
4
Minimum Roughness Filters

4.1 Weighted Local Polynomial Filters

The design of the LPSM filters was based on a least-squares criterion, such as (3.2.2),
where all error terms were equally weighted within the filter’s window:

J =
M∑

m=−M
e2
m =

M∑
m=−M

(ym − ŷm)2=
M∑

m=−M

⎛
⎝ym − d∑

i=0

cimi

⎞
⎠2

= min

This can be generalized by using unequal positive weights, wm, −M ≤m ≤M:

J =
M∑

m=−M
wme2

m =
M∑

m=−M
wm

⎛
⎝ym − d∑

i=0

cimi

⎞
⎠2

= min (4.1.1)

Introducing the diagonal matrix W = diag
(
[w−M, . . . ,w0, . . . ,wM]

)
, we may write

Eq. (4.1.1) compactly as:

J = eTWe = (y− Sc)TW(y− Sc)= min (4.1.2)

where y, S, c have the same meaning as in Eqs. (3.2.26)–(3.2.30). Differentiating with
respect to c gives the orthogonality and normal equations:

STWe = STW(y− Sc)= 0 � (STWS)c = STWy (4.1.3)

with solution for c and the estimate ŷ = Sc:

c = (STWS)−1STWy = GTy

ŷ = Sc = S(STWS)−1STWy = BTy
(4.1.4)

where we defined

G =WS(STWS)−1

B = GST =WS(STWS)−1ST
(4.1.5)
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The matrix B satisfies the following properties:

STB = ST

BT =W−1BW

BWBT = BW =WBT
(4.1.6)

The first implies the usual polynomial-preserving moment constraints STbm = um,
for −M ≤ m ≤ M, where bm is the mth column of B. The second shows that B is no
longer symmetric, and the third may be used to simplify the minimized value of the
performance index. Indeed, using the orthogonality property, we obtain:

Jmin = eTWe = yTWy− yTBWy− yTWBTy+ yTBWBTy = yTWy− yTBWy

A fourth property follows if we assume that the weights wm are symmetric about
their middle, wm = w−m, or more generally if W is assumed to be positive-definite,
symmetric, and centro-symmetric, which implies that it remains invariant under reversal
of its rows and its columns. The centro-symmetric property can be stated concisely as
JW = WJ, where J is the column-reversing matrix consisting of ones along its anti-
diagonal, that is, the reverse of a column vector is bR = Jb. Under this assumption on
W, it can be shown that B is also centro-symmetric:

JB = BJ ⇒ bRm = b−m , −M ≤m ≤M (4.1.7)

This can be derived by noting that reversing the basis vector si simply multiplies it
by the phase factor (−1)i, so that JS = SΩ, where Ω is the diagonal matrix of phase
factors (−1)i, i = 0,1, . . . , d. This then implies Eq. (4.1.7). Similarly one can show that
JG = GΩ, so that the reverse of each differentiation filter is gRi = (−1)igi.

The filtering equations (3.2.33) and (3.2.34) retain their form. Among the possible
weighting matrices W, we are interested in those such that the polynomial fitting prob-
lem (4.1.2) has an equivalent characterization as the minimization of the NRR subject
to the polynomial-preserving constraints STbm = um. To this end, we consider the
constrained minimization of a generalized or “prefiltered” NRR:

R = bTVb = min , subject to STb = u (4.1.8)

for a given (d+1)-dimensional vector u. The N×N matrix V, where N = 2M+1,
is assumed to be strictly positive-definite, symmetric, and Toeplitz. We may write
component-wise:

R =
M∑

n,m=−M
b(n)Vn−mb(m)= 1

2π

∫ π
−π
|B(ω)|2V(ω)dω (4.1.9)

where we set Vnm = Vn−m because of the Toeplitz property, and introduced the corre-
sponding DTFTs:

B(ω)=
M∑

n=−M
b(n)e−jωn , V(ω)=

∞∑
k=−∞

Vke−jωk (4.1.10)
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One way to guarantee a positive-definiteV is to takeV(ω) to be the power spectrum
of a given filter, say, D(ω), that is, choose V(ω)= |D(ω)|2, so that R will be the
ordinary NRR of the cascaded filter F(ω)= D(ω)B(ω) or F(z)= D(z)B(z):

R = 1

2π

∫ π
−π
|B(ω)|2V(ω)dω = 1

2π

∫ π
−π
|B(ω)D(ω)|2dω (4.1.11)

The minimum-Rs or minimum-roughness filters discussed in Sec. 4.2 correspond to
the choice D(z)= (1− z−1)s, for some integer s. For a general V and u, the solution of
the problem (4.1.8) is obtained by introducing a Lagrange multiplier vector λλλ:

J = bTVb+ 2λλλT(u− STb)= min

leading to the solution:

λλλ = (STV−1S)−1u

b = V−1Sλλλ = V−1S(STV−1S)−1u
(4.1.12)

If we choose um = [1,m,m2, . . . ,md]T as the constraint vectors and put together
the resulting solutions as the columns of a matrix B, then,

B = [· · ·bm · · · ]= V−1S(STV−1S)−1[· · ·um · · · ]
or, because ST = [· · ·um · · · ],

B = V−1S(STV−1S)−1ST (4.1.13)

This solution appears to be different from the solution (4.1.5) of the least-squares
problem, B = WS(STWS)−1ST. Can the two solutions be the same? The trivial choice
V = W = I corresponds to the LPSM filters. The choice V = W−1 is not acceptable
because with V assumed Toeplitz, and W assumed diagonal, it would imply that all
the weights are equal, which is again the LPSM case. A condition that guarantees the
equivalence is the following [123,99]:

VWS = SC ⇒ WS = V−1SC (4.1.14)

where C is an invertible (d+1)×(d+1) matrix. Indeed, then STWS = STV−1SC, and,

G =WS(STWS)−1= V−1S(STV−1S)−1 (4.1.15)

so that
B =WS(STWS)−1ST = V−1S(STV−1S)−1ST (4.1.16)

For the minimum-Rs filters, the particular choices for W,V do indeed satisfy condi-
tion (4.1.14) with an upper-triangular matrix C. With the equivalence of the polynomial-
fitting and minimum-NRR approaches at hand, we can also derive the corresponding
predictive/interpolating differentiation filters. Choosing u = Diu t as the constraint
vector in (4.1.12), we obtain,

b(i)t = V−1S(STV−1S)−1Diu t =WS(STWS)−1Diu t (4.1.17)
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and at the sample values t = m, −M ≤ m ≤ M, or, at u t = um, we obtain the differen-
tiation matrix having the b(i)m as columns, B(i) = [· · ·b(i)m · · · ]:

B(i) =WS(STWS)−1DiST = V−1S(STV−1S)−1DiST (4.1.18)

Computationally, it is best to orthogonalize the basis S. Let W = UTU be the
Cholesky factorization of the positive-definite symmetric matrix W, where U is an N×N
upper-triangular factor. Then, performing the QR-factorization on theN×(d+1)matrix
US, the above computations become:

W = UTU

US = Q0R0 , with QT
0 Q0 = I , R0 = (d+1)×(d+1) upper-triangular

B = UTQ0QT
0 U−T

B(i) = UTQ0(R−T0 DiRT
0 )Q

T
0 U−T

b(i)t = UTQ0R−T0 Diu t

(4.1.19)

The MATLAB functions lpsm, lpdiff, lpinterp have the weighting matrix W as an
additional input, which if omitted defaults to W = I. They implement Eqs. (4.1.19) and
their full usage is:

[B,G] = lpsm(N,d,W);

B = lpdiff(N,d,i,W);

b = lpinterp(N,d,t,i,W);

The factorizations in Eq. (4.1.19) lead naturally to a related implementation in terms
of discrete polynomials that are orthogonal with respect to the weighted inner product:

aTWb =
M∑

m=−M
wm a(m)b(m) (4.1.20)

Such polynomials may be constructed from the monomials si(m)=mi, i = 0,1, . . . , d
via Gram-Schmidt orthogonalization applied with respect to the above inner product.
The result of orthogonalizing the basis S = [s0, s1, . . . , sd] isQ = [q0,q1, . . . ,qd]whose
columns qi(m) are polynomials of order i in the variable m that are mutually orthogo-
nal, that is, up to an overall normalization:

qTi Wqj = δijDi , i, j = 0,1, . . . , d ⇒ QTWQ = D (4.1.21)

whereD = diag([D0,D1, . . . ,Dd]) is the diagonal matrix of the (positive) normalization
factors Di. These factors can be selected to be unity if so desired. For the minimum-
roughness filters, these polynomials are special cases of the Hahn orthogonal polyno-
mials, whose properties are discussed in Sec. 4.3. For unity weights wm = 1, the poly-
nomials reduce to the discrete Chebyshev/Gram polynomials.

