
Sophocles J. Orfanidis

http://www.ece.rutgers.edu/~orfanidi/aosp

2018

Applied Optimum
Signal Processing

Applied Optimum
Signal Processing

Applied Optimum
Signal Processing

A MATLAB-based Introduction

Sophocles J. Orfanidis

Rutgers University

2018

http://www.ece.rutgers.edu/~orfanidi/aosp

To my parents

John and Clio Orfanidis

And To

Monica, John, Anna, and Owen

Copyright © 1996–2018 by Sophocles J. Orfanidis
Copyright © 1988 by McGraw-Hill Publishing Company

This book is an updated and enlarged 2018 edition of Optimum Signal Processing, which
was published in 2007 as a republication of the second edition published by McGraw-Hill
Publishing Company, New York, NY, in 1988 (ISBN 0-07-047794-9), and also published
earlier by Macmillan, Inc., New York, NY, 1988 (ISBN 0-02-389380-X). All copyrights to
this work reverted to Sophocles J. Orfanidis in 1996.

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, without the prior written permission of the author.

Software tools:

MATLAB©R is a registered trademark of The MathWorks, Inc.

OSP Toolbox – © S. J. Orfanidis 2018

CVX software by Michael Grant and Stephen Boyd, CVX: Matlab software for disciplined
convex programming, version 2.0 beta, September 2013, http://cvxr.com/cvx.

Contents

1 Review of Random Signals 1

1.1 Probability Density, Mean, Variance, 1
1.2 Chebyshev’s Inequality, 3
1.3 Joint and Conditional Densities, and Bayes’ Rule, 4
1.4 Correlation Canceling and Optimum Estimation, 8
1.5 Regression Lemma, 12
1.6 Gram-Schmidt Orthogonalization, 13
1.7 Partial Correlations, 22
1.8 Forward/Backward Prediction and LU/UL Factorization, 27
1.9 Random Signals, 44
1.10 Power Spectrum and Its Interpretation, 46
1.11 Sample Autocorrelation and the Periodogram, 48
1.12 Filtering of Stationary Random Signals, 51
1.13 Random Signal Models and Their Uses, 56
1.14 Filter Model of First Order Autoregressive Process, 63
1.15 Stability and Stationarity, 65
1.16 Parameter Estimation, 66
1.17 Linear Prediction and Signal Modeling, 70
1.18 Cramér–Rao Bound and Maximum Likelihood, 71
1.19 Minimum-Phase Signals and Filters, 77
1.20 Spectral Factorization Theorem, 82
1.21 Minimum-Phase Property of the Prediction-Error Filter, 83
1.22 Computer Project – Adaptive AR(1) and AR(2) Models, 86
1.23 Problems, 91

2 Signal Extraction Basics 104

2.1 Introduction, 104
2.2 Noise Reduction and Signal Enhancement, 105
2.3 First-Order Exponential Smoother, 109
2.4 FIR Averaging Filters, 112
2.5 Problems, 116

3 Local Polynomial Filters 118

3.1 Introduction, 118
3.2 Local Polynomial Fitting, 119
3.3 Exact Design Equations, 128

v

vi CONTENTS

3.4 Geometric Interpretation, 133
3.5 Orthogonal Polynomial Bases, 134
3.6 Polynomial Predictive and Interpolation Filters, 135
3.7 Minimum Variance Filters, 142
3.8 Predictive Differentiation Filters, 148
3.9 Filtering Implementations, 153

4 Minimum Roughness Filters 164

4.1 Weighted Local Polynomial Filters, 164
4.2 Henderson Filters, 169
4.3 Hahn Orthogonal Polynomials, 179
4.4 Maximally-Flat Filters and Krawtchouk Polynomials, 187
4.5 Missing Data and Outliers, 191
4.6 Problems, 196

5 Local Polynomial Modeling 197

5.1 Weighted Local Polynomial Modeling, 197
5.2 Bandwidth Selection, 204
5.3 Local Polynomial Interpolation, 206
5.4 Variable Bandwidth, 211
5.5 Repeated Observations, 217
5.6 Loess Smoothing, 218
5.7 Problems, 220

6 Exponential Smoothing 221

6.1 Mean Tracking, 221
6.2 Forecasting and State-Space Models, 230
6.3 Higher-Order Polynomial Smoothing Filters, 231
6.4 Linear Trend FIR Filters, 233
6.5 Higher-Order Exponential Smoothing, 235
6.6 Steady-State Exponential Smoothing, 241
6.7 Smoothing Parameter Selection, 247
6.8 Single, Double, and Triple Exponential Smoothing, 252
6.9 Exponential Smoothing and Tukey’s Twicing Operation, 254
6.10 Twicing and Zero-Lag Filters, 255
6.11 Basis Transformations and EMA Initialization, 259
6.12 Holt’s Exponential Smoothing, 264
6.13 State-Space Models for Holt’s Method, 265
6.14 Filtering Methods in Financial Market Trading, 267
6.15 Moving Average Filters – SMA, WMA, TMA, EMA, 267
6.16 Predictive Moving Average Filters, 270
6.17 Single, Double, and Triple EMA Indicators, 273
6.18 Linear Regression and R-Square Indicators, 275
6.19 Initialization Schemes, 280
6.20 Butterworth Moving Average Filters, 285
6.21 Moving Average Filters with Reduced Lag, 288
6.22 Envelopes, Bands, and Channels, 294
6.23 Momentum, Oscillators, and Other Indicators, 303

CONTENTS vii

6.24 MATLAB Functions, 309
6.25 Problems, 311

7 Smoothing Splines 315

7.1 Interpolation versus Smoothing, 315
7.2 Variational Approach, 316
7.3 Natural Cubic Smoothing Splines, 319
7.4 Optimality of Natural Splines, 325
7.5 Generalized Cross Validation, 327
7.6 Repeated Observations, 329
7.7 Equivalent Filter, 329
7.8 Stochastic Model, 331
7.9 Computational Aspects, 335
7.10 Problems, 340

8 Whittaker-Henderson Smoothing 341

8.1 Whittaker-Henderson Smoothing Methods, 341
8.2 Regularization Filters, 346
8.3 Hodrick-Prescott Filters, 348
8.4 Poles and Impulse Response, 351
8.5 Wiener Filter Interpretation, 352
8.6 Regularization and Kernel Machines, 353
8.7 Sparse Whittaker-Henderson Methods, 358
8.8 Computer Project – US GDP Macroeconomic Data, 363
8.9 Problems, 366

9 Periodic Signal Extraction 368

9.1 Notch and Comb Filters for Periodic Signals, 369
9.2 Notch and Comb Filters with Fractional Delay, 375
9.3 Signal Averaging, 385
9.4 Ideal Seasonal Decomposition Filters, 391
9.5 Classical Seasonal Decomposition, 393
9.6 Seasonal Moving-Average Filters, 400
9.7 Census X-11 Decomposition Filters, 407
9.8 Musgrave Asymmetric Filters, 412
9.9 Seasonal Whittaker-Henderson Decomposition, 417
9.10 Problems, 424

10 Wavelets 425

10.1 Multiresolution Analysis, 425
10.2 Dilation Equations, 430
10.3 Wavelet Filter Properties, 436
10.4 Multiresolution and Filter Banks, 441
10.5 Discrete Wavelet Transform, 446
10.6 Multiresolution Decomposition, 458
10.7 Wavelet Denoising, 459
10.8 Undecimated Wavelet Transform, 463

viii CONTENTS

10.9 MATLAB Functions, 472
10.10 Problems, 473

11 Wiener Filtering 475

11.1 Linear and Nonlinear Estimation of Signals, 476
11.2 Orthogonality and Normal Equations, 480
11.3 Stationary Wiener Filter, 484
11.4 Construction of the Wiener Filter by Prewhitening, 487
11.5 Wiener Filter Example, 488
11.6 Wiener Filter as Kalman Filter, 490
11.7 Construction of the Wiener Filter by the Gapped Function, 495
11.8 Construction of the Wiener Filter by Covariance Factorization, 497
11.9 The Kalman Filter, 500
11.10 Problems, 504

12 Linear Prediction 509

12.1 Pure Prediction and Signal Modeling, 509
12.2 Autoregressive Models, 513
12.3 Linear Prediction and the Levinson Recursion, 514
12.4 Levinson’s Algorithm in Matrix Form, 524
12.5 Autocorrelation Sequence Extensions, 528
12.6 Split Levinson Algorithm, 532
12.7 Analysis and Synthesis Lattice Filters, 535
12.8 Alternative Proof of the Minimum-Phase Property, 539
12.9 Orthogonality of Backward Prediction Errors—Cholesky Factorization, 542
12.10 Schur Algorithm, 547
12.11 Lattice Realizations of FIR Wiener Filters, 553
12.12 Autocorrelation, Covariance, and Burg’s Methods, 561
12.13 Dynamic Predictive Deconvolution—Waves in Layered Media, 568
12.14 Least-Squares Waveshaping and Spiking Filters, 585
12.15 Computer Project – ARIMA Modeling, 594
12.16 Problems, 599

13 Kalman Filtering 609

13.1 State-Space Models, 609
13.2 Kalman Filter, 614
13.3 Derivation, 616
13.4 Forecasting and Missing Observations, 624
13.5 Kalman Filter with Deterministic Inputs, 625
13.6 Time-Invariant Models, 626
13.7 Steady-State Kalman Filters, 631
13.8 Continuous-Time Kalman Filter, 641
13.9 Equivalence of Kalman and Wiener Filtering, 645
13.10 Fixed-Interval Smoothing, 650
13.11 Square-Root Algorithms, 657
13.12 Maximum Likelihood Parameter Estimation, 663
13.13 Parameter Estimation with the EM Algorithm, 667

CONTENTS ix

14 Spectrum Estimation and Array Processing 678

14.1 Spectrum Estimation by Autoregressive Modeling, 678
14.2 Spectral Analysis of Sinusoids in Noise, 680
14.3 Superresolution Array Processing, 694
14.4 Eigenvector Methods, 706
14.5 MUSIC method, 709
14.6 Minimum-Norm Method, 713
14.7 Reduced-Order Method, 715
14.8 Maximum Likelihood Method, 719
14.9 ESPRIT Method, 721
14.10 Spatial Smoothing, 723
14.11 Asymptotic Properties, 726
14.12 Computer Project – LCMV Beamforming and GSC, 735
14.13 Computer Project – Markowitz Portfolio Theory, 746
14.14 Problems, 757

15 SVD and Signal Processing 765

15.1 Vector and Matrix Norms, 765
15.2 Subspaces, Bases, and Projections, 766
15.3 The Fundamental Theorem of Linear Algebra, 770
15.4 Solving Linear Equations, 770
15.5 The Singular Value Decomposition, 776
15.6 Moore-Penrose Pseudoinverse, 781
15.7 Least-Squares Problems and the SVD, 783
15.8 Condition Number, 785
15.9 Reduced-Rank Approximation, 786
15.10 Regularization of Ill-Conditioned Problems, 792
15.11 Sparse Regularization, 793
15.12 SVD and Signal Processing, 805
15.13 Least-Squares Linear Prediction, 810
15.14 MA and ARMA modeling, 812
15.15 Karhunen-Loève Transform, 819
15.16 Principal Component Analysis, 820
15.17 SVD Signal Enhancement, 825
15.18 Structured Matrix Approximations, 830
15.19 Matrix Pencil Methods, 833
15.20 QR Factorization, 837
15.21 Canonical Correlation Analysis, 840
15.22 Problems, 846

16 Adaptive Filters 850

16.1 Adaptive Implementation of Wiener Filters, 850
16.2 Correlation Canceler Loop (CCL), 853
16.3 The Widrow-Hoff LMS Adaptation Algorithm, 855
16.4 Adaptive Linear Combiner, 859
16.5 Adaptive FIR Wiener Filter, 862
16.6 Speed of Convergence, 865
16.7 Adaptive Channel Equalizers, 868

16.8 Adaptive Echo Cancelers, 869
16.9 Adaptive Noise Canceling, 870
16.10 Adaptive Line Enhancer, 872
16.11 Adaptive Linear Prediction, 874
16.12 Adaptive Implementation of Pisarenko’s Method, 876
16.13 Gradient Adaptive Lattice Filters, 881
16.14 Adaptive Gram-Schmidt Preprocessors, 889
16.15 Rank-One Modification of Covariance Matrices, 893
16.16 RLS Adaptive Filters, 904
16.17 Fast RLS Filters, 907
16.18 RLS Lattice Filters, 911
16.19 Computer Project – Adaptive Wiener Filters, 916
16.20 Problems, 918

17 Appendices 923

A Matrix Inversion Lemma, 923
B MATLAB Functions, 924

References 930

Index 985

1
Review of Random Signals

1.1 Probability Density, Mean, Variance

In this section, we present a short review of probability concepts. It is assumed that the
reader has some familiarity with the subject on the level of Papoulis’ book [1].

Let x be a random variable having probability density p(x). Its mean, variance, and
second moment are defined by the expectation values

m = E[x] =
∫∞
−∞
xp(x)dx = mean

σ2 = Var(x)= E[
(x−m)2] = ∫∞

−∞
(x−m)2p(x)dx = variance

E[x2] =
∫∞
−∞
x2p(x)dx = second moment

These quantities are known as second-order statistics of the random variable x. Their
importance is linked with the fact that most optimal filter design criteria require knowl-
edge only of the second-order statistics and do not require more detailed knowledge,
such as probability densities. It is necessary, then, to be able to extract such quantities
from the actual measured data.

The probability that the random variable x will assume a value within an interval of
values [a, b] is given by

Prob[a ≤ x ≤ b]=
∫ b
a
p(x)dx = shaded area

The probability density is always normalized to unity by∫∞
−∞
p(x)dx = 1

2 1. Review of Random Signals

which states that the probability of x taking a value somewhere within its range of
variation is unity, that is, certainty. This property also implies

σ2 = E[
(x−m)2] = E[x2]−m2

Example 1.1.1: Gaussian, or normal, distribution

p(x)= 1√
2πσ

exp
[−(x−m)2/2σ2

]

Example 1.1.2: Uniform distribution

p(x)=
⎧⎨⎩1/Q , for −Q/2 ≤ x ≤ Q/2

0, otherwise

Its variance is σ2 = Q2/12. ��

Both the gaussian and the uniform distributions will prove to be important examples.
In typical signal processing problems of designing filters to remove or separate noise
from signal, it is often assumed that the noise interference is gaussian. This assumption
is justified on the grounds of the central limit theorem, provided that the noise arises
from many different noise sources acting independently of each other.

The uniform distribution is also important. In digital signal processing applications.
the quantization error arising from the signal quantization in the A/D converters, or the
roundoff error arising from the finite accuracy of the internal arithmetic operations in
digital filters, can often be assumed to be uniformly distributed.

Every computer provides system routines for the generation of random numbers.
For example, the routines RANDU and GAUSS of the IBM Scientific Subroutine Package
generate uniformly distributed random numbers over the interval [0,1], and gaussian-
distributed numbers, respectively. GAUSS calls RANDU twelve times, thus generating
twelve independent uniformly distributed random numbers x1, x2, . . . , x12. Then, their
sum x = x1+x2+· · ·+x12, will be approximately gaussian, as guaranteed by the central
limit theorem. It is interesting to note that the variance of x is unity, as it follows from
the fact that the variance of each xi, is 1/12:

σ2
x = σ2

x1
+σ2

x2
+ · · · +σ2

x12
= 1

12
+ 1

12
+ · · · + 1

12
= 1

The mean of x is 12/2 = 6. By shifting and scaling x, one can obtain a gaussian-
distributed random number of any desired mean and variance.

1.2. Chebyshev’s Inequality 3

1.2 Chebyshev’s Inequality

The variance σ2 of a random variable x is a measure of the spread of the x-values
about their mean. This intuitive interpretation of the variance is a direct consequence
of Chebyshev’s inequality, which states that the x-values tend to cluster about their
mean in the sense that the probability of a value not occurring in the near vicinity of the
mean is small; and it is smaller the smaller the variance.

More precisely, for any probability density p(x) and any Δ > 0, the probability that
x will fall outside the interval of values [m−Δ,m+Δ] is bounded by σ2/Δ2. Thus, for
fixed Δ, as the variance σ2 becomes smaller, the x-values tend to cluster more narrowly
about the mean. In the extreme limiting case of a deterministic variable x = m, the
density becomes infinitely narrow, p(x)= δ(x−m), and has zero variance.

Prob
[|x−m| ≥ Δ] ≤ σ2

Δ2

(Chebyshev’s Inequality)

Chebyshev’s inequality is especially important in proving asymptotic convergence
results for sample estimates of parameters. For example, considerN independent sam-
ples {x1, x2, . . . , xN} drawn from a gaussian probability distribution of mean m and
variance σ2. The sample estimate of the mean is

m̂ = 1

N
(x1 + x2 + · · · + xN) (1.2.1)

Being a sum of N gaussian random variables, m̂ will itself be a gaussian random
variable. Its probability density is completely determined by the corresponding mean
and variance. These are found as follows.

E[m̂]= 1

N
(
E[x1]+E[x2]+· · · + E[xN]

) = 1

N
(m+m+ · · · +m)=m

Therefore, m̂ is an unbiased estimator of m. However, the goodness of m̂ as an es-
timator must be judged by how small its variance is—the smaller the better, by Cheby-
shev’s inequality. By the assumption of independence, we have

var(m̂)= E[
(m̂−m)2] = 1

N2

(
σ2
x1
+σ2

x2
+ · · · +σ2

xN
) = 1

N2

(
Nσ2) = σ2

N
(1.2.2)

Thus, m̂ is also a consistent estimator of m in the sense that its variance tends to
zero as the number of samples N increases. The values of m̂ will tend to cluster more
and more closely about the true value ofm asN becomes larger. Chebyshev’s inequality
implies that the probability of m̂ falling outside any fixed neighborhood ofm will tend
to zero for large N. Equivalently, m̂ will converge to m with probability one. This can
also be seen from the probability density of m̂, which is the gaussian

p(m̂)= N1/2

(2π)1/2σ
exp

[− N
2σ2

(m̂−m)2]

4 1. Review of Random Signals

In the limit of large N, this density tends to the infinitely narrow delta function
density p(m̂)= δ(m̂ − m). In addition to the sample mean, we may also compute
sample estimates of the variance σ2 by

σ̂2 = 1

N

N∑
i=1

(xi − m̂)2 (1.2.3)

It is easily shown [2,3] that this estimator is slightly biased. But for large N, it is
asymptotically unbiased and consistent as can be seen from its mean and variance:

E[σ̂2]= N − 1

N
σ2 , var(σ̂2)= N − 1

N2
2σ4 (1.2.4)

An unbiased and consistent estimator of σ2 is the standard deviation defined by

s2 = 1

N − 1

N∑
i=1

(xi − m̂)2 (1.2.5)

It has E[s2]= σ2 and var(s2)= 2σ4/(N − 1) . In addition to the requirements of
asymptotic unbiasedness and consistency, a good estimator of a parameter must also
be judged in terms of its efficiency [2,3], which determines how closely the estimator
meets its Cramér-Rao bound. This is discussed in Sec. 1.18. We will see there that the es-
timators (1.2.1) and (1.2.3)—being maximum likelihood estimators—are asymptotically
efficient.

1.3 Joint and Conditional Densities, and Bayes’ Rule

Next, we discuss random vectors. A pair of two different random variables x = (x1, x2)
may be thought of as a vector-valued random variable. Its statistical description is more
complicated than that of a single variable and requires knowledge of the joint probability
density p(x1, x2). The two random variables may or may not have any dependence on
each other. It is possible, for example, that if x2 assumes a particular value, then this
fact may influence, or restrict, the possible values that x1 can then assume.

A quantity that provides a measure for the degree of dependence of the two variables
on each other is the conditional density p(x1|x2) of x1 given x2; and p(x2|x1) of x2 given
x1. These are related by Bayes’ rule

p(x1, x2)= p(x1|x2)p(x2)= p(x2|x1)p(x1)

More generally, Bayes’ rule for two events A and B is

p(A,B)= p(A|B)p(B)= p(B|A)p(A)

The two random variables x1 and x2 are independent of each other if they do not
condition each other in any way, that is, if

p(x1|x2)= p(x1) or p(x2|x1)= p(x2)

1.3. Joint and Conditional Densities, and Bayes’ Rule 5

In other words, the occurrence of x2 does not in any way influence the variable x1.
When two random variables are independent, their joint density factors into the product
of single (marginal) densities:

p(x1, x2)= p(x1)p(x2)

The converse is also true. The correlation between x1 and x2 is defined by the expectation
value

E[x1x2]=
∫∫
x1x2p(x1, x2)dx1dx2

When x1 and x2 are independent, the correlation also factors as E[x1x2]= E[x1]E[x2].

Example 1.3.1: Suppose x1 is related to x2 by

x1 = 5x2 + v

where v is a zero-mean, unit-variance, gaussian random variable assumed to be indepen-
dent of x2. Determine the conditional density and conditional mean of x1 given x2.

Solution: The randomness of x1 arises both from the randomness of x2 and the randomness of
v. But if x2 takes on a particular value, then the randomness of x1 will arise only from v.
Identifying elemental probabilities we have

p(x1|x2)dx1 = p(v)dv = (2π)−1/2exp
(−1

2
v2

)
dv

But, dx1 = dv and v = x1 − 5x2. Therefore,

p(x1|x2)= (2π)−1/2exp
[−1

2
(x1 − 5x2)2

]
The conditional mean is the mean of x1 with respect to the density p(x1|x2). It is evident
from the above gaussian expression that the conditional mean is E[x1|x2]= 5x2. This can
also be found directly as follows.

E[x1|x2]= E
[
(5x2 + v)|x2

] = 5x2 + E[v|x2]= 5x2

where we used the independence of v and x2 to replace the conditional mean of v with its
unconditional mean, which was given to be zero, that is, E[v|x2]= E[v]= 0. ��

The concept of a random vector generalizes to any dimension. A vector ofN random
variables

x =

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎥⎥⎦
requires knowledge of the joint density

p(x)= p(x1, x2, . . . , xN) (1.3.1)

6 1. Review of Random Signals

for its complete statistical description. The second-order statistics of x are its mean, its
correlation matrix, and its covariance matrix, defined by

m = E[x] , R = E[xxT] , Σ = E[
(x−m)(x−m)T

]
(1.3.2)

where the superscript T denotes transposition, and the expectation operations are de-
fined in terms of the joint density (1.3.1); for example,

E[x]=
∫

xp(x)dNx

where dNx = dx1dx2 · · ·dxN denotes the corresponding N-dimensional volume ele-
ment. The ijth matrix element of the correlation matrix R is the correlation between
the ith random variable xi with the jth random variable xj, that is, Rij = E[xixj] . It is
easily shown that the covariance and correlation matrices are related by

Σ = R−mmT

When the mean is zero, R and Σ coincide. Both R and Σ are symmetric positive semi-
definite matrices.

Example 1.3.2: The probability density of a gaussian random vector x = [x1, x2, . . . , xN]T is
completely specified by its mean m and covariance matrix Σ, that is,

p(x)= 1

(2π)N/2(detΣ)1/2 exp
[−1

2
(x−m)TΣ−1(x−m)

]
Example 1.3.3: Under a linear transformation, a gaussian random vector remains gaussian. Let

x be a gaussian random vector of dimension N, mean mx, and covariance Σx. Show that
the linearly transformed vector

ξξξ = Bx where B is a nonsingular N×N matrix

is gaussian-distributed with mean and covariance given by

mξ = Bmx , Σξ = BΣxBT (1.3.3)

The relationships (1.3.3) are valid also for non-gaussian random vectors. They are easily
derived as follows:

E[ξξξ]= E[Bx]= BE[x] , E[ξξξξξξT]= E[Bx(Bx)T]= BE[xxT]BT

The probability density pξ(ξξξ) is related to the density px(x) by the requirement that,
under the above change of variables, they both yield the same elemental probabilities:

pξ(ξξξ)dNξξξ = px(x)dNx (1.3.4)

Since the Jacobian of the transformation from x to ξξξ is dNξξξ = |detB|dNx, we obtain
pξ(ξξξ)= px(x)/|detB|. Noting the invariance of the quadratic form

(ξξξ−mξ)TΣ−1
ξ (ξξξ−mξ) = (x−mx)TBT(BΣxBT)−1B(x−mx)

= (x−mx)TΣ−1
x (x−mx)

and that detΣξ = det(BΣxBT)= (detB)2detΣx, we obtain

pξ(ξξξ)= 1

(2π)N/2(detΣξ)1/2 exp
[−1

2
(ξξξ−mξ)TΣ−1

ξ (ξξξ−mξ)
]

1.3. Joint and Conditional Densities, and Bayes’ Rule 7

Example 1.3.4: Consider two zero-mean random vectors x and y of dimensions N and M, re-
spectively. Show that if they are uncorrelated and jointly gaussian, then they are also
independent of each other. That x and y are jointly gaussian means that the (N+M)-
dimensional joint vector z =

[
x
y

]
is zero-mean and gaussian, that is,

p(z)= 1

(2π)(N+M)/2(detRzz)1/2 exp
[−1

2
zTR−1

zz z
]

where the correlation (covariance) matrix Rzz is

Rzz = E
[[

x
y

]
[xT,yT]

]
=

[
E[xxT] E[xyT]
E[yxT] E[yyT]

]
=

[
Rxx Rxy
Ryx Ryy

]

If x and y are uncorrelated, that is, Rxy = E[xyT]= 0, then the matrix Rzz becomes block
diagonal and the quadratic form of the joint vector becomes the sum of the individual
quadratic forms:

zTR−1
zz z = [xT,yT]

[
R−1
xx 0
0 R−1

yy

][
x
y

]
= xTR−1

xx x+ yTR−1
yyy

Since Rxy = 0 also implies that detRzz = (detRxx)(detRyy), it follows that the joint
density p(z)= p(x,y) factors into the marginal densities:

p(x,y)= p(x)p(y)

which shows the independence of x and y.

Example 1.3.5: Given a random vector x with mean m and covariance Σ, show that the best
choice of a deterministic vector x̂ which minimizes the quantity

Ree = E[eeT]= minimum , where e = x− x̂,

is the mean m itself, that is, x̂ = m. Also show that for this optimal choice of x̂, the actual
minimum value of the quantity Ree is the covariance Σ. This property is easily shown by
working with the deviation of x̂ from the mean m, that is, let

x̂ = m+ΔΔΔ

Then, the quantity Ree becomes

Ree = E[eeT]= E[
(x−m−ΔΔΔ)(x−m−ΔΔΔ)T

]
= E[

(x−m)(x−m)T
]−ΔΔΔE[xT −mT]−E[x−m]ΔΔΔ+ΔΔΔΔΔΔT

= Σ +ΔΔΔΔΔΔT

where we used the fact that E[x−m]= E[x]−m = 0. Since the matrix ΔΔΔΔΔΔT is nonnegative-
definite, it follows that Ree, will be minimized when ΔΔΔ = 0, and in this case the minimum
value will be Rmin

ee = Σ.

Since Ree is a matrix, the sense in which it is minimized must be clarified. The statement
thatRee is greater thanRmin

ee means that the differenceRee−Rmin
ee is a positive semi-definite

(and symmetric) matrix, and therefore we have for the scalar quantities: aTReea ≥ aTRmin
ee a

for any vector a. ��

8 1. Review of Random Signals

1.4 Correlation Canceling and Optimum Estimation

The concept of correlation canceling plays a central role in the development of many
optimum signal processing algorithms, because a correlation canceler is also the best
linear processor for estimating one signal from another.

Consider two zero-mean random vectors x and y of dimensions N and M, respec-
tively. If x and y are correlated with each other in the sense that Rxy = E[xyT]	= 0, then
we may remove such correlations by means of a linear transformation of the form

e = x−Hy (1.4.1)

where theN×MmatrixHmust be suitably chosen such that the new pair of vectors e,y
are no longer correlated with each other, that is, we require

Rey = E[eyT]= 0 (1.4.2)

Using Eq. (1.4.1), we obtain

Rey = E[eyT]= E[
(x−Hy)yT

] = E[xyT]−HE[yyT]= Rxy −HRyy
Then, the condition Rey = 0 immediately implies that

H = RxyR−1
yy = E[xyT]E[yyT]−1 (1.4.3)

Using Rey = 0, the covariance matrix of the resulting vector e is easily found to be

Ree = E[eeT]= E[
e(xT − yTH)

] = Rex −ReyHT = Rex = E[
(x−Hy)xT

]
, or,

Ree = Rxx −HRyx = Rxx −RxyR−1
yyRyx (1.4.4)

The vector
x̂ = Hy = RxyR−1

yyy = E[xyT]E[yyT]−1y (1.4.5)

obtained by linearly processing the vector y by the matrix H is called the linear regres-
sion, or orthogonal projection, of x on the vector y. In a sense to be made precise later,
x̂ also represents the best “copy,” or estimate, of x that can be made on the basis of the
vector y. Thus, the vector e = x−Hy = x− x̂ may be thought of as the estimation error.

Actually, it is better to think of x̂ = Hy not as an estimate of x but rather as an
estimate of that part of x which is correlated with y. Indeed, suppose that x consists of
two parts

x = x1 + x2

such that x1 is correlated with y, but x2 is not, that is, Rx2y = E[x2yT]= 0. Then,

Rxy = E[xyT]= E[
(x1 + x2)yT]= Rx1y +Rx2y = Rx1y

and therefore,

x̂ = RxyR−1
yyy = Rx1yR

−1
yyy = x̂1

1.4. Correlation Canceling and Optimum Estimation 9

Fig. 1.4.1 Correlation canceler.

The vector e = x− x̂ = x1 + x2 − x̂1 = (x1 − x̂1)+x2 consists of the estimation error
(x1−x̂1) of the x1-part plus the x2-part. Both of these terms are separately uncorrelated
from y. These operations are summarized in block diagram form in Fig. 1.4.1.

The most important feature of this arrangement is the correlation cancellation prop-
erty which may be summarized as follows: If x has a part x1 which is correlated with y,
then this part will tend to be canceled as much as possible from the output e. The linear
processor H accomplishes this by converting y into the best possible copy x̂1 of x1 and
then proceeds to cancel it from the output. The output vector e is no longer correlated
with y. The part x2 of x which is uncorrelated with y remains entirely unaffected. It
cannot be estimated in terms of y.

The correlation canceler may also be thought of as an optimal signal separator. In-
deed, the output of the processor H is essentially the x1 component of x, whereas the
output e is essentially the x2 component. The separation of x into x1 and x2 is optimal
in the sense that the x1 component of x is removed as much as possible from e.

Next, we discuss the best linear estimator property of the correlation canceler. The
choice H = RxyR−1

yy , which guarantees correlation cancellation, is also the choice that
gives the best estimate of x as a linear function of y in the form x̂ = Hy. It is the best
estimate in the sense that it produces the lowest mean-square estimation error. To see
this, express the covariance matrix of the estimation error in terms of H, as follows:

Ree = E[eeT]= E[
(x−Hy)(xT − yTHT)

] = Rxx −HRyx −RxyHT +HRyyHT (1.4.6)

Minimizing this expression with respect to H yields the optimum choice of H:

Hopt = RxyR−1
yy

with the minimum value for Ree given by:

Rmin
ee = Rxx −RxyR−1

yyRyx

Any other value will result in a larger value for Ree. An alternative way to see this is
to consider a deviation ΔH of H from its optimal value, that is, in (1.4.5) replace H by

H = Hopt +ΔH = RxyR−1
yy +ΔH

Then Eq. (1.4.6) may be expressed in terms of ΔH as follows:

Ree = Rmin
ee +ΔHRyy ΔHT

Since Ryy is positive definite, the second term always represents a nonnegative con-
tribution above the minimum value Rmin

ee , so that
(
Ree −Rmin

ee
)

is positive semi-definite.
In summary, there are three useful ways to think of the correlation canceler:

10 1. Review of Random Signals

1. Optimal estimator of x from y.
2. Optimal canceler of that part of x which is correlated with y.
3. Optimal signal separator

The point of view is determined by the application. The first view is typified by
Kalman filtering, channel equalization, and linear prediction applications. The second
view is taken in echo canceling, noise canceling, and sidelobe canceling applications.
The third view is useful in the adaptive line enhancer, which is a method of adaptively
separating a signal into its broadband and narrowband components. All of these appli-
cations are considered later on.

Example 1.4.1: If x and y are jointly gaussian, show that the linear estimate x̂ = Hy is also
the conditional mean E[x|y] of the vector x given the vector y. The conditional mean is
defined in terms of the conditional density p(x|y) of x given y as follows:

E[x|y]=
∫

xp(x|y)dNx

Instead of computing this integral, we will use the results of Examples 1.3.3 and 1.3.4.
The transformation from the jointly gaussian pair (x,y) to the uncorrelated pair (e,y) is
linear: [

e
y

]
=

[
IN −H
0 IM

][
x
y

]
where IN and IM are the unit matrices of dimensions N and M, respectively. Therefore,
Example 1.3.3 implies that the transformed pair (e,y) is also jointly gaussian. Further-
more, since e and y are uncorrelated, it follows from Example 1.3.4 that they must be
independent of each other. The conditional mean of x can be computed by writing

x = x̂+ e = Hy+ e

and noting that if y is given, then Hy is no longer random. Therefore,

E[x|y]= E[
(Hy+ e)|y] = Hy+ E[e|y]

Since e and y are independent, the conditional mean E[e|y] is the same as the uncondi-
tional mean E[e], which is zero by the zero-mean assumption. Thus,

E[x|y]= Hy = RxyR−1
yyy (jointly gaussian x and y) (1.4.7)

Example 1.4.2: Show that the conditional mean E[x|y] is the best unrestricted (i.e., not neces-
sarily linear) estimate of x in the mean-square sense. The best linear estimate was obtained
by seeking the best linear function of y that minimized the error criterion (1.4.6), that is,
we required a priori that the estimate was to be of the form x̂ = Hy. Here, our task is more
general: find the most general function of y, x̂ = x̂(y), which gives the best estimate of x,
in the sense of producing the lowest mean-squared estimation error e = x− x̂(y),

Ree = E[eeT]= E[(
x− x̂(y)

)(
xT − x̂(y)T

)] = min

The functional dependence of x̂(y) on y is not required to be linear a priori. Usingp(x,y)=
p(x|y)p(y), the above expectation may be written as

Ree =
∫ (

x− x̂(y)
)(

xT − x̂(y)T
)
p(x,y)dNxdMy

=
∫
p(y)dMy

[∫ (
x− x̂(y)

)(
xT − x̂(y)T

)
p(x|y)dNx

]

1.4. Correlation Canceling and Optimum Estimation 11

Since p(y) is nonnegative for all y, it follows that Ree will be minimized when the quantity∫ (
x− x̂(y)

)(
xT − x̂(y)T

)
p(x|y)dNx

is minimized with respect to x̂. But we know from Example 1.3.5 that this quantity is
minimized when x̂ is chosen to be the corresponding mean; here, this is the mean with
respect to the density p(x|y). Thus,

x̂(y)= E[x|y] (1.4.8)

To summarize, we have seen that

x̂ = Hy = RxyR−1
yyy = best linear mean-square estimate of x

x̂ = E[x|y]= best unrestricted mean-square estimate of x

and Example 1.4.1 shows that the two are equal in the case of jointly gaussian vectors
x and y.

The concept of correlation canceling and its application to signal estimation prob-
lems will be discussed in more detail in Chap. 11. The adaptive implementation of the
correlation canceler will be discussed in Chap. 16. In a typical signal processing applica-
tion, the processor H would represent a linear filtering operation and the vectors x and
y would be blocks of signal samples. The design of such processors requires knowledge
of the quantities Rxy = E[xyT] and Ryy = E[yyT]. How does one determine these?
Basically, applications fall into two classes:

1. Both x and y are available for processing and the objective is to cancel the corre-
lations that may exist between them.

