
2
Signal Extraction Basics

2.1 Introduction

One of the most common tasks in signal processing is to extract a desired signal, say
xn, from an observed signal:

yn = xn + vn (2.1.1)

where vn is an undesired component. The nature of vn depends on the application. For
example, it could be a white noise signal, which is typical of the background noise picked
up during the measurement process, or it could be any other signal—not necessarily
measurement noise—that must be separated from xn.

The desired signal xn often represents a smooth trend that conveys useful infor-
mation about the underlying dynamics of the evolving time series. Trend extraction is
carried out routinely on financial, business, census, climatic, and other applications.

An estimate, x̂n, of the desired signal xn is obtained by processing the observed sig-
nal yn through a processor designed according to some optimization criterion. There
exist a large variety of signal extraction methods, most of them based on a least-squares
minimization criterion, falling into two basic classes: (a) model-based parametric meth-
ods, such as those based on Wiener and Kalman filtering, and (b) non-parametric meth-
ods based on a variety of approaches, such as local polynomial modeling, exponential
smoothing, splines, regularization filters, wavelets, and SVD-based methods. Some of
the non-parametric methods (exponential smoothing, splines, regularization filters) can
also be cast in a state-space Kalman filtering form.

We discuss the Wiener and Kalman approaches in chapters 11 and 13, and the
SVD-based methods in chapter 15. In this chapter, we concentrate primarily on non-
parametric methods.

We consider also the problem of “de-seasonalizing” a time series, that is, estimating
and removing a periodic component. Many physical and financial time series have a nat-
ural periodicity built into them, such as daily, monthly, quarterly, yearly. The observed
signal can be decomposed into three components: a periodic (or nearly periodic) sea-
sonal part sn, a smooth trend tn, and a residual irregular part vn that typically represents
noise,

yn = sn + tn + vn (2.1.2)

104

2.2. Noise Reduction and Signal Enhancement 105

In such cases, the signal processing task is to determine both the trend and the
seasonal components, tn and sn. Often, economic data are available only after they
have been de-seasonalized, that is, after the seasonal part sn has been removed. Further
processing of the de-seasonalized trend, tn, can provide additional information such as
identifying business cycles. Moreover, modeling of the trend can be used for forecasting
purposes.

The particular methods of smoothing, trend extraction, and seasonal decomposition
that we consider in this and the next few chapters are:

• local polynomial smoothing filters (Savitzky-Golay filters) — Chap. 3
• minimum-roughness filters (Henderson filters) — Chap. 4
• local polynomial modeling and LOESS — Chap. 5
• exponential smoothing — Chap. 6
• smoothing splines — Chap. 7
• regularization filters (Whittaker-Henderson, Hodrick-Prescott) — Chap. 8
• wavelet denoising — Chap. 10
• seasonal decomposition (classical, moving average, census X-11) — Chap. 9
• bandpass and other filters in business and finance — Chap. 8

2.2 Noise Reduction and Signal Enhancement

A standard method of extracting the desired signal xn from yn is to design an appro-
priate filter H(z) that removes the noise component vn and at the same time lets xn
go through unchanged. It is useful to view the design specifications and operation of
such filter both in the time and frequency domains. Using linearity, we can express the
output signal due to the input of Eq. (2.1.1) in the form:

ŷn = x̂n + v̂n (2.2.1)

where x̂n is the output due to xn and v̂n the output due to vn. The two design conditions
for the filter are that x̂n be as similar to xn as possible and that v̂n be as small as possible;
that is, ideally we require:†

x̂n = xn
v̂n = 0

(2.2.2)

In general, these conditions cannot be satisfied simultaneously. To determine when
they can be satisfied, we may express them in the frequency domain in terms of the
corresponding frequency spectra as follows: X̂(ω)= X(ω) and V̂(ω)= 0.