Numerically, these polynomials can be constructed from the factorization (4.1.19).
Since D is positive-definite, we may define D1/2 = diag([D1/2

0 ,D1/2
1 , . . . ,D1/2

d ]) to be its
square root. Then we construct Q,R in terms of the factors U,Q0, R0:

Q = U−1Q0D1/2 , R = D−1/2R0 (4.1.22)
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where R is still upper-triangular. Then, we have QTWQ = D and

QR = U−1Q0D1/2D−1/2R0 = U−1Q0R0 = U−1US = S

which is equivalent to the Gram-Schmidt orthogonalization of the basis S, and leads to
the following equivalent representation of Eq. (4.1.19):

S = QR , with QTWQ = D, R = (d+1)×(d+1) upper-triangular

B =WQD−1QT

B(i) =WQD−1(R−TDiRT)QT

b(i)t =WQD−1R−TDiu t

(4.1.23)

Since Q = [q0,q1, . . . ,qd], the matrix B can be expressed as,

B =WQD−1QT =W
d∑
r=0

D−1
r qrq

T
r (4.1.24)

and for diagonal W, we have component-wise:

bm(k)= Bkm = wk

d∑
r=0

qr(k)qr(m)
Dr

−M ≤m,k ≤M (4.1.25)

The sum in (4.1.25) can be simplified further using the Christoffel-Darboux identity
discussed in Sec. 4.3. The polynomial predictive interpolation filters b(i)t can also be
expressed in a similar summation form:

b(i)t (k)= wk

d∑
r=0

qr(k)q
(i)
r (t)

Dr
(4.1.26)

where q(i)r (t) is the ith derivative of the polynomial qr(t) obtained from qr(m) by
replacing the discrete variable m by t. This can be justified as follows. The mth rows
of the matrices S and Q are the (d+1)-dimensional vectors:

uTm = [s0(m), s1(m), . . . , sd(m)]= [1,m, . . . ,md]

pTm = [q0(m), q1(m), . . . , qd(m)]
(4.1.27)

and since S = QR, they are related by uTm = pTmR. Replacing m by t preserves this
relationship, so that uTt = pTt R, or,

u t = RTp t , where p t = [q0(t), q1(t), . . . , qd(t)]T (4.1.28)

Differentiating i times, we obtain

Diu t = u(i)t = RTp(i)t ⇒ p(i)t = R−TDiu t (4.1.29)
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and therefore b(i)t from Eq. (4.1.23) can be written in the following form, which implies
Eq. (4.1.26):

b(i)t =WQD−1p(i)t (4.1.30)

As in the case of the LPSM filters, for the special case d = N − 1, the interpolation
filters correspond to Lagrange interpolation. In this case Q becomes an invertible N×N
matrix satisfying the weighted unitarity property QTWQ = D, which implies

Q−1 = D−1QTW (4.1.31)

from which we obtain the completeness property:

QD−1QT =W−1 (4.1.32)

which shows that B = I. Similarly, using WQD−1 = Q−T, we obtain from (4.1.23) the
usual Lagrange interpolation polynomials:

b t =WQD−1R−Tu t = Q−TR−Tu t = S−Tu t (4.1.33)

With d = N − 1, the matrix Q is an orthogonal basis for the full space RN. One of
the applications of Eq. (4.1.31) is the representation of signals, such as images or speech
in terms of orthogonal-polynomial moments [137–150].

Given an N-dimensional signal block y, such as a row in a scanned image, we define
the N-dimensional vector of moments with respect to the polynomials Q,

μμμ = D−1QTWy ⇒ μr = 1

Dr

M∑
n=−M

qr(n)wnyn , r = 0,1, . . . ,N − 1 (4.1.34)

Because of Eq. (4.1.31), we have μμμ = Q−1y, which allows the reconstruction of y
from its moments:

y = Qμμμ ⇒ yn =
N−1∑
r=0

qr(n)μr , −M ≤ n ≤M (4.1.35)

4.2 Henderson Filters

All the results of the previous section find a concrete realization in the minimum-Rs

filters that we discuss here. Consider the order-s backward difference filter and its
impulse response defined by:

Ds(z)= (1− z−1)s � ds(k)= (−1)k
(
s
k

)
, k = 0,1, . . . , s (4.2.1)

This follows from the binomial expansion:

(1− z−1)s=
s∑

k=0

(−1)k
(
s
k

)
z−k (4.2.2)
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The operation of the filter Ds(z) on a signal fn, with output gn, is usually denoted
in terms of the backward difference operator ∇fn = fn − fn−1 as follows:

gn = ∇sfn =
s∑

k=0

ds(k)fn−k =
s∑

k=0

(−1)k
(
s
k

)
fn−k (4.2.3)

If the signal fn is restricted over the range −M ≤ n ≤ M, then because 0 ≤ k ≤ s
and −M ≤ n− k ≤M, the above equation can be written in the more precise form:

gn = ∇sfn =
min(s,n+M)∑

k=max(0,n−M)
(−1)k

(
s
k

)
fn−k , −M ≤ n ≤M + s (4.2.4)

Eq. (4.2.4) gives the full convolutional output gn = (ds ∗ f)n, while (4.2.3) is the
corresponding steady-state output, obtained by restricting the output index n to the
range −M + s ≤ n ≤ M. Defining the (N+s)-dimensional output vector g and N-
dimensional input vector f, where N = 2M + 1,

g = [g−M, . . . , gM, . . . , gM+s]T , f = [f−M, . . . , fM]T ,

we may write the full filtering equation (4.2.4) in matrix form:

g = Dsf (4.2.5)

where Ds is the full (N+s)×N convolutional matrix of the filter ds(k) defined by its
matrix elements:

(Ds)nm= ds(n−m) , −M ≤ n ≤M + s, −M ≤m ≤M (4.2.6)

and subject to the restriction that only the values 0 ≤ n−m ≤ s will result in a non-zero
matrix element. The MATLAB functions binom and diffmat allow the calculation of the
binomial coefficients ds(k) and the convolution matrix Ds:

d = binom(s,k); % binomial coefficients ds(k)

D = diffmat(s,N); % (N+s)×N difference convolution matrix

For example, the convolution matrix for N = 7 and s = 3 is:

D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
−3 1 0 0 0 0 0

3 −3 1 0 0 0 0
−1 3 −3 1 0 0 0

0 −1 3 −3 1 0 0
0 0 −1 3 −3 1 0
0 0 0 −1 3 −3 1
0 0 0 0 −1 3 −3
0 0 0 0 0 −1 3
0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The function diffmat is simply a call to convmat:
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D = convmat(binom(s),N);

A minimum-Rs filter B(z) is defined to minimize the NRR of the cascaded filter
F(z)= Ds(z)B(z) subject to the d+1 linear constraints STb = u, for a given constraint
vector u, where b denotes the impulse response of B(z) assumed to be double-sided,
that is, bn, −M ≤ n ≤M.

The actual smoothing of data is carried out by the filter B(z) itself, whereas the filter
F(z) is used to design B(z). This is depicted in Fig. 4.2.1 in which the filtered output
is x̂n, and the output of F(z) is the differenced signal ∇sx̂n whose mean-square value
may be taken as a measure of smoothness to be minimized.

Fig. 4.2.1 Design and smoothing by minimum-Rs filter.

Letting fn = ∇sbn be the impulse response of the filter F(z), or in matrix form
f = Dsb, the corresponding cascaded NRR will be:

Rs = fTf =
M+s∑
n=−M

f2
n =

M+s∑
n=−M

(∇sbn
)2 = 1

2π

∫ π
−π
|Ds(ω)B(ω)|2 dω

Since fTf = bT(DT
s Ds)b, we can state the design condition of the minimum-Rs filters as

Rs =
M+s∑
n=−M

(∇sbn
)2 = bT(DT

s Ds)b = min , subject to STb = u (4.2.7)

This has exactly the same form as Eq. (4.1.8) with V = DT
s Ds. The minimization of

Rs justifies the name “minimum-Rs ” filters. The minimum-R0 LPSM filters of Sec. 3.7
correspond to s = 0. In the actuarial literature, the following criterion is used instead,
which differs from Rs by a normalization factor:

Rs = bT(DT
s Ds)b

dTs ds
= Rs

dTs ds
= min (4.2.8)

where Rs is referred as the “smoothing coefficient”, ds is the impulse response vector
of the filter Ds(z), and dTs ds is the NRR of Ds(z). Using a binomial identity (a special
case of (4.2.13) for k = 0), we have,

dTs ds =
s∑

m=0

d2
s(m)=

s∑
m=0

(
s
m

)2

=
(

2s
s

)
(4.2.9)
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The criterion (4.2.7) provides a measure of smoothness. To see this, let x̂n be the
result of filtering an arbitrary stationary signal yn through the filter B(z). If Syy(ω)
is the power spectrum of yn , then the power spectra of the filtered output x̂n and
of the differenced output ∇sx̂n will be |B(ω)|2Syy(ω) and |Ds(ω)B(ω)|2Syy(ω),
respectively. Therefore, the mean-square value of ∇sx̂n will be:

E
[(∇sx̂n

)2] = 1

2π

∫ π
−π
|Ds(ω)B(ω)|2Syy(ω)dω (4.2.10)

If yn is white noise of variance σ2, or if we assume that Syy(ω) is bounded from
above by a constant, such as Syy(ω)≤ σ2, then we obtain:

E
[(∇sx̂n

)2] ≤ 1

2π

∫ π
−π
|Ds(ω)B(ω)|2σ2 dω =Rsσ2 (4.2.11)

For white noise, Syy(ω)= σ2, Eq. (4.2.11) becomes an equality. Thus, minimizing

Rs will minimize E
[(∇sx̂n

)2]
and tend to result in a smoother filtered signal x̂n. This

property justifies the term “minimum-roughness” filters.
The choice s = 2 is preferred in smoothing financial and business-cycle data, and is

used also by the related method of the Whittaker-Henderson or Hodrick-Prescott filter.
The choice s = 3 is standard in the actuarial literature. The choice s = 4 is not com-
mon but it was used by De Forest [65–68] who was the first to formulate and solve the
minimum-Rs problem in 1871. Others, like Hardy and Henderson have considered the
minimum-R3 problem, while Sheppard [76] solved the minimum-Rs problem in general.

Henderson [79] was the first to show the equivalence between the NRR minimization
problem (4.2.7) with V = DT

s Ds and the weighted least-squares polynomial fitting prob-
lem (4.1.1) using the so-called Henderson weightswm. Therefore, the minimum-Rs filters
are often referred to as Henderson filters. They are used widely in seasonal-adjustment,
census, and business-cycle extraction applications. We discuss this equivalence next,
following essentially Henderson’s method.

