}(y)]; \quad \% \text{y = column of closing prices}
\]
\[
xu = x .* (x>0); \quad \% \text{upward differences}
\]
\[
xd = -x .* (x<=0); \quad \% \text{downward differences}
\]
\[
S = \text{stdev}(y, Ns); \quad \% \text{Ns-period stdev}
\]
\[
V = S \div \text{sma}(S, Nm); \quad \% \text{volatility measure}
\]
\[
N = \text{floor}(Nr \div V); \quad \% \text{effective length}
\]
\[
N(N>Nmax) = Nmax; \quad \% \text{restrict max and min N}
\]
\[
N(N<Nmin) = Nmin;
\]
\[
N_{start} = Nr + Ns + Nm;
\]
\[
su1 = \text{mean}(xu(2:N_{start})); \quad \% \text{initialize at start time}
\]
\[
sd1 = \text{mean}(xd(2:N_{start}));
\]
\[
\text{switch lower(type)}
\]
\[
\text{case 'wema'} \quad \% \text{WEMA type}
\]
\[
\text{for } n = N_{start+1:length(y)},
\]
\[
su(n) = su1 + (xu(n) - su1) / N(n); \quad su(n);
\]
\[
sd(n) = sd1 + (xd(n) - sd1) / N(n); \quad sd(n);
\]
\[
\text{end}
\]
\[
\text{case 'sma'} \quad \% \text{SMA type}
\]
\[
\text{for } n = N_{start+1:length(y)},
\]
\[
su(n) = \text{mean}(xu(n-N(n)-1:n));
\]
\[
sd(n) = \text{mean}(xd(n-N(n)-1:n));
\]
\[
\text{end}
\]
\[
R = 100 \times su \div (su+sd); \quad \% \text{DMI}
\]

Forecast Oscillator

\[
yp = \text{pma}(y, N, 1); \quad \% \text{time series forecast}
\]
\[
x = y - \text{delay}(yp, 1);
\]
\[
R = 100 \times x \div y; \quad \% \text{forecast oscillator}
\]
\[
Rs = \text{sma}(R, Ns); \quad \% \text{trigger signal}
\]

TRIX Oscillator

\[
[-,-,-,-,-,-,a3] = \text{tema}(y, N, cin); \quad \% \text{triple EMA}
\]
\[
R = 100 \times (a3 \div \text{delay}(a3, 1)). \div a3; \quad \% \text{TRIX}
\]
\[
Rs = \text{sma}(R, Ns); \quad \% \text{smoothed TRIX}
\]

Variable-Length EMA

\[
a1 = (N-1)/(N+1); \quad a1 = 1-a1; \quad \% \text{EMA parameter}
\]
\[
\text{switch lower(type)}
\]
\[
\text{case 'cmo'} \quad \% \text{CMO volatility}
\]
\[
V = \text{abs}(\text{cmo}(y, Nv))/100;
\]
\[
\text{case 'r2'} \quad \% \text{R^2 volatility}
\]
\[
[-,-,V] = \text{lreg}(y, Nv);
\]
\[
\text{end}
\]
\[
\text{for } n=Nv+1:length(y),
\]
\[
s(n) = si + a1 \times V(n) \times (y(n)-si); \quad \% \text{EMA recursion}
\]
\[
si = s(n);
\]

6.24 MATLAB Functions

We summarize the MATLAB functions discussed in this chapter:

% Exponential Moving Average Functions
% stema - steady-state exponential moving average
% lpbasis - fit order-d polynomial to first L inputs
% emap - map equivalent lambda's between d=0 and d=1 EMAs
% emerr - MSE, MAE, MAPE error criteria
% emat - transformation matrix from polynomial to cascaded basis
% mema - multiple exponential moving average
% holterr - MSE, MAE, MAPE error criteria for Holt

The technical analysis functions are:

% Technical Analysis Functions
% accdist - accumulation/distribution line
% atr - true range & average true range
% cci - commodity channel index
% chosc - Chaikin oscillator
% cmflow - Chaikin money flow
% chvol - Chaikin volatility
% cmo - Chande momentum oscillator
% dirmov - directional movement system, +DI, DX, ADX
% dmi - dynamic momentum index (DMI)
6. Exponential Smoothing

6.25 Problems

6.1 Consider a filter with a real-valued impulse response \(h_n \). Let \(H(\omega) = M(\omega)e^{j\theta(\omega)} \) be its frequency response, where \(M(\omega) = |H(\omega)| \) and \(\theta(\omega) = -\arg H(\omega) \). First, argue that \(\vartheta(0) = 0 \) and \(M'(0) = 0 \), where \(M'(\omega) = dM(\omega)/d\omega \). Then, show that the filter delay \(n \) of Eq. (6.1.18) is the group delay at DC, that is, show Eq. (6.1.19),

\[
\bar{n} = \frac{d\theta(\omega)}{d\omega}
\]

6.2 The lag of a filter was defined by Eqs. (6.1.17) and (6.1.18) to be,

\[
\bar{n} = \sum_m n h_m = -\left. \frac{H(z)}{H(z)} \right|_{z=1}
\]

If the filter \(H(z) \) is the cascade of two filters, \(H(z) = H_1(z)H_2(z) \), with individual lags, \(n_1, n_2 \), then show that, regardless of whether \(H_1(z), H_2(z) \) are normalized to unity gain at DC, the lag of \(H(z) \) will be the sum of the lags,

\[
n = n_1 + n_2
\]

6.3 Consider a low-frequency signal \(s(n) \) whose spectrum \(S(\omega) \) is limited within a narrow band around DC, \(|\omega| \leq \Delta \omega \), and therefore, its inverse DFT representation is:

\[
s(n) = \frac{1}{2\pi} \int_{-\Delta \omega}^{\Delta \omega} S(\omega) e^{j\omega n} d\omega
\]

For the purposes of this problem, we may think of the above relationship as defining \(s(n) \) also for non-integer values of \(n \). Suppose that the signal \(s(n) \) is filtered through a filter \(H(\omega) \) with real-valued impulse response whose magnitude response \(|H(\omega)| \) is approximately equal to unity over the \(\pm \Delta \omega \) signal bandwidth. Show that the filtered output can be written approximately as the delayed version of the input by an amount equal to the group delay at DC, that is,

\[
y(n) = \frac{1}{2\pi} \int_{-\Delta \omega}^{\Delta \omega} H(\omega)S(\omega) e^{j\omega n} d\omega \approx s(n - \bar{n})
\]

6.4 Show that the general filter-sharpening formula (6.9.5) results in the following special cases:

\[
p = 0, q = d \quad \Rightarrow \quad H_{\text{shar}} = 1 - (1 - H)^{d+1}
\]

\[
p = 1, q = d \quad \Rightarrow \quad H_{\text{shar}} = 1 - (1 - H)^{d+1}[1 + (d + 1)H]
\]

6.5 Prove the formulas in Eqs. (6.10.5) and (6.10.7).

6.6 Prove Eq. (6.4.10).

6.7 Consider the single and double EMA filters:

\[
H(z) = \frac{1 - \lambda}{1 - \lambda z^{-1}}, \quad H_a(z) = 2H(z) - H^2(z) = \frac{(1-\lambda)(1+\lambda-2\lambda z^{-1})}{(1-\lambda z^{-1})^2}
\]

a. Show that the impulse response of \(H_a(z) \) is:

\[
h_a(n) = (1-\lambda)[1+\lambda-(1-\lambda)n]u(n)
\]
b. Show the relationships:

\[
\sum_{n=0}^{\infty} n h_a(n) = 0, \quad \sum_{n=0}^{\infty} n^2 h_a(n) = -\frac{2\lambda^2}{(1-\lambda)^2}
\] (6.25.1)

