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Review of Random Signals

1.1 Probability Density, Mean, Variance

In this section, we present a short review of probability concepts. It is assumed that the
reader has some familiarity with the subject on the level of Papoulis’ book [1].

Let x be a random variable having probability density p(x). Its mean, variance, and
second moment are defined by the expectation values

m = E[x] =
∫∞
−∞

xp(x)dx = mean

σ2 = Var(x)= E
[
(x−m)2] = ∫∞

−∞
(x−m)2p(x)dx = variance

E[x2] =
∫∞
−∞

x2p(x)dx = second moment

These quantities are known as second-order statistics of the random variable x. Their
importance is linked with the fact that most optimal filter design criteria require knowl-
edge only of the second-order statistics and do not require more detailed knowledge,
such as probability densities. It is necessary, then, to be able to extract such quantities
from the actual measured data.

The probability that the random variable x will assume a value within an interval of
values [a, b] is given by

Prob[a ≤ x ≤ b]=
∫ b

a
p(x)dx = shaded area

The probability density is always normalized to unity by∫∞
−∞

p(x)dx = 1
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which states that the probability of x taking a value somewhere within its range of
variation is unity, that is, certainty. This property also implies

σ2 = E
[
(x−m)2] = E[x2]−m2

Example 1.1.1: Gaussian, or normal, distribution

p(x)= 1√
2πσ

exp
[−(x−m)2/2σ2

]

Example 1.1.2: Uniform distribution

p(x)=
⎧⎨⎩1/Q , for −Q/2 ≤ x ≤ Q/2

0, otherwise

Its variance is σ2 = Q2/12. ��

Both the gaussian and the uniform distributions will prove to be important examples.
In typical signal processing problems of designing filters to remove or separate noise
from signal, it is often assumed that the noise interference is gaussian. This assumption
is justified on the grounds of the central limit theorem, provided that the noise arises
from many different noise sources acting independently of each other.

The uniform distribution is also important. In digital signal processing applications.
the quantization error arising from the signal quantization in the A/D converters, or the
roundoff error arising from the finite accuracy of the internal arithmetic operations in
digital filters, can often be assumed to be uniformly distributed.

Every computer provides system routines for the generation of random numbers.
For example, the routines RANDU and GAUSS of the IBM Scientific Subroutine Package
generate uniformly distributed random numbers over the interval [0,1], and gaussian-
distributed numbers, respectively. GAUSS calls RANDU twelve times, thus generating
twelve independent uniformly distributed random numbers x1, x2, . . . , x12. Then, their
sum x = x1+x2+· · ·+x12, will be approximately gaussian, as guaranteed by the central
limit theorem. It is interesting to note that the variance of x is unity, as it follows from
the fact that the variance of each xi, is 1/12:

σ2
x = σ2

x1
+σ2

x2
+ · · · +σ2

x12
= 1

12
+ 1

12
+ · · · + 1

12
= 1

The mean of x is 12/2 = 6. By shifting and scaling x, one can obtain a gaussian-
distributed random number of any desired mean and variance.
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1.2 Chebyshev’s Inequality

The variance σ2 of a random variable x is a measure of the spread of the x-values
about their mean. This intuitive interpretation of the variance is a direct consequence
of Chebyshev’s inequality, which states that the x-values tend to cluster about their
mean in the sense that the probability of a value not occurring in the near vicinity of the
mean is small; and it is smaller the smaller the variance.

More precisely, for any probability density p(x) and any Δ > 0, the probability that
x will fall outside the interval of values [m−Δ,m+Δ] is bounded by σ2/Δ2. Thus, for
fixed Δ, as the variance σ2 becomes smaller, the x-values tend to cluster more narrowly
about the mean. In the extreme limiting case of a deterministic variable x = m, the
density becomes infinitely narrow, p(x)= δ(x−m), and has zero variance.

Prob
[|x−m| ≥ Δ

] ≤ σ2

Δ2

(Chebyshev’s Inequality)

Chebyshev’s inequality is especially important in proving asymptotic convergence
results for sample estimates of parameters. For example, consider N independent sam-
ples {x1, x2, . . . , xN} drawn from a gaussian probability distribution of mean m and
variance σ2. The sample estimate of the mean is

m̂ = 1

N
(x1 + x2 + · · · + xN) (1.2.1)

Being a sum of N gaussian random variables, m̂ will itself be a gaussian random
variable. Its probability density is completely determined by the corresponding mean
and variance. These are found as follows.

E[m̂]= 1

N
(
E[x1]+E[x2]+· · · + E[xN]

) = 1

N
(m+m+ · · · +m)=m

Therefore, m̂ is an unbiased estimator of m. However, the goodness of m̂ as an es-
timator must be judged by how small its variance is—the smaller the better, by Cheby-
shev’s inequality. By the assumption of independence, we have

var(m̂)= E
[
(m̂−m)2] = 1

N2

(
σ2
x1
+σ2

x2
+ · · · +σ2

xN
) = 1

N2

(
Nσ2) = σ2

N
(1.2.2)

Thus, m̂ is also a consistent estimator of m in the sense that its variance tends to
zero as the number of samples N increases. The values of m̂ will tend to cluster more
and more closely about the true value ofm asN becomes larger. Chebyshev’s inequality
implies that the probability of m̂ falling outside any fixed neighborhood of m will tend
to zero for large N. Equivalently, m̂ will converge to m with probability one. This can
also be seen from the probability density of m̂, which is the gaussian

p(m̂)= N1/2

(2π)1/2σ
exp

[− N
2σ2

(m̂−m)2]
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In the limit of large N, this density tends to the infinitely narrow delta function
density p(m̂)= δ(m̂ − m). In addition to the sample mean, we may also compute
sample estimates of the variance σ2 by

σ̂2 = 1

N

N∑
i=1

(xi − m̂)2 (1.2.3)

It is easily shown [2,3] that this estimator is slightly biased. But for large N, it is
asymptotically unbiased and consistent as can be seen from its mean and variance:

E[σ̂2]= N − 1

N
σ2 , var(σ̂2)= N − 1

N2
2σ4 (1.2.4)

An unbiased and consistent estimator of σ2 is the standard deviation defined by

s2 = 1

N − 1

N∑
i=1

(xi − m̂)2 (1.2.5)

It has E[s2]= σ2 and var(s2)= 2σ4/(N − 1) . In addition to the requirements of
asymptotic unbiasedness and consistency, a good estimator of a parameter must also
be judged in terms of its efficiency [2,3], which determines how closely the estimator
meets its Cramér-Rao bound. This is discussed in Sec. 1.18. We will see there that the es-
timators (1.2.1) and (1.2.3)—being maximum likelihood estimators—are asymptotically
efficient.

1.3 Joint and Conditional Densities, and Bayes’ Rule

Next, we discuss random vectors. A pair of two different random variables x = (x1, x2)
may be thought of as a vector-valued random variable. Its statistical description is more
complicated than that of a single variable and requires knowledge of the joint probability
density p(x1, x2). The two random variables may or may not have any dependence on
each other. It is possible, for example, that if x2 assumes a particular value, then this
fact may influence, or restrict, the possible values that x1 can then assume.

A quantity that provides a measure for the degree of dependence of the two variables
on each other is the conditional density p(x1|x2) of x1 given x2; and p(x2|x1) of x2 given
x1. These are related by Bayes’ rule

p(x1, x2)= p(x1|x2)p(x2)= p(x2|x1)p(x1)

More generally, Bayes’ rule for two events A and B is

p(A,B)= p(A|B)p(B)= p(B|A)p(A)

The two random variables x1 and x2 are independent of each other if they do not
condition each other in any way, that is, if

p(x1|x2)= p(x1) or p(x2|x1)= p(x2)
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In other words, the occurrence of x2 does not in any way influence the variable x1.
When two random variables are independent, their joint density factors into the product
of single (marginal) densities:

p(x1, x2)= p(x1)p(x2)

The converse is also true. The correlation between x1 and x2 is defined by the expectation
value

E[x1x2]=
∫∫

x1x2p(x1, x2)dx1dx2

When x1 and x2 are independent, the correlation also factors as E[x1x2]= E[x1]E[x2].

Example 1.3.1: Suppose x1 is related to x2 by

x1 = 5x2 + v

where v is a zero-mean, unit-variance, gaussian random variable assumed to be indepen-
dent of x2. Determine the conditional density and conditional mean of x1 given x2.

Solution: The randomness of x1 arises both from the randomness of x2 and the randomness of
v. But if x2 takes on a particular value, then the randomness of x1 will arise only from v.
Identifying elemental probabilities we have

p(x1|x2)dx1 = p(v)dv = (2π)−1/2exp
(−1

2
v2

)
dv

But, dx1 = dv and v = x1 − 5x2. Therefore,

p(x1|x2)= (2π)−1/2exp
[−1

2
(x1 − 5x2)2

]
The conditional mean is the mean of x1 with respect to the density p(x1|x2). It is evident
from the above gaussian expression that the conditional mean is E[x1|x2]= 5x2. This can
also be found directly as follows.

E[x1|x2]= E
[
(5x2 + v)|x2

] = 5x2 + E[v|x2]= 5x2

where we used the independence of v and x2 to replace the conditional mean of v with its
unconditional mean, which was given to be zero, that is, E[v|x2]= E[v]= 0. ��

The concept of a random vector generalizes to any dimension. A vector ofN random
variables

x =

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎥⎥⎦
requires knowledge of the joint density

p(x)= p(x1, x2, . . . , xN) (1.3.1)
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for its complete statistical description. The second-order statistics of x are its mean, its
correlation matrix, and its covariance matrix, defined by

m = E[x] , R = E[xxT] , Σ = E
[
(x−m)(x−m)T

]
(1.3.2)

where the superscript T denotes transposition, and the expectation operations are de-
fined in terms of the joint density (1.3.1); for example,

E[x]=
∫

xp(x)dNx

where dNx = dx1dx2 · · ·dxN denotes the corresponding N-dimensional volume ele-
ment. The ijth matrix element of the correlation matrix R is the correlation between
the ith random variable xi with the jth random variable xj, that is, Rij = E[xixj] . It is
easily shown that the covariance and correlation matrices are related by

Σ = R−mmT

When the mean is zero, R and Σ coincide. Both R and Σ are symmetric positive semi-
definite matrices.

Example 1.3.2: The probability density of a gaussian random vector x = [x1, x2, . . . , xN]T is
completely specified by its mean m and covariance matrix Σ, that is,

p(x)= 1

(2π)N/2(detΣ)1/2
exp

[−1

2
(x−m)TΣ−1(x−m)

]
Example 1.3.3: Under a linear transformation, a gaussian random vector remains gaussian. Let

x be a gaussian random vector of dimension N, mean mx, and covariance Σx. Show that
the linearly transformed vector

ξξξ = Bx where B is a nonsingular N×N matrix

is gaussian-distributed with mean and covariance given by

mξ = Bmx , Σξ = BΣxBT (1.3.3)

The relationships (1.3.3) are valid also for non-gaussian random vectors. They are easily
derived as follows:

E[ξξξ]= E[Bx]= BE[x] , E[ξξξξξξT]= E[Bx(Bx)T]= BE[xxT]BT

The probability density pξ(ξξξ) is related to the density px(x) by the requirement that,
under the above change of variables, they both yield the same elemental probabilities:

pξ(ξξξ)dNξξξ = px(x)dNx (1.3.4)

Since the Jacobian of the transformation from x to ξξξ is dNξξξ = |detB|dNx, we obtain
pξ(ξξξ)= px(x)/|detB|. Noting the invariance of the quadratic form

(ξξξ−mξ)TΣ−1
ξ (ξξξ−mξ) = (x−mx)TBT(BΣxBT)−1B(x−mx)

= (x−mx)TΣ−1
x (x−mx)

and that detΣξ = det(BΣxBT)= (detB)2detΣx, we obtain

pξ(ξξξ)= 1

(2π)N/2(detΣξ)1/2
exp

[−1

2
(ξξξ−mξ)TΣ−1

ξ (ξξξ−mξ)
]
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Example 1.3.4: Consider two zero-mean random vectors x and y of dimensions N and M, re-
spectively. Show that if they are uncorrelated and jointly gaussian, then they are also
independent of each other. That x and y are jointly gaussian means that the (N+M)-

dimensional joint vector z =
[

x
y

]
is zero-mean and gaussian, that is,

p(z)= 1

(2π)(N+M)/2(detRzz)1/2
exp

[−1

2
zTR−1

zz z
]

where the correlation (covariance) matrix Rzz is

Rzz = E
[[

x
y

]
[xT,yT]

]
=

[
E[xxT] E[xyT]
E[yxT] E[yyT]

]
=

[
Rxx Rxy

Ryx Ryy

]

If x and y are uncorrelated, that is, Rxy = E[xyT]= 0, then the matrix Rzz becomes block
diagonal and the quadratic form of the joint vector becomes the sum of the individual
quadratic forms:

zTR−1
zz z = [xT,yT]

[
R−1
xx 0
0 R−1

yy

][
x
y

]
= xTR−1

xx x+ yTR−1
yyy

Since Rxy = 0 also implies that detRzz = (detRxx)(detRyy), it follows that the joint
density p(z)= p(x,y) factors into the marginal densities:

p(x,y)= p(x)p(y)

which shows the independence of x and y.

Example 1.3.5: Given a random vector x with mean m and covariance Σ, show that the best
choice of a deterministic vector x̂ which minimizes the quantity

Ree = E[eeT]= minimum , where e = x− x̂,

is the mean m itself, that is, x̂ = m. Also show that for this optimal choice of x̂, the actual
minimum value of the quantity Ree is the covariance Σ. This property is easily shown by
working with the deviation of x̂ from the mean m, that is, let

x̂ = m+ΔΔΔ

Then, the quantity Ree becomes

Ree = E[eeT]= E
[
(x−m−ΔΔΔ)(x−m−ΔΔΔ)T

]
= E

[
(x−m)(x−m)T

]−ΔΔΔE[xT −mT]−E[x−m]ΔΔΔ+ΔΔΔΔΔΔT

= Σ +ΔΔΔΔΔΔT

where we used the fact that E[x−m]= E[x]−m = 0. Since the matrix ΔΔΔΔΔΔT is nonnegative-
definite, it follows that Ree, will be minimized when ΔΔΔ = 0, and in this case the minimum
value will be Rmin

ee = Σ.

Since Ree is a matrix, the sense in which it is minimized must be clarified. The statement
thatRee is greater thanRmin

ee means that the differenceRee−Rmin
ee is a positive semi-definite

(and symmetric) matrix, and therefore we have for the scalar quantities: aTReea ≥ aTRmin
ee a

for any vector a. ��
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1.4 Correlation Canceling and Optimum Estimation

The concept of correlation canceling plays a central role in the development of many
optimum signal processing algorithms, because a correlation canceler is also the best
linear processor for estimating one signal from another.

Consider two zero-mean random vectors x and y of dimensions N and M, respec-
tively. If x and y are correlated with each other in the sense that Rxy = E[xyT]�= 0, then
we may remove such correlations by means of a linear transformation of the form

e = x−Hy (1.4.1)

where the N×M matrix H must be suitably chosen such that the new pair of vectors e,y
are no longer correlated with each other, that is, we require

Rey = E[eyT]= 0 (1.4.2)

Using Eq. (1.4.1), we obtain

Rey = E[eyT]= E
[
(x−Hy)yT

] = E[xyT]−HE[yyT]= Rxy −HRyy

Then, the condition Rey = 0 immediately implies that

H = RxyR−1
yy = E[xyT]E[yyT]−1 (1.4.3)

Using Rey = 0, the covariance matrix of the resulting vector e is easily found to be

Ree = E[eeT]= E
[
e(xT − yTH)

] = Rex −ReyHT = Rex = E
[
(x−Hy)xT

]
, or,

Ree = Rxx −HRyx = Rxx −RxyR−1
yyRyx (1.4.4)

The vector
x̂ = Hy = RxyR−1

yyy = E[xyT]E[yyT]−1y (1.4.5)

obtained by linearly processing the vector y by the matrix H is called the linear regres-
sion, or orthogonal projection, of x on the vector y. In a sense to be made precise later,
x̂ also represents the best “copy,” or estimate, of x that can be made on the basis of the
vector y. Thus, the vector e = x−Hy = x− x̂ may be thought of as the estimation error.

Actually, it is better to think of x̂ = Hy not as an estimate of x but rather as an
estimate of that part of x which is correlated with y. Indeed, suppose that x consists of
two parts

x = x1 + x2

such that x1 is correlated with y, but x2 is not, that is, Rx2y = E[x2yT]= 0. Then,

Rxy = E[xyT]= E
[
(x1 + x2)yT]= Rx1y +Rx2y = Rx1y

and therefore,

x̂ = RxyR−1
yyy = Rx1yR

−1
yyy = x̂1
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Fig. 1.4.1 Correlation canceler.

The vector e = x− x̂ = x1 + x2 − x̂1 = (x1 − x̂1)+x2 consists of the estimation error
(x1−x̂1) of the x1-part plus the x2-part. Both of these terms are separately uncorrelated
from y. These operations are summarized in block diagram form in Fig. 1.4.1.

The most important feature of this arrangement is the correlation cancellation prop-
erty which may be summarized as follows: If x has a part x1 which is correlated with y,
then this part will tend to be canceled as much as possible from the output e. The linear
processor H accomplishes this by converting y into the best possible copy x̂1 of x1 and
then proceeds to cancel it from the output. The output vector e is no longer correlated
with y. The part x2 of x which is uncorrelated with y remains entirely unaffected. It
cannot be estimated in terms of y.

The correlation canceler may also be thought of as an optimal signal separator. In-
deed, the output of the processor H is essentially the x1 component of x, whereas the
output e is essentially the x2 component. The separation of x into x1 and x2 is optimal
in the sense that the x1 component of x is removed as much as possible from e.

Next, we discuss the best linear estimator property of the correlation canceler. The
choice H = RxyR−1

yy , which guarantees correlation cancellation, is also the choice that
gives the best estimate of x as a linear function of y in the form x̂ = Hy. It is the best
estimate in the sense that it produces the lowest mean-square estimation error. To see
this, express the covariance matrix of the estimation error in terms of H, as follows:

Ree = E[eeT]= E
[
(x−Hy)(xT − yTHT)

] = Rxx −HRyx −RxyHT +HRyyHT (1.4.6)

Minimizing this expression with respect to H yields the optimum choice of H:

Hopt = RxyR−1
yy

with the minimum value for Ree given by:

Rmin
ee = Rxx −RxyR−1

yyRyx

Any other value will result in a larger value for Ree. An alternative way to see this is
to consider a deviation ΔH of H from its optimal value, that is, in (1.4.5) replace H by

H = Hopt +ΔH = RxyR−1
yy +ΔH

Then Eq. (1.4.6) may be expressed in terms of ΔH as follows:

Ree = Rmin
ee +ΔHRyy ΔHT

Since Ryy is positive definite, the second term always represents a nonnegative con-
tribution above the minimum value Rmin

ee , so that
(
Ree −Rmin

ee
)

is positive semi-definite.
In summary, there are three useful ways to think of the correlation canceler:
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1. Optimal estimator of x from y.
2. Optimal canceler of that part of x which is correlated with y.
3. Optimal signal separator

The point of view is determined by the application. The first view is typified by
Kalman filtering, channel equalization, and linear prediction applications. The second
view is taken in echo canceling, noise canceling, and sidelobe canceling applications.
The third view is useful in the adaptive line enhancer, which is a method of adaptively
separating a signal into its broadband and narrowband components. All of these appli-
cations are considered later on.

Example 1.4.1: If x and y are jointly gaussian, show that the linear estimate x̂ = Hy is also
the conditional mean E[x|y] of the vector x given the vector y. The conditional mean is
defined in terms of the conditional density p(x|y) of x given y as follows:

E[x|y]=
∫

xp(x|y)dNx

Instead of computing this integral, we will use the results of Examples 1.3.3 and 1.3.4.
The transformation from the jointly gaussian pair (x,y) to the uncorrelated pair (e,y) is
linear: [

e
y

]
=

[
IN −H
0 IM

][
x
y

]
where IN and IM are the unit matrices of dimensions N and M, respectively. Therefore,
Example 1.3.3 implies that the transformed pair (e,y) is also jointly gaussian. Further-
more, since e and y are uncorrelated, it follows from Example 1.3.4 that they must be
independent of each other. The conditional mean of x can be computed by writing

x = x̂+ e = Hy+ e

and noting that if y is given, then Hy is no longer random. Therefore,

E[x|y]= E
[
(Hy+ e)|y] = Hy+ E[e|y]

Since e and y are independent, the conditional mean E[e|y] is the same as the uncondi-
tional mean E[e], which is zero by the zero-mean assumption. Thus,

E[x|y]= Hy = RxyR−1
yyy (jointly gaussian x and y) (1.4.7)

Example 1.4.2: Show that the conditional mean E[x|y] is the best unrestricted (i.e., not neces-
sarily linear) estimate of x in the mean-square sense. The best linear estimate was obtained
by seeking the best linear function of y that minimized the error criterion (1.4.6), that is,
we required a priori that the estimate was to be of the form x̂ = Hy. Here, our task is more
general: find the most general function of y, x̂ = x̂(y), which gives the best estimate of x,
in the sense of producing the lowest mean-squared estimation error e = x− x̂(y),

Ree = E[eeT]= E
[(

x− x̂(y)
)(

xT − x̂(y)T
)] = min

The functional dependence of x̂(y) on y is not required to be linear a priori. Usingp(x,y)=
p(x|y)p(y), the above expectation may be written as

Ree =
∫ (

x− x̂(y)
)(

xT − x̂(y)T
)
p(x,y)dNxdMy

=
∫
p(y)dMy

[∫ (
x− x̂(y)

)(
xT − x̂(y)T

)
p(x|y)dNx

]

1.4. Correlation Canceling and Optimum Estimation 11

Since p(y) is nonnegative for all y, it follows that Ree will be minimized when the quantity∫ (
x− x̂(y)

)(
xT − x̂(y)T

)
p(x|y)dNx

is minimized with respect to x̂. But we know from Example 1.3.5 that this quantity is
minimized when x̂ is chosen to be the corresponding mean; here, this is the mean with
respect to the density p(x|y). Thus,

x̂(y)= E[x|y] (1.4.8)

To summarize, we have seen that

x̂ = Hy = RxyR−1
yyy = best linear mean-square estimate of x

x̂ = E[x|y]= best unrestricted mean-square estimate of x

and Example 1.4.1 shows that the two are equal in the case of jointly gaussian vectors
x and y.

The concept of correlation canceling and its application to signal estimation prob-
lems will be discussed in more detail in Chap. 11. The adaptive implementation of the
correlation canceler will be discussed in Chap. 16. In a typical signal processing applica-
tion, the processor H would represent a linear filtering operation and the vectors x and
y would be blocks of signal samples. The design of such processors requires knowledge
of the quantities Rxy = E[xyT] and Ryy = E[yyT]. How does one determine these?
Basically, applications fall into two classes:

1. Both x and y are available for processing and the objective is to cancel the corre-
lations that may exist between them.

2. Only the signal y is available for processing and the objective is to estimate the
signal x on the basis of y.

In the first class of applications, there exist two basic design approaches:

a. Block processing (off-line) methods. The required correlations Rxy and Ryy are
computed on the basis of two actual blocks of signal samples x and y by replacing
statistical averages by time averages.

b. Adaptive processing (on-line) methods. The quantities Rxy and Ryy are “learned”
gradually as the data x and y become available in real time. The processor H is
continually updated in response to the incoming data, until it reaches its optimal
value.

Both methods are data adaptive. The first is adaptive on a block-by-block basis,
whereas the second on a sample-by-sample basis. Both methods depend heavily on the
assumption of stationarity. In block processing methods, the replacement of ensemble
averages by time averages is justified by the assumption of ergodicity, which requires
stationarity. The requirement of stationarity can place serious limitations on the allowed
length of the signal blocks x and y.
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Similarly, in adaptive processing methods, convergence to the optimal value of the
processor H again requires stationarity. Adaptive methods offer, however, the possibil-
ity of tracking nonstationary changes of the environment, as long as such changes occur
slowly enough to allow convergence between changes. Thus, the issue of the speed of
convergence of adaptation algorithms is an important one.

In the second class of applications where x is not available for processing, one must
have a specific model of the relationship between x and y from which Rxy and Ryy may
be calculated. This is, for example, what is done in Kalman filtering.

Example 1.4.3: As an example of the relationship that might exist between x and y, let

yn = xcn + vn , n = 1,2, . . . ,M

where x and vn are zero-mean, unit-variance, random variables, and cn are known coef-
ficients. It is further assumed that vn are mutually uncorrelated, and also uncorrelated
with x, so that E[vnvm]= δnm, E[xvn]= 0. We would like to determine the optimal linear
estimate (1.4.5) of x, and the corresponding estimation error (1.4.4). In obvious matrix
notation we have y = cx + v, with E[xv]= 0 and E[vvT]= I, where I is the M×M unit
matrix. We find

E[xyT] = E
[
x(xc+ v)T

] = cTE[x2]+E[xvT]= cT

E[yyT] = E
[
(xc+ v)(xc+ v)T

] = ccTE[x2]+E[vvT]= ccT + I

and therefore, H = E[xyT]E[yyT]−1= cT(I + ccT)−1. Using the matrix inversion lemma
we may write (I + ccT)−1= I − c(1+ cTc)−1cT , so that

H = cT
[
I − c(1+ cTc)−1cT

] = (1+ cTc)−1cT

The optimal estimate of x is then

x̂ = Hy = (1+ cTc)−1cTy (1.4.9)

The corresponding estimation error is computed by

E[e2]= Ree = Rxx −HRyy = 1− (1+ cTc)−1cTc = (1+ cTc)−1

1.5 Regression Lemma

The regression lemma is a key result in the derivation of the Kalman filter. The optimum
estimate and estimation error of a (zero-mean) random vector x based on a (zero-mean)
vector of observations y1 are given by

x̂1 = Rxy1R
−1
y1y1

y1 = E[xyT1 ]E[y1yT1 ]−1y1

e1 = x− x̂1

Re1e1 = E[e1eT1 ]= Rxx −Rxy1R
−1
y1y1

Ry1x
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If the observation set is enlarged by adjoining to it a new set of observations y2, so

that the enlarged observation vector is y =
[

y1

y2

]
, the corresponding estimate of x will

given by,

x̂ = RxyR−1
yyy = [

Rxy1 , Rxy2

][
Ry1y1 Ry1y2

Ry2y1 Ry2y2

]−1 [
y1

y2

]
The regression lemma states that x̂ can be obtained by the following alternative

expression of updating x̂1 by the addition of a correction term,

x̂ = x̂1 +Rxε2R
−1
ε2ε2

εεε2 (regression lemma) (1.5.1)

where εεε2 is the innovations residual obtained by removing from y2 that part which is
predictable from y1, that is,

εεε2 = y2 − ŷ2/1 = y2 −Ry2y1R
−1
y1y1

y1

The improvement in using more observations is quantified by the following result,
which shows that the mean-square error is reduced:

e = x− x̂ ⇒ Ree = Re1e1 −Rxε2R
−1
ε2ε2

Rε2x (1.5.2)

where we defined,
Rxε2 = RT

ε2x = E[xεεεT2 ] , Rε2ε2 = E[εεε2εεεT2 ]

The proof of Eq. (1.5.1) is straightforward and is left as an exercise. As a hint, the
following property may be used,[

y1

y2

]
=

[
I 0
H I

][
y1

εεε2

]
,

[
Ry1y1 Ry1y2

Ry2y1 Ry2y2

]
=

[
I 0
H I

][
Ry1y1 0

0 Rε2ε2

][
I 0
H I

]T

where H = Ry2y1R−1
y1y1

. A special case of this lemma is discussed next.

1.6 Gram-Schmidt Orthogonalization

In the previous section, we saw that any random vector x may be decomposed relative to
another vector y into two parts, x = x̂+ e, one part which is correlated with y, and one
which is not. These two parts are uncorrelated with each other since Rex̂ = E[ex̂T]=
E[eyTHT]= E[eyT]HT = 0. In a sense, they are orthogonal to each other. In this
section, we will briefly develop such a geometrical interpretation.