The elements of the N×N matrix V = DT
s Ds are (DT

s Ds)nm= Vnm = Vn−m, where
Vk is the autocorrelation function of the power spectrum V(ω)= |Ds(ω)|2. Working
in the z-domain, we have the spectral density:

V(z)= Ds(z)Ds(z−1)= (1− z−1)s(1− z)s= (−1)szs(1− z−1)2s (4.2.12)

which shows that V(z) effectively acts as the (2s)-difference operation ∇2s. Taking
inverse z-transforms of both sides of (4.2.12), we obtain:

Vk =
min(s,k+s)∑
m=max(0,k)

ds(m)ds(m− k)= (−1)sd2s(k+ s) , −s ≤ k ≤ s (4.2.13)

or, explicitly in terms of the definition of ds:

Vk = (−1)k
min(s,k+s)∑
m=max(0,k)

(
s
m

)(
s

m− k

)
= (−1)k

(
2s
s+ k

)
, −s ≤ k ≤ s (4.2.14)

or,

Vk = (−1)k
(2s)!

(s+ k)! (s− k)!
, −s ≤ k ≤ s (4.2.15)
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The V matrix is a banded Toeplitz matrix with bandwidth ±s, whose central row or
central column consist of the numbers Vk, −s ≤ k ≤ s, with V0 positioned at the center
of the matrix. As an example,

V = DT
3D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 −15 6 −1 0 0 0
−15 20 −15 6 −1 0 0

6 −15 20 −15 6 −1 0
−1 6 −15 20 −15 6 −1

0 −1 6 −15 20 −15 6
0 0 −1 6 −15 20 −15
0 0 0 −1 6 −15 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with central column or central row:

Vk = {−1, 6, −15, 20, −15, 6, −1} for k = {−2,−1,0,1,2}

To understand the action of V as the difference operator ∇2s, let f be an N dimen-
sional vector indexed for −M ≤m ≤M , and form the output N-dimensional vector:

g = Vf ⇒ gn =
M∑

m=−M
Vn−mfm , −M ≤ n ≤M (4.2.16)

where n−m is further restricted such that −s ≤ n−m ≤ s. Next, consider an extended
version of f obtained by padding s zeros in front and s zeros at the end, so that the
extended vector f ext will be indexed over, −(M + s)≤m ≤ (M + s):

f ext = [0, . . . ,0︸ ︷︷ ︸
s

, f−M, . . . , f0, . . . , fM, 0, . . . ,0︸ ︷︷ ︸
s

]T

Then, the summation in Eq. (4.2.16) can be extended as,

gn =
M+s∑

m=−M−s
Vn−m f ext

m , −M ≤ n ≤M (4.2.17)

But because of the restriction−s ≤ n−m ≤ s, the above summation can be restricted
to be over n− s ≤m ≤ n+ s, which is a subrange of the range −(M+ s)≤m ≤ (M+ s)
because we assumed −M ≤ n ≤M. Thus, we may write:

gn =
n+s∑

m=−n−s
Vn−m f ext

m , −M ≤ n ≤M

or, changing to k = n−m,

gn =
s∑

k=−s
Vk f ext

n−k = (−1)s
s∑

k=−s
d2s(s+ k)f ext

n−k = (−1)s
2s∑
i=0

d2s(i)f ext
n+s−i (4.2.18)

but that is precisely the ∇2s operator:

gn = (−1)s∇2sf ext
n+s , −M ≤ n ≤M (4.2.19)
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If f ext
m is a polynomial of degree (2s + i), then the (2s)-differencing operation will

result into a polynomial of degree i. Suppose that we start with the weighted monomial:

fm = wmmi , −M ≤m ≤M (4.2.20)

where the weighting function wm is itself a polynomial of degree 2s, then in order for
the extended vector f ext

m to vanish over M < |m| ≤ M + s, the function wm must have
zeros at these points, that is,

wm = 0 , for m = ±(M + 1),±(M + 2), . . . ,±(M + s)

This condition fixes wm uniquely, up to a normalization constant:

wm =
s∏
i=1

[
(M + i)2−m2] (Henderson weights) (4.2.21)

These are called Henderson weights. Because the extended signal f ext
m is a polynomial

of degree (2s+ i), it follows that the signal gn will be a polynomial of degree i.
Defining the N×N diagonal matrix W = diag

(
[w−M, . . . ,w0, . . . ,wM]

)
, we can write

(4.2.20) vectorially in terms of the monomial basis vector si as f = Wsi. We showed
that the matrix operation g = Vf = VWsi results into a polynomial of degree i, which
therefore can be expanded as a linear combination of the monomials s0, s1, . . . , si up to
order i, that is,

VWsi =
i∑

j=0

sjCji (4.2.22)

for appropriate coefficients Cji, which may thought of as the matrix elements of an
upper-triangular matrix. Applying this result to each basis vector of S = [s0, s1, . . . , sd]
up to order d, it follows that

VWS = SC , C = (d+1)×(d+1) upper-triangular (4.2.23)

But, this is exactly the condition (4.1.14). Thus, we have shown the equivalence of
the NRR minimization problem (4.2.7) with V = DT

s Ds and the weighted least-squares
polynomial fitting problem (4.1.1) with the Henderson weights wm. The rest of the
results of Sec. 4.1 then carry through unchanged.

The MATLAB function lprs implements the design. It constructs the W matrix from
the Henderson weights and passes it into the function lpsm:

[B,G] = lprs(N,d,s); % local polynomial minimum-Rs filters

The Henderson weights wm, −M ≤m ≤M are calculated by the function hend:

w = hend(N,s); % Henderson weights

In the next section, we derive closed-form expressions for the Henderson filters using
Hahn orthogonal polynomials. Analytical expressions can also be derived working with
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the non-orthogonal monomial basis S. It follows from B = WS(STWS)−1ST that the
kth component of the mth filter will be:

bm(k)= Bkm = wk

d∑
i,j=0

kimjΦij = wk uTkΦum (4.2.24)

where uk = [1, k, k2, . . . , kd]T and Φ is the inverse of the Hankel matrix F = STWS
whose matrix elements are the weighted inner products:

Fij = (STWS)ij= sTi Wsj =
M∑

m=−M
wmmi+j ≡ Fi+j , i, j = 0,1, . . . , d (4.2.25)

Except for the factor wk and the different values of Φij the expressions are similar to
those of the LPSM filters of Sec. 3.3. The matrix Φ has a similar checkerboard structure.
For example, we have for the commonly used case d = 3 and s = 3:

bm(k)= wk
[
1, k, k2, k3]

⎡
⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1
m
m2

m3

⎤
⎥⎥⎥⎦ (4.2.26)

where
wk =

[
(M + 1)2−k2][(M + 2)2−k2][(M + 3)2−k2] (4.2.27)

and

F =

⎡
⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤
⎥⎥⎥⎦ ⇒ Φ = F−1 =

⎡
⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤
⎥⎥⎥⎦

where we obtain from the checkerboard submatrices:[
Φ00 Φ02

Φ20 Φ22

]
=
[
F0 F2

F2 F4

]−1

,
[
Φ11 Φ13

Φ31 Φ33

]
=
[
F2 F4

F4 F6

]−1

(4.2.28)

The corresponding F-factors for s = 3 are:

F0 = 2

35
(2M + 7)(2M + 5)(2M + 3)(2M + 1)(M + 3)(M + 2)(M + 1)

F2 = 1

9
M(M + 4)F0

F4 = 1

11
(3M2 + 12M − 4)F2

F6 = 1

143
(15M4 + 120M3 + 180M2 − 240M + 68)F2
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which give rise to the matrix elements of Φ:

Φ00 = 315(3M2 + 12M − 4)/D1

Φ02 = −3465/D1

Φ22 = 31185/D1

Φ11 = 1155(15M4 + 120M3 + 180M2 − 240M + 68)/D2

Φ13 = −15015(3M2 + 12M − 4)/D2

Φ33 = 165165/D2

with the denominator factors:

D1 = 8(2M + 9)(2M + 7)(2M + 5)(2M + 3)(M + 3)(M + 2)(M + 1)(4M2 − 1)

D2 = 8M(M − 1)(M + 4)(M + 5)D1

In particular, setting m = 0 we find the central filter b0(k), which for the case d = 3
and s = 3, is referred to as “Henderson’s ideal formula:”

b0(k)= wk(Φ00 + k2Φ02)

or, with wk =
[
(M+1)2−k2

][
(M+2)2−k2

][
(M+3)2−k2

]
:

b0(k)= 315
(
3M2 + 12M − 4− 11k2

)
wk

8(2M+9)(2M+7)(2M+5)(2M+3)(M+3)(M+2)(M+1)(4M2−1)
(4.2.29)

The corresponding predictive/interpolating differentiation filters b(i)t (k) are given
by a similar expression:

b(i)t (k)= wkuTkΦDiu t (4.2.30)

or, explicitly, for the d = s = 3 case and differentiation order i = 0,1,2,3:

b(i)t (k)= wk
[
1, k, k2, k3]

⎡
⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎤
⎥⎥⎥⎦

i ⎡⎢⎢⎢⎣
1
t
t2

t3

⎤
⎥⎥⎥⎦ (4.2.31)

Example 4.2.1: USD/Euro exchange rate. Consider four methods of smoothing the USD/Euro
foreign exchange rate for the years 1999-08. The monthly data are available from the web
site: http://research.stlouisfed.org/fred2/series/EXUSEU

The upper-left graph in Fig. 4.2.2 shows the smoothing by an LPSM filter of length N = 19
and polynomial order d = 3. In the upper-right graph a minimum-Rs Henderson filter was
used with N = 19, d = 3, and smoothness order s = 3.