c. Show that the NRR of the filter \(H_a(z) \) is:

\[
\mathcal{R} = \sum_{n=0}^{\infty} h_a^2(n) = \frac{(1-\lambda)(1+4\lambda+5\lambda^2)}{(1+\lambda)^3}
\]

d. Show that the magnitude response squared of \(H_a(z) \) is:

\[
|H_a(\omega)|^2 = \left(1-\lambda+2\lambda^2+\frac{4\lambda(1+\lambda)\cos \omega}{1-2\lambda\cos \omega+\lambda^2} \right)^2
\] (6.25.2)

e. Show that Eq. (6.25.2) has local minima at \(\omega = 0 \) and \(\omega = \pi \), and a local maximum at \(\omega = \omega_{\text{max}} \):

\[
\cos \omega_{\text{max}} = \frac{1+4\lambda-\lambda^2}{2(1+\lambda)}
\] (6.25.3)

and that the corresponding extremal values are:

\[
|H_a(0)|^2 = 1, \quad |H_a(\pi)|^2 = \left(\frac{1-\lambda+2\lambda^2}{1-\lambda+3\lambda^2} \right)^2
\] (6.25.4)

6.8 Consider the modified EMA of Eq. (2.3.5) and its twicing,

\[
H(z) = \frac{(1-\lambda)(1+z^{-1})}{2(1-\lambda z^{-1})}, \quad H_a(z) = 2H(z) - H^2(z) = \frac{(1-\lambda)(1+z^{-1})(1+3\lambda-z^{-1})(1+3\lambda)}{4(1-\lambda z^{-1})^2}
\]

a. Show the relationships:

\[
\sum_{n=0}^{\infty} n h_a(n) = 0, \quad \sum_{n=0}^{\infty} n^2 h_a(n) = -\frac{(1+\lambda)^2}{2(1-\lambda)^2}
\]

b. Show that the NRR of the filter \(H_a(z) \) is:

\[
\mathcal{R} = \sum_{n=0}^{\infty} h_a^2(n) = \frac{1}{8}(1-\lambda)(3\lambda + 7)
\]

6.9 Consider the optimum length-N predictive FIR filter \(h_\tau(k) \) of polynomial order \(d = 1 \) given by Eq. (6.4.1).

a. Show that its effective lag is related to the prediction distance \(\tau \) by \(\hat{n} = -\tau \).

b. Show that its NRR is given by

\[
\mathcal{R} = \sum_{k=0}^{N-1} h_\tau^2(k) = \frac{1}{N} \frac{3(N-1+2\tau)^2}{N(N^2-1)}
\]

Thus, it is minimized when \(\tau = -(N-1)/2 \). What is the filter \(h_\tau(k) \) in this case?

c. Show that the second-derivative of its frequency response at DC is given by:

\[
\frac{d^2}{d\omega^2} H(\omega)|_{\omega=0} = -\sum_{n=0}^{\infty} k^2 h_\tau(k) = \frac{1}{6}(N-1)(N-2+6\tau)
\]

Determine the range of \(\tau \) for which \(|H(\omega)|^2 \) is sloping upwards or downwards in the immediate vicinity of \(\omega = 0 \).

d. It is evident from the previous question that the value \(\tau = -(N-2)/6 \) corresponds to the vanishing of the second-derivative of the magnitude response. Show that in this case the filter is simply,

\[
h_\tau(k) = \frac{5N(N-1)-2k(2N-1)}{N(N^2-1)}, \quad k = 0, 1, \ldots, N-1
\]

and verify explicitly the results:

\[
\sum_{k=0}^{N-1} h_\tau(k) = 1, \quad \sum_{k=0}^{N-1} k h_\tau(k) = \frac{N-2}{6}, \quad \sum_{k=0}^{N-1} k^2 h_\tau(k) = 0, \quad \sum_{k=0}^{N-1} h_\tau^2(k) = \frac{7N^2-4N-2}{3N(N^2-1)}
\]