2. Only the signal y is available for processing and the objective is to estimate the
signal x on the basis of y.

In the first class of applications, there exist two basic design approaches:

a. Block processing (off-line) methods. The required correlations Rxy and Ryy are
computed on the basis of two actual blocks of signal samples x and y by replacing
statistical averages by time averages.

b. Adaptive processing (on-line) methods. The quantities Rxy and Ryy are “learned”
gradually as the data x and y become available in real time. The processor H is
continually updated in response to the incoming data, until it reaches its optimal
value.

Both methods are data adaptive. The first is adaptive on a block-by-block basis,
whereas the second on a sample-by-sample basis. Both methods depend heavily on the
assumption of stationarity. In block processing methods, the replacement of ensemble
averages by time averages is justified by the assumption of ergodicity, which requires
stationarity. The requirement of stationarity can place serious limitations on the allowed
length of the signal blocks x and y.

12 1. Review of Random Signals

Similarly, in adaptive processing methods, convergence to the optimal value of the
processorH again requires stationarity. Adaptive methods offer, however, the possibil-
ity of tracking nonstationary changes of the environment, as long as such changes occur
slowly enough to allow convergence between changes. Thus, the issue of the speed of
convergence of adaptation algorithms is an important one.

In the second class of applications where x is not available for processing, one must
have a specific model of the relationship between x and y from which Rxy and Ryy may
be calculated. This is, for example, what is done in Kalman filtering.

Example 1.4.3: As an example of the relationship that might exist between x and y, let

yn = xcn + vn , n = 1,2, . . . ,M

where x and vn are zero-mean, unit-variance, random variables, and cn are known coef-
ficients. It is further assumed that vn are mutually uncorrelated, and also uncorrelated
with x, so that E[vnvm]= δnm, E[xvn]= 0. We would like to determine the optimal linear
estimate (1.4.5) of x, and the corresponding estimation error (1.4.4). In obvious matrix
notation we have y = cx + v, with E[xv]= 0 and E[vvT]= I, where I is the M×M unit
matrix. We find

E[xyT] = E[
x(xc+ v)T

] = cTE[x2]+E[xvT]= cT

E[yyT] = E[
(xc+ v)(xc+ v)T

] = ccTE[x2]+E[vvT]= ccT + I

and therefore, H = E[xyT]E[yyT]−1= cT(I + ccT)−1. Using the matrix inversion lemma
we may write (I + ccT)−1= I − c(1+ cTc)−1cT , so that

H = cT
[
I − c(1+ cTc)−1cT

] = (1+ cTc)−1cT

The optimal estimate of x is then

x̂ = Hy = (1+ cTc)−1cTy (1.4.9)

The corresponding estimation error is computed by

E[e2]= Ree = Rxx −HRyy = 1− (1+ cTc)−1cTc = (1+ cTc)−1

1.5 Regression Lemma

The regression lemma is a key result in the derivation of the Kalman filter. The optimum
estimate and estimation error of a (zero-mean) random vector x based on a (zero-mean)
vector of observations y1 are given by

x̂1 = Rxy1R
−1
y1y1

y1 = E[xyT1]E[y1yT1]−1y1

e1 = x− x̂1

Re1e1 = E[e1eT1]= Rxx −Rxy1R
−1
y1y1
Ry1x

1.6. Gram-Schmidt Orthogonalization 13

If the observation set is enlarged by adjoining to it a new set of observations y2, so

that the enlarged observation vector is y =
[

y1

y2

]
, the corresponding estimate of x will

given by,

x̂ = RxyR−1
yyy = [

Rxy1 , Rxy2

][
Ry1y1 Ry1y2

Ry2y1 Ry2y2

]−1 [
y1

y2

]
The regression lemma states that x̂ can be obtained by the following alternative

expression of updating x̂1 by the addition of a correction term,

x̂ = x̂1 +Rxε2R
−1
ε2ε2
εεε2 (regression lemma) (1.5.1)

where εεε2 is the innovations residual obtained by removing from y2 that part which is
predictable from y1, that is,

εεε2 = y2 − ŷ2/1 = y2 −Ry2y1R
−1
y1y1

y1

The improvement in using more observations is quantified by the following result,
which shows that the mean-square error is reduced:

e = x− x̂ ⇒ Ree = Re1e1 −Rxε2R
−1
ε2ε2
Rε2x (1.5.2)

where we defined,
Rxε2 = RTε2x = E[xεεεT2] , Rε2ε2 = E[εεε2εεεT2]

The proof of Eq. (1.5.1) is straightforward and is left as an exercise. As a hint, the
following property may be used,[

y1

y2

]
=

[
I 0
H I

][
y1

εεε2

]
,

[
Ry1y1 Ry1y2

Ry2y1 Ry2y2

]
=

[
I 0
H I

][
Ry1y1 0

0 Rε2ε2

][
I 0
H I

]T

where H = Ry2y1R−1
y1y1

. A special case of this lemma is discussed next.

1.6 Gram-Schmidt Orthogonalization

In the previous section, we saw that any random vector x may be decomposed relative to
another vector y into two parts, x = x̂+ e, one part which is correlated with y, and one
which is not. These two parts are uncorrelated with each other since Rex̂ = E[ex̂T]=
E[eyTHT]= E[eyT]HT = 0. In a sense, they are orthogonal to each other. In this
section, we will briefly develop such a geometrical interpretation.

The usefulness of the geometrical approach is threefold: First, it provides a very
simple and intuitive framework in which to formulate and understand signal estimation
problems. Second, through the Gram-Schmidt orthogonalization process, it provides
the basis for making signal models, which find themselves in a variety of signal process-
ing applications, such as speech synthesis, data compression, and modern methods of
spectrum estimation. Third, again through the Gram-Schmidt construction, by decor-
relating the given set of observations it provides the most convenient basis to work

14 1. Review of Random Signals

with, containing no redundancies. Linear estimates expressed in the decorrelated basis
become computationally efficient.

Geometrical ideas may be introduced by thinking of the space of random variables
under consideration as a linear vector space [7]. For example, in the previous section we
dealt with the multicomponent random variables x and y consisting, say, of the random
variables {x1, x2, . . . , xN} and {y1, y2, . . . , yM}, respectively. In this case, the space of
random variables under consideration is the set

{x1, x2, . . . , xN, y1, y2, . . . , yM} (1.6.1)

Since any linear combination of random variables from this set is itself a random
variable, the above set may be enlarged by adjoining to it all such possible linear combi-
nations. This is the linear vector space generated or spanned by the given set of random
variables. The next step is to convert this vector space into an inner-product space (a
Hilbert space) by defining an inner product between any two random variables u and v
as follows:

(u, v)= E[uv] (1.6.2)

With this definition of an inner product, “orthogonal” means “uncorrelated.” The
distance between u and v is defined by the norm ‖u − v‖ induced by the above inner
product:

‖u− v‖2 = E[
(u− v)2] (1.6.3)

Mutually orthogonal (i.e., uncorrelated) random variables may be used to define
orthogonal bases. Consider, for example, M mutually orthogonal random variables
{ε1, ε2, . . . , εM}, such that

(εi, εj)= E[εiεj]= 0 , if i 	= j (1.6.4)

and let Y = {ε1, ε2, . . . , εM} be the linear subspace spanned by these M random vari-
ables. Without loss of generality, we may assume that the εis are linearly independent;
therefore, they form a linearly independent and orthogonal basis for the subspace Y.

One of the standard results on linear vector spaces is the orthogonal decomposition
theorem [8], which in our context may be stated as follows: Any random variable x may
be decomposed uniquely, with respect to a subspace Y, into two mutually orthogonal
parts. One part is parallel to the subspace Y (i.e., it lies in it), and the other is perpen-
dicular to it. That is,

x = x̂+ e with x̂ ∈ Y and e ⊥ Y (1.6.5)

The component x̂ is called the orthogonal projection of x onto the subspace Y. This
decomposition is depicted in Fig. 1.6.1. The orthogonality condition e ⊥ Y means that
e must be orthogonal to every vector in Y; or equivalently, to every basis vector εi,

(e, εi)= E[eεi]= 0 , i = 1,2, . . . ,M (1.6.6)

Since the component x̂ lies in Y, it may be expanded in terms of the orthogonal basis
in the form

x̂ =
M∑
i=1

aiεi

1.6. Gram-Schmidt Orthogonalization 15

Fig. 1.6.1 Orthogonal decomposition with respect to Y = {ε1, ε2}.

The coefficients ai can be determined using the orthogonality equations (1.6.6), as
follows,

(x, εi) = (x̂+ e, εi)= (x̂, εi)+(e, εi)= (x̂, εi)

=
⎛⎝ M∑
j=1

ajεj, εi

⎞⎠ = M∑
j=1

aj(εj, εi)= ai(εi, εi)

where in the last equality we used Eq. (1.6.4). Thus, ai = (x, εi)(εi, εi)−1. or, ai =
E[xεi]E[εiεi]−1, and we can write Eq. (1.6.5) as

x = x̂+ e =
M∑
i=1

E[xεi]E[εiεi]−1εi + e (1.6.7)

Eq. (1.6.7) may also be written in a compact matrix form by introducing theM-vector,

εεε =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εM

⎤⎥⎥⎥⎥⎥⎦
the corresponding cross-correlationM-vector,

E[xεεε]=

⎡⎢⎢⎢⎢⎢⎣
E[xε1]
E[xε2]

...
E[xεM]

⎤⎥⎥⎥⎥⎥⎦
and the correlation matrix Rεε = E[εεεεεεT], which is diagonal because of Eq. (1.6.4):

Rεε = E[εεεεεεT]= diag
{
E[ε2

1], E[ε
2
2], . . . , E[ε

2
M]

}
Then, Eq. (1.6.7) may be written as

x = x̂+ e = E[xεεεT]E[εεεεεεT]−1εεε+ e (1.6.8)

16 1. Review of Random Signals

The orthogonality equations (1.6.6) can be written as

Reε = E[eεεεT]= 0 (1.6.9)

Equations (1.6.8) and (1.6.9) represent the unique orthogonal decomposition of any
random variable x relative to a linear subspace Y of random variables. If one has a
collection of N random variables {x1, x2, . . . , xN}, then each one may be orthogonally
decomposed with respect to the same subspace Y, giving xi = x̂i + ei, i = 1,2, . . . ,N.
These may be grouped together into a compact matrix form as

x = x̂+ e = E[xεεεT]E[εεεεεεT]−1εεε+ e (1.6.10)

where x stands for the column N-vector x = [x1, x2, . . . , xN]T, and so on. This is iden-
tical to the correlation canceler decomposition of the previous section.

Next, we briefly discuss the orthogonal projection theorem. In Sec. 1.4, we noted
the best linear estimator property of the correlation canceler decomposition. The same
result may be understood geometrically by means of the orthogonal projection theorem,
which states: The orthogonal projection x̂ of a vector x onto a linear subspace Y is that
vector inY that lies closest to xwith respect to the distance induced by the inner product
of the vector space.

The theorem is a simple consequence of the orthogonal decomposition theorem and
the Pythagorean theorem. Indeed, let x = x̂+e be the unique orthogonal decomposition
of x with respect to Y, so that x̂ ∈ Y and e ⊥ Y and let y be an arbitrary vector in Y;
noting that (x̂− y)∈ Y and therefore e ⊥ (x̂− y), we have

‖x− y‖2 = ‖(x̂− y)+e‖2 = ‖x̂− y‖2 + ‖e‖2

or, in terms of Eq. (1.6.3),

E
[
(x− y)2] = E[

(x̂− y)2]+ E[e2]

Since the vector y varies over the subspace Y, it follows that the above quantity
will be minimized when y = x̂. In summary, x̂ represents the best approximation of
x that can be made as a linear function of the random variables in Y in the minimum
mean-square sense.

Above, we developed the orthogonal decomposition of a random variable relative to
a linear subspace Y which was generated by means of an orthogonal basis ε1, ε2, . . . , εM.
In practice, the subspace Y is almost always defined by means of a nonorthogonal basis,
such as a collection of random variables

Y = {y1, y2, . . . , yM}

1.6. Gram-Schmidt Orthogonalization 17

which may be mutually correlated. The subspace Y is defined again as the linear span
of this basis. The Gram-Schmidt orthogonalization process is a recursive procedure of
generating an orthogonal basis {ε1, ε2, . . . , εM} from {y1, y2, . . . , yM}.

The basic idea of the method is this: Initialize the procedure by selecting ε1 = y1.
Next, consider y2 and decompose it relative to ε1. Then, the component of y2 which is
perpendicular to ε1 is selected as ε2, so that (ε1, ε2)= 0. Next, take y3 and decompose it
relative to the subspace spanned by {ε1, ε2} and take the corresponding perpendicular
component to be ε3, and so on. For example, the first three steps of the procedure are

ε1 = y1

ε2 = y2 − E[y2ε1]E[ε1ε1]−1ε1

ε3 = y3 − E[y3ε1]E[ε1ε1]−1ε1 − E[y3ε2]E[ε2ε2]−1ε2

At the nth iteration step

εn = yn −
n−1∑
i=1

E[ynεi]E[εiεi]−1εi , n = 2,3, . . . ,M (1.6.11)

The basis {ε1, ε2, . . . , εM} generated in this way is orthogonal by construction. The
Gram-Schmidt process may be understood in terms of the hierarchy of subspaces:

Y1 = {ε1} = {y1}
Y2 = {ε1, ε2} = {y1, y2}
Y3 = {ε1, ε2, ε3} = {y1, y2, y3}
...
Yn = {ε1, ε2, . . . , εn} = {y1, y2, . . . , yn}

for n = 1,2, . . . ,M, where each is a subspace of the next one and differs from the next by
the addition of one more basis vector. The second term in Eq. (1.6.11) may be recognized
now as the component of yn parallel to the subspace Yn−1. We may denote this as

ŷn/n−1 =
n−1∑
i=1

E[ynεi]E[εiεi]−1εi (1.6.12)

Then, Eq. (1.6.11) may be written as

εn = yn − ŷn/n−1 or yn = ŷn/n−1 + εn (1.6.13)

18 1. Review of Random Signals

which represents the orthogonal decomposition of yn relative to the subspace Yn−1.
Since, the term ŷn/n−1 already lies in Yn−1, we have the direct sum decomposition

Yn = Yn−1 ⊕ {yn} = Yn−1 ⊕ {εn}

Introducing the notation

bni = E[ynεi]E[εiεi]−1 , 1 ≤ i ≤ n− 1 (1.6.14)

and bnn = 1, we may write Eq. (1.6.13) in the form

yn =
n∑
i=1

bniεi = εn +
n−1∑
i=1

bniεi = εn + ŷn/n−1 (1.6.15)

for 1 ≤ n ≤M. And in matrix form,

y = Bεεε , where y =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤⎥⎥⎥⎥⎥⎦ , εεε =
⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εM

⎤⎥⎥⎥⎥⎥⎦ (1.6.16)

and B is a lower-triangular matrix with matrix elements given by (1.6.14). Its main
diagonal is unity. For example, forM = 4 we have⎡⎢⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎦
Both the matrix B and its inverse B−1 are unit lower-triangular matrices. The in-

formation contained in the two bases y and εεε is the same. Going from the basis y to
the basis εεε removes all the redundant correlations that may exist in y and “distills” the
essential information contained in y to its most basic form. Because the basis εεε is un-
correlated, every basis vector εi, i = 1,2, . . . ,M will represent something different, or
new. Therefore, the random variables εi are sometimes called the innovations, and the
representation (1.6.16) of y in terms of εεε, the innovations representation.

Since the correlation matrix Rεε = E[εεεεεεT] is diagonal, the transformation (1.6.16)
corresponds to an LU (lower-upper) Cholesky factorization of the correlation matrix of
y, that is,

Ryy = E[yyT]= BE[εεεεεεT]BT = BRεεBT (1.6.17)

We note also the invariance of the projected vector x̂ of Eq. (1.6.10) under such linear
change of basis:

x̂ = E[xεεεT]E[εεεεεεT]−1εεε = E[xyT]E[yyT]−1y (1.6.18)

This shows the equivalence of the orthogonal decompositions (1.6.10) to the corre-
lation canceler decompositions (1.4.1). The computational efficiency of the εεε basis over
the y basis is evident from the fact that the covariance matrix E[εεεεεεT] is diagonal, and

1.6. Gram-Schmidt Orthogonalization 19

therefore, its inverse is trivially computed. We may also apply the property (1.6.18) to
y itself. Defining the vectors

εεεn−1 =

⎡⎢⎢⎢⎢⎢⎣
ε1

ε2

...
εn−1

⎤⎥⎥⎥⎥⎥⎦ yn−1 =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yn−1

⎤⎥⎥⎥⎥⎥⎦
we may write the projection ŷn/n−1 of yn on the subspace Yn−1 given by Eq. (1.6.12) as
follows:

ŷn/n−1 = E[ynεεεTn−1]E[εεεn−1εεεTn−1]−1εεεn−1 = E[ynyTn−1]E[yn−1yTn−1]−1yn−1 (1.6.19)

Eq. (1.6.13) is then written as

εn = yn − ŷn/n−1 = yn − E[ynyTn−1]E[yn−1yTn−1]−1yn−1 (1.6.20)

which provides a construction of εn directly in terms of the yns. We note that the
quantity ŷn/n−1 is also the best linear estimate of yn that can be made on the basis of
the previous yns, Yn−1 = {y1, y2, . . . , yn−1}. If the index n represents the time index, as
it does for random signals, then ŷn/n−1 is the best linear prediction of yn on the basis
of its past; and εn is the corresponding prediction error.

The Gram-Schmidt process was started with the first element y1 of y and proceeded
forward to yM. The process can just as well be started with yM and proceed backward to
y1 (see Problem 1.15). It may be interpreted as backward prediction, or postdiction, and
leads to the UL (rather than LU) factorization of the covariance matrix Ryy. In Sec. 1.8,
we study the properties of such forward and backward orthogonalization procedures in
some detail.

Example 1.6.1: Consider the three zero-mean random variables {y1, y2, y3} and letRij = E[yiyj]
for i, j = 1,2,3, denote their correlation matrix. Then, the explicit construction indicated
in Eq. (1.6.20) can be carried out as follows. The required vectors yn−1 are:

y1 = [y1] , y2 =
[
y1

y2

]

and hence
E[y2yT1] = E[y2y1]= R21

E[y1yT1] = E[y1y1]= R11

E[y3yT2] = E
[
y3[y1, y2]

] = [R31, R32]

E[y2yT2] = E
[[
y1

y2

]
[y1, y2]

]
=

[
R11 R12

R21 R22

]
Therefore, Eq. (1.6.20) becomes

ε1 = y1

ε2 = y2 − ŷ2/1 = y2 −R21R−1
11 y1

ε3 = y3 − ŷ3/2 = y3 − [R31, R32]
[
R11 R12

R21 R22

]−1 [
y1

y2

]

20 1. Review of Random Signals

Example 1.6.2: The zero-mean random vector y = [y1, y2, y3]T has covariance matrix

Ryy =
⎡⎢⎣ 1 −1 1
−1 3 3

1 3 12

⎤⎥⎦
Determine the innovations representation of y in two ways: using the Gram- Schmidt
construction and using the results of Example 1.6.1.

Solution: Starting with ε1 = y1, we find E[y2ε1]= R21 = −1 and E[ε2
1]= R11 = 1. Therefore,

ε2 = y2 − E[y2ε1]E[ε2
1]−1ε1 = y2 + ε1 = y2 + y1

with a mean-square value E[ε2
2]= E[y2

2]+2E[y2y1]+E[y2
1]= 3− 2+ 1 = 2. Similarly, we

find E[y3ε1]= R31 = 1 and

E[y3ε2]= E
[
y3(y2 + y1)

] = R32 +R31 = 3+ 1 = 4

Thus,

ε3 = y3 − E[y3ε1]E[ε1ε1]−1ε1 − E[y3ε2]E[ε2ε2]−1ε2 = y3 − ε1 − 2ε2

or,
ε3 = y3 − y1 − 2(y2 + y1)= y3 − 2y2 − 3y1

Solving for the ys and writing the answer in matrix form we have

y =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦ =
⎡⎢⎣ 1 0 0
−1 1 0

1 2 1

⎤⎥⎦
⎡⎢⎣ ε1

ε2

ε3

⎤⎥⎦ = Bεεε
The last row determines E[ε2

3]. Using the mutual orthogonality of the εis, we have

E[y2
3]= E

[
(ε3 + 2ε2 + ε1)2

] = E[ε2
3]+4E[ε2

2]+E[ε2
1] ⇒ 12 = E[ε2

3]+8+ 1

which gives E[ε2
3]= 3. Using the results of Example 1.6.1, we have

ε3 = y3 − [R31, R32]
[
R11 R12

R21 R22

]−1 [
y1

y2

]
= y3 − [1,3]

[
1 −1

−1 3

]−1 [
y1

y2

]

The indicated matrix operations are computed easily and lead to the same expression for
ε3 found above. ��

The innovations representation Eq. (1.6.16) and the Cholesky factorization (1.6.17)
are also very useful for the purpose of simulating a random vector having a prescribed
covariance matrix. The procedure is as follows: given R = E[yyT], find its Cholesky
factor B and the diagonal matrix Rεε; then, using any standard random number genera-
tor, generate M independent random numbers εεε = [ε1, ε2, . . . , εM]T of mean zero and
variances equal to the diagonal entries of Rεε, and perform the matrix operation y = Bεεε
to obtain a realization of the random vector y.

Conversely, if a number of independent realizations of y are available, {y1,y2, . . . ,yN},
we may form an estimate of the covariance matrix by the following expression, referred
to as the sample covariance matrix

R̂ = 1

N

N∑
n=1

ynyTn (1.6.21)

1.6. Gram-Schmidt Orthogonalization 21

Example 1.6.3: In typical array processing applications, a linear array of, say,M equally spaced
sensors measures the incident radiation field. This field may consist of a number of plane
waves incident from different angles on the array plus background noise. The objective is
to determine the number, angles of arrival, and strengths of the incident plane waves from
measurements of the field at the sensor elements. At each time instant, the measurements
at the M sensors may be assembled into the M-dimensional random vector y, called an
instantaneous snapshot. Thus, the correlation matrix R = E[yyT] measures the correla-
tions that exist among sensors, that is, spatial correlations. In Chap. 14, we will consider
methods of extracting the angle-of-arrival information from the covariance matrix R. Most
of these methods require an estimate of the covariance matrix, which is typically given by
Eq. (1.6.21) on the basis of N snapshots. ��

How good an estimate of R is R̂? First, note that it is an unbiased estimate:

E[R̂]= 1

N

N∑
n=1

E[ynyTn]=
1

N
(NR)= R

Second, we show that it is consistent. The correlation between the various matrix
elements of R̂ is obtained as follows:

E[R̂ijR̂kl]= 1

N2

N∑
n=1

N∑
m=1

E[yniynjymkyml]

where yni is the ith component of the nth vector yn. To get a simple expression for
the covariance of R̂, we will assume that yn, n = 1,2, . . . ,N are independent zero-mean
gaussian random vectors of covariance matrix R. This implies that [4,5]

E[yniynjymkyml]= RijRkl + δnm(RikRjl +RilRjk)
It follows that

E[R̂ijR̂kl]= RijRjk + 1

N
(RikRjl +RilRjk) (1.6.22)

Writing ΔR = R̂− E[R̂]= R̂−R, we obtain for the covariance

E[ΔRijΔRkl]= 1

N
(RikRjl +RilRjk) (1.6.23)

Thus, R̂ is a consistent estimator. The result of Eq. (1.6.23) is typical of the asymp-
totic results that are available in the statistical literature [4,5]. It will be used in Chap. 14
to obtain asymptotic results for linear prediction parameters and for the eigenstructure
methods of spectrum estimation.

The sample covariance matrix (1.6.21) may also be written in an adaptive, or recursive
form,

R̂N = 1

N

N∑
n=1

ynyTn =
1

N

⎡⎣N−1∑
n=1

ynyTn + yNyTN

⎤⎦ = 1

N
[
(N − 1)R̂N−1 + yNyTN

]
where we wrote R̂N to explicitly indicate the dependence on N. A more intuitive way of
writing this recursion is in the “predictor/corrector” form

R̂N = R̂N−1 + 1

N
(yNyTN − R̂N−1) (1.6.24)

22 1. Review of Random Signals

The term R̂N−1 may be thought of as a prediction of R based onN−1 observations,
the Nth observation yNyTN may be thought of as an instantaneous estimate of R, and
the term in the parenthesis as the prediction error that is used to correct the prediction.
The function sampcov takes as input the old matrix R̂N−1, and the new observation yN,
and outputs the updated matrix R̂N, overwriting the old one.

Example 1.6.4: Consider the 3×3 random vector y defined in Example 1.6.2. Using the inno-
vations representation of y, generate N = 200 independent vectors yn, n = 1,2, . . . ,N
and then compute the estimated sample covariance matrix (1.6.21) and compare it with
the theoretical R. Compute the sample covariance matrix R̂ recursively and plot its matrix
elements as functions of the iteration number N.

Solution: Generate N independent 3-vectors εεεn, and compute yn = Bεεεn. The estimated and
theoretical covariance matrices are

R̂ =
⎡⎢⎣ 0.995 −1.090 0.880
−1.090 3.102 2.858

0.880 2.858 11.457

⎤⎥⎦ , R =
⎡⎢⎣ 1 −1 1
−1 3 3

1 3 12

⎤⎥⎦
Can we claim that this is a good estimate of R? Yes, because the deviations from R are
consistent with the expected deviations given by Eq. (1.6.23). The standard deviation of
the ijth matrix element is

δRij =
√
E
[
(ΔRij)2

] = √
(RiiRjj +R2

ij)/N

The estimated values R̂ij fall within the intervals Rij − δRij ≤ R̂ij ≤ Rij + δRij, as can be
verified by inspecting the matrices

R− δR =
⎡⎢⎣ 0.901 −1.146 0.754
−1.146 2.691 2.534

0.754 2.534 10.857

⎤⎥⎦ , R+ δR =
⎡⎢⎣ 1.099 −0.854 1.246
−0.854 3.309 3.466

1.246 3.466 13.143

⎤⎥⎦
The recursive computation Eq. (1.6.24), implemented by successive calls to the function
sampcov, is shown in Fig. 1.6.2, where only the matrix elements R11, R12, and R22 are
plotted versus N. Such graphs give us a better idea of how fast the sample estimate R̂N
converges to the theoretical R. ��

1.7 Partial Correlations

A concept intimately connected to the Gram-Schmidt orthogonalization is that of the
partial correlation. It plays a central role in linear prediction applications.

Consider the Gram-Schmidt orthogonalization of a random vector y in the form y =
Bεεε, where B is a unit lower-triangular matrix, and εεε is a vector of mutually uncorrelated
components. Inverting, we have

εεε = Ay (1.7.1)

1.7. Partial Correlations 23

0 50 100 150 200

−1

0

1

2

3

4

iterations N

m
at

ri
x

el
em

en
ts

Sample Covariance Matrix

R22

R11

R12

Fig. 1.6.2 Recursive computation of the sample covariance matrix.

where A = B−1. Now, suppose the vector y is arbitrarily subdivided into three subvec-
tors as follows:

y =
⎡⎢⎣ y0

y1

y2

⎤⎥⎦
where y0,y1,y2 do not necessarily have the same dimension. Then, the matrix equation
(1.7.1) may also be decomposed in a block-compatible form:⎡⎢⎣ εεε0

εεε1

εεε2

⎤⎥⎦ =
⎡⎢⎣A00 0 0
A11 A10 0
A22 A21 A20

⎤⎥⎦
⎡⎢⎣ y0

y1

y2

⎤⎥⎦ (1.7.2)

whereA00,A10,A20 are unit lower-triangular matrices. Since y has components that are
generally correlated with each other, it follows that y0 will be correlated with y1, and
y1 will be correlated with y2. Thus, through the intermediate action of y1, the vector
y0 will be indirectly coupled with the vector y2. The question we would like to ask is
this: Suppose the effect of the intermediate vector y1 were to be removed, then what
would be the correlation that is left between y0 and y2? This is the partial correlation.
It represents the “true” or “direct” influence of y0 on y2, when the indirect influence via
y1 is removed. To remove the effect of y1, we project both y0 and y2 on the subspace
spanned by y1 and then subtract these parts from both, that is, let

e0 = y0 − (projection of y0 on y1)

e2 = y2 − (projection of y2 on y1)

or,
e0 = y0 −R01R−1

11 y1

e2 = y2 −R21R−1
11 y1

(1.7.3)

24 1. Review of Random Signals

where we defined Rij = E[yiyTj], for i, j = 0,1,2. We define the partial correlation
(PARCOR) coefficient between y0 and y2, with the effect of the intermediate y1 removed,
as follows:

Γ = E[e2eT0]E[e0eT0]−1 (1.7.4)

Then, Γ may be expressed in terms of the entries of the matrix A as follows:

Γ = −A−1
20A22 (1.7.5)

To prove this result, we consider the last equation of (1.7.2):

εεε2 = A22y0 +A21y1 +A20y2 (1.7.6)

By construction, εεε2 is orthogonal to y1, so that E[εεε2yT1]= 0. Thus we obtain the
relationship:

E[εεε2yT1] = A22E[y0yT1]+A21E[y1yT1]+A20E[y2yT1]

= A22R01 +A21R11 +A20R21 = 0
(1.7.7)

Using Eqs. (1.7.3) and (1.7.7), we may express εεε2 in terms of e0 and e2, as follows:

εεε2 = A22(e0 +R01R−1
11 y1)+A21y1 +A20(e2 +R21R−1

11 y1)

= A22e0 +A20e2 + (A22R01 +A21R11 +A20R21)R−1
11 y1

= A22e0 +A20e2

(1.7.8)

Now, by construction, εεε2 is orthogonal to both y0 and y1, and hence also to e0, that
is, E[εεε2eT0]= 0. Using Eq. (1.7.8) we obtain

E[εεε2eT0]= A22E[e0eT0]+A20E[e2eT0]= 0

from which (1.7.5) follows. It is interesting also to note that (1.7.8) may be written as

εεε2 = A20e

where e = e2 − Γe0 is the orthogonal complement of e2 relative to e0.

Example 1.7.1: An important special case of Eq. (1.7.5) is when y0 and y2 are selected as the first
and last components of y, and therefore y1 consists of all the intermediate components.
For example, suppose y = [y0, y1, y2, y3, y4]T . Then, the decomposition (1.7.2) can be
written as follows: ⎡⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

a11 1 0 0 0
a22 a21 1 0 0
a33 a32 a31 1 0

a44 a43 a42 a41 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦ (1.7.9)

where y0,y1,y2 are chosen as the vectors

y0 = [y0] , y1 =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦ , y2 = [y4]

1.7. Partial Correlations 25

The matrices A20 and A22 are in this case the scalars A20 = [1] and A22 = [a44]. There-
fore, the corresponding PARCOR coefficient (1.7.5) is

Γ = −a44

Clearly, the first column [1, a11, a22, a33, a44] of A contains all the lower order PARCOR
coefficients, that is, the quantity

γp = −app , p = 1,2,3,4

represents the partial correlation coefficient between y0 and yp, with the effect of all the
intermediate variables y1, y2, . . . , yp−1 removed. ��

We note the backward indexing of the entries of the matrix A in Eqs. (1.7.2) and
(1.7.9). It corresponds to writing εn in a convolutional form

εn =
n∑
i=0

aniyn−i =
n∑
i=0

an,n−iyi = yn + an1yn−1 + an2yn−2 + · · · + anny0 (1.7.10)

and conforms to standard notation in linear prediction applications. Comparing (1.7.10)
with (1.6.13), we note that the projection of yn onto the subspace Yn−1 may also be
expressed directly in terms of the correlated basis Yn−1 = {y0, y1, . . . , yn−1} as follows:

ŷn/n−1 = −
[
an1yn−1 + an2yn−2 + · · · + anny0

]
(1.7.11)

An alternative expression was given in Eq. (1.6.19). Writing Eq. (1.7.10) in vector
form, we have

εn = [ann, . . . , an1,1]

⎡⎢⎢⎢⎢⎢⎣
y0

...
yn−1

yn

⎤⎥⎥⎥⎥⎥⎦ = [1, an1, . . . , ann]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
y0

⎤⎥⎥⎥⎥⎥⎦ (1.7.12)

Thus, there are two possible definitions for the data vector y and corresponding
weight vector a. According to the first definition—which is what we used in Eqs. (1.7.1)
and (1.7.9)—the vector y is indexed from the lowest to the highest index and the vector a
is indexed in the reverse way. According to the second definition, y and a are exactly the
reverse, or upside-down, versions of the first definition, namely, y is indexed backward
from high to low, whereas a is indexed forward. If we use the second definition and
write Eq. (1.7.12) in matrix form, we obtain the reverse of Eq. (1.7.9), that is

εεεrev =

⎡⎢⎢⎢⎢⎢⎢⎣
ε4

ε3

ε2

ε1

ε0

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 a41 a42 a43 a44

0 1 a31 a32 a33

0 0 1 a21 a22

0 0 0 1 a11

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y4

y3

y2

y1

y0

⎤⎥⎥⎥⎥⎥⎥⎦ = Uyrev (1.7.13)

Thus, the transformation between the correlated and decorrelated bases is now by
means of a unit upper-triangular matrixU. It corresponds to the UL (rather than LU) fac-
torization of the covariance matrix of the reversed vector yrev. WritingRrev = E[yrevyTrev]
and Drev = E[εεεrevεεεTrev], it follows from Eq. (1.7.13) that

Drev = URrevUT (1.7.14)

26 1. Review of Random Signals

The precise connection between the original basis and its reverse, and between their
respective Cholesky factorizations, can be seen as follows. The operation of reversing
a vector is equivalent to a linear transformation by the so-called reversing matrix J,
consisting of ones along its antidiagonal and zeros everywhere else; for example, in the
5×5 case of Example 1.7.1,

J =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
The reversed vectors will be yrev = Jy and εεεrev = Jεεε. Using the property J = JT, it

follows that Rrev = JRyyJ and Drev = JRεεJ. Comparing Eq. (1.7.9) and Eq. (1.7.13) and
using the property J2 = I, we find,

εεεrev = Jεεε = JAy = (JAJ)(Jy)= (JAJ)yrev , or,

U = JAJ (1.7.15)

Note that J acting on a matrix from the left reverses each column, whereas acting
from the right, it reverses each row. Thus, U is obtained from A by reversing all its
columns and then all its rows. Regardless of the choice of the vector y, the Gram-
Schmidt construction proceeds from the lowest to the highest index of y, and therefore,
it can be interpreted as predicting the present from the past. But whether this process
leads to LU or UL factorization depends on whether y or its reverse is used as the basis.
Of course, the choice of basis does not affect the computation of linear estimates. As
we saw in Eq. (1.6.18), linear estimates are invariant under any linear change of basis; in
particular,

x̂ = E[xyT]E[yyT]−1y = E[xyTrev]E[yrevyTrev]−1yrev

In this book, we use both representations y and yrev, whichever is the most conve-
nient depending on the context and application. For example, in discussing the classical
Wiener filtering problem and Kalman filtering in Chap. 11, we find the basis y more
natural. On the other hand, the basis yrev is more appropriate for discussing the lattice
and direct-form realizations of FIR Wiener filters.

The ideas discussed in the last three sections are basic in the development of opti-
mum signal processing algorithms, and will be pursued further in subsequent chapters.
However, taking a brief look ahead, we point out how some of these concepts fit into
the signal processing context:

1. The correlation canceling/orthogonal decompositions of Eqs. (1.4.1) and (1.6.10)
for the basis of optimum Wiener and Kalman filtering.