The middle-left graph uses the SVD signal enhancement method with embedding order
M = 8 and rank r = 2.

The middle-right graph uses the Whittaker-Henderson, or Hodrick-Prescott filter with smooth-
ing parameter λ = 100 and smoothness order s = 3.
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Fig. 4.2.2 Smoothing of USD/Euro exchange rate.

The lower left and right graphs use the Whittaker-Henderson regularization filter with the
L1 criterion with differentiation orders s = 2 and s = 3 and smoothing parameter λ = 1,
implemented with the CVX package.†. The s = 2 case represents the smoothed signal in
piece-wise linear form. The L1 case is discussed further in Sec. 8.7.

The following MATLAB code illustrates the generation of the four graphs:

Y = loadfile(’exuseu.dat’); % data file available in the OSP toolbox

†http://cvxr.com/cvx/
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y = Y(:,4); t = taxis(y,12,1999); % extract signal yn from data file

% the function taxis defines the t-axis

N=19; d=3; x1 = lpfilt(lpsm(N,d),y); % LPSM filter

s=3; x2 = lpfilt(lprs(N,d,s),y); % LPRS filter

M=8; r=2; x3 = svdenh(y,M,r); % SVD enhancement

la=100; s=3; x4 = whsm(y,la,s); % Whittaker-Henderson

s = 2; la = 1; N = length(y); % Whittaker-Henderson with L1 criterion

D = diff(eye(N),s); % for x6, use s = 3

cvx_begin % use CVX package to solve the L1 problem

variable x5(N)
minimize( sum_square(y-x5) + la * norm(D*x5,1) )

cvx_end

figure; plot(t,y,’.’, t,x1,’-’); figure; plot(t,y,’.’, t,x2,’-’);
figure; plot(t,y,’.’, t,x3,’-’); figure; plot(t,y,’.’, t,x4,’-’);
figure; plot(t,y,’.’, t,x5,’-’); figure; plot(t,y,’.’, t,x6,’-’);

All methods have comparable performance and can handle the end-point problem. �	
The computational procedures implemented into the function lprs were outlined in

Eq. (4.1.19). The related orthogonalized basis Q defined in Eq. (4.1.23) will be realized
in terms of the Hahn orthogonal polynomials.

A direct consequence of upper-triangular nature of the matrix C in Eq. (4.2.23) is
that the basis Q becomes an eigenvector basis for the matrix VW [123,99]. To see this,
substitute S = QR into (4.2.23),

VWQR = QRC ⇒ VWQ = QΛ, Λ = RCR−1 (4.2.32)

Multiplying both sides by QTW and using the property QTWQ = D, we obtain:

QTWVWQ = QTWQΛ = DΛ (4.2.33)

Because R and C are both upper-triangular, so will be Λ and DΛ. But the left-hand
side of (4.2.33) is a symmetric matrix, and so must be the right-hand side DΛ. This
requires that DΛ and hence Λ be a diagonal matrix, e.g., Λ = diag

(
[λ0, λ1, . . . , λd]

)
.

This means that the rth column of Q is an eigenvector:

VWqr = λrqr , r = 0,1, . . . , d (4.2.34)

Choosing d = N−1 would produce all the eigenvectors of VW. In this case, we have
Q−1 = D−1QTW and we obtain the decomposition:

VW = QΛQ−1 = QΛD−1QTW ⇒ V = Q(ΛD−1)QT

We also find for the inverse of V = DT
s Ds:

V−1 =WQΛ−1D−1QTW

There exist [93–95] similar and efficient ways to calculate V−1 = (DT
s Ds)−1. The

eigenvalues λr can be shown to be [123]:

λr = (2s+ r)!
r!

=
2s∏
i=1

(r + i) , r = 0,1, . . . , d (4.2.35)
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As we see in the next section, the rth column qr(n) of Q is a Hahn polynomial of
degree r in n, and hence Wqr , or component-wise, wnqr(n), will be a polynomial of
degree 2s+r. Moreover, because of the zeros of wn, the polynomial fn = wnqr(n) can
be extended to be over the range −M − s ≤ n ≤M + s. Using the same reasoning as in
Eq. (4.2.19), it follows that (4.2.34) can be written as

(−1)s∇2sf ext
n+s = λrqr(n) , −M ≤ n ≤M

Since this is valid as an identity in n, it is enough to match the highest powers of n
from both sides, that is, nr . Thus, on the two sides we have

f ext
n+s = wn+sqr(n+ s)= (−1)s[(n+ s)2s+· · · ]︸ ︷︷ ︸

wn+s

[arr(n+ s)r+· · · ]︸ ︷︷ ︸
qr(n+s)

, or,

(−1)sf ext
n+s = arrn2s+r + · · · , and also, qr(n)= arrnr + · · ·

where arr is the highest coefficient of qr(n) and the dots indicate lower powers of n.
Dropping the arr constant, the eigenvector condition then becomes:

∇2s[n2s+r + · · · ]= λr[nr + · · · ]

Each operation of ∇ on ni lowers the power by one, that is, ∇(ni)= i ni−1 + · · · ,
∇2(ni)= i(i− 1)ni−2 + · · · , ∇3(ni)= i(i− 1)(i− 2)ni−3 + · · · , etc. Thus, we have:

∇2s[n2s+r + · · · ]= (2s+ r)(2s+ r − 1)(2s+ r − 2)· · · (r + 1)nr + · · ·

which yields Eq. (4.2.35).

4.3 Hahn Orthogonal Polynomials

Starting with Chebyshev [104], the discrete Chebyshev/Gram polynomials have been
used repeatedly in the least-squares polynomial fitting problem, LPSM filter design, and
other applications [104–151]. Bromba and Ziegler [123] were the first to establish a simi-
lar connection between the Hahn orthogonal polynomials and the minimum-Rs problem.
For a review of the Hahn polynomials, see Karlin and McGregor [113].

The Hahn polynomials Qr(x) of a discrete variable x = 0,1,2, . . . ,N− 1 and orders
r ≤ N − 1 satisfy a weighted orthogonality property of the form:

N−1∑
x=0

w(x)Qr(x)Qm(x)= Drδrm , r,m = 0,1, . . . ,N − 1

where the weighting function w(x) depends on two parameters α,β and is defined up
to a normalization constant as follows:

w(x)= (α+ x)!
x!

· (β+N − 1− x)!
(N − 1− x)!

, x = 0,1, . . . ,N − 1 (4.3.1)

The length N can be even or odd, but here we will consider only the odd case and
set as usual N = 2M + 1. The interval [0,N − 1] can be mapped onto the symmetric
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interval [−M,M] by making the change of variables x = n +M, with −M ≤ n ≤ M.
Then, the weighting function becomes,

w(n)= (α+M + n)!
(M + n)!

· (β+M − n)!
(M − n)!

, −M ≤ n ≤M (4.3.2)

Defining qr(n)= Qr(x)
∣∣
x=n+M, the orthogonality property now reads:

M∑
n=−M

w(n)qr(n)qm(n)= Drδrm , r,m = 0,1, . . . ,N − 1 (4.3.3)

The minimum-Rs problem corresponds to the particular choice α = β = s. In this
case, the weighting function w(n) reduces to the Henderson weights of Eq. (4.2.21):

w(n)= (s+M + n)!
(M + n)!

· (s+M − n)!
(M − n)!

=
s∏
i=1

(M + n+ i)·
s∏
i=1

(M − n+ i) , or,

w(n)=
s∏
i=1

[
(M + i)2−n2] , −M ≤ n ≤M (4.3.4)

For s = 0, the weights reduce to w(n)= 1 corresponding to the discrete Cheby-
shev/Gram polynomials. Because the weights are unity, the Chebyshev/Gram polyno-
mials can be regarded as discrete-time versions of the Legendre polynomials. In fact,
they tend to the latter in the limit N →∞ [133]. Similarly, the Hahn polynomials may be
regarded as discrete versions of the Jacobi polynomials. At the opposite limit, s → ∞,
the Hahn polynomials tend to the Krawtchouk polynomials [133], which are discrete ver-
sions of the Hermite polynomials [130]. We review Krawtchouk polynomials and their
application to the design of maximally flat filters in Sec. 4.4.

In general, the Hahn polynomials are given in terms of the hypergeometric function

3F2(a1, a2, a3;b1, b2;z). For α = β = s, they take the following explicit form:

qr(n)= Qr(x)=
r∑

k=0

ark x[k]
∣∣∣∣
x=n+M

=
r∑

k=0

ark (n+M)[k] , −M ≤ n ≤M (4.3.5)

where x[k] denotes the falling-factorial power,

x[k] = x(x− 1)· · · (x− k+ 1)= x!

(x− k)!
= Γ(x+ 1)
Γ(x− k+ 1)

(4.3.6)

The polynomial coefficients are:

ark = (−1)k
k∏

m=1

[
(r −m+ 1)(2s+ r +m)

(N −m)(s+m)m

]
, k = 0,1, . . . , r (4.3.7)

where ar0 = 1. Expanding the product we have:

ark = (−1)kr(r − 1)· · · (r − k+ 1)·(2s+ r + 1)(2s+ r + 2)· · · (2s+ r + k)
(N − 1)(N − 2)· · · (N − k)·(s+ 1)(s+ 2)· · · (s+ k)·k!

(4.3.8)
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The polynomials satisfy the symmetry property ,

qr(−n)= (−1)rqr(n) (4.3.9)

The orthogonality property (4.3.3) is satisfied with the following values of Dr :

Dr = (s!)2

(2M)!
· r! (2M − r)!