e. Show that \(h_\tau(k) \) interpolates linearly between the \(\tau = 0 \) and \(\tau = 1 \) filters, that is, show that for \(k = 0, 1, \ldots, N-1 \),

\[
h_\tau(k) = (1-\tau) h_0(k) + \tau h_1(k) = h_0(k) + [h_1(k) - h_0(k)] \tau
\]

f. Another popular choice for the delay parameter is \(\tau = -(N-1)/3 \). Show that,

\[
h_\tau(k) = \frac{2(N-k)}{N(N+1)}, \quad k = 0, 1, \ldots, N-1
\]

and that,

\[
\sum_{k=0}^{N-1} h_\tau(k) = 1, \quad \sum_{k=0}^{N-1} k h_\tau(k) = \frac{N-1}{3}, \quad \sum_{k=0}^{N-1} k^2 h_\tau(k) = \frac{N(N-1)}{6}, \quad \sum_{k=0}^{N-1} h_\tau^2(k) = \frac{2(N+1)}{3N(N+1)}
\]

In financial market trading, the cases \(\tau = -(N-1)/2 \) and \(\tau = -(N-1)/3 \) correspond, respectively, to the so-called “simple” and “weighted” moving average indicators. The case \(\tau = -(N-2)/6 \) is not currently used, but it provides a useful compromise between reducing the lag while preserving the flatness of the passband. By comparison, the relative lags of three cases are:

\[
\frac{1}{6}(N-2) < \frac{1}{3}(N-1) < \frac{1}{2}(N-1)
\]

6.10 Computer Experiment: Response of predictive FIR filters. Consider the predictive FIR filter \(h_\tau(k) \) of the previous problem. For \(N = 9 \), compute and on the same graph plot the magnitude responses \(|H(\omega)|^2 \) for the following values of the prediction distance:

\[
\tau = \frac{N-1}{2}, \quad \tau = \frac{N-2}{6}, \quad \tau = 0, \quad \tau = 1
\]

Using the calculated impulse response values \(h_\tau(k) \), \(0 \leq k \leq N-1 \), and for each value of \(\tau \), calculate the filter lag, \(\hat{n} \), the NRR, \(\mathcal{R} \), and the “curvature” parameter of Eq. (6.10.5). Recall from part (d) of the Problem 6.9 that the second \(\tau \) should result in zero curvature. Repeat all the questions for \(N = 18 \).
6. Exponential Smoothing

6.11 Moving-Average Filters with Prescribed Moments

The predictive FIR filter of Eq. (6.16.3) has lag equal to \(n = -\tau \) by design. Show that its second moment is not independently specified but is given by,

\[
\bar{m}^2 = \sum_{n=0}^{N-1} n^2 h(n) = -\frac{1}{6} (N - 1) (N - 2 + 6\tau) \tag{6.25.5}
\]

The construction of the predictive filters (6.16.3) can be generalized to allow arbitrary specification of the first and second moments, that is, the problem is to design a length-\(N \) FIR filter with the prescribed moments,

\[
\bar{m}^2 = \sum_{n=0}^{N-1} h(n) = 1, \quad \bar{m}^1 = \sum_{n=0}^{N-1} nh(n) = -\tau_1, \quad \bar{m}^2 = \sum_{n=0}^{N-1} n^2 h(n) = \tau_2 \tag{6.25.6}
\]

Show that such filter is given by an expression of the form,

\[
h(n) = c_0 + c_1 n + c_2 n^2, \quad n = 0, 1, \ldots, N - 1
\]

where the coefficients \(c_0, c_1, c_2 \) are the solutions of the linear system,

\[
\begin{bmatrix}
S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4
\end{bmatrix}
\begin{bmatrix}
\lambda_0 \\ \lambda_1 \\ \lambda_2
\end{bmatrix} = \begin{bmatrix} 1 \\ -\tau_1 \\ \tau_2 \end{bmatrix}
\]

where

\[S_p = \sum_{n=0}^{N-1} n^p, \quad p = 0, 1, 2, 3, 4 \]