2. The Gram-Schmidt process expressed by Eqs. (1.6.13) and (1.6.20) forms the basis
of linear prediction and is also used in the development of the Kalman filter.

3. The representation y = Bεεε may be thought of as a signal model for synthesizing
y by processing the uncorrelated (white noise) vector εεε through the linear filter
B. The lower-triangular nature of B is equivalent to causality. Such signal models
have a very broad range of applications, among which are speech synthesis and
modern methods of spectrum estimation.

1.8. Forward/Backward Prediction and LU/UL Factorization 27

4. The inverse representation εεε = Ay of Eqs. (1.7.1) and (1.7.10) corresponds to the
analysis filters of linear prediction. The PARCOR coefficients will turn out to be
the reflection coefficients of the lattice filter realizations of linear prediction.

5. The Cholesky factorization (1.6.17) is the matrix analog of the spectral factor-
ization theorem. It not only facilitates the solution of optimum Wiener filtering
problems, but also the making of signal models of the type of Eq. (1.6.16).

1.8 Forward/Backward Prediction and LU/UL Factorization

The Gram-Schmidt orthogonalization procedure discussed in the previous sections was
a forward procedure in the sense that the successive orthogonalization of the compo-
nents of a random vector y proceeded forward from the first component to the last. It
was given a linear prediction interpretation, that is, at each orthogonalization step, a
prediction of the present component of y is made in terms of all the past ones. The
procedure was seen to be mathematically equivalent to the LU Cholesky factorization of
the covariance matrix R = E[yyT] (or, the UL factorization with respect to the reversed
basis). We remarked in Sec. 1.6 (see also Problem 1.15) that if the Gram-Schmidt con-
struction is started at the other end of the random vector y then the UL factorization of
R is obtained (equivalently, the LU factorization in the reversed basis).

In this section, we discuss in detail such forward and backward Gram-Schmidt con-
structions and their relationship to forward and backward linear prediction and to LU
and UL Cholesky factorizations, and show how to realize linear estimators in the forward
and backward orthogonal bases.

Our main objective is to gain further insight into the properties of the basis of ob-
servations y and to provide a preliminary introduction to a large number of concepts
and methods that have become standard tools in modern signal processing practice,
namely, Levinson’s and Schur’s algorithms; fast Cholesky factorizations; lattice filters
for linear prediction; lattice realizations of FIR Wiener filters; and fast recursive least
squares adaptive algorithms. Although these concepts are fully developed in Chapters
12 and 16, we would like to show in this preliminary discussion how far one can go
toward these goals without making any assumptions about any structural properties of
the covariance matrix R, such as Toeplitz and stationarity properties, or the so-called
shift-invariance property of adaptive least squares problems.

Forward/Backward Normal Equations

Let y = [ya, . . . , yb]T be a random vector whose first and last components are ya and
yb. Let ŷb be the best linear estimate of yb based on the rest of the vector y, that is,

ŷb = E[ybȳT]E[ȳ ȳT]−1ȳ (1.8.1)

where ȳ is the upper part of y, namely,

y =

⎡⎢⎢⎣
ya
...
yb

⎤⎥⎥⎦ =
[

ȳ
yb

]
(1.8.2)

28 1. Review of Random Signals

Similarly, let ŷa be the best estimate of ya based on the rest of y, namely,

ŷa = E[yaỹT]E[ỹỹT]−1ỹ (1.8.3)

where ỹ is the lower part of y, that is,

y =

⎡⎢⎢⎣
ya
...
yb

⎤⎥⎥⎦ =
[
ya
ỹ

]
(1.8.4)

The decompositions (1.8.2) and (1.8.4) imply analogous decompositions of the co-
variance matrix R = E[yyT] as follows

R =
[
R̄ rb
rTb ρb

]
=

[
ρa rTa
ra R̃

]
(1.8.5)

where
R̃ = E[ỹỹT] , ra = E[yaỹ] , ρa = E[y2

a]

R̄ = E[ȳ ȳT] , rb = E[ybȳ] , ρb = E[y2
b]

(1.8.6)

We will refer to ŷa and ŷb as the forward and backward predictors, respectively. Since
we have not yet introduced any notion of time in our discussion of random vectors, we
will employ the terms forward and backward as convenient ways of referring to the
above two estimates. In the present section, the basis y will be chosen according to the
reversed-basis convention. As discussed in Sec. 1.7, LU becomes UL factorization in the
reversed basis. By the same token, UL becomes LU factorization. Therefore, the term
forward will be associated with UL and the term backward with LU factorization. The
motivation for the choice of basis arises from the time series case, where the consistent
usage of these two terms requires that y be reverse-indexed from high to low indices. For
example, a typical choice of y, relevant in the context ofMth order FIR Wiener filtering
problems, is

y =

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦
where n represents the time index. Therefore, estimating the first element, yn, from
the rest of y will be equivalent to prediction, and estimating the last element, yn−M,
from the rest of y will be equivalent to postdiction. Next, we introduce the forward and
backward prediction coefficients by

a =
[

1
ααα

]
, b =

[
βββ
1

]
, where ααα = −R̃−1ra , βββ = −R̄−1rb (1.8.7)

In this notation, the predictors (1.8.1) and (1.8.3) are written as

ŷa = −αααTỹ , ŷb = −βββTȳ (1.8.8)

1.8. Forward/Backward Prediction and LU/UL Factorization 29

The corresponding prediction errors are

ea = ya − ŷa = ya +αααTỹ = aTy , eb = yb − ŷb = yb +βββTȳ = bTy (1.8.9)

with mean square values

Ea = E[e2
a]= E

[
(aTy)(yTa)

] = aTRa

Eb = E[e2
b]= E

[
(bTy)(yTb)

] = bTRb
(1.8.10)

Because the estimation errors are orthogonal to the observations that make up the
estimates, that is, E[ebȳ]= 0 and E[eaỹ]= 0, it follows that E[ŷaea]= 0 and E[ŷbeb]=
0. Therefore, we can write E[e2

a]= E[yaea] and E[e2
b]= E[ybeb]. Thus, the minimized

values of the prediction errors (1.8.10) can be written as

Ea = E[yaea]= E
[
ya(ya +αααTỹ)

] = ρa +αααTra = ρa − rTa R̃−1ra

Eb = E[ybeb]= E
[
yb(yb +βββTȳ)

] = ρb +βββTrb = ρb − rTb R̄
−1rb

(1.8.11)

By construction, the mean square estimation errors are positive quantities. This
also follows from the positivity of the covariance matrix R. With respect to the block
decompositions (1.8.5), it is easily shown that a necessary and sufficient condition for R
to be positive definite is that R̄ be positive definite and ρb − rTb R̄−1rb > 0; alternatively,
that R̃ be positive definite and ρa − rTa R̃−1ra > 0.

Equations (1.8.7) and (1.8.11) may be combined now into the more compact forms,
referred to as the forward and backward normal equations of linear prediction,

Ra = Eau , Rb = Ebv , where u =
[

1
0

]
, v =

[
0
1

]
(1.8.12)

For example,

Rb =
[
R̄ rb
rTb ρb

][
βββ
1

]
=

[
R̄βββ+ rb
rTbβββ+ ρb

]
=

[
0
Eb

]
= Ebv

and similarly,

Ra =
[
ρa rTa
ra R̃

][
1
ααα

]
=

[
ρa + rTaααα
ra + R̃ααα

]
=

[
Ea
0

]
= Eau

Backward Prediction and LU Factorization

Next, we discuss the connection of the forward and backward predictors to the Gram-
Schmidt procedure and to the Cholesky factorizations of the covariance matrix R. Con-
sider an arbitrary unit lower triangular matrix L̄ of the same dimension as R̄ and form
the larger unit lower triangular matrix whose bottom row is bT = [βββT,1]

L =
[
L̄ 0
βββT 1

]
(1.8.13)

30 1. Review of Random Signals

Then, it follows from Eq. (1.8.12) that

LRLT =
[
L̄R̄L̄T 0

0T Eb

]
(1.8.14)

Indeed, we have

LRLT =
[
L̄ 0
βββT 1

][
R̄ rb
rTb ρb

]
LT =

[
L̄R̄ L̄rb

βββTR̄+ rTb βββTrb + ρb

]
LT =

[
L̄R̄ L̄rb
0T Eb

]
LT

=
[
L̄R̄L̄T L̄rb + L̄R̄βββ

0T Eb

]
=

[
L̄R̄L̄T 0

0T Eb

]

Defining the transformed random vector eb = Ly, we have

eb = Ly =
[
L̄ 0
βββT 1

][
ȳ
yb

]
=

[
L̄ȳ

βββTȳ+ yb

]
=

[
ēb
eb

]
(1.8.15)

where ēb = L̄ȳ. It follows that LRLT is the covariance matrix of the transformed vector
eb. The significance of Eq. (1.8.14) is that by replacing the y basis by eb we have achieved
partial decorrelation of the random vector y. The new basis eb is better to work with
because it contains less redundancy than y. For example, choosing L̄ to be the identity
matrix, L̄ = Ī, Eqs. (1.8.14) and (1.8.15) become

LRLT =
[
R̄ 0
0T Eb

]
, eb =

[
ȳ
eb

]
(1.8.16)

This represents the direct sum decomposition of the subspace spanned by y into
the subspace spanned by ȳ and an orthogonal part spanned by eb, that is,

{y} = {ȳ, yb} = {ȳ} ⊕ {eb}

The advantage of the new basis may be appreciated by considering the estimation
of a random variable x in terms of y. The estimate x̂ may be expressed either in the y
basis, or in the new basis eb by

x̂ = E[xyT]E[yyT]−1y = E[x eTb]E[ebe
T
b]
−1eb

Using the orthogonality between ȳ and eb, or the block-diagonal property of the
covariance matrix of eb given by Eq. (1.8.16), we find

x̂ = E[xȳT]E[ȳȳT]−1ȳ+ E[xeb]E[e2
b]
−1eb = x̄+ x̂b

1.8. Forward/Backward Prediction and LU/UL Factorization 31

The two terms in x̂ are recognized as the estimates of x based on the two orthogonal
parts of the y basis. The first term still requires the computation of a matrix inverse,
namely, R̄−1 = E[ȳȳT]−1, but the order of the matrix is reduced by one as compared
with the original covariance matrix R. The same order-reduction procedure can now
be applied to R̄ itself, thereby reducing its order by one. And so on, by repeating the
order-reduction procedure, the original matrix R can be completely diagonalized. This
process is equivalent to performing Gram-Schmidt orthogonalization on y starting with
ya and ending with yb. It is also equivalent to choosing L̄ to correspond to the LU
Cholesky factorization of R̄. Then, the matrix L will correspond to the LU factorization
of R. Indeed, if L̄ is such that L̄R̄L̄T = D̄b, that is, a diagonal matrix, then

LRLT =
[
L̄R̄L̄T 0

0T Eb

]
=

[
D̄b 0
0T Eb

]
= Db (1.8.17)

will itself be diagonal. The basis eb = Ly will be completely decorrelated, having diago-
nal covariance matrix E[ebeTb]= Db. Thus, by successively solving backward prediction
problems of lower and lower order we eventually orthogonalize the original basis y and
obtain the LU factorization of its covariance matrix. By construction, the bottom row
of L is the backward predictor bT. Similarly, the bottom row of L̄ will be the backward
predictor of order one less, and so on. In other words, the rows of L are simply the
backward predictors of successive orders. The overall construction of L is illustrated by
the following example.

Example 1.8.1: The random vector y = [ya, yc, yb]T has covariance matrix

R =
⎡⎢⎣ 1 1 0

1 3 2
0 2 3

⎤⎥⎦
By successively solving backward prediction problems of lower and lower order construct
the LU factorization of R.

Solution: The backward prediction coefficients for predicting yb are given by Eq. (1.8.7):

βββ = −R̄−1rb = −
[

1 1
1 3

]−1 [
0
2

]
= −1

2

[
3 −1
−1 1

][
0
2

]
=

[
1

−1

]

Thus, bT = [βββT,1]= [1,−1,1]. The estimation error is given by Eq. (1.8.11):

Eb = ρb +βββTrb = 3+ [1,−1]
[

0
2

]
= 1

Repeating the procedure on R̄ =
[

1 1
1 3

]
, we find for the corresponding backward pre-

diction coefficients, satisfying R̄b̄ = Ēbv̄, v̄ = [0,1]T

β̄ββ = −[1]−1[1]= [−1] , b̄
T = [β̄ββT,1]= [−1,1]

32 1. Review of Random Signals

and Ēb = ρ̄b+β̄ββT r̄b = 3−1×1 = 2. The rows of L are the backward predictor coefficients,
and the diagonal entries of Db are the Eb. Thus,

L =
⎡⎢⎣ 1 0 0
−1 1 0

1 −1 1

⎤⎥⎦ , Db =
⎡⎢⎣ 1 0 0

0 2 0
0 0 1

⎤⎥⎦
It is easily verified that LRLT = Db. Note that the first entry of Db is always equal to ρa.
Next, we obtain the same results by carrying out the Gram-Schmidt construction starting
at ya and ending with yb. Starting with ε1 = ya and E[ε2

1]= 1, define

ε2 = yc − E[ycε1]E[ε2
1]−1ε1 = yc − ya

having E[ε2
2]= E[y2

c]−2E[ycya]+E[y2
a]= 2. Thus, the ēb portion of the Gram-Schmidt

construction will be

ēb =
[
ε1

ε2

]
=

[
1 0

−1 1

][
ya
yc

]
= L̄ȳ

The last step of the Gram-Schmidt construction is

eb = yb − E[ybε1]E[ε2
1]−1ε1 − E[ybε2]E[ε2

2]−1ε2 = yb − (yc − ya)= ya − yc + yb

giving for the last row of L, bT = [1,−1,1]. In the above step, we used

E[ybε2]= E
[
yb(yc − ya)

] = E[ybyc]−E[ybya]= 2− 0 = 2

and E[ybε1]= E[ybya]= 0. ��

Linear Estimation in the Backward Basis

Equation (1.8.17) may be written in the form

R = L−1DbL−T (1.8.18)

where L−T is the inverse of the transpose of L. Thus, L−1 and L−T correspond to the con-
ventional LU Cholesky factors of R. The computational advantage of this form becomes
immediately obvious when we consider the inverse of R,

R−1 = LTD−1
b L (1.8.19)

which shows that R−1 can be computed without any matrix inversion (the inverse of the
diagonal matrix Db is trivial). The design of linear estimators is simplified considerably
in the eb basis. The estimate of x is

x̂ = hTy (1.8.20)

where h = E[yyT]−1E[xy]≡ R−1r. Writing y = L−1eb and defining a new vector of
estimation weights by g = L−Th, we can rewrite Eq. (1.8.20) as

x̂ = hTy = gTeb (1.8.21)

1.8. Forward/Backward Prediction and LU/UL Factorization 33

The block diagram representations of the two realizations are shown below:

There are three major advantages of the representation of Eq. (1.8.21) over Eq. (1.8.20).
First, to get the estimate x̂ using (1.8.20), the processor has to linearly combine a lot of
redundant information because the y basis is correlated, whereas the processor (1.8.21)
linearly combines only the non-redundant part of the same information. This has im-
portant implications for the adaptive implementations of such processors. An adap-
tive processor that uses the representation (1.8.20) will tend to be slow in learning the
statistics of the data vector y because it has to process all the redundancies in the data.
Moreover, the more the redundancies, or equivalently, the higher the correlations in the
data y, the slower the speed of adaptation. On the other hand, an adaptive processor
based on (1.8.21) should adapt very quickly. The preprocessing operation, eb = Ly,
that decorrelates the data vector y can also be implemented adaptively. In time series
applications, it is conveniently realized by means of a lattice structure. In adaptive array
applications, it gives rise to the so-called Gram-Schmidt preprocessor implementations.

Second, the computation of g can be done efficiently without any matrix inversion.
Given the LU factors of R as in Eq. (1.8.19) and the cross correlation vector r, we may
compute g by

g = L−Th = L−TR−1r = L−T(LTD−1
b L)r = D−1

b Lr (1.8.22)

If so desired, the original weights h may be recovered from g by

h = LTg (1.8.23)

The third advantage of the form Eq. (1.8.21) is that any lower-order portion of the
weight vector g is already optimal for that order. Thus, the order of the estimator can
be increased without having to redesign the lower-order portions of it. Recognizing that
Lr = LE[xy]= E[x eb], we write Eq. (1.8.22) as

g = D−1
b E[x eb]=

[
D̄−1
b E[x ēb]
E−1
b E[xeb]

]
≡

[
ḡ
g

]

where we used the diagonal nature of Db given in Eq. (1.8.17) and the decomposition
(1.8.15). The estimate (1.8.21) can be written as

x̂ = gTeb = [ḡT, g]
[

ēb
eb

]
= ḡTēb + geb ≡ x̄+ x̂b (1.8.24)

It is clear that the two terms

x̄ = ḡTēb = E[x ēTb]D̄
−1
b ēb , x̂b = geb = E[xeb]E[e2

b]
−1eb (1.8.25)

are the optimal estimates of x based on the two orthogonal parts of the subspace of
observations, namely,

{y} = {ȳ} ⊕ {eb} , or, {eb} = {ēb} ⊕ {eb}

34 1. Review of Random Signals

The first term, x̄, is the same estimate of x based on ȳ that we considered earlier but
now it is expressed in the diagonal basis ēb = L̄ȳ. The second term, x̂b, represents the
improvement in that estimate that arises by taking into account one more observation,
namely, yb. It represents that part of x that cannot be estimated from ȳ. And, it is
computable only from that part of the new observation yb that cannot be predicted
from ȳ, that is, eb. The degree of improvement of x̂ over x̄, as measured by the mean-
square estimation errors, can be computed explicitly in this basis. To see this, denote
the estimation errors based on y and ȳ by

e = x− x̂ = x− gTeb , ē = x− x̄ = x− ḡTēb

Then, Eq. (1.8.24) implies e = x− x̂ = (x− x̄)−x̂b, or

e = ē− geb (1.8.26)

Because e and y, or eb, are orthogonal, we have E[x̂e]= 0, which implies that

E = E[e2]= E[xe]= E[
x(x− gTeb)

] = E[x2]−gTE[x eb]

Similarly, Ē = E[ē2]= E[x2]−ḡTE[x ēb]. It follows that

E = Ē− gE[xeb]= Ē− g2Eb (1.8.27)

where we used g = E[xeb]E−1
b . The subtracted term represents the improvement ob-

tained by including one more observation in the estimate. It follows from the above
discussion that the lower-order portion ḡ of g is already optimal. This is not so in the y
basis, that is, the lower-order portion of h is not equal to the lower-order optimal weights
h̄ = R̄−1r̄, where r̄ = E[xȳ]. The explicit relationship between the two may be found
as follows. Inserting the block decomposition Eq. (1.8.13) of L into Eq. (1.8.19) and us-
ing the lower-order result R̄−1 = L̄TD̄−1

b L̄, we may derive the following order-updating
expression for R−1

R−1 =
[
R̄−1 0
0T 0

]
+ 1

Eb
bbT (1.8.28)

Noting that r̄ is the lower-order part of r, r = [r̄T, rb]T, where rb = E[xyb], we
obtain the following order-updating equation for the optimal h

h = R−1r =
[
R̄−1 0
0T 0

][
r̄
rb

]
+ 1

Eb
(bbT)r =

[
h̄
0

]
+ cbb (1.8.29)

where cb = (bTr)/Eb = (βββT r̄ + rb)/Eb. A block diagram realization that takes into
account the order-recursive construction of the estimate (1.8.24) and estimation error
(1.8.26) is shown below.

1.8. Forward/Backward Prediction and LU/UL Factorization 35

In Chap. 12, we discuss in greater detail the design procedure given by Eq. (1.8.22)
and show how to realize Eqs. (1.8.21), or (1.8.24) and (1.8.26), by means of a lattice
structure. In Chap. 16, we discuss the corresponding adaptive versions, leading to the
so-called adaptive lattice filters for linear prediction and Wiener filtering, such as the
gradient lattice and RLS lattice.

Forward Prediction and UL Factorization

Next, we turn our attention to the forward predictors defined in Eq. (1.8.12). They lead
to UL (rather than LU) factorization of the covariance matrix. Considering an arbitrary
unit upper-triangular matrix Ũ of the same dimension as R̃, we may form the larger unit
upper-triangular matrix whose top row is the forward predictor aT = [1,αααT]

U =
[

1 αααT

0 Ũ

]
(1.8.30)

Then, it follows from Eq. (1.8.12) that

URUT =
[
Ea 0T

0 ŨR̃ŨT

]
(1.8.31)

It follows that URUT is the covariance matrix of the transformed vector

ea = Uy =
[

1 αααT

0 Ũ

][
ya
ỹ

]
=

[
ya +αααTỹ
Ũỹ

]
=

[
ea
ẽa

]
(1.8.32)

Choosing Ũ to correspond to the UL factor of R̃, that is, ŨR̃ŨT = D̃a, where D̃a is
diagonal, then Eq. (1.8.31) implies that U will correspond to the UL factor of R:

URUT =
[
Ea 0T

0 D̃a

]
= Da (1.8.33)

This is equivalent to Eq. (1.7.14). The basis ea = Uy is completely decorrelated,
with covariance matrix E[eaeTa]= Da. It is equivalent to Eq. (1.7.13). The rows of U are
the forward predictors of successive orders. And therefore, the UL factorization of R
is equivalent to performing the Gram-Schmidt construction starting at the endpoint yb
and proceeding to ya. The following example illustrates the method.

Example 1.8.2: By successively solving forward prediction problems of lower and lower order,
construct the UL factorization of the covariance matrix R of Example 1.8.1.

Solution: Using Eq. (1.8.7), we find

ααα = −R̃−1ra = −
[

3 2
2 3

]−1 [
1
0

]
= −1

5

[
3 −2

−2 3

][
1
0

]
=

[
−3/5

2/5

]

Thus, aT = [1,αααT]= [1,−3/5,2/5]. The estimation error is

Ea = ρa +αααTra = 1+ [−3/5,2/5]
[

1
0

]
= 2

5

36 1. Review of Random Signals

Repeating the procedure on R̃ =
[

3 2
2 3

]
, we find the corresponding forward prediction

coefficients, satisfying R̃ã = Ẽaũ, where ũ =
[

1
0

]
,

α̃αα = −[3]−1[2]= −2

3
, ãT = [1, α̃ααT]= [1,−2/3]

and Ẽa = ρ̃a + α̃ααT r̃a = 3 − (2/3)×2 = 5/3. The rows of U are the forward predictor
coefficients and the diagonal entries of Da are the Eas:

U =
⎡⎢⎣ 1 −3/5 2/5

0 1 −2/3
0 0 1

⎤⎥⎦ , Da =
⎡⎢⎣ 2/5 0 0

0 5/3 0
0 0 3

⎤⎥⎦
It is easily verified that URUT = Da. Note that the last entry of Da is always equal to
ρb. ��

Equation (1.8.33) can be used to compute the inverse of R:

R−1 = UTD−1
a U (1.8.34)

Using the lower-order result R̃−1 = ŨTD̃−1
a Ũ and the decomposition (1.8.30), we find

the following order-updating equation for R−1, analogous to Eq. (1.8.28):

R−1 =
[

0 0T

0 R̃−1

]
+ 1

Ea
aaT (1.8.35)

Denoting r̃ = E[xỹ] and ra = E[xya], we obtain the alternative order-update equa-
tion for h, analogous to Eq. (1.8.29):

h = R−1r =
[

0 0T

0 R̃−1

][
ra
r̃

]
+ 1

Ea
(aTr)a =

[
0
h̃

]
+ caa (1.8.36)

where ca = (aTr)/Ea = (ra + αααT r̃)/Ea, and h̃ = R̃−1r̃ is the lower-order optimal
estimator for estimating x from ỹ. By analogy with Eq. (1.8.21), we could also choose to
express the estimates in the ea basis

x̂ = hTy = hTU−1ea = gTuea (1.8.37)

where gu = U−Th. A realization is shown below.

The most important part of the realizations based on the diagonal bases ea or ea is
the preprocessing part that decorrelates the y basis, namely, eb = Ly, or ea = Uy. We
will see in Chapters 12 and 16 that this part can be done efficiently using the Levinson
recursion and the lattice structures of linear prediction. The LU representation, based on
the backward predictors, eb = Ly, is preferred because it is somewhat more conveniently
realized in terms of the lattice structure than the UL representation ea = Uy.

1.8. Forward/Backward Prediction and LU/UL Factorization 37

Order Updates

So far, we studied the problems of forward and backward prediction separately from
each other. Next, we would like to consider the two problems together and show how to
construct the solution of the pair of equations (1.8.12) from the solution of a similar pair
of lower order. This construction is the essence behind Levinson’s algorithm for solving
the linear prediction problem, both in the stationary and in the adaptive least squares
cases. Consider the following pair of lower-order forward and backward predictors,
defined in terms of the block decompositions (1.8.5) of R:

R̄ā = Ēaū , R̃b̃ = Ẽbṽ (1.8.38)

where ū and ṽ are unit vectors of dimension one less than those of Eq. (1.8.12). They
are related to u and v through the decompositions

u =
[

ū
0

]
, v =

[
0
ṽ

]
(1.8.39)

The basic result we would like to show is that the solution of the pair (1.8.12) may
be constructed from the solution of the pair (1.8.38) by

a =
[

ā
0

]
− γb

[
0
b̃

]

b =
[

0
b̃

]
− γa

[
ā
0

] (1.8.40)

This result is motivated by Eq. (1.8.39), which shows that the right-hand sides of
Eqs. (1.8.38) are already part of the right-hand sides of Eq. (1.8.12), and therefore, the
solutions of Eq. (1.8.38) may appear as part of the solutions of (1.8.12). The prediction
errors are updated by

Ea = (1− γaγb)Ēa , Eb = (1− γaγb)Ẽb (1.8.41)

where

γb = ΔaẼb , γa = ΔbĒa (1.8.42)

The γs are known as the reflection or PARCOR coefficients. The quantities Δa and
Δb are defined by

Δa = āTrb , Δb = b̃
T

ra (1.8.43)

The two Δs are equal, Δa = Δb, as seen from the following considerations. Using
the decompositions (1.8.5), we find

R
[

ā
0

]
=

[
R̄ rb
rTb ρb

][
ā
0

]
=

[
R̄ā
rTb ā

]
=

[
Ēaū
Δa

]

R
[

0
b̃

]
=

[
ρa rTa
ra R̃

][
0
b̃

]
=

[
rTa b̃
R̃b̃

]
=

[
Δb
Ẽbṽ

]

38 1. Review of Random Signals

They may be written more conveniently as

R
[

ā
0

]
=

[
Ēaū
Δa

]
= Ēa

[
ū
0

]
+Δa

[
0
1

]
= Ēau+Δav (1.8.44a)

R
[

0
b̃

]
=

[
Δb
Ẽbṽ

]
= Δb

[
1
0

]
+ Ẽb

[
0
ṽ

]
= Δbu+ Ẽbv (1.8.44b)

Noting that dTu and dTv are equal to the first and last components of a vector d, we

have [0, b̃T]u = 0 and [0, b̃T]v = 1 because the first and last components of [0, b̃T] are
zero and one, respectively. Similarly, [āT,0]u = 1 and [āT,0]v = 0. Thus, multiplying

Eq. (1.8.44a) from the left by [0, b̃T] and Eq. (1.8.44b) by [āT,0], we find

[0, b̃T]R
[

ā
0

]
= Δa , [āT,0]R

[
0
b̃

]
= Δb (1.8.45)

The equality of the Δs follows now from the fact that R is a symmetric matrix. Thus,

Δa = Δb ≡ Δ (1.8.46)

An alternative proof, based on partial correlations, will be given later. Equations
(1.8.40) and (1.8.41) follow now in a straightforward fashion from Eq. (1.8.44). Multiply-
ing the first part of Eq. (1.8.40) by R and using Eqs. (1.8.12) and (1.8.44), we find

Eau = Ra = R
[

ā
0

]
− γbR

[
0
b̃

]
or,

Eau = (Ēau+Δav)−γb(Δbu+ Ẽbv)= (Ēa − γbΔb)u+ (Δb − γbẼb)v
which implies the conditions

Ea = Ēa − γbΔb , Δa − γbẼb = 0 (1.8.47)

Similarly, multiplying the second part of the Eq. (1.8.40) by R, we obtain

Ebv = (Δbu+ Ẽbv)−γa(Ēau+Δbv)= (Δb − γaĒa)u+ (Ẽb − γaΔa)v
which implies

Eb = Ẽb − γaΔa , Δb − γaĒa = 0 (1.8.48)

Equations (1.8.41) and (1.8.42) follow now from (1.8.47) and (1.8.48). By analogy with
Eq. (1.8.9), we may now define the prediction errors corresponding to the lower-order
predictors ā and b̃ by

ēa = āTȳ , ẽb = b̃
T

ỹ (1.8.49)

Using Eqs. (1.8.9) and (1.8.40), we find the following updating equations for the pre-
diction errors

aTy = [āT,0]
[

ȳ
yb

]
− γb[0, b̃T]

[
ya
ỹ

]
= āTȳ− γbb̃Tỹ

bTy = [0, b̃T]
[
ya
ỹ

]
− γa[āT,0]

[
ȳ
yb

]
= b̃

T
ỹ− γaāTȳ

1.8. Forward/Backward Prediction and LU/UL Factorization 39

or,
ea = ēa − γbẽb , eb = ẽb − γaēa (1.8.50)

A lattice type realization ofEq. (1.8.50) is shown below. It forms the basis of the
lattice structures of linear prediction discussed in Chapters 12 and 16.

The order-updating procedure is illustrated by the following example.

Example 1.8.3: Using Eq. (1.8.40), construct the forward and backward predictors a and b found
previously in Examples 1.8.1 and 1.8.2.

Solution: The first part of Eq. (1.8.38), R̄ā = Ēaū is solved as follows:[
1 1
1 3

][
1
ᾱ

]
= Ēa

[
1
0

]
⇒ ᾱ = −1

3
, Ēa = 2

3

Therefore, ā =
[

1
−1/3

]
. Similarly, R̃ỹ = Ẽbṽ, is solved by

[
3 2
2 3

][
β̃
1

]
= Ẽb

[
0
1

]
⇒ β̃ = −2

3
, Ẽb = 5

3

Hence, b̃ =
[
−2/3

1

]
. Next, we determine

Δ = āTrb = [1,−1/3]
[

0
2

]
= −2

3
, γb = Δ

Ẽb
= −2

5
, γa = Δ

Ēa
= −1

It follows from Eq. (1.8.40) that

a =
[

ā
0

]
− γb

[
0
b̃

]
=

⎡⎢⎣ 1
−1/3

0

⎤⎥⎦− (
−2

5

)⎡⎢⎣ 0
−2/3

1

⎤⎥⎦ =
⎡⎢⎣ 1
−3/5
2/5

⎤⎥⎦

b =
[

0
b̃

]
− γa

[
ā
0

]
=

⎡⎢⎣ 0
−2/3

1

⎤⎥⎦− (−1)

⎡⎢⎣ 1
−1/3

0

⎤⎥⎦ =
⎡⎢⎣ 1
−1
1

⎤⎥⎦
and the prediction errors are found from Eq. (1.8.41)

Ea = Ēa(1− γaγb)= 2

3
(1− 2/5)= 2

5
, Eb = Ẽb(1− γaγb)= 5

3
(1− 2/5)= 1

40 1. Review of Random Signals

Partial Correlation Interpretation

Next, we show that γa and γb are partial correlation coefficients in the sense of Sec. 1.7.
Let yc denote all the components of y that lie between ya and yb, so that

y =
⎡⎢⎣ yayc
yb

⎤⎥⎦ , ȳ =
[
ya
yc

]
, ỹ =

[
yc
yb

]
(1.8.51)

The forward predictor a was defined as the best estimator of ya based on the rest
of the vector y. By the same token, ā is the best estimator of ya based on the rest of ȳ,
that is, yc. Similarly, the backward predictor b̃ defines the best estimator of yb based
on the rest of the vector ỹ; again, yc. Decomposing ā and b̃ as

ā =
[

1
ᾱαα

]
, b̃ =

[
β̃ββ
1

]

we may write the best estimates of ya and yb based on yc as

ŷa/c = E[yayTc]E[ycyTc]−1yc = −ᾱααTyc , ŷb/c = E[ybyTc]E[ycyTc]−1yc = −β̃ββ
T

yc

and the estimation errors

ēa = āTȳ = ya − ŷa/c , ẽb = b̃
T

ỹ = yb − ŷb/c (1.8.52)

Thus, ēa and ẽb represent what is left of ya and yb after we project out their depen-
dence on the intermediate vector yc. The direct influence of ya on yb, with the effect
of yc removed, is measured by the correlation E[ēaẽb]. This correlation is equal to the
quantity Δ defined in Eq. (1.8.46). This follows from Eq. (1.8.43)

Δa = āTrb = āTE[ybȳ]= E
[
yb(āTȳ)

] = E[ybēa]
similarly,

Δb = b̃
T

ra = b̃
TE[yaỹ]= E

[
ya(b̃

T
ỹ)

] = E[yaẽb]
Now, because ēa is orthogonal to yc and ŷb/c is a linear combination of yc, it follows

that E[ŷb/cēa]= 0. Similarly, because ẽb is orthogonal to yc and ŷa/c is linearly related
to yc, it follows that E[ŷa/cẽb]= 0. Thus,

Δa = E[ybēa]= E
[
(yb − ŷb/c)ēa]= E[ẽbēa]

Δb = E[yaẽb]= E
[
(ya − ŷa/c)ẽb]= E[ēaẽb]

Therefore, Δa and Δb are equal

Δa = Δb = E[ēaẽb] (1.8.53)

This is an alternative proof of Eq. (1.8.46). It follows that γa and γb are normalized
PARCOR coefficients in the sense of Sec. 1.7:

γb = E[ēaẽb]E[ẽ2
b]

, γa = E[ẽbēa]E[ē2
a]

(1.8.54)

1.8. Forward/Backward Prediction and LU/UL Factorization 41

Using the Schwarz inequality for the inner product between two random variables,
namely,

∣∣E[uv]∣∣2 ≤ E[u2]E[v2], we find the inequality

0 ≤ γaγb = E[ēaẽb]2

E[ẽ2
b]E[ē

2
a]
≤ 1 (1.8.55)

This inequality also follows from Eq. (1.8.41) and the fact that Ea and Ēa are positive
quantities, both being mean square errors.

Example 1.8.4: For Example 1.8.1, compute the estimates ŷa/c and ŷb/c directly and compare
them with the results of Example 1.8.3.

Solution: From the matrix elements of R we have E[yayb]= 1, E[ybyc]= 2, and E[y2
c]= 3.