(2M)!
· (2s+ r + 1)(2s+ r + 2)· · · (2s+ r +N)

2s+ 2r + 1
(4.3.10)

For minimum-Rs filter design with polynomial order d ≤ N−1, only polynomials up
to order d are needed, that is, qr(n), r = 0,1, . . . , d. Arranging these as the columns of
the N×(d+1) matrix Q = [q0,q1, . . . ,qd], the orthogonality property can be expressed
as QTWQ = D, where D = diag

(
[D0,D1, . . . ,Dd]

)
.

The relationship to the monomial basis S = [s0, s1, . . . , sd] is through an upper-
triangular invertible matrix R, that is, S = QR. This can be justified by noting that
the power series of qr(n) in n is a linear combination of the monomials si(n)= ni for
i = 0,1, . . . , r. In fact, R can be easily constructed from the Hahn coefficients ark and
the Stirling numbers.

Thus, the construction of the minimum-Rs filters outlined in Eq. (4.1.23) is explicitly
realized by the Hahn polynomial basis matrix Q:

B =WQD−1QT (4.3.11)

or, component-wise,

bm(n)= Bnm = w(n)
d∑
r=0

qr(n)qr(m)
Dr

, −M ≤ n,m ≤M (4.3.12)

A more direct derivation of (4.3.11) is to perform the local polynomial fit in the
Q-basis. The desired degree-d polynomial can be expanded in the linear combination:

ŷm =
d∑
i=0

cimi =
d∑
r=0

arqr(m) ⇒ ŷ = Sc = Qa

Then, minimize the weighted performance index with respect to a:

J = (y−Qa)TW(y−Qa)= min

Using the condition QTWQ = D, the solution leads to the same B:

a = D−1QTWy ⇒ ŷ = Qa = QD−1QTWy = BTy (4.3.13)

The computation of the basisQ is facilitated by the following MATLAB functions. We
note first that the falling factorial powers are related to ordinary powers by the Stirling
numbers of the first and second kind:

x[k] =
k∑
i=0

S1(k, i)xi � xk =
k∑
i=0

S2(k, i)x[i] (4.3.14)
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These numbers may be arranged into lower-triangular matrices S1 and S2, which are
inverses of each other. For example, we have for k = 0,1,2,3:

⎡
⎢⎢⎢⎣
x[0]

x[1]

x[2]

x[3]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x0

x1

x2

x3

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣
x0

x1

x2

x3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x[0]

x[1]

x[2]

x[3]

⎤
⎥⎥⎥⎦

S1 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎤
⎥⎥⎥⎦ , S2 = S−1

1 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

⎤
⎥⎥⎥⎦

The MATLAB function stirling generates these matrices up to a desired order:

S = stirling(d,kind); % Stirling numbers up to order d of kind = 1,2

A polynomial can be expressed in falling factorial powers or in ordinary powers. The
corresponding coefficient vectors are related by the Stirling numbers:

P(x)=
d∑

k=0

akx[k] =
d∑
i=0

cixi ⇒ c = ST1 a , a = ST2 c

The function polval allows the evaluation of a polynomial in falling (or rising) fac-
torial powers or in ordinary powers at any vector of x values:

P = polval(a,z,type); % polynomial evaluation in factorial powers

The functions hahncoeff, hahnpol, and hahnbasis allow the calculation of the
Hahn coefficients (4.3.7), the evaluation of the polynomial Qr(x) at any vector of x’s,
and the construction of the Hahn basis Q = [q0,q1, . . . ,qd]:

[a,c] = hahncoeff(N,r,s); % Hahn polynomial coefficients ark
Q = hahnpol(N,r,s,x); % evaluate Hahn polynomial Qr(x)

[Q,D,L] = hahnbasis(N,d,s); % Hahn basis Q = [q0,q1, . . . ,qd]

Like all orthogonal polynomials, the Hahn polynomials satisfy a three-term recur-
rence relation of the form:

nqr(n)= αrqr+1(n)+βrqr(n)+γrqr−1(n) (4.3.15)

that starts with r = 0 and q−1(n)= 0 and ends at r = N − 2. The recurrence relation
is a direct consequence of the property (which follows from (4.3.3)) that the order-r
polynomial qr(n) is orthogonal to every polynomial of degree strictly less than r. Let
us denote the weighted inner product by

(a, b)=
M∑

n=−M
w(n)a(n)b(n) (4.3.16)
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Then, since the polynomial nqr(n) has degree r+1, it can be expanded as a linear
combination of the polynomials qi(n) up to degree r+1:

nqr(n)=
r+1∑
i=0

ciqi(n)

The coefficients are determined using the orthogonality property by

(nqr, qi)=
r+1∑
j=0

cj(qj, qi)=
r+1∑
j=0

cjDiδij = Dici ⇒ ci = (nqr, qi)
Di

(4.3.17)

This implies that ci = 0 for i ≤ r − 2, therefore, only the terms i = r+1, r, r−1 will
survive, which is the recurrence relation. Indeed, we note that (nqr, qi)= (qr, nqi) and
that nqi(n) has degree (i+ 1). Therefore, as long as i+ 1 < r, or, i ≤ r − 2, this inner
product will be zero. It follows from (4.3.17) that:

αr = (nqr, qr+1)
Dr+1

, βr = (nqr, qr)
Dr

, γr = (nqr, qr−1)
Dr−1

(4.3.18)

Because the weights w(n) are symmetric, w(n)= w(−n), and the polynomials sat-
isfy, qr(−n)= (−1)rqr(n), it follows immediately that βr = 0. The coefficient γr can
be related to αr−1 by noting that

αr−1 = (nqr−1, qr)
Dr

= (nqr, qr−1)
Dr

⇒ (nqr, qr−1)= Drαr−1 , and hence,

γr = (nqr, qr−1)
Dr−1

= Drαr−1

Dr−1
(4.3.19)

Moreover,αr is related to the leading coefficients arr of the qr(n) polynomial. From
the definition (4.3.5), we can write

qr(n)= arrnr + pr−1(n) , qr+1(n)= ar+1,r+1nr+1 + pr(n)

where pr−1(n) and pr(n) are polynomials of degree r−1 and r, respectively. Since
Dr+1 = (qr+1, qr+1), we have,

αr = (nqr, qr+1)
(qr+1, qr+1)

= (arrnr+1 + npr−1, qr+1)
(ar+1,r+1nr+1 + pr, qr+1)

= arr(nr+1, qr+1)
ar+1,r+1(nr+1, qr+1)

= arr
ar+1,r+1

where we used the orthogonality of qr+1(n) with npr−1(n) and pr(n), both of which
have order r. Thus,

αr = arr
ar+1,r+1

(4.3.20)

Using Eqs. (4.3.7) and (4.3.10), the expressions for αr and γr simplify into:

αr = −(2M − r)(2s+ r + 1)
2(2s+ 2r + 1)

, γr = −r(2M + 2s+ r + 1)
2(2s+ 2r + 1)

(4.3.21)
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These satisfy the constraint αr + γr = −M, which follows from the recurrence
relation and the conditions qr(−M)= ar0 = 1 for all r. Next, we derive the Christoffel-
Darboux identity which allows the simplification of the sum in (4.3.12). Setting βr = 0,
replacing γr = αr−1Dr/Dr−1 and dividing by Dr , the recurrence relation reads:

nqr(n)
Dr

= αr

Dr
qr+1(n)+αr−1

Dr−1
qr−1(n) (4.3.22)

Multiplying by qr(m), interchanging the roles of n,m, and subtracting, we obtain:

nqr(n)qr(m)
Dr

= αr

Dr
qr+1(n)qr(m)+αr−1

Dr−1
qr−1(n)qr(m)

mqr(m)qr(n)
Dr

= αr

Dr
qr+1(m)qr(n)+αr−1

Dr−1
qr−1(m)qr(n)

(n−m)qr(n)qr(m)
Dr

= αr

Dr

[
qr+1(n)qr(m)−qr(n)qr+1(m)

]−
− αr−1

Dr−1

[
qr(n)qr−1(m)−qr−1(n)qr(m)

]
Summing up over r, and using q−1(n)= 0, the successive terms on the right-hand

side cancel except for the last one, resulting in the Christoffel-Darboux identity:

(n−m)
d∑
r=0

qr(n)qr(m)
Dr

= αd

Dd

[
qd+1(n)qd(m)−qd(n)qd+1(m)

]
, or,

d∑
r=0

qr(n)qr(m)
Dr

= αd

Dd

qd+1(n)qd(m)−qd(n)qd+1(m)
n−m

(4.3.23)

Using this identity into the filter equations (4.3.12), we find

bm(n)= w(n)
αd

Dd

qd+1(n)qd(m)−qd(n)qd+1(m)
n−m

(4.3.24)

This is valid for −M ≤ n,m ≤ M and for orders 0 ≤ d ≤ N−2. At n = m, the
numerator vanishes, so that the numerator and denominator have a common factor
n −m, which cancels resulting in a polynomial of degree d in n and m. In particular,
the central Henderson filters are:

b0(n)= w(n)
αd

Dd

qd+1(n)qd(0)−qd(n)qd+1(0)
n

(4.3.25)

where either qd(0) or qd+1(0) is zero depending on whether d is odd or even. In fact
for the two successive values d = 2r and d = 2r+1, while the asymmetric filters bm(n)
are different, the central filters are the same and given by:

b0(n)= α2r

D2r
q2r(0)

q2r+1(n)
n

= −α2r+1

D2r+1
q2r+2(0)

q2r+1(n)
n

(4.3.26)
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the equality of the coefficients following by setting d = 2r+ 1 and n = 0 in Eq. (4.3.22).
Next, we derive explicit formulas for some specific cases. The first few Hahn poly-

nomials of orders d = 0,1,2,3,4,5 and arbitrary M and s are, for −M ≤ n ≤M:

q0(n) = 1

q1(n) = − n
M

q2(n) = (2s+3)n2 −M(M+s+1)
M(2M−1)(s+ 1)

q3(n) = −(2s+5)n3 − [3M2 + (s+1)(3M−1)
]
n

M(M−1)(2M−1)(s+1)

q4(n) = (2s+5)(2s+7)n4 − (2s+5)
(
6M2 + 6(s+1)M − 4s−5

)
n2

M(M−1)(2M−1)(2M−3)(s+1)(s+2)