The usefulness of the geometrical approach is threefold: First, it provides a very
simple and intuitive framework in which to formulate and understand signal estimation
problems. Second, through the Gram-Schmidt orthogonalization process, it provides
the basis for making signal models, which find themselves in a variety of signal process-
ing applications, such as speech synthesis, data compression, and modern methods of
spectrum estimation. Third, again through the Gram-Schmidt construction, by decor-
relating the given set of observations it provides the most convenient basis to work
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with, containing no redundancies. Linear estimates expressed in the decorrelated basis
become computationally efficient.

Geometrical ideas may be introduced by thinking of the space of random variables
under consideration as a linear vector space [7]. For example, in the previous section we
dealt with the multicomponent random variables x and y consisting, say, of the random
variables {x1, x2, . . . , xN} and {y1, y2, . . . , yM}, respectively. In this case, the space of
random variables under consideration is the set

{x1, x2, . . . , xN, y1, y2, . . . , yM} (1.6.1)

Since any linear combination of random variables from this set is itself a random
variable, the above set may be enlarged by adjoining to it all such possible linear combi-
nations. This is the linear vector space generated or spanned by the given set of random
variables. The next step is to convert this vector space into an inner-product space (a
Hilbert space) by defining an inner product between any two random variables u and v
as follows:

(u, v)= E[uv] (1.6.2)

With this definition of an inner product, “orthogonal” means “uncorrelated.” The
distance between u and v is defined by the norm ‖u − v‖ induced by the above inner
product:

‖u− v‖2 = E
[
(u− v)2] (1.6.3)

Mutually orthogonal (i.e., uncorrelated) random variables may be used to define
orthogonal bases. Consider, for example, M mutually orthogonal random variables
{ε1, ε2, . . . , εM}, such that

(εi, εj)= E[εiεj]= 0 , if i �= j (1.6.4)

and let Y = {ε1, ε2, . . . , εM} be the linear subspace spanned by these M random vari-
ables. Without loss of generality, we may assume that the εis are linearly independent;
therefore, they form a linearly independent and orthogonal basis for the subspace Y.

One of the standard results on linear vector spaces is the orthogonal decomposition
theorem [8], which in our context may be stated as follows: Any random variable x may
be decomposed uniquely, with respect to a subspace Y, into two mutually orthogonal
parts. One part is parallel to the subspace Y (i.e., it lies in it), and the other is perpen-
dicular to it. That is,

x = x̂+ e with x̂ ∈ Y and e ⊥ Y (1.6.5)

The component x̂ is called the orthogonal projection of x onto the subspace Y. This
decomposition is depicted in Fig. 1.6.1. The orthogonality condition e ⊥ Y means that
e must be orthogonal to every vector in Y; or equivalently, to every basis vector εi,

(e, εi)= E[eεi]= 0 , i = 1,2, . . . ,M (1.6.6)

Since the component x̂ lies in Y, it may be expanded in terms of the orthogonal basis
in the form

x̂ =
M∑
i=1

aiεi
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Fig. 1.6.1 Orthogonal decomposition with respect to Y = {ε1, ε2}.

The coefficients ai can be determined using the orthogonality equations (1.6.6), as
follows,

(x, εi) = (x̂+ e, εi)= (x̂, εi)+(e, εi)= (x̂, εi)

=
⎛⎝ M∑
j=1

ajεj, εi

⎞⎠ = M∑
j=1

aj(εj, εi)= ai(εi, εi)

where in the last equality we used Eq. (1.6.4). Thus, ai = (x, εi)(εi, εi)−1. or, ai =
E[xεi]E[εiεi]−1, and we can write Eq. (1.6.5) as

x = x̂+ e =
M∑
i=1

E[xεi]E[εiεi]−1εi + e (1.6.7)

Eq. (1.6.7) may also be written in a compact matrix form by introducing the M-vector,

εεε =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εM

⎤⎥⎥⎥⎥⎥⎦
the corresponding cross-correlation M-vector,

E[xεεε]=

⎡⎢⎢⎢⎢⎢⎣
E[xε1]
E[xε2]

...
E[xεM]

⎤⎥⎥⎥⎥⎥⎦
and the correlation matrix Rεε = E[εεεεεεT], which is diagonal because of Eq. (1.6.4):

Rεε = E[εεεεεεT]= diag
{
E[ε2

1], E[ε
2
2], . . . , E[ε

2
M]

}
Then, Eq. (1.6.7) may be written as

x = x̂+ e = E[xεεεT]E[εεεεεεT]−1εεε+ e (1.6.8)
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The orthogonality equations (1.6.6) can be written as

Reε = E[eεεεT]= 0 (1.6.9)

Equations (1.6.8) and (1.6.9) represent the unique orthogonal decomposition of any
random variable x relative to a linear subspace Y of random variables. If one has a
collection of N random variables {x1, x2, . . . , xN}, then each one may be orthogonally
decomposed with respect to the same subspace Y, giving xi = x̂i + ei, i = 1,2, . . . ,N.
These may be grouped together into a compact matrix form as

x = x̂+ e = E[xεεεT]E[εεεεεεT]−1εεε+ e (1.6.10)

where x stands for the column N-vector x = [x1, x2, . . . , xN]T, and so on. This is iden-
tical to the correlation canceler decomposition of the previous section.

Next, we briefly discuss the orthogonal projection theorem. In Sec. 1.4, we noted
the best linear estimator property of the correlation canceler decomposition. The same
result may be understood geometrically by means of the orthogonal projection theorem,
which states: The orthogonal projection x̂ of a vector x onto a linear subspace Y is that
vector inY that lies closest to xwith respect to the distance induced by the inner product
of the vector space.

The theorem is a simple consequence of the orthogonal decomposition theorem and
the Pythagorean theorem. Indeed, let x = x̂+e be the unique orthogonal decomposition
of x with respect to Y, so that x̂ ∈ Y and e ⊥ Y and let y be an arbitrary vector in Y;
noting that (x̂− y)∈ Y and therefore e ⊥ (x̂− y), we have

‖x− y‖2 = ‖(x̂− y)+e‖2 = ‖x̂− y‖2 + ‖e‖2

or, in terms of Eq. (1.6.3),

E
[
(x− y)2] = E

[
(x̂− y)2]+ E[e2]

Since the vector y varies over the subspace Y, it follows that the above quantity
will be minimized when y = x̂. In summary, x̂ represents the best approximation of
x that can be made as a linear function of the random variables in Y in the minimum
mean-square sense.

Above, we developed the orthogonal decomposition of a random variable relative to
a linear subspace Y which was generated by means of an orthogonal basis ε1, ε2, . . . , εM.
In practice, the subspace Y is almost always defined by means of a nonorthogonal basis,
such as a collection of random variables

Y = {y1, y2, . . . , yM}
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which may be mutually correlated. The subspace Y is defined again as the linear span
of this basis. The Gram-Schmidt orthogonalization process is a recursive procedure of
generating an orthogonal basis {ε1, ε2, . . . , εM} from {y1, y2, . . . , yM}.

The basic idea of the method is this: Initialize the procedure by selecting ε1 = y1.
Next, consider y2 and decompose it relative to ε1. Then, the component of y2 which is
perpendicular to ε1 is selected as ε2, so that (ε1, ε2)= 0. Next, take y3 and decompose it
relative to the subspace spanned by {ε1, ε2} and take the corresponding perpendicular
component to be ε3, and so on. For example, the first three steps of the procedure are

ε1 = y1

ε2 = y2 − E[y2ε1]E[ε1ε1]−1ε1

ε3 = y3 − E[y3ε1]E[ε1ε1]−1ε1 − E[y3ε2]E[ε2ε2]−1ε2

At the nth iteration step

εn = yn −
n−1∑
i=1

E[ynεi]E[εiεi]−1εi , n = 2,3, . . . ,M (1.6.11)

The basis {ε1, ε2, . . . , εM} generated in this way is orthogonal by construction. The
Gram-Schmidt process may be understood in terms of the hierarchy of subspaces:

Y1 = {ε1} = {y1}
Y2 = {ε1, ε2} = {y1, y2}
Y3 = {ε1, ε2, ε3} = {y1, y2, y3}
...
Yn = {ε1, ε2, . . . , εn} = {y1, y2, . . . , yn}

for n = 1,2, . . . ,M, where each is a subspace of the next one and differs from the next by
the addition of one more basis vector. The second term in Eq. (1.6.11) may be recognized
now as the component of yn parallel to the subspace Yn−1. We may denote this as

ŷn/n−1 =
n−1∑
i=1

E[ynεi]E[εiεi]−1εi (1.6.12)

Then, Eq. (1.6.11) may be written as

εn = yn − ŷn/n−1 or yn = ŷn/n−1 + εn (1.6.13)
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which represents the orthogonal decomposition of yn relative to the subspace Yn−1.
Since, the term ŷn/n−1 already lies in Yn−1, we have the direct sum decomposition

Yn = Yn−1 ⊕ {yn} = Yn−1 ⊕ {εn}

Introducing the notation

bni = E[ynεi]E[εiεi]−1 , 1 ≤ i ≤ n− 1 (1.6.14)

and bnn = 1, we may write Eq. (1.6.13) in the form

yn =
n∑
i=1

bniεi = εn +
n−1∑
i=1

bniεi = εn + ŷn/n−1 (1.6.15)

for 1 ≤ n ≤M. And in matrix form,

y = Bεεε , where y =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤⎥⎥⎥⎥⎥⎦ , εεε =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εM

⎤⎥⎥⎥⎥⎥⎦ (1.6.16)

and B is a lower-triangular matrix with matrix elements given by (1.6.14). Its main
diagonal is unity. For example, for M = 4 we have⎡⎢⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎦
Both the matrix B and its inverse B−1 are unit lower-triangular matrices. The in-

formation contained in the two bases y and εεε is the same. Going from the basis y to
the basis εεε removes all the redundant correlations that may exist in y and “distills” the
essential information contained in y to its most basic form. Because the basis εεε is un-
correlated, every basis vector εi, i = 1,2, . . . ,M will represent something different, or
new. Therefore, the random variables εi are sometimes called the innovations, and the
representation (1.6.16) of y in terms of εεε, the innovations representation.

Since the correlation matrix Rεε = E[εεεεεεT] is diagonal, the transformation (1.6.16)
corresponds to an LU (lower-upper) Cholesky factorization of the correlation matrix of
y, that is,

Ryy = E[yyT]= BE[εεεεεεT]BT = BRεεBT (1.6.17)

We note also the invariance of the projected vector x̂ of Eq. (1.6.10) under such linear
change of basis:

x̂ = E[xεεεT]E[εεεεεεT]−1εεε = E[xyT]E[yyT]−1y (1.6.18)

This shows the equivalence of the orthogonal decompositions (1.6.10) to the corre-
lation canceler decompositions (1.4.1). The computational efficiency of the εεε basis over
the y basis is evident from the fact that the covariance matrix E[εεεεεεT] is diagonal, and
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therefore, its inverse is trivially computed. We may also apply the property (1.6.18) to
y itself. Defining the vectors

εεεn−1 =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εn−1

⎤⎥⎥⎥⎥⎥⎦ yn−1 =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yn−1

⎤⎥⎥⎥⎥⎥⎦
we may write the projection ŷn/n−1 of yn on the subspace Yn−1 given by Eq. (1.6.12) as
follows:

ŷn/n−1 = E[ynεεεTn−1]E[εεεn−1εεεTn−1]−1εεεn−1 = E[ynyTn−1]E[yn−1yTn−1]−1yn−1 (1.6.19)

Eq. (1.6.13) is then written as

εn = yn − ŷn/n−1 = yn − E[ynyTn−1]E[yn−1yTn−1]−1yn−1 (1.6.20)

which provides a construction of εn directly in terms of the yns. We note that the
quantity ŷn/n−1 is also the best linear estimate of yn that can be made on the basis of
the previous yns, Yn−1 = {y1, y2, . . . , yn−1}. If the index n represents the time index, as
it does for random signals, then ŷn/n−1 is the best linear prediction of yn on the basis
of its past; and εn is the corresponding prediction error.

The Gram-Schmidt process was started with the first element y1 of y and proceeded
forward to yM. The process can just as well be started with yM and proceed backward to
y1 (see Problem 1.15). It may be interpreted as backward prediction, or postdiction, and
leads to the UL (rather than LU) factorization of the covariance matrix Ryy. In Sec. 1.8,
we study the properties of such forward and backward orthogonalization procedures in
some detail.

Example 1.6.1: Consider the three zero-mean random variables {y1, y2, y3} and letRij = E[yiyj]
for i, j = 1,2,3, denote their correlation matrix. Then, the explicit construction indicated
in Eq. (1.6.20) can be carried out as follows. The required vectors yn−1 are:

y1 = [y1] , y2 =
[
y1

y2

]

and hence
E[y2yT1 ] = E[y2y1]= R21

E[y1yT1 ] = E[y1y1]= R11

E[y3yT2 ] = E
[
y3[y1, y2]

] = [R31, R32]

E[y2yT2 ] = E
[[

y1

y2

]
[y1, y2]

]
=

[
R11 R12

R21 R22

]
Therefore, Eq. (1.6.20) becomes

ε1 = y1

ε2 = y2 − ŷ2/1 = y2 −R21R−1
11 y1

ε3 = y3 − ŷ3/2 = y3 − [R31, R32]
[
R11 R12

R21 R22

]−1 [
y1

y2

]
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Example 1.6.2: The zero-mean random vector y = [y1, y2, y3]T has covariance matrix

Ryy =
⎡⎢⎣ 1 −1 1
−1 3 3

1 3 12

⎤⎥⎦
Determine the innovations representation of y in two ways: using the Gram- Schmidt
construction and using the results of Example 1.6.1.

Solution: Starting with ε1 = y1, we find E[y2ε1]= R21 = −1 and E[ε2
1]= R11 = 1. Therefore,

ε2 = y2 − E[y2ε1]E[ε2
1]−1ε1 = y2 + ε1 = y2 + y1

with a mean-square value E[ε2
2]= E[y2

2]+2E[y2y1]+E[y2
1]= 3− 2+ 1 = 2. Similarly, we

find E[y3ε1]= R31 = 1 and

E[y3ε2]= E
[
y3(y2 + y1)

] = R32 +R31 = 3+ 1 = 4

Thus,

ε3 = y3 − E[y3ε1]E[ε1ε1]−1ε1 − E[y3ε2]E[ε2ε2]−1ε2 = y3 − ε1 − 2ε2

or,
ε3 = y3 − y1 − 2(y2 + y1)= y3 − 2y2 − 3y1

Solving for the ys and writing the answer in matrix form we have

y =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦ =
⎡⎢⎣ 1 0 0
−1 1 0

1 2 1

⎤⎥⎦
⎡⎢⎣ ε1

ε2

ε3

⎤⎥⎦ = Bεεε

The last row determines E[ε2
3]. Using the mutual orthogonality of the εis, we have

E[y2
3]= E

[
(ε3 + 2ε2 + ε1)2

] = E[ε2
3]+4E[ε2

2]+E[ε2
1] ⇒ 12 = E[ε2

3]+8+ 1

which gives E[ε2
3]= 3. Using the results of Example 1.6.1, we have

ε3 = y3 − [R31, R32]
[
R11 R12

R21 R22

]−1 [
y1

y2

]
= y3 − [1,3]

[
1 −1
−1 3

]−1 [
y1

y2

]

The indicated matrix operations are computed easily and lead to the same expression for
ε3 found above. ��

The innovations representation Eq. (1.6.16) and the Cholesky factorization (1.6.17)
are also very useful for the purpose of simulating a random vector having a prescribed
covariance matrix. The procedure is as follows: given R = E[yyT], find its Cholesky
factor B and the diagonal matrix Rεε; then, using any standard random number genera-
tor, generate M independent random numbers εεε = [ε1, ε2, . . . , εM]T of mean zero and
variances equal to the diagonal entries of Rεε, and perform the matrix operation y = Bεεε
to obtain a realization of the random vector y.

Conversely, if a number of independent realizations of y are available, {y1,y2, . . . ,yN},
we may form an estimate of the covariance matrix by the following expression, referred
to as the sample covariance matrix

R̂ = 1

N

N∑
n=1

ynyTn (1.6.21)
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Example 1.6.3: In typical array processing applications, a linear array of, say, M equally spaced
sensors measures the incident radiation field. This field may consist of a number of plane
waves incident from different angles on the array plus background noise. The objective is
to determine the number, angles of arrival, and strengths of the incident plane waves from
measurements of the field at the sensor elements. At each time instant, the measurements
at the M sensors may be assembled into the M-dimensional random vector y, called an
instantaneous snapshot. Thus, the correlation matrix R = E[yyT] measures the correla-
tions that exist among sensors, that is, spatial correlations. In Chap. 14, we will consider
methods of extracting the angle-of-arrival information from the covariance matrix R. Most
of these methods require an estimate of the covariance matrix, which is typically given by
Eq. (1.6.21) on the basis of N snapshots. ��

How good an estimate of R is R̂? First, note that it is an unbiased estimate:

E[R̂]= 1

N

N∑
n=1

E[ynyTn]=
1

N
(NR)= R

Second, we show that it is consistent. The correlation between the various matrix
elements of R̂ is obtained as follows:

E[R̂ijR̂kl]= 1

N2

N∑
n=1

N∑
m=1

E[yniynjymkyml]

where yni is the ith component of the nth vector yn. To get a simple expression for
the covariance of R̂, we will assume that yn, n = 1,2, . . . ,N are independent zero-mean
gaussian random vectors of covariance matrix R. This implies that [4,5]

E[yniynjymkyml]= RijRkl + δnm(RikRjl +RilRjk)

It follows that

E[R̂ijR̂kl]= RijRjk + 1

N
(RikRjl +RilRjk) (1.6.22)

Writing ΔR = R̂− E[R̂]= R̂−R, we obtain for the covariance

E[ΔRijΔRkl]= 1

N
(RikRjl +RilRjk) (1.6.23)

Thus, R̂ is a consistent estimator. The result of Eq. (1.6.23) is typical of the asymp-
totic results that are available in the statistical literature [4,5]. It will be used in Chap. 14
to obtain asymptotic results for linear prediction parameters and for the eigenstructure
methods of spectrum estimation.

The sample covariance matrix (1.6.21) may also be written in an adaptive, or recursive
form,

R̂N = 1

N

N∑
n=1

ynyTn =
1

N

⎡⎣N−1∑
n=1

ynyTn + yNyTN

⎤⎦ = 1

N
[
(N − 1)R̂N−1 + yNyTN

]
where we wrote R̂N to explicitly indicate the dependence on N. A more intuitive way of
writing this recursion is in the “predictor/corrector” form

R̂N = R̂N−1 + 1

N
(yNyTN − R̂N−1) (1.6.24)
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The term R̂N−1 may be thought of as a prediction of R based on N−1 observations,
the Nth observation yNyTN may be thought of as an instantaneous estimate of R, and
the term in the parenthesis as the prediction error that is used to correct the prediction.
The function sampcov takes as input the old matrix R̂N−1, and the new observation yN,
and outputs the updated matrix R̂N, overwriting the old one.

Example 1.6.4: Consider the 3×3 random vector y defined in Example 1.6.2. Using the inno-
vations representation of y, generate N = 200 independent vectors yn, n = 1,2, . . . ,N
and then compute the estimated sample covariance matrix (1.6.21) and compare it with
the theoretical R. Compute the sample covariance matrix R̂ recursively and plot its matrix
elements as functions of the iteration number N.

Solution: Generate N independent 3-vectors εεεn, and compute yn = Bεεεn. The estimated and
theoretical covariance matrices are

R̂ =
⎡⎢⎣ 0.995 −1.090 0.880
−1.090 3.102 2.858

0.880 2.858 11.457

⎤⎥⎦ , R =
⎡⎢⎣ 1 −1 1
−1 3 3

1 3 12

⎤⎥⎦
Can we claim that this is a good estimate of R? Yes, because the deviations from R are
consistent with the expected deviations given by Eq. (1.6.23). The standard deviation of
the ijth matrix element is

δRij =
√
E
[
(ΔRij)2

] = √
(RiiRjj +R2

ij)/N

The estimated values R̂ij fall within the intervals Rij − δRij ≤ R̂ij ≤ Rij + δRij, as can be
verified by inspecting the matrices

R− δR =
⎡⎢⎣ 0.901 −1.146 0.754
−1.146 2.691 2.534

0.754 2.534 10.857

⎤⎥⎦ , R+ δR =
⎡⎢⎣ 1.099 −0.854 1.246
−0.854 3.309 3.466

1.246 3.466 13.143

⎤⎥⎦
The recursive computation Eq. (1.6.24), implemented by successive calls to the function
sampcov, is shown in Fig. 1.6.2, where only the matrix elements R11, R12, and R22 are
plotted versus N. Such graphs give us a better idea of how fast the sample estimate R̂N

converges to the theoretical R. ��

1.7 Partial Correlations

A concept intimately connected to the Gram-Schmidt orthogonalization is that of the
partial correlation. It plays a central role in linear prediction applications.

Consider the Gram-Schmidt orthogonalization of a random vector y in the form y =
Bεεε, where B is a unit lower-triangular matrix, and εεε is a vector of mutually uncorrelated
components. Inverting, we have

εεε = Ay (1.7.1)
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Fig. 1.6.2 Recursive computation of the sample covariance matrix.

where A = B−1. Now, suppose the vector y is arbitrarily subdivided into three subvec-
tors as follows:

y =
⎡⎢⎣ y0

y1

y2

⎤⎥⎦
where y0,y1,y2 do not necessarily have the same dimension. Then, the matrix equation
(1.7.1) may also be decomposed in a block-compatible form:⎡⎢⎣ εεε0

εεε1

εεε2

⎤⎥⎦ =
⎡⎢⎣A00 0 0
A11 A10 0
A22 A21 A20

⎤⎥⎦
⎡⎢⎣ y0

y1

y2

⎤⎥⎦ (1.7.2)

where A00,A10,A20 are unit lower-triangular matrices. Since y has components that are
generally correlated with each other, it follows that y0 will be correlated with y1, and
y1 will be correlated with y2. Thus, through the intermediate action of y1, the vector
y0 will be indirectly coupled with the vector y2. The question we would like to ask is
this: Suppose the effect of the intermediate vector y1 were to be removed, then what
would be the correlation that is left between y0 and y2? This is the partial correlation.
It represents the “true” or “direct” influence of y0 on y2, when the indirect influence via
y1 is removed. To remove the effect of y1, we project both y0 and y2 on the subspace
spanned by y1 and then subtract these parts from both, that is, let

e0 = y0 − (projection of y0 on y1)

e2 = y2 − (projection of y2 on y1)

or,
e0 = y0 −R01R−1

11 y1

e2 = y2 −R21R−1
11 y1

(1.7.3)
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where we defined Rij = E[yiyTj ], for i, j = 0,1,2. We define the partial correlation
(PARCOR) coefficient between y0 and y2, with the effect of the intermediate y1 removed,
as follows:

Γ = E[e2eT0 ]E[e0eT0 ]−1 (1.7.4)

Then, Γ may be expressed in terms of the entries of the matrix A as follows:

Γ = −A−1
20 A22 (1.7.5)

To prove this result, we consider the last equation of (1.7.2):

εεε2 = A22y0 +A21y1 +A20y2 (1.7.6)

By construction, εεε2 is orthogonal to y1, so that E[εεε2yT1 ]= 0. Thus we obtain the
relationship:

E[εεε2yT1 ] = A22E[y0yT1 ]+A21E[y1yT1 ]+A20E[y2yT1 ]

= A22R01 +A21R11 +A20R21 = 0
(1.7.7)

Using Eqs. (1.7.3) and (1.7.7), we may express εεε2 in terms of e0 and e2, as follows:

εεε2 = A22(e0 +R01R−1
11 y1)+A21y1 +A20(e2 +R21R−1

11 y1)

= A22e0 +A20e2 + (A22R01 +A21R11 +A20R21)R−1
11 y1

= A22e0 +A20e2

(1.7.8)

Now, by construction, εεε2 is orthogonal to both y0 and y1, and hence also to e0, that
is, E[εεε2eT0 ]= 0. Using Eq. (1.7.8) we obtain

E[εεε2eT0 ]= A22E[e0eT0 ]+A20E[e2eT0 ]= 0

from which (1.7.5) follows. It is interesting also to note that (1.7.8) may be written as

εεε2 = A20e

where e = e2 − Γe0 is the orthogonal complement of e2 relative to e0.

Example 1.7.1: An important special case of Eq. (1.7.5) is when y0 and y2 are selected as the first
and last components of y, and therefore y1 consists of all the intermediate components.
For example, suppose y = [y0, y1, y2, y3, y4]T . Then, the decomposition (1.7.2) can be
written as follows: ⎡⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

a11 1 0 0 0
a22 a21 1 0 0
a33 a32 a31 1 0

a44 a43 a42 a41 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦ (1.7.9)

where y0,y1,y2 are chosen as the vectors

y0 = [y0] , y1 =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦ , y2 = [y4]
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The matrices A20 and A22 are in this case the scalars A20 = [1] and A22 = [a44]. There-
fore, the corresponding PARCOR coefficient (1.7.5) is

Γ = −a44

Clearly, the first column [1, a11, a22, a33, a44] of A contains all the lower order PARCOR
coefficients, that is, the quantity

γp = −app , p = 1,2,3,4

represents the partial correlation coefficient between y0 and yp, with the effect of all the
intermediate variables y1, y2, . . . , yp−1 removed. ��

We note the backward indexing of the entries of the matrix A in Eqs. (1.7.2) and
(1.7.9). It corresponds to writing εn in a convolutional form

εn =
n∑
i=0

aniyn−i =
n∑
i=0

an,n−iyi = yn + an1yn−1 + an2yn−2 + · · · + anny0 (1.7.10)

and conforms to standard notation in linear prediction applications. Comparing (1.7.10)
with (1.6.13), we note that the projection of yn onto the subspace Yn−1 may also be
expressed directly in terms of the correlated basis Yn−1 = {y0, y1, . . . , yn−1} as follows:

ŷn/n−1 = −
[
an1yn−1 + an2yn−2 + · · · + anny0

]
(1.7.11)

An alternative expression was given in Eq. (1.6.19). Writing Eq. (1.7.10) in vector
form, we have

εn = [ann, . . . , an1,1]

⎡⎢⎢⎢⎢⎢⎣
y0

...
yn−1

yn

⎤⎥⎥⎥⎥⎥⎦ = [1, an1, . . . , ann]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
y0

⎤⎥⎥⎥⎥⎥⎦ (1.7.12)

Thus, there are two possible definitions for the data vector y and corresponding
weight vector a. According to the first definition—which is what we used in Eqs. (1.7.1)
and (1.7.9)—the vector y is indexed from the lowest to the highest index and the vector a
is indexed in the reverse way. According to the second definition, y and a are exactly the
reverse, or upside-down, versions of the first definition, namely, y is indexed backward
from high to low, whereas a is indexed forward. If we use the second definition and
write Eq. (1.7.12) in matrix form, we obtain the reverse of Eq. (1.7.9), that is

εεεrev =

⎡⎢⎢⎢⎢⎢⎢⎣
ε4

ε3

ε2

ε1

ε0

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 a41 a42 a43 a44

0 1 a31 a32 a33

0 0 1 a21 a22

0 0 0 1 a11

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y4

y3

y2

y1

y0

⎤⎥⎥⎥⎥⎥⎥⎦ = Uyrev (1.7.13)

Thus, the transformation between the correlated and decorrelated bases is now by
means of a unit upper-triangular matrixU. It corresponds to the UL (rather than LU) fac-
torization of the covariance matrix of the reversed vector yrev. WritingRrev = E[yrevyTrev]
and Drev = E[εεεrevεεεTrev], it follows from Eq. (1.7.13) that

Drev = URrevUT (1.7.14)
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The precise connection between the original basis and its reverse, and between their
respective Cholesky factorizations, can be seen as follows. The operation of reversing
a vector is equivalent to a linear transformation by the so-called reversing matrix J,
consisting of ones along its antidiagonal and zeros everywhere else; for example, in the
5×5 case of Example 1.7.1,

J =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
The reversed vectors will be yrev = Jy and εεεrev = Jεεε. Using the property J = JT, it

follows that Rrev = JRyyJ and Drev = JRεεJ. Comparing Eq. (1.7.9) and Eq. (1.7.13) and
using the property J2 = I, we find,

εεεrev = Jεεε = JAy = (JAJ)(Jy)= (JAJ)yrev , or,

U = JAJ (1.7.15)

Note that J acting on a matrix from the left reverses each column, whereas acting
from the right, it reverses each row. Thus, U is obtained from A by reversing all its
columns and then all its rows. Regardless of the choice of the vector y, the Gram-
Schmidt construction proceeds from the lowest to the highest index of y, and therefore,
it can be interpreted as predicting the present from the past. But whether this process
leads to LU or UL factorization depends on whether y or its reverse is used as the basis.
Of course, the choice of basis does not affect the computation of linear estimates. As
we saw in Eq. (1.6.18), linear estimates are invariant under any linear change of basis; in
particular,

x̂ = E[xyT]E[yyT]−1y = E[xyTrev]E[yrevyTrev]−1yrev

In this book, we use both representations y and yrev, whichever is the most conve-
nient depending on the context and application. For example, in discussing the classical
Wiener filtering problem and Kalman filtering in Chap. 11, we find the basis y more
natural. On the other hand, the basis yrev is more appropriate for discussing the lattice
and direct-form realizations of FIR Wiener filters.