Thus,

ŷa/c = E[yayc]E[y2
c]−1yc = 1

3
yc , ŷb/c = E[ybyc]E[y2

c]−1yc = 2

3
yc

The corresponding errors will be

ēa = ya − 1

3
yc = [1,−1/3]ȳ , ẽb = yb − 2

3
yc = [−2/3,1]ỹ

The results are identical to those of Example 1.8.3. ��

Conventional Cholesky Factorizations

Equation (1.8.18) shows that the conventional Cholesky factor ofR is given by the inverse
matrix L−1. A direct construction of the conventional Cholesky factor that avoids the
computation of this inverse is as follows. Define

Gb = E[yeTb] (1.8.56)

If we use eb = Ly and E[ebeTb]= Db, it follows that

LGb = LE[yeTb]= E[ebeTb]= Db
or,

Gb = L−1Db (1.8.57)

Thus, Gb is a lower-triangular matrix. Its main diagonal consists of the diagonal
entries of Db. Solving for L−1 = GbD−1

b and inserting in Eq. (1.8.18), we find the con-
ventional LU factorization of R:

R = (GbD−1
b)Db(D

−1
b G

T
b)= GbD−1

b G
T
b (1.8.58)

Similarly, the conventional UL factorization of R is obtained from Eq. (1.8.33) by
defining the upper-triangular matrix

Ga = E[yeTa] (1.8.59)

Using ea = Uy and E[eaeTa]= Da, we find

UGa = Da ⇒ Ga = U−1Da (1.8.60)

42 1. Review of Random Signals

which yields the conventional UL factorization of R:

R = U−1DaU−T = GaD−1
a GTa

The columns of the matrices Ga and Gb will be referred to as the forward and back-
ward gapped functions. This terminology will be justified in Chap. 12. The decompo-
sition of Gb into its columns can be done order-recursively using the decomposition
(1.8.15). We have

Gb = E
[
y[ēTb , eb]

]≡ [Ḡb,gb] (1.8.61)

where Ḡb = E[yēTb] and gb = E[yeb]. Similarly, using Eq. (1.8.23) we find

Ga = E
[
y[ea, ẽTa]

] ≡ [ga, G̃a] (1.8.62)

where G̃a = E[yẽTa] and ga = E[yea]. Motivated by the lattice recursions (1.8.50), we
are led to define the lower-order gapped functions

g̃b = E[yẽb] , ḡa = E[yēa]
It follows that the gapped functions ga = E[yea] and gb = E[yeb] can be con-

structed order-recursively by the lattice-type equations

ga = ḡa − γbg̃b
gb = g̃b − γaḡa

(1.8.63)

The proof is straightforward. For example, E[yea]= E
[
y(ēa − γbẽb)

]
. In Chap. 12

we will see that these equations are equivalent to the celebrated Schur algorithm for
solving the linear prediction problem. In recent years, the Schur algorithm has emerged
as an important signal processing tool because it admits efficient fixed-point and parallel
processor implementations. Equations (1.8.63) are mathematically equivalent to the
Levinson-type recursions (1.8.40). In fact, Eq. (1.8.40) can be derived from Eq. (1.8.63)
as follows. Using ea = aTy and eb = bTy, it follows that

ga = E[yea]= E
[
y(yTa)

] = Ra , gb = E[yeb]= E
[
y(yTb)

] = Rb

Similarly, we have

ḡa = R
[

ā
0

]
, g̃b = R

[
0
b̃

]
(1.8.64)

These are easily shown. For example,

R
[

ā
0

]
= E[

y[ȳT, yb]
][

ā
0

]
= E[yȳT]ā = E[yēa]= ḡa

Therefore, the first part of Eq. (1.8.63) is equivalent to

Ra = R
[

ā
0

]
− γbR

[
0
b̃

]

Equation (1.8.40) follows now by canceling out the matrix factor R. One of the es-
sential features of the Schur algorithm is that the reflection coefficients can also be

1.8. Forward/Backward Prediction and LU/UL Factorization 43

computed from the knowledge of the lower-order gapped functions ḡa and g̃b, as fol-
lows. Using Eq. (1.8.64) and dotting Eq. (1.8.44) with the unit vectors u and v, we find

Ēa = uTḡa , Ẽb = vTg̃b , Δ = uTg̃b = vTḡa (1.8.65)

Thus, Eq. (1.8.42) may be written as

γb = vTḡa
vTg̃b

, γb = uTg̃b
uTḡa

(1.8.66)

Summary

We have argued that the solution of the general linear estimation problem can be made
more efficient by working with the decorrelated bases ea or eb, which contain no re-
dundancies. Linear prediction ideas come into play in this context because the linear
transformations U and L that decorrelate the data vector y are constructible from the
forward and backward linear prediction coefficients a and b. Moreover, linear predic-
tion was seen to be equivalent to the Gram-Schmidt construction and to the Cholesky
factorization of the covariance matrix R. The order-recursive solutions of the linear pre-
diction problem and the linear estimation problem, Eqs. (1.8.24) through (1.8.26), give
rise to efficient lattice implementations with many desirable properties, such as robust-
ness under coefficient quantization and modularity of structure admitting parallel VLSI
implementations.

In this section, we intentionally did not make any additional assumptions about
any structural properties of the covariance matrix R. To close the loop and obtain the
efficient computational algorithms mentioned previously, we need to make additional
assumptions on R. The simplest case is to assume that R has a Toeplitz structure. This
case arises when y is a block of successive signal samples from a stationary time series.
The Toeplitz property means that the matrix elements along each diagonal of R are the
same. Equivalently, the matrix elementRij depends only on the difference of the indices,
that is, Rij = R(i − j). With respect to the subblock decomposition (1.8.5), it is easily
verified that a necessary and sufficient condition for R to be Toeplitz is that

R̃ = R̄

This condition implies that the linear prediction solutions for R̃ and R̄ must be the
same, that is,

b̃ = b̄ , ã = ā

Thus, from the forward and backward linear prediction solutions ā and b̄ of the
lower-order Toeplitz submatrix R̄, we first obtain b̃ = b̄ and then use Eq. (1.8.40) to get
the linear prediction solution of the higher order matrix R. This is the essence behind
Levinson’s algorithm. It will be discussed further in Chap. 12.

In the nonstationary time series case, the matrixR is not Toeplitz. Even then one can
obtain some useful results by means of the so-called shift-invariance property. In this
case, the data vector y consists of successive signal samples starting at some arbitrary

44 1. Review of Random Signals

sampling instant n

y(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−M+1

yn−M

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
[

ȳ(n)
yn−M

]
=

[
yn

ỹ(n)

]

It follows that

ȳ(n)=

⎡⎢⎢⎣
yn
...

yn−M+1

⎤⎥⎥⎦ , ỹ(n)=

⎡⎢⎢⎣
yn−1

...
yn−M

⎤⎥⎥⎦ , or, ỹ(n)= ȳ(n− 1)

This implies that R̃(n)= R̄(n− 1), and therefore

ã(n)= ā(n− 1) , b̃(n)= b̄(n− 1)

Thus, order updating is coupled with time updating. These results are used in the
development of the fast recursive least-squares adaptive filters, discussed in Chap. 16.

1.9 Random Signals

A random signal (random process, or stochastic process) is defined as a sequence of
random variables {x0, x1, x2, . . . , xn, . . . } where the index n is taken to be the time. The
statistical description of so many random variables is very complicated since it requires
knowledge of all the joint densities

p(x0, x1, x2, . . . , xn) , for n = 0,1,2, . . .

If the mean E[xn] of the random signal is not zero, it can be removed by redefining
a new signal xn − E[xn]. From now on, we will assume that this has been done, and
shall work with zero-mean random signals. The autocorrelation function is defined as

Rxx(n,m)= E[xnxm] , n,m = 0,1,2, . . .

Sometimes it will be convenient to think of the random signal as a (possibly infinite)
random vector x = [x0, x1, x2, . . . , xn, . . .]T, and of the autocorrelation function as a
(possibly infinite) matrix Rxx = E[xxT]. Rxx is positive semi-definite and symmetric.
The autocorrelation function may also be written as

Rxx(n+ k,n)= E[xn+kxn] (1.9.1)

It provides a measure of the influence of the sample xn on the sample xn+k, which
lies in the future (if k > 0) by k units of time. The relative time separation k of the two
samples is called the lag.

1.9. Random Signals 45

If the signal xn is stationary (or wide-sense stationary), then the above average is
independent of the absolute time n, and is a function only of the relative lag k; abusing
somewhat the above notation, we may write in the case:

Rxx(k)= E[xn+kxn]= E[xn′+kxn′] (autocorrelation) (1.9.2)

In other words, the self-correlation properties of a stationary signal xn are same on
the average, regardless of when this average is computed. In a way, the stationary ran-
dom signal xn looks the same for all times. In this sense, if we take two different blocks
of data of length N, as shown in Fig. 1.9.1, we should expect the average properties,
such as means and autocorrelations, extracted from these blocks of data to be roughly
the same. The relative time separation of the two blocks as a whole should not matter.

Fig. 1.9.1 Blocks of data from a stationary signal.

A direct consequence of stationarity is the reflection-invariance of the autocorrela-
tion function Rxx(k) of Eq. (1.9.2):

Rxx(k)= E[xn+kxn]= Rxx(−k) (1.9.3)

One way to introduce a systematization of the various types of random signals is
the Markov classification into zeroth-order Markov, first-order Markov, and so on. The
simplest possible random signal is the zeroth-order Markov, or purely random signal,
defined by the requirement that all the (zero-mean) random variables xn be independent
of each other and arise from a common density p(x); this implies

p(x0, x1,x2, . . . , xn)= p(x0)p(x1)p(x2)· · ·p(xn)· · ·
Rxx(n,m)= E[xnxm]= 0 , for n 	=m

Such a random signal is stationary. The quantity Rxx(n,n) is independent of n, and
represents the variance of each sample:

Rxx(0)= E[x2
n]= σ2

x

In this case, the autocorrelation function Rxx(k) may be expressed compactly as

Rxx(k)= E[xn+kxn]= σ2
xδ(k) (1.9.4)

A purely random signal has no memory, as can be seen from the property

p(xn, xn−1)= p(xn)p(xn−1) or, p(xn|xn−1)= p(xn)

46 1. Review of Random Signals

that is, the occurrence of xn−1 at time instant n − 1 does not in any way affect, or
restrict, the values of xn at the next time instant. Successive signal values are entirely
independent of each other. Past values do not influence future values. No memory is
retained from sample to sample; the next sample will take a value regardless of the
value that the previous sample has already taken. Since successive samples are random,
such a signal will exhibit very rapid time variations. But it will also exhibit slow time
variations. Such time variations are best discussed in the frequency domain. This will
lead directly to frequency concepts, power spectra, periodograms, and the like. It is
expected that a purely random signal will contain all frequencies, from the very low to
the very high, in equal proportions (white noise).

The next least complicated signal is the first-order Markov signal, which has memory
only of one sampling instant. Such a signal remembers only the previous sample. It is
defined by the requirement that

p(xn|xn−1, xn−1, . . . , x0)= p(xn|xn−1)

which states that xn may be influenced directly only by the previous sample value xn−1,
and not by the samples xn−2, . . . , x0 that are further in the past. The complete statistical
description of such random signal is considerably simplified. It is sufficient to know
only the marginal densities p(xn) and the conditional densities p(xn|xn−1). Any other
joint density may be constructed in terms of these. For instance,

p(x3, x2, x1, x0) = p(x3|x2, x1, x0)p(x2, x1, x0) (by Bayes’ rule)

= p(x3|x2)p(x2, x1, x0) (by the Markov property)

= p(x3|x2)p(x2|x1, x0)p(x1, x0)

= p(x3|x2)p(x2|x1)p(x1, x0)

= p(x3|x2)p(x2|x1)p(x1|x0)p(x0)

1.10 Power Spectrum and Its Interpretation

The power spectral density of a stationary random signal xn is defined as the double-
sided z-transform of its autocorrelation function

Sxx(z)=
∞∑

k=−∞
Rxx(k)z−k (1.10.1)

whereRxx(k)is given by Eq. (1.9.2). IfRxx(k) is strictly stable, the region of convergence
of Sxx(z) will include the unit circle in the complex z-plane. This allows us to define
the power spectrum Sxx(ω) of the random signal xn by setting z = ejω in Eq. (1.10.1).
Abusing the notation somewhat, we have in this case

Sxx(ω)=
∞∑

k=−∞
Rxx(k)e−jωk (1.10.2)

This quantity conveys very useful information. It is a measure of the frequency
content of the signal xn and of the distribution of the power of xn over frequency. To

1.10. Power Spectrum and Its Interpretation 47

see this, consider the inverse z-transform

Rxx(k)=
∮

u.c.
Sxx(z)zk

dz
2πjz

(1.10.3)

where, since Rxx(k) is stable, the integration contour may be taken to be the unit circle.
Using z = ejω, we find for the integration measure

dz
2πjz

= dω
2π

Thus, Eq. (1.10.3) may also be written as an inverse Fourier transform

Rxx(k)=
∫ π
−π
Sxx(ω)ejωk

dω
2π

(1.10.4)

In particular, the variance of xn can be written as

Rxx(0)= σ2
x = E[x2

n]=
∫ π
−π
Sxx(ω)

dω
2π

(1.10.5)

Since the quantity E[x2
n] represents the average total power contained in xn, it fol-

lows that Sxx(ω) will represent the power per unit frequency interval. A typical power
spectrum is depicted in Fig. 1.10.1. As suggested by this figure, it is possible for the
power to be mostly concentrated about some frequencies and not about others. The
area under the curve represents the total power of the signal xn.

Fig. 1.10.1 Typical power spectrum.

If xn is an uncorrelated (white-noise) random signal with a delta-function autocorre-
lation, given by Eq. (1.9.4), it will have a flat power spectrum with power level equal to
the variance σ2

x :

Sxx(ω)= σ2
x

Another useful concept is that of the cross-correlation and cross-spectrum between
two stationary random sequences xn and yn. These are defined by

Ryx(k)= E[yn+kxn] , Syx(z)=
∞∑

k=−∞
Ryx(k)z−k (1.10.6)

48 1. Review of Random Signals

Using stationarity, it is easy to show the reflection symmetry property

Ryx(k)= Rxy(−k) (1.10.7)

that is analogous to Eq. (1.9.3). In the z-domain, the reflection symmetry properties
(1.9.3) and (1.10.7) are translated into:

Sxx(z)= Sxx(z−1) , Syx(z)= Sxy(z−1) (1.10.8)

respectively; and also

Sxx(ω)= Sxx(−ω) , Syx(ω)= Sxy(−ω) (1.10.9)

1.11 Sample Autocorrelation and the Periodogram

From now on we will work mostly with stationary random signals. If a block ofN signal
samples is available, we will assume that it is a segment from a stationary signal. The
length N of the available data segment is an important consideration. For example, in
computing frequency spectra, we know that high resolution in frequency requires a long
record of data. However, if the record is too long the assumption of stationarity may no
longer be justified. This is the case in many applications, as for example in speech and
EEG signal processing. The speech waveform does not remain stationary for long time
intervals. It may be assumed to be stationary only for short time intervals. Such a signal
may be called piece-wise stationary. If it is divided into short segments of duration of
approximately 20–30 milliseconds, then the portion of speech within each segment may
be assumed to be a segment from a stationary signal. A typical piece-wise stationary
signal is depicted in Fig. 1.11.1.

Fig. 1.11.1 Piece-wise stationary signal.

The main reason for assuming stationarity, or piece-wise stationarity, is that most
of our methods of handling random signals depend heavily on this assumption. For
example, the statistical autocorrelations based on the ensemble averages (1.9.2) may
be replaced in practice by time averages. This can be justified only if the signals are
stationary (actually, they must be ergodic). If the underlying signal processes are not
stationary (and therefore definitely are not ergodic) we cannot use time averages. If a
signal is piece-wise stationary and divided into stationary blocks, then for each such
block, ensemble averages may be replaced by time averages. The time average approxi-
mation of an autocorrelation function is called the sample autocorrelation and is defined

1.11. Sample Autocorrelation and the Periodogram 49

as follows: Given a block of length N of measured signal samples

y0, y1, y2, . . . , yN−1

define

R̂yy(k)= 1

N

N−1−k∑
n=0

yn+kyn , for 0 ≤ k ≤ N − 1 (1.11.1)

and
R̂yy(k)= R̂yy(−k) , for − (N − 1)≤ k ≤ −1

The function acf takes as inputs two length-N signal blocks yn, xn, n = 0,1, . . . ,N−1,
and computes their sample cross-correlation defined as

R̂yx(k)= 1

N

N−1−k∑
k=0

yn+kxn , k = 0,1, . . . ,N − 1

This function may be used to compute either auto-correlations or cross-correlations.
The periodogram is defined as the (double-sided) z-transform of the sample autocorre-
lation

Ŝyy(z)=
N−1∑

k=−(N−1)
R̂yy(k)z−k (1.11.2)

It may be thought of as an approximation (estimate) of the true power spectral den-
sity Syy(z). It is easily shown that the periodogram may be expressed in terms of the
z-transform of the data sequence itself, as

Ŝyy(z)= 1

N
Y(z)Y(z−1) (1.11.3)

where

Y(z)=
N−1∑
n=0

ynz−n (1.11.4)

As a concrete example, consider a length-3 signal y = [y0, y1, y2]T. Then,

Y(z)Y(z−1) = (y0 + y1z−1 + y2z−2)(y0 + y1z+ y2z2)

= (y2
0 + y2

1 + y2
2)+(y0y1 + y1y2)(z−1 + z)+(y0y2)(z−2 + z2)

from which we extract the inverse z-transform

R̂xx(0) = 1

3
(y2

0 + y2
1 + y2

2)

R̂xx(−1)= R̂xx(1) = 1

3
(y0y1 + y1y2)

R̂xx(−2)= R̂xx(2) = 1

3
(y0y2)

50 1. Review of Random Signals

These equations may also be written in a nice matrix form, as follows

⎡⎢⎣ R̂xx(0) R̂xx(1) R̂xx(2)
R̂xx(1) R̂xx(0) R̂xx(1)
R̂xx(2) R̂xx(1) R̂xx(0)

⎤⎥⎦
︸ ︷︷ ︸

R̂yy

= 1

3

⎡⎢⎣ y0 y1 y2 0 0
0 y0 y1 y2 0
0 0 y0 y1 y2

⎤⎥⎦
︸ ︷︷ ︸

YT

⎡⎢⎢⎢⎢⎢⎢⎣
y0 0 0
y1 y0 0
y2 y1 y0

0 y2 y1

0 0 y2

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Y

or,

R̂yy = 1

3
YTY

The matrix R̂yy on the left is called the sample autocorrelation matrix. It is a Toeplitz
matrix, that is, it has the same entry in each diagonal. The right hand side also shows
that the autocorrelation matrix is positive definite. In the general case of a length-N
sequence yn, the matrix Y has N columns, each a down-shifted (delayed) version of the
previous one, corresponding to a total of N− 1 delays. This requires the length of each
column to be N + (N − 1), that is, there are 2N − 1 rows. We will encounter again this
matrix factorization in the least-squares design of waveshaping filters.

The sample autocorrelation may also be thought of as ordinary convolution. Note
that Y(z−1) represents the z-transform the original signal y = [y0, y1, . . . , yN−1]T re-
flected about the time origin. The reflected signal may be made causal by a delay of
N − 1 units of time. The reflected-delayed signal has some significance, and is known
as the reversed signal. Its z-transform is the reverse polynomial of Y(z)

YR(z)= z−(N−1)Y(z−1)

[0 0 · · · 0 y0 y1 · · · yN−2 yN−1] = original
[yN−1 yN−2 · · · y1 y0 0 · · · 0 0] = reflected
[0 0 · · · 0 yN−1 yN−2 · · · y1 y0] = reversed

The periodogram is expressed then in the form

Ŝxx(z)= 1

N
Y(z)Y(z−1)= 1

N
Y(z)YR(z)zN−1

which implies that R̂yy(k) may be obtained by convolving the original data sequence
with the reversed sequence and then advancing the result in time by N − 1 time units.
This is seen by the following convolution table.

The periodogram spectrum is obtained by substituting z = ejω

Ŝyy(ω)= 1

N
∣∣Y(ω)∣∣2 = 1

N

∣∣∣∣∣∣
N−1∑
n=0

yne−jωn
∣∣∣∣∣∣

2

(1.11.5)

1.12. Filtering of Stationary Random Signals 51

The periodogram spectrum (1.11.5) may be computed efficiently using FFT methods.
The digital frequencyω in units of [radians/sample] is related to the physical frequency
f in [Hz] by

ω = 2πfT = 2πf
fs

where fs is the sampling rate, and T = 1/fs, the time interval between samples. The
frequency resolution afforded by a length-N sequence is

Δω = 2π
N
, or, Δf = fs

N
= 1

NT
= 1

TR
[Hz]

where TR = NT is the duration of the data record in seconds. The periodogram spec-
trum suffers from two major drawbacks. First, the rectangular windowing of the data
segment introduces significant sidelobe leakage. This can cause misinterpretation of
sidelobe spectral peaks as being part of the true spectrum. And second, it is well-known
that the periodogram spectrum is not a good (consistent) estimator of the true power
spectrum Syy(ω).

The development of methods to improve on the periodogram is the subject of clas-
sical spectral analysis [9–19]. We just mention, in passing, one of the most popular of
such methods, namely, Welch’s method [20]. The given data record of lengthN is subdi-
vided intoK shorter segments which may be overlapping or non-overlapping. If they are
non-overlapping then each will have lengthM = N/K; if they are 50% overlapping then
M = 2N/(K + 1). Each such segment is then windowed by a length-M data window,
such as a Hamming window. The window reduces the sidelobe frequency leakage at the
expense of resolution. The window w(n) is typically normalized to have unit average
energy, that is, (1/M)

∑M−1
n=0 w2(n)= 1. The periodogram of each windowed segment is

then computed by FFT methods and theK periodograms are averaged together to obtain
the spectrum estimate

S(ω)= 1

K

K∑
i=1

Si(ω)

where Si(ω) is the periodogram of the ith segment. The above subdivision into seg-
ments imitates ensemble averaging, and therefore, it results in a spectrum estimate of
improved statistical stability. However, since each periodogram is computed from a
length-M sequence, the frequency resolution is reduced from Δω = 2π/N to roughly
Δω = 2π/M (for a well-designed window). Therefore, to maintain high frequency reso-
lution (largeM), as well as improved statistical stability of the spectrum estimate (large
K), a long data record N = MK is required—a condition that can easily come into con-
flict with stationarity. The so-called “modern methods” of spectrum estimation, which
are based on parametric signal models, can provide high resolution spectrum estimates
from short data records.

1.12 Filtering of Stationary Random Signals

In this section, we discuss the effect of linear filtering on random signals. The results
are very basic and useful in suggesting guidelines for the design of signal processing

52 1. Review of Random Signals

systems for many applications, such as noise reduction, signal extraction, parametric
spectrum estimation, and so on.

Suppose a stationary random signal xn is sent into a linear filter defined by a transfer
function H(z), resulting in the the output random signal yn

H(z)=
∑
n
hnz−n

We would like to derive relationships between the autocorrelation functions of the in-
put and output signals, and also between the corresponding power spectra. We assume,
for now, that the signals xn, yn, hn are real-valued. Using the input/output filtering
equation in the z-domain,

Y(z)= H(z)X(z) (1.12.1)

we determine first a relationship between the periodograms of the input and output sig-
nals. From the factorization of Eq. (1.11.3) and dropping the factor 1/N for convenience,
we find

Ŝyy(z) = Y(z)Y(z−1)

= H(z)X(z)H(z−1)X(z−1)= H(z)H(z−1)X(z)X(z−1)

= H(z)H(z−1)Ŝxx(z)= Shh(z)Ŝxx(z)
(1.12.2)

where we used the notation Shh(z)= H(z)H(z−1). This quantity is the z-transform of
the autocorrelation function of the filter, that is,

Shh(z)= H(z)H(z−1)=
∞∑

k=−∞
Rhh(k)z−k (1.12.3)

where Rhh(k) is defined as

Rhh(k)=
∑
n
hn+khn (filter autocorrelation function) (1.12.4)

Equation (1.12.3) is easily verified by writing,

Rhh(k)=
∑
i, j
hihjδ

(
k− (i− j))

and taking z-transforms, or by writing Rhh(k)=
∑
n hk+nhn =

∑
n hk−nh−n, which is

recognized as the convolution between the signals hn and h−n whose z-transforms are
H(z) and H(z−1), respectively.

Taking inverse z-transforms of Eq. (1.12.2), we obtain the time-domain equivalent
relationships between the input and output sample autocorrelations

R̂yy(k)=
∞∑

m=−∞
Rhh(k)R̂xx(k−m)= convolution of Rhh with R̂xx (1.12.5)

1.12. Filtering of Stationary Random Signals 53

Similarly, we find for the cross-periodograms

Ŝyx(z)= Y(z)X(z−1)= H(z)X(z)X(z−1)= H(z)Ŝxx(z) (1.12.6)

and also, replacing z by z−1,

Ŝxy(z)= Ŝxx(z)H(z−1) (1.12.7)

The above relationships between input and output periodogram spectra and sample
autocorrelations remain the same for the statistical autocorrelations and power spectra.
In the z-domain the power spectral densities are related by

Syy(z) = H(z)H(z−1)Sxx(z)

Syx(z) = H(z)Sxx(z)
Sxy(z) = Sxx(z)H(z−1)

(1.12.8)

Setting z = ejω, we may also write Eq. (1.12.8) in terms of the corresponding power
spectra:

Syy(ω) = |H(ω)|2Sxx(ω)
Syx(ω) = H(ω)Sxx(ω)
Sxy(ω) = Sxx(ω)H(−ω)= Sxx(ω)H(ω)∗

(1.12.9)

In the time domain the correlation functions are related by

Ryy(k) =
∞∑

m=−∞
Rhh(m)Rxx(k−m)

Ryx(k) =
∞∑

m=−∞
hmRxx(k−m)

(1.12.10)

The proofs of these are straightforward. For example, to show Eq. (1.12.10), we may
use stationarity and the I/O convolutional equation,

yn =
∑
m
hmxn−m

to find

Ryy(k) = E[yn+kyn]= E
⎡⎣∑
i
hixn+k−i

∑
j
hjxn−j

⎤⎦
=

∑
i, j
hihjE[xn+k−ixn−j]=

∑
i, j
hihjRxx

(
k− (i− j))

=
∑
i, j,m

hihjδ
(
m− (i− j))Rxx(k−m)=∑

m
Rhh(m)Rxx(k−m)

54 1. Review of Random Signals

The proof assumes that the transients introduced by the filter have died out and
that the output signal is stationary. For a strictly stable filter, the stationarity of the
output yn (i.e., the fact that E[yn+kyn] is independent of the absolute time n), becomes
valid for large times n. To see the effect of such transients, consider a causal filter and
assume that the input xn is applied starting at n = 0. Then, the I/O equation reads:

yn =
n∑
m=0

hmxn−m

and the corresponding output autocorrelation function becomes (for n, k ≥ 0):

E[yn+kyn]= E
⎡⎣n+k∑
i=0

hixn+k−i
n∑
j=0

hjxn−j

⎤⎦ = n+k∑
i=0

n∑
j=0

hihjRxx(k+ j − i)

which does have an explicit n dependence. Assuming that the filter is strictly stable, the
above expression will converge to Eq. (1.12.10) in the limit of large n. A further example
of this property is discussed in Sec. 1.15.

The above filtering results can be applied to the special case of a zero-mean white-
noise signal xn of variance σ2

x , which has a delta-function autocorrelation and a flat
power spectrum, as shown in Fig. 1.12.1:

Rxx(k)= E[xn+kxn]= σ2
xδ(k) , Sxx(z)= σ2

x (1.12.11)

Fig. 1.12.1 Autocorrelation function and power spectrum of white noise.

Then, Eqs. (1.12.8) through (1.12.10) simplify as follows

Syy(z) = H(z)H(z−1)σ2
x

Syx(z) = H(z)σ2
x

(1.12.12)

Syy(ω) = |H(ω)|2σ2
x

Syx(ω) = H(ω)σ2
x

(1.12.13)

Ryy(k) = σ2
x

∑
n
hn+khn = σ2

xRhh(k)

Ryx(k) = σ2
x hk

(1.12.14)

1.12. Filtering of Stationary Random Signals 55

The filtering operation reshapes the flat white-noise spectrum of the input signal into
a shape defined by the magnitude response

∣∣H(ω)∣∣2
of the filter, and introduces self-

correlations in the output signal given by the autocorrelation of the filter. The variance
σ2
y of the output noise signal yn is obtained from Eq. (1.10.5), that is,

σ2
y = E[y2

n]= Ryy(0)=
1

2π

∫ π
−π
Syy(ω)dω = 1

2π

∫ π
−π

∣∣H(ω)∣∣2σ2
x dω (1.12.15)

The ratio σ2
y/σ2

x is a measure of whether the filter attenuates or amplifies the input
noise. We will refer to it as the noise reduction ratio (NRR). Using Eq. (1.12.15) and
Parseval’s identity, we may express it in the equivalent forms:

R = σ
2
y

σ2
x
=

∑
n
h2
n =

1

2π

∫ π
−π

∣∣H(ω)∣∣2 dω (noise reduction ratio) (1.12.16)

Example 1.12.1: As an example, consider the first-order Markov signal yn defined as the output
of the filter

yn = ayn−1 + εn , H(z)= 1

1− az−1
, |a| < 1

driven by white noise εn of variance σ2
ε . The impulse response of the filter is

hn = anu(n) , u(n)= unit step

The output autocorrelationRyy(k)may be computed in two ways. First, in the time domain
(assuming first that k ≥ 0):

Ryy(k)= σ2
ε

∞∑
n=0

hn+khn = σ2
ε

∞∑
n=0

an+kan = σ2
ε ak

∞∑
n=0

a2n = σ2
εak

1− a2

And second, in the z-domain using power spectral densities and inverse z-transforms
(again take k ≥ 0):

Syy(z) = H(z)H(z−1)σ2
ε =

σ2
ε

(1− az−1)(1− az)

Ryy(k) =
∮

u.c
Syy(z)zk

dz
2πjz

=
∮

u.c.

σ2
εzk

(z− a)(1− az)
dz

2πj

= (Residue at z = a) = σ2
εak

1− a2

In particular, we verify the following results to be used later:

Ryy(0)= σ2
ε

1− a2
, Ryy(1)= σ2

εa
1− a2

= aRyy(0)

a = Ryy(1)
Ryy(0)

, σ2
ε = (1− a2)Ryy(0)

It is interesting to note the exponentially decaying nature of Ryy(k) with increasing lag k,
as shown in Fig. 1.12.2.

Correlations exist between successive samples due the indirect influence of a given sample
yn on all future samples, as propagated by the difference equation. In going from one
sampling instant to the next, the difference equation scales yn by a factor a; therefore, we
expect the correlations to decrease exponentially with increasing lag. ��

56 1. Review of Random Signals

Fig. 1.12.2 Exponentially decaying autocorrelation.

Whenever the autocorrelation drops off very fast with increasing lag, it can be taken
as an indication that there exists a stable difference equation model for the random
signal. However, not all random signals have exponentially decaying autocorrelations.
For example, a pure sinusoid with random phase

yn = A cos(ω0n+φ)

where φ is a uniformly-distributed random phase, has autocorrelation

Ryy(k)= 1

2
A2 cos(ω0k)

which never dies out. A particular realization of the random variable φ defines the
entire realization of the time series yn. Thus, as soon as φ is fixed, the entire yn is
fixed. Such random signals are called deterministic, since a few past values—e.g., three
samples—of yn are sufficient to determine all future values of yn.

Finally we note that all of the filtering equations in Eqs. (1.12.8)–(1.12.10) can be
considered to be special cases of the following more general result involving two filters
H1(z) and H2(z) and two stationary input random signals x1(n) and x2(n), resulting
in the output signals y1(n) and y2(n) as shown below:

Then, the corresponding cross-power spectral density of the output signals is given by:

Sy1y2(z)= H1(z)H2(z−1)Sx1x2(z) (1.12.17)

where Sx1x2(z) is the z-transform of Rx1x2(k)= E
[
x1(n+ k)x2(n)

]
, etc.

1.13 Random Signal Models and Their Uses

Models that provide a characterization of the properties and nature of random signals
are of primary importance in the design of optimum signal processing systems. This
section offers an overview of such models and outlines their major applications. Many
of the ideas presented here will be developed in greater detail in later chapters.

1.13. Random Signal Models and Their Uses 57

One of the most useful ways to model a random signal [21] is to consider it as
being the output of a causal and stable linear filter B(z) that is driven by a stationary
uncorrelated (white-noise) sequence εn,

B(z)=
∞∑
n=0

bnz−n

where Rεε(k)= E[εn+kεn]= σ2
εδ(k). Assuming a causal input sequence εn, the output

random signal yn is obtained by convolving εn with the filter’s impulse response bn:

yn =
n∑
i=0

bn−iεi (1.13.1)

The stability of the filter B(z) is essential as it guarantees the stationarity of the
sequence yn. This point will be discussed later on. By readjusting, if necessary, the
value of σ2

ε we may assume that b0 = 1. Then Eq. (1.13.1) corresponds exactly to the
Gram-Schmidt form of Eqs. (1.6.15) and (1.6.16), where the matrix elements bni are given
in terms of the impulse response of the filter B(z):

bni = bn−i (1.13.2)

In this case, the structure of the matrix B is considerably simplified. Writing the
convolutional equation (1.13.1) in matrix form⎡⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
b1 1 0 0 0
b2 b1 1 0 0
b3 b2 b1 1 0
b4 b3 b2 b1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ (1.13.3)

we observe that the first column of B is the impulse response bn of the filter. Each
subsequent column is a down-shifted (delayed) version of the previous one, and each
diagonal has the same entry (i.e., B is a Toeplitz matrix). The lower-triangular nature of
B is equivalent to the assumed causality of the filter B(z).

Such signal models are quite general. In fact, there is a general theorem by Wold that
essentially guarantees the existence of such models for any stationary signal yn [22,23].
Wold’s construction of B(z) is none other than the Gram-Schmidt construction of the
orthogonalized basis εn. However, the practical usage of such models requires further
that the transfer function B(z) be rational, that is, the ratio of two polynomials in z−1.
In this case, the I/O convolutional equation (1.13.1) is most conveniently expressed as
a difference equation.

Example 1.13.1: Suppose

B(z)= 1+ c1z−1 + c2z−2

1+ d1z−1 + d2z−2
(1.13.4)

Then Eq. (1.13.1) is equivalent to the difference equation

yn = −d1yn−1 − d2yn−2 + εn + c1εn−1 + c2εn−2 (1.13.5)

58 1. Review of Random Signals

which may be realized as follows

The filter B(z) is called a synthesis filter and may be thought of as a random signal
generator, or a signal model, for the random signal yn. The numerator and denominator
coefficients of the filter B(z), and the variance σ2

ε of the input white noise, are referred
to as the model parameters. For instance, in Example 1.13.1 the model parameters are
{c1, c2, d1, d2, σ2

ε}.
Such parametric models have received a lot of attention in recent years. They are

very common in speech and geophysical signal processing, image processing, EEG sig-
nal processing, spectrum estimation, data compression, and other time series analysis
applications.

How are such models used? One of the main objectives in such applications has
been to develop appropriate analysis procedures for extracting the model parameters
on the basis of a given set of samples of the signal yn. This is a system identification
problem. The analysis procedures are designed to provide effectively the best fit of the
data samples to a particular model. The procedures typically begin with a measured
block of signal samples {y0, y1, . . . , yN}—also referred to as an analysis frame—and
through an appropriate analysis algorithm extract estimates of the model parameters.
This is depicted in Fig. 1.13.1.

Fig. 1.13.1 Analysis procedure.

The given frame of samples {y0, y1, . . . , yN} is represented now by the set of model
parameters extracted from it. Following the analysis procedure, the resulting model
may be used in a variety of ways. The four major uses of such models are in:

1. Signal synthesis
2. Spectrum estimation
3. Signal classification
4. Data compression

We will discuss each of these briefly. To synthesize a particular realization of the
random signal yn, it is only necessary to recall from memory the appropriate model
parameters, generate a random uncorrelated sequence εn having variance σ2

ε , and send
it through the filterB(z). Such uncorrelated sequence may be computer-generated using
a standard random number generator function. The synthetic signal will appear at the
output of the filter. This is shown in Fig. 1.13.2.