Applying the filtering equation Ŷ(ω)= H(ω)Y(ω) separately to the signal and
noise components, we have the conditions:

X̂(ω) = H(ω)X(ω)= X(ω)
V̂(ω) = H(ω)V(ω)= 0

(2.2.3)

†An overall delay in the recovered signal is often acceptable, that is, x̂n = xn−D.

106 2. Signal Extraction Basics

The first requires that H(ω)= 1 at all ω at which the signal spectrum is nonzero,
X(ω)≠ 0. The second requires that H(ω)= 0 at all ω for which the noise spectrum is
nonzero, V(ω)≠ 0.

These two conditions can be met simultaneously only if the signal and noise spectra
do not overlap, as shown in Fig. 2.2.1.‡ In such cases, the filterH(ω)must have a pass-
band that coincides with the signal band, and a stopband that coincides with the noise
band. The filter removes the noise spectrum and leaves the signal spectrum unchanged.

Fig. 2.2.1 Signal and noise spectra before and after filtering.

If the signal and noise spectra overlap, as is the typical case in practice, the above
conditions cannot be satisfied simultaneously. In such cases, we must compromise
between the two design conditions and trade off one for the other. Depending on the
application, we may decide to design the filter to remove as much noise as possible, but
at the expense of distorting the desired signal. Alternatively, we may decide to leave
the desired signal as undistorted as possible, but at the expense of having some noise
in the output.

The latter alternative is depicted in Fig. 2.2.2 where a low-frequency signal xn exists
in the presence of a broadband noise component, such as white noise, having a flat
spectrum extending over the entire1 Nyquist interval, −π ≤ω ≤ π.

The filter H(ω) is chosen to be an ideal lowpass filter with passband covering the
signal bandwidth, say 0 ≤ω ≤ωc. The noise energy in the filter’s stopbandωc ≤ω ≤
π is removed completely by the filter, thus reducing the strength (i.e., the rms value) of
the noise. The spectrum of the desired signal is not affected by the filter, but neither is
the portion of the noise spectrum that falls within the signal band. Thus, some noise
will survive the filtering process.

A measure of the amount of noise reduction achieved by a filter is given by the noise
gain, or noise reduction ratio (NRR) of the filter, defined in Eq. (1.12.16), which is valid
for white noise input signals. Denoting the input and output mean-square noise values
by σ2 = E[v2

n] and σ̂2 = E[v̂2
n], we have:

R = σ̂2

σ2
= 1

2π

∫ π
−π
|H(ω)|2 dω =

∑
n
h2
n (2.2.4)

‡Here, ω is in units of radians per sample, i.e., ω = 2πf/fs, with f in Hz, and fs is the sampling rate.
1For discrete-time signals, the spectra are periodic in ω with period 2π, or in f with period fs.

2.2. Noise Reduction and Signal Enhancement 107

Fig. 2.2.2 Signal enhancement filter with partial noise reduction.

For the case of an ideal lowpass filter, with frequency and impulse responses given
by [29],

H(ω)=
⎧⎨
⎩

1, if |ω| ≤ωc

0, if ωc ≤ |ω| ≤ π
and hn = sin(ωcn)

πn
, −∞ < n <∞ (2.2.5)

the integration range in Eq. (2.2.4) collapses to the filter’s passband, that is, −ωc ≤ω ≤
ωc, and over this range the value of H(ω) is unity, giving:

R = σ̂2

σ2
= 1

2π

∫ωc

−ωc

1 · dω = 2ωc

2π
= ωc

π
(2.2.6)

Thus, the NRR is the proportion of the signal bandwidth with respect to the Nyquist
interval. The same conclusion also holds when the desired signal is a high-frequency
or a mid-frequency signal. For example, if the signal spectrum extends only over the
mid-frequency band ωa ≤ |ω| ≤ωb, then H(ω) can be designed to be unity over this
band and zero otherwise. A similar calculation yields in this case:

R = σ̂2

σ2
= ωb −ωa

π
(2.2.7)

The noise reduction/signal enhancement capability of a filter can also be expressed
in terms of the signal-to-noise ratio. The SNRs at the input and output of the filter are
defined in terms of the mean-square values as:

SNRin = E[x2
n]

E[v2
n]
, SNRout = E[x̂2

n]
E[v̂2

n]

Therefore, the relative improvement in the SNR introduced by the filter will be:

SNRout

SNRin
= E[x̂2

n]
E[v̂2

n]
· E[v

2
n]

E[x2
n]
= 1

R · E[x̂
2
n]

E[x2
n]

If the desired signal is not changed by the filter, x̂n = xn, then

SNRout

SNRin
= 1

R (2.2.8)

108 2. Signal Extraction Basics

Thus, minimizing the noise reduction ratio is equivalent to maximizing the signal-
to-noise ratio at the filter’s output.

The NRRs computed in Eqs. (2.2.6) or (2.2.7) give the maximum noise reductions
achievable with ideal lowpass or bandpass filters that do not distort the desired signal.
Such ideal filters are not realizable because they have double-sided impulse responses
with infinite anticausal tails. Thus, in practice, we must use realizable approximations
to the ideal filters, such as FIR filters, or causal IIR filters. The realizable filters may
meet the two design goals approximately, for example, by minimizing the NRR subject
to certain constraints that help sustain the signal passband. Examples of this approach
are discussed in Sections 2.3, 2.4, and generalized in Sections 3.1 and 4.2.

The use of realizable filters introduces two further design issues that must be dealt
with in practice: One is the transient response of the filter and the other, the amount
of delay introduced into the output. The more closely a filter approximates the sharp
transition characteristics of an ideal response, the closer to the unit circle its poles
get, and the longer its transient response becomes. Stated differently, maximum noise
reduction, approaching the ideal limit (2.2.6), can be achieved only at the expense of
introducing long transients in the output.

The issue of the delay introduced into the output has to do with the steady-state
response of the filter. After steady-state has set in, different frequency components
of an input signal suffer different amounts of delay, as determined by the phase delay
d(ω)= −ArgH(ω)/ω of the filter [29].

In particular, if the filter has linear phase, then it causes an overall delay in the out-
put. Indeed, assuming that the filter has nearly unity magnitude, |H(ω)| � 1, over its
passband (i.e., the signal band) and is zero over the stopband, and assuming a constant
phase delay d(ω)= D, we have for the frequency response

H(ω)= |H(ω)|e−jωd(ω) � e−jωD

over the passband, and we find for the filtered version of the desired signal:

x̂n = 1

2π

∫ π
−π
X̂(ω)ejωn dω = 1

2π

∫ π
−π
H(ω)X(ω)ejωn dω

= 1

2π

∫ωc

−ωc

X(ω)ejω(n−D) dω = x(n−D)

the last equation following from the inverse DTFT of the desired signal:

xn = 1

2π

∫ωc

−ωc

X(ω)ejωn dω

Many smoothing filters used in practice (e.g., see Chapters 3 and 4) are double-sided
filters, hn,−M ≤ n ≤M, with a symmetric impulse response, hn = h−n, and therefore,
they introduce no delay in the output (D = 0). On the other hand, if such filters are
made causal by a delay (D = M), then they will introduce a delay in the output. Such
delays are of concern in some applications such as monitoring and filtering real-time
data in the financial markets.

Next, we consider some noise reduction examples based on simple filters, calcu-
late the corresponding noise reduction ratios, discuss the tradeoff between transient
response and noise reduction, and present some simulation examples.