+ 3M(M−1)(s+M+1)(s+M+2)
M(M−1)(2M−1)(2M−3)(s+1)(s+2)

q5(n) = −(2s+7)(2s+9)n5 − 5(2s+7)
(
2M2 + 2(s+1)M − 2s−3

)
n3

M(M−1)(M−2)(2M−1)(2M−3)(s+1)(s+2)

−
[
15M4 + 30(s+1)M3 + 5(3s3+s−7)M2 − (s+1)(s+2)(25M−6)

]
n

M(M−1)(M−2)(2M−1)(2M−3)(s+1)(s+2)

(4.3.27)

They are normalized such that qr(−M)= 1. Setting s = 0, we obtain the correspond-
ing discrete Chebyshev/Gram polynomials:

q0(n) = 1

q1(n) = − n
M

q2(n) = 3n2 −M(M+1)
M(2M−1)

q3(n) = −5n3 − (3M2+3M−1)n
M(M−1)(2M−1)

q4(n) = 35n4 − 5(6M2+6M−5)n2 + 3M(M2−1)(M+2)
2M(M−1)(2M−1)(2M−3)

q5(n) = −63n5 − 35(2M2+2M−3)n3 + (15M4+30M3−35M2−50M+12)n
2M(M−1)(M−2)(2M−1)(2M−3)

(4.3.28)

The central Henderson filters for the cases d = 0,1, d = 2,3, and d = 4,5 are as
follows for general M and s. For d = 0,1:

b0(n)= (2s+ 1)! (2M)!
(s!)2 (2M + 2s+ 1)!

w(n) (4.3.29)

where w(n) is given by Eq. (4.3.4). For d = 2,3, we have:

b0(n)= (M+s+1)(2s+3)! (2M)!
(
3M2 + (s+1)(3M−1)−(2s+5)n2

)
(2M−1)(s!)2 (2M+2s+3)!

w(n) (4.3.30)
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This generalizes Henderson’s ideal formula (4.2.29) to arbitrary s. For s = 1,2, it
simplifies into:

s = 1, b0(n) = 15(3M2 + 6M − 2− 7n2)w1(n)
2(M + 1)(2M + 3)(2M + 5)(4M2 − 1)

s = 2, b0(n) = 105(M2 + 3M − 1− 3n2)w2(n)
2(M + 1)(M + 2)(2M + 3)(2M + 5)(2M + 7)(4M2 − 1)

where w1(n) and w2(n) correspond to (4.3.4) with s = 1 and s = 2. The case s = 0 is,
of course, the same as Eq. (3.3.17). For the case d = 4,5, we find:

b0(n) = (M+s+1)(M+s+2)(2s+ 5)! (2M)!
2(2M−1)(2M−3)

(
(s+ 2)!

)2(2M+2s+5)!
·w(n)·

·
[
(2s+7)(2s+9)n4 − 5(2s+7)

(
2M2 + 2(s+1)M − 2s−3

)
n2 +

+ 15M4 + 30(s+1)M3 + 5(3s2+s−7)M2 + (s+1)(s+2)(25M−6)
]

(4.3.31)

Eqs. (4.3.29)–(4.3.31), as well as the case d = 6,7, have been implemented into the
MATLAB function lprs2, with usage:

b0 = lprs2(N,d,s); % exact forms of the Henderson filters b0(n) for 0 ≤ d ≤ 6

The asymmetric interpolation filters bt(n) can be obtained by replacing the discrete
variable m by t in Eqs. (4.3.12) and (4.3.24):

bt(n)= w(n)
d∑
r=0

qr(n)qr(t)
Dr

= w(n)
αd

Dd

qd+1(n)qd(t)−qd(n)qd+1(t)
n− t

(4.3.32)

Some specific cases are as follows. For d = 0, we have:

bt(n)= (2s+ 1)! (2M)!
(s!)2 (2M + 2s+ 1)!

w(n) (4.3.33)

For d = 1,

bt(n)= 4(2s+ 1)! (2M−1)!
(s!)2 (2M+2s+2)!

w(n)
[
M2 + (s+1)M + (2s+3)nt

]
(4.3.34)

For d = 2:

bt(n) = 4(2s+1)! (2M−1)!
(s!)2 (2M+2s+2)!

w(n)
[
M(M+s+1)

[
3M2 + 3(s+1)M − s−1

]
+ (s+1)(2M−1)(2M+2s+3)nt −M(M+s+1)(2s+5)(n2 + t2)

+ (s+1)(2M−1)(2M+2s+3)n2t2
] (4.3.35)

The corresponding predictive differentiation filters are obtained by differentiating
with respect to t.

The above closed-form expressions were obtained with the following simple Maple
procedures that define the Hahn coefficients ark, the Hahn polynomials qr(n) and their
norms Dr , and the interpolation filters bt(n):
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factpow := proc(x,k) product((x-m), m=0..k-1); end proc;

a := proc(M,r,s,k)
(-1)^k * product((r-m+1)*(2*s+r+m)/(2*M+1-m)/(s+m)/m, m=1..k);

end proc;

Q := proc(M,r,s,n) if r=0 then 1; else
sum(a(M,r,s,k)*factpow(n+M,k), k=0..r);

end if; end proc;

Dr := proc(M,r,s) GAMMA(s+1)^2 * GAMMA(r+1) * GAMMA(2*M+1-r)
* product(2*s+r+i, i=1..(2*M+1)) / GAMMA(2*M+1)^2 / (2*s+2*r+1);

end proc;

B := proc(M,d,s,n,t)
sum(Q(M,r,s,n)/Dr(M,r,s)*Q(M,r,s,t), r=0..d);

end proc;

where factpow defines the falling-factorial powers, and it is understood that the result
from the procedure B(M,d,s,n,t) must be multiplied by the Henderson weights w(n).

There are other useful choices for the weighting function w(n), such as binomial,
which are similar to gaussian weights and lead to the Krawtchouk orthogonal poly-
nomials, or exponentially decaying w(n)= λn, with n ≥ 0 and 0 < λ < 1, leading
to the discrete Laguerre polynomials [135,136] and exponential smoothers. However,
these choices do not have an equivalent minimum-NRR characterization. Even so, the
smoothing filters are efficiently computed in the orthogonal polynomial basis by:

B =WS(STWS)−1ST =WQD−1QT , QTWQ = D (4.3.36)

4.4 Maximally-Flat Filters and Krawtchouk Polynomials

Greville [84] has shown that in the limit s→∞ the minimum-Rs filters tend to maximally
flat FIR filters that satisfy the usual flatness constraints at dc, that is, B(i)(ω)

∣∣
ω=0 =

δ(i), for i = 0,1, . . . , d, but also have monotonically decreasing magnitude responses
and satisfy (2M−d) additional flatness constraints at the Nyquist frequency, ω = π.
They are identical to the well-known maximally flat filters introduced by Herrmann [174].
Bromba and Ziegler [123,178] have shown that their impulse responses are given in terms
of the Krawtchouk orthogonal polynomials [109,130,133]. Meer and Weiss [140] have
derived the corresponding differentiation filters based on the Krawtchouk polynomials
for application to images. Here, we look briefly at these properties.

The Krawtchouk polynomials are characterized by a parameter p such that 0 < p < 1
and are defined over the symmetric interval −M ≤ n ≤M by [133]

q̄r(n)=
r∑

k=0

(−1)kr(r − 1)· · · (r − k+ 1)p−k

(N − 1)(N − 2)· · · (N − k)·k!
(n+M)[k] (4.4.1)

where N = 2M + 1 and r = 0,1, . . . ,N − 1. They satisfy the orthogonality property,

M∑
n=−M

w̄(n)q̄r(n)q̄m(n)= D̄rδrm (4.4.2)
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with the following binomial weighting function and norms, where q = 1− p:

w̄(n) =
(

2M
M + n

)
pM+nqM−n = (2M)!

22M(M + n)! (M − n)!
pM+nqM−n

D̄r = r! (2M − r)!
(2M)!

qr

pr

(4.4.3)

In the limit s→∞, the Hahn polynomials tend to the special Krawtchouk polynomials
with the parameter p = q = 1/2. To see this, we note that the Hahn polynomials are
normalized such that qr(−M)= 1, and we expect that they would have a straightforward
limit as s→∞. Indeed, it is evident that the limit of the Hahn coefficients (4.3.8) is

ārk = lim
s→∞ark =

(−1)kr(r − 1)· · · (r − k+ 1)·2k
(N − 1)(N − 2)· · · (N − k)·k!

(4.4.4)

and therefore, the Hahn polynomials will tend to

q̄r(n)=
r∑

k=0

(−1)kr(r − 1)· · · (r − k+ 1)·2k
(N − 1)(N − 2)· · · (N − k)·k!