The ideas discussed in the last three sections are basic in the development of opti-
mum signal processing algorithms, and will be pursued further in subsequent chapters.
However, taking a brief look ahead, we point out how some of these concepts fit into
the signal processing context:

1. The correlation canceling/orthogonal decompositions of Eqs. (1.4.1) and (1.6.10)
for the basis of optimum Wiener and Kalman filtering.

2. The Gram-Schmidt process expressed by Eqs. (1.6.13) and (1.6.20) forms the basis
of linear prediction and is also used in the development of the Kalman filter.

3. The representation y = Bεεε may be thought of as a signal model for synthesizing
y by processing the uncorrelated (white noise) vector εεε through the linear filter
B. The lower-triangular nature of B is equivalent to causality. Such signal models
have a very broad range of applications, among which are speech synthesis and
modern methods of spectrum estimation.
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4. The inverse representation εεε = Ay of Eqs. (1.7.1) and (1.7.10) corresponds to the
analysis filters of linear prediction. The PARCOR coefficients will turn out to be
the reflection coefficients of the lattice filter realizations of linear prediction.

5. The Cholesky factorization (1.6.17) is the matrix analog of the spectral factor-
ization theorem. It not only facilitates the solution of optimum Wiener filtering
problems, but also the making of signal models of the type of Eq. (1.6.16).

1.8 Forward/Backward Prediction and LU/UL Factorization

The Gram-Schmidt orthogonalization procedure discussed in the previous sections was
a forward procedure in the sense that the successive orthogonalization of the compo-
nents of a random vector y proceeded forward from the first component to the last. It
was given a linear prediction interpretation, that is, at each orthogonalization step, a
prediction of the present component of y is made in terms of all the past ones. The
procedure was seen to be mathematically equivalent to the LU Cholesky factorization of
the covariance matrix R = E[yyT] (or, the UL factorization with respect to the reversed
basis). We remarked in Sec. 1.6 (see also Problem 1.15) that if the Gram-Schmidt con-
struction is started at the other end of the random vector y then the UL factorization of
R is obtained (equivalently, the LU factorization in the reversed basis).

In this section, we discuss in detail such forward and backward Gram-Schmidt con-
structions and their relationship to forward and backward linear prediction and to LU
and UL Cholesky factorizations, and show how to realize linear estimators in the forward
and backward orthogonal bases.

Our main objective is to gain further insight into the properties of the basis of ob-
servations y and to provide a preliminary introduction to a large number of concepts
and methods that have become standard tools in modern signal processing practice,
namely, Levinson’s and Schur’s algorithms; fast Cholesky factorizations; lattice filters
for linear prediction; lattice realizations of FIR Wiener filters; and fast recursive least
squares adaptive algorithms. Although these concepts are fully developed in Chapters
12 and 16, we would like to show in this preliminary discussion how far one can go
toward these goals without making any assumptions about any structural properties of
the covariance matrix R, such as Toeplitz and stationarity properties, or the so-called
shift-invariance property of adaptive least squares problems.

Forward/Backward Normal Equations

Let y = [ya, . . . , yb]T be a random vector whose first and last components are ya and
yb. Let ŷb be the best linear estimate of yb based on the rest of the vector y, that is,

ŷb = E[ybȳT]E[ȳ ȳT]−1ȳ (1.8.1)

where ȳ is the upper part of y, namely,

y =

⎡⎢⎢⎣
ya
...
yb

⎤⎥⎥⎦ =
[

ȳ
yb

]
(1.8.2)
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Similarly, let ŷa be the best estimate of ya based on the rest of y, namely,

ŷa = E[yaỹT]E[ỹỹT]−1ỹ (1.8.3)

where ỹ is the lower part of y, that is,

y =

⎡⎢⎢⎣
ya
...
yb

⎤⎥⎥⎦ =
[
ya
ỹ

]
(1.8.4)

The decompositions (1.8.2) and (1.8.4) imply analogous decompositions of the co-
variance matrix R = E[yyT] as follows

R =
[
R̄ rb
rTb ρb

]
=

[
ρa rTa
ra R̃

]
(1.8.5)

where
R̃ = E[ỹỹT] , ra = E[yaỹ] , ρa = E[y2

a]

R̄ = E[ȳ ȳT] , rb = E[ybȳ] , ρb = E[y2
b]

(1.8.6)

We will refer to ŷa and ŷb as the forward and backward predictors, respectively. Since
we have not yet introduced any notion of time in our discussion of random vectors, we
will employ the terms forward and backward as convenient ways of referring to the
above two estimates. In the present section, the basis y will be chosen according to the
reversed-basis convention. As discussed in Sec. 1.7, LU becomes UL factorization in the
reversed basis. By the same token, UL becomes LU factorization. Therefore, the term
forward will be associated with UL and the term backward with LU factorization. The
motivation for the choice of basis arises from the time series case, where the consistent
usage of these two terms requires that y be reverse-indexed from high to low indices. For
example, a typical choice of y, relevant in the context of Mth order FIR Wiener filtering
problems, is

y =

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦
where n represents the time index. Therefore, estimating the first element, yn, from
the rest of y will be equivalent to prediction, and estimating the last element, yn−M,
from the rest of y will be equivalent to postdiction. Next, we introduce the forward and
backward prediction coefficients by

a =
[

1
ααα

]
, b =

[
βββ
1

]
, where ααα = −R̃−1ra , βββ = −R̄−1rb (1.8.7)

In this notation, the predictors (1.8.1) and (1.8.3) are written as

ŷa = −αααTỹ , ŷb = −βββTȳ (1.8.8)
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The corresponding prediction errors are

ea = ya − ŷa = ya +αααTỹ = aTy , eb = yb − ŷb = yb +βββTȳ = bTy (1.8.9)

with mean square values

Ea = E[e2
a]= E

[
(aTy)(yTa)

] = aTRa

Eb = E[e2
b]= E

[
(bTy)(yTb)

] = bTRb
(1.8.10)

Because the estimation errors are orthogonal to the observations that make up the
estimates, that is, E[ebȳ]= 0 and E[eaỹ]= 0, it follows that E[ŷaea]= 0 and E[ŷbeb]=
0. Therefore, we can write E[e2

a]= E[yaea] and E[e2
b]= E[ybeb]. Thus, the minimized

values of the prediction errors (1.8.10) can be written as

Ea = E[yaea]= E
[
ya(ya +αααTỹ)

] = ρa +αααTra = ρa − rTa R̃−1ra

Eb = E[ybeb]= E
[
yb(yb +βββTȳ)

] = ρb +βββTrb = ρb − rTb R̄
−1rb

(1.8.11)

By construction, the mean square estimation errors are positive quantities. This
also follows from the positivity of the covariance matrix R. With respect to the block
decompositions (1.8.5), it is easily shown that a necessary and sufficient condition for R
to be positive definite is that R̄ be positive definite and ρb − rTb R̄−1rb > 0; alternatively,
that R̃ be positive definite and ρa − rTa R̃−1ra > 0.

Equations (1.8.7) and (1.8.11) may be combined now into the more compact forms,
referred to as the forward and backward normal equations of linear prediction,

Ra = Eau , Rb = Ebv , where u =
[

1
0

]
, v =

[
0
1

]
(1.8.12)

For example,

Rb =
[
R̄ rb
rTb ρb

][
βββ
1

]
=

[
R̄βββ+ rb
rTbβββ+ ρb

]
=

[
0
Eb

]
= Ebv

and similarly,

Ra =
[
ρa rTa
ra R̃

][
1
ααα

]
=

[
ρa + rTaααα
ra + R̃ααα

]
=

[
Ea
0

]
= Eau

Backward Prediction and LU Factorization

Next, we discuss the connection of the forward and backward predictors to the Gram-
Schmidt procedure and to the Cholesky factorizations of the covariance matrix R. Con-
sider an arbitrary unit lower triangular matrix L̄ of the same dimension as R̄ and form
the larger unit lower triangular matrix whose bottom row is bT = [βββT,1]

L =
[
L̄ 0
βββT 1

]
(1.8.13)
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Then, it follows from Eq. (1.8.12) that

LRLT =
[
L̄R̄L̄T 0

0T Eb

]
(1.8.14)

Indeed, we have

LRLT =
[
L̄ 0
βββT 1

][
R̄ rb
rTb ρb

]
LT =

[
L̄R̄ L̄rb

βββTR̄+ rTb βββTrb + ρb

]
LT =

[
L̄R̄ L̄rb
0T Eb

]
LT

=
[
L̄R̄L̄T L̄rb + L̄R̄βββ

0T Eb

]
=

[
L̄R̄L̄T 0

0T Eb

]

Defining the transformed random vector eb = Ly, we have

eb = Ly =
[
L̄ 0
βββT 1

][
ȳ
yb

]
=

[
L̄ȳ

βββTȳ+ yb

]
=

[
ēb
eb

]
(1.8.15)

where ēb = L̄ȳ. It follows that LRLT is the covariance matrix of the transformed vector
eb. The significance of Eq. (1.8.14) is that by replacing the y basis by eb we have achieved
partial decorrelation of the random vector y. The new basis eb is better to work with
because it contains less redundancy than y. For example, choosing L̄ to be the identity
matrix, L̄ = Ī, Eqs. (1.8.14) and (1.8.15) become

LRLT =
[
R̄ 0
0T Eb

]
, eb =

[
ȳ
eb

]
(1.8.16)

This represents the direct sum decomposition of the subspace spanned by y into
the subspace spanned by ȳ and an orthogonal part spanned by eb, that is,

{y} = {ȳ, yb} = {ȳ} ⊕ {eb}

The advantage of the new basis may be appreciated by considering the estimation
of a random variable x in terms of y. The estimate x̂ may be expressed either in the y
basis, or in the new basis eb by

x̂ = E[xyT]E[yyT]−1y = E[x eTb]E[ebeTb]
−1eb

Using the orthogonality between ȳ and eb, or the block-diagonal property of the
covariance matrix of eb given by Eq. (1.8.16), we find

x̂ = E[xȳT]E[ȳȳT]−1ȳ+ E[xeb]E[e2
b]
−1eb = x̄+ x̂b
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The two terms in x̂ are recognized as the estimates of x based on the two orthogonal
parts of the y basis. The first term still requires the computation of a matrix inverse,
namely, R̄−1 = E[ȳȳT]−1, but the order of the matrix is reduced by one as compared
with the original covariance matrix R. The same order-reduction procedure can now
be applied to R̄ itself, thereby reducing its order by one. And so on, by repeating the
order-reduction procedure, the original matrix R can be completely diagonalized. This
process is equivalent to performing Gram-Schmidt orthogonalization on y starting with
ya and ending with yb. It is also equivalent to choosing L̄ to correspond to the LU
Cholesky factorization of R̄. Then, the matrix L will correspond to the LU factorization
of R. Indeed, if L̄ is such that L̄R̄L̄T = D̄b, that is, a diagonal matrix, then

LRLT =
[
L̄R̄L̄T 0

0T Eb

]
=

[
D̄b 0
0T Eb

]
= Db (1.8.17)

will itself be diagonal. The basis eb = Ly will be completely decorrelated, having diago-
nal covariance matrix E[ebeTb]= Db. Thus, by successively solving backward prediction
problems of lower and lower order we eventually orthogonalize the original basis y and
obtain the LU factorization of its covariance matrix. By construction, the bottom row
of L is the backward predictor bT. Similarly, the bottom row of L̄ will be the backward
predictor of order one less, and so on. In other words, the rows of L are simply the
backward predictors of successive orders. The overall construction of L is illustrated by
the following example.

Example 1.8.1: The random vector y = [ya, yc, yb]T has covariance matrix

R =
⎡⎢⎣ 1 1 0

1 3 2
0 2 3

⎤⎥⎦
By successively solving backward prediction problems of lower and lower order construct
the LU factorization of R.

Solution: The backward prediction coefficients for predicting yb are given by Eq. (1.8.7):

βββ = −R̄−1rb = −
[

1 1
1 3

]−1 [
0
2

]
= −1

2

[
3 −1

−1 1

][
0
2

]
=

[
1
−1

]

Thus, bT = [βββT,1]= [1,−1,1]. The estimation error is given by Eq. (1.8.11):

Eb = ρb +βββTrb = 3+ [1,−1]
[

0
2

]
= 1

Repeating the procedure on R̄ =
[

1 1
1 3

]
, we find for the corresponding backward pre-

diction coefficients, satisfying R̄b̄ = Ēbv̄, v̄ = [0,1]T

β̄ββ = −[1]−1[1]= [−1] , b̄
T = [β̄ββ

T
,1]= [−1,1]
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and Ēb = ρ̄b+β̄ββT r̄b = 3−1×1 = 2. The rows of L are the backward predictor coefficients,
and the diagonal entries of Db are the Eb. Thus,

L =
⎡⎢⎣ 1 0 0
−1 1 0

1 −1 1

⎤⎥⎦ , Db =
⎡⎢⎣ 1 0 0

0 2 0
0 0 1

⎤⎥⎦
It is easily verified that LRLT = Db. Note that the first entry of Db is always equal to ρa.
Next, we obtain the same results by carrying out the Gram-Schmidt construction starting
at ya and ending with yb. Starting with ε1 = ya and E[ε2

1]= 1, define

ε2 = yc − E[ycε1]E[ε2
1]−1ε1 = yc − ya

having E[ε2
2]= E[y2

c]−2E[ycya]+E[y2
a]= 2. Thus, the ēb portion of the Gram-Schmidt

construction will be

ēb =
[
ε1

ε2

]
=

[
1 0

−1 1

][
ya
yc

]
= L̄ȳ

The last step of the Gram-Schmidt construction is

eb = yb − E[ybε1]E[ε2
1]−1ε1 − E[ybε2]E[ε2

2]−1ε2 = yb − (yc − ya)= ya − yc + yb

giving for the last row of L, bT = [1,−1,1]. In the above step, we used

E[ybε2]= E
[
yb(yc − ya)

] = E[ybyc]−E[ybya]= 2− 0 = 2

and E[ybε1]= E[ybya]= 0. ��

Linear Estimation in the Backward Basis

Equation (1.8.17) may be written in the form

R = L−1DbL−T (1.8.18)

where L−T is the inverse of the transpose of L. Thus, L−1 and L−T correspond to the con-
ventional LU Cholesky factors of R. The computational advantage of this form becomes
immediately obvious when we consider the inverse of R,

R−1 = LTD−1
b L (1.8.19)

which shows that R−1 can be computed without any matrix inversion (the inverse of the
diagonal matrix Db is trivial). The design of linear estimators is simplified considerably
in the eb basis. The estimate of x is

x̂ = hTy (1.8.20)

where h = E[yyT]−1E[xy]≡ R−1r. Writing y = L−1eb and defining a new vector of
estimation weights by g = L−Th, we can rewrite Eq. (1.8.20) as

x̂ = hTy = gTeb (1.8.21)
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The block diagram representations of the two realizations are shown below:

There are three major advantages of the representation of Eq. (1.8.21) over Eq. (1.8.20).
First, to get the estimate x̂ using (1.8.20), the processor has to linearly combine a lot of
redundant information because the y basis is correlated, whereas the processor (1.8.21)
linearly combines only the non-redundant part of the same information. This has im-
portant implications for the adaptive implementations of such processors. An adap-
tive processor that uses the representation (1.8.20) will tend to be slow in learning the
statistics of the data vector y because it has to process all the redundancies in the data.
Moreover, the more the redundancies, or equivalently, the higher the correlations in the
data y, the slower the speed of adaptation. On the other hand, an adaptive processor
based on (1.8.21) should adapt very quickly. The preprocessing operation, eb = Ly,
that decorrelates the data vector y can also be implemented adaptively. In time series
applications, it is conveniently realized by means of a lattice structure. In adaptive array
applications, it gives rise to the so-called Gram-Schmidt preprocessor implementations.

Second, the computation of g can be done efficiently without any matrix inversion.
Given the LU factors of R as in Eq. (1.8.19) and the cross correlation vector r, we may
compute g by

g = L−Th = L−TR−1r = L−T(LTD−1
b L)r = D−1

b Lr (1.8.22)

If so desired, the original weights h may be recovered from g by

h = LTg (1.8.23)

The third advantage of the form Eq. (1.8.21) is that any lower-order portion of the
weight vector g is already optimal for that order. Thus, the order of the estimator can
be increased without having to redesign the lower-order portions of it. Recognizing that
Lr = LE[xy]= E[x eb], we write Eq. (1.8.22) as

g = D−1
b E[x eb]=

[
D̄−1
b E[x ēb]

E−1
b E[xeb]

]
≡

[
ḡ
g

]

where we used the diagonal nature of Db given in Eq. (1.8.17) and the decomposition
(1.8.15). The estimate (1.8.21) can be written as

x̂ = gTeb = [ḡT, g]
[

ēb
eb

]
= ḡTēb + geb ≡ x̄+ x̂b (1.8.24)

It is clear that the two terms

x̄ = ḡTēb = E[x ēTb]D̄
−1
b ēb , x̂b = geb = E[xeb]E[e2

b]
−1eb (1.8.25)

are the optimal estimates of x based on the two orthogonal parts of the subspace of
observations, namely,

{y} = {ȳ} ⊕ {eb} , or, {eb} = {ēb} ⊕ {eb}
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The first term, x̄, is the same estimate of x based on ȳ that we considered earlier but
now it is expressed in the diagonal basis ēb = L̄ȳ. The second term, x̂b, represents the
improvement in that estimate that arises by taking into account one more observation,
namely, yb. It represents that part of x that cannot be estimated from ȳ. And, it is
computable only from that part of the new observation yb that cannot be predicted
from ȳ, that is, eb. The degree of improvement of x̂ over x̄, as measured by the mean-
square estimation errors, can be computed explicitly in this basis. To see this, denote
the estimation errors based on y and ȳ by

e = x− x̂ = x− gTeb , ē = x− x̄ = x− ḡTēb

Then, Eq. (1.8.24) implies e = x− x̂ = (x− x̄)−x̂b, or

e = ē− geb (1.8.26)

Because e and y, or eb, are orthogonal, we have E[x̂e]= 0, which implies that

E = E[e2]= E[xe]= E
[
x(x− gTeb)

] = E[x2]−gTE[x eb]

Similarly, Ē = E[ē2]= E[x2]−ḡTE[x ēb]. It follows that

E = Ē− gE[xeb]= Ē− g2Eb (1.8.27)

where we used g = E[xeb]E−1
b . The subtracted term represents the improvement ob-

tained by including one more observation in the estimate. It follows from the above
discussion that the lower-order portion ḡ of g is already optimal. This is not so in the y
basis, that is, the lower-order portion of h is not equal to the lower-order optimal weights
h̄ = R̄−1r̄, where r̄ = E[xȳ]. The explicit relationship between the two may be found
as follows. Inserting the block decomposition Eq. (1.8.13) of L into Eq. (1.8.19) and us-
ing the lower-order result R̄−1 = L̄TD̄−1

b L̄, we may derive the following order-updating
expression for R−1

R−1 =
[
R̄−1 0
0T 0

]
+ 1

Eb
bbT (1.8.28)

Noting that r̄ is the lower-order part of r, r = [r̄T, rb]T, where rb = E[xyb], we
obtain the following order-updating equation for the optimal h

h = R−1r =
[
R̄−1 0
0T 0

][
r̄
rb

]
+ 1

Eb
(bbT)r =

[
h̄
0

]
+ cbb (1.8.29)

where cb = (bTr)/Eb = (βββT r̄ + rb)/Eb. A block diagram realization that takes into
account the order-recursive construction of the estimate (1.8.24) and estimation error
(1.8.26) is shown below.
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In Chap. 12, we discuss in greater detail the design procedure given by Eq. (1.8.22)
and show how to realize Eqs. (1.8.21), or (1.8.24) and (1.8.26), by means of a lattice
structure. In Chap. 16, we discuss the corresponding adaptive versions, leading to the
so-called adaptive lattice filters for linear prediction and Wiener filtering, such as the
gradient lattice and RLS lattice.

Forward Prediction and UL Factorization

Next, we turn our attention to the forward predictors defined in Eq. (1.8.12). They lead
to UL (rather than LU) factorization of the covariance matrix. Considering an arbitrary
unit upper-triangular matrix Ũ of the same dimension as R̃, we may form the larger unit
upper-triangular matrix whose top row is the forward predictor aT = [1,αααT]

U =
[

1 αααT

0 Ũ

]
(1.8.30)

Then, it follows from Eq. (1.8.12) that

URUT =
[
Ea 0T

0 ŨR̃ŨT

]
(1.8.31)

It follows that URUT is the covariance matrix of the transformed vector

ea = Uy =
[

1 αααT

0 Ũ

][
ya
ỹ

]
=

[
ya +αααTỹ

Ũỹ

]
=

[
ea
ẽa

]
(1.8.32)

Choosing Ũ to correspond to the UL factor of R̃, that is, ŨR̃ŨT = D̃a, where D̃a is
diagonal, then Eq. (1.8.31) implies that U will correspond to the UL factor of R:

URUT =
[
Ea 0T

0 D̃a

]
= Da (1.8.33)

This is equivalent to Eq. (1.7.14). The basis ea = Uy is completely decorrelated,
with covariance matrix E[eaeTa]= Da. It is equivalent to Eq. (1.7.13). The rows of U are
the forward predictors of successive orders. And therefore, the UL factorization of R
is equivalent to performing the Gram-Schmidt construction starting at the endpoint yb
and proceeding to ya. The following example illustrates the method.

Example 1.8.2: By successively solving forward prediction problems of lower and lower order,
construct the UL factorization of the covariance matrix R of Example 1.8.1.

Solution: Using Eq. (1.8.7), we find

ααα = −R̃−1ra = −
[

3 2
2 3

]−1 [
1
0

]
= −1

5

[
3 −2

−2 3

][
1
0

]
=

[
−3/5

2/5

]

Thus, aT = [1,αααT]= [1,−3/5,2/5]. The estimation error is

Ea = ρa +αααTra = 1+ [−3/5,2/5]
[

1
0

]
= 2

5
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Repeating the procedure on R̃ =
[

3 2
2 3

]
, we find the corresponding forward prediction

coefficients, satisfying R̃ã = Ẽaũ, where ũ =
[

1
0

]
,

α̃αα = −[3]−1[2]= −2

3
, ãT = [1, α̃ααT]= [1,−2/3]

and Ẽa = ρ̃a + α̃ααT r̃a = 3 − (2/3)×2 = 5/3. The rows of U are the forward predictor
coefficients and the diagonal entries of Da are the Eas:

U =
⎡⎢⎣ 1 −3/5 2/5

0 1 −2/3
0 0 1

⎤⎥⎦ , Da =
⎡⎢⎣ 2/5 0 0

0 5/3 0
0 0 3

⎤⎥⎦
It is easily verified that URUT = Da. Note that the last entry of Da is always equal to
ρb. ��

Equation (1.8.33) can be used to compute the inverse of R:

R−1 = UTD−1
a U (1.8.34)

Using the lower-order result R̃−1 = ŨTD̃−1
a Ũ and the decomposition (1.8.30), we find

the following order-updating equation for R−1, analogous to Eq. (1.8.28):

R−1 =
[

0 0T

0 R̃−1

]
+ 1

Ea
aaT (1.8.35)

Denoting r̃ = E[xỹ] and ra = E[xya], we obtain the alternative order-update equa-
tion for h, analogous to Eq. (1.8.29):

h = R−1r =
[

0 0T

0 R̃−1

][
ra
r̃

]
+ 1

Ea
(aTr)a =

[
0
h̃

]
+ caa (1.8.36)

where ca = (aTr)/Ea = (ra + αααT r̃)/Ea, and h̃ = R̃−1r̃ is the lower-order optimal
estimator for estimating x from ỹ. By analogy with Eq. (1.8.21), we could also choose to
express the estimates in the ea basis

x̂ = hTy = hTU−1ea = gTuea (1.8.37)

where gu = U−Th. A realization is shown below.

The most important part of the realizations based on the diagonal bases ea or ea is
the preprocessing part that decorrelates the y basis, namely, eb = Ly, or ea = Uy. We
will see in Chapters 12 and 16 that this part can be done efficiently using the Levinson
recursion and the lattice structures of linear prediction. The LU representation, based on
the backward predictors, eb = Ly, is preferred because it is somewhat more conveniently
realized in terms of the lattice structure than the UL representation ea = Uy.
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Order Updates

So far, we studied the problems of forward and backward prediction separately from
each other. Next, we would like to consider the two problems together and show how to
construct the solution of the pair of equations (1.8.12) from the solution of a similar pair
of lower order. This construction is the essence behind Levinson’s algorithm for solving
the linear prediction problem, both in the stationary and in the adaptive least squares
cases. Consider the following pair of lower-order forward and backward predictors,
defined in terms of the block decompositions (1.8.5) of R:

R̄ā = Ēaū , R̃b̃ = Ẽbṽ (1.8.38)

where ū and ṽ are unit vectors of dimension one less than those of Eq. (1.8.12). They
are related to u and v through the decompositions

u =
[

ū
0

]
, v =

[
0
ṽ

]
(1.8.39)

The basic result we would like to show is that the solution of the pair (1.8.12) may
be constructed from the solution of the pair (1.8.38) by

a =
[

ā
0

]
− γb

[
0
b̃

]

b =
[

0
b̃

]
− γa

[
ā
0

] (1.8.40)

This result is motivated by Eq. (1.8.39), which shows that the right-hand sides of
Eqs. (1.8.38) are already part of the right-hand sides of Eq. (1.8.12), and therefore, the
solutions of Eq. (1.8.38) may appear as part of the solutions of (1.8.12). The prediction
errors are updated by

Ea = (1− γaγb)Ēa , Eb = (1− γaγb)Ẽb (1.8.41)

where

γb = Δa

Ẽb
, γa = Δb

Ēa
(1.8.42)

The γs are known as the reflection or PARCOR coefficients. The quantities Δa and
Δb are defined by

Δa = āTrb , Δb = b̃
T

ra (1.8.43)

The two Δs are equal, Δa = Δb, as seen from the following considerations. Using
the decompositions (1.8.5), we find

R
[

ā
0

]
=

[
R̄ rb
rTb ρb

][
ā
0

]
=

[
R̄ā
rTb ā

]
=

[
Ēaū
Δa

]

R
[

0
b̃

]
=

[
ρa rTa
ra R̃

][
0
b̃

]
=

[
rTa b̃
R̃b̃

]
=

[
Δb
Ẽbṽ

]
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They may be written more conveniently as

R
[

ā
0

]
=

[
Ēaū
Δa

]
= Ēa

[
ū
0

]
+Δa

[
0
1

]
= Ēau+Δav (1.8.44a)

R
[

0
b̃

]
=

[
Δb
Ẽbṽ

]
= Δb

[
1
0

]
+ Ẽb

[
0
ṽ

]
= Δbu+ Ẽbv (1.8.44b)

Noting that dTu and dTv are equal to the first and last components of a vector d, we

have [0, b̃T]u = 0 and [0, b̃T]v = 1 because the first and last components of [0, b̃T] are
zero and one, respectively. Similarly, [āT,0]u = 1 and [āT,0]v = 0. Thus, multiplying

Eq. (1.8.44a) from the left by [0, b̃T] and Eq. (1.8.44b) by [āT,0], we find

[0, b̃T]R
[

ā
0

]
= Δa , [āT,0]R

[
0
b̃

]
= Δb (1.8.45)

The equality of the Δs follows now from the fact that R is a symmetric matrix. Thus,

Δa = Δb ≡ Δ (1.8.46)

An alternative proof, based on partial correlations, will be given later. Equations
(1.8.40) and (1.8.41) follow now in a straightforward fashion from Eq. (1.8.44). Multiply-
ing the first part of Eq. (1.8.40) by R and using Eqs. (1.8.12) and (1.8.44), we find

Eau = Ra = R
[

ā
0

]
− γbR

[
0
b̃

]
or,

Eau = (Ēau+Δav)−γb(Δbu+ Ẽbv)= (Ēa − γbΔb)u+ (Δb − γbẼb)v

which implies the conditions

Ea = Ēa − γbΔb , Δa − γbẼb = 0 (1.8.47)

Similarly, multiplying the second part of the Eq. (1.8.40) by R, we obtain

Ebv = (Δbu+ Ẽbv)−γa(Ēau+Δbv)= (Δb − γaĒa)u+ (Ẽb − γaΔa)v

which implies
Eb = Ẽb − γaΔa , Δb − γaĒa = 0 (1.8.48)

Equations (1.8.41) and (1.8.42) follow now from (1.8.47) and (1.8.48). By analogy with
Eq. (1.8.9), we may now define the prediction errors corresponding to the lower-order
predictors ā and b̃ by

ēa = āTȳ , ẽb = b̃
T

ỹ (1.8.49)

Using Eqs. (1.8.9) and (1.8.40), we find the following updating equations for the pre-
diction errors

aTy = [āT,0]
[

ȳ
yb

]
− γb[0, b̃

T]
[
ya
ỹ

]
= āTȳ− γbb̃

T
ỹ

bTy = [0, b̃T]
[
ya
ỹ

]
− γa[āT,0]

[
ȳ
yb

]
= b̃

T
ỹ− γaāTȳ
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or,
ea = ēa − γbẽb , eb = ẽb − γaēa (1.8.50)

A lattice type realization ofEq. (1.8.50) is shown below. It forms the basis of the
lattice structures of linear prediction discussed in Chapters 12 and 16.