1.13. Random Signal Models and Their Uses 59

Fig. 1.13.2 Signal synthesis.

This is the basic principle behind most speech synthesis systems. In speech, the
synthesis filter B(z) represents a model of the transfer characteristics of the vocal tract
considered as an acoustic tube. A typical analysis frame of speech has duration of
20 msec. If sampled at a 10-kHz sampling rate, it will consist of N = 200 samples.
To synthesize a particular frame of 200 samples, the model parameters representing
that frame are recalled from memory, and the synthesis filter is run for 200 sampling
instances generating 200 output speech samples, which may be sent to a D/A converter.
The next frame of 200 samples can be synthesized by recalling from memory its model
parameters, and so on. Entire words or sentences can be synthesized in such a piece-
wise, or frame-wise, manner.

A realistic representation of each speech frame requires the specification of two
additional parameters besides the filter coefficients and σ2

ε , namely, the pitch period
and a voiced/unvoiced (V/UV) decision. Unvoiced sounds, such as the “sh” in the word
“should”, have a white-noise sounding nature, and are generated by the turbulent flow
of air through constrictions of the vocal tract. Such sounds may be represented ade-
quately by the above random signal models. On the other hand, voiced sounds, such as
vowels, are pitched sounds, and have a pitch period associated with them. They may be
assumed to be generated by the periodic excitation of the vocal tract by a train of im-
pulses separated by the pitch period. The vocal tract responds to each of these impulses
by producing its impulse response, resulting therefore in a quasi-periodic output which
is characteristic of such sounds. Thus, depending on the type of sound, the nature of
the generator of the excitation input to the synthesis filter will be different, namely, it
will be a random noise generator for unvoiced sounds, and a pulse train generator for
voiced sounds. A typical speech synthesis system that incorporates the above features
is shown in Fig. 1.13.3.

Fig. 1.13.3 Typical speech synthesis system.

Another major application of parametric models is to spectrum estimation. This is

60 1. Review of Random Signals

based on the property that
Syy(ω)= σ2

ε
∣∣B(ω)∣∣2

(1.13.6)

which will be proved later. It states that the spectral shape of the power spectrum
Syy(ω) of the signal yn arises only from the spectral shape of the model filter B(ω).
For example, the signal yn generated by the model of Example 1.13.1 will have

Syy(ω)= σ2
ε

∣∣∣∣∣ 1+ c1e−jω + c2e−2jω

1+ d1e−jω + d2e−2jω

∣∣∣∣∣
2

This approach to spectrum estimation is depicted in Fig. 1.13.4. The parametric ap-
proach to spectrum estimation must be contrasted with the classical approach which is
based on direct computation of the Fourier transform of the available data record, that
is, the periodogram spectrum, or its improvements. The classical periodogram method
is shown in Fig. 1.13.5. As we mentioned in the previous section, spectrum estimates
based on such parametric models tend to have much better frequency resolution prop-
erties than the classical methods, especially when the length N of the available data
record is short.

Fig. 1.13.4 Spectrum estimation with parametric models.

Fig. 1.13.5 Classical spectrum estimation.

In signal classification applications, such as speech recognition, speaker verification,
or EEG pattern classification, the basic problem is to compare two available blocks of
data samples and decide whether they belong to the same class or not. One of the two
blocks might be a prestored and preanalyzed reference template against which the other
block is to be compared. Instead of comparing the data records sample by sample, what
are compared are the corresponding model parameters extracted from these blocks.
In pattern recognition nomenclature, the vector of model parameters is the “feature
vector.” The closeness of the two sets of model parameters to each other is decided
on the basis of an appropriate distance measure. We will discuss examples of distance
measures for speech and EEG signals in Chap. 12. This approach to signal classification
is depicted in Fig. 1.13.6.

Next, we discuss the application of such models to data compression. The signal
synthesis method described above is a form of data compression because instead of
saving the N data samples yn as such, what are saved are the corresponding model
parameters which are typically much fewer in number than N. For example, in speech

1.13. Random Signal Models and Their Uses 61

Fig. 1.13.6 Signal classification with parametric models.

synthesis systems a savings of about a factor of 20 in memory may be achieved with
this approach. Indeed, as we discussed above, a typical frame of speech consists of 200
samples, whereas the number of model parameters typically needed to represent this
frame is about 10 to 15. The main limitation of this approach is that the reproduction
of the original signal segment is not exact but depends on the particular realization of
the computer-generated input sequence εn that drives the model. Speech synthesized
in such manner is still intelligible, but it has lost some of its naturalness. Such signal
synthesis methods are not necessarily as successful or appropriate in all applications.
For example, in image processing, if one makes a parametric model of an image and
attempts to “synthesize” it by driving the model with a computer-generated uncorrelated
sequence, the reproduced image will bear no resemblance to the original image.

For exact reproduction, both the model parameters and the entire sequence εn must
be stored. This would still provide some form of data compression, as will be explained
below. Such an approach to data compression is widely used in digital data transmission
or digital data storage applications for all types of data, including speech and image
data. The method may be described as follows: the given data record {y0, y1, . . . , yN−1}
is subjected to an appropriate analysis algorithm to extract the model parameters, and
then the segment is filtered through the inverse filter,

A(z)= 1

B(z)
(1.13.7)

to provide the sequence εn. The inverse filter A(z) is also known as the whitening
filter, the prediction-error filter, or the analysis filter. The resulting sequence εn has
a compressed dynamic range relative to yn and therefore it requires fewer number of
bits for the representation of each sample εn. A quantitative measure for the data
compression gain is given by the ratio G = σ2

y/σ2
ε , which is always greater than one.

This can be seen easily using Eqs. (1.13.6) and (1.10.5)

σ2
y =

∫ π
−π
Syy(ω)

dω
2π

= σ2
ε

∫ π
−π

∣∣B(ω)∣∣2 dω
2π

= σ2
ε

∞∑
n=0

b2
n

Since b0 = 1, we find

G = σ
2
y

σ2
ε
=

∞∑
n=0

b2
n = 1+ b2

1 + b2
2 + · · · (1.13.8)

The entire sequence εn and the model parameters are then transmitted over the
data link, or stored in memory. At the receiving end, the original sequence yn may be

62 1. Review of Random Signals

reconstructed exactly using the synthesis filter B(z) driven by εn. This approach to data
compression is depicted in Fig. 1.13.7. Not shown in Fig. 1.13.7 are the quantization and
encoding operations that must be performed on εn in order to transmit it over the digital
channel.

Fig. 1.13.7 Data compression.

Filtering the sequence yn through the inverse filter requires that A(z) be stable and
causal. If we write B(z) as the ratio of two polynomials

B(z)= N(z)
D(z)

(1.13.9)

then the stability and causality of B(z) requires that the zeros of the polynomial D(z)
lie inside the unit circle in the complex z-plane; whereas the stability and causality of
the inverse A(z)= D(z)/N(z) requires the zeros of N(z) to be inside the unit circle.
Thus, both the poles and the zeros of B(z) must be inside the unit circle. Such filters
are called minimal phase filters. When A(z) is stable and causal it may be expanded in
the form

A(z)=
∞∑
n=0

anz−n = 1+ a1z−1 + a2z−2 + · · · (1.13.10)

and the I/O equation of Eq. (1.13.7) becomes

εn =
n∑
i=0

aiyn−i = yn + a1yn−1 + a2yn−2 + · · · (1.13.11)

for n = 0,1,2, It may be written in matrix form εεε = Ay as⎡⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
a1 1 0 0 0
a2 a1 1 0 0
a3 a2 a1 1 0
a4 a3 a2 a1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦
Both this matrix form and Eq. (1.13.11) are recognized as special cases of Eqs. (1.7.1)

and (1.7.10). According to Eq. (1.7.11), the quantity

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · · + any0

]
(1.13.12)

is the projection of yn on the subspace spanned by Yn−1 = {yn−1, yn−2, . . . , y0}. There-
fore, it represents the best linear estimate of yn on the basis of (all) its past values Yn−1,
that is, ŷn/n−1 is the best prediction of yn from its (entire) past. Equation (1.13.11) gives
the corresponding prediction error εn = yn − ŷn/n−1. We note here an interesting con-
nection between linear prediction concepts and signal modeling concepts [21–25], that

1.14. Filter Model of First Order Autoregressive Process 63

is, that the best linear predictor (1.13.12) determines the whitening filter A(z) which,
in turn, determines the generator model B(z)= 1/A(z) of yn. In other words, solving
the prediction problem also solves the modeling problem.

The above modeling approach to the representation of stationary time series, and
its relationship to the Gram-Schmidt construction and linear prediction was initiate by
Wold and developed further by Kolmogorov [22,24].

The most general model filter B(z) given in Eq. (1.13.9) is called an autoregressive
moving average (ARMA), or a pole-zero model. Two special cases of interest are the
moving average (MA), or all-zero models, and the autoregressive (AR), or all-pole models.
The MA model has a nontrivial numerator only, B(z)= N(z), so that B(z) is a finite
polynomial:

B(z)= 1+ b1z−1 + b2z−2 + · · · + bMz−M (MA model)

The AR model has a nontrivial denominator only, B(z)= 1/D(z), so that its inverse
A(z)= D(z) is a polynomial:

B(z) = 1

1+ a1z−1 + a2z−2 + · · · + aMz−M (AR model)

A(z) = 1+ a1z−1 + a2z−2 + · · · + aMz−M

Autoregressive models are the most widely used models, because the analysis algo-
rithms for extracting the model parameters {a1, a2, . . . , aM;σ2

ε} are fairly simple. In the
sequel, we will concentrate mainly on such models.

1.14 Filter Model of First Order Autoregressive Process

To gain some understanding of filter models of the above type, we consider a very simple
example of a first-order recursive filter B(z) driven by a purely random sequence of
variance σ2

ε :

B(z)= 1

1− az−1

This serves also as a simple model for generating a first order Markov signal. The
signal yn is generated by the difference equation of the filter:

yn = ayn−1 + εn (1.14.1)

Let the probability of the nth sample εn be f(εn). We would like to show that

p(yn|yn−1, yn−2, . . . , y1, y0)= p(yn|yn−1)= f(εn)= f(yn − ayn−1)

which not only shows the Markov property of yn, but also how to compute the related
conditional density. Perhaps the best way to see this is to start at n = 0:

y0 = ε0 (assuming zero initial conditions)

y1 = ay0 + ε1

y2 = ay1 + ε2 , etc.

64 1. Review of Random Signals

To compute p(y2|y1, y0), suppose that y1 and y0 are both given. Since y1 is given,
the third equation above shows that the randomness left in y2 arises from ε2 only. Thus,
p(y2|y1)= f(ε2). From the first two equations it follows that specifying y0 and y1 is
equivalent to specifying ε0 and ε1. Therefore, p(y2|y1, y0)= f(ε2|ε1, ε0)= f(ε2), the
last equation following from the purely random nature of the sequence εn. We have
shown that

p(y2|y1, y0)= p(y2|y1)= f(ε2)= f(y2 − ay1)

Using the results of Sec. 1.9, we also note

p(y2, y1, y0) = p(y2|y1)p(y1|y0)p(y0)

= f(ε2)f(ε1)f(ε0)

= f(y2 − ay1)f(y1 − ay0)f(y0)

The solution of the difference equation (1.14.1) is obtained by convolving the impulse
response of the filter B(z)

bn = anu(n) , u(n)= unit step

with the input sequence εn as follows:

yn =
n∑
i=0

biεn−i =
n∑
i=0

aiεn−i (1.14.2)

for n = 0,1,2, This is the innovations representation of yn given by Eqs. (1.6.15),
(1.6.16), and (1.13.1). In matrix form it reads:⎡⎢⎢⎢⎣

y0

y1

y2

y3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
a 1 0 0
a2 a 1 0
a3 a2 a 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦ (1.14.3)

The inverse equation, εεε = B−1y = Ay, is obtained by writing Eq. (1.14.1) as εn =
yn − ayn−1. In matrix form, this reads⎡⎢⎢⎢⎣

ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
−a 1 0 0

0 −a 1 0
0 0 −a 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎥⎦ (1.14.4)

According to the discussion of Example 1.7.1, the partial correlation coefficients
can be read off from the first column of this matrix. We conclude, therefore, that all
partial correlation coefficients of order greater than two are zero. This property is in
accordance with our intuition about first order Markov processes; due to the recursive
nature of Eq. (1.14.1) a given sample, say yn, will have an indirect influence on all future
samples. However, the only direct influence is to the next sample.

Higher order autoregressive random signals can be generated by sending white noise
through higher order filters. For example, the second-order difference equation

yn = a1yn−1 + a2yn−2 + εn (1.14.5)

1.15. Stability and Stationarity 65

will generate a second-order Markov signal. In this case, the difference equation di-
rectly couples two successive samples, but not more than two. Therefore, all the partial
correlations of order greater than three will be zero. This may be seen also by writing
Eq. (1.14.5) in matrix form and inspecting the first column of the matrix A:⎡⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

ε2

ε3

ε4

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−a1 1 0 0 0
−a2 −a1 1 0 0

0 −a2 −a1 1 0
0 0 −a2 −a1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎦

1.15 Stability and Stationarity

In this section we discuss the importance of stability of the signal generator filter B(z).
We demonstrate that the generated signal yn will be stationary only if the generating
filter is stable. And in this case, the sequence yn will become stationary only after the
transient effects introduced by the filter have died out.

To demonstrate these ideas, consider the lag-0 autocorrelation of our first order
Markov signal

Ryy(n,n) = E[y2
n]= E

[
(ayn−1 + εn)2]

= a2E[y2
n−1]+2aE[yn−1εn]+E[ε2

n]= a2Ryy(n− 1, n− 1)+σ2
ε

(1.15.1)

where we set σ2
ε = E[ε2

n] and E[yn−1εn]= 0, which follows by using Eq. (1.14.2) to get

yn−1 = εn−1 + aεn−2 + · · · + an−1ε0

and noting that εn is uncorrelated with all these terms, due to its white-noise nature.
The above difference equation for Ryy(n,n) can now be solved to get

Ryy(n,n)= E[y2
n]=

σ2
ε

1− a2
+σ2

ε

(
1− 1

1− a2

)
a2n (1.15.2)

where the initial condition was taken to be E[y2
0]= E[ε2

0]= σ2
ε . If the filter is stable and

causal, that is, |a| < 1, then the second term in (1.15.2) tends to zero exponentially, and
Ryy(n,n) eventually loses its dependence on the absolute time n. For large n, it tends
to the steady-state value

Ryy(0)= E[y2
n]= σ2

y =
σ2
ε

1− a2
(1.15.3)

The same result is obtained, of course, by assuming stationarity from the start. The
difference equation (1.15.1) can be written as

E[y2
n]= a2E[y2

n−1]+σ2
ε

If yn is assumed to be already stationary, then E[y2
n]= E[y2

n−1]. This implies the
same steady-state solution as Eq. (1.15.3).

66 1. Review of Random Signals

If the filter is unstable, that is, |a| > 1, then the second term of Eq. (1.15.2) diverges
exponentially. The marginal case a = 1 is also unacceptable, but is of historical interest
being the famous Wiener process, or random walk. In this case, the signal model is

yn = yn−1 + εn
and the difference equation for the variance becomes

Ryy(n,n)= Ryy(n− 1, n− 1)+σ2
ε

with solution
Ryy(n,n)= E[y2

n]= (n+ 1)σ2
ε

In summary, for true stationarity to set in, the signal generator filter B(z) must be
strictly stable (all its poles must be strictly inside the unit circle).

1.16 Parameter Estimation

One of the most important practical questions is how to extract the model parameters,
such as the above filter parameter a, from the actual data values. As an introduction to
the analysis methods used to answer this question, let us suppose that the white noise
input sequence εn is gaussian

f(εn)= 1√
2πσε

exp
(− ε2

n
2σ2

ε

)
and assume that a block of N measured values of the signal yn is available

y0, y1, y2, . . . , yN−1

Can we extract the filter parameter a from this block of data? Can we also extract
the variance σ2

ε of the driving white noise εn? If so, then instead of saving the N mea-
sured values {y0, y1, y2, . . . , yN−1}, we can save the extracted filter parameter a and the
variance σ2

ε . Whenever we want to synthesize our original sequence yn, we will simply
generate a white-noise input sequence εn of variance σ2

ε , using a pseudorandom num-
ber generator routing, and then drive with it the signal model whose parameter a was
previously extracted from the original data. Somehow, all the significant information
contained in the original samples, has now been packed or compressed into the two
numbers a and σ2

ε .
One possible criterion for extracting the filter parametera is the maximum likelihood

(ML) criterion: The parameter a is selected so as to maximize the joint density

p(y0, y1, . . . , yN−1)= f(ε0)f(ε1)· · · f(εN−1)

= 1(√
2πσε

)N exp

⎡⎣− 1

2σ2
ε

N−1∑
n=1

(yn − ayn−1)2

⎤⎦ exp
[−y2

0/2σ2
ε
]

1.16. Parameter Estimation 67

that is, the parameter a is selected so as to render the actual measured values {y0, y1, y2,
. . . , yN−1} most likely. The criterion is equivalent to minimizing the exponent with
respect to a:

E(a)=
N−1∑
n=1

(yn − ayn−1)2+y2
0 =

N−1∑
n=0

e2
n = min (1.16.1)

where we set en = yn − ayn−1, and e0 = y0. The minimization of Eq. (1.16.1) gives

∂E(a)
∂a

= −2
N−1∑
n=1

(yn − ayn−1)yn−1 = 0 , or,

a =

N−1∑
n=1

ynyn−1

N−1∑
n=1

y2
n−1

= y0y1 + y1y2 + · · · + yN−2yN−1

y2
0 + y2

1 + · · · + y2
N−2

(1.16.2)

There is a potential problem with the above ML criterion for extracting the filter
parameter a, namely, the parameter may turn out to have magnitude greater than one,
which will correspond to an unstable filter generating the sequence yn. This is easily
seen from Eq. (1.16.2); whereas the numerator has dependence on the last sample yN−1,
the denominator does not. Therefore it is possible, for sufficiently large values of yN−1,
for the parameter a to be greater than one. There are other criteria for extracting the
Markov model parameters that guarantee the stability of the resulting synthesis filters,
such as the so-called autocorrelation method, or Burg’s method. These will be discussed
later on.

An alternative parameter estimation method is the autocorrelation or Yule-Walker
method of extracting the model parameters from a block of data. We begin by expressing
the model parameters in terms of output statistical quantities and then replace ensemble
averages by time averages. Assuming stationarity has set in, we find

Ryy(1)= E[ynyn−1]= E
[
(ayn−1 + εn)yn−1

] = aE[y2
n−1]+E[εnyn−1]= aRyy(0)

from which

a = Ryy(1)
Ryy(0)

The input parameter σ2
ε can be expressed as

σ2
ε = (1− a2)σ2

y = (1− a2)Ryy(0)

These two equations may be written in matrix form as[
Ryy(0) Ryy(1)
Ryy(1) Ryy(0)

][
1

−a
]
=

[
σ2
ε

0

]

These are called the normal equations of linear prediction. Their generalization will
be considered later on. These results are important because they allow the extraction
of the signal model parameters directly in terms of output quantities, that is, from
experimentally accessible quantities.

68 1. Review of Random Signals

We may obtain estimates of the model parameters by replacing the theoretical auto-
correlations by the corresponding sample autocorrelations, defined by Eq. (1.11.1):

â = R̂yy(1)
R̂yy(0)

=

1

N

N−1−1∑
n=0

yn+1yn

1

N

N−1∑
n=0

ynyn

= y0y1 + y1y2 + · · · + yN−2yN−1

y2
0 + y2

1 + · · · + y2
N−2 + y2

N−1

σ̂2
ε = (1− â2)R̂yy(0)

It is easily checked that the parameter â, defined as above, is always of magnitude
less than one; thus, the stability of the synthesis filter is guaranteed. Note the difference
with the ML expression. The numerators are the same, but the denominators differ by
an extra term. It is also interesting to note that the above expressions may be obtained
by a minimization criterion; known as the autocorrelation method, or the Yule-Walker
method:

E(a)=
N∑
n=0

e2
n =

N∑
n=0

(yn − ayn−1)2= min (1.16.3)

This differs from the ML criterion (1.16.1) only in the range of summation for n.
Whereas in the ML criterion the summation index n does not run off the ends of the
data block, it does so in the Yule-Walker case. We may think of the block of data as
having been extended to both directions by padding it with zeros

0, . . . ,0, y0, y1, . . . , yN−1,0,0, . . . ,0

The difference between this and the ML criterion arises from the last term in the sum

E(a)=
N∑
n=0

e2
n =

N−1∑
n=1

e2
n + e2

N =
N−1∑
n=1

(yn − ayn−1)2+(0− ayN−1)2

The Yule-Walker analysis algorithm for this first order example is summarized in
Fig. 1.16.1.

Fig. 1.16.1 Yule-Walker analysis method.

How good are â and σ̂2
ε as estimates of the model parameters a and σ2

ε? It can
be shown that they, and the maximum likelihood estimates of the previous section, are
asymptotically unbiased and consistent. The corresponding variances are given for large
N by [4–6]

E
[
(Δa)2] = 1− a2

N
, E

[
(Δσ2

ε)2] = 2σ4
ε
N

(1.16.4)

where Δa = â − a and Δσ2
ε = σ̂2

ε − σ2
ε . Such asymptotic properties are discussed in

greater detail in Chap. 14. Here, we present some simulation examples showing that
(1.16.4) are adequate even for fairly small N.

1.16. Parameter Estimation 69

Example 1.16.1: The following N = 30 signal samples of yn have been generated by passing
zero-mean white noise through the difference equation yn = ayn−1+εn, with a = 0.8 and
σ2
ε = 1:

yn = {2.583, 2.617, 2.289, 2.783, 2.862, 3.345, 2.704, 1.527, 2.096, 2.050, 2.314,

0.438, 1.276, 0.524, −0.449, −1.736, −2.599, −1.633, 1.096, 0.348, 0.745,

0.797, 1.123, 1.031, −0.219, 0.593, 2.855, 0.890, 0.970, 0.924}

Using the Yule-Walker method, we obtain the following estimates of the model parameters

â = 0.806 , σ2
ε = 1.17

Both estimates are consistent with the theoretically expected fluctuations about their means
given by Eq. (1.16.4), falling within the one-standard deviation intervals a± δa and σ2

ε ±
δσ2

ε , where δa and δσ2
ε are the square roots of Eq. (1.16.4). For N = 30, the numerical

values of these intervals are: 0.690 ≤ â ≤ 0.910 and 0.742 ≤ σ2
ε ≤ 1.258. Given the

theoretical and estimated model parameters, we can obtain the theoretical and estimated
power spectral densities of yn by

STH(ω)= σ2
ε∣∣1− ae−jω∣∣2 , SYW(ω)= σ̂2

ε∣∣1− âe−jω∣∣2

The periodogram spectrum based on the given length-N data block is

SPER(ω)= 1

N

∣∣∣∣∣∣
N−1∑
n=0

yne−jnω
∣∣∣∣∣∣

2

The three spectra are plotted in Fig. 1.16.2, in units of decibels; that is, 10 log10 S, over
the right half of the Nyquist interval 0 ≤ ω ≤ π. Note the excellent agreement of the
Yule-Walker spectrum with the theoretical spectrum and the several sidelobes of the peri-
odogram spectrum caused by the windowing of yn.

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

digital frequency ω in units of π

dB

Yule−Walker vs. Periodogram Spectra

STH

SYW

Sper

Fig. 1.16.2 Comparison of Yule-Walker and periodogram spectrum estimates.

70 1. Review of Random Signals

Example 1.16.2: The purpose of this example is to demonstrate the reasonableness of the
asymptotic variances, Eq. (1.16.4). For the first-order model defined in the previous exam-
ple, we generated 100 different realizations of the length-30 signal block yn. From each
realization, we extracted the Yule-Walker estimates of the model parameters â and σ̂2

ε .
They are shown in Figs. 1.16.3 versus realization index, together with the corresponding
asymptotic one-standard deviation intervals that were computed in the previous example.

0 20 40 60 80 100
0

0.4

0.8

1.2

realization index

a

Estimated Filter Parameter

0 20 40 60 80 100
0

0.5

1

1.5

2

realization index

va
ri

an
ce

Estimated Input Variance

Fig. 1.16.3 Parameters a,σ2
ε estimated from 100 realizations of the length-30 data block yn.

1.17 Linear Prediction and Signal Modeling

Linear prediction ideas are introduced in the context of our simple example by noting
that the least-squares minimization criteria (1.16.1) and (1.16.3)

E(a)=
∑
n
e2
n = minimum (1.17.1)

essentially force each en to be small. Thus, if we reinterpret

ŷn = ayn−1

as the linear prediction of the sample yn made on the basis of just the previous sample
yn−1, then en = yn − ayn−1 = yn − ŷn may be thought of as the prediction error. The
minimization criterion (1.17.1) essentially minimizes the prediction error in an average
least-squares sense, thus attempting to make the best prediction possible.

As we mentioned in Sec. 1.13, the solution of the linear prediction problem provides
the corresponding random signal generator model for yn, which can be used, in turn,
in a number of ways as outlined in Sec. 1.13. This is the main reason for our interest in
linear prediction.

A more intuitive way to understand the connection between linear prediction and
signal models is as follows: Suppose we have a predictor ŷn of yn which is not necessarily
the best predictor. The predictor ŷn is given as a linear combination of the past values
{yn−1, yn−2, . . . }:

ŷn = −
[
a1yn−1 + a2yn−2 + · · ·

]
(1.17.2)

1.18. Cramér–Rao Bound and Maximum Likelihood 71

The corresponding prediction error will be

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · (1.17.3)

and it may be considered as the output of the prediction-error filter A(z) (which is
assumed to be stable and causal):

A(z)= 1+ a1z−1 + a2z−2 + · · ·

Suppose further that A(z) has a stable and causal inverse filter

B(z)= 1

A(z)
= 1

1+ a1z−1 + a2z−2 + · · ·
so that yn may be expressed causally in terms of en, that is,

yn = en + b1en−1 + b2en−2 + · · · (1.17.4)

Then, Eqs. (1.17.3) and (1.17.4) imply that the linear spaces generated by the random
variables

{yn−1, yn−2, . . . } and {en−1, en−2, . . . }
are the same space. One can pass from one set to the other by a causal and causally
invertible linear filtering operation.

Now, if the prediction ŷn of yn is the best possible prediction, then what remains after
the prediction is made—namely, the error signal en—should be entirely unpredictable
on the basis of the past values {yn−1, yn−2, . . . }. That is, en must be uncorrelated with
all of these. But this implies that en must be uncorrelated with all {en−1, en−2, . . . }, and
therefore en must be a white-noise sequence. It follows that A(z) and B(z) are the
analysis and synthesis filters for the sequence yn.

The least-squares minimization criteria of the type (1.17.1) that are based on time
averages, provide a practical way to solve the linear prediction problem and hence also
the modeling problem. Their generalization to higher order predictors will be discussed
in Chap. 12.

1.18 Cramér–Rao Bound and Maximum Likelihood

The Cramér-Rao inequality [2–5,27] provides a lower bound for the variance of unbi-
ased estimators of parameters. Thus, the best any parameter estimator can do is to
meet its Cramér-Rao bound. Such estimators are called efficient. Parameter estimators
based on the principle of maximum likelihood, such as the one presented in Sec. 1.16,
have several nice properties, namely, as the number of observations becomes large,
they are asymptotically unbiased, consistent, efficient, and are asymptotically normally
distributed about the theoretical value of the parameter with covariance given by the
Cramér-Rao bound.

In this section, we present a derivation of the Cramér-Rao inequality using correla-
tion canceling methods and discuss its connection to maximum likelihood. Consider

72 1. Review of Random Signals

N observations Y = {y1,y2, . . . ,yN}, where each observation is assumed to be an M-
dimensional random vector. Based on these observations, we would like to estimate a
number of (deterministic) parameters, assembled into a parameter vector λλλ. We will
write p(Y,λλλ) to indicate the dependence of the joint probability density on λλλ. As a
concrete example, consider the case of N independent scalar observations drawn from
a normal distribution with meanm and variance σ2. The joint density is

p(Y,λλλ)= (2πσ2)−N/2exp

⎡⎣− 1

2σ2

N∑
n=1

(yn −m)2

⎤⎦ (1.18.1)

For the parameter vector we may choose λλλ = [m,σ2]T, if we want to estimate both
the mean and variance.

The dependence of p(Y,λλλ) on λλλ may be expressed in terms of the gradient with
respect to λλλ of the log-likelihood function

ψψψ(Y,λλλ)≡ ∂
∂λλλ

lnp(Y,λλλ)= 1

p
∂p
∂λλλ

(1.18.2)

Expectation values with respect to the joint density will, in general, depend on the
parameter λλλ. We have the following result for the expectation value of an arbitrary
function F(Y,λλλ):

∂
∂λλλ
E[F]= E

[
∂F
∂λλλ

]
+ E[Fψψψ] (1.18.3)

Writing dY = dMy1dMy2 · · ·dMyN for the volume element over the space of obser-
vations, the proof of Eq. (1.18.3) follows from

∂
∂λλλ

∫
pFdY =

∫
∂
∂λλλ
(pF)dY =

∫
p
∂F
∂λλλ
dY +

∫
pF
∂ lnp
∂λλλ

dY

Applying this property to F = 1, we find E[ψψψ]= 0. Applying it to ψψψ itself, that is,
F =ψψψ, we find

J ≡ E[ψψψψψψT]= E[Ψ] (1.18.4)

where

Ψ ≡ −∂ψψψ
∂λλλ

Eq. (1.18.4) is known as the Fisher information matrix based on Y. Component-wise,
we have

Jij = E[ψiψj]= E[Ψij]
where

ψi = ∂ lnp
∂λi

, Ψij = −∂ψi∂λj
= − ∂

2 lnp
∂λi∂λj

Next, we derive the Cramér-Rao bound. Let λ̂λλ(Y) be any estimator of λλλ based on Y.
Because λ̂λλ(Y) andψψψ(Y,λλλ) both depend on Y, they will be correlated with each other.
Using the correlation canceling methods of Sec. 1.4, we can remove these correlations
by writing

e = λ̂λλ− E[λ̂λλψψψT]E[ψψψψψψT]−1ψψψ

1.18. Cramér–Rao Bound and Maximum Likelihood 73

Then, e will not be correlated with ψψψ. Because ψψψ has zero mean, it follows that
E[λ̂λλ]= E[e]. Working with the deviations about the corresponding means, namely,
Δλλλ = λ̂λλ− E[λ̂λλ] and Δe = e− E[e], we have

Δe = Δλλλ−MJ−1ψψψ (1.18.5)

where we denoted M = E[λ̂λλψψψT]. Following Eq. (1.4.4), we obtain for the covariance of
Δe

E[ΔeΔeT]= E[ΔλλλΔλλλT]−MJ−1MT (1.18.6)

Thus, the difference of terms in the right-hand side is a positive semi-definite matrix.
This may be expressed symbolically as E[ΔeΔeT]≥ 0, or, E[ΔλλλΔλλλT]≥ MJ−1MT. The
quantity M depends on the bias of the estimator. For an unbiased estimator, M is the
identity matrix,M = I, and we obtain the Cramér-Rao inequality

cov(λ̂λλ)= E[ΔλλλΔλλλT]≥ J−1 (Cramér-Rao) (1.18.7)

The dependence of M on the bias can be seen as follows. Because λ̂λλ(Y) has no
explicit dependence on λλλ, it follows from property (1.18.3) that

M = E[λ̂λλψψψT]= ∂
∂λλλ
E[λ̂λλ]

Define the bias of the estimator as the deviation of the mean from the true value of
the parameter, that is, E[λ̂λλ]= λλλ+ b(λλλ), where b(λλλ) is the bias

M = I + ∂b

∂λλλ
≡ I + B

For an unbiased estimator, B = 0 and M = I. It follows from Eq. (1.18.6) that for
the Cramér-Rao inequality to be satisfied as an equality, it is necessary that Δe = 0
in Eq. (1.18.5), i.e., Δλλλ = MJ−1ψψψ and in the unbiased case, we obtain the condition
ψψψ = JΔλλλ:

∂
∂λλλ

lnp(Y,λλλ)= JΔλλλ = J[λ̂λλ(Y)−λλλ]
(1.18.8)

Estimators that satisfy this condition and thus, meet their Cramér-Rao bound, are
called efficient.

Example 1.18.1: The log-likelihood function of Eq. (1.18.1) is

lnp = −N
2

ln(2π)−N
2

lnσ2 − 1

2σ2

N∑
n=1

(yn −m)2

The gradients with respect to the parametersm and σ2 are

∂ lnp
∂m

= 1

σ2

N∑
n=1

(yn −m)

∂ lnp
∂σ2

= − N
2σ2

+ 1

2σ4

N∑
n=1

(yn −m)2

(1.18.9)

74 1. Review of Random Signals

The second derivatives are the matrix elements of the matrix Ψ:

Ψmm = − ∂
2 lnp
∂m∂m

= N
σ2

Ψmσ2 = − ∂
2 lnp

∂m∂σ2
= 1

σ4

N∑
n=1

(yn −m)

Ψσ2σ2 = − ∂2 lnp
∂σ2∂σ2

= − N
2σ4

+ 1

σ6

N∑
n=1

(yn −m)2

Taking expectation values, we find the matrix elements of J

Jmm = N
σ2
, Jmσ2 = 0 , Jσ2σ2 = N

2σ4

Therefore, the Cramér-Rao bound of any unbiased estimator ofm and σ2 will be[
E[ΔmΔm] E[ΔmΔσ2]
E[Δσ2Δm] E[Δσ2Δσ2]

]
≥

[
σ2/N 0

0 2σ4/N

]

Example 1.18.2: We note that the sample mean m̂ defined by Eq. (1.2.1) has variance equal to
its Cramér-Rao bound, and therefore, it is an efficient estimator. It also satisfies condition
(1.18.8). Writing

∑N
n=1 yn = Nm̂, we obtain from Eq. (1.18.9)

∂ lnp
∂m

= 1

σ2

N∑
n=1

(yn −m)= 1

σ2

⎡⎣ N∑
n=1

yn −Nm
⎤⎦ = 1

σ2
(Nm̂−Nm)= Jmm(m̂−m)

We also note that the sample variance s2 having variance 2σ4/(N − 1) meets its Cramér-
Rao bound only asymptotically. The biased definition of the sample variance, Eq. (1.2.3),
has variance given by Eq. (1.2.4). It is easily verified that it is smaller than its Cramér-Rao
bound (1.18.7). But this is no contradiction because Eq. (1.18.7) is valid only for unbiased
estimators. For a biased estimator, the lower bound MJ−1MT must be used. Equation
(1.2.4) does satisfy this bound. ��

Next, we discuss the principle of maximum likelihood. The maximum likelihood
estimator of a parameter λλλ is the value λ̂λλ that maximizes the joint density p(Y,λλλ); i.e.,

p(Y,λλλ)
∣∣
λλλ=λ̂λλ = maximum (1.18.10)

Equivalently,

ψψψ(λ̂λλ)= ∂
∂λλλ

lnp(Y,λλλ)
∣∣∣∣
λλλ=λ̂λλ

= 0 (1.18.11)

In general, this equation is difficult to solve. However, the asymptotic properties of
the solution for large N are simple enough to obtain. Assuming that λ̂λλ is near the true
value of the parameter λλλ we may expand the gradientψψψ about the true value:

ψψψ(λ̂λλ)�ψψψ+ ∂ψψψ(λλλ)
∂λλλ

(λ̂λλ−λλλ)=ψψψ−Ψ(λ̂λλ−λλλ)

where we used the matrixΨ defined in Eq. (1.18.4). For the maximum likelihood solution,
the left-hand side is zero. Thus, solving for Δλλλ = λ̂λλ−λλλ, we obtain

Δλλλ = Ψ−1ψψψ (1.18.12)

1.18. Cramér–Rao Bound and Maximum Likelihood 75

Assuming that the N observations are independent of each other, the joint density
p(Y,λλλ) factors into the marginal densities

∏N
n=1 p(yn,λλλ). Therefore, the gradient ψψψ

will be a sum of gradients

ψψψ = ∂
∂λλλ

lnp =
N∑
n=1

∂
∂λλλ

lnp(yn,λλλ)=
N∑
n=1

ψψψn

Similarly,

Ψ = −∂ψψψ
∂λλλ

−
N∑
n=1

∂ψψψn
∂λλλ

=
N∑
N=1

Ψn

Individual terms in these sums are mutually independent. Thus, from the law of
large numbers, we can replace Ψ by its mean Ψ � E[Ψ]= J, and Eq. (1.18.12) becomes

Δλλλ = J−1ψψψ (1.18.13)

This asymptotic equation contains essentially all the nice properties of the maxi-
mum likelihood estimator. First, from E[Ψ]= 0, it follows that E[Δλλλ]= 0, or that λ̂λλ is
asymptotically unbiased. Second, its asymptotic covariance agrees with the Cramér-Rao
bound

E[ΔλλλΔλλλT]= J−1E[ψψψψψψT]J−1 = J−1JJ−1 = J−1

Thus, λ̂λλ is asymptotically efficient. The same conclusion can be reached by noting
that Eq. (1.18.13) is the same as condition (1.18.8). Third, λ̂λλ is asymptotically consistent,
in the sense that its covariance tends to zero for large N. This follows from the fact
that the information matrix for N independent observations is equal to N times the
information matrix for one observation:

J = E[Ψ]=
N∑
n=1

E[Ψn]= NE[Ψ1]= NJ1

Therefore, J−1 = J−1
1 /N tends to zero for large N. Fourth, because ψψψ is the sum

of N independent terms, it follows from the vector version of the central limit theorem
thatψψψ will be asymptotically normally distributed. Thus, so will be λ̂λλ, with mean λλλ and
covariance J−1.