(n+M)[k] (4.4.5)

which are recognized as a special case of (4.4.1) with p = 1/2. The Henderson weights
(4.3.4) and norms (4.3.10) diverge as s → ∞, but we may normalize them by a common
factor, such as s2M(s!)2, so that they will converge. The limits of the rescaled weights
and norms are:

w̄(n) = lim
s→∞

[
(2M)!w(n)
22Ms2M(s!)2

]
= lim

s→∞

[
(2M)! (s+M + n)! (s+M − n)!
22Ms2M(s!)2 (M + n)! (M − n)!

]

D̄r = lim
s→∞

[
(2M)!Dr

22Ms2M(s!)2

]

= lim
s→∞

[
r! (2M − r)!

(2M)!
· (2s+ r + 1)(2s+ r + 2)· · · (2s+ r +N)

22Ms2M(2s+ 2r + 1)

]

They are easily seen to lead to Eqs. (4.4.3) with p = 1/2, that is,

w̄(n) = 1

22M

(
2M

M + n

)
= (2M)!

22M(M + n)! (M − n)!

D̄r = r! (2M − r)!
(2M)!

(4.4.6)
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The first few of the Krawtchouk polynomials are:

q̄0(n) = 1

q̄1(n) = − n
M

q̄2(n) = 2n2 −M
M(2M−1)

q̄3(n) = − 2n3 − (3M−1)n
M(M−1)(2M−1)

q̄4(n) = 4n4 − (12M−8)n2 + 3M(M−1)
M(M−1)(2M−1)(2M−3)

q̄5(n) = −4n5 − 20(M−1)n3 + (15M2−25M+6)n
M(M−1)(M−2)(2M−1)(2M−3)

(4.4.7)

These polynomials satisfy the three-term recurrence relation:

nq̄r(n)= ᾱrq̄r+1(n)+γ̄rq̄r−1(n) , ᾱr = −2M − r
2

, γ̄r = −r
2

(4.4.8)

with the coefficients ᾱr, γ̄r obtained from Eq. (4.3.21) in the limit s→∞. The three-term
relations lead to the usual Christoffel-Darboux identity from which we may obtain the
asymmetric predictive filters:

b̄t(n)= w̄(n)
d∑
r=0

q̄r(n)q̄r(t)
D̄r

= w̄(n)
ᾱd

D̄d

q̄d+1(n)q̄d(t)−q̄d(n)q̄d+1(t)
n− t

(4.4.9)

Differentiation with respect to t gives the corresponding predictive differentiation
filters. Some examples are as follows. For d = 0 and d = 1, we have, respectively

b̄t(n)= w̄(n) , b̄t(n)= w̄(n)
2nt +M

M
(4.4.10)

For d = 2, the smoothing and first-order differentiation filters are:

b̄t(n) = w̄(n)
4n2t2 − 2M(n2 + t2)+2(2M−1)nt +M(3M−1)

M(2M−1)

˙̄bt(n) = w̄(n)
2(2M−1)n− 4Mt + 8n2t

M(2M−1)

(4.4.11)

and setting t = 0, the central filters simplify into:

b̄0(n)= w̄(n)
3M − 1− 2n2

2M − 1
, ˙̄b0(n)= w̄(n)

2n
M

(4.4.12)

For d = 3, we have:

b̄t(n) = w̄(n)
3M(M−1)(2M−1)

[
8n3t3 − 4(3M−1)(n3t + nt3)+12(M−1)n2t2

− 6M(M−1)(n2 + t2)+(30M2−30M+8)nt − 3M(M−1)(3M−1)
] (4.4.13)
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As expected, setting t = 0 produces the same result as the d = 2 case. Numerically,
the smoothing and differentiation filters can be calculated by passing the Krawtchouk
weights w̄(n) into the functions lpsm, lpdiff, and lpinterp:

W = diag(hend(N,inf)); % Krawtchouk weights

B = lpsm(N,d,W); % smoothing filters

Bi = lpdiff(N,d,i,W); % i-th derivative filters

b = lpinterp(N,d,t,i,W); % interpolation filters bt

The function hend(N, s), with s = ∞, calculates the Krawtchouk weights of Eq. (4.4.6).
In turn, the filter matrices B or B(i) may be passed into the filtering function lpfilt.
Alternatively, one can call lprs with s = ∞:

B = lprs(N,d,inf); % LPRS with Krawtchouk weights, maximally-flat filters

It is well-known [84,174–187] that the maximally-flat FIR filters of lengthN = 2M+1
and polynomial order d = 2r + 1 have frequency responses given by the following
equivalent expressions:

B0(ω) =
r∑
i=0

(
M
i

)
xi(1− x)M−i= 1−

M∑
i=r+1

(
M
i

)
xi(1− x)M−i

= (1− x)M−r
r∑
i=0

(
M−r+i−1

i

)
xi , where x = sin2

(
ω
2

) (4.4.14)

Near ω � 0 and near ω � π, the second and third expressions have the following
expansions that exhibit the desired flatness constraints [123]:

ω � 0 ⇒ B0(ω) � 1− (const.)ω2r+2 = 1− (const.)ωd+1

ω � π ⇒ B0(ω) � (const.)(ω−π)2M−2r= (const.)(ω−π)2M−d+1
(4.4.15)

The first implies the flatness constraints at dc, B(i)0 (0)= δ(i), for i = 0,1, . . . , d, and

the second, the flatness constraints at Nyquist, B(i)0 (π)= 0, for i = 0,1, . . . ,2M−d.

Example 4.4.1: For d = 2 or r = 1, the z-transform of b0(n) in Eq. (4.4.12) can be calculated
explicitly resulting in:

B0(z)=
[
(1+ z−1)(1+ z)

4

]M−1
1

4

[
2(M + 1)−(M − 1)(z+ z−1)

]

With z = ejω we may write

x = sin2
(
ω
2

)
= (1− z−1)(1− z)

4
= 2− z− z−1

4
⇒ z+ z−1

4
= 1

2
− x

1− x = cos2
(
ω
2

)
= (1+ z−1)(1+ z)

4

Thus, we may express B0(z) in terms of the variable x:

B0(z)= (1− x)M−1
[
1+ (M − 1)x

]
which corresponds to Eq. (4.4.14) for r = 1. �	
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Example 4.4.2: Fig. 4.4.1 shows the frequency responses B0(ω) for the values N = 13, r = 2,
(d = 4,5), and the smoothness parameter values: s = 3, s = 6, s = 9, and s = ∞.

Because b0(n) is symmetric about n = 0, the quantities B0(ω) are real-valued. In the
limit s → ∞, the response becomes positive and monotonically decreasing. The following
MATLAB code illustrates the generation of the bottom two graphs and verifies Eq. (4.4.14):

N=13; r=2; d = 2*r+1; M = floor(N/2);

B = lprs(N,d,9); b9 = B(:,M+1); % LPRS filter with s = 9

B = lprs(N,d,inf); binf = B(:,M+1); % LPRS with Krawtchouk weights

f = linspace(0,1,1001); w = pi*f; x = sin(w/2).^2;
B9 = real(exp(j*w*M) .* freqz(b9,1,w)); % frequency responses

Binf = real(exp(j*w*M) .* freqz(binf,1,w));

Bth = 0;
for i=0:r,

Bth = Bth + nchoosek(M,i) * x.^i .* (1-x).^(M-i); % Eq. (4.4.14)

end

norm(Bth-Binf) % compare Eq. (4.4.14) with output of LPSM

figure; plot(f,B9); figure; plot(f,Binf);

The calls to lprs and lpsm return the full smoothing matrices B from which the central
column b0 is extracted.

The frequency response function freqz expects its filter argument to be causal. The factor
ejωM compensates for that, corresponding to a time-advance by M units. �	

Finally, we note that the Krawtchouk binomial weighting function w̄(n) tends to a
gaussian for large M, which is a consequence of the De Moivre-Laplace theorem,

w̄(n)= (2M)!
22M(M + n)! (M − n)!

� 1√
πM

e−n
2/M , −M ≤ n ≤M (4.4.16)

In fact, the two sides of (4.4.16) are virtually indistinguishable for M ≥ 10.

4.5 Missing Data and Outliers

The presence of outliers in the observed signal can cause large distortions in the smoothed
signal. The left graph of Fig. 4.5.1 shows what can happen. The two vertical lines indi-
cate the region in which there are four strong outliers, which cause the smoothed curve
to deviate drastically from the desired signal.

One possible solution [53,165] is to ignore the outliers and estimate the smoothed
values from the surrounding available samples using a filter window that spans the out-
lier region. The same procedure can be used if some data samples are missing. Once the
outliers or missing values have been interpolated, one can apply the weighted LPSM fil-
ters as usual. The right graph in Fig. 4.5.1 shows the four adjusted interpolated samples.
The resulting smoothed signal now estimates the desired signal more accurately.
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Fig. 4.4.1 Frequency responses of minimum-Rs and maximally-flat filters.
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Fig. 4.5.1 Smoothing with missing data or outliers.

This solution can be implemented by replacing the outliers or the missing data by
zeros (or, any other values), and assign zero weights to them in the least-squares poly-
nomial fitting problem.
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Given a long observed signal yn, n = 0,1, . . . , L−1, let us assume that in the vicinity
of n = n0 there is an outlier or missing sample at the time instant n0+m, where m lies
in the interval −M ≤ m ≤ M, as shown in Fig. 4.5.2. Several outliers or missing data
may be present, not necessarily adjacent to each other, each being characterized by a
similar index m.

Fig. 4.5.2 Missing sample or outlier and the data window used for estimating it.