The order-updating procedure is illustrated by the following example.

Example 1.8.3: Using Eq. (1.8.40), construct the forward and backward predictors a and b found
previously in Examples 1.8.1 and 1.8.2.

Solution: The first part of Eq. (1.8.38), R̄ā = Ēaū is solved as follows:[
1 1
1 3

][
1
ᾱ

]
= Ēa

[
1
0

]
⇒ ᾱ = −1

3
, Ēa = 2

3

Therefore, ā =
[

1
−1/3

]
. Similarly, R̃ỹ = Ẽbṽ, is solved by

[
3 2
2 3

][
β̃
1

]
= Ẽb

[
0
1

]
⇒ β̃ = −2

3
, Ẽb = 5

3

Hence, b̃ =
[
−2/3

1

]
. Next, we determine

Δ = āTrb = [1,−1/3]
[

0
2

]
= −2

3
, γb = Δ

Ẽb
= −2

5
, γa = Δ

Ēa
= −1

It follows from Eq. (1.8.40) that

a =
[

ā
0

]
− γb

[
0
b̃

]
=

⎡⎢⎣ 1
−1/3

0

⎤⎥⎦− (
−2

5

)⎡⎢⎣ 0
−2/3

1

⎤⎥⎦ =
⎡⎢⎣ 1
−3/5
2/5

⎤⎥⎦

b =
[

0
b̃

]
− γa

[
ā
0

]
=

⎡⎢⎣ 0
−2/3

1

⎤⎥⎦− (−1)

⎡⎢⎣ 1
−1/3

0

⎤⎥⎦ =
⎡⎢⎣ 1
−1
1

⎤⎥⎦
and the prediction errors are found from Eq. (1.8.41)

Ea = Ēa(1− γaγb)= 2

3
(1− 2/5)= 2

5
, Eb = Ẽb(1− γaγb)= 5

3
(1− 2/5)= 1
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Partial Correlation Interpretation

Next, we show that γa and γb are partial correlation coefficients in the sense of Sec. 1.7.
Let yc denote all the components of y that lie between ya and yb, so that

y =
⎡⎢⎣ ya

yc
yb

⎤⎥⎦ , ȳ =
[
ya
yc

]
, ỹ =

[
yc
yb

]
(1.8.51)

The forward predictor a was defined as the best estimator of ya based on the rest
of the vector y. By the same token, ā is the best estimator of ya based on the rest of ȳ,
that is, yc. Similarly, the backward predictor b̃ defines the best estimator of yb based
on the rest of the vector ỹ; again, yc. Decomposing ā and b̃ as

ā =
[

1
ᾱαα

]
, b̃ =

[
β̃ββ
1

]

we may write the best estimates of ya and yb based on yc as

ŷa/c = E[yayTc ]E[ycyTc ]−1yc = −ᾱααTyc , ŷb/c = E[ybyTc ]E[ycyTc ]−1yc = −β̃ββ
T

yc

and the estimation errors

ēa = āTȳ = ya − ŷa/c , ẽb = b̃
T

ỹ = yb − ŷb/c (1.8.52)

Thus, ēa and ẽb represent what is left of ya and yb after we project out their depen-
dence on the intermediate vector yc. The direct influence of ya on yb, with the effect
of yc removed, is measured by the correlation E[ēaẽb]. This correlation is equal to the
quantity Δ defined in Eq. (1.8.46). This follows from Eq. (1.8.43)

Δa = āTrb = āTE[ybȳ]= E
[
yb(āTȳ)

] = E[ybēa]

similarly,

Δb = b̃
T

ra = b̃
TE[yaỹ]= E

[
ya(b̃

T
ỹ)

] = E[yaẽb]

Now, because ēa is orthogonal to yc and ŷb/c is a linear combination of yc, it follows
that E[ŷb/cēa]= 0. Similarly, because ẽb is orthogonal to yc and ŷa/c is linearly related
to yc, it follows that E[ŷa/cẽb]= 0. Thus,

Δa = E[ybēa]= E
[
(yb − ŷb/c)ēa]= E[ẽbēa]

Δb = E[yaẽb]= E
[
(ya − ŷa/c)ẽb]= E[ēaẽb]

Therefore, Δa and Δb are equal

Δa = Δb = E[ēaẽb] (1.8.53)

This is an alternative proof of Eq. (1.8.46). It follows that γa and γb are normalized
PARCOR coefficients in the sense of Sec. 1.7:

γb = E[ēaẽb]
E[ẽ2

b]
, γa = E[ẽbēa]

E[ē2
a]

(1.8.54)
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Using the Schwarz inequality for the inner product between two random variables,
namely,

∣∣E[uv]∣∣2 ≤ E[u2]E[v2], we find the inequality

0 ≤ γaγb = E[ēaẽb]2

E[ẽ2
b]E[ē

2
a]
≤ 1 (1.8.55)

This inequality also follows from Eq. (1.8.41) and the fact that Ea and Ēa are positive
quantities, both being mean square errors.

Example 1.8.4: For Example 1.8.1, compute the estimates ŷa/c and ŷb/c directly and compare
them with the results of Example 1.8.3.

Solution: From the matrix elements of R we have E[yayb]= 1, E[ybyc]= 2, and E[y2
c]= 3.

Thus,

ŷa/c = E[yayc]E[y2
c]−1yc = 1

3
yc , ŷb/c = E[ybyc]E[y2

c]−1yc = 2

3
yc

The corresponding errors will be

ēa = ya − 1

3
yc = [1,−1/3]ȳ , ẽb = yb − 2

3
yc = [−2/3,1]ỹ

The results are identical to those of Example 1.8.3. ��

Conventional Cholesky Factorizations

Equation (1.8.18) shows that the conventional Cholesky factor ofR is given by the inverse
matrix L−1. A direct construction of the conventional Cholesky factor that avoids the
computation of this inverse is as follows. Define

Gb = E[yeTb] (1.8.56)

If we use eb = Ly and E[ebeTb]= Db, it follows that

LGb = LE[yeTb]= E[ebeTb]= Db

or,
Gb = L−1Db (1.8.57)

Thus, Gb is a lower-triangular matrix. Its main diagonal consists of the diagonal
entries of Db. Solving for L−1 = GbD−1

b and inserting in Eq. (1.8.18), we find the con-
ventional LU factorization of R:

R = (GbD−1
b )Db(D−1

b GT
b)= GbD−1

b GT
b (1.8.58)

Similarly, the conventional UL factorization of R is obtained from Eq. (1.8.33) by
defining the upper-triangular matrix

Ga = E[yeTa] (1.8.59)

Using ea = Uy and E[eaeTa]= Da, we find

UGa = Da ⇒ Ga = U−1Da (1.8.60)
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which yields the conventional UL factorization of R:

R = U−1DaU−T = GaD−1
a GT

a

The columns of the matrices Ga and Gb will be referred to as the forward and back-
ward gapped functions. This terminology will be justified in Chap. 12. The decompo-
sition of Gb into its columns can be done order-recursively using the decomposition
(1.8.15). We have

Gb = E
[
y[ēTb , eb]

]≡ [Ḡb,gb] (1.8.61)

where Ḡb = E[yēTb] and gb = E[yeb]. Similarly, using Eq. (1.8.23) we find

Ga = E
[
y[ea, ẽTa]

] ≡ [ga, G̃a] (1.8.62)

where G̃a = E[yẽTa] and ga = E[yea]. Motivated by the lattice recursions (1.8.50), we
are led to define the lower-order gapped functions

g̃b = E[yẽb] , ḡa = E[yēa]

It follows that the gapped functions ga = E[yea] and gb = E[yeb] can be con-
structed order-recursively by the lattice-type equations

ga = ḡa − γbg̃b

gb = g̃b − γaḡa
(1.8.63)

The proof is straightforward. For example, E[yea]= E
[
y(ēa − γbẽb)

]
. In Chap. 12

we will see that these equations are equivalent to the celebrated Schur algorithm for
solving the linear prediction problem. In recent years, the Schur algorithm has emerged
as an important signal processing tool because it admits efficient fixed-point and parallel
processor implementations. Equations (1.8.63) are mathematically equivalent to the
Levinson-type recursions (1.8.40). In fact, Eq. (1.8.40) can be derived from Eq. (1.8.63)
as follows. Using ea = aTy and eb = bTy, it follows that

ga = E[yea]= E
[
y(yTa)

] = Ra , gb = E[yeb]= E
[
y(yTb)

] = Rb

Similarly, we have

ḡa = R
[

ā
0

]
, g̃b = R

[
0
b̃

]
(1.8.64)

These are easily shown. For example,

R
[

ā
0

]
= E

[
y[ȳT, yb]

][
ā
0

]
= E[yȳT]ā = E[yēa]= ḡa

Therefore, the first part of Eq. (1.8.63) is equivalent to

Ra = R
[

ā
0

]
− γbR

[
0
b̃

]

Equation (1.8.40) follows now by canceling out the matrix factor R. One of the es-
sential features of the Schur algorithm is that the reflection coefficients can also be
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computed from the knowledge of the lower-order gapped functions ḡa and g̃b, as fol-
lows. Using Eq. (1.8.64) and dotting Eq. (1.8.44) with the unit vectors u and v, we find

Ēa = uTḡa , Ẽb = vTg̃b , Δ = uTg̃b = vTḡa (1.8.65)

Thus, Eq. (1.8.42) may be written as

γb = vTḡa
vTg̃b

, γb = uTg̃b
uTḡa

(1.8.66)

Summary

We have argued that the solution of the general linear estimation problem can be made
more efficient by working with the decorrelated bases ea or eb, which contain no re-
dundancies. Linear prediction ideas come into play in this context because the linear
transformations U and L that decorrelate the data vector y are constructible from the
forward and backward linear prediction coefficients a and b. Moreover, linear predic-
tion was seen to be equivalent to the Gram-Schmidt construction and to the Cholesky
factorization of the covariance matrix R. The order-recursive solutions of the linear pre-
diction problem and the linear estimation problem, Eqs. (1.8.24) through (1.8.26), give
rise to efficient lattice implementations with many desirable properties, such as robust-
ness under coefficient quantization and modularity of structure admitting parallel VLSI
implementations.

In this section, we intentionally did not make any additional assumptions about
any structural properties of the covariance matrix R. To close the loop and obtain the
efficient computational algorithms mentioned previously, we need to make additional
assumptions on R. The simplest case is to assume that R has a Toeplitz structure. This
case arises when y is a block of successive signal samples from a stationary time series.
The Toeplitz property means that the matrix elements along each diagonal of R are the
same. Equivalently, the matrix elementRij depends only on the difference of the indices,
that is, Rij = R(i − j). With respect to the subblock decomposition (1.8.5), it is easily
verified that a necessary and sufficient condition for R to be Toeplitz is that

R̃ = R̄

This condition implies that the linear prediction solutions for R̃ and R̄ must be the
same, that is,

b̃ = b̄ , ã = ā

Thus, from the forward and backward linear prediction solutions ā and b̄ of the
lower-order Toeplitz submatrix R̄, we first obtain b̃ = b̄ and then use Eq. (1.8.40) to get
the linear prediction solution of the higher order matrix R. This is the essence behind
Levinson’s algorithm. It will be discussed further in Chap. 12.

In the nonstationary time series case, the matrixR is not Toeplitz. Even then one can
obtain some useful results by means of the so-called shift-invariance property. In this
case, the data vector y consists of successive signal samples starting at some arbitrary
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sampling instant n

y(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M+1

yn−M

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
[

ȳ(n)
yn−M

]
=

[
yn

ỹ(n)

]

It follows that

ȳ(n)=

⎡⎢⎢⎣
yn
...

yn−M+1

⎤⎥⎥⎦ , ỹ(n)=

⎡⎢⎢⎣
yn−1

...
yn−M

⎤⎥⎥⎦ , or, ỹ(n)= ȳ(n− 1)

This implies that R̃(n)= R̄(n− 1), and therefore

ã(n)= ā(n− 1) , b̃(n)= b̄(n− 1)

Thus, order updating is coupled with time updating. These results are used in the
development of the fast recursive least-squares adaptive filters, discussed in Chap. 16.

1.9 Random Signals

A random signal (random process, or stochastic process) is defined as a sequence of
random variables {x0, x1, x2, . . . , xn, . . . } where the index n is taken to be the time. The
statistical description of so many random variables is very complicated since it requires
knowledge of all the joint densities

p(x0, x1, x2, . . . , xn) , for n = 0,1,2, . . .

If the mean E[xn] of the random signal is not zero, it can be removed by redefining
a new signal xn − E[xn]. From now on, we will assume that this has been done, and
shall work with zero-mean random signals. The autocorrelation function is defined as

Rxx(n,m)= E[xnxm] , n,m = 0,1,2, . . .

Sometimes it will be convenient to think of the random signal as a (possibly infinite)
random vector x = [x0, x1, x2, . . . , xn, . . . ]T, and of the autocorrelation function as a
(possibly infinite) matrix Rxx = E[xxT]. Rxx is positive semi-definite and symmetric.
The autocorrelation function may also be written as

Rxx(n+ k,n)= E[xn+kxn] (1.9.1)

It provides a measure of the influence of the sample xn on the sample xn+k, which
lies in the future (if k > 0) by k units of time. The relative time separation k of the two
samples is called the lag.
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If the signal xn is stationary (or wide-sense stationary), then the above average is
independent of the absolute time n, and is a function only of the relative lag k; abusing
somewhat the above notation, we may write in the case:

Rxx(k)= E[xn+kxn]= E[xn′+kxn′] (autocorrelation) (1.9.2)

In other words, the self-correlation properties of a stationary signal xn are same on
the average, regardless of when this average is computed. In a way, the stationary ran-
dom signal xn looks the same for all times. In this sense, if we take two different blocks
of data of length N, as shown in Fig. 1.9.1, we should expect the average properties,
such as means and autocorrelations, extracted from these blocks of data to be roughly
the same. The relative time separation of the two blocks as a whole should not matter.

Fig. 1.9.1 Blocks of data from a stationary signal.

A direct consequence of stationarity is the reflection-invariance of the autocorrela-
tion function Rxx(k) of Eq. (1.9.2):

Rxx(k)= E[xn+kxn]= Rxx(−k) (1.9.3)

One way to introduce a systematization of the various types of random signals is
the Markov classification into zeroth-order Markov, first-order Markov, and so on. The
simplest possible random signal is the zeroth-order Markov, or purely random signal,
defined by the requirement that all the (zero-mean) random variables xn be independent
of each other and arise from a common density p(x); this implies

p(x0, x1,x2, . . . , xn)= p(x0)p(x1)p(x2)· · ·p(xn)· · ·
Rxx(n,m)= E[xnxm]= 0 , for n �=m

Such a random signal is stationary. The quantity Rxx(n,n) is independent of n, and
represents the variance of each sample:

Rxx(0)= E[x2
n]= σ2

x

In this case, the autocorrelation function Rxx(k) may be expressed compactly as

Rxx(k)= E[xn+kxn]= σ2
xδ(k) (1.9.4)

A purely random signal has no memory, as can be seen from the property

p(xn, xn−1)= p(xn)p(xn−1) or, p(xn|xn−1)= p(xn)
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that is, the occurrence of xn−1 at time instant n − 1 does not in any way affect, or
restrict, the values of xn at the next time instant. Successive signal values are entirely
independent of each other. Past values do not influence future values. No memory is
retained from sample to sample; the next sample will take a value regardless of the
value that the previous sample has already taken. Since successive samples are random,
such a signal will exhibit very rapid time variations. But it will also exhibit slow time
variations. Such time variations are best discussed in the frequency domain. This will
lead directly to frequency concepts, power spectra, periodograms, and the like. It is
expected that a purely random signal will contain all frequencies, from the very low to
the very high, in equal proportions (white noise).

The next least complicated signal is the first-order Markov signal, which has memory
only of one sampling instant. Such a signal remembers only the previous sample. It is
defined by the requirement that

p(xn|xn−1, xn−1, . . . , x0)= p(xn|xn−1)

which states that xn may be influenced directly only by the previous sample value xn−1,
and not by the samples xn−2, . . . , x0 that are further in the past. The complete statistical
description of such random signal is considerably simplified. It is sufficient to know
only the marginal densities p(xn) and the conditional densities p(xn|xn−1). Any other
joint density may be constructed in terms of these. For instance,

p(x3, x2, x1, x0) = p(x3|x2, x1, x0)p(x2, x1, x0) (by Bayes’ rule)

= p(x3|x2)p(x2, x1, x0) (by the Markov property)

= p(x3|x2)p(x2|x1, x0)p(x1, x0)

= p(x3|x2)p(x2|x1)p(x1, x0)

= p(x3|x2)p(x2|x1)p(x1|x0)p(x0)

1.10 Power Spectrum and Its Interpretation

The power spectral density of a stationary random signal xn is defined as the double-
sided z-transform of its autocorrelation function

Sxx(z)=
∞∑

k=−∞
Rxx(k)z−k (1.10.1)

whereRxx(k)is given by Eq. (1.9.2). IfRxx(k) is strictly stable, the region of convergence
of Sxx(z) will include the unit circle in the complex z-plane. This allows us to define
the power spectrum Sxx(ω) of the random signal xn by setting z = ejω in Eq. (1.10.1).
Abusing the notation somewhat, we have in this case

Sxx(ω)=
∞∑

k=−∞
Rxx(k)e−jωk (1.10.2)

This quantity conveys very useful information. It is a measure of the frequency
content of the signal xn and of the distribution of the power of xn over frequency. To
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see this, consider the inverse z-transform

Rxx(k)=
∮

u.c.
Sxx(z)zk

dz
2πjz

(1.10.3)

where, since Rxx(k) is stable, the integration contour may be taken to be the unit circle.
Using z = ejω, we find for the integration measure

dz
2πjz

= dω
2π

Thus, Eq. (1.10.3) may also be written as an inverse Fourier transform

Rxx(k)=
∫ π

−π
Sxx(ω)ejωk dω

2π
(1.10.4)

In particular, the variance of xn can be written as

Rxx(0)= σ2
x = E[x2

n]=
∫ π

−π
Sxx(ω)

dω
2π

(1.10.5)

Since the quantity E[x2
n] represents the average total power contained in xn, it fol-

lows that Sxx(ω) will represent the power per unit frequency interval. A typical power
spectrum is depicted in Fig. 1.10.1. As suggested by this figure, it is possible for the
power to be mostly concentrated about some frequencies and not about others. The
area under the curve represents the total power of the signal xn.

Fig. 1.10.1 Typical power spectrum.

If xn is an uncorrelated (white-noise) random signal with a delta-function autocorre-
lation, given by Eq. (1.9.4), it will have a flat power spectrum with power level equal to
the variance σ2

x :

Sxx(ω)= σ2
x

Another useful concept is that of the cross-correlation and cross-spectrum between
two stationary random sequences xn and yn. These are defined by

Ryx(k)= E[yn+kxn] , Syx(z)=
∞∑

k=−∞
Ryx(k)z−k (1.10.6)
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Using stationarity, it is easy to show the reflection symmetry property

Ryx(k)= Rxy(−k) (1.10.7)

that is analogous to Eq. (1.9.3). In the z-domain, the reflection symmetry properties
(1.9.3) and (1.10.7) are translated into:

Sxx(z)= Sxx(z−1) , Syx(z)= Sxy(z−1) (1.10.8)

respectively; and also

Sxx(ω)= Sxx(−ω) , Syx(ω)= Sxy(−ω) (1.10.9)

1.11 Sample Autocorrelation and the Periodogram

From now on we will work mostly with stationary random signals. If a block of N signal
samples is available, we will assume that it is a segment from a stationary signal. The
length N of the available data segment is an important consideration. For example, in
computing frequency spectra, we know that high resolution in frequency requires a long
record of data. However, if the record is too long the assumption of stationarity may no
longer be justified. This is the case in many applications, as for example in speech and
EEG signal processing. The speech waveform does not remain stationary for long time
intervals. It may be assumed to be stationary only for short time intervals. Such a signal
may be called piece-wise stationary. If it is divided into short segments of duration of
approximately 20–30 milliseconds, then the portion of speech within each segment may
be assumed to be a segment from a stationary signal. A typical piece-wise stationary
signal is depicted in Fig. 1.11.1.

Fig. 1.11.1 Piece-wise stationary signal.

The main reason for assuming stationarity, or piece-wise stationarity, is that most
of our methods of handling random signals depend heavily on this assumption. For
example, the statistical autocorrelations based on the ensemble averages (1.9.2) may
be replaced in practice by time averages. This can be justified only if the signals are
stationary (actually, they must be ergodic). If the underlying signal processes are not
stationary (and therefore definitely are not ergodic) we cannot use time averages. If a
signal is piece-wise stationary and divided into stationary blocks, then for each such
block, ensemble averages may be replaced by time averages. The time average approxi-
mation of an autocorrelation function is called the sample autocorrelation and is defined
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as follows: Given a block of length N of measured signal samples

y0, y1, y2, . . . , yN−1

define

R̂yy(k)= 1

N

N−1−k∑
n=0

yn+kyn , for 0 ≤ k ≤ N − 1 (1.11.1)

and
R̂yy(k)= R̂yy(−k) , for − (N − 1)≤ k ≤ −1

The function acf takes as inputs two length-N signal blocks yn, xn, n = 0,1, . . . ,N−1,
and computes their sample cross-correlation defined as

R̂yx(k)= 1

N

N−1−k∑
k=0

yn+kxn , k = 0,1, . . . ,N − 1

This function may be used to compute either auto-correlations or cross-correlations.
The periodogram is defined as the (double-sided) z-transform of the sample autocorre-
lation

Ŝyy(z)=
N−1∑

k=−(N−1)
R̂yy(k)z−k (1.11.2)

It may be thought of as an approximation (estimate) of the true power spectral den-
sity Syy(z). It is easily shown that the periodogram may be expressed in terms of the
z-transform of the data sequence itself, as

Ŝyy(z)= 1

N
Y(z)Y(z−1) (1.11.3)

where

Y(z)=
N−1∑
n=0

ynz−n (1.11.4)

As a concrete example, consider a length-3 signal y = [y0, y1, y2]T. Then,

Y(z)Y(z−1) = (y0 + y1z−1 + y2z−2)(y0 + y1z+ y2z2)

= (y2
0 + y2

1 + y2
2)+(y0y1 + y1y2)(z−1 + z)+(y0y2)(z−2 + z2)

from which we extract the inverse z-transform

R̂xx(0) = 1

3
(y2

0 + y2
1 + y2

2)

R̂xx(−1)= R̂xx(1) = 1

3
(y0y1 + y1y2)

R̂xx(−2)= R̂xx(2) = 1

3
(y0y2)
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These equations may also be written in a nice matrix form, as follows

⎡⎢⎣ R̂xx(0) R̂xx(1) R̂xx(2)
R̂xx(1) R̂xx(0) R̂xx(1)
R̂xx(2) R̂xx(1) R̂xx(0)

⎤⎥⎦
︸ ︷︷ ︸

R̂yy

= 1

3

⎡⎢⎣ y0 y1 y2 0 0
0 y0 y1 y2 0
0 0 y0 y1 y2

⎤⎥⎦
︸ ︷︷ ︸

YT

⎡⎢⎢⎢⎢⎢⎢⎣
y0 0 0
y1 y0 0
y2 y1 y0

0 y2 y1

0 0 y2

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Y

or,

R̂yy = 1

3
YTY

The matrix R̂yy on the left is called the sample autocorrelation matrix. It is a Toeplitz
matrix, that is, it has the same entry in each diagonal. The right hand side also shows
that the autocorrelation matrix is positive definite. In the general case of a length-N
sequence yn, the matrix Y has N columns, each a down-shifted (delayed) version of the
previous one, corresponding to a total of N− 1 delays. This requires the length of each
column to be N + (N − 1), that is, there are 2N − 1 rows. We will encounter again this
matrix factorization in the least-squares design of waveshaping filters.

The sample autocorrelation may also be thought of as ordinary convolution. Note
that Y(z−1) represents the z-transform the original signal y = [y0, y1, . . . , yN−1]T re-
flected about the time origin. The reflected signal may be made causal by a delay of
N − 1 units of time. The reflected-delayed signal has some significance, and is known
as the reversed signal. Its z-transform is the reverse polynomial of Y(z)

YR(z)= z−(N−1)Y(z−1)

[ 0 0 · · · 0 y0 y1 · · · yN−2 yN−1 ] = original
[ yN−1 yN−2 · · · y1 y0 0 · · · 0 0 ] = reflected
[ 0 0 · · · 0 yN−1 yN−2 · · · y1 y0 ] = reversed

The periodogram is expressed then in the form

Ŝxx(z)= 1

N
Y(z)Y(z−1)= 1

N
Y(z)YR(z)zN−1

which implies that R̂yy(k) may be obtained by convolving the original data sequence
with the reversed sequence and then advancing the result in time by N − 1 time units.
This is seen by the following convolution table.

The periodogram spectrum is obtained by substituting z = ejω

Ŝyy(ω)= 1

N
∣∣Y(ω)

∣∣2 = 1

N

∣∣∣∣∣∣
N−1∑
n=0

yne−jωn

∣∣∣∣∣∣
2

(1.11.5)
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The periodogram spectrum (1.11.5) may be computed efficiently using FFT methods.
The digital frequency ω in units of [radians/sample] is related to the physical frequency
f in [Hz] by

ω = 2πfT = 2πf
fs

where fs is the sampling rate, and T = 1/fs, the time interval between samples. The
frequency resolution afforded by a length-N sequence is

Δω = 2π
N

, or, Δf = fs
N
= 1

NT
= 1

TR
[Hz]

where TR = NT is the duration of the data record in seconds. The periodogram spec-
trum suffers from two major drawbacks. First, the rectangular windowing of the data
segment introduces significant sidelobe leakage. This can cause misinterpretation of
sidelobe spectral peaks as being part of the true spectrum. And second, it is well-known
that the periodogram spectrum is not a good (consistent) estimator of the true power
spectrum Syy(ω).