Example 1.18.3: Setting the gradients (1.18.9) to zero, we obtain the maximum likelihood esti-
mates of the parametersm and σ2. It is easily verified that they coincide with the sample
mean and sample variance defined by Eqs. (1.2.1) and (1.2.3). ��

Example 1.18.4: In many applications, the mean is known to be zero and only the variance
needs to be estimated. For example, setting m = 0 in Eq. (1.18.1) we obtain the log-
likelihood

lnp = −N
2

ln(2π)−N
2

lnσ2 − 1

2σ2

N∑
n=1

y2
n

The maximum likelihood estimate of σ2 is obtained from

∂ lnp
∂σ2

= − N
2σ2

+ 1

2σ4

N∑
n=1

y2
n = 0

76 1. Review of Random Signals

with solution

σ̂2 = 1

N

N∑
n=1

y2
n

It is easily verified that this is an unbiased estimate. It is the scalar version of Eq. (1.6.21).
Using E[y2

ny2
m]= σ4 + 2δnmσ4, which is valid for independent zero-mean gaussian yns,

we find for the variance of σ̂2

E[Δσ2Δσ2]= 2σ4

N
, where Δσ2 = σ̂2 −σ2 (1.18.14)

This agrees with the corresponding Cramér-Rao bound. Thus, σ̂2 is efficient. Equation
(1.18.14) is the scalar version of Eq. (1.6.23). ��

Example 1.18.5: Show that the multivariate sample covariance matrix, R̂, given by Eq. (1.6.21)
is the maximum likelihood estimate of R, assuming the mean is zero.

Solution: The log-likelihood function is, up to a constant

lnp(y1,y2, . . . ,yN)= −N2 ln(detR)−1

2

N∑
n=1

yTnR−1yn

The second term may be written as the trace:

N∑
n=1

yTnR−1yn = tr
[
R−1

N∑
n=1

ynyTn
] = N tr[R−1R̂]

where we used
∑N
n=1 ynyTn = NR̂. Using the matrix property ln(detR)= tr(lnR), we may

write the log-likelihood in the form

lnp = −N
2

tr
[
lnR+R−1R̂

]
The maximum likelihood solution for R satisfies ∂ lnp/∂R = 0. To solve it, we find it more
convenient to work with differentials. Using the two matrix properties

d tr(lnR)= tr(R−1dR) , dR−1 = −R−1(dR)R−1 (1.18.15)

we obtain,

d lnp = −N
2

tr
[
R−1dR−R−1(dR)R−1R̂

] = −N
2

tr
[
R−1(dR)R−1(R− R̂)] (1.18.16)

Because dR is arbitrary, the vanishing of d lnp implies R = R̂. An alternative proof is
to show that f(R)≥ f(R̂), where f(R)≡ tr(lnR + R−1R̂). This is shown easily using the
inequality x− 1− lnx ≥ 0, for x ≥ 0, with equality reached at x = 1. ��

In many applications, the desired parameterλλλ to be estimated appears only through
the covariance matrix R of the observations y, that is, R = R(λλλ). For example, we will
see in Chap. 14 that the covariance matrix of a plane wave incident on an array of two
sensors in the presence of noise is given by

R =
[
P+σ2 Pejk

Pe−jk P+σ2

]

1.19. Minimum-Phase Signals and Filters 77

where possible parameters to be estimated are the power P and wavenumber k of the
wave, and the variance σ2 of the background noise. Thus, λλλ = [P, k,σ2]T.

In such cases, we have the following general expression for the Fisher information
matrix J, valid for independent zero-mean gaussian observations:

Jij = N
2

tr

[
R−1 ∂R

∂λi
R−1 ∂R

∂λj

]
(1.18.17)

Writing ∂i = ∂/∂λi for brevity, we have from Eq. (1.18.16)

∂i lnp = −N
2

tr
[
R−1∂iRR−1(R− R̂)]

Differentiating once more, we find

Ψij = −∂i∂j lnp = N
2

tr
[
∂j(R−1∂iRR−1)(R− R̂)+R−1∂iRR−1∂jR

]
Equation (1.18.17) follows now by taking expectation values Jij = E[Ψij] and noting

that the expectation value of the first term vanishes. This follows from the fact that R̂
is an unbiased estimator of R and therefore, E

[
tr

(
F(R− R̂))] = 0, for any matrix F.

1.19 Minimum-Phase Signals and Filters

A minimum-phase sequence a = [a0, a1, . . . , aM] has a z-transform with all its zeros
inside the unit circle in the complex z-plane

A(z)= a0+a1z−1+· · ·+aMz−M = a0(1−z1z−1)(1−z2z−1)· · · (1−zMz−1) (1.19.1)

with |zi| < 1, i = 1,2, . . . ,M. Such a polynomial is also called a minimum-delay polyno-
mial. Define the following related polynomials:

A∗(z) = a∗0 + a∗1 z−1 + · · · + a∗Mz−M = complex-conjugated coefficients

Ā(z) = a∗0 + a∗1 z+ · · · + a∗MzM = conjugated and reflected

AR(z) = a∗M + a∗M−1z
−1 + · · · + a∗0 z−M = reversed and conjugated

We note the relationships:

Ā(z)= A∗(z−1) and AR(z)= z−MĀ(z)= z−MA∗(z−1) (1.19.2)

We also note that when we set z = ejω to obtain the corresponding frequency re-
sponses, Ā(ω) becomes the complex conjugate of A(ω)

Ā(ω)= A(ω)∗ (1.19.3)

It is easily verified that all these polynomials have the same magnitude spectrum:

|A(ω)|2 = |Ā(ω)|2 = |A∗(ω)|2 = |AR(ω)|2 (1.19.4)

78 1. Review of Random Signals

For example, in the case of a doublet a = (a0, a1) and its reverse aR = (a∗1 , a∗0), we
verify explicitly

|A(ω)|2 = A(ω)A(ω)∗ = (a0 + a1e−jω)(a∗0 + a∗1 ejω)
= (a∗1 + a∗0 e−jω)(a1 + a0ejω)

= AR(ω)AR(ω)∗= |AR(ω)|2

Thus, on the basis the magnitude spectrum, one cannot distinguish the doublet
a = (a0, a1) from its reverse aR = (a∗1 , a∗0). In the more general case of a polynomial
of degree M, factored into doublets as in Eq. (1.19.1), we note that each doublet can be
replaced by its reverse

(1,−zi)→ (−z∗i ,1) or (1− ziz−1)→ (−z∗i + z−1)

without affecting the overall magnitude spectrum |A(ω)|2. Since there are M such
factors, there will be a total of 2M different Mth degree polynomials, or equivalently,
2M different length-(M+1) sequences, all having the same magnitude spectrum. Every
time a factor (1 − ziz−1) is reversed to become (−z∗i + z−1), the corresponding zero
changes from z = zi to z = 1/z∗i . If zi is inside the unit circle, the 1/z∗i is outside, as
shown

To enumerate all these sequences, start by taking all zeros zi to be inside the unit
circle and successively keep reversing each factor until all 2M possibilities have been
exhausted. At the last step, all the factors will have been flipped, corresponding to
all the zeros being outside the unit circle. The resulting polynomial and sequence are
referred to as having maximal phase, or maximal delay. As an example consider the two
doublets

a = (2,1) and b = (3,2)
and form the four different sequences, where ∗ denotes convolution:

c0 = a∗ b = (2,1)∗(3,2)= (6,7,2), C0(z)= A(z)B(z)
c1 = aR ∗ b = (1,2)∗(3,2)= (3,8,4), C1(z)= AR(z)B(z)
c2 = a∗ bR = (2,1)∗(2,3)= (4,8,3), C2(z)= A(z)BR(z)
c3 = aR ∗ bR = (1,2)∗(2,3)= (2,7,6), C3(z)= A(z)B(z)

All four sequences have the same magnitude spectrum.

1.19. Minimum-Phase Signals and Filters 79

Partial Energy and Minimal Delay

Since the total energy of a sequence a = (a0, a1, . . . , aM) is given by Parseval’s equality

M∑
m=0

|am|2 =
∫ π
−π
|A(ω)|2 dω

2π

it follows that all of the above 2M sequences, having the same magnitude spectrum, will
also have the same total energy. However, the distribution of the total energy over time
may be different. And this will allow an alternative characterization of the minimum
phase sequences, first given by Robinson. Define the partial energy by

Pa(n)=
n∑
m=0

|am|2 = |a0|2 + |a1|2 + · · · + |an|2 , n = 0,1, . . . ,M

then, for the above example, the partial energies for the four different sequences are
given in the table

c0 c1 c2 c3

P(0) 36 9 16 4
P(1) 85 73 80 53
P(2) 89 89 89 89

We note that c0 which has both its zeros inside the unit circle (i.e., minimal phase) is
also the sequence that has most of its energy concentrated at the earlier times, that is,
it makes its impact as early as possible, with minimal delay. In contrast, the maximal-
phase sequence c3 has most of its energy concentrated at its tail thus, making most of
its impact at the end, with maximal delay.

Invariance of the Autocorrelation Function

This section presents yet another characterization of the above class of sequences. It
will be important in proving the minimum-phase property of the linear prediction filters.

The sample autocorrelation of a (possibly complex-valued) sequence a = (a0, a1, . . . , aM)
is defined by

Raa(k) =
M−k∑
n=0

an+ka∗n , for 0 ≤ k ≤M

Raa(k) = Raa(−k)∗ , for −M ≤ k ≤ −1

(1.19.5)

It is easily verified that the corresponding power spectral density is factored as

Saa(z)=
M∑

k=−M
Raa(k)z−k = A(z)Ā(z) (1.19.6)

The magnitude response is obtained by setting z = ejω

Saa(ω)= |A(ω)|2 (1.19.7)

80 1. Review of Random Signals

with an inversion formula

Raa(k)=
∫ π
−π
|A(ω)|2ejωk dω

2π
(1.19.8)

It follows from Eq. (1.19.8) that the above 2M different sequences having the same
magnitude spectrum, also have the same sample autocorrelation. They cannot be distin-
guished on the basis of their autocorrelation. Therefore, there are 2M different spectral
factorizations of Saa(z) of the form

Saa(z)= A(z)Ā(z) (1.19.9)

but there is only one with minimum-phase factors. The procedure for obtaining it is
straightforward: Find the zeros of Saa(z), which come in pairs zi and 1/z∗i , thus, there
are 2M such zeros. And, group those that lie inside the unit circle into a common factor.
This defines A(z) as a minimum phase polynomial.

Minimum-Delay Property

Here, we discuss the effect of flipping a zero from the inside to the outside of the unit
circle, on the minimum-delay and minimum-phase properties of the signal. Suppose
A(z) is of degreeM and has a zero z1 inside the unit circle. Let B(z) be the polynomial
that results by flipping this zero to the outside; that is, z1 → 1/z∗1

A(z) = (1− z1z−1)F(z)

B(z) = (−z∗1 + z−1)F(z)
(1.19.10)

where F(z) is a polynomial of degree M − 1. Both A(z) and B(z) have the same mag-
nitude spectrum. We may think of this operation as sending A(z) through an allpass
filter

B(z)= −z∗1 + z−1

1− z1z−1
A(z)

In terms of the polynomial coefficients, Eq. (1.19.10) becomes

an = fn − z1fn−1

bn = −z∗1 fn + fn−1

(1.19.11)

for n = 0,1, . . . ,M, from which we obtain

|an|2 − |bn|2 =
(
1− |z1|2

)(|fn|2 − |fn−1|2
)

(1.19.12)

Summing to get the partial energies, Pa(n)=
∑n
m=0 |am|2, we find

Pa(n)−Pb(n)=
(
1− |z1|2

)|fn|2 , n = 0,1, . . . ,M (1.19.13)

Thus, the partial energy of the sequence a remains greater than that of b for all times
n; that is, A(z) is of earlier delay than B(z). The total energy is, of course, the same

1.19. Minimum-Phase Signals and Filters 81

as follows from the fact that F(z) is of degree M − 1, thus, missing the Mth term or
fM = 0. We have then

Pa(n)≥ Pb(n) , n = 0,1, . . . ,M

and in particular
Pa(M)= Pb(M) and Pa(0)≥ Pb(0)

The last inequality can also be stated as |a0| ≥ |b0|, and will be important in our
proof of the minimum-phase property of the prediction-error filter of linear prediction.

Minimum-Phase Property

The effect of reversing the zero z1 on the phase responses ofA(z) andB(z) of Eq. (1.19.10)
can be seen as follows. For z = ejω, define the phase lag as the negative of the phase
response

A(ω) = |A(ω)|ejArg(ω)

θA(ω) = −Arg(ω)= phase-lag response

and similarly for B(z). SinceA(ω) and B(ω) have the same magnitude, they will differ
only by a phase

A(ω)
B(ω)

= ej(θB−θA) = 1− z1e−jω

−z∗1 + e−jω
= ejω − z1

1− z∗1 ejω
= ejφ(ω)

whereφ(ω) is the phase-response of the all-pass factor (ejω−z1)/(1−z∗1 ejω), so that
θB(ω)−θA(ω)= φ(ω). By taking derivatives with respect toω in the above definition
of φ(ω), it can be easily shown that

dφ(ω)
dω

= 1− |z1|2∣∣ejω − z1
∣∣2 > 0

which shows thatφ(ω) is an increasing function ofω. Thus, over the frequency interval
0 ≤ ω ≤ π, we have φ(ω)≥ φ(0). It can be verified easily that φ(0)= −2φ0, where
φ0 is the angle with the x-axis of the line between the points z1 and 1, as shown in the
figure below.

Thus, we have θB − θA ≥ φ ≥ −2φ0. The angle φ0 is positive, if z1 lies within the
upper half semi-circle, and negative, if it lies in the lower semi-circle; and, φ0 is zero
if z1 lies on the real axis. If z1 is real-valued, then θB ≥ θA for 0 ≤ ω ≤ π. If z1

82 1. Review of Random Signals

is complex valued and we consider the combined effect of flipping the zero z1 and its
conjugate z∗1 , that is, A(z) and B(z) are given by

A(z) = (1− z1z−1)(1− z∗1 z−1)F(z)

B(z) = (−z∗1 + z−1)(−z1 + z−1)F(z)

then, for the phase of the combined factor

ejφ(ω) = ejω − z1

1− z∗1 ejω
· e

jω − z∗1
1− z1ejω

we will have φ(ω)≥ (−2φ0)+(2φ0)= 0, so that θB(ω)−θA(ω)= φ(ω)≥ 0.
Thus, the phase lag of A(z) remains smaller than that of B(z). The phase-lag curve

for the case when A(z) has all its zeros inside the unit circle will remain below all the
other phase-lag curves. The term minimum-phase strictly speaking means minimum
phase lag (over 0 ≤ω ≤ π).

1.20 Spectral Factorization Theorem

We finish our digression on minimum-phase sequences by quoting the spectral factor-
ization theorem [5].

Any rational power spectral density Syy(z) of a (real-valued) stationary signal yn
can be factored in a minimum-phase form

Syy(z)= σ2
εB(z)B(z−1) (1.20.1)

where

B(z)= N(z)
D(z)

(1.20.2)

with both D(z) and N(z) being minimum-phase polynomials; that is, having all their
zeros inside the unit circle. By adjusting the overall constant σ2

ε , both D(z) and N(z)
may be taken to be monic polynomials. Then, they are unique.

This theorem guarantees the existence of a causal and stable random signal generator
filter B(z) for the signal yn of the type discussed in Sec. 1.13:

with εn white noise of variance σ2
ε . The minimum-phase property of B(z) also guaran-

tees the stability and causality of the inverse filter 1/B(z), that is, the whitening filter

The proof of the spectral factorization theorem is straightforward. Since Syy(z) is
the power spectral density of a (real-valued) stationary process yn, it will satisfy the
symmetry conditions Syy(z)= Syy(z−1). Therefore, if zi is a zero then 1/zi is also
a zero, and if zi is complex then the reality of Ryy(k) implies that z∗i will also be a

1.21. Minimum-Phase Property of the Prediction-Error Filter 83

zero. Thus, both zi and 1/z∗i are zeros. Therefore, the numerator polynomial of Syy(z)
is of the type of Eq. (1.19.9) and can be factored into its minimum phase polynomials
N(z)N(z−1). This is also true of the denominator of Syy(z).

All sequential correlations in the original signal yn arise from the filtering action of
B(z) on the white-noise input εn. This follows from Eq. (1.12.14):

Ryy(k)= σ2
ε

∑
n
bn+kbn , B(z)=

∞∑
n=0

bnz−n (1.20.3)

Effectively, we have modeled the statistical autocorrelationRyy(k) by the sample au-
tocorrelation of the impulse response of the synthesis filter B(z). Since B(z) is causal,
such factorization corresponds to an LU, or Cholesky, factorization of the autocorrela-
tion matrix.

This matrix representation can be seen as follows: Let B be the lower triangular
Toeplitz matrix defined exactly as in Eq. (1.13.2)

bni = bn−i
and let the autocorrelation matrix of yn be

Ryy(i, j)= Ryy(i− j)

Then, the transposed matrix BT will have matrix elements

(BT)ni= bi−n
and Eq. (1.20.3) can be written in the form

Ryy(i, j) = Ryy(i− j)= σ2
ε

∑
n
bn+i−jbn = σ2

ε

∑
k
bi−kbj−k

= σ2
ε

∑
k
(B)ik(BT)kj= σ2

ε(BBT)ij

Thus, in matrix notation
Ryy = σ2

εBBT (1.20.4)

This equation is a special case of the more general LU factorization of the Gram-
Schmidt construction given by Eq. (1.6.17). Indeed, the assumption of stationarity im-
plies that the quantity

σ2
ε = E[ε2

n]

is independent of the time n, and therefore, the diagonal matrix Rεε of Eq. (1.6.17)
becomes a multiple of the identity matrix.

1.21 Minimum-Phase Property of the Prediction-Error Filter

The minimum-phase property of the prediction-error filter A(z) of linear prediction is
an important property because it guarantees the stability of the causal inverse synthesis
filter 1/A(z). There are many proofs of this property in the literature [6–10]. Here, we

84 1. Review of Random Signals

would like to present a simple proof [11] which is based directly on the fact that the
optimal prediction coefficients minimize the mean-square prediction error. Although
we have only discussed first and second order linear predictors, for the purposes of this
proof we will work with the more general case of anMth order predictor defined by

ŷn = −[a1yn−1 + a2yn−2 + · · · + aMyn−M]
which is taken to represent the best prediction of yn based on the past M samples
Yn = {yn−1, yn−2, . . . , yn−M}. The corresponding prediction error is

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · + aMyn−M
The best set of prediction coefficients {a1, a2, . . . aM} is found by minimizing the

mean-square prediction error

E(a1, a2, . . . aM) = E[e∗nen]=
M∑

m,k=0

a∗mE[y∗n−myn−k]ak

=
M∑

m,k=0

a∗mRyy(k−m)ak =
M∑

m,k=0

a∗mRyy(m− k)ak
(1.21.1)

where we set a0 = 1. For the proof of the minimum phase property, we do not need
the explicit solution of this minimization problem; we only use the fact that the optimal
coefficients minimize Eq. (1.21.1). The key to the proof is based on the observation that
(3.7.1) can be written in the alternative form

E(a)=
M∑

k=−M
Ryy(k)Raa(k) (1.21.2)

where Raa(k) is the sample autocorrelation of the prediction-error filter sequence a =
[1, a1, a2, . . . , aM]T as defined in Eq. (1.19.5). The equivalence of Eqs. (1.21.1) and
(1.21.2) can be seen easily, either by rearranging the summation indices of (1.21.1), or
by using the results of Problems 1.37 and 1.39.

Example 1.21.1: We demonstrate this explicitly for theM = 2 case. Using the definition (1.19.5)
we have

Raa(0) = |a0|2 + |a1|2 + |a2|2 = 1+ |a1|2 + |a2|2

Raa(1) = Raa(−1)∗= a1a∗0 + a2a∗1 = a1 + a2a∗1

Raa(2) = Raa(−2)∗= a2a∗0 = a2

Since yn is real-valued stationary, we have Ryy(k)= Ryy(−k). Then, Eq. (1.21.1) becomes
explicitly

E(a)=
M∑

m,k=0

a∗mRyy(m− k)ak = [1, a∗1 , a∗2]
⎡⎢⎣ Ryy(0) Ryy(1) Ryy(2)
Ryy(1) Ryy(0) Ryy(1)
Ryy(0) Ryy(1) Ryy(2)

⎤⎥⎦
⎡⎢⎣ 1
a1

a2

⎤⎥⎦
= Ryy(0)[1+ a∗1 a1 + a∗2 a2]+Ryy(1)

[
(a1 + a2a∗1)+(a∗1 + a∗2 a1)

]+Ryy(2)[a2 + a∗2]
= Ryy(0)Raa(0)+Ryy(1)

[
Raa(1)+Raa(−1)

]+Ryy(2)[Raa(2)+Raa(−2)
] ��

1.21. Minimum-Phase Property of the Prediction-Error Filter 85

Let a = [1, a1, a2, . . . , aM]T be the optimal set of coefficients that minimizes E(a)
and let zi, i = 1,2 . . . ,M, be the zeros of the corresponding prediction-error filter:

1+a1z−1 +a2z−2 +· · ·+aMz−M = (1− z1z−1)(1− z2z−1)· · · (1− zMz−1) (1.21.3)

Reversing any one of the zero factors in this equation, that is, replacing (1−ziz−1) by
its reverse (−z∗i +z−1), results in a sequence that has the same sample autocorrelation
as a. As we have seen, there are 2M such sequences, all with the same sample autocorre-
lation. We would like to show that among these, a is the one having the minimum-phase
property.

To this end, let b = [b0, b1, . . . bM]T be any one of these 2M sequences, and define
the normalized sequence

c = b/b0 = [1, b1/b0, b2/b0, . . . bM/b0]T (1.21.4)

Using the fact that b has the same sample autocorrelation as a, we find for the sample
autocorrelation of c :

Rcc(k)= Rbb(k)/|b0|2 = Raa(k)/|b0|2 (1.21.5)

The performance index (1.21.2) evaluated at c is then

E(c)=
M∑

k=−M
Ryy(k)Rcc(k)=

M∑
k=−M

Ryy(k)Raa(k)/|b0|2 (1.21.6)

or,
E(c)= E(a)/|b0|2 (1.21.7)

Since a minimizes E, it follows that E(c)≥ E(a). Therefore, Eq. (1.21.7) implies that

|b0| ≤ 1 (1.21.8)

This must be true of all bs in the above class. Eq. (1.21.8) then, immediately implies the
minimum-phase property of a. Indeed, choosing b to be that sequence obtained from
(1.21.3) by reversing only the ith zero factor (1− ziz−1) and not the other zero factors,
it follows that

b0 = −z∗i
and therefore Eq. (1.21.8) implies that

|zi| ≤ 1 (1.21.9)

which shows that all the zeros of A(z) are inside the unit circle and thus, A(z) has
minimum phase. An alternative proof based on the Levinson recursion and Rouche’s
theorem of complex analysis will be presented in Chap. 12.

86 1. Review of Random Signals

1.22 Computer Project – Adaptive AR(1) and AR(2) Models

This computer project, divided into separate parts, deals with adaptive AR models that
are capable of tracking time-varying systems. It is also applied to the benchmark sunspot
data, comparing the results with Yule’s original application of an AR(2) model.

1. Time-varying AR(1) model. Consider the following AR(1), first-order, autoregressive
signal model with a time-varying parameter:

yn = a(n)yn−1 + εn (1.22.1)

where εn is zero-mean, unit-variance, white noise. The filter parameter a(n) can
be tracked by the following adaptation equations (which are equivalent to the exact
recursive least-squares order-1 adaptive predictor):

R0(n) = λR0(n− 1)+αy2
n−1

R1(n) = λR1(n− 1)+αynyn−1

â(n) = R1(n)
R0(n)

where α = 1−λ. The two filtering equations amount to sending the quantities y2
n−1

and ynyn−1 through an exponential smoother. To avoid possible zero denominators,
initialize R0 to some small positive constant, R0(−1)= δ, such as δ = 10−3.

(a) Show that â(n) satisfies the recursion:

â(n)= â(n− 1)+ α
R0(n)

yn−1en/n−1 en/n−1 = yn − â(n− 1)yn−1 (1.22.2)

where en/n−1 is referred to as the a priori estimation (prediction) error.

(b) Using Eq. (1.22.1), generate a data sequence yn, n = 0,1, . . . ,N − 1 using the
following time varying coefficient, sinusoidally switching from a positive value
to a negative one (the synthesis filter switches from lowpass to highpass):

a(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.75, 0 ≤ n ≤ Na − 1

0.75 cos
(
π
n−Na
Nb −Na

)
, Na ≤ n ≤ Nb

−0.75, Nb + 1 ≤ n ≤ N − 1

Use the following numerical values:

Na = 500, Nb = 1500, N = 2000

Calculate the estimated â(n) using the recursion (1.22.2) and plot it versus n
together with the theoretical a(n) using the parameter value λ = 0.980. Repeat
using the value λ = 0.997. Comment on the tracking capability of the algorithm
versus the accuracy of the estimate.

1.22. Computer Project – Adaptive AR(1) and AR(2) Models 87

(c) Study the sensitivity of the algorithm to the initialization parameter δ.

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

time samples, n

AR(1) case, λ = 0.980

 a(n) estimated
 a(n) theoretical

0 500 1000 1500 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples, n

AR(1) case, λ = 0.997

 a(n) estimated
 a(n) theoretical

2. Tine-varying AR(2) model. Next, consider an AR(2), second-order, model with time-
varying coefficients:

yn = −a1(n)yn−1 − a2(n)yn−2 + εn (1.22.3)

If the coefficients were stationary, then the theoretical Wiener solution for the pre-
diction coefficients a1 and a2 would be:[

a1

a2

]
= −

[
R0 R1

R1 R0

]−1 [
R1

R2

]
= − 1

R2
0 −R2

1

[
R0R1 −R1R2

R0R2 −R2
1

]
(1.22.4)

where Rk = E[ynyn−k]. For a time-varying model, the coefficients can be tracked by
replacing the theoretical autocorrelation lags Rk with their recursive, exponentially
smoothed, versions:

R0(n) = λR0(n− 1)+αy2
n

R1(n) = λR1(n− 1)+αynyn−1

R2(n) = λR2(n− 1)+αynyn−2

(a) Using Eq. (1.22.3), generate a non-stationary data sequence yn by driving the
second-order model with a unit-variance, zero-mean, white noise signal εn and
using the following theoretical time-varying coefficients:

a1(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1.3, 0 ≤ n ≤ Na − 1

1.3
n−Nb
Nb −Na , Na ≤ n ≤ Nb

0, Nb + 1 ≤ n ≤ N − 1

a2(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.4, 0 ≤ n ≤ Na − 1

0.65− 0.25 cos
(
π
n−Na
Nb −Na

)
, Na ≤ n ≤ Nb

0.9, Nb + 1 ≤ n ≤ N − 1

88 1. Review of Random Signals

Thus, the signal model for yn switches continuously between the synthesis filters:

B(z)= 1

1− 1.3z−1 + 0.4z−2
⇒ B(z)= 1

1+ 0.9z−2

(b) Compute the adaptive coefficients â1(n) and â2(n) using the two forgetting fac-
tors λ = 0.980 and λ = 0.997. Plot the adaptive coefficients versus n, together
with the theoretical time-varying coefficients and discuss the tracking capability
of the adaptive processor.

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

time samples, n

AR(2) case, λ = 0.980

 a

1
(n) estimated

 a
1
(n) theoretical

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

time samples, n

AR(2) case, λ = 0.980

 a

2
(n) estimated

 a
2
(n) theoretical

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

time samples, n

AR(2) case, λ = 0.997

 a

1
(n) estimated

 a
1
(n) theoretical

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

time samples, n

AR(2) case, λ = 0.997

 a

2
(n) estimated

 a
2
(n) theoretical

3. AR(2) modeling of sunspot data. Next, we will apply the adaptive method of part-2 to
some real data. The file sunspots.dat contains the yearly mean number of sunspots
for the years 1700–2008. To unclutter the resulting graphs, we will use only the data
for the last 200 years, over 1809–2008. These can be read into MATLAB as follows:

Y = loadfile(’sunspots.dat’);
i = find(Y(:,1)==1809);
y = Y(i:end,2); % number of sunspots
N = length(y); % here, N=200
m = mean(y); y = y-m; % zero-mean data

where the last line determines the mean of the data block and subtracts it from the
data. The meanm will be restored at the end.

1.22. Computer Project – Adaptive AR(1) and AR(2) Models 89

Yule was the first to introduce the concept of an autoregressive signal model and
applied it to the sunspot time series assuming a second-order model. The so-called
Yule-Walker method is a block processing method in which the entire (zero-mean)
data block is used to estimate the autocorrelation lags R0, R1, R2 using sample au-
tocorrelations:

R̂0 = 1

N

N−1∑
n=0

y2
n , R̂1 = 1

N

N−2∑
n=0

yn+1yn , R̂2 = 1

N

N−3∑
n=0

yn+2yn

Then, the model parameters a1, a2 are estimated using Eq. (1.22.4):[
â1

â2

]
= −

[
R̂0 R̂1

R̂1 R̂0

]−1 [
R̂1

R̂2

]
(Yule-Walker method)

(a) First, compute the values of â1, â2 based on the given length-200 data block.

(b) Then, apply the adaptive algorithm of the part-2 with λ = 0.99 to determine the
adaptive versions a1(n), a2(n) and plot them versus n, and add on these graphs
the straight lines corresponding to the Yule-Walker estimates â1, â2.

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

a
1
 coefficient

years

 adaptive
 Yule−Walker

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

a
2
 coefficient

years

 adaptive
 Yule−Walker

(c) At each time instant n, the value of yn can be predicted by either of the two
formulas:

ŷn/n−1 = −a1(n)yn−1 − a2(n)yn−2

ŷn/n−1 = −â1yn−1 − â2yn−2

On the same graph, plot yn and ŷn/n−1 for the above two alternatives. The case
of the adaptive predictor is shown below.

90 1. Review of Random Signals

0 50 100 150 200
0

50

100

150

200

years

Sunspot Numbers 1809 − 2008

 data
 prediction

(d) Repeat the above questions using λ = 0.95 and discuss the effect of reducing λ.

(e) Apply a length-200 Hamming windowwn to the (zero-mean) data yn and calculate
the corresponding periodogram spectrum,

Sper(ω)= 1

N

∣∣∣∣∣∣
N−1∑
n=0

wnyne−jωn
∣∣∣∣∣∣

2

as a function of the yearly period p = 2π/ω, over the range 2 ≤ p ≤ 20 years.
For the same p’s orω’s calculate also the AR(2) spectrum using the Yule-Walker
coefficients â1, â2:

SAR(ω)= σ2
ε∣∣1+ â1e−jω + â2e−2jω

∣∣2

where σ2
ε can be calculated by

σ2
ε = R̂0 + â1R̂1 + â2R̂2

Normalize the spectra Sper(ω), SAR(ω) to unity maxima and plot them versus
period p on the same graph. Note that both predict the presence of an approxi-
mate 11-year cycle, which is also evident from the time data.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

period in years

power spectra

 periodogram
 AR(2)

2 4 6 8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

10

period in years

power spectra in dB

 periodogram
 AR(2)

1.23. Problems 91

We will revisit this example later on by applying SVD methods to get sharper
peaks. An example of the improved results is shown below.

2 4 6 8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

10

period in years

power spectra in dB

 enhanced Burg
 enhanced LSQ
 standard Burg

1.23 Problems

1.1 Two dice are available for throwing. One is fair, but the other bears only sixes. One die is
selected as follows: A coin is tossed. If the outcome is tails then the fair die is selected, but if
the outcome is heads, the biased die is selected. The coin itself is not fair, and the probability
of bearing heads or tails is 1/3 or 2/3, respectively. A die is now selected according to this
procedure and tossed twice and the number of sixes is noted.

Let x be a random variable that takes on the value 0 when the fair die is selected or 1 if the
biased die is selected. Let y be a random variable denoting the number of sixes obtained in
the two tosses; thus, the possible values of y are 0,1,2.

(a) For all possible values of x and y, compute p(y|x), that is, the probability that the
number of sixes will be y, given that the x die was selected.

(b) For each y, compute p(y), that is, the probability that the number of sixes will be y,
regardless of which die was selected.

(c) Compute the mean number of sixes E[y].

(d) For all values of x and y, compute p(x|y), that is, the probability that we selected die x,
given that we already observed a y number of sixes.

1.2 Inversion Method. Let F(x) be the cumulative distribution of a probability density p(x).
Suppose u is a uniform random number in the interval [0,1). Show that the solution of the
equation F(x)= u, or equivalently, x = F−1(u), generates a random number x distributed
according to p(x). This is the inversion method of generating random numbers from uni-
form random numbers.

1.3 Computer Experiment. Let x be a random variable with the exponential probability density

p(x)= 1

μ
e−x/μ

Show that x has mean μ and variance μ2. Determine the cumulative distribution function
F(x) of x. Determine the inverse formula x = F−1(u) for generating x from a uniform

92 1. Review of Random Signals

u. Take μ = 2. Using the inversion formula and a uniform random number generator
routine, generate a block of 200 random numbers x distributed according to p(x). Compute
their sample mean and sample variance, Eqs. (1.2.1) and (1.2.3), and compare them with
their theoretical values. Do the estimated values fall within the standard deviation intervals
defined by Eqs. (1.2.2) and (1.2.4)?