2.3. First-Order Exponential Smoother 109

2.3 First-Order Exponential Smoother

It is desired to extract a constant signal xn = s from the noisy measured signal

yn = xn + vn = s+ vn
where vn is zero-mean white Gaussian noise of variance σ2

v . To this end, the following
IIR lowpass filter may be used, where b = 1− a,

H(z)= b
1− az−1

, H(ω)= b
1− ae−jω , |H(ω)|2 = b2

1− 2a cosω+ a2
(2.3.1)

where the parameter a is restricted to the range 0 < a < 1. Because the desired signal
xn is constant in time, the signal band will be just the DC frequency ω = 0. We require
therefore that the filter have unity gain at DC. This is guaranteed by the above choice of
the parameter b, that is, we have at ω = 0, or equivalently at z = 1,

H(z)
∣∣
z=1 =

b
1− a = 1

The NRR can be calculated from Eq. (2.2.4) by summing the impulse response squared.
Here, hn = banun, therefore, using the geometric series, we find

R = σ̂2

σ2
=

∑
n
h2
n = b2

∞∑
n=0

a2n = b2

1− a2
= (1− a)2

1− a2
= 1− a

1+ a (2.3.2)

The filter’s magnitude response, pole-zero pattern, and the corresponding input and
output noise spectra are shown in Fig. 2.3.1. The shaded area under the |H(ω)|2 curve
(including its negative-frequency portion) is equal as the NRR computed above.

Fig. 2.3.1 Lowpass exponential smoothing filter.

The NRR is always less than unity because a is restricted to 0 < a < 1. To achieve
high noise reduction, a must be chosen near one. But, then the filter’s effective time
constant will become large:†

neff = ln ε
lna

→∞ as a→ 1

†The values ε = 0.01 and ε = 0.001 correspond to the so-called 40-dB and 60-dB time constants [30].

110 2. Signal Extraction Basics

The filter’s 3-dB cutoff frequency ωc can be calculated by requiring that |H(ωc)|2
drops by 1/2, that is,

|H(ωc)|2 = b2

1− 2a cosωc + a2
= 1

2

which can be solved to give cosωc = 1 − (1 − a)2/2a. If a is near one, a � 1, we can
use the approximation cosx � 1− x2/2 and solve for ωc approximately:†

ωc � 1− a

This shows that as a → 1, the filter becomes a narrower lowpass filter, removing
more noise from the input, but at the expense of increasing the time constant.

The tradeoff between noise reduction and speed of response is illustrated in Fig. 2.3.2,
where 200 samples of a simulated noisy signal yn were filtered using the difference equa-
tion of the filter, that is, replacing b = 1− a

yn = s+ vn , x̂n = ax̂n−1 + (1− a)yn (2.3.3)

and initialized at x̂−1 = 0. The value of the constant was s = 5, and the input noise
variance, σ2

v = 1. The random signal vn was generated by the built-in MATLAB function
randn. The figure on the left corresponds to a = 0.90, which has a 40-dB time constant,
NRR, and SNR improvement in dB:

neff = ln(0.01)
ln(0.90)

= 44 , R = 1− 0.90

1+ 0.90
= 1

19
, 10 log10

(
1

R
)
= 12.8 dB

The right figure has a = 0.98, with a longer time constant of neff = 228, a smaller
R = 1/99, and bigger SNR improvement, 10 log10(1/R)= 20 dB.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

a = 0.90

xn

yn

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

a = 0.98

xn

yn

Fig. 2.3.2 Noisy input and smoothed output.

†The full 3-dB width of the interval [−ωc,ωc] is 2ωc = 2(1 − a). This is a special case of a more
general result [30] that the 3-dB width due to a filter pole with radius r near the unit circle, r � 1, is given
by Δω = 2(1− r).

2.3. First-Order Exponential Smoother 111

To understand how this filter works in the time domain and manages to reduce the
noise, we rewrite the difference equation (2.3.3) in its convolutional form:

x̂n = b
n∑

m=0

amyn−m = b
(
yn + ayn−1 + a2yn−2 + · · · + any0

)

The sum represents a weighted average of all the past samples up to the present
time instant. As a result, the rapid fluctuations of the noise component vn are averaged
out. The closer a is to 1, the more equal weighting the terms get, and the more effective
the averaging of the noise. The exponential weighting de-emphasizes the older samples
and causes the sum to behave as though it had effectively a finite number of terms, thus,
safeguarding the mean-square value of x̂n from diverging (see, for example, Sec. 1.15.)
Because of the exponential weighting, this filter is also called an exponential smoother.