The development of methods to improve on the periodogram is the subject of clas-
sical spectral analysis [9–19]. We just mention, in passing, one of the most popular of
such methods, namely, Welch’s method [20]. The given data record of length N is subdi-
vided intoK shorter segments which may be overlapping or non-overlapping. If they are
non-overlapping then each will have length M = N/K; if they are 50% overlapping then
M = 2N/(K + 1). Each such segment is then windowed by a length-M data window,
such as a Hamming window. The window reduces the sidelobe frequency leakage at the
expense of resolution. The window w(n) is typically normalized to have unit average
energy, that is, (1/M)

∑M−1
n=0 w2(n)= 1. The periodogram of each windowed segment is

then computed by FFT methods and theK periodograms are averaged together to obtain
the spectrum estimate

S(ω)= 1

K

K∑
i=1

Si(ω)

where Si(ω) is the periodogram of the ith segment. The above subdivision into seg-
ments imitates ensemble averaging, and therefore, it results in a spectrum estimate of
improved statistical stability. However, since each periodogram is computed from a
length-M sequence, the frequency resolution is reduced from Δω = 2π/N to roughly
Δω = 2π/M (for a well-designed window). Therefore, to maintain high frequency reso-
lution (large M), as well as improved statistical stability of the spectrum estimate (large
K), a long data record N = MK is required—a condition that can easily come into con-
flict with stationarity. The so-called “modern methods” of spectrum estimation, which
are based on parametric signal models, can provide high resolution spectrum estimates
from short data records.

1.12 Filtering of Stationary Random Signals

In this section, we discuss the effect of linear filtering on random signals. The results
are very basic and useful in suggesting guidelines for the design of signal processing
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systems for many applications, such as noise reduction, signal extraction, parametric
spectrum estimation, and so on.

Suppose a stationary random signal xn is sent into a linear filter defined by a transfer
function H(z), resulting in the the output random signal yn

H(z)=
∑
n
hnz−n

We would like to derive relationships between the autocorrelation functions of the in-
put and output signals, and also between the corresponding power spectra. We assume,
for now, that the signals xn, yn, hn are real-valued. Using the input/output filtering
equation in the z-domain,

Y(z)= H(z)X(z) (1.12.1)

we determine first a relationship between the periodograms of the input and output sig-
nals. From the factorization of Eq. (1.11.3) and dropping the factor 1/N for convenience,
we find

Ŝyy(z) = Y(z)Y(z−1)

= H(z)X(z)H(z−1)X(z−1)= H(z)H(z−1)X(z)X(z−1)

= H(z)H(z−1)Ŝxx(z)= Shh(z)Ŝxx(z)

(1.12.2)

where we used the notation Shh(z)= H(z)H(z−1). This quantity is the z-transform of
the autocorrelation function of the filter, that is,

Shh(z)= H(z)H(z−1)=
∞∑

k=−∞
Rhh(k)z−k (1.12.3)

where Rhh(k) is defined as

Rhh(k)=
∑
n
hn+khn (filter autocorrelation function) (1.12.4)

Equation (1.12.3) is easily verified by writing,

Rhh(k)=
∑
i, j
hihjδ

(
k− (i− j)

)
and taking z-transforms, or by writing Rhh(k)=

∑
n hk+nhn =

∑
n hk−nh−n, which is

recognized as the convolution between the signals hn and h−n whose z-transforms are
H(z) and H(z−1), respectively.

Taking inverse z-transforms of Eq. (1.12.2), we obtain the time-domain equivalent
relationships between the input and output sample autocorrelations

R̂yy(k)=
∞∑

m=−∞
Rhh(k)R̂xx(k−m)= convolution of Rhh with R̂xx (1.12.5)
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Similarly, we find for the cross-periodograms

Ŝyx(z)= Y(z)X(z−1)= H(z)X(z)X(z−1)= H(z)Ŝxx(z) (1.12.6)

and also, replacing z by z−1,

Ŝxy(z)= Ŝxx(z)H(z−1) (1.12.7)

The above relationships between input and output periodogram spectra and sample
autocorrelations remain the same for the statistical autocorrelations and power spectra.
In the z-domain the power spectral densities are related by

Syy(z) = H(z)H(z−1)Sxx(z)

Syx(z) = H(z)Sxx(z)

Sxy(z) = Sxx(z)H(z−1)

(1.12.8)

Setting z = ejω, we may also write Eq. (1.12.8) in terms of the corresponding power
spectra:

Syy(ω) = |H(ω)|2Sxx(ω)

Syx(ω) = H(ω)Sxx(ω)

Sxy(ω) = Sxx(ω)H(−ω)= Sxx(ω)H(ω)∗
(1.12.9)

In the time domain the correlation functions are related by

Ryy(k) =
∞∑

m=−∞
Rhh(m)Rxx(k−m)

Ryx(k) =
∞∑

m=−∞
hmRxx(k−m)

(1.12.10)

The proofs of these are straightforward. For example, to show Eq. (1.12.10), we may
use stationarity and the I/O convolutional equation,

yn =
∑
m
hmxn−m

to find

Ryy(k) = E[yn+kyn]= E

⎡⎣∑
i
hixn+k−i

∑
j
hjxn−j

⎤⎦
=

∑
i, j
hihjE[xn+k−ixn−j]=

∑
i, j
hihjRxx

(
k− (i− j)

)
=

∑
i, j,m

hihjδ
(
m− (i− j)

)
Rxx(k−m)=

∑
m
Rhh(m)Rxx(k−m)
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The proof assumes that the transients introduced by the filter have died out and
that the output signal is stationary. For a strictly stable filter, the stationarity of the
output yn (i.e., the fact that E[yn+kyn] is independent of the absolute time n), becomes
valid for large times n. To see the effect of such transients, consider a causal filter and
assume that the input xn is applied starting at n = 0. Then, the I/O equation reads:

yn =
n∑

m=0

hmxn−m

and the corresponding output autocorrelation function becomes (for n, k ≥ 0):

E[yn+kyn]= E

⎡⎣n+k∑
i=0

hixn+k−i
n∑
j=0

hjxn−j

⎤⎦ = n+k∑
i=0

n∑
j=0

hihjRxx(k+ j − i)

which does have an explicit n dependence. Assuming that the filter is strictly stable, the
above expression will converge to Eq. (1.12.10) in the limit of large n. A further example
of this property is discussed in Sec. 1.15.

The above filtering results can be applied to the special case of a zero-mean white-
noise signal xn of variance σ2

x , which has a delta-function autocorrelation and a flat
power spectrum, as shown in Fig. 1.12.1:

Rxx(k)= E[xn+kxn]= σ2
xδ(k) , Sxx(z)= σ2

x (1.12.11)

Fig. 1.12.1 Autocorrelation function and power spectrum of white noise.

Then, Eqs. (1.12.8) through (1.12.10) simplify as follows

Syy(z) = H(z)H(z−1)σ2
x

Syx(z) = H(z)σ2
x

(1.12.12)

Syy(ω) = |H(ω)|2σ2
x

Syx(ω) = H(ω)σ2
x

(1.12.13)

Ryy(k) = σ2
x

∑
n
hn+khn = σ2

xRhh(k)

Ryx(k) = σ2
x hk

(1.12.14)

1.12. Filtering of Stationary Random Signals 55

The filtering operation reshapes the flat white-noise spectrum of the input signal into
a shape defined by the magnitude response

∣∣H(ω)
∣∣2

of the filter, and introduces self-
correlations in the output signal given by the autocorrelation of the filter. The variance
σ2
y of the output noise signal yn is obtained from Eq. (1.10.5), that is,

σ2
y = E[y2

n]= Ryy(0)= 1

2π

∫ π

−π
Syy(ω)dω = 1

2π

∫ π

−π

∣∣H(ω)
∣∣2σ2

x dω (1.12.15)

The ratio σ2
y/σ2

x is a measure of whether the filter attenuates or amplifies the input
noise. We will refer to it as the noise reduction ratio (NRR). Using Eq. (1.12.15) and
Parseval’s identity, we may express it in the equivalent forms:

R = σ2
y

σ2
x
=

∑
n
h2
n =

1

2π

∫ π

−π

∣∣H(ω)
∣∣2 dω (noise reduction ratio) (1.12.16)

Example 1.12.1: As an example, consider the first-order Markov signal yn defined as the output
of the filter

yn = ayn−1 + εn , H(z)= 1

1− az−1
, |a| < 1

driven by white noise εn of variance σ2
ε . The impulse response of the filter is

hn = anu(n) , u(n)= unit step

The output autocorrelationRyy(k)may be computed in two ways. First, in the time domain
(assuming first that k ≥ 0):

Ryy(k)= σ2
ε

∞∑
n=0

hn+khn = σ2
ε

∞∑
n=0

an+kan = σ2
ε ak

∞∑
n=0

a2n = σ2
εak

1− a2

And second, in the z-domain using power spectral densities and inverse z-transforms
(again take k ≥ 0):

Syy(z) = H(z)H(z−1)σ2
ε =

σ2
ε

(1− az−1)(1− az)

Ryy(k) =
∮

u.c
Syy(z)zk

dz
2πjz

=
∮

u.c.

σ2
εzk

(z− a)(1− az)
dz

2πj

= (Residue at z = a) = σ2
εak

1− a2

In particular, we verify the following results to be used later:

Ryy(0)= σ2
ε

1− a2
, Ryy(1)= σ2

εa
1− a2

= aRyy(0)

a = Ryy(1)
Ryy(0)

, σ2
ε = (1− a2)Ryy(0)

It is interesting to note the exponentially decaying nature of Ryy(k) with increasing lag k,
as shown in Fig. 1.12.2.

Correlations exist between successive samples due the indirect influence of a given sample
yn on all future samples, as propagated by the difference equation. In going from one
sampling instant to the next, the difference equation scales yn by a factor a; therefore, we
expect the correlations to decrease exponentially with increasing lag. ��
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Fig. 1.12.2 Exponentially decaying autocorrelation.

Whenever the autocorrelation drops off very fast with increasing lag, it can be taken
as an indication that there exists a stable difference equation model for the random
signal. However, not all random signals have exponentially decaying autocorrelations.
For example, a pure sinusoid with random phase

yn = A cos(ω0n+φ)

where φ is a uniformly-distributed random phase, has autocorrelation

Ryy(k)= 1

2
A2 cos(ω0k)

which never dies out. A particular realization of the random variable φ defines the
entire realization of the time series yn. Thus, as soon as φ is fixed, the entire yn is
fixed. Such random signals are called deterministic, since a few past values—e.g., three
samples—of yn are sufficient to determine all future values of yn.

Finally we note that all of the filtering equations in Eqs. (1.12.8)–(1.12.10) can be
considered to be special cases of the following more general result involving two filters
H1(z) and H2(z) and two stationary input random signals x1(n) and x2(n), resulting
in the output signals y1(n) and y2(n) as shown below:

Then, the corresponding cross-power spectral density of the output signals is given by:

Sy1y2(z)= H1(z)H2(z−1)Sx1x2(z) (1.12.17)

where Sx1x2(z) is the z-transform of Rx1x2(k)= E
[
x1(n+ k)x2(n)

]
, etc.

1.13 Random Signal Models and Their Uses

Models that provide a characterization of the properties and nature of random signals
are of primary importance in the design of optimum signal processing systems. This
section offers an overview of such models and outlines their major applications. Many
of the ideas presented here will be developed in greater detail in later chapters.
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One of the most useful ways to model a random signal [21] is to consider it as
being the output of a causal and stable linear filter B(z) that is driven by a stationary
uncorrelated (white-noise) sequence εn,

B(z)=
∞∑
n=0

bnz−n

where Rεε(k)= E[εn+kεn]= σ2
εδ(k). Assuming a causal input sequence εn, the output

random signal yn is obtained by convolving εn with the filter’s impulse response bn:

yn =
n∑
i=0

bn−iεi (1.13.1)

The stability of the filter B(z) is essential as it guarantees the stationarity of the
sequence yn. This point will be discussed later on. By readjusting, if necessary, the
value of σ2

ε we may assume that b0 = 1. Then Eq. (1.13.1) corresponds exactly to the
Gram-Schmidt form of Eqs. (1.6.15) and (1.6.16), where the matrix elements bni are given
in terms of the impulse response of the filter B(z):

bni = bn−i (1.13.2)

In this case, the structure of the matrix B is considerably simplified. Writing the
convolutional equation (1.13.1) in matrix form⎡⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
b1 1 0 0 0
b2 b1 1 0 0
b3 b2 b1 1 0
b4 b3 b2 b1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ (1.13.3)

we observe that the first column of B is the impulse response bn of the filter. Each
subsequent column is a down-shifted (delayed) version of the previous one, and each
diagonal has the same entry (i.e., B is a Toeplitz matrix). The lower-triangular nature of
B is equivalent to the assumed causality of the filter B(z).

Such signal models are quite general. In fact, there is a general theorem by Wold that
essentially guarantees the existence of such models for any stationary signal yn [22,23].
Wold’s construction of B(z) is none other than the Gram-Schmidt construction of the
orthogonalized basis εn. However, the practical usage of such models requires further
that the transfer function B(z) be rational, that is, the ratio of two polynomials in z−1.
In this case, the I/O convolutional equation (1.13.1) is most conveniently expressed as
a difference equation.

Example 1.13.1: Suppose

B(z)= 1+ c1z−1 + c2z−2

1+ d1z−1 + d2z−2
(1.13.4)

Then Eq. (1.13.1) is equivalent to the difference equation

yn = −d1yn−1 − d2yn−2 + εn + c1εn−1 + c2εn−2 (1.13.5)
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which may be realized as follows

The filter B(z) is called a synthesis filter and may be thought of as a random signal
generator, or a signal model, for the random signal yn. The numerator and denominator
coefficients of the filter B(z), and the variance σ2

ε of the input white noise, are referred
to as the model parameters. For instance, in Example 1.13.1 the model parameters are
{c1, c2, d1, d2, σ2

ε}.
Such parametric models have received a lot of attention in recent years. They are

very common in speech and geophysical signal processing, image processing, EEG sig-
nal processing, spectrum estimation, data compression, and other time series analysis
applications.

How are such models used? One of the main objectives in such applications has
been to develop appropriate analysis procedures for extracting the model parameters
on the basis of a given set of samples of the signal yn. This is a system identification
problem. The analysis procedures are designed to provide effectively the best fit of the
data samples to a particular model. The procedures typically begin with a measured
block of signal samples {y0, y1, . . . , yN}—also referred to as an analysis frame—and
through an appropriate analysis algorithm extract estimates of the model parameters.
This is depicted in Fig. 1.13.1.

Fig. 1.13.1 Analysis procedure.

The given frame of samples {y0, y1, . . . , yN} is represented now by the set of model
parameters extracted from it. Following the analysis procedure, the resulting model
may be used in a variety of ways. The four major uses of such models are in:

1. Signal synthesis
2. Spectrum estimation
3. Signal classification
4. Data compression

We will discuss each of these briefly. To synthesize a particular realization of the
random signal yn, it is only necessary to recall from memory the appropriate model
parameters, generate a random uncorrelated sequence εn having variance σ2

ε , and send
it through the filterB(z). Such uncorrelated sequence may be computer-generated using
a standard random number generator function. The synthetic signal will appear at the
output of the filter. This is shown in Fig. 1.13.2.
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Fig. 1.13.2 Signal synthesis.

This is the basic principle behind most speech synthesis systems. In speech, the
synthesis filter B(z) represents a model of the transfer characteristics of the vocal tract
considered as an acoustic tube. A typical analysis frame of speech has duration of
20 msec. If sampled at a 10-kHz sampling rate, it will consist of N = 200 samples.
To synthesize a particular frame of 200 samples, the model parameters representing
that frame are recalled from memory, and the synthesis filter is run for 200 sampling
instances generating 200 output speech samples, which may be sent to a D/A converter.
The next frame of 200 samples can be synthesized by recalling from memory its model
parameters, and so on. Entire words or sentences can be synthesized in such a piece-
wise, or frame-wise, manner.

A realistic representation of each speech frame requires the specification of two
additional parameters besides the filter coefficients and σ2

ε , namely, the pitch period
and a voiced/unvoiced (V/UV) decision. Unvoiced sounds, such as the “sh” in the word
“should”, have a white-noise sounding nature, and are generated by the turbulent flow
of air through constrictions of the vocal tract. Such sounds may be represented ade-
quately by the above random signal models. On the other hand, voiced sounds, such as
vowels, are pitched sounds, and have a pitch period associated with them. They may be
assumed to be generated by the periodic excitation of the vocal tract by a train of im-
pulses separated by the pitch period. The vocal tract responds to each of these impulses
by producing its impulse response, resulting therefore in a quasi-periodic output which
is characteristic of such sounds. Thus, depending on the type of sound, the nature of
the generator of the excitation input to the synthesis filter will be different, namely, it
will be a random noise generator for unvoiced sounds, and a pulse train generator for
voiced sounds. A typical speech synthesis system that incorporates the above features
is shown in Fig. 1.13.3.

Fig. 1.13.3 Typical speech synthesis system.

Another major application of parametric models is to spectrum estimation. This is
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based on the property that
Syy(ω)= σ2

ε
∣∣B(ω)

∣∣2
(1.13.6)

which will be proved later. It states that the spectral shape of the power spectrum
Syy(ω) of the signal yn arises only from the spectral shape of the model filter B(ω).
For example, the signal yn generated by the model of Example 1.13.1 will have

Syy(ω)= σ2
ε

∣∣∣∣∣ 1+ c1e−jω + c2e−2jω

1+ d1e−jω + d2e−2jω

∣∣∣∣∣
2

This approach to spectrum estimation is depicted in Fig. 1.13.4. The parametric ap-
proach to spectrum estimation must be contrasted with the classical approach which is
based on direct computation of the Fourier transform of the available data record, that
is, the periodogram spectrum, or its improvements. The classical periodogram method
is shown in Fig. 1.13.5. As we mentioned in the previous section, spectrum estimates
based on such parametric models tend to have much better frequency resolution prop-
erties than the classical methods, especially when the length N of the available data
record is short.

Fig. 1.13.4 Spectrum estimation with parametric models.

Fig. 1.13.5 Classical spectrum estimation.

In signal classification applications, such as speech recognition, speaker verification,
or EEG pattern classification, the basic problem is to compare two available blocks of
data samples and decide whether they belong to the same class or not. One of the two
blocks might be a prestored and preanalyzed reference template against which the other
block is to be compared. Instead of comparing the data records sample by sample, what
are compared are the corresponding model parameters extracted from these blocks.
In pattern recognition nomenclature, the vector of model parameters is the “feature
vector.” The closeness of the two sets of model parameters to each other is decided
on the basis of an appropriate distance measure. We will discuss examples of distance
measures for speech and EEG signals in Chap. 12. This approach to signal classification
is depicted in Fig. 1.13.6.

Next, we discuss the application of such models to data compression. The signal
synthesis method described above is a form of data compression because instead of
saving the N data samples yn as such, what are saved are the corresponding model
parameters which are typically much fewer in number than N. For example, in speech
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Fig. 1.13.6 Signal classification with parametric models.

synthesis systems a savings of about a factor of 20 in memory may be achieved with
this approach. Indeed, as we discussed above, a typical frame of speech consists of 200
samples, whereas the number of model parameters typically needed to represent this
frame is about 10 to 15. The main limitation of this approach is that the reproduction
of the original signal segment is not exact but depends on the particular realization of
the computer-generated input sequence εn that drives the model. Speech synthesized
in such manner is still intelligible, but it has lost some of its naturalness. Such signal
synthesis methods are not necessarily as successful or appropriate in all applications.
For example, in image processing, if one makes a parametric model of an image and
attempts to “synthesize” it by driving the model with a computer-generated uncorrelated
sequence, the reproduced image will bear no resemblance to the original image.

For exact reproduction, both the model parameters and the entire sequence εn must
be stored. This would still provide some form of data compression, as will be explained
below. Such an approach to data compression is widely used in digital data transmission
or digital data storage applications for all types of data, including speech and image
data. The method may be described as follows: the given data record {y0, y1, . . . , yN−1}
is subjected to an appropriate analysis algorithm to extract the model parameters, and
then the segment is filtered through the inverse filter,

A(z)= 1

B(z)
(1.13.7)

to provide the sequence εn. The inverse filter A(z) is also known as the whitening
filter, the prediction-error filter, or the analysis filter. The resulting sequence εn has
a compressed dynamic range relative to yn and therefore it requires fewer number of
bits for the representation of each sample εn. A quantitative measure for the data
compression gain is given by the ratio G = σ2

y/σ2
ε , which is always greater than one.

This can be seen easily using Eqs. (1.13.6) and (1.10.5)

σ2
y =

∫ π

−π
Syy(ω)

dω
2π

= σ2
ε

∫ π

−π

∣∣B(ω)
∣∣2 dω

2π
= σ2

ε

∞∑
n=0

b2
n

Since b0 = 1, we find

G = σ2
y

σ2
ε
=

∞∑
n=0

b2
n = 1+ b2

1 + b2
2 + · · · (1.13.8)

The entire sequence εn and the model parameters are then transmitted over the
data link, or stored in memory. At the receiving end, the original sequence yn may be



62 1. Review of Random Signals

reconstructed exactly using the synthesis filter B(z) driven by εn. This approach to data
compression is depicted in Fig. 1.13.7. Not shown in Fig. 1.13.7 are the quantization and
encoding operations that must be performed on εn in order to transmit it over the digital
channel.

Fig. 1.13.7 Data compression.

Filtering the sequence yn through the inverse filter requires that A(z) be stable and
causal. If we write B(z) as the ratio of two polynomials

B(z)= N(z)
D(z)

(1.13.9)

then the stability and causality of B(z) requires that the zeros of the polynomial D(z)
lie inside the unit circle in the complex z-plane; whereas the stability and causality of
the inverse A(z)= D(z)/N(z) requires the zeros of N(z) to be inside the unit circle.
Thus, both the poles and the zeros of B(z) must be inside the unit circle. Such filters
are called minimal phase filters. When A(z) is stable and causal it may be expanded in
the form

A(z)=
∞∑
n=0

anz−n = 1+ a1z−1 + a2z−2 + · · · (1.13.10)

and the I/O equation of Eq. (1.13.7) becomes

εn =
n∑
i=0

aiyn−i = yn + a1yn−1 + a2yn−2 + · · · (1.13.11)

for n = 0,1,2, . . . . It may be written in matrix form εεε = Ay as⎡⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
a1 1 0 0 0
a2 a1 1 0 0
a3 a2 a1 1 0
a4 a3 a2 a1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦
Both this matrix form and Eq. (1.13.11) are recognized as special cases of Eqs. (1.7.1)

and (1.7.10). According to Eq. (1.7.11), the quantity

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · · + any0

]
(1.13.12)

is the projection of yn on the subspace spanned by Yn−1 = {yn−1, yn−2, . . . , y0}. There-
fore, it represents the best linear estimate of yn on the basis of (all) its past values Yn−1,
that is, ŷn/n−1 is the best prediction of yn from its (entire) past. Equation (1.13.11) gives
the corresponding prediction error εn = yn − ŷn/n−1. We note here an interesting con-
nection between linear prediction concepts and signal modeling concepts [21–25], that
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is, that the best linear predictor (1.13.12) determines the whitening filter A(z) which,
in turn, determines the generator model B(z)= 1/A(z) of yn. In other words, solving
the prediction problem also solves the modeling problem.

The above modeling approach to the representation of stationary time series, and
its relationship to the Gram-Schmidt construction and linear prediction was initiate by
Wold and developed further by Kolmogorov [22,24].

The most general model filter B(z) given in Eq. (1.13.9) is called an autoregressive
moving average (ARMA), or a pole-zero model. Two special cases of interest are the
moving average (MA), or all-zero models, and the autoregressive (AR), or all-pole models.
The MA model has a nontrivial numerator only, B(z)= N(z), so that B(z) is a finite
polynomial:

B(z)= 1+ b1z−1 + b2z−2 + · · · + bMz−M (MA model)

The AR model has a nontrivial denominator only, B(z)= 1/D(z), so that its inverse
A(z)= D(z) is a polynomial:

B(z) = 1

1+ a1z−1 + a2z−2 + · · · + aMz−M
(AR model)

A(z) = 1+ a1z−1 + a2z−2 + · · · + aMz−M

Autoregressive models are the most widely used models, because the analysis algo-
rithms for extracting the model parameters {a1, a2, . . . , aM;σ2

ε} are fairly simple. In the
sequel, we will concentrate mainly on such models.

1.14 Filter Model of First Order Autoregressive Process

To gain some understanding of filter models of the above type, we consider a very simple
example of a first-order recursive filter B(z) driven by a purely random sequence of
variance σ2

ε :

B(z)= 1

1− az−1

This serves also as a simple model for generating a first order Markov signal. The
signal yn is generated by the difference equation of the filter:

yn = ayn−1 + εn (1.14.1)

Let the probability of the nth sample εn be f(εn). We would like to show that

p(yn|yn−1, yn−2, . . . , y1, y0)= p(yn|yn−1)= f(εn)= f(yn − ayn−1)

which not only shows the Markov property of yn, but also how to compute the related
conditional density. Perhaps the best way to see this is to start at n = 0:

y0 = ε0 (assuming zero initial conditions)

y1 = ay0 + ε1

y2 = ay1 + ε2 , etc.
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To compute p(y2|y1, y0), suppose that y1 and y0 are both given. Since y1 is given,
the third equation above shows that the randomness left in y2 arises from ε2 only. Thus,
p(y2|y1)= f(ε2). From the first two equations it follows that specifying y0 and y1 is
equivalent to specifying ε0 and ε1. Therefore, p(y2|y1, y0)= f(ε2|ε1, ε0)= f(ε2), the
last equation following from the purely random nature of the sequence εn. We have
shown that

p(y2|y1, y0)= p(y2|y1)= f(ε2)= f(y2 − ay1)

Using the results of Sec. 1.9, we also note

p(y2, y1, y0) = p(y2|y1)p(y1|y0)p(y0)

= f(ε2)f(ε1)f(ε0)

= f(y2 − ay1)f(y1 − ay0)f(y0)

The solution of the difference equation (1.14.1) is obtained by convolving the impulse
response of the filter B(z)

bn = anu(n) , u(n)= unit step

with the input sequence εn as follows:

yn =
n∑
i=0

biεn−i =
n∑
i=0

aiεn−i (1.14.2)

for n = 0,1,2, . . . . This is the innovations representation of yn given by Eqs. (1.6.15),
(1.6.16), and (1.13.1). In matrix form it reads:⎡⎢⎢⎢⎣

y0

y1

y2

y3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
a 1 0 0
a2 a 1 0
a3 a2 a 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦ (1.14.3)

The inverse equation, εεε = B−1y = Ay, is obtained by writing Eq. (1.14.1) as εn =
yn − ayn−1. In matrix form, this reads⎡⎢⎢⎢⎣

ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
−a 1 0 0

0 −a 1 0
0 0 −a 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎥⎦ (1.14.4)

According to the discussion of Example 1.7.1, the partial correlation coefficients
can be read off from the first column of this matrix. We conclude, therefore, that all
partial correlation coefficients of order greater than two are zero. This property is in
accordance with our intuition about first order Markov processes; due to the recursive
nature of Eq. (1.14.1) a given sample, say yn, will have an indirect influence on all future
samples. However, the only direct influence is to the next sample.

Higher order autoregressive random signals can be generated by sending white noise
through higher order filters. For example, the second-order difference equation

yn = a1yn−1 + a2yn−2 + εn (1.14.5)
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will generate a second-order Markov signal. In this case, the difference equation di-
rectly couples two successive samples, but not more than two. Therefore, all the partial
correlations of order greater than three will be zero. This may be seen also by writing
Eq. (1.14.5) in matrix form and inspecting the first column of the matrix A:⎡⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−a1 1 0 0 0
−a2 −a1 1 0 0

0 −a2 −a1 1 0
0 0 −a2 −a1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦

1.15 Stability and Stationarity

In this section we discuss the importance of stability of the signal generator filter B(z).
We demonstrate that the generated signal yn will be stationary only if the generating
filter is stable. And in this case, the sequence yn will become stationary only after the
transient effects introduced by the filter have died out.