The outlier samples yn0+m can be replaced by zeros and their estimated values,
ŷn0+m, can be calculated from the surrounding samples using a filter of length N =
2M+1. The corresponding least-squares polynomial-fitting problem is defined by

J =
M∑

m=−M
pmwm

⎛
⎝yn0+m −

d∑
i=0

cimi

⎞
⎠2

= min (4.5.1)

where wm are the usual Henderson weights and the pm are zero at the indices for the
missing data, and unity otherwise. Let y = [yn0−M, . . . , yn0 , . . . , yn0+M]T, and denote by
W,P the corresponding diagonal matrices of the weights wm,pm. Then, (4.5.1) reads:

J = (y− Sc)TPW(y− Sc)= min, (4.5.2)

leading to the orthogonality conditions and the solution for c:

STWP(y− Sc)= 0 ⇒ c = (STPWS)−1STWPy (4.5.3)

where we assumed that STPWS is invertible.† The estimated samples will be:

ŷ = Sc = S(STPWS)−1STWPy = BTy (4.5.4)

with the filter matrix,
B = PWS(STPWS)−1ST (4.5.5)

We note that P is a projection matrix (PT = P and P2 = P) and commutes with W,
PW = WP, because both are diagonal. Defining Q = I − P to be the complementary
projection matrix, the estimated signal can be decomposed in two parts: ŷ = Pŷ+Qŷ,
with Qŷ being the part that contains the estimated missing values or adjusted outliers.

The quantity Py represents the samples that are being used to make the estimates,
whereas Qy corresponds to the missing samples and can be set to zero or to an arbitrary
vector Qyarb, in other words, we may replace y by Py + Qyarb without affecting the
solution of Eq. (4.5.4). This so because P(Py+Qyarb)= Py.

†This requires that the number of outliers within the data window be at most N − d− 1.
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Once the estimated missing values have been obtained, we may replace Qyarb by
Qŷ and recompute the ordinary W-weighted least-squares estimate from the adjusted
vector Py+Qŷ. This produces the same ŷ as in (4.5.4). Indeed, one can show that,

ŷ = S(STPWS)−1STWPy = S(STWS)−1STW(Py+Qŷ) (4.5.6)

To see this, start with the orthogonality equation (4.5.3), and replace Pŷ = ŷ−Qŷ:

STWP(y− ŷ)= 0 ⇒ STWPy = STWPŷ = STW(ŷ−Qŷ) , or,

STW(Py+Qŷ)= STWŷ = STWS(STPWS)−1WPy

from which Eq. (4.5.6) follows by multiplying both sides by S(STWS)−1. The MATLAB
function lpmissing implements the calculation of B in (4.5.5):

B = lpmissing(N,d,m,s); % filter matrix for missing data

The following MATLAB code illustrates the generation of Fig. 4.5.1:

t = (0:50)’; x0 = (1-cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(51,1); % noisy signal

n0 = 25; m = [-1 0 1 3]; % four outlier indices relative to n0

y(n0+m+1) = 0; % four outlier or missing values

N= 13; d = 2; s = 0; M=(N-1)/2; % filter specs

x = lpfilt(lprs(N,d,s),y); % distorted smoothed signal

B = lpmissing(N,d,m,s); % missing-data filter B

yhat = B’*y(n0-M+1:n0+M+1); % apply B to the block n0−M ≤ n ≤ n0+M
ynew = y; ynew(n0+m+1) = yhat(M+1+m); % new signal with interpolated outlier values

xnew = lpfilt(lprs(N,d,s),ynew); % recompute smoothed signal

figure; plot(t,x0,’--’, t,y,’o’, t,x,’-’); % left graph

figure; plot(t,x0,’--’, t,y,’o’, t,xnew,’-’); % right graph

hold on; plot(n0+m,yhat(M+1+m),’.’);

The above method of introducing zero weights at the outlier locations can be auto-
mated and applied to the entire signal. Taking a cue from Cleveland’s LOESS method
[192] discussed in the next section, we may apply the following procedure.

Given a length-L signal yn, n = 0,1, . . . , L − 1, with L ≥ N, an LPSM or LPRS filter
with design parameters N,d, s can be applied to yn to get a preliminary estimate of the
smoothed signal x̂n, and compute the error residuals en = yn − x̂n, that is,

B = lprs(N,d, s)

x̂ = lpfilt(B,y)

e = y− x̂

(4.5.7)
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From the error residual e, one may compute a set of “robustness” weights rn by
using the median of |en| as a normalization factor in the bisquare function:

μ = median
(|en|) , rn =W

(
en
Kμ

)
, n = 0,1, . . . , L− 1 (4.5.8)

where K is a constant such as K = 2–6, and W(u) is the bisquare function,

W(u)=
⎧⎨
⎩(1− u2)2, if |u| ≤ 1

0, otherwise
(4.5.9)

If a residual en deviates too far from the median, that is, |en| > Kμ, then the ro-
bustness weight rn is set to zero. A new estimate x̂n can be calculated at each time n
by defining the diagonal matrix P in terms of the robustness weights in the neighbor-
hood of n, and then calculating the estimate using the c0 component of the vector c in
Eq. (4.5.3), that is,

Pn = diag
(
[rn−M, . . . , rn, . . . , rn+M]

)
x̂n = c0 = uT0 (STPnWS)−1STWPny(n)

(4.5.10)

where u0 = [1,0, . . . ,0]T and y(n)= [yn−M, . . . , yn, . . . , yn+M]T. Eq. (4.5.10) may be
used for M ≤ n ≤ L − 1 −M. For 0 ≤ n < M and L − 1 −M < n ≤ L − 1 the values
of x̂n can be obtained from the first M and last M outputs of ŷ in (4.5.4) applied to the
first and last length-N data vectors and robustness weights:

y = [y0, y1, . . . , yN−1]T , P = diag
(
[r0, r1, . . . , rN−1]

)
y = [yL−N, yL−N+1, . . . , yL−1]T , P = diag

(
[rL−N, rL−N+1, . . . , rL−1]

)
From the new estimates x̂n, one can compute the new residuals en = yn − x̂n, and

repeat the procedure of Eqs. (4.5.8)–(4.5.10) a few more times. A total of 3–4 iterations
is typically adequate. The MATLAB function rlpfilt implements the above steps:

[x,r] = rlpfilt(y,N,d,s,Nit) % robust local polynomial filtering

Its outputs are the estimated signal x̂n and the robustness weights rn. The median
scaling factor K is an additional optional input, which otherwise defaults to K = 6.

If the residuals en are gaussian-distributed with varianceσ2, then μ = 0.6745σ. The
default value K = 6 (Cleveland [192]) corresponds to allowing through 99.99 percent of
the residuals. Other possible values are K = √

6 = 2.44 (Loader [224]) and K = 4
allowing respectively 90 and 99 percent of the values.

Fig. 4.5.3 shows the effect of increasing the number of robustness iterations. It is
the same example as that in Fig. 4.5.1, but we have added another four outliers in the
vicinity of n = 10. The upper-left graph corresponds to ordinary filtering without any
robustness weights. One observes the successive improvement of the estimate as the
number of iterations increases.

The following MATLAB code illustrates the generation of the lower-right graph. The
signal yn is generated exactly as in the previous example; the outlier values are then
introduced around n = 10 and n = 25:
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Fig. 4.5.3 Robust smoothing with outliers.

n1=10; n2=25; m = [-1 0 1 3]; % outlier indices relative to n1 and n2

y(n1+m+1)=1; y(n2+m+1)=0; % outlier values

Nit=4; K=4; x = rlpfilt(y,N,d,s,Nit,K); % robust LP filtering

plot(t,x0,’--’, t,y,’o’, t,x,’-’, n1+m,x(n1+m+1),’.’, n2+m,x(n2+m+1),’.’);

4.6 Problems

4.1 Using binomial identities, prove the equivalence of the three expressions in Eq. (4.4.14) for
the maximally-flat filters. Then, show Eq. (4.4.15) and determine the proportionality con-
stants indicated as (const.).

5
Local Polynomial Modeling

5.1 Weighted Local Polynomial Modeling

The methods of weighted least-squares local polynomial modeling and robust filtering
can be generalized to unequally-spaced data in a straightforward fashion. Such methods
provide enough flexibility to model a wide variety of data, including surfaces, and have
been explored widely in recent years [188–231]. For equally-spaced data, the weighted
performance index centered at time n was:

Jn =
M∑

m=−M

(
yn+m − p(m)

)2w(m)= min , p(m)=
d∑
r=0

cimr (5.1.1)

The value of the fitted polynomial p(m) at m = 0 represents the smoothed estimate
of yn, that is, x̂n = c0 = p(0). Changing summation indices to k = n +m, Eq. (5.1.1)
may be written in the form:

Jn =
n+M∑

k=n−M

(
yk − p(k− n)

)2w(k− n)= min , p(k− n)=
d∑
r=0

ci(k− n)r (5.1.2)

For a set of N unequally-spaced observations
{
tk, y(tk)

}
, k = 0,1, . . . ,N − 1, we

wish to interpolate smoothly at some time instant t, not necessarily coinciding with one
of the observation times tk, but lying in the interval t0 ≤ t ≤ tN−1. A generalization
of the performance index (5.1.2) is to introduce a t-dependent window bandwidth ht,
and use only the observations that lie within that window, |tk − t| ≤ ht, to perform the
polynomial fit:

Jt =
∑

|tk−t|≤ht

(
y(tk)−p(tk − t)

)2w(tk − t)= min , p(tk − t)=
d∑
r=0

cr(tk − t)r (5.1.3)

The estimated/interpolated value at t will be x̂t = c0 = p(0), and the estimated first
derivative, ˆ̇xt = c1 = ṗ(0), and so on for the higher derivatives, with r! cr representing
the rth derivative. As illustrated in Fig. 5.1.1, the fitted polynomial,

p(x− t)=
d∑
r=0

cr(x− t)r , t − ht ≤ x ≤ t + ht
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