This filter can be applied to the smoothing of any low-frequency signal, not just
constants. One must make sure that the bandwidth of the desired signal xn is narrower
than the filter’s lowpass width ωc, so that the filter will not remove any of the higher
frequencies present in xn.

The exponential smoother is a standard tool in many applications requiring the
smoothing of data in signal processing, statistics, economics, physics, and chemistry. It
is also widely used in forecasting applications, for example in inventory control, where
the quantity x̂n is interpreted as the one-step ahead forecast. More precisely, the fore-
casting filter and its I/O difference equation are given by:

Hf(z)= z−1H(z)= bz−1

1− az−1
, Fn+1 = aFn + (1− a)yn (2.3.4)

where Fn+1 is the predicted value of xn+1 based on the available data yn up to time n.
We discuss the exponential smoother further in Sec. 6.1, where we rederive it from

an optimization criterion and generalize it to higher orders.
A slight variation of Eq. (2.3.1) which improves the NRR without affecting the speed

of response can be derived by adding a zero in the transfer function at z = −1 or
equivalently, at ω = π. The resulting first-order filter will be:

H(z)= b(1+ z−1)
1− az−1

⇒ |H(ω)|2 = 2b2(1+ cosω)
1− 2a cosω+ a2

(2.3.5)

where b is fixed by requiring unity gain at DC:

H(z)
∣∣
z=1 =

2b
1− a = 1 ⇒ b = 1− a

2

The zero at ω = π suppresses the high-frequency portion of the input noise spec-
trum even more than the filter of Eq. (2.3.1), thus, resulting in smaller NRR for the same
value of a. The impulse response of this filter can be computed using partial fractions:

H(z)= b(1+ z−1)
1− az−1

= A0 + A1

1− az−1
, where A0 = −ba, A1 = b(1+ a)

a

Therefore, its (causal) impulse response will be:

hn = A0δ(n)+A1anu(n)

112 2. Signal Extraction Basics

Note, in particular, that h0 = A0 +A1 = b. It follows that

R =
∞∑
n=0

h2
n = h2

0 +
∞∑
n=1

h2
n = b2 +A2

1
a2

1− a2
= 1− a

2

This is slightly smaller than that of Eq. (2.3.2), because of the inequality:

1− a
2

<
1− a
1+ a

The 3-dB cutoff frequency can be calculated easily in this example. We have

|H(ωc)|2 = 2b2(1+ cosωc)
1− 2a cosωc + a2

= 1

2

which can be solved for ωc in terms of a:

cosωc = 2a
1+ a2

� tan
(
ωc

2

)
= 1− a

1+ a (2.3.6)

Conversely, we can solve for a in terms of ωc:

a = 1− sinωc

cosωc
= 1− tan(ωc/2)

1+ tan(ωc/2)
(2.3.7)

It is easily checked that the condition 0 < a < 1 requires that ωc < π/2. We note
also that the substitution z→ −z changes the filter into a highpass one.

Such simple first-order lowpass or highpass filters with easily controllable widths
are useful in many applications, such as the low- and high-frequency shelving filters of
audio equalizers [30].

2.4 FIR Averaging Filters

The problem of extracting a constant or a low-frequency signal xn from the noisy signal
yn = xn + vn can also be approached with FIR filters. Consider, for example, the third-
order filter:

H(z)= h0 + h1z−1 + h2z−2 + h3z−3

The condition that the constant signal xn go through the filter unchanged is the
condition that the filter have unity gain at DC, which gives the constraint among the
filter weights:

H(z)
∣∣
z=1 = h0 + h1 + h2 + h3 = 1 (2.4.1)

The NRR of this filter will be simply:

R =
∑
n
h2
n = h2

0 + h2
1 + h2

2 + h2
3 (2.4.2)