To demonstrate these ideas, consider the lag-0 autocorrelation of our first order
Markov signal

Ryy(n,n) = E[y2
n]= E

[
(ayn−1 + εn)2]

= a2E[y2
n−1]+2aE[yn−1εn]+E[ε2

n]= a2Ryy(n− 1, n− 1)+σ2
ε

(1.15.1)

where we set σ2
ε = E[ε2

n] and E[yn−1εn]= 0, which follows by using Eq. (1.14.2) to get

yn−1 = εn−1 + aεn−2 + · · · + an−1ε0

and noting that εn is uncorrelated with all these terms, due to its white-noise nature.
The above difference equation for Ryy(n,n) can now be solved to get

Ryy(n,n)= E[y2
n]=

σ2
ε

1− a2
+σ2

ε

(
1− 1

1− a2

)
a2n (1.15.2)

where the initial condition was taken to be E[y2
0]= E[ε2

0]= σ2
ε . If the filter is stable and

causal, that is, |a| < 1, then the second term in (1.15.2) tends to zero exponentially, and
Ryy(n,n) eventually loses its dependence on the absolute time n. For large n, it tends
to the steady-state value

Ryy(0)= E[y2
n]= σ2

y =
σ2
ε

1− a2
(1.15.3)

The same result is obtained, of course, by assuming stationarity from the start. The
difference equation (1.15.1) can be written as

E[y2
n]= a2E[y2

n−1]+σ2
ε

If yn is assumed to be already stationary, then E[y2
n]= E[y2

n−1]. This implies the
same steady-state solution as Eq. (1.15.3).
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If the filter is unstable, that is, |a| > 1, then the second term of Eq. (1.15.2) diverges
exponentially. The marginal case a = 1 is also unacceptable, but is of historical interest
being the famous Wiener process, or random walk. In this case, the signal model is

yn = yn−1 + εn

and the difference equation for the variance becomes

Ryy(n,n)= Ryy(n− 1, n− 1)+σ2
ε

with solution
Ryy(n,n)= E[y2

n]= (n+ 1)σ2
ε

In summary, for true stationarity to set in, the signal generator filter B(z) must be
strictly stable (all its poles must be strictly inside the unit circle).

1.16 Parameter Estimation

One of the most important practical questions is how to extract the model parameters,
such as the above filter parameter a, from the actual data values. As an introduction to
the analysis methods used to answer this question, let us suppose that the white noise
input sequence εn is gaussian

f(εn)= 1√
2πσε

exp
(− ε2

n
2σ2

ε

)
and assume that a block of N measured values of the signal yn is available

y0, y1, y2, . . . , yN−1

Can we extract the filter parameter a from this block of data? Can we also extract
the variance σ2

ε of the driving white noise εn? If so, then instead of saving the N mea-
sured values {y0, y1, y2, . . . , yN−1}, we can save the extracted filter parameter a and the
variance σ2

ε . Whenever we want to synthesize our original sequence yn, we will simply
generate a white-noise input sequence εn of variance σ2

ε , using a pseudorandom num-
ber generator routing, and then drive with it the signal model whose parameter a was
previously extracted from the original data. Somehow, all the significant information
contained in the original samples, has now been packed or compressed into the two
numbers a and σ2

ε .
One possible criterion for extracting the filter parametera is the maximum likelihood

(ML) criterion: The parameter a is selected so as to maximize the joint density

p(y0, y1, . . . , yN−1)= f(ε0)f(ε1)· · · f(εN−1)

= 1(√
2πσε

)N exp

⎡⎣− 1

2σ2
ε

N−1∑
n=1

(yn − ayn−1)2

⎤⎦ exp
[−y2

0/2σ2
ε
]
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that is, the parameter a is selected so as to render the actual measured values {y0, y1, y2,
. . . , yN−1} most likely. The criterion is equivalent to minimizing the exponent with
respect to a:

E(a)=
N−1∑
n=1

(yn − ayn−1)2+y2
0 =

N−1∑
n=0

e2
n = min (1.16.1)

where we set en = yn − ayn−1, and e0 = y0. The minimization of Eq. (1.16.1) gives

∂E(a)
∂a

= −2
N−1∑
n=1

(yn − ayn−1)yn−1 = 0 , or,

a =

N−1∑
n=1

ynyn−1

N−1∑
n=1

y2
n−1

= y0y1 + y1y2 + · · · + yN−2yN−1

y2
0 + y2

1 + · · · + y2
N−2

(1.16.2)

There is a potential problem with the above ML criterion for extracting the filter
parameter a, namely, the parameter may turn out to have magnitude greater than one,
which will correspond to an unstable filter generating the sequence yn. This is easily
seen from Eq. (1.16.2); whereas the numerator has dependence on the last sample yN−1,
the denominator does not. Therefore it is possible, for sufficiently large values of yN−1,
for the parameter a to be greater than one. There are other criteria for extracting the
Markov model parameters that guarantee the stability of the resulting synthesis filters,
such as the so-called autocorrelation method, or Burg’s method. These will be discussed
later on.

An alternative parameter estimation method is the autocorrelation or Yule-Walker
method of extracting the model parameters from a block of data. We begin by expressing
the model parameters in terms of output statistical quantities and then replace ensemble
averages by time averages. Assuming stationarity has set in, we find

Ryy(1)= E[ynyn−1]= E
[
(ayn−1 + εn)yn−1

] = aE[y2
n−1]+E[εnyn−1]= aRyy(0)

from which

a = Ryy(1)
Ryy(0)

The input parameter σ2
ε can be expressed as

σ2
ε = (1− a2)σ2

y = (1− a2)Ryy(0)

These two equations may be written in matrix form as[
Ryy(0) Ryy(1)
Ryy(1) Ryy(0)

][
1

−a
]
=

[
σ2
ε

0

]

These are called the normal equations of linear prediction. Their generalization will
be considered later on. These results are important because they allow the extraction
of the signal model parameters directly in terms of output quantities, that is, from
experimentally accessible quantities.
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We may obtain estimates of the model parameters by replacing the theoretical auto-
correlations by the corresponding sample autocorrelations, defined by Eq. (1.11.1):

â = R̂yy(1)
R̂yy(0)

=

1

N

N−1−1∑
n=0

yn+1yn

1

N

N−1∑
n=0

ynyn

= y0y1 + y1y2 + · · · + yN−2yN−1

y2
0 + y2

1 + · · · + y2
N−2 + y2

N−1

σ̂2
ε = (1− â2)R̂yy(0)

It is easily checked that the parameter â, defined as above, is always of magnitude
less than one; thus, the stability of the synthesis filter is guaranteed. Note the difference
with the ML expression. The numerators are the same, but the denominators differ by
an extra term. It is also interesting to note that the above expressions may be obtained
by a minimization criterion; known as the autocorrelation method, or the Yule-Walker
method:

E(a)=
N∑
n=0

e2
n =

N∑
n=0

(yn − ayn−1)2= min (1.16.3)

This differs from the ML criterion (1.16.1) only in the range of summation for n.
Whereas in the ML criterion the summation index n does not run off the ends of the
data block, it does so in the Yule-Walker case. We may think of the block of data as
having been extended to both directions by padding it with zeros

0, . . . ,0, y0, y1, . . . , yN−1,0,0, . . . ,0

The difference between this and the ML criterion arises from the last term in the sum

E(a)=
N∑
n=0

e2
n =

N−1∑
n=1

e2
n + e2

N =
N−1∑
n=1

(yn − ayn−1)2+(0− ayN−1)2

The Yule-Walker analysis algorithm for this first order example is summarized in
Fig. 1.16.1.

Fig. 1.16.1 Yule-Walker analysis method.

How good are â and σ̂2
ε as estimates of the model parameters a and σ2

ε? It can
be shown that they, and the maximum likelihood estimates of the previous section, are
asymptotically unbiased and consistent. The corresponding variances are given for large
N by [4–6]

E
[
(Δa)2] = 1− a2

N
, E

[
(Δσ2

ε)2] = 2σ4
ε

N
(1.16.4)

where Δa = â − a and Δσ2
ε = σ̂2

ε − σ2
ε . Such asymptotic properties are discussed in

greater detail in Chap. 14. Here, we present some simulation examples showing that
(1.16.4) are adequate even for fairly small N.
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Example 1.16.1: The following N = 30 signal samples of yn have been generated by passing
zero-mean white noise through the difference equation yn = ayn−1+εn, with a = 0.8 and
σ2
ε = 1:

yn = {2.583, 2.617, 2.289, 2.783, 2.862, 3.345, 2.704, 1.527, 2.096, 2.050, 2.314,

0.438, 1.276, 0.524, −0.449, −1.736, −2.599, −1.633, 1.096, 0.348, 0.745,

0.797, 1.123, 1.031, −0.219, 0.593, 2.855, 0.890, 0.970, 0.924}

Using the Yule-Walker method, we obtain the following estimates of the model parameters

â = 0.806 , σ2
ε = 1.17

Both estimates are consistent with the theoretically expected fluctuations about their means
given by Eq. (1.16.4), falling within the one-standard deviation intervals a± δa and σ2

ε ±
δσ2

ε , where δa and δσ2
ε are the square roots of Eq. (1.16.4). For N = 30, the numerical

values of these intervals are: 0.690 ≤ â ≤ 0.910 and 0.742 ≤ σ2
ε ≤ 1.258. Given the

theoretical and estimated model parameters, we can obtain the theoretical and estimated
power spectral densities of yn by

STH(ω)= σ2
ε∣∣1− ae−jω

∣∣2 , SYW(ω)= σ̂2
ε∣∣1− âe−jω

∣∣2

The periodogram spectrum based on the given length-N data block is

SPER(ω)= 1

N

∣∣∣∣∣∣
N−1∑
n=0

yne−jnω
∣∣∣∣∣∣

2

The three spectra are plotted in Fig. 1.16.2, in units of decibels; that is, 10 log10 S, over
the right half of the Nyquist interval 0 ≤ ω ≤ π. Note the excellent agreement of the
Yule-Walker spectrum with the theoretical spectrum and the several sidelobes of the peri-
odogram spectrum caused by the windowing of yn.

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

digital frequency ω  in units of π

dB

Yule−Walker vs. Periodogram Spectra

STH

SYW

Sper

Fig. 1.16.2 Comparison of Yule-Walker and periodogram spectrum estimates.
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Example 1.16.2: The purpose of this example is to demonstrate the reasonableness of the
asymptotic variances, Eq. (1.16.4). For the first-order model defined in the previous exam-
ple, we generated 100 different realizations of the length-30 signal block yn. From each
realization, we extracted the Yule-Walker estimates of the model parameters â and σ̂2

ε .
They are shown in Figs. 1.16.3 versus realization index, together with the corresponding
asymptotic one-standard deviation intervals that were computed in the previous example.
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Fig. 1.16.3 Parameters a,σ2
ε estimated from 100 realizations of the length-30 data block yn.

1.17 Linear Prediction and Signal Modeling

Linear prediction ideas are introduced in the context of our simple example by noting
that the least-squares minimization criteria (1.16.1) and (1.16.3)

E(a)=
∑
n
e2
n = minimum (1.17.1)

essentially force each en to be small. Thus, if we reinterpret

ŷn = ayn−1

as the linear prediction of the sample yn made on the basis of just the previous sample
yn−1, then en = yn − ayn−1 = yn − ŷn may be thought of as the prediction error. The
minimization criterion (1.17.1) essentially minimizes the prediction error in an average
least-squares sense, thus attempting to make the best prediction possible.

As we mentioned in Sec. 1.13, the solution of the linear prediction problem provides
the corresponding random signal generator model for yn, which can be used, in turn,
in a number of ways as outlined in Sec. 1.13. This is the main reason for our interest in
linear prediction.

A more intuitive way to understand the connection between linear prediction and
signal models is as follows: Suppose we have a predictor ŷn of yn which is not necessarily
the best predictor. The predictor ŷn is given as a linear combination of the past values
{yn−1, yn−2, . . . }:

ŷn = −
[
a1yn−1 + a2yn−2 + · · ·

]
(1.17.2)
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The corresponding prediction error will be

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · (1.17.3)

and it may be considered as the output of the prediction-error filter A(z) (which is
assumed to be stable and causal):

A(z)= 1+ a1z−1 + a2z−2 + · · ·

Suppose further that A(z) has a stable and causal inverse filter

B(z)= 1

A(z)
= 1

1+ a1z−1 + a2z−2 + · · ·
so that yn may be expressed causally in terms of en, that is,

yn = en + b1en−1 + b2en−2 + · · · (1.17.4)

Then, Eqs. (1.17.3) and (1.17.4) imply that the linear spaces generated by the random
variables

{yn−1, yn−2, . . . } and {en−1, en−2, . . . }
are the same space. One can pass from one set to the other by a causal and causally
invertible linear filtering operation.

Now, if the prediction ŷn of yn is the best possible prediction, then what remains after
the prediction is made—namely, the error signal en—should be entirely unpredictable
on the basis of the past values {yn−1, yn−2, . . . }. That is, en must be uncorrelated with
all of these. But this implies that en must be uncorrelated with all {en−1, en−2, . . . }, and
therefore en must be a white-noise sequence. It follows that A(z) and B(z) are the
analysis and synthesis filters for the sequence yn.

The least-squares minimization criteria of the type (1.17.1) that are based on time
averages, provide a practical way to solve the linear prediction problem and hence also
the modeling problem. Their generalization to higher order predictors will be discussed
in Chap. 12.

1.18 Cramér–Rao Bound and Maximum Likelihood

The Cramér-Rao inequality [2–5,27] provides a lower bound for the variance of unbi-
ased estimators of parameters. Thus, the best any parameter estimator can do is to
meet its Cramér-Rao bound. Such estimators are called efficient. Parameter estimators
based on the principle of maximum likelihood, such as the one presented in Sec. 1.16,
have several nice properties, namely, as the number of observations becomes large,
they are asymptotically unbiased, consistent, efficient, and are asymptotically normally
distributed about the theoretical value of the parameter with covariance given by the
Cramér-Rao bound.

In this section, we present a derivation of the Cramér-Rao inequality using correla-
tion canceling methods and discuss its connection to maximum likelihood. Consider
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N observations Y = {y1,y2, . . . ,yN}, where each observation is assumed to be an M-
dimensional random vector. Based on these observations, we would like to estimate a
number of (deterministic) parameters, assembled into a parameter vector λλλ. We will
write p(Y,λλλ) to indicate the dependence of the joint probability density on λλλ. As a
concrete example, consider the case of N independent scalar observations drawn from
a normal distribution with mean m and variance σ2. The joint density is

p(Y,λλλ)= (2πσ2)−N/2exp

⎡⎣− 1

2σ2

N∑
n=1

(yn −m)2

⎤⎦ (1.18.1)

For the parameter vector we may choose λλλ = [m,σ2]T, if we want to estimate both
the mean and variance.

The dependence of p(Y,λλλ) on λλλ may be expressed in terms of the gradient with
respect to λλλ of the log-likelihood function

ψψψ(Y,λλλ)≡ ∂
∂λλλ

lnp(Y,λλλ)= 1

p
∂p
∂λλλ

(1.18.2)

Expectation values with respect to the joint density will, in general, depend on the
parameter λλλ. We have the following result for the expectation value of an arbitrary
function F(Y,λλλ):

∂
∂λλλ

E[F]= E
[
∂F
∂λλλ

]
+ E[Fψψψ] (1.18.3)

Writing dY = dMy1dMy2 · · ·dMyN for the volume element over the space of obser-
vations, the proof of Eq. (1.18.3) follows from

∂
∂λλλ

∫
pFdY =

∫
∂
∂λλλ

(pF)dY =
∫
p
∂F
∂λλλ

dY +
∫
pF

∂ lnp
∂λλλ

dY

Applying this property to F = 1, we find E[ψψψ]= 0. Applying it to ψψψ itself, that is,
F =ψψψ, we find

J ≡ E[ψψψψψψT]= E[Ψ] (1.18.4)

where

Ψ ≡ −∂ψψψ
∂λλλ

Eq. (1.18.4) is known as the Fisher information matrix based on Y. Component-wise,
we have

Jij = E[ψiψj]= E[Ψij]

where

ψi = ∂ lnp
∂λi

, Ψij = −∂ψi

∂λj
= − ∂2 lnp

∂λi∂λj

Next, we derive the Cramér-Rao bound. Let λ̂λλ(Y) be any estimator of λλλ based on Y.
Because λ̂λλ(Y) and ψψψ(Y,λλλ) both depend on Y, they will be correlated with each other.
Using the correlation canceling methods of Sec. 1.4, we can remove these correlations
by writing

e = λ̂λλ− E[λ̂λλψψψT]E[ψψψψψψT]−1ψψψ
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Then, e will not be correlated with ψψψ. Because ψψψ has zero mean, it follows that
E[λ̂λλ]= E[e]. Working with the deviations about the corresponding means, namely,
Δλλλ = λ̂λλ− E[λ̂λλ] and Δe = e− E[e], we have

Δe = Δλλλ−MJ−1ψψψ (1.18.5)

where we denoted M = E[λ̂λλψψψT]. Following Eq. (1.4.4), we obtain for the covariance of
Δe

E[ΔeΔeT]= E[ΔλλλΔλλλT]−MJ−1MT (1.18.6)

Thus, the difference of terms in the right-hand side is a positive semi-definite matrix.
This may be expressed symbolically as E[ΔeΔeT]≥ 0, or, E[ΔλλλΔλλλT]≥ MJ−1MT. The
quantity M depends on the bias of the estimator. For an unbiased estimator, M is the
identity matrix, M = I, and we obtain the Cramér-Rao inequality

cov(λ̂λλ)= E[ΔλλλΔλλλT]≥ J−1 (Cramér-Rao) (1.18.7)

The dependence of M on the bias can be seen as follows. Because λ̂λλ(Y) has no
explicit dependence on λλλ, it follows from property (1.18.3) that

M = E[λ̂λλψψψT]= ∂
∂λλλ

E[λ̂λλ]

Define the bias of the estimator as the deviation of the mean from the true value of
the parameter, that is, E[λ̂λλ]= λλλ+ b(λλλ), where b(λλλ) is the bias

M = I + ∂b

∂λλλ
≡ I + B

For an unbiased estimator, B = 0 and M = I. It follows from Eq. (1.18.6) that for
the Cramér-Rao inequality to be satisfied as an equality, it is necessary that Δe = 0
in Eq. (1.18.5), i.e., Δλλλ = MJ−1ψψψ and in the unbiased case, we obtain the condition
ψψψ = JΔλλλ:

∂
∂λλλ

lnp(Y,λλλ)= JΔλλλ = J
[
λ̂λλ(Y)−λλλ]

(1.18.8)

Estimators that satisfy this condition and thus, meet their Cramér-Rao bound, are
called efficient.

Example 1.18.1: The log-likelihood function of Eq. (1.18.1) is

lnp = −N
2

ln(2π)−N
2

lnσ2 − 1

2σ2

N∑
n=1

(yn −m)2

The gradients with respect to the parameters m and σ2 are

∂ lnp
∂m

= 1

σ2

N∑
n=1

(yn −m)

∂ lnp
∂σ2

= − N
2σ2

+ 1

2σ4

N∑
n=1

(yn −m)2

(1.18.9)
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The second derivatives are the matrix elements of the matrix Ψ:

Ψmm = − ∂2 lnp
∂m∂m

= N
σ2

Ψmσ2 = − ∂2 lnp
∂m∂σ2

= 1

σ4

N∑
n=1

(yn −m)

Ψσ2σ2 = − ∂2 lnp
∂σ2∂σ2

= − N
2σ4

+ 1

σ6

N∑
n=1

(yn −m)2

Taking expectation values, we find the matrix elements of J

Jmm = N
σ2

, Jmσ2 = 0 , Jσ2σ2 = N
2σ4

Therefore, the Cramér-Rao bound of any unbiased estimator of m and σ2 will be[
E[ΔmΔm] E[ΔmΔσ2]
E[Δσ2Δm] E[Δσ2Δσ2]

]
≥

[
σ2/N 0

0 2σ4/N

]

Example 1.18.2: We note that the sample mean m̂ defined by Eq. (1.2.1) has variance equal to
its Cramér-Rao bound, and therefore, it is an efficient estimator. It also satisfies condition
(1.18.8). Writing

∑N
n=1 yn = Nm̂, we obtain from Eq. (1.18.9)

∂ lnp
∂m

= 1

σ2

N∑
n=1

(yn −m)= 1

σ2

⎡⎣ N∑
n=1

yn −Nm

⎤⎦ = 1

σ2
(Nm̂−Nm)= Jmm(m̂−m)

We also note that the sample variance s2 having variance 2σ4/(N − 1) meets its Cramér-
Rao bound only asymptotically. The biased definition of the sample variance, Eq. (1.2.3),
has variance given by Eq. (1.2.4). It is easily verified that it is smaller than its Cramér-Rao
bound (1.18.7). But this is no contradiction because Eq. (1.18.7) is valid only for unbiased
estimators. For a biased estimator, the lower bound MJ−1MT must be used. Equation
(1.2.4) does satisfy this bound. ��

Next, we discuss the principle of maximum likelihood. The maximum likelihood
estimator of a parameter λλλ is the value λ̂λλ that maximizes the joint density p(Y,λλλ); i.e.,

p(Y,λλλ)
∣∣
λλλ=λ̂λλ = maximum (1.18.10)

Equivalently,

ψψψ(λ̂λλ)= ∂
∂λλλ

lnp(Y,λλλ)
∣∣∣∣
λλλ=λ̂λλ

= 0 (1.18.11)

In general, this equation is difficult to solve. However, the asymptotic properties of
the solution for large N are simple enough to obtain. Assuming that λ̂λλ is near the true
value of the parameter λλλ we may expand the gradient ψψψ about the true value:

ψψψ(λ̂λλ)�ψψψ+ ∂ψψψ(λλλ)
∂λλλ

(λ̂λλ−λλλ)=ψψψ−Ψ(λ̂λλ−λλλ)

where we used the matrixΨ defined in Eq. (1.18.4). For the maximum likelihood solution,
the left-hand side is zero. Thus, solving for Δλλλ = λ̂λλ−λλλ, we obtain

Δλλλ = Ψ−1ψψψ (1.18.12)
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Assuming that the N observations are independent of each other, the joint density
p(Y,λλλ) factors into the marginal densities

∏N
n=1 p(yn,λλλ). Therefore, the gradient ψψψ

will be a sum of gradients

ψψψ = ∂
∂λλλ

lnp =
N∑
n=1

∂
∂λλλ

lnp(yn,λλλ)=
N∑
n=1

ψψψn

Similarly,

Ψ = −∂ψψψ
∂λλλ

−
N∑
n=1

∂ψψψn

∂λλλ
=

N∑
N=1

Ψn

Individual terms in these sums are mutually independent. Thus, from the law of
large numbers, we can replace Ψ by its mean Ψ � E[Ψ]= J, and Eq. (1.18.12) becomes

Δλλλ = J−1ψψψ (1.18.13)

This asymptotic equation contains essentially all the nice properties of the maxi-
mum likelihood estimator. First, from E[Ψ]= 0, it follows that E[Δλλλ]= 0, or that λ̂λλ is
asymptotically unbiased. Second, its asymptotic covariance agrees with the Cramér-Rao
bound

E[ΔλλλΔλλλT]= J−1E[ψψψψψψT]J−1 = J−1JJ−1 = J−1

Thus, λ̂λλ is asymptotically efficient. The same conclusion can be reached by noting
that Eq. (1.18.13) is the same as condition (1.18.8). Third, λ̂λλ is asymptotically consistent,
in the sense that its covariance tends to zero for large N. This follows from the fact
that the information matrix for N independent observations is equal to N times the
information matrix for one observation:

J = E[Ψ]=
N∑
n=1

E[Ψn]= NE[Ψ1]= NJ1

Therefore, J−1 = J−1
1 /N tends to zero for large N. Fourth, because ψψψ is the sum

of N independent terms, it follows from the vector version of the central limit theorem
that ψψψ will be asymptotically normally distributed. Thus, so will be λ̂λλ, with mean λλλ and
covariance J−1.

Example 1.18.3: Setting the gradients (1.18.9) to zero, we obtain the maximum likelihood esti-
mates of the parameters m and σ2. It is easily verified that they coincide with the sample
mean and sample variance defined by Eqs. (1.2.1) and (1.2.3). ��

Example 1.18.4: In many applications, the mean is known to be zero and only the variance
needs to be estimated. For example, setting m = 0 in Eq. (1.18.1) we obtain the log-
likelihood

lnp = −N
2

ln(2π)−N
2

lnσ2 − 1

2σ2

N∑
n=1

y2
n

The maximum likelihood estimate of σ2 is obtained from

∂ lnp
∂σ2

= − N
2σ2

+ 1

2σ4

N∑
n=1

y2
n = 0
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with solution

σ̂2 = 1

N

N∑
n=1

y2
n

It is easily verified that this is an unbiased estimate. It is the scalar version of Eq. (1.6.21).
Using E[y2

ny2
m]= σ4 + 2δnmσ4, which is valid for independent zero-mean gaussian yns,

we find for the variance of σ̂2

E[Δσ2Δσ2]= 2σ4

N
, where Δσ2 = σ̂2 −σ2 (1.18.14)

This agrees with the corresponding Cramér-Rao bound. Thus, σ̂2 is efficient. Equation
(1.18.14) is the scalar version of Eq. (1.6.23). ��

Example 1.18.5: Show that the multivariate sample covariance matrix, R̂, given by Eq. (1.6.21)
is the maximum likelihood estimate of R, assuming the mean is zero.

Solution: The log-likelihood function is, up to a constant

lnp(y1,y2, . . . ,yN)= −N2 ln(detR)−1

2

N∑
n=1

yTnR−1yn

The second term may be written as the trace:

N∑
n=1

yTnR−1yn = tr
[
R−1

N∑
n=1

ynyTn
] = N tr[R−1R̂]

where we used
∑N

n=1 ynyTn = NR̂. Using the matrix property ln(detR)= tr(lnR), we may
write the log-likelihood in the form

lnp = −N
2

tr
[
lnR+R−1R̂

]
The maximum likelihood solution for R satisfies ∂ lnp/∂R = 0. To solve it, we find it more
convenient to work with differentials. Using the two matrix properties

d tr(lnR)= tr(R−1dR) , dR−1 = −R−1(dR)R−1 (1.18.15)

we obtain,

d lnp = −N
2

tr
[
R−1dR−R−1(dR)R−1R̂

] = −N
2

tr
[
R−1(dR)R−1(R− R̂)

]
(1.18.16)

Because dR is arbitrary, the vanishing of d lnp implies R = R̂. An alternative proof is
to show that f(R)≥ f(R̂), where f(R)≡ tr(lnR + R−1R̂). This is shown easily using the
inequality x− 1− lnx ≥ 0, for x ≥ 0, with equality reached at x = 1. ��

In many applications, the desired parameterλλλ to be estimated appears only through
the covariance matrix R of the observations y, that is, R = R(λλλ). For example, we will
see in Chap. 14 that the covariance matrix of a plane wave incident on an array of two
sensors in the presence of noise is given by

R =
[
P+σ2 Pejk

Pe−jk P+σ2

]
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where possible parameters to be estimated are the power P and wavenumber k of the
wave, and the variance σ2 of the background noise. Thus, λλλ = [P, k,σ2]T.

In such cases, we have the following general expression for the Fisher information
matrix J, valid for independent zero-mean gaussian observations:

Jij = N
2

tr

[
R−1 ∂R

∂λi
R−1 ∂R

∂λj

]
(1.18.17)

Writing ∂i = ∂/∂λi for brevity, we have from Eq. (1.18.16)

∂i lnp = −N
2

tr
[
R−1∂iRR−1(R− R̂)

]
Differentiating once more, we find

Ψij = −∂i∂j lnp = N
2

tr
[
∂j(R−1∂iRR−1)(R− R̂)+R−1∂iRR−1∂jR

]
Equation (1.18.17) follows now by taking expectation values Jij = E[Ψij] and noting

that the expectation value of the first term vanishes. This follows from the fact that R̂
is an unbiased estimator of R and therefore, E

[
tr

(
F(R− R̂)

)] = 0, for any matrix F.