Then, show that the \(S_p \) are given explicitly by,

\[
S_0 = N, \quad S_1 = \frac{1}{2} N (N - 1), \quad S_2 = \frac{1}{6} N (N - 1) (2N - 1) \\
S_3 = \frac{1}{4} N^2 (N - 1)^2, \quad S_4 = \frac{1}{30} N (N - 1) (2N - 1) (3N^2 - 3N - 1)
\]

and that the coefficients are given by,

\[
c_0 = \frac{3(3N^2 - 3N + 2) + 18(2N - 1)\tau_1 + 30\tau_2}{N(N + 1)(N + 2)} \\
c_1 = \frac{-18(N - 1)(N - 2)(2N - 1) + 12(2N - 1)(8N - 11)\tau_1 + 180(N - 1)\tau_2}{N(N - 1)(N)^2 - 4} \\
c_2 = \frac{30(N - 1)(N - 2) + 180(N - 1)\tau_1 + 180\tau_2}{N(N - 1)(N)^2 - 4}
\]

Finally, show that the condition \(c_2 = 0 \) recovers the predictive FIR case of Eq. (6.16.3) with second moment given by Eq. (6.25.5).

6.12 Consider the Butterworth filter of Eq. (6.20.2). Show that the lag of the first-order section and the lag of the \(k \)th second-order section are given by,

\[
\hat{n}_0 = \frac{1}{2\ell_0}, \quad \hat{n}_i = -\cos \theta_i/\ell_0, \quad i = 1, 2, \ldots, K
\]

Using these results, prove Eq. (6.20.8) for the full lag \(\hat{n} \), and show that it is valid for both even and odd filter orders \(M \).

7. Smoothing Splines

7.1 Interpolation versus Smoothing

Besides their extensive use in drafting and computer graphics, splines have many other applications. A large online bibliography can be found in [350]. A small subset of references on interpolating and smoothing splines and their applications is [351–404].

We recall from Sec. 4.2 that the minimum-\(R_s \) filters had the property of maximizing the smoothness of the filtered output signal by minimizing the mean-square value of the \(s \)-differenced output, that is, the quantity \(E[(\nabla^s y_n)^2] \) in the notation of Eq. (4.2.11). Because of their finite span, minimum-\(R_s \) filters belong to the class of local smoothing methods. Smoothing splines are global methods in the sense that their design criterion involves the entire data signal to be smoothed, but their objective is similar, that is, to maximize smoothness.

We assume an observation model of the form \(y(t) = x(t) + v(t) \), where \(x(t) \) is a smooth trend to be estimated on the basis of \(N \) noisy observations \(y_n = y(t_n) \) measured at \(N \) time instants \(t_n \), for \(n = 0, 1, \ldots, N - 1 \), as shown below.

![Diagram](image_url)

The times \(t_n \), called the knots, are not necessarily equally-spaced, but are in increasing order and are assumed to lie within a slightly larger interval \([t_0, t_b] \), that is,

\[t_0 < t_1 < t_2 < \cdots < t_{N-1} < t_b \]

A smoothing spline fits a continuous function \(x(t) \), taken to be the estimate of the underlying smooth trend, by solving the optimization problem:

\[
J = \sum_{n=0}^{N-1} w_n (y_n - x(t_n))^2 + \lambda \int_{t_a}^{t_b} [x^{(s)}(t)]^2 dt = \min \tag{7.1.1}
\]

where \(x^{(s)}(t) \) denotes the \(s \)-th derivative of \(x(t) \), \(\lambda \) is a positive “smoothing parameter,” and \(w_n \) are given non-negative weights.