The optimum third-order FIR filter will be the one that minimizes this NRR, subject
to the lowpass constraint (2.4.1). To solve this minimization problem, we introduce a
Lagrange multiplier λ and incorporate the constraint (2.4.1) into the performance index:

J =R+ λ
(

1−
3∑
n=0

hn
)
=

3∑
n=0

h2
n + λ

(
1−

3∑
n=0

hn
)

(2.4.3)

2.4. FIR Averaging Filters 113

The minimization can be carried out easily by setting the partial derivatives of J to
zero and solving for the h’s:

∂J
∂hn

= 2hn − λ = 0 ⇒ hn = λ
2
, n = 0,1,2,3

Thus, all four h’s are equal, h0 = h1 = h2 = h3 = λ/2. The constraint (2.4.1) then
fixes the value of λ to be 1/2 and we find the optimum weights:

h0 = h1 = h2 = h3 = 1

4

and the minimized NRR becomes:

Rmin =
(

1

4

)2

+
(

1

4

)2

+
(

1

4

)2

+
(

1

4

)2

= 4
(

1

4

)2

= 1

4

The I/O equation for this optimum smoothing filter becomes:

x̂n = 1

4

(
yn + yn−1 + yn−3 + yn−3

)

More generally, the optimum length-N FIR filter with unity DC gain and minimum
NRR is the filter with equal weights:

H(z)= 1

N
[
1+ z−1 + z−2 + · · · + z−(N−1)] (2.4.4)

and I/O equation:

x̂n = 1

N
(
yn + yn−1 + · · · + yn−N+1

)
(2.4.5)

with minimized NRR:

R = h2
0 + h2

1 + · · · + h2
N−1 = N ·

(
1

N

)2

= 1

N
(2.4.6)

Thus, by choosingN large enough, the NRR can be made as small as desired. Again,
as the NRR decreases, the filter’s time constant (neff = N) increases.

How does the FIR smoother compare with the IIR smoother of Eq. (2.3.1)? First, we
note the IIR smoother is very simple computationally, requiring only 2 MACs† per output
sample, whereas the FIR requires N MACs.

Second, the FIR smoother typically performs better in terms of both the NRR and
the transient response, in the sense that for the same NRR value, the FIR smoother has
shorter time constant, and for the same time constant, it has a smaller NRR. We illustrate
these remarks below.

Given a time constant neff = ln ε/ lna for an IIR smoother, the “equivalent” FIR
smoother should be chosen to have the same length N = neff, thus,

N = ln ε
lna

, a = ε1/N (2.4.7)

†multiplication-accumulations

114 2. Signal Extraction Basics

For example, if a = 0.90 and ε = 0.01, then N = neff = 44. But then, the NRR of
the FIR smoother will be R = 1/N = 1/44, which is better than that of the IIR filter,
R = (1−a)/(1+a)= 1/19. This case is illustrated in the left graph of Fig. 2.4.1, where
the FIR output was computed by Eq. (2.4.5) with N = 44 for the same noisy input of
Fig. 2.3.2. The IIR output is the same as in that figure.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

equal time constants

FIR
IIR

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

equal NRRs

FIR
IIR

Fig. 2.4.1 Comparison of FIR and IIR smoothing filters.

Similarly, if an IIR smoother achieves a certain NRR value, the “equivalent” FIR filter
with the same NRR should have length N such that:

R = 1− a
1+ a =

1

N
⇒ N = 1+ a

1− a , a = N − 1

N + 1
(2.4.8)

For example, if a = 0.98, then we getN = 99, which is much shorter than the IIR time
constant neff = 228 computed with ε = 0.01. The right graph of Fig. 2.4.1 illustrates
this case, where the FIR output was computed by Eq. (2.4.5) with N = 99.