1.19 Minimum-Phase Signals and Filters

A minimum-phase sequence a = [a0, a1, . . . , aM] has a z-transform with all its zeros
inside the unit circle in the complex z-plane

A(z)= a0+a1z−1+· · ·+aMz−M = a0(1−z1z−1)(1−z2z−1)· · · (1−zMz−1) (1.19.1)

with |zi| < 1, i = 1,2, . . . ,M. Such a polynomial is also called a minimum-delay polyno-
mial. Define the following related polynomials:

A∗(z) = a∗0 + a∗1 z−1 + · · · + a∗Mz
−M = complex-conjugated coefficients

Ā(z) = a∗0 + a∗1 z+ · · · + a∗Mz
M = conjugated and reflected

AR(z) = a∗M + a∗M−1z
−1 + · · · + a∗0 z−M = reversed and conjugated

We note the relationships:

Ā(z)= A∗(z−1) and AR(z)= z−MĀ(z)= z−MA∗(z−1) (1.19.2)

We also note that when we set z = ejω to obtain the corresponding frequency re-
sponses, Ā(ω) becomes the complex conjugate of A(ω)

Ā(ω)= A(ω)∗ (1.19.3)

It is easily verified that all these polynomials have the same magnitude spectrum:

|A(ω)|2 = |Ā(ω)|2 = |A∗(ω)|2 = |AR(ω)|2 (1.19.4)
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For example, in the case of a doublet a = (a0, a1) and its reverse aR = (a∗1 , a∗0 ), we
verify explicitly

|A(ω)|2 = A(ω)A(ω)∗ = (a0 + a1e−jω)(a∗0 + a∗1 ejω)

= (a∗1 + a∗0 e−jω)(a1 + a0ejω)

= AR(ω)AR(ω)∗= |AR(ω)|2

Thus, on the basis the magnitude spectrum, one cannot distinguish the doublet
a = (a0, a1) from its reverse aR = (a∗1 , a∗0 ). In the more general case of a polynomial
of degree M, factored into doublets as in Eq. (1.19.1), we note that each doublet can be
replaced by its reverse

(1,−zi)→ (−z∗i ,1) or (1− ziz−1)→ (−z∗i + z−1)

without affecting the overall magnitude spectrum |A(ω)|2. Since there are M such
factors, there will be a total of 2M different Mth degree polynomials, or equivalently,
2M different length-(M+1) sequences, all having the same magnitude spectrum. Every
time a factor (1 − ziz−1) is reversed to become (−z∗i + z−1), the corresponding zero
changes from z = zi to z = 1/z∗i . If zi is inside the unit circle, the 1/z∗i is outside, as
shown

To enumerate all these sequences, start by taking all zeros zi to be inside the unit
circle and successively keep reversing each factor until all 2M possibilities have been
exhausted. At the last step, all the factors will have been flipped, corresponding to
all the zeros being outside the unit circle. The resulting polynomial and sequence are
referred to as having maximal phase, or maximal delay. As an example consider the two
doublets

a = (2,1) and b = (3,2)

and form the four different sequences, where ∗ denotes convolution:

c0 = a∗ b = (2,1)∗(3,2)= (6,7,2), C0(z)= A(z)B(z)

c1 = aR ∗ b = (1,2)∗(3,2)= (3,8,4), C1(z)= AR(z)B(z)

c2 = a∗ bR = (2,1)∗(2,3)= (4,8,3), C2(z)= A(z)BR(z)

c3 = aR ∗ bR = (1,2)∗(2,3)= (2,7,6), C3(z)= A(z)B(z)

All four sequences have the same magnitude spectrum.
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Partial Energy and Minimal Delay

Since the total energy of a sequence a = (a0, a1, . . . , aM) is given by Parseval’s equality

M∑
m=0

|am|2 =
∫ π

−π
|A(ω)|2 dω

2π

it follows that all of the above 2M sequences, having the same magnitude spectrum, will
also have the same total energy. However, the distribution of the total energy over time
may be different. And this will allow an alternative characterization of the minimum
phase sequences, first given by Robinson. Define the partial energy by

Pa(n)=
n∑

m=0

|am|2 = |a0|2 + |a1|2 + · · · + |an|2 , n = 0,1, . . . ,M

then, for the above example, the partial energies for the four different sequences are
given in the table

c0 c1 c2 c3

P(0) 36 9 16 4
P(1) 85 73 80 53
P(2) 89 89 89 89

We note that c0 which has both its zeros inside the unit circle (i.e., minimal phase) is
also the sequence that has most of its energy concentrated at the earlier times, that is,
it makes its impact as early as possible, with minimal delay. In contrast, the maximal-
phase sequence c3 has most of its energy concentrated at its tail thus, making most of
its impact at the end, with maximal delay.

Invariance of the Autocorrelation Function

This section presents yet another characterization of the above class of sequences. It
will be important in proving the minimum-phase property of the linear prediction filters.

The sample autocorrelation of a (possibly complex-valued) sequence a = (a0, a1, . . . , aM)
is defined by

Raa(k) =
M−k∑
n=0

an+ka∗n , for 0 ≤ k ≤M

Raa(k) = Raa(−k)∗ , for −M ≤ k ≤ −1

(1.19.5)

It is easily verified that the corresponding power spectral density is factored as

Saa(z)=
M∑

k=−M
Raa(k)z−k = A(z)Ā(z) (1.19.6)

The magnitude response is obtained by setting z = ejω

Saa(ω)= |A(ω)|2 (1.19.7)
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with an inversion formula

Raa(k)=
∫ π

−π
|A(ω)|2ejωk dω

2π
(1.19.8)

It follows from Eq. (1.19.8) that the above 2M different sequences having the same
magnitude spectrum, also have the same sample autocorrelation. They cannot be distin-
guished on the basis of their autocorrelation. Therefore, there are 2M different spectral
factorizations of Saa(z) of the form

Saa(z)= A(z)Ā(z) (1.19.9)

but there is only one with minimum-phase factors. The procedure for obtaining it is
straightforward: Find the zeros of Saa(z), which come in pairs zi and 1/z∗i , thus, there
are 2M such zeros. And, group those that lie inside the unit circle into a common factor.
This defines A(z) as a minimum phase polynomial.

Minimum-Delay Property

Here, we discuss the effect of flipping a zero from the inside to the outside of the unit
circle, on the minimum-delay and minimum-phase properties of the signal. Suppose
A(z) is of degree M and has a zero z1 inside the unit circle. Let B(z) be the polynomial
that results by flipping this zero to the outside; that is, z1 → 1/z∗1

A(z) = (1− z1z−1)F(z)

B(z) = (−z∗1 + z−1)F(z)
(1.19.10)

where F(z) is a polynomial of degree M − 1. Both A(z) and B(z) have the same mag-
nitude spectrum. We may think of this operation as sending A(z) through an allpass
filter

B(z)= −z∗1 + z−1

1− z1z−1
A(z)

In terms of the polynomial coefficients, Eq. (1.19.10) becomes

an = fn − z1fn−1

bn = −z∗1 fn + fn−1

(1.19.11)

for n = 0,1, . . . ,M, from which we obtain

|an|2 − |bn|2 =
(
1− |z1|2

)(|fn|2 − |fn−1|2
)

(1.19.12)

Summing to get the partial energies, Pa(n)=
∑n

m=0 |am|2, we find

Pa(n)−Pb(n)=
(
1− |z1|2

)|fn|2 , n = 0,1, . . . ,M (1.19.13)

Thus, the partial energy of the sequence a remains greater than that of b for all times
n; that is, A(z) is of earlier delay than B(z). The total energy is, of course, the same
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as follows from the fact that F(z) is of degree M − 1, thus, missing the Mth term or
fM = 0. We have then

Pa(n)≥ Pb(n) , n = 0,1, . . . ,M

and in particular
Pa(M)= Pb(M) and Pa(0)≥ Pb(0)

The last inequality can also be stated as |a0| ≥ |b0|, and will be important in our
proof of the minimum-phase property of the prediction-error filter of linear prediction.

Minimum-Phase Property

The effect of reversing the zero z1 on the phase responses ofA(z) andB(z) of Eq. (1.19.10)
can be seen as follows. For z = ejω, define the phase lag as the negative of the phase
response

A(ω) = |A(ω)|ejArg(ω)

θA(ω) = −Arg(ω)= phase-lag response

and similarly for B(z). SinceA(ω) and B(ω) have the same magnitude, they will differ
only by a phase

A(ω)
B(ω)

= ej(θB−θA) = 1− z1e−jω

−z∗1 + e−jω
= ejω − z1

1− z∗1 ejω
= ejφ(ω)

whereφ(ω) is the phase-response of the all-pass factor (ejω−z1)/(1−z∗1 ejω), so that
θB(ω)−θA(ω)= φ(ω). By taking derivatives with respect toω in the above definition
of φ(ω), it can be easily shown that

dφ(ω)
dω

= 1− |z1|2∣∣ejω − z1
∣∣2 > 0

which shows thatφ(ω) is an increasing function ofω. Thus, over the frequency interval
0 ≤ ω ≤ π, we have φ(ω)≥ φ(0). It can be verified easily that φ(0)= −2φ0, where
φ0 is the angle with the x-axis of the line between the points z1 and 1, as shown in the
figure below.

Thus, we have θB − θA ≥ φ ≥ −2φ0. The angle φ0 is positive, if z1 lies within the
upper half semi-circle, and negative, if it lies in the lower semi-circle; and, φ0 is zero
if z1 lies on the real axis. If z1 is real-valued, then θB ≥ θA for 0 ≤ ω ≤ π. If z1
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is complex valued and we consider the combined effect of flipping the zero z1 and its
conjugate z∗1 , that is, A(z) and B(z) are given by

A(z) = (1− z1z−1)(1− z∗1 z−1)F(z)

B(z) = (−z∗1 + z−1)(−z1 + z−1)F(z)

then, for the phase of the combined factor

ejφ(ω) = ejω − z1

1− z∗1 ejω
· ejω − z∗1

1− z1ejω

we will have φ(ω)≥ (−2φ0)+(2φ0)= 0, so that θB(ω)−θA(ω)= φ(ω)≥ 0.
Thus, the phase lag of A(z) remains smaller than that of B(z). The phase-lag curve

for the case when A(z) has all its zeros inside the unit circle will remain below all the
other phase-lag curves. The term minimum-phase strictly speaking means minimum
phase lag (over 0 ≤ω ≤ π).

1.20 Spectral Factorization Theorem

We finish our digression on minimum-phase sequences by quoting the spectral factor-
ization theorem [5].

Any rational power spectral density Syy(z) of a (real-valued) stationary signal yn
can be factored in a minimum-phase form

Syy(z)= σ2
εB(z)B(z−1) (1.20.1)

where

B(z)= N(z)
D(z)

(1.20.2)

with both D(z) and N(z) being minimum-phase polynomials; that is, having all their
zeros inside the unit circle. By adjusting the overall constant σ2

ε , both D(z) and N(z)
may be taken to be monic polynomials. Then, they are unique.

This theorem guarantees the existence of a causal and stable random signal generator
filter B(z) for the signal yn of the type discussed in Sec. 1.13:

with εn white noise of variance σ2
ε . The minimum-phase property of B(z) also guaran-

tees the stability and causality of the inverse filter 1/B(z), that is, the whitening filter

The proof of the spectral factorization theorem is straightforward. Since Syy(z) is
the power spectral density of a (real-valued) stationary process yn, it will satisfy the
symmetry conditions Syy(z)= Syy(z−1). Therefore, if zi is a zero then 1/zi is also
a zero, and if zi is complex then the reality of Ryy(k) implies that z∗i will also be a
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zero. Thus, both zi and 1/z∗i are zeros. Therefore, the numerator polynomial of Syy(z)
is of the type of Eq. (1.19.9) and can be factored into its minimum phase polynomials
N(z)N(z−1). This is also true of the denominator of Syy(z).

All sequential correlations in the original signal yn arise from the filtering action of
B(z) on the white-noise input εn. This follows from Eq. (1.12.14):

Ryy(k)= σ2
ε

∑
n
bn+kbn , B(z)=

∞∑
n=0

bnz−n (1.20.3)

Effectively, we have modeled the statistical autocorrelationRyy(k) by the sample au-
tocorrelation of the impulse response of the synthesis filter B(z). Since B(z) is causal,
such factorization corresponds to an LU, or Cholesky, factorization of the autocorrela-
tion matrix.

This matrix representation can be seen as follows: Let B be the lower triangular
Toeplitz matrix defined exactly as in Eq. (1.13.2)

bni = bn−i

and let the autocorrelation matrix of yn be

Ryy(i, j)= Ryy(i− j)

Then, the transposed matrix BT will have matrix elements

(BT)ni= bi−n

and Eq. (1.20.3) can be written in the form

Ryy(i, j) = Ryy(i− j)= σ2
ε

∑
n
bn+i−jbn = σ2

ε

∑
k
bi−kbj−k

= σ2
ε

∑
k
(B)ik(BT)kj= σ2

ε(BBT)ij

Thus, in matrix notation
Ryy = σ2

εBBT (1.20.4)

This equation is a special case of the more general LU factorization of the Gram-
Schmidt construction given by Eq. (1.6.17). Indeed, the assumption of stationarity im-
plies that the quantity

σ2
ε = E[ε2

n]

is independent of the time n, and therefore, the diagonal matrix Rεε of Eq. (1.6.17)
becomes a multiple of the identity matrix.

1.21 Minimum-Phase Property of the Prediction-Error Filter

The minimum-phase property of the prediction-error filter A(z) of linear prediction is
an important property because it guarantees the stability of the causal inverse synthesis
filter 1/A(z). There are many proofs of this property in the literature [6–10]. Here, we
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would like to present a simple proof [11] which is based directly on the fact that the
optimal prediction coefficients minimize the mean-square prediction error. Although
we have only discussed first and second order linear predictors, for the purposes of this
proof we will work with the more general case of an Mth order predictor defined by

ŷn = −[a1yn−1 + a2yn−2 + · · · + aMyn−M]

which is taken to represent the best prediction of yn based on the past M samples
Yn = {yn−1, yn−2, . . . , yn−M}. The corresponding prediction error is

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · + aMyn−M

The best set of prediction coefficients {a1, a2, . . . aM} is found by minimizing the
mean-square prediction error

E(a1, a2, . . . aM) = E[e∗nen]=
M∑

m,k=0

a∗mE[y∗n−myn−k]ak

=
M∑

m,k=0

a∗mRyy(k−m)ak =
M∑

m,k=0

a∗mRyy(m− k)ak

(1.21.1)

where we set a0 = 1. For the proof of the minimum phase property, we do not need
the explicit solution of this minimization problem; we only use the fact that the optimal
coefficients minimize Eq. (1.21.1). The key to the proof is based on the observation that
(3.7.1) can be written in the alternative form

E(a)=
M∑

k=−M
Ryy(k)Raa(k) (1.21.2)

where Raa(k) is the sample autocorrelation of the prediction-error filter sequence a =
[1, a1, a2, . . . , aM]T as defined in Eq. (1.19.5). The equivalence of Eqs. (1.21.1) and
(1.21.2) can be seen easily, either by rearranging the summation indices of (1.21.1), or
by using the results of Problems 1.37 and 1.39.

Example 1.21.1: We demonstrate this explicitly for theM = 2 case. Using the definition (1.19.5)
we have

Raa(0) = |a0|2 + |a1|2 + |a2|2 = 1+ |a1|2 + |a2|2

Raa(1) = Raa(−1)∗= a1a∗0 + a2a∗1 = a1 + a2a∗1

Raa(2) = Raa(−2)∗= a2a∗0 = a2

Since yn is real-valued stationary, we have Ryy(k)= Ryy(−k). Then, Eq. (1.21.1) becomes
explicitly

E(a)=
M∑

m,k=0

a∗mRyy(m− k)ak = [1, a∗1 , a∗2 ]

⎡⎢⎣ Ryy(0) Ryy(1) Ryy(2)
Ryy(1) Ryy(0) Ryy(1)
Ryy(0) Ryy(1) Ryy(2)

⎤⎥⎦
⎡⎢⎣ 1
a1

a2

⎤⎥⎦
= Ryy(0)[1+ a∗1 a1 + a∗2 a2]+Ryy(1)

[
(a1 + a2a∗1 )+(a∗1 + a∗2 a1)

]+Ryy(2)[a2 + a∗2 ]

= Ryy(0)Raa(0)+Ryy(1)
[
Raa(1)+Raa(−1)

]+Ryy(2)
[
Raa(2)+Raa(−2)

] ��
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Let a = [1, a1, a2, . . . , aM]T be the optimal set of coefficients that minimizes E(a)
and let zi, i = 1,2 . . . ,M, be the zeros of the corresponding prediction-error filter:

1+a1z−1 +a2z−2 +· · ·+aMz−M = (1− z1z−1)(1− z2z−1)· · · (1− zMz−1) (1.21.3)

Reversing any one of the zero factors in this equation, that is, replacing (1−ziz−1) by
its reverse (−z∗i +z−1), results in a sequence that has the same sample autocorrelation
as a. As we have seen, there are 2M such sequences, all with the same sample autocorre-
lation. We would like to show that among these, a is the one having the minimum-phase
property.

To this end, let b = [b0, b1, . . . bM]T be any one of these 2M sequences, and define
the normalized sequence

c = b/b0 = [1, b1/b0, b2/b0, . . . bM/b0]T (1.21.4)

Using the fact that b has the same sample autocorrelation as a, we find for the sample
autocorrelation of c :

Rcc(k)= Rbb(k)/|b0|2 = Raa(k)/|b0|2 (1.21.5)

The performance index (1.21.2) evaluated at c is then

E(c)=
M∑

k=−M
Ryy(k)Rcc(k)=

M∑
k=−M

Ryy(k)Raa(k)/|b0|2 (1.21.6)

or,
E(c)= E(a)/|b0|2 (1.21.7)

Since a minimizes E, it follows that E(c)≥ E(a). Therefore, Eq. (1.21.7) implies that

|b0| ≤ 1 (1.21.8)

This must be true of all bs in the above class. Eq. (1.21.8) then, immediately implies the
minimum-phase property of a. Indeed, choosing b to be that sequence obtained from
(1.21.3) by reversing only the ith zero factor (1− ziz−1) and not the other zero factors,
it follows that

b0 = −z∗i
and therefore Eq. (1.21.8) implies that

|zi| ≤ 1 (1.21.9)

which shows that all the zeros of A(z) are inside the unit circle and thus, A(z) has
minimum phase. An alternative proof based on the Levinson recursion and Rouche’s
theorem of complex analysis will be presented in Chap. 12.
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1.22 Computer Project – Adaptive AR(1) and AR(2) Models

This computer project, divided into separate parts, deals with adaptive AR models that
are capable of tracking time-varying systems. It is also applied to the benchmark sunspot
data, comparing the results with Yule’s original application of an AR(2) model.

1. Time-varying AR(1) model. Consider the following AR(1), first-order, autoregressive
signal model with a time-varying parameter:

yn = a(n)yn−1 + εn (1.22.1)

where εn is zero-mean, unit-variance, white noise. The filter parameter a(n) can
be tracked by the following adaptation equations (which are equivalent to the exact
recursive least-squares order-1 adaptive predictor):

R0(n) = λR0(n− 1)+αy2
n−1

R1(n) = λR1(n− 1)+αynyn−1

â(n) = R1(n)
R0(n)

where α = 1−λ. The two filtering equations amount to sending the quantities y2
n−1

and ynyn−1 through an exponential smoother. To avoid possible zero denominators,
initialize R0 to some small positive constant, R0(−1)= δ, such as δ = 10−3.

(a) Show that â(n) satisfies the recursion:

â(n)= â(n− 1)+ α
R0(n)

yn−1en/n−1 en/n−1 = yn − â(n− 1)yn−1 (1.22.2)

where en/n−1 is referred to as the a priori estimation (prediction) error.

(b) Using Eq. (1.22.1), generate a data sequence yn, n = 0,1, . . . ,N − 1 using the
following time varying coefficient, sinusoidally switching from a positive value
to a negative one (the synthesis filter switches from lowpass to highpass):

a(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.75, 0 ≤ n ≤ Na − 1

0.75 cos
(
π

n−Na

Nb −Na

)
, Na ≤ n ≤ Nb

−0.75, Nb + 1 ≤ n ≤ N − 1

Use the following numerical values:

Na = 500, Nb = 1500, N = 2000

Calculate the estimated â(n) using the recursion (1.22.2) and plot it versus n
together with the theoretical a(n) using the parameter value λ = 0.980. Repeat
using the value λ = 0.997. Comment on the tracking capability of the algorithm
versus the accuracy of the estimate.
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(c) Study the sensitivity of the algorithm to the initialization parameter δ.
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2. Tine-varying AR(2) model. Next, consider an AR(2), second-order, model with time-
varying coefficients:

yn = −a1(n)yn−1 − a2(n)yn−2 + εn (1.22.3)

If the coefficients were stationary, then the theoretical Wiener solution for the pre-
diction coefficients a1 and a2 would be:[

a1

a2

]
= −

[
R0 R1

R1 R0

]−1 [
R1

R2

]
= − 1

R2
0 −R2

1

[
R0R1 −R1R2

R0R2 −R2
1

]
(1.22.4)

where Rk = E[ynyn−k]. For a time-varying model, the coefficients can be tracked by
replacing the theoretical autocorrelation lags Rk with their recursive, exponentially
smoothed, versions:

R0(n) = λR0(n− 1)+αy2
n

R1(n) = λR1(n− 1)+αynyn−1

R2(n) = λR2(n− 1)+αynyn−2

(a) Using Eq. (1.22.3), generate a non-stationary data sequence yn by driving the
second-order model with a unit-variance, zero-mean, white noise signal εn and
using the following theoretical time-varying coefficients:

a1(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1.3, 0 ≤ n ≤ Na − 1

1.3
n−Nb

Nb −Na
, Na ≤ n ≤ Nb

0, Nb + 1 ≤ n ≤ N − 1

a2(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.4, 0 ≤ n ≤ Na − 1

0.65− 0.25 cos
(
π

n−Na

Nb −Na

)
, Na ≤ n ≤ Nb

0.9, Nb + 1 ≤ n ≤ N − 1
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Thus, the signal model for yn switches continuously between the synthesis filters:

B(z)= 1

1− 1.3z−1 + 0.4z−2
⇒ B(z)= 1

1+ 0.9z−2

(b) Compute the adaptive coefficients â1(n) and â2(n) using the two forgetting fac-
tors λ = 0.980 and λ = 0.997. Plot the adaptive coefficients versus n, together
with the theoretical time-varying coefficients and discuss the tracking capability
of the adaptive processor.
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3. AR(2) modeling of sunspot data. Next, we will apply the adaptive method of part-2 to
some real data. The file sunspots.dat contains the yearly mean number of sunspots
for the years 1700–2008. To unclutter the resulting graphs, we will use only the data
for the last 200 years, over 1809–2008. These can be read into MATLAB as follows:

Y = loadfile(’sunspots.dat’);
i = find(Y(:,1)==1809);
y = Y(i:end,2); % number of sunspots
N = length(y); % here, N=200
m = mean(y); y = y-m; % zero-mean data

where the last line determines the mean of the data block and subtracts it from the
data. The mean m will be restored at the end.
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Yule was the first to introduce the concept of an autoregressive signal model and
applied it to the sunspot time series assuming a second-order model. The so-called
Yule-Walker method is a block processing method in which the entire (zero-mean)
data block is used to estimate the autocorrelation lags R0, R1, R2 using sample au-
tocorrelations:

R̂0 = 1

N

N−1∑
n=0

y2
n , R̂1 = 1

N

N−2∑
n=0

yn+1yn , R̂2 = 1

N

N−3∑
n=0

yn+2yn

Then, the model parameters a1, a2 are estimated using Eq. (1.22.4):[
â1

â2

]
= −

[
R̂0 R̂1

R̂1 R̂0

]−1 [
R̂1

R̂2

]
(Yule-Walker method)

(a) First, compute the values of â1, â2 based on the given length-200 data block.

(b) Then, apply the adaptive algorithm of the part-2 with λ = 0.99 to determine the
adaptive versions a1(n), a2(n) and plot them versus n, and add on these graphs
the straight lines corresponding to the Yule-Walker estimates â1, â2.
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(c) At each time instant n, the value of yn can be predicted by either of the two
formulas:

ŷn/n−1 = −a1(n)yn−1 − a2(n)yn−2

ŷn/n−1 = −â1yn−1 − â2yn−2

On the same graph, plot yn and ŷn/n−1 for the above two alternatives. The case
of the adaptive predictor is shown below.
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(d) Repeat the above questions using λ = 0.95 and discuss the effect of reducing λ.

(e) Apply a length-200 Hamming windowwn to the (zero-mean) data yn and calculate
the corresponding periodogram spectrum,

Sper(ω)= 1

N

∣∣∣∣∣∣
N−1∑
n=0

wnyne−jωn

∣∣∣∣∣∣
2

as a function of the yearly period p = 2π/ω, over the range 2 ≤ p ≤ 20 years.
For the same p’s or ω’s calculate also the AR(2) spectrum using the Yule-Walker
coefficients â1, â2:

SAR(ω)= σ2
ε∣∣1+ â1e−jω + â2e−2jω

∣∣2

where σ2
ε can be calculated by

σ2
ε = R̂0 + â1R̂1 + â2R̂2

Normalize the spectra Sper(ω), SAR(ω) to unity maxima and plot them versus
period p on the same graph. Note that both predict the presence of an approxi-
mate 11-year cycle, which is also evident from the time data.
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We will revisit this example later on by applying SVD methods to get sharper
peaks. An example of the improved results is shown below.
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1.23 Problems

1.1 Two dice are available for throwing. One is fair, but the other bears only sixes. One die is
selected as follows: A coin is tossed. If the outcome is tails then the fair die is selected, but if
the outcome is heads, the biased die is selected. The coin itself is not fair, and the probability
of bearing heads or tails is 1/3 or 2/3, respectively. A die is now selected according to this
procedure and tossed twice and the number of sixes is noted.

Let x be a random variable that takes on the value 0 when the fair die is selected or 1 if the
biased die is selected. Let y be a random variable denoting the number of sixes obtained in
the two tosses; thus, the possible values of y are 0,1,2.

(a) For all possible values of x and y, compute p(y|x), that is, the probability that the
number of sixes will be y, given that the x die was selected.

(b) For each y, compute p(y), that is, the probability that the number of sixes will be y,
regardless of which die was selected.

(c) Compute the mean number of sixes E[y].

(d) For all values of x and y, compute p(x|y), that is, the probability that we selected die x,
given that we already observed a y number of sixes.

1.2 Inversion Method. Let F(x) be the cumulative distribution of a probability density p(x).
Suppose u is a uniform random number in the interval [0,1). Show that the solution of the
equation F(x)= u, or equivalently, x = F−1(u), generates a random number x distributed
according to p(x). This is the inversion method of generating random numbers from uni-
form random numbers.

1.3 Computer Experiment. Let x be a random variable with the exponential probability density

p(x)= 1

μ
e−x/μ

Show that x has mean μ and variance μ2. Determine the cumulative distribution function
F(x) of x. Determine the inverse formula x = F−1(u) for generating x from a uniform
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u. Take μ = 2. Using the inversion formula and a uniform random number generator
routine, generate a block of 200 random numbers x distributed according to p(x). Compute
their sample mean and sample variance, Eqs. (1.2.1) and (1.2.3), and compare them with
their theoretical values. Do the estimated values fall within the standard deviation intervals
defined by Eqs. (1.2.2) and (1.2.4)?

1.4 The Rayleigh probability density finds application in fading communication channels

p(r)= r
σ2

e−r
2/2σ2

, r ≥ 0

Using the inversion method, r = F−1(u), show how to generate a Rayleigh-distributed ran-
dom variable r from a uniform u.

1.5 (a) Following the notation of Sec. 1.4, show the matrix identity, where H = RxyR−1
yy[

IN −H
0 IM

][
Rxx Rxy

Ryx Ryy

][
IN −H
0 IM

]T

=
[
Rxx −RxyR−1

yyRyx 0

0 Ryy

]

(b) Rederive the correlation canceling results of Eqs. (1.4.3) and (1.4.4) using this identity.