1.4 The Rayleigh probability density finds application in fading communication channels

p(r)= r
σ2
e−r

2/2σ2
, r ≥ 0

Using the inversion method, r = F−1(u), show how to generate a Rayleigh-distributed ran-
dom variable r from a uniform u.

1.5 (a) Following the notation of Sec. 1.4, show the matrix identity, where H = RxyR−1
yy[

IN −H
0 IM

][
Rxx Rxy
Ryx Ryy

][
IN −H
0 IM

]T
=

[
Rxx −RxyR−1

yyRyx 0

0 Ryy

]

(b) Rederive the correlation canceling results of Eqs. (1.4.3) and (1.4.4) using this identity.

1.6 Using the matrix identity of Problem 1.5, derive directly the result of Example 1.4.1, that is,
E[x|y]= RxyR−1

yyy. Work directly with probability densities;

1.7 Show that the orthogonal projection x̂ of a vector x onto another vector y, defined by
Eq. (1.4.5) or Eq. (1.6.18), is a linear function of x, that is, show

'A1x1 +A2x2 = A1x̂1 +A2x̂2

1.8 Suppose x consists of two components x = s + n1, a desired component s, and a noise
component n1. Suppose that y is a related noise component n2 to which we have access,
y = n2. The relationship between n1 and n2 is assumed to be linear, n1 = Fn2. For exam-
ple, s might represent an electrocardiogram signal which is contaminated by 60 Hz power
frequency pick-up noise n1; then, a reference 60 Hz noise y = n2, can be obtained from the
wall outlet.

(a) Show that the correlation canceler is H = F, and that complete cancellation of n1 takes
place.

(b) If n1 = Fn2 + v, where v is uncorrelated with n2 and s, show that H = F still, and n1 is
canceled completely. The part v remains unaffected.

1.9 Signal Cancellation Effects. In the previous problem, we assumed that the reference signal y
did not contain any part related to the desired component s. There are applications, however,
where both the signal and the noise components contribute to both x and y, as for example in
antenna sidelobe cancellation. Since the reference signal y contains part of s, the correlation
canceler will act also to cancel part of the useful signal s from the output. To see this effect,
consider a simple one-dimensional example

x = s+ n1

y = n2 + εs

with n1 = Fn2, where we assume that y contains a small part proportional to the desired
signal s. Assume that n2 and s are uncorrelated. Show that the output e of the correlation

1.23. Problems 93

canceler will contain a reduced noise component n1 as well as a partially canceled signal s,
as follows:

e = as+ bn1 , where a = 1− Fε(1+ FεG)
1+ F2ε2G

, b = −εFGa

and G is a signal to noise ratio G = E[s2]/E[n2
1]. Note that when ε = 0, then a = 1 and

b = 0, as it should.

1.10 Consider a special case of Example 1.4.3 defined by cn = 1, so that yn = x + vn, n =
1,2, . . . ,M. This represents the noisy measurement of a constant x. By comparing the
corresponding mean-square estimation errors E[e2], show that the optimal estimate of x
given in Eq. (1.4.9) is indeed better than the straight average estimate:

x̂av = y1 + y2 + · · · + yM
M

1.11 Recursive Estimation. Consider the subspace Yn = {y1, y2, . . . , yn} for n = 1,2, . . . ,M, as
defined in Sec. 1.6. Eq. (1.6.18) defines the estimate x̂ of a random vector x based on the
largest one of these subspaces, namely, YM .

(a) Show that this estimate can also be generated recursively as follows:

x̂n = x̂n−1 + Gn(yn − ŷn/n−1)

for n = 1,2, . . . ,M, and initialized by x̂0 = 0 and ŷ1/0 = 0, where x̂n denotes the best
estimate of x based on the subspace Yn and Gn is a gain coefficient given by Gn =
E[xεn]E[εnεn]−1. (Hint: Note x̂n =

∑n
i=1 E[xεi]E[εiεi]−1εi.)

(b) Show that the innovations εn = yn − ŷn/n−1 is orthogonal to x̂n−1, that is, show that
E[x̂n−1εn]= 0 for n = 1,2, . . . ,M.

(c) Let en = x− x̂n be the corresponding estimation error of x with respect to the subspace
Yn. Using Eq. (1.4.4), show that its covariance matrix can be expressed in the ε-basis as
follows

Renen = Rxx −
n∑
i=1

E[xεi]E[εiεi]−1E[εixT]

(d) The above recursive construction represents a successive improvement of the estimate
of x, as more and more yns are taken into account; that is, as the subspaces Yn are suc-
cessively enlarged. Verify that x̂n is indeed a better estimate than x̂n−1 by showing that
the mean-square estimation error Renen is smaller than the mean-square error Ren−1en−1 .
This is a very intuitive result; the more information we use the better the estimate.

Such recursive updating schemes are the essence of Kalman filtering. In that context,
Gn is referred to as the “Kalman gain.”

1.12 The recursive updating procedure given in Problem 1.11 is useful only if the gain coefficient
Gn can be computed at each iteration n. For that, a knowledge of the relationship between
x and yn is required. Consider the case of Example 1.4.3 where yn = cnx + vn; define the
vectors

cn = [c1, c2, . . . , cn]T , yn = [y1, y2, . . . , yn]T , for n = 1,2, . . . ,M

and let x̂n and en = x − x̂n be the estimate of x on the basis of Yn and the corresponding
estimation error.

94 1. Review of Random Signals

(a) Using Eq. (1.4.9), show that

x̂n = 1

1+ cTncn
cTnyn and E[e2

n]= E[xen]=
1

1+ cTncn

(b) Using Eq. (1.6.19), compute ŷn/n−1 and show that it may be expressed in the form

ŷn/n−1 = cnx̂n−1 = cn
1+ cTn−1cn−1

cTn−1yn−1

(c) Let en−1 = x− x̂n−1 be the estimation error based on Yn−1. Writing

εn = yn − ŷn/n−1 = (cnx+ vn)−cnx̂n−1 = cnen−1 + vn
show that

E[εnεn] = (1+ cTncn)(1+ cTn−1cn−1)−1

E[xεn] = cn(1+ cTn−1cn−1)−1

(d) Show that the estimate x̂n of x can be computed recursively by

x̂n = x̂n−1 +Gn(yn − ŷn/n−1) , where Gn = cn(1+ cTncn)−1

1.13 Rederive the recursive updating equation given in Problem 1.12(d), without any reference to
innovations or projections, by simply manipulating Eq. (1.4.9) algebraically, and writing it in
recursive form.

1.14 Computer Experiment. A three-component random vector y has autocorrelation matrix

R = E[yyT]=
⎡⎢⎣ 1 2 3

2 6 14
3 14 42

⎤⎥⎦ , y =
⎡⎢⎣ y1

y2

y3

⎤⎥⎦
Carry out the Gram-Schmidt orthogonalization procedure to determine the innovations rep-
resentation y = Bεεε, where εεε = [ε1, ε2, ε3]T is a vector of uncorrelated components. The
vector y can be simulated by generating a zero-mean gaussian vector of uncorrelated com-
ponents εεε of the appropriate variances and constructing y = Bεεε. Generate N = 50 such
vectors yn, n = 1,2, . . . ,N and compute the corresponding sample covariance matrix R̂
given by Eq. (1.6.21). Compare it with the theoretical R. Is R̂ consistent with the standard
deviation intervals (1.6.23)? Repeat for N = 100.

1.15 The Gram-Schmidt orthogonalization procedure for a subspace Y = {y1, y2, . . . , yM} is ini-
tialized at the leftmost random variable y1 by ε1 = y1 and progresses to the right by suc-
cessively orthogonalizing y2, y3, and so on. It results in the lower triangular representation
y = Bεεε. The procedure can just as well be started at the rightmost variable yM and proceed
backwards as follows:

ηM = yM
ηM−1 = yM−1 − (projection of yM−1 on ηM)

ηM−2 = yM−2 − (projection of yM−2 on {ηM,ηM−1})

and so on. Show that the resulting uncorrelated vector ηηη = [η1, η2, . . . , ηM]T is related to
y = [y1, y2, . . . , yM]T by a linear transformation

y = Uηηη
where U is a unit upper-triangular matrix. Show also that this corresponds to a UL (rather
than LU) Cholesky factorization of the covariance matrix Ryy.

1.23. Problems 95

1.16 Since “orthogonal” means “uncorrelated,” the Gram-Schmidt orthogonalization procedure
can also be understood as a correlation canceling operation. Explain how Eq. (1.6.20) may
be thought of as a special case of the correlation canceler defined by Eqs. (1.4.1) and (1.4.2).
What are x,y, e, and H, in this case? Draw the correlation canceler diagram of Fig. 1.4.1 as
it applies here, showing explicitly the components of all the vectors.

1.17 Using Eq. (1.7.11), show that the vector of coefficients [an1, an2, . . . , ann]T can be expressed
explicitly in terms of the y-basis as follows:⎡⎢⎢⎢⎢⎢⎣

an1

an2

...
ann

⎤⎥⎥⎥⎥⎥⎦ = −E[yn−1yTn−1]−1E[ynyn−1] , where yn−1 =

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
y0

⎤⎥⎥⎥⎥⎥⎦
1.18 Show that the mean-square estimation error of yn on the basis ofYn−1—that is, E[ε2

n], where
εn = yn − ŷn/n−1—can be expressed as

E[ε2
n]= E[εnyn]= E[y2

n]−E[ynyTn−1]E[yn−1yTn−1]−1E[ynyn−1]

1.19 Let an = [1, an1, an2, . . . , ann]T for n = 1,2, . . . ,M. Show that the results of the last two
problems can be combined into one enlarged matrix equation

E[ynyTn]an = E[ε2
n]un

where un is the unit-vector un = [1,0,0, . . . ,0]T consisting of one followed by n zeros, and
yn = [yn, yn−1, . . . , y1, y0]T= [yn , yTn−1]T .

1.20 The quantity ŷn/n−1 of Eq. (1.6.19) is the best estimate of yn based on all the previous ys,
namely, Yn−1 = {y0, y1, . . . , yn−1}. This can be understood in three ways: First, in terms
of the orthogonal projection theorem as we demonstrated in the text. Second, in terms of
the correlation canceler interpretation as suggested in Problem 1.16. And third, it may be
proved directly as follows. Let ŷn/n−1 be given as a linear combination of the previous ys as in
Eq. (1.7.11); the coefficients [an1, an2, . . . , ann]T are to be chosen optimally to minimize the
estimation error εn given by Eq. (1.7.10) in the mean-square sense. In terms of the notation
of Problem 1.19, Eq. (1.7.10) and the mean-square error E[ε2

n] can be written in the compact
vectorial form

εn = aTnyn , E(an)= E[ε2
n]= aTnE[ynyTn]an

The quantity E(an) is to be minimized with respect to an. The minimization must be sub-
ject to the constraint that the first entry of the vector an be unity. This constraint can be
expressed in vector form as

aTnun = 1

where un is the unit vector defined in Problem 1.19. Incorporate this constraint with a
Lagrange multiplier λ and minimize the performance index

E(an)= aTnE[ynyTn]an + λ(1− aTnun)

with respect to an, then fix λ by enforcing the constraint, and finally show that the resulting
solution of the minimization problem is identical to that given in Problem 1.19.

1.21 Show that the normal equations (1.8.12) can also be obtained by minimizing the performance
indices (1.8.10) with respect to a and b, subject to the constraints that the first element of
a and the last element of b be unity. (Hint: These constraints are expressible in the form
uTa = 1 and vTb = 1.)

96 1. Review of Random Signals

1.22 Using Eq. (1.8.16), show that Eb can be expressed as the ratio of the two determinants Eb =
detR/det R̄.

1.23 Show Eqs. (1.8.28) and (1.8.35).

1.24 A random signal x(n) is defined as a linear function of time by

x(n)= an+ b

where a and b are independent zero-mean gaussian random variables of variances σ2
a and

σ2
b, respectively.

(a) Compute E
[
x(n)2

]
.

(b) Is x(n) a stationary process? Is it ergodic? Explain.

(c) For each fixed n, compute the probability density p
(
x(n)

)
.

(d) For each fixed n and m (n 	=m), compute the conditional probability density function
p
(
x(n)|x(m)) of x(n) given x(m). (Hint: x(n)−x(m)= (n−m)b.)

1.25 Compute the sample autocorrelation of the sequences

(a) yn = 1, for 0 ≤ n ≤ 10.

(b) yn = (−1)n, for 0 ≤ n ≤ 10.

in two ways: First in the time domain, using Eq. (1.11.1), and then in the z-domain, using
Eq. (1.11.3) and computing its inverse z-transform.

1.26 FFT Computation of Autocorrelations. In many applications, a fast computation of sample
autocorrelations or cross-correlations is required, as in the matched filtering operations in
radar data processors. A fast way to compute the sample autocorrelation R̂yy(k) of a length-
N data segment y = [y0, y1, . . . , yN−1]T is based on Eq. (1.11.5) which can be computed
using FFTs. Performing an inverse FFT on Eq. (1.11.5), we find the computationally efficient
formula

R̂yy(k)= 1

N
IFFT

[∣∣FFT(y)
∣∣2]

(P.1)

To avoid wrap-around errors introduced by the IFFT, the length N′ of the FFT must be se-
lected to be greater than the length of the function R̂yy(k). Since R̂yy(k) is double-sided with
an extent −(N− 1)≤ k ≤ (N− 1), it will have length equal to 2N− 1. Thus, we must select
N′ ≥ 2N − 1. To see the wrap-around effects, consider the length-4 signal y = [1,2,2,1]T .

(a) Compute R̂yy(k) using the time-domain definition.

(b) Compute R̂yy(k) according to Eq. (P.1) using 4-point FFTs.

(c) Repeat using 8-point FFTs.

1.27 Computer Experiment.

(a) Generate 1000 samples x(n), n = 0,1, . . . ,999, of a zero-mean, unit-variance, white
gaussian noise sequence.

(b) Compute and plot the first 100 lags of its sample autocorrelation, that is, R̂yy(k), for
k = 0,1, . . . ,99. Does R̂yy(k) look like a delta function δ(k)?

1.23. Problems 97

(c) Generate 10 different realizations of the length-1000 sequence x(n), and compute 100
lags of the corresponding sample autocorrelations. Define an average autocorrelation
by

R̂(k)= 1

10

10∑
i=1

R̂i(k) , k = 0,1, . . . ,99,

where R̂i(k) is the sample autocorrelation of the ith realization of x(n). Plot R̂(k)
versus k. Do you notice any improvement?

1.28 A 500-millisecond record of a stationary random signal is sampled at a rate of 2 kHz and
the resulting N samples are recorded for further processing. What is N? The record of N
samples is then divided into K contiguous segments, each of length M, so that M = N/K.
The periodograms from each segment are computed and averaged together to obtain an
estimate of the power spectrum of the signal. A frequency resolution of Δf = 20 Hz is
required. What is the shortest lengthM that will guarantee such resolution? (LargerMs will
have better resolution than required but will result in a poorer power spectrum estimate
because K will be smaller.) What is K in this case?

1.29 A random signal yn is generated by sending unit-variance zero-mean white noise εn through
the filters defined by the following difference equations:

1. yn = −0.9yn−1 + εn
2. yn = 0.9yn−1 + εn + εn−1

3. yn = εn + 2εn−1 + εn−2

4. yn = −0.81yn−2 + εn
5. yn = 0.1yn−1 + 0.72yn−2 + εn − 2εn−1 + εn−2

(a) For each case, determine the transfer function B(z) of the filter and draw its canonical
implementation form, identify the set of model parameters, and decide whether the
model is ARMA, MA, or AR.

(b) Write explicitly the power spectrum Syy(ω) using Eq. (1.13.6).

(c) Based on the pole/zero pattern of the filter B(z), draw a rough sketch of the power
spectrum Syy(ω) for each case.

1.30 Computer Experiment.

98 1. Review of Random Signals

Two different realizations of a stationary random signal
y(n), n = 0,1, . . . ,19 are given. It is known that this
signal has been generated by a model of the form

y(n)= ay(n− 1)+ε(n)

where ε(n) is gaussian zero-mean white noise of variance
σ2
ε .

(a) Estimate the model parameters a and σ2
ε using the

maximum likelihood criterion for both realizations.
(The exact values were a = 0.95 and σ2

ε = 1.)

(b) Repeat using the Yule-Walker method.

This type of problem might, for example, arise in speech
processing where y(n) might represent a short segment
of sampled unvoiced speech from which the filter parame-
ters (model parameters) are to be extracted and stored for
future regeneration of that segment. A realistic speech
model would of course require a higher-order filter, typi-
cally, of order 10 to 15.

n y(n) y(n)
0 3.848 5.431
1 3.025 5.550
2 5.055 4.873
3 4.976 5.122
4 6.599 5.722
5 6.217 5.860
6 6.572 6.133
7 6.388 5.628
8 6.500 6.479
9 5.564 4.321

10 5.683 5.181
11 5.255 4.279
12 4.523 5.469
13 3.952 5.087
14 3.668 3.819
15 3.668 2.968
16 3.602 2.751
17 1.945 3.306
18 2.420 3.103
19 2.104 3.694

1.31 Computer Experiment.

(a) Using the Yule-Walker estimates {â, σ̂2
ε} of the model parameters extracted from the

first realization of y(n) given in Problem 1.30, make a plot of the estimate of the power
spectrum following Eq. (1.13.6), that is,

Ŝyy(ω)= σ̂2
ε

|1− âe−jω|2

versus frequencyω in the interval 0 ≤ω ≤ π.

(b) Also, plot the true power spectrum

Syy(ω)= σ2
ε

|1− ae−jω|2

defined by the true model parameters {a,σ2
ε} = {0.95,1}.

(c) Using the given data values y(n) for the first realization, compute and plot the corre-
sponding periodogram spectrum of Eq. (1.11.5). Preferably, plot all three spectra on the
same graph. Compute the spectra at 100 or 200 equally spaced frequency points in the
interval [0,π]. Plot all spectra in decibels.

(d) Repeat parts (a) through (c) using the second realization of y(n).

Better agreement between estimated and true spectra can be obtained using Burg’s analysis
procedure instead of the Yule-Walker method. Burg’s method performs remarkably well
on the basis of very short data records. The Yule-Walker method also performs well but it
requires somewhat longer records. These methods will be compared in Chap. 14.

1.32 In addition to the asymptotic results (1.16.4) for the model parameters, we will show in
Chap. 14 that the estimates of filter parameter and the input variance are asymptotically

1.23. Problems 99

uncorrelated, E[ΔaΔσ2
ε]= 0. Using this result and Eq. (1.16.4), show that the variance of

the spectrum estimate is given asymptotically by

E
[
ΔS(ω)ΔS(ω)

] = 2S(ω)2

N

[
1+ 2(1− a2)(cosω− a)2

(1− 2a cosω+ a2)2

]

where ΔS(ω)= Ŝ(ω)−S(ω), with the theoretical and estimated spectra given in terms of
the theoretical and estimated model parameters by

S(ω)= σ2
ε

|1− ae−jω|2 , Ŝ(ω)= σ̂2
ε

|1− âe−jω|2

1.33 For any positive semi-definite matrix B show the inequality tr(B− I− lnB)≥ 0 with equality
achieved for B = I. Using this property, show the inequality f(R)≥ f(R̂), where f(R)=
tr(lnR+R−1R̂). This implies the maximum likelihood property of R̂, discussed in Sec. 1.18.

1.34 Show the following three matrix properties used in Sec. 1.18:

ln(detR)= tr(lnR) , d tr(lnR)= tr(R−1dR) , dR−1 = −R−1 dRR−1

(Hints: for the first two, use the eigenvalue decomposition of R; for the third, start with
R−1R = I.)

1.35 Let x(n) be a zero-mean white-noise sequence of unit variance. For each of the following
filters compute the output autocorrelation Ryy(k) for all k, using z-transforms:

1. y(n)= x(n)−x(n− 1)
2. y(n)= x(n)−2x(n− 1)+x(n− 2)
3. y(n)= −0.5y(n− 1)+x(n)
4. y(n)= 0.25y(n− 2)+x(n)

Also, sketch the output power spectrum Syy(ω) versus frequencyω.

1.36 Let yn be the output of a (stable and causal) filter H(z) driven by the signal xn, and let wn
be another unrelated signal. Assume all signals are stationary random signals. Show the
following relationships between power spectral densities:

(a) Syw(z)= H(z)Sxw(z)
(b) Swy(z)= Swx(z)H(z−1)

1.37 A stationary random signal yn is sent through a finite filterA(z)= a0+a1z−1+· · ·+aMz−M
to obtain the output signal en :

en =
M∑
m=0

amyn−m

Show that the average power of the output en can be expressed in the two alternative forms:

E[e2
n]=

∫ π
−π
Syy(ω)

∣∣A(ω)∣∣2 dω
2π

= aTRyya

where a = [a0, a1, . . . , aM]T and Ryy is the (M + 1)×(M + 1) autocorrelation matrix of yn
having matrix elements Ryy(i, j)= E[yiyj]= Ryy(i− j).

100 1. Review of Random Signals

1.38 Consider the two autoregressive random signals yn and y′n generated by the two signal
models:

A(z)= 1+ a1z−1 + · · · + aMz−M and A′(z)= 1+ a′1z−1 + · · · + a′Mz−M

(a) Suppose yn is filtered through the analysis filterA′(z) of y′n producing the output signal
en; that is,

en =
M∑
m=0

a′myn−m

If yn were to be filtered through its own analysis filter A(z), it would produce the inno-
vations sequence εn. Show that the average power of en compared to the average power
of εn is given by

σ2
e

σ2
ε
= a′TRyya′

aTRyya
=

∫ π
−π

∣∣∣∣A′(ω)A(ω)

∣∣∣∣2 dω
2π

=
∥∥∥∥A′A

∥∥∥∥2

where a, a′ andRyy have the same meaning as in Problem 1.37. This ratio can be taken as
a measure of similarity between the two signal models. The log of this ratio is Itakura’s
LPC distance measure used in speech recognition.

(b) Alternatively, show that if y′n were to be filtered through yn’s analysis filter A(z) result-
ing in e′n =

∑M
m=0 amy′n−m, then

σ2
e′

σ2
ε′
= aTR′yya

a′TR′yya′
=

∫ π
−π

∣∣∣∣ A(ω)A′(ω)

∣∣∣∣2 dω
2π

=
∥∥∥∥ AA′

∥∥∥∥2

1.39 The autocorrelation function of a complex-valued signal is defined by

Ryy(k)= E[yn+ky∗n]
(a) Show that stationarity implies Ryy(−k)= Ryy(k)∗.

(b) If yn is filtered through a (possibly complex-valued) filter A(z)= a0 + a1z−1 + · · · +
aMz−M , show that the average power of the output signal en can be expressed as

E[e∗nen]= a†Ryya

where a† denotes the hermitian conjugate of a and Ryy has matrix elements

Ryy(i, j)= Ryy(i− j)

1.40 (a) Let yn = A1 exp
[
j(ω1n + φ1)

]
be a complex sinusoid of amplitude A1 and frequency

ω1. The randomness of yn arises only from the phase φ1 which is assumed to be a random
variable uniformly distributed over the interval 0 ≤ φ1 ≤ 2π. Show that the autocorrelation
function of yn is

Ryy(k)= |A1|2 exp(jω1k)

(b) Let yn be the sum of two sinusoids

yn = A1 exp
[
j(ω1n+φ1)

]+A2 exp
[
j(ω2n+φ2)

]
with uniformly distributed random phases φ1 and φ2 which are also assumed to be inde-
pendent of each other. Show that the autocorrelation function of yn is

Ryy(k)= |A1|2 exp(jω1k)+|A2|2 exp(jω2k)

1.23. Problems 101

1.41 Sinusoids in Noise. Suppose yn is the sum of L complex sinusoids with random phases, in
the presence of uncorrelated noise:

yn = vn +
L∑
i=1

Ai exp
[
j(ωin+φi)

]
where φi, i = 1,2, . . . , L are uniformly distributed random phases which are assumed to be
mutually independent, and vn is zero-mean white noise of variance σ2

v . Also, assume that
vn is independent of φi.

(a) Show that E[ejφie−jφk]= δik, for i, k = 1,2, . . . , L.

(b) Show that the autocorrelation of yn is

Ryy(k)= σ2
vδ(k)+

L∑
i=1

|Ai|2 exp(jωik)

(c) Suppose yn is filtered through a filter A(z)= a0 + a1z−1 + · · · + aMz−M of order M,
producing the output signal en. Show that the average output power is expressible as

E = E[e∗nen]= a†Ryya = σ2
v a†a+

L∑
i=1

|Ai|2
∣∣A(ωi)∣∣2

where a, a†, Ryy have the same meaning as in Problem 1.39, and A(ωi) is the frequency
response of the filter evaluated at the sinusoid frequencyωi, that is,

A(ωi)=
M∑
m=0

ame−jωim , i = 1,2, . . . ,M

(d) If the noise vn is correlated with autocorrelationQ(k), so that E[vn+kv∗n]= Q(k), show
that in this case

E = E[e∗nen]= a†Ryya = a†Qa+
L∑
i=1

|Ai|2
∣∣A(ωi)∣∣2

where Q is the noise covariance matrix, Q(i, j)= Q(i− j).

1.42 A filter is defined by y(n)= −0.64y(n− 2)+0.36x(n).

(a) Suppose the input is zero-mean, unit-variance, white noise. Compute the output spectral
density Syy(z) and power spectrum Syy(ω) and plot it roughly versus frequency.

(b) Compute the output autocorrelation Ryy(k) for all lags k.

(c) Compute the noise reduction ratio of this filter.

(d) What signal s(n) can pass through this filter and remain entirely unaffected (at least in
the steady-state regime)?

(e) How can the filter coefficients be changed so that (i) the noise reduction capability of
the filter is improved, while at the same time (ii) the above signal s(n) still goes through
unchanged? Explain any tradeoffs.

102 1. Review of Random Signals

1.43 Computer Experiment. (a) Generate 1000 samples of a zero-mean, unit-variance, white gaus-
sian noise sequence x(n), n = 0,1, . . . ,999, and filter them through the filter defined by the
difference equation:

y(n)= ay(n− 1)+(1− a)x(n)
with a = 0.95. To avoid the transient effects introduced by the filter, discard the first 900
output samples and save the last 100 samples of y(n). Compute the sample autocorrelation
of y(n) from this length-100 block of samples.

(b) Determine the theoretical autocorrelation Ryy(k), and on the same graph, plot the
theoretical and sample autocorrelations versus k. Do they agree?

1.44 Prove Eq. (1.19.6).

1.45 Using Eq. (1.19.10), show Eqs. (1.19.12) and (1.19.13).

1.46 A random signal yn has autocorrelation function

Ryy(k)= (0.5)|k| , for all k

Find a random signal generator model for yn.

1.47 Repeat Problem 1.46 when

Ryy(k)= (0.5)|k|+(−0.5)|k| , for all k

1.48 The autocorrelation function of a stationary random signal y(n) is

Ryy(k)= 1−R2

1+R2
R|k| cos(πk/2) , for all k , where 0 < R < 1

(a) Compute the power spectrum Syy(ω) of y(n) and sketch it versus frequency for various
values of R.

(b) Find the signal generator filter for y(n) and determine its difference equation and its
poles and zeros.

1.49 A stationary random signal yn has a rational power spectral density given by

Syy(z)= 2.18− 0.6(z+ z−1)
1.25− 0.5(z+ z−1)

Determine the signal model filter B(z) and the parameter σ2
ε . Write the difference equation

generating yn.

1.50 Let yn = cxn + vn. It is given that

Sxx(z)= Q
(1− az−1)(1− az) , Svv(z)= R , Sxv(z)= 0

where a, c,Q,R are known constants (assume |a| < 1) for the stability of xn.)

(a) Show that the filter model for yn is of the form

B(z)= 1− fz−1

1− az−1

where f has magnitude less than one and is the solution of the algebraic quadratic
equation

aR(1+ f2)= [
c2Q +R(1+ a2)

]
f

and show that the other solution has magnitude greater than one.

1.23. Problems 103

(b) Show that f can alternatively be expressed as

f = Ra
R+ c2P

where P is the positive solution of the quadratic equation

Q = P− PRa2

R+ c2P
known as the algebraic Riccati equation. Show that the other solution is negative. Show
that the positivity of P is essential to guarantee that f has magnitude less than one.

(c) Show that the scale factor σ2
ε that appears in the spectral factorization (1.20.1) can also

be expressed in terms of P as

σ2
ε = R+ c2P

The above method of solution of the spectral factorization problem by reducing it to the
solution of an algebraic Riccati equation is quite general and can be extended to the multi-
channel case.

1.51 Consider a stable (but not necessarily causal) sequence bn, −∞ < n <∞ with a z-transform
B(z)

B(z)=
∞∑

n=−∞
bnz−n

Define an infinite Toeplitz matrix B by

Bni = bn−i , for −∞ < n, i <∞
This establishes a correspondence between stable z-transforms or stable sequences and
infinite Toeplitz matrices.

(a) Show that if the sequence bn is causal, then B is lower triangular, as shown here

In the literature of integral operators and kernels, such matrices are rotated by 90o

degrees as shown:

so that the n axis is the horizontal axis. For this reason, in that context they are called
“right Volterra kernel,” or “causal kernels.”

(b) Show that the transposed BT corresponds to the reflected (about the origin) sequence
b−n and to the z-transform B(z−1).

(c) Show that the convolution of two sequences an and bn

cn = an ∗ bn or C(z)= A(z)B(z)
corresponds to the commutative matrix product

C = AB = BA
1.52 Prove Eq. (1.21.2) for anyM.

2
Signal Extraction Basics

2.1 Introduction

One of the most common tasks in signal processing is to extract a desired signal, say
xn, from an observed signal:

yn = xn + vn (2.1.1)

where vn is an undesired component. The nature of vn depends on the application. For
example, it could be a white noise signal, which is typical of the background noise picked
up during the measurement process, or it could be any other signal—not necessarily
measurement noise—that must be separated from xn.

The desired signal xn often represents a smooth trend that conveys useful infor-
mation about the underlying dynamics of the evolving time series. Trend extraction is
carried out routinely on financial, business, census, climatic, and other applications.

An estimate, x̂n, of the desired signal xn is obtained by processing the observed sig-
nal yn through a processor designed according to some optimization criterion. There
exist a large variety of signal extraction methods, most of them based on a least-squares
minimization criterion, falling into two basic classes: (a) model-based parametric meth-
ods, such as those based on Wiener and Kalman filtering, and (b) non-parametric meth-
ods based on a variety of approaches, such as local polynomial modeling, exponential
smoothing, splines, regularization filters, wavelets, and SVD-based methods. Some of
the non-parametric methods (exponential smoothing, splines, regularization filters) can
also be cast in a state-space Kalman filtering form.

We discuss the Wiener and Kalman approaches in chapters 11 and 13, and the
SVD-based methods in chapter 15. In this chapter, we concentrate primarily on non-
parametric methods.

We consider also the problem of “de-seasonalizing” a time series, that is, estimating
and removing a periodic component. Many physical and financial time series have a nat-
ural periodicity built into them, such as daily, monthly, quarterly, yearly. The observed
signal can be decomposed into three components: a periodic (or nearly periodic) sea-
sonal part sn, a smooth trend tn, and a residual irregular part vn that typically represents
noise,

yn = sn + tn + vn (2.1.2)

104

2.2. Noise Reduction and Signal Enhancement 105

In such cases, the signal processing task is to determine both the trend and the
seasonal components, tn and sn. Often, economic data are available only after they
have been de-seasonalized, that is, after the seasonal part sn has been removed. Further
processing of the de-seasonalized trend, tn, can provide additional information such as
identifying business cycles. Moreover, modeling of the trend can be used for forecasting
purposes.

The particular methods of smoothing, trend extraction, and seasonal decomposition
that we consider in this and the next few chapters are:

• local polynomial smoothing filters (Savitzky-Golay filters) — Chap. 3
• minimum-roughness filters (Henderson filters) — Chap. 4
• local polynomial modeling and LOESS — Chap. 5
• exponential smoothing — Chap. 6
• smoothing splines — Chap. 7
• regularization filters (Whittaker-Henderson, Hodrick-Prescott) — Chap. 8
• wavelet denoising — Chap. 10
• seasonal decomposition (classical, moving average, census X-11) — Chap. 9
• bandpass and other filters in business and finance — Chap. 8

2.2 Noise Reduction and Signal Enhancement

A standard method of extracting the desired signal xn from yn is to design an appro-
priate filter H(z) that removes the noise component vn and at the same time lets xn
go through unchanged. It is useful to view the design specifications and operation of
such filter both in the time and frequency domains. Using linearity, we can express the
output signal due to the input of Eq. (2.1.1) in the form:

ŷn = x̂n + v̂n (2.2.1)

where x̂n is the output due to xn and v̂n the output due to vn. The two design conditions
for the filter are that x̂n be as similar to xn as possible and that v̂n be as small as possible;
that is, ideally we require:†

x̂n = xn
v̂n = 0

(2.2.2)

In general, these conditions cannot be satisfied simultaneously. To determine when
they can be satisfied, we may express them in the frequency domain in terms of the
corresponding frequency spectra as follows: X̂(ω)= X(ω) and V̂(ω)= 0.

Applying the filtering equation Ŷ(ω)= H(ω)Y(ω) separately to the signal and
noise components, we have the conditions:

X̂(ω) = H(ω)X(ω)= X(ω)
V̂(ω) = H(ω)V(ω)= 0

(2.2.3)

†An overall delay in the recovered signal is often acceptable, that is, x̂n = xn−D.

106 2. Signal Extraction Basics

The first requires that H(ω)= 1 at all ω at which the signal spectrum is nonzero,
X(ω)≠ 0. The second requires that H(ω)= 0 at allω for which the noise spectrum is
nonzero, V(ω)≠ 0.

These two conditions can be met simultaneously only if the signal and noise spectra
do not overlap, as shown in Fig. 2.2.1.‡ In such cases, the filterH(ω)must have a pass-
band that coincides with the signal band, and a stopband that coincides with the noise
band. The filter removes the noise spectrum and leaves the signal spectrum unchanged.

Fig. 2.2.1 Signal and noise spectra before and after filtering.

If the signal and noise spectra overlap, as is the typical case in practice, the above
conditions cannot be satisfied simultaneously. In such cases, we must compromise
between the two design conditions and trade off one for the other. Depending on the
application, we may decide to design the filter to remove as much noise as possible, but
at the expense of distorting the desired signal. Alternatively, we may decide to leave
the desired signal as undistorted as possible, but at the expense of having some noise
in the output.

The latter alternative is depicted in Fig. 2.2.2 where a low-frequency signal xn exists
in the presence of a broadband noise component, such as white noise, having a flat
spectrum extending over the entire1 Nyquist interval, −π ≤ω ≤ π.

The filter H(ω) is chosen to be an ideal lowpass filter with passband covering the
signal bandwidth, say 0 ≤ω ≤ωc. The noise energy in the filter’s stopbandωc ≤ω ≤
π is removed completely by the filter, thus reducing the strength (i.e., the rms value) of
the noise. The spectrum of the desired signal is not affected by the filter, but neither is
the portion of the noise spectrum that falls within the signal band. Thus, some noise
will survive the filtering process.

A measure of the amount of noise reduction achieved by a filter is given by the noise
gain, or noise reduction ratio (NRR) of the filter, defined in Eq. (1.12.16), which is valid
for white noise input signals. Denoting the input and output mean-square noise values
by σ2 = E[v2

n] and σ̂2 = E[v̂2
n], we have:

R = σ̂
2

σ2
= 1

2π

∫ π
−π
|H(ω)|2 dω =

∑
n
h2
n (2.2.4)

‡Here,ω is in units of radians per sample, i.e.,ω = 2πf/fs, with f in Hz, and fs is the sampling rate.
1For discrete-time signals, the spectra are periodic inω with period 2π, or in f with period fs.