An approximate relationship between the IIR time constant neff andN can be derived
in this case as follows. Using the small-x approximation ln

(
(1+ x)/(1− x)) � 2x, we

have for large N:

ln(1/a)= ln
(

1+ (1/N)
1− (1/N)

)
� 2

N
It follows that

neff = ln(1/ε)
ln(1/a)

� N 1

2
ln
(1

ε
)

Typically, the factor (ln(1/ε)/2) is greater than one, resulting in a longer IIR time
constant neff than N. For example, we have:

neff = 1.15N , if ε = 10−1 (10% time constant)
neff = 1.50N , if ε = 5 · 10−2 (5% time constant)
neff = 2.30N , if ε = 10−2 (1% or 40-dB time constant)
neff = 3.45N , if ε = 10−3 (0.1% or 60-dB time constant)

Finally, we note that a further advantage of the FIR smoother is that it is a linear
phase filter. Indeed, using the finite geometric series formula, we can write the transfer

2.4. FIR Averaging Filters 115

function of Eq. (2.4.5) in the form:

H(z)= 1

N
(
1+ z−1 + z−2 + · · · + z−(N−1)) = 1

N
1− z−N
1− z−1

(2.4.9)

Setting z = ejω, we obtain the frequency response:

H(ω)= 1

N
1− e−jNω
1− e−jω = 1

N
sin(Nω/2)
sin(ω/2)

e−jω(N−1)/2 (2.4.10)

which has a linear phase response. The transfer function (2.4.9) has zeros at the Nth
roots of unity, except at z = 1, that is,

zk = ejωk, ωk = 2πk
N

, k = 1,2, . . . ,N − 1

The zeros are distributed equally around the unit circle and tend to suppress the
noise spectrum along the Nyquist interval, except at z = 1 where there is a pole/zero
cancellation and we have H(z)= 1.

Fig. 2.4.2 shows the magnitude and phase response of H(ω) for N = 16. Note that
the phase response is piece-wise linear with slope (N− 1)/2. It exhibits 180o jumps at
ω =ωk, where the factor sin(Nω/2)/ sin(ω/2) changes algebraic sign.

Fig. 2.4.2 Magnitude and phase responses of FIR smoother, for N = 16.

The 3-dB cutoff frequency of the filter is somewhat less than half the base of the
mainlobe, that is,

ωc = 0.886π
N

(2.4.11)

It corresponds to a drop of the magnitude response squared by a factor of 1/2.
Indeed, setting ω/2 =ωc/2 = 0.443π/N in (2.4.10), we have

∣∣∣∣ 1

N
sin(N 0.443π/N)
sin(0.443π/N)

∣∣∣∣
2

�
∣∣∣∣ 1

N
sin(0.443π)
(0.443π/N)

∣∣∣∣
2

=
∣∣∣∣sin(0.443π)

0.443π

∣∣∣∣
2

� 1

2

where we used the approximation sin(π/2N)� π/2N, for largeN. In decibels, we have
−20 log10

(
sin(0.443π)/0.443π

) = 3.01 dB, hence, the name “3-dB frequency.”

116 2. Signal Extraction Basics

Like its IIR counterpart of Eq. (2.3.1), the FIR averaging filter (2.4.5) can be applied to
any low-frequency signal xn—not just a constant signal. The averaging of theN succes-
sive samples in Eq. (2.4.5) tends to smooth out the highly fluctuating noise component
vn, while it leaves the slowly varying component xn almost unchanged.

However, if xn is not so slowly varying, the filter will also tend to average out these
variations, especially when the averaging operation (2.4.5) reaches across many time
samples when N is large. In the frequency domain, the same conclusion follows by
noting that as N increases, the filter’s cutoff frequency ωc decreases, thus removing
more and more of the higher frequencies that might be present in the desired signal.

Thus, there is a limit to the applicability of this type of smoothing filter: Its length
must be chosen to be large enough to reduce the noise, but not so large as to start
distorting the desired signal by smoothing it too much.

A rough quantitative criterion for the selection of the length N is as follows. If it
is known that the desired signal xn contains significant frequencies up to a maximum
frequency, say ωmax, then we may choose N such that ωmax ≤ωc = 0.886π/N, which
gives N ≤ 0.886π/ωmax.