1.6 Using the matrix identity of Problem 1.5, derive directly the result of Example 1.4.1, that is,
E[x|y]= RxyR−1

yyy. Work directly with probability densities;

1.7 Show that the orthogonal projection x̂ of a vector x onto another vector y, defined by
Eq. (1.4.5) or Eq. (1.6.18), is a linear function of x, that is, show

'A1x1 +A2x2 = A1x̂1 +A2x̂2

1.8 Suppose x consists of two components x = s + n1, a desired component s, and a noise
component n1. Suppose that y is a related noise component n2 to which we have access,
y = n2. The relationship between n1 and n2 is assumed to be linear, n1 = Fn2. For exam-
ple, s might represent an electrocardiogram signal which is contaminated by 60 Hz power
frequency pick-up noise n1; then, a reference 60 Hz noise y = n2, can be obtained from the
wall outlet.

(a) Show that the correlation canceler is H = F, and that complete cancellation of n1 takes
place.

(b) If n1 = Fn2 + v, where v is uncorrelated with n2 and s, show that H = F still, and n1 is
canceled completely. The part v remains unaffected.

1.9 Signal Cancellation Effects. In the previous problem, we assumed that the reference signal y
did not contain any part related to the desired component s. There are applications, however,
where both the signal and the noise components contribute to both x and y, as for example in
antenna sidelobe cancellation. Since the reference signal y contains part of s, the correlation
canceler will act also to cancel part of the useful signal s from the output. To see this effect,
consider a simple one-dimensional example

x = s+ n1

y = n2 + εs

with n1 = Fn2, where we assume that y contains a small part proportional to the desired
signal s. Assume that n2 and s are uncorrelated. Show that the output e of the correlation
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canceler will contain a reduced noise component n1 as well as a partially canceled signal s,
as follows:

e = as+ bn1 , where a = 1− Fε(1+ FεG)
1+ F2ε2G

, b = −εFGa

and G is a signal to noise ratio G = E[s2]/E[n2
1]. Note that when ε = 0, then a = 1 and

b = 0, as it should.

1.10 Consider a special case of Example 1.4.3 defined by cn = 1, so that yn = x + vn, n =
1,2, . . . ,M. This represents the noisy measurement of a constant x. By comparing the
corresponding mean-square estimation errors E[e2], show that the optimal estimate of x
given in Eq. (1.4.9) is indeed better than the straight average estimate:

x̂av = y1 + y2 + · · · + yM
M

1.11 Recursive Estimation. Consider the subspace Yn = {y1, y2, . . . , yn} for n = 1,2, . . . ,M, as
defined in Sec. 1.6. Eq. (1.6.18) defines the estimate x̂ of a random vector x based on the
largest one of these subspaces, namely, YM .

(a) Show that this estimate can also be generated recursively as follows:

x̂n = x̂n−1 + Gn(yn − ŷn/n−1)

for n = 1,2, . . . ,M, and initialized by x̂0 = 0 and ŷ1/0 = 0, where x̂n denotes the best
estimate of x based on the subspace Yn and Gn is a gain coefficient given by Gn =
E[xεn]E[εnεn]−1. (Hint: Note x̂n =

∑n
i=1 E[xεi]E[εiεi]−1εi.)

(b) Show that the innovations εn = yn − ŷn/n−1 is orthogonal to x̂n−1, that is, show that
E[x̂n−1εn]= 0 for n = 1,2, . . . ,M.

(c) Let en = x− x̂n be the corresponding estimation error of x with respect to the subspace
Yn. Using Eq. (1.4.4), show that its covariance matrix can be expressed in the ε-basis as
follows

Renen = Rxx −
n∑
i=1

E[xεi]E[εiεi]−1E[εixT]

(d) The above recursive construction represents a successive improvement of the estimate
of x, as more and more yns are taken into account; that is, as the subspaces Yn are suc-
cessively enlarged. Verify that x̂n is indeed a better estimate than x̂n−1 by showing that
the mean-square estimation error Renen is smaller than the mean-square error Ren−1en−1 .
This is a very intuitive result; the more information we use the better the estimate.

Such recursive updating schemes are the essence of Kalman filtering. In that context,
Gn is referred to as the “Kalman gain.”

1.12 The recursive updating procedure given in Problem 1.11 is useful only if the gain coefficient
Gn can be computed at each iteration n. For that, a knowledge of the relationship between
x and yn is required. Consider the case of Example 1.4.3 where yn = cnx + vn; define the
vectors

cn = [c1, c2, . . . , cn]T , yn = [y1, y2, . . . , yn]T , for n = 1,2, . . . ,M

and let x̂n and en = x − x̂n be the estimate of x on the basis of Yn and the corresponding
estimation error.
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(a) Using Eq. (1.4.9), show that

x̂n = 1

1+ cTncn
cTnyn and E[e2

n]= E[xen]= 1

1+ cTncn

(b) Using Eq. (1.6.19), compute ŷn/n−1 and show that it may be expressed in the form

ŷn/n−1 = cnx̂n−1 = cn
1+ cTn−1cn−1

cTn−1yn−1

(c) Let en−1 = x− x̂n−1 be the estimation error based on Yn−1. Writing

εn = yn − ŷn/n−1 = (cnx+ vn)−cnx̂n−1 = cnen−1 + vn

show that
E[εnεn] = (1+ cTncn)(1+ cTn−1cn−1)−1

E[xεn] = cn(1+ cTn−1cn−1)−1

(d) Show that the estimate x̂n of x can be computed recursively by

x̂n = x̂n−1 +Gn(yn − ŷn/n−1) , where Gn = cn(1+ cTncn)−1

1.13 Rederive the recursive updating equation given in Problem 1.12(d), without any reference to
innovations or projections, by simply manipulating Eq. (1.4.9) algebraically, and writing it in
recursive form.

1.14 Computer Experiment. A three-component random vector y has autocorrelation matrix

R = E[yyT]=
⎡⎢⎣ 1 2 3

2 6 14
3 14 42

⎤⎥⎦ , y =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦
Carry out the Gram-Schmidt orthogonalization procedure to determine the innovations rep-
resentation y = Bεεε, where εεε = [ε1, ε2, ε3]T is a vector of uncorrelated components. The
vector y can be simulated by generating a zero-mean gaussian vector of uncorrelated com-
ponents εεε of the appropriate variances and constructing y = Bεεε. Generate N = 50 such
vectors yn, n = 1,2, . . . ,N and compute the corresponding sample covariance matrix R̂
given by Eq. (1.6.21). Compare it with the theoretical R. Is R̂ consistent with the standard
deviation intervals (1.6.23)? Repeat for N = 100.

1.15 The Gram-Schmidt orthogonalization procedure for a subspace Y = {y1, y2, . . . , yM} is ini-
tialized at the leftmost random variable y1 by ε1 = y1 and progresses to the right by suc-
cessively orthogonalizing y2, y3, and so on. It results in the lower triangular representation
y = Bεεε. The procedure can just as well be started at the rightmost variable yM and proceed
backwards as follows:

ηM = yM

ηM−1 = yM−1 − (projection of yM−1 on ηM)

ηM−2 = yM−2 − (projection of yM−2 on {ηM,ηM−1})

and so on. Show that the resulting uncorrelated vector ηηη = [η1, η2, . . . , ηM]T is related to
y = [y1, y2, . . . , yM]T by a linear transformation

y = Uηηη

where U is a unit upper-triangular matrix. Show also that this corresponds to a UL (rather
than LU) Cholesky factorization of the covariance matrix Ryy.
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1.16 Since “orthogonal” means “uncorrelated,” the Gram-Schmidt orthogonalization procedure
can also be understood as a correlation canceling operation. Explain how Eq. (1.6.20) may
be thought of as a special case of the correlation canceler defined by Eqs. (1.4.1) and (1.4.2).
What are x,y, e, and H, in this case? Draw the correlation canceler diagram of Fig. 1.4.1 as
it applies here, showing explicitly the components of all the vectors.

1.17 Using Eq. (1.7.11), show that the vector of coefficients [an1, an2, . . . , ann]T can be expressed
explicitly in terms of the y-basis as follows:⎡⎢⎢⎢⎢⎢⎣

an1

an2

...
ann

⎤⎥⎥⎥⎥⎥⎦ = −E[yn−1yTn−1]−1E[ynyn−1] , where yn−1 =

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
y0

⎤⎥⎥⎥⎥⎥⎦
1.18 Show that the mean-square estimation error of yn on the basis ofYn−1—that is, E[ε2

n], where
εn = yn − ŷn/n−1—can be expressed as

E[ε2
n]= E[εnyn]= E[y2

n]−E[ynyTn−1]E[yn−1yTn−1]−1E[ynyn−1]

1.19 Let an = [1, an1, an2, . . . , ann]T for n = 1,2, . . . ,M. Show that the results of the last two
problems can be combined into one enlarged matrix equation

E[ynyTn]an = E[ε2
n]un

where un is the unit-vector un = [1,0,0, . . . ,0]T consisting of one followed by n zeros, and
yn = [yn, yn−1, . . . , y1, y0]T= [yn , yTn−1]T .

1.20 The quantity ŷn/n−1 of Eq. (1.6.19) is the best estimate of yn based on all the previous ys,
namely, Yn−1 = {y0, y1, . . . , yn−1}. This can be understood in three ways: First, in terms
of the orthogonal projection theorem as we demonstrated in the text. Second, in terms of
the correlation canceler interpretation as suggested in Problem 1.16. And third, it may be
proved directly as follows. Let ŷn/n−1 be given as a linear combination of the previous ys as in
Eq. (1.7.11); the coefficients [an1, an2, . . . , ann]T are to be chosen optimally to minimize the
estimation error εn given by Eq. (1.7.10) in the mean-square sense. In terms of the notation
of Problem 1.19, Eq. (1.7.10) and the mean-square error E[ε2

n] can be written in the compact
vectorial form

εn = aTnyn , E(an)= E[ε2
n]= aTnE[ynyTn]an

The quantity E(an) is to be minimized with respect to an. The minimization must be sub-
ject to the constraint that the first entry of the vector an be unity. This constraint can be
expressed in vector form as

aTnun = 1

where un is the unit vector defined in Problem 1.19. Incorporate this constraint with a
Lagrange multiplier λ and minimize the performance index

E(an)= aTnE[ynyTn]an + λ(1− aTnun)

with respect to an, then fix λ by enforcing the constraint, and finally show that the resulting
solution of the minimization problem is identical to that given in Problem 1.19.

1.21 Show that the normal equations (1.8.12) can also be obtained by minimizing the performance
indices (1.8.10) with respect to a and b, subject to the constraints that the first element of
a and the last element of b be unity. (Hint: These constraints are expressible in the form
uTa = 1 and vTb = 1.)



96 1. Review of Random Signals

1.22 Using Eq. (1.8.16), show that Eb can be expressed as the ratio of the two determinants Eb =
detR/det R̄.

1.23 Show Eqs. (1.8.28) and (1.8.35).

1.24 A random signal x(n) is defined as a linear function of time by

x(n)= an+ b

where a and b are independent zero-mean gaussian random variables of variances σ2
a and

σ2
b, respectively.

(a) Compute E
[
x(n)2

]
.

(b) Is x(n) a stationary process? Is it ergodic? Explain.

(c) For each fixed n, compute the probability density p
(
x(n)

)
.

(d) For each fixed n and m (n �=m), compute the conditional probability density function
p
(
x(n)|x(m)

)
of x(n) given x(m). (Hint: x(n)−x(m)= (n−m)b.)

1.25 Compute the sample autocorrelation of the sequences

(a) yn = 1, for 0 ≤ n ≤ 10.

(b) yn = (−1)n, for 0 ≤ n ≤ 10.

in two ways: First in the time domain, using Eq. (1.11.1), and then in the z-domain, using
Eq. (1.11.3) and computing its inverse z-transform.

1.26 FFT Computation of Autocorrelations. In many applications, a fast computation of sample
autocorrelations or cross-correlations is required, as in the matched filtering operations in
radar data processors. A fast way to compute the sample autocorrelation R̂yy(k) of a length-
N data segment y = [y0, y1, . . . , yN−1]T is based on Eq. (1.11.5) which can be computed
using FFTs. Performing an inverse FFT on Eq. (1.11.5), we find the computationally efficient
formula

R̂yy(k)= 1

N
IFFT

[∣∣FFT(y)
∣∣2]

(P.1)

To avoid wrap-around errors introduced by the IFFT, the length N′ of the FFT must be se-
lected to be greater than the length of the function R̂yy(k). Since R̂yy(k) is double-sided with
an extent −(N− 1)≤ k ≤ (N− 1), it will have length equal to 2N− 1. Thus, we must select
N′ ≥ 2N − 1. To see the wrap-around effects, consider the length-4 signal y = [1,2,2,1]T .

(a) Compute R̂yy(k) using the time-domain definition.

(b) Compute R̂yy(k) according to Eq. (P.1) using 4-point FFTs.

(c) Repeat using 8-point FFTs.

1.27 Computer Experiment.

(a) Generate 1000 samples x(n), n = 0,1, . . . ,999, of a zero-mean, unit-variance, white
gaussian noise sequence.

(b) Compute and plot the first 100 lags of its sample autocorrelation, that is, R̂yy(k), for
k = 0,1, . . . ,99. Does R̂yy(k) look like a delta function δ(k)?
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(c) Generate 10 different realizations of the length-1000 sequence x(n), and compute 100
lags of the corresponding sample autocorrelations. Define an average autocorrelation
by

R̂(k)= 1

10

10∑
i=1

R̂i(k) , k = 0,1, . . . ,99,

where R̂i(k) is the sample autocorrelation of the ith realization of x(n). Plot R̂(k)
versus k. Do you notice any improvement?

1.28 A 500-millisecond record of a stationary random signal is sampled at a rate of 2 kHz and
the resulting N samples are recorded for further processing. What is N? The record of N
samples is then divided into K contiguous segments, each of length M, so that M = N/K.
The periodograms from each segment are computed and averaged together to obtain an
estimate of the power spectrum of the signal. A frequency resolution of Δf = 20 Hz is
required. What is the shortest length M that will guarantee such resolution? (Larger Ms will
have better resolution than required but will result in a poorer power spectrum estimate
because K will be smaller.) What is K in this case?

1.29 A random signal yn is generated by sending unit-variance zero-mean white noise εn through
the filters defined by the following difference equations:

1. yn = −0.9yn−1 + εn
2. yn = 0.9yn−1 + εn + εn−1

3. yn = εn + 2εn−1 + εn−2

4. yn = −0.81yn−2 + εn
5. yn = 0.1yn−1 + 0.72yn−2 + εn − 2εn−1 + εn−2

(a) For each case, determine the transfer function B(z) of the filter and draw its canonical
implementation form, identify the set of model parameters, and decide whether the
model is ARMA, MA, or AR.

(b) Write explicitly the power spectrum Syy(ω) using Eq. (1.13.6).

(c) Based on the pole/zero pattern of the filter B(z), draw a rough sketch of the power
spectrum Syy(ω) for each case.

1.30 Computer Experiment.
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Two different realizations of a stationary random signal
y(n), n = 0,1, . . . ,19 are given. It is known that this
signal has been generated by a model of the form

y(n)= ay(n− 1)+ε(n)

where ε(n) is gaussian zero-mean white noise of variance
σ2
ε .

(a) Estimate the model parameters a and σ2
ε using the

maximum likelihood criterion for both realizations.
(The exact values were a = 0.95 and σ2

ε = 1.)

(b) Repeat using the Yule-Walker method.

This type of problem might, for example, arise in speech
processing where y(n) might represent a short segment
of sampled unvoiced speech from which the filter parame-
ters (model parameters) are to be extracted and stored for
future regeneration of that segment. A realistic speech
model would of course require a higher-order filter, typi-
cally, of order 10 to 15.

n y(n) y(n)
0 3.848 5.431
1 3.025 5.550
2 5.055 4.873
3 4.976 5.122
4 6.599 5.722
5 6.217 5.860
6 6.572 6.133
7 6.388 5.628
8 6.500 6.479
9 5.564 4.321

10 5.683 5.181
11 5.255 4.279
12 4.523 5.469
13 3.952 5.087
14 3.668 3.819
15 3.668 2.968
16 3.602 2.751
17 1.945 3.306
18 2.420 3.103
19 2.104 3.694

1.31 Computer Experiment.

(a) Using the Yule-Walker estimates {â, σ̂2
ε} of the model parameters extracted from the

first realization of y(n) given in Problem 1.30, make a plot of the estimate of the power
spectrum following Eq. (1.13.6), that is,

Ŝyy(ω)= σ̂2
ε

|1− âe−jω|2

versus frequency ω in the interval 0 ≤ω ≤ π.

(b) Also, plot the true power spectrum

Syy(ω)= σ2
ε

|1− ae−jω|2

defined by the true model parameters {a,σ2
ε} = {0.95,1}.

(c) Using the given data values y(n) for the first realization, compute and plot the corre-
sponding periodogram spectrum of Eq. (1.11.5). Preferably, plot all three spectra on the
same graph. Compute the spectra at 100 or 200 equally spaced frequency points in the
interval [0,π]. Plot all spectra in decibels.

(d) Repeat parts (a) through (c) using the second realization of y(n).

Better agreement between estimated and true spectra can be obtained using Burg’s analysis
procedure instead of the Yule-Walker method. Burg’s method performs remarkably well
on the basis of very short data records. The Yule-Walker method also performs well but it
requires somewhat longer records. These methods will be compared in Chap. 14.

1.32 In addition to the asymptotic results (1.16.4) for the model parameters, we will show in
Chap. 14 that the estimates of filter parameter and the input variance are asymptotically
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uncorrelated, E[ΔaΔσ2
ε]= 0. Using this result and Eq. (1.16.4), show that the variance of

the spectrum estimate is given asymptotically by

E
[
ΔS(ω)ΔS(ω)

] = 2S(ω)2

N

[
1+ 2(1− a2)(cosω− a)2

(1− 2a cosω+ a2)2

]

where ΔS(ω)= Ŝ(ω)−S(ω), with the theoretical and estimated spectra given in terms of
the theoretical and estimated model parameters by

S(ω)= σ2
ε

|1− ae−jω|2 , Ŝ(ω)= σ̂2
ε

|1− âe−jω|2

1.33 For any positive semi-definite matrix B show the inequality tr(B− I− lnB)≥ 0 with equality
achieved for B = I. Using this property, show the inequality f(R)≥ f(R̂), where f(R)=
tr(lnR+R−1R̂). This implies the maximum likelihood property of R̂, discussed in Sec. 1.18.

1.34 Show the following three matrix properties used in Sec. 1.18:

ln(detR)= tr(lnR) , d tr(lnR)= tr(R−1dR) , dR−1 = −R−1 dRR−1

(Hints: for the first two, use the eigenvalue decomposition of R; for the third, start with
R−1R = I.)

1.35 Let x(n) be a zero-mean white-noise sequence of unit variance. For each of the following
filters compute the output autocorrelation Ryy(k) for all k, using z-transforms:

1. y(n)= x(n)−x(n− 1)
2. y(n)= x(n)−2x(n− 1)+x(n− 2)
3. y(n)= −0.5y(n− 1)+x(n)
4. y(n)= 0.25y(n− 2)+x(n)

Also, sketch the output power spectrum Syy(ω) versus frequency ω.

1.36 Let yn be the output of a (stable and causal) filter H(z) driven by the signal xn, and let wn

be another unrelated signal. Assume all signals are stationary random signals. Show the
following relationships between power spectral densities:

(a) Syw(z)= H(z)Sxw(z)

(b) Swy(z)= Swx(z)H(z−1)

1.37 A stationary random signal yn is sent through a finite filterA(z)= a0+a1z−1+· · ·+aMz−M
to obtain the output signal en :

en =
M∑

m=0

amyn−m

Show that the average power of the output en can be expressed in the two alternative forms:

E[e2
n]=

∫ π

−π
Syy(ω)

∣∣A(ω)
∣∣2 dω

2π
= aTRyya

where a = [a0, a1, . . . , aM]T and Ryy is the (M + 1)×(M + 1) autocorrelation matrix of yn
having matrix elements Ryy(i, j)= E[yiyj]= Ryy(i− j).
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1.38 Consider the two autoregressive random signals yn and y′n generated by the two signal
models:

A(z)= 1+ a1z−1 + · · · + aMz−M and A′(z)= 1+ a′1z−1 + · · · + a′Mz
−M

(a) Suppose yn is filtered through the analysis filterA′(z) of y′n producing the output signal
en; that is,

en =
M∑

m=0

a′myn−m

If yn were to be filtered through its own analysis filter A(z), it would produce the inno-
vations sequence εn. Show that the average power of en compared to the average power
of εn is given by

σ2
e

σ2
ε
= a′TRyya′

aTRyya
=

∫ π

−π

∣∣∣∣A′(ω)
A(ω)

∣∣∣∣2 dω
2π

=
∥∥∥∥A′A

∥∥∥∥2

where a, a′ andRyy have the same meaning as in Problem 1.37. This ratio can be taken as
a measure of similarity between the two signal models. The log of this ratio is Itakura’s
LPC distance measure used in speech recognition.

(b) Alternatively, show that if y′n were to be filtered through yn’s analysis filter A(z) result-
ing in e′n =

∑M
m=0 amy′n−m, then

σ2
e′

σ2
ε′
= aTR′yya

a′TR′yya′
=

∫ π

−π

∣∣∣∣ A(ω)
A′(ω)

∣∣∣∣2 dω
2π

=
∥∥∥∥ A
A′

∥∥∥∥2

1.39 The autocorrelation function of a complex-valued signal is defined by

Ryy(k)= E[yn+ky∗n ]

(a) Show that stationarity implies Ryy(−k)= Ryy(k)∗.

(b) If yn is filtered through a (possibly complex-valued) filter A(z)= a0 + a1z−1 + · · · +
aMz−M , show that the average power of the output signal en can be expressed as

E[e∗nen]= a†Ryya

where a† denotes the hermitian conjugate of a and Ryy has matrix elements

Ryy(i, j)= Ryy(i− j)

1.40 (a) Let yn = A1 exp
[
j(ω1n + φ1)

]
be a complex sinusoid of amplitude A1 and frequency

ω1. The randomness of yn arises only from the phase φ1 which is assumed to be a random
variable uniformly distributed over the interval 0 ≤ φ1 ≤ 2π. Show that the autocorrelation
function of yn is

Ryy(k)= |A1|2 exp(jω1k)

(b) Let yn be the sum of two sinusoids

yn = A1 exp
[
j(ω1n+φ1)

]+A2 exp
[
j(ω2n+φ2)

]
with uniformly distributed random phases φ1 and φ2 which are also assumed to be inde-
pendent of each other. Show that the autocorrelation function of yn is

Ryy(k)= |A1|2 exp(jω1k)+|A2|2 exp(jω2k)
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1.41 Sinusoids in Noise. Suppose yn is the sum of L complex sinusoids with random phases, in
the presence of uncorrelated noise:

yn = vn +
L∑
i=1

Ai exp
[
j(ωin+φi)

]
where φi, i = 1,2, . . . , L are uniformly distributed random phases which are assumed to be
mutually independent, and vn is zero-mean white noise of variance σ2

v . Also, assume that
vn is independent of φi.

(a) Show that E[ejφie−jφk]= δik, for i, k = 1,2, . . . , L.

(b) Show that the autocorrelation of yn is

Ryy(k)= σ2
vδ(k)+

L∑
i=1

|Ai|2 exp(jωik)

(c) Suppose yn is filtered through a filter A(z)= a0 + a1z−1 + · · · + aMz−M of order M,
producing the output signal en. Show that the average output power is expressible as

E = E[e∗nen]= a†Ryya = σ2
v a†a+

L∑
i=1

|Ai|2
∣∣A(ωi)

∣∣2

where a, a†, Ryy have the same meaning as in Problem 1.39, and A(ωi) is the frequency
response of the filter evaluated at the sinusoid frequency ωi, that is,

A(ωi)=
M∑

m=0

ame−jωim , i = 1,2, . . . ,M

(d) If the noise vn is correlated with autocorrelation Q(k), so that E[vn+kv∗n ]= Q(k), show
that in this case

E = E[e∗nen]= a†Ryya = a†Qa+
L∑
i=1

|Ai|2
∣∣A(ωi)

∣∣2

where Q is the noise covariance matrix, Q(i, j)= Q(i− j).

1.42 A filter is defined by y(n)= −0.64y(n− 2)+0.36x(n).

(a) Suppose the input is zero-mean, unit-variance, white noise. Compute the output spectral
density Syy(z) and power spectrum Syy(ω) and plot it roughly versus frequency.

(b) Compute the output autocorrelation Ryy(k) for all lags k.

(c) Compute the noise reduction ratio of this filter.

(d) What signal s(n) can pass through this filter and remain entirely unaffected (at least in
the steady-state regime)?

(e) How can the filter coefficients be changed so that (i) the noise reduction capability of
the filter is improved, while at the same time (ii) the above signal s(n) still goes through
unchanged? Explain any tradeoffs.
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1.43 Computer Experiment. (a) Generate 1000 samples of a zero-mean, unit-variance, white gaus-
sian noise sequence x(n), n = 0,1, . . . ,999, and filter them through the filter defined by the
difference equation:

y(n)= ay(n− 1)+(1− a)x(n)

with a = 0.95. To avoid the transient effects introduced by the filter, discard the first 900
output samples and save the last 100 samples of y(n). Compute the sample autocorrelation
of y(n) from this length-100 block of samples.

(b) Determine the theoretical autocorrelation Ryy(k), and on the same graph, plot the
theoretical and sample autocorrelations versus k. Do they agree?

1.44 Prove Eq. (1.19.6).

1.45 Using Eq. (1.19.10), show Eqs. (1.19.12) and (1.19.13).

1.46 A random signal yn has autocorrelation function

Ryy(k)= (0.5)|k| , for all k

Find a random signal generator model for yn.

1.47 Repeat Problem 1.46 when

Ryy(k)= (0.5)|k|+(−0.5)|k| , for all k

1.48 The autocorrelation function of a stationary random signal y(n) is

Ryy(k)= 1−R2

1+R2
R|k| cos(πk/2) , for all k , where 0 < R < 1

(a) Compute the power spectrum Syy(ω) of y(n) and sketch it versus frequency for various
values of R.

(b) Find the signal generator filter for y(n) and determine its difference equation and its
poles and zeros.

1.49 A stationary random signal yn has a rational power spectral density given by

Syy(z)= 2.18− 0.6(z+ z−1)
1.25− 0.5(z+ z−1)

Determine the signal model filter B(z) and the parameter σ2
ε . Write the difference equation

generating yn.

1.50 Let yn = cxn + vn. It is given that

Sxx(z)= Q
(1− az−1)(1− az)

, Svv(z)= R , Sxv(z)= 0

where a, c,Q,R are known constants (assume |a| < 1) for the stability of xn.)

(a) Show that the filter model for yn is of the form

B(z)= 1− fz−1

1− az−1

where f has magnitude less than one and is the solution of the algebraic quadratic
equation

aR(1+ f2)= [
c2Q +R(1+ a2)

]
f

and show that the other solution has magnitude greater than one.
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(b) Show that f can alternatively be expressed as

f = Ra
R+ c2P

where P is the positive solution of the quadratic equation

Q = P− PRa2

R+ c2P
known as the algebraic Riccati equation. Show that the other solution is negative. Show
that the positivity of P is essential to guarantee that f has magnitude less than one.

(c) Show that the scale factor σ2
ε that appears in the spectral factorization (1.20.1) can also

be expressed in terms of P as

σ2
ε = R+ c2P

The above method of solution of the spectral factorization problem by reducing it to the
solution of an algebraic Riccati equation is quite general and can be extended to the multi-
channel case.

1.51 Consider a stable (but not necessarily causal) sequence bn, −∞ < n <∞ with a z-transform
B(z)

B(z)=
∞∑

n=−∞
bnz−n

Define an infinite Toeplitz matrix B by

Bni = bn−i , for −∞ < n, i <∞
This establishes a correspondence between stable z-transforms or stable sequences and
infinite Toeplitz matrices.

(a) Show that if the sequence bn is causal, then B is lower triangular, as shown here

In the literature of integral operators and kernels, such matrices are rotated by 90o

degrees as shown:

so that the n axis is the horizontal axis. For this reason, in that context they are called
“right Volterra kernel,” or “causal kernels.”

(b) Show that the transposed BT corresponds to the reflected (about the origin) sequence
b−n and to the z-transform B(z−1).

(c) Show that the convolution of two sequences an and bn

cn = an ∗ bn or C(z)= A(z)B(z)

corresponds to the commutative matrix product

C = AB = BA

1.52 Prove Eq. (1.21.2) for any M.