The FIR averaging filter can also be implemented in a recursive form based on the
summed version of the transfer function (2.4.9). For example, the direct-form realization
of H(z) is described by the I/O difference equation:

x̂n = x̂n−1 + 1

N
[
yn − yn−N

]
(2.4.12)

Because of the pole-zero cancellation implicit in (2.4.12) such implementation is
prone to roundoff accumulation errors and instabilities, and therefore, not recommended
for continuous real-time processing even though it is efficient computationally.

The FIR smoothing filter will be considered in further detail in Sec. 3.1, generalized
to local polynomial smoothing filters that minimize the NRR subject to additional linear
constraints on the filter weights. In Sec. 4.2, it is generalized to minimum-roughness
filters that minimize a filtered version of the NRR subject to similar constraints.

Like the IIR smoother, the FIR smoother and its generalizations are widely used in
many data analysis applications. It is also useful in de-seasonalizing applications, where
ifN is chosen to be the seasonal period, the filter’sNth root of unity zeros coincide with
the harmonics of the seasonal component so that the filter will extract the smooth trend
while eliminating the seasonal part.

2.5 Problems

2.1 Show that the z-domain transformation, z→ −z, maps a lowpass filter into a highpass one.
Show that under this transformation, the impulse response of the lowpass filter hn gets
mapped into (−1)nhn.

2.2 Given the real-valued impulse response hn of a lowpass filter, show that the filter with the
complex-valued impulse response ejω0nhn defines a bandpass filter centered at ω0. What
sort of filter is defined by the real-valued impulse response cos(ω0n)hn? Explain how the
previous problem is a special case of this problem.

2.5. Problems 117

2.3 Highpass Signal Extraction. Design a first-order IIR filter to extract the high-frequency xn =
(−1)ns from the noisy signal

yn = xn + vn = (−1)ns+ vn

where s is a constant amplitude and vn is zero-mean, white Gaussian noise with variance σ2
v .

Start by converting the two lowpass filters given in Sec. 2.3 into highpass filters. For each
of the resulting filters, plot the corresponding magnitude response and calculate the NRR in
terms of the pole parameter a.

For the values of the parameters s = 2 and a = 0.99, compute 200 samples of the signal yn
and process it through your filters and plot the output. Discuss the transient effect vs. the
signal extraction ability of the filters.

2.4 Bandpass Signal Extraction. A noisy sinusoid of frequency f0 = 500 Hz is sampled at a rate
of fs = 10 kHz:

yn = xn + vn = cos(ω0n)+vn
where ω0 = 2πf0/fs and vn is a zero-mean, unit-variance, white Gaussian noise signal. The
sinusoid can be extracted by a bandpass resonator-like filter of the form:

H(z)= G
(1−Rejω0z−1)(1−Re−jω0z−1)

= G
1− 2R cosω0 z−1 +R2z−2

Its poles are at z = Re±jω0 with 0 < R < 1. For R near unity, the 3-dB width of this filter is
given approximately by Δω = 2(1−R).
Fix the gain factor G by requiring that the filter have unity gain atω0, that is, |H(ω0)| = 1.
Then, show that the NRR of this filter is given by:

R =
∞∑
n=0

h2
n =

(1−R)(1+R2)(1− 2R cos(2ω0)+R2)
(1+R)(1− 2R2 cos(2ω0)+R4)

For the values of the parameters R = 0.99 and ω0 = 0.1π, plot the magnitude response of
this filter and indicate on the graph its 3-dB width. Calculate the corresponding NRR.

Then, calculate and plot 300 samples of the noisy signal yn, and process it through the filter.
On a separate graph, plot the resulting estimate x̂n together with the desired signal xn.

Discuss the signal extraction capability of this filter vs. the transient effects vs. the delay
shift introduced by the filter’s phase delay d(ω)= −ArgH(ω)/ω, and calculate the amount
of delay d(ω0) at ω0 and indicate it on the graph.