2.2. Noise Reduction and Signal Enhancement 107

Fig. 2.2.2 Signal enhancement filter with partial noise reduction.

For the case of an ideal lowpass filter, with frequency and impulse responses given
by [29],

H(ω)=
⎧⎨⎩1, if |ω| ≤ωc

0, ifωc ≤ |ω| ≤ π
and hn = sin(ωcn)

πn
, −∞ < n <∞ (2.2.5)

the integration range in Eq. (2.2.4) collapses to the filter’s passband, that is, −ωc ≤ω ≤
ωc, and over this range the value of H(ω) is unity, giving:

R = σ̂
2

σ2
= 1

2π

∫ωc
−ωc

1 · dω = 2ωc
2π

= ωc
π

(2.2.6)

Thus, the NRR is the proportion of the signal bandwidth with respect to the Nyquist
interval. The same conclusion also holds when the desired signal is a high-frequency
or a mid-frequency signal. For example, if the signal spectrum extends only over the
mid-frequency bandωa ≤ |ω| ≤ωb, then H(ω) can be designed to be unity over this
band and zero otherwise. A similar calculation yields in this case:

R = σ̂
2

σ2
= ωb −ωa

π
(2.2.7)

The noise reduction/signal enhancement capability of a filter can also be expressed
in terms of the signal-to-noise ratio. The SNRs at the input and output of the filter are
defined in terms of the mean-square values as:

SNRin = E[x
2
n]

E[v2
n]
, SNRout = E[x̂

2
n]

E[v̂2
n]

Therefore, the relative improvement in the SNR introduced by the filter will be:

SNRout

SNRin
= E[x̂

2
n]

E[v̂2
n]
· E[v

2
n]

E[x2
n]
= 1

R · E[x̂
2
n]

E[x2
n]

If the desired signal is not changed by the filter, x̂n = xn, then

SNRout

SNRin
= 1

R (2.2.8)

108 2. Signal Extraction Basics

Thus, minimizing the noise reduction ratio is equivalent to maximizing the signal-
to-noise ratio at the filter’s output.

The NRRs computed in Eqs. (2.2.6) or (2.2.7) give the maximum noise reductions
achievable with ideal lowpass or bandpass filters that do not distort the desired signal.
Such ideal filters are not realizable because they have double-sided impulse responses
with infinite anticausal tails. Thus, in practice, we must use realizable approximations
to the ideal filters, such as FIR filters, or causal IIR filters. The realizable filters may
meet the two design goals approximately, for example, by minimizing the NRR subject
to certain constraints that help sustain the signal passband. Examples of this approach
are discussed in Sections 2.3, 2.4, and generalized in Sections 3.1 and 4.2.

The use of realizable filters introduces two further design issues that must be dealt
with in practice: One is the transient response of the filter and the other, the amount
of delay introduced into the output. The more closely a filter approximates the sharp
transition characteristics of an ideal response, the closer to the unit circle its poles
get, and the longer its transient response becomes. Stated differently, maximum noise
reduction, approaching the ideal limit (2.2.6), can be achieved only at the expense of
introducing long transients in the output.

The issue of the delay introduced into the output has to do with the steady-state
response of the filter. After steady-state has set in, different frequency components
of an input signal suffer different amounts of delay, as determined by the phase delay
d(ω)= −ArgH(ω)/ω of the filter [29].

In particular, if the filter has linear phase, then it causes an overall delay in the out-
put. Indeed, assuming that the filter has nearly unity magnitude, |H(ω)| � 1, over its
passband (i.e., the signal band) and is zero over the stopband, and assuming a constant
phase delay d(ω)= D, we have for the frequency response

H(ω)= |H(ω)|e−jωd(ω) � e−jωD

over the passband, and we find for the filtered version of the desired signal:

x̂n = 1

2π

∫ π
−π
X̂(ω)ejωn dω = 1

2π

∫ π
−π
H(ω)X(ω)ejωn dω

= 1

2π

∫ωc
−ωc

X(ω)ejω(n−D) dω = x(n−D)

the last equation following from the inverse DTFT of the desired signal:

xn = 1

2π

∫ωc
−ωc

X(ω)ejωn dω

Many smoothing filters used in practice (e.g., see Chapters 3 and 4) are double-sided
filters, hn,−M ≤ n ≤M, with a symmetric impulse response, hn = h−n, and therefore,
they introduce no delay in the output (D = 0). On the other hand, if such filters are
made causal by a delay (D = M), then they will introduce a delay in the output. Such
delays are of concern in some applications such as monitoring and filtering real-time
data in the financial markets.

Next, we consider some noise reduction examples based on simple filters, calcu-
late the corresponding noise reduction ratios, discuss the tradeoff between transient
response and noise reduction, and present some simulation examples.

2.3. First-Order Exponential Smoother 109

2.3 First-Order Exponential Smoother

It is desired to extract a constant signal xn = s from the noisy measured signal

yn = xn + vn = s+ vn
where vn is zero-mean white Gaussian noise of variance σ2

v . To this end, the following
IIR lowpass filter may be used, where b = 1− a,

H(z)= b
1− az−1

, H(ω)= b
1− ae−jω , |H(ω)|2 = b2

1− 2a cosω+ a2
(2.3.1)

where the parameter a is restricted to the range 0 < a < 1. Because the desired signal
xn is constant in time, the signal band will be just the DC frequencyω = 0. We require
therefore that the filter have unity gain at DC. This is guaranteed by the above choice of
the parameter b, that is, we have atω = 0, or equivalently at z = 1,

H(z)
∣∣
z=1 =

b
1− a = 1

The NRR can be calculated from Eq. (2.2.4) by summing the impulse response squared.
Here, hn = banun, therefore, using the geometric series, we find

R = σ̂
2

σ2
=

∑
n
h2
n = b2

∞∑
n=0

a2n = b2

1− a2
= (1− a)

2

1− a2
= 1− a

1+ a (2.3.2)

The filter’s magnitude response, pole-zero pattern, and the corresponding input and
output noise spectra are shown in Fig. 2.3.1. The shaded area under the |H(ω)|2 curve
(including its negative-frequency portion) is equal as the NRR computed above.

Fig. 2.3.1 Lowpass exponential smoothing filter.

The NRR is always less than unity because a is restricted to 0 < a < 1. To achieve
high noise reduction, a must be chosen near one. But, then the filter’s effective time
constant will become large:†

neff = ln ε
lna

→∞ as a→ 1

†The values ε = 0.01 and ε = 0.001 correspond to the so-called 40-dB and 60-dB time constants [30].

110 2. Signal Extraction Basics

The filter’s 3-dB cutoff frequency ωc can be calculated by requiring that |H(ωc)|2
drops by 1/2, that is,

|H(ωc)|2 = b2

1− 2a cosωc + a2
= 1

2

which can be solved to give cosωc = 1 − (1 − a)2/2a. If a is near one, a � 1, we can
use the approximation cosx � 1− x2/2 and solve forωc approximately:†

ωc � 1− a

This shows that as a → 1, the filter becomes a narrower lowpass filter, removing
more noise from the input, but at the expense of increasing the time constant.

The tradeoff between noise reduction and speed of response is illustrated in Fig. 2.3.2,
where 200 samples of a simulated noisy signal yn were filtered using the difference equa-
tion of the filter, that is, replacing b = 1− a

yn = s+ vn , x̂n = ax̂n−1 + (1− a)yn (2.3.3)

and initialized at x̂−1 = 0. The value of the constant was s = 5, and the input noise
variance, σ2

v = 1. The random signal vn was generated by the built-in MATLAB function
randn. The figure on the left corresponds to a = 0.90, which has a 40-dB time constant,
NRR, and SNR improvement in dB:

neff = ln(0.01)
ln(0.90)

= 44 , R = 1− 0.90

1+ 0.90
= 1

19
, 10 log10

(
1

R
)
= 12.8 dB

The right figure has a = 0.98, with a longer time constant of neff = 228, a smaller
R = 1/99, and bigger SNR improvement, 10 log10(1/R)= 20 dB.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

a = 0.90

xn

yn

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

a = 0.98

xn

yn

Fig. 2.3.2 Noisy input and smoothed output.

†The full 3-dB width of the interval [−ωc,ωc] is 2ωc = 2(1 − a). This is a special case of a more
general result [30] that the 3-dB width due to a filter pole with radius r near the unit circle, r � 1, is given
by Δω = 2(1− r).

2.3. First-Order Exponential Smoother 111

To understand how this filter works in the time domain and manages to reduce the
noise, we rewrite the difference equation (2.3.3) in its convolutional form:

x̂n = b
n∑
m=0

amyn−m = b
(
yn + ayn−1 + a2yn−2 + · · · + any0

)
The sum represents a weighted average of all the past samples up to the present

time instant. As a result, the rapid fluctuations of the noise component vn are averaged
out. The closer a is to 1, the more equal weighting the terms get, and the more effective
the averaging of the noise. The exponential weighting de-emphasizes the older samples
and causes the sum to behave as though it had effectively a finite number of terms, thus,
safeguarding the mean-square value of x̂n from diverging (see, for example, Sec. 1.15.)
Because of the exponential weighting, this filter is also called an exponential smoother.

This filter can be applied to the smoothing of any low-frequency signal, not just
constants. One must make sure that the bandwidth of the desired signal xn is narrower
than the filter’s lowpass width ωc, so that the filter will not remove any of the higher
frequencies present in xn.

The exponential smoother is a standard tool in many applications requiring the
smoothing of data in signal processing, statistics, economics, physics, and chemistry. It
is also widely used in forecasting applications, for example in inventory control, where
the quantity x̂n is interpreted as the one-step ahead forecast. More precisely, the fore-
casting filter and its I/O difference equation are given by:

Hf(z)= z−1H(z)= bz−1

1− az−1
, Fn+1 = aFn + (1− a)yn (2.3.4)

where Fn+1 is the predicted value of xn+1 based on the available data yn up to time n.
We discuss the exponential smoother further in Sec. 6.1, where we rederive it from

an optimization criterion and generalize it to higher orders.
A slight variation of Eq. (2.3.1) which improves the NRR without affecting the speed

of response can be derived by adding a zero in the transfer function at z = −1 or
equivalently, atω = π. The resulting first-order filter will be:

H(z)= b(1+ z
−1)

1− az−1
⇒ |H(ω)|2 = 2b2(1+ cosω)

1− 2a cosω+ a2
(2.3.5)

where b is fixed by requiring unity gain at DC:

H(z)
∣∣
z=1 =

2b
1− a = 1 ⇒ b = 1− a

2

The zero at ω = π suppresses the high-frequency portion of the input noise spec-
trum even more than the filter of Eq. (2.3.1), thus, resulting in smaller NRR for the same
value of a. The impulse response of this filter can be computed using partial fractions:

H(z)= b(1+ z
−1)

1− az−1
= A0 + A1

1− az−1
, where A0 = −ba, A1 = b(1+ a)a

Therefore, its (causal) impulse response will be:

hn = A0δ(n)+A1anu(n)

112 2. Signal Extraction Basics

Note, in particular, that h0 = A0 +A1 = b. It follows that

R =
∞∑
n=0

h2
n = h2

0 +
∞∑
n=1

h2
n = b2 +A2

1
a2

1− a2
= 1− a

2

This is slightly smaller than that of Eq. (2.3.2), because of the inequality:

1− a
2

<
1− a
1+ a

The 3-dB cutoff frequency can be calculated easily in this example. We have

|H(ωc)|2 = 2b2(1+ cosωc)
1− 2a cosωc + a2

= 1

2

which can be solved forωc in terms of a:

cosωc = 2a
1+ a2

� tan
(
ωc
2

)
= 1− a

1+ a (2.3.6)

Conversely, we can solve for a in terms ofωc:

a = 1− sinωc
cosωc

= 1− tan(ωc/2)
1+ tan(ωc/2)

(2.3.7)

It is easily checked that the condition 0 < a < 1 requires that ωc < π/2. We note
also that the substitution z→ −z changes the filter into a highpass one.

Such simple first-order lowpass or highpass filters with easily controllable widths
are useful in many applications, such as the low- and high-frequency shelving filters of
audio equalizers [30].

2.4 FIR Averaging Filters

The problem of extracting a constant or a low-frequency signal xn from the noisy signal
yn = xn + vn can also be approached with FIR filters. Consider, for example, the third-
order filter:

H(z)= h0 + h1z−1 + h2z−2 + h3z−3

The condition that the constant signal xn go through the filter unchanged is the
condition that the filter have unity gain at DC, which gives the constraint among the
filter weights:

H(z)
∣∣
z=1 = h0 + h1 + h2 + h3 = 1 (2.4.1)

The NRR of this filter will be simply:

R =
∑
n
h2
n = h2

0 + h2
1 + h2

2 + h2
3 (2.4.2)

The optimum third-order FIR filter will be the one that minimizes this NRR, subject
to the lowpass constraint (2.4.1). To solve this minimization problem, we introduce a
Lagrange multiplier λ and incorporate the constraint (2.4.1) into the performance index:

J =R+ λ
(

1−
3∑
n=0

hn
)
=

3∑
n=0

h2
n + λ

(
1−

3∑
n=0

hn
)

(2.4.3)

2.4. FIR Averaging Filters 113

The minimization can be carried out easily by setting the partial derivatives of J to
zero and solving for the h’s:

∂J
∂hn

= 2hn − λ = 0 ⇒ hn = λ
2
, n = 0,1,2,3

Thus, all four h’s are equal, h0 = h1 = h2 = h3 = λ/2. The constraint (2.4.1) then
fixes the value of λ to be 1/2 and we find the optimum weights:

h0 = h1 = h2 = h3 = 1

4

and the minimized NRR becomes:

Rmin =
(

1

4

)2

+
(

1

4

)2

+
(

1

4

)2

+
(

1

4

)2

= 4
(

1

4

)2

= 1

4

The I/O equation for this optimum smoothing filter becomes:

x̂n = 1

4

(
yn + yn−1 + yn−3 + yn−3

)
More generally, the optimum length-N FIR filter with unity DC gain and minimum

NRR is the filter with equal weights:

H(z)= 1

N
[
1+ z−1 + z−2 + · · · + z−(N−1)] (2.4.4)

and I/O equation:

x̂n = 1

N
(
yn + yn−1 + · · · + yn−N+1

)
(2.4.5)

with minimized NRR:

R = h2
0 + h2

1 + · · · + h2
N−1 = N ·

(
1

N

)2

= 1

N
(2.4.6)

Thus, by choosingN large enough, the NRR can be made as small as desired. Again,
as the NRR decreases, the filter’s time constant (neff = N) increases.

How does the FIR smoother compare with the IIR smoother of Eq. (2.3.1)? First, we
note the IIR smoother is very simple computationally, requiring only 2 MACs† per output
sample, whereas the FIR requires N MACs.

Second, the FIR smoother typically performs better in terms of both the NRR and
the transient response, in the sense that for the same NRR value, the FIR smoother has
shorter time constant, and for the same time constant, it has a smaller NRR. We illustrate
these remarks below.

Given a time constant neff = ln ε/ lna for an IIR smoother, the “equivalent” FIR
smoother should be chosen to have the same length N = neff, thus,

N = ln ε
lna

, a = ε1/N (2.4.7)

†multiplication-accumulations

114 2. Signal Extraction Basics

For example, if a = 0.90 and ε = 0.01, then N = neff = 44. But then, the NRR of
the FIR smoother will be R = 1/N = 1/44, which is better than that of the IIR filter,
R = (1−a)/(1+a)= 1/19. This case is illustrated in the left graph of Fig. 2.4.1, where
the FIR output was computed by Eq. (2.4.5) with N = 44 for the same noisy input of
Fig. 2.3.2. The IIR output is the same as in that figure.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

equal time constants

FIR
IIR

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

equal NRRs

FIR
IIR

Fig. 2.4.1 Comparison of FIR and IIR smoothing filters.

Similarly, if an IIR smoother achieves a certain NRR value, the “equivalent” FIR filter
with the same NRR should have length N such that:

R = 1− a
1+ a =

1

N
⇒ N = 1+ a

1− a , a = N − 1

N + 1
(2.4.8)

For example, if a = 0.98, then we getN = 99, which is much shorter than the IIR time
constant neff = 228 computed with ε = 0.01. The right graph of Fig. 2.4.1 illustrates
this case, where the FIR output was computed by Eq. (2.4.5) with N = 99.

An approximate relationship between the IIR time constant neff andN can be derived
in this case as follows. Using the small-x approximation ln

(
(1+ x)/(1− x)) � 2x, we

have for large N:

ln(1/a)= ln
(

1+ (1/N)
1− (1/N)

)
� 2

N
It follows that

neff = ln(1/ε)
ln(1/a)

� N 1

2
ln

(1

ε
)

Typically, the factor (ln(1/ε)/2) is greater than one, resulting in a longer IIR time
constant neff than N. For example, we have:

neff = 1.15N , if ε = 10−1 (10% time constant)
neff = 1.50N , if ε = 5 · 10−2 (5% time constant)
neff = 2.30N , if ε = 10−2 (1% or 40-dB time constant)
neff = 3.45N , if ε = 10−3 (0.1% or 60-dB time constant)

Finally, we note that a further advantage of the FIR smoother is that it is a linear
phase filter. Indeed, using the finite geometric series formula, we can write the transfer

2.4. FIR Averaging Filters 115

function of Eq. (2.4.5) in the form:

H(z)= 1

N
(
1+ z−1 + z−2 + · · · + z−(N−1)) = 1

N
1− z−N
1− z−1

(2.4.9)

Setting z = ejω, we obtain the frequency response:

H(ω)= 1

N
1− e−jNω
1− e−jω = 1

N
sin(Nω/2)
sin(ω/2)

e−jω(N−1)/2 (2.4.10)

which has a linear phase response. The transfer function (2.4.9) has zeros at the Nth
roots of unity, except at z = 1, that is,

zk = ejωk, ωk = 2πk
N
, k = 1,2, . . . ,N − 1

The zeros are distributed equally around the unit circle and tend to suppress the
noise spectrum along the Nyquist interval, except at z = 1 where there is a pole/zero
cancellation and we have H(z)= 1.

Fig. 2.4.2 shows the magnitude and phase response of H(ω) for N = 16. Note that
the phase response is piece-wise linear with slope (N− 1)/2. It exhibits 180o jumps at
ω =ωk, where the factor sin(Nω/2)/ sin(ω/2) changes algebraic sign.

Fig. 2.4.2 Magnitude and phase responses of FIR smoother, for N = 16.

The 3-dB cutoff frequency of the filter is somewhat less than half the base of the
mainlobe, that is,

ωc = 0.886π
N

(2.4.11)

It corresponds to a drop of the magnitude response squared by a factor of 1/2.
Indeed, settingω/2 =ωc/2 = 0.443π/N in (2.4.10), we have∣∣∣∣ 1

N
sin(N 0.443π/N)
sin(0.443π/N)

∣∣∣∣2

�
∣∣∣∣ 1

N
sin(0.443π)
(0.443π/N)

∣∣∣∣2

=
∣∣∣∣sin(0.443π)

0.443π

∣∣∣∣2

� 1

2

where we used the approximation sin(π/2N)� π/2N, for largeN. In decibels, we have
−20 log10

(
sin(0.443π)/0.443π

) = 3.01 dB, hence, the name “3-dB frequency.”

116 2. Signal Extraction Basics

Like its IIR counterpart of Eq. (2.3.1), the FIR averaging filter (2.4.5) can be applied to
any low-frequency signal xn—not just a constant signal. The averaging of theN succes-
sive samples in Eq. (2.4.5) tends to smooth out the highly fluctuating noise component
vn, while it leaves the slowly varying component xn almost unchanged.

However, if xn is not so slowly varying, the filter will also tend to average out these
variations, especially when the averaging operation (2.4.5) reaches across many time
samples when N is large. In the frequency domain, the same conclusion follows by
noting that as N increases, the filter’s cutoff frequency ωc decreases, thus removing
more and more of the higher frequencies that might be present in the desired signal.

Thus, there is a limit to the applicability of this type of smoothing filter: Its length
must be chosen to be large enough to reduce the noise, but not so large as to start
distorting the desired signal by smoothing it too much.

A rough quantitative criterion for the selection of the length N is as follows. If it
is known that the desired signal xn contains significant frequencies up to a maximum
frequency, sayωmax, then we may choose N such thatωmax ≤ωc = 0.886π/N, which
gives N ≤ 0.886π/ωmax.

The FIR averaging filter can also be implemented in a recursive form based on the
summed version of the transfer function (2.4.9). For example, the direct-form realization
of H(z) is described by the I/O difference equation:

x̂n = x̂n−1 + 1

N
[
yn − yn−N

]
(2.4.12)

Because of the pole-zero cancellation implicit in (2.4.12) such implementation is
prone to roundoff accumulation errors and instabilities, and therefore, not recommended
for continuous real-time processing even though it is efficient computationally.

The FIR smoothing filter will be considered in further detail in Sec. 3.1, generalized
to local polynomial smoothing filters that minimize the NRR subject to additional linear
constraints on the filter weights. In Sec. 4.2, it is generalized to minimum-roughness
filters that minimize a filtered version of the NRR subject to similar constraints.

Like the IIR smoother, the FIR smoother and its generalizations are widely used in
many data analysis applications. It is also useful in de-seasonalizing applications, where
ifN is chosen to be the seasonal period, the filter’sNth root of unity zeros coincide with
the harmonics of the seasonal component so that the filter will extract the smooth trend
while eliminating the seasonal part.

2.5 Problems

2.1 Show that the z-domain transformation, z→ −z, maps a lowpass filter into a highpass one.
Show that under this transformation, the impulse response of the lowpass filter hn gets
mapped into (−1)nhn.

2.2 Given the real-valued impulse response hn of a lowpass filter, show that the filter with the
complex-valued impulse response ejω0nhn defines a bandpass filter centered at ω0. What
sort of filter is defined by the real-valued impulse response cos(ω0n)hn? Explain how the
previous problem is a special case of this problem.

2.5. Problems 117

2.3 Highpass Signal Extraction. Design a first-order IIR filter to extract the high-frequency xn =
(−1)ns from the noisy signal

yn = xn + vn = (−1)ns+ vn

where s is a constant amplitude and vn is zero-mean, white Gaussian noise with variance σ2
v .

Start by converting the two lowpass filters given in Sec. 2.3 into highpass filters. For each
of the resulting filters, plot the corresponding magnitude response and calculate the NRR in
terms of the pole parameter a.

For the values of the parameters s = 2 and a = 0.99, compute 200 samples of the signal yn
and process it through your filters and plot the output. Discuss the transient effect vs. the
signal extraction ability of the filters.

2.4 Bandpass Signal Extraction. A noisy sinusoid of frequency f0 = 500 Hz is sampled at a rate
of fs = 10 kHz:

yn = xn + vn = cos(ω0n)+vn
whereω0 = 2πf0/fs and vn is a zero-mean, unit-variance, white Gaussian noise signal. The
sinusoid can be extracted by a bandpass resonator-like filter of the form:

H(z)= G
(1−Rejω0z−1)(1−Re−jω0z−1)

= G
1− 2R cosω0 z−1 +R2z−2

Its poles are at z = Re±jω0 with 0 < R < 1. For R near unity, the 3-dB width of this filter is
given approximately by Δω = 2(1−R).
Fix the gain factor G by requiring that the filter have unity gain atω0, that is, |H(ω0)| = 1.
Then, show that the NRR of this filter is given by:

R =
∞∑
n=0

h2
n =

(1−R)(1+R2)(1− 2R cos(2ω0)+R2)
(1+R)(1− 2R2 cos(2ω0)+R4)

For the values of the parameters R = 0.99 andω0 = 0.1π, plot the magnitude response of
this filter and indicate on the graph its 3-dB width. Calculate the corresponding NRR.

Then, calculate and plot 300 samples of the noisy signal yn, and process it through the filter.
On a separate graph, plot the resulting estimate x̂n together with the desired signal xn.

Discuss the signal extraction capability of this filter vs. the transient effects vs. the delay
shift introduced by the filter’s phase delay d(ω)= −ArgH(ω)/ω, and calculate the amount
of delay d(ω0) atω0 and indicate it on the graph.

3
Local Polynomial Filters

3.1 Introduction

We mentioned in Sec. 2.4 that there are limits to the applicability of the plain FIR averager
filter—in order to achieve a high degree of noise reduction, its lengthNmay be required
to be so large that the filter’s passband becomes smaller than the signal bandwidth,
causing the removal of useful high frequencies from the desired signal.

In other words, in its attempt to smooth out the noise vn, the filter begins to smooth
out the desired signal xn to an unacceptable degree. For example, if xn contains some
short-duration peaks, corresponding to the higher frequencies present in xn, and the
filter’s length N is longer than the duration of the peaks, the filter will tend to smooth
the peaks too much, broadening them and reducing their height.

Local polynomial smoothing filters [36–99] are generalizations of the FIR averager
filter that can preserve better the higher frequency content of the desired signal, at the
expense of not removing as much noise as the averager. They can be characterized in
three equivalent ways:

1. They are the optimal lowpass filters that minimize the NRR, subject to additional
constraints than the DC unity-gain condition (2.4.1)—the constraints being equiv-
alent to the requirement that polynomial input signals go through the filter un-
changed.

2. They are the optimal filters that minimize the NRR whose frequency response
H(ω) satisfies certain flatness constraints at DC.

3. They are the filters that optimally fit, in a least-squares sense, a set of data points
to polynomials of different degrees.

Local polynomial smoothing (LPSM) filters have a long history and have been redis-
covered repeatedly in different contexts. They were originally derived in 1866 by the
Italian astronomer Schiaparelli [36] who formulated the problem as the minimization
of the NRR subject to polynomial-preserving constraints and derived the filters in com-
plete generality, discussing also the case of even-length filters. They were rederived in
1871 by De Forest [65] who generalized them further to include the case of “minimum-
roughness” or minimum-Rs filters. Subsequently, they were rediscovered many times

118

3.2. Local Polynomial Fitting 119

and used extensively in actuarial applications, for example, by Gram, Hardy, Sheppard,
Henderson, and others. See Refs. [68–75] for the development and history of these fil-
ters. In the actuarial context, smoothing is referred to as the process of “graduation.”
They were revived again in the 1960s by Savitzky and Golay [42] and have been applied
widely in chemistry and spectroscopy [42–53] known in that context as Savitzky-Golay fil-
ters. They, and their minimum-Rs versions [65–99] known typically as Henderson filters,
are used routinely for trend extraction in financial, business, and census applications.

Some recent incarnations also include predictive FIR interpolation, differentiation,
fractional-delay, and maximally-flat filters [152–187], and applications to the represen-
tation of speech and images in terms of orthogonal-polynomial moments [137–150].

The least-squares polynomial fitting approach also has a long history. Chebyshev
[104] derived in 1864 the discrete Chebyshev orthogonal polynomials,‡ also known as
Gram polynomials, which provide convenient and computationally efficient bases for
the solution of the least-squares problem and the design of local polynomial filters.
Several applications and reviews of the discrete Chebyshev orthogonal polynomials may
be found in [104–151]. The minimum-Rs Henderson filters also admit similar efficient
representations in terms of the Hahn orthogonal polynomials, a special case of which
are the discrete Chebyshev polynomials. We discuss Henderson filters in Sec. 4.2 and
orthogonal polynomial bases in Sec. 4.3.

3.2 Local Polynomial Fitting

We begin with the least-squares polynomial fitting approach. We assume that the signal
model for the observations is:

yn = xn + vn
where vn is white noise and xn is a smooth signal to be estimated. Fig. 3.2.1 shows five
noisy signal samples [y−2, y−1, y0, y1, y2] positioned symmetrically about the origin.
Later on, we will shift them to an arbitrary position along the time axis. Polynomial
smoothing of the five samples is equivalent to replacing them by the values that lie on
smooth polynomial curves drawn between the noisy samples. In Fig. 3.2.1, we consider
fitting the five data to a constant signal, a linear signal, and a quadratic signal.

The corresponding smoothed values are given by the 0th, 1st, and 2nd degree poly-
nomials defined form = −2,−1,0,1,2:

ŷm = c0 (constant)

ŷm = c0 + c1m (linear)

ŷm = c0 + c1m+ c2m2 (quadratic)

(3.2.1)

For each choice of the polynomial order, the coefficients ci must be determined
optimally such that the corresponding polynomial curve best fits the given data. This
can be accomplished by a least-squares fit, which chooses the ci that minimize the total
mean-square error. For example, in the quadratic case, we have the performance index:

J =
2∑

m=−2

e2
m =

2∑
m=−2

(
ym − (c0 + c1m+ c2m2)

)2 = min (3.2.2)

‡not to be confused with the ordinary Chebyshev polynomials.

120 3. Local Polynomial Filters

Fig. 3.2.1 Data smoothing with polynomials of degrees d = 0,1,2.

where the fitting errors are defined as

em = ym − ŷm = ym − (c0 + c1m+ c2m2), m = −2,−1,0,1,2

It proves convenient to express Eqs. (3.2.1) and (3.2.2) in a vectorial form, which
generalizes to higher polynomial orders and to more than five data points. We define
the five-dimensional vectors of data, estimates, and errors:

y =

⎡⎢⎢⎢⎢⎢⎢⎣
y−2

y−1

y0

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ , ŷ =

⎡⎢⎢⎢⎢⎢⎢⎣
ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤⎥⎥⎥⎥⎥⎥⎦ , e =

⎡⎢⎢⎢⎢⎢⎢⎣
e−2

e−1

e0

e1

e2

⎤⎥⎥⎥⎥⎥⎥⎦ = y− ŷ

Similarly, we define the five-dimensional polynomial basis vectors s0, s1, s2, whose
components are:

s0(m)= 1, s1(m)=m, s2(m)=m2, −2 ≤m ≤ 2

Vectorially, we have:

s0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ , s1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−2
−1

0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦ , s2 =

⎡⎢⎢⎢⎢⎢⎢⎣
4
1
0
1
4

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2.3)

In this notation, we may write the third of Eq. (3.2.1) vectorially:

ŷ = c0

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦+ c1

⎡⎢⎢⎢⎢⎢⎢⎣
−2
−1

0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦+ c2

⎡⎢⎢⎢⎢⎢⎢⎣
4
1
0
1
4

⎤⎥⎥⎥⎥⎥⎥⎦ = c0s0 + c1s1 + c2s2

3.2. Local Polynomial Fitting 121

Therefore,

ŷ = c0s0 + c1s1 + c2s2 = [s0, s1, s2]

⎡⎢⎣ c0

c1

c2

⎤⎥⎦ ≡ Sc (3.2.4)

The 5×3 basis matrix S has as columns the three basis vectors s0, s1, s2. It is given
explicitly as follows:

S = [s0, s1, s2]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2.5)

Writing e = y− ŷ = y− Sc, we can express the performance index (3.2.2) as the dot
product:

J = eTe = (y− Sc)T(y− Sc)= min (3.2.6)

To minimize this expression with respect to c, we set the gradient ∂J/∂c to zero:

∂J
∂c

= −2STe = −2ST
(
y− Sc

) = −2
(
STy− STSc

) = 0 (3.2.7)

Therefore, the minimization condition gives the so-called orthogonality equations
and the equivalent normal equations:

∂J
∂c

= 0 � STe = 0 � STSc = STy (3.2.8)

with optimal solution:
c = (STS)−1STy ≡ GTy (3.2.9)

where we defined the 5×3 matrix G by

G = S(STS)−1 (3.2.10)

We note that the solution (3.2.9) is none other than the unique least-squares so-
lution of the full-rank overdetermined linear system Sc = y, as given for example by
Eq. (15.4.10), c = S+y, where S+ = (STS)−1ST is the corresponding pseudoinverse.
Inserting the optimal coefficients c into Eq. (3.2.4), we find the smoothed values:†

ŷ = Sc = SGTy = S(STS)−1STy ≡ BTy (3.2.11)

where we defined the 5×5 matrix B by

B = BT = SGT = GST = S(STS)−1ST (3.2.12)

The symmetric 3×3 matrix F = STS, which appears in the expressions for G and
B, has matrix elements that are the dot products of the basis vectors, that is, the ijth
matrix element is Fij = (STS)ij= sTi sj. Indeed, using Eq. (3.2.5), we find:

F = STS =
⎡⎢⎣ sT0

sT1
sT2

⎤⎥⎦ [s0, s1, s2]=
⎡⎢⎣ sT0 s0 sT0 s1 sT0 s2

sT1 s0 sT1 s1 sT1 s2

sT2 s0 sT2 s1 sT2 s2

⎤⎥⎦ (3.2.13)

†although B is symmetric, we prefer to write ŷ = BTy, which generalizes to the non-symmetric case of
minimum-roughness filters of Sec. 4.2.

122 3. Local Polynomial Filters

Using Eq. (3.2.5), we calculate F and its inverse F−1:

F =
⎡⎢⎣ 5 0 10

0 10 0
10 0 34

⎤⎥⎦ , F−1 = 1

35

⎡⎢⎣ 17 0 −5
0 3.5 0
−5 0 2.5

⎤⎥⎦ (3.2.14)

Then, we calculate the 5×3 matrix G = S(STS)−1= SF−1:

G = SF−1 = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 17 0 −5

0 3.5 0
−5 0 2.5

⎤⎥⎦ or,

G = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ [g0, g1, g2] (3.2.15)

As we see below, the three columns of G have useful interpretations as differentia-
tion filters. Next, using Eq. (3.2.12), we calculate the 5×5 matrix B:

B = GST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4

⎤⎥⎦ or,

B = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ [b−2, b−1, b0, b1, b2] (3.2.16)

Because B is symmetric, its rows are the same as its columns. Thus, we can write it
either in column-wise or row-wise form:

B = [b−2, b−1, b0, b1, b2]=

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2

bT−1

bT0
bT1
bT2

⎤⎥⎥⎥⎥⎥⎥⎦ = B
T

The five columns or rows of B are the LPSM filters of length 5 and polynomial order
2. The corresponding smoothed values ŷ can be expressed component-wise in terms of
these filters, as follows:

3.2. Local Polynomial Fitting 123

⎡⎢⎢⎢⎢⎢⎢⎣
ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤⎥⎥⎥⎥⎥⎥⎦ = ŷ = BTy =

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2

bT−1

bT0
bT1
bT2

⎤⎥⎥⎥⎥⎥⎥⎦ y =

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2y
bT−1y
bT0 y
bT1 y
bT2 y

⎤⎥⎥⎥⎥⎥⎥⎦
or, form = −2,−1,0,1,2:

ŷm = bTmy (3.2.17)

and more explicitly,⎡⎢⎢⎢⎢⎢⎢⎣
ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y−2

y−1

y0

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2.18)

Thus, the mth filter bm dotted into the data vector y generates the mth smoothed
data sample. In a similar fashion, we can express the polynomial coefficients ci as dot
products. Using the solution Eq. (3.2.9), we have⎡⎢⎣ c0

c1

c2

⎤⎥⎦ = c = GTy =
⎡⎢⎣ gT0

gT1
gT2

⎤⎥⎦ y =
⎡⎢⎣ gT0 y

gT1 y
gT2 y

⎤⎥⎦
or, explicitly,

⎡⎢⎣ c0

c1

c2

⎤⎥⎦ = 1

35

⎡⎢⎣−3 12 17 12 −3
−7 −3.5 0 3.5 7

5 −2.5 −5 −2.5 5

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
y−2

y−1

y0

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2.19)

Thus, the coefficients ci can be expressed as the dot products of the columns of G
with the data vector y:

ci = gTi y, i = 0,1,2 (3.2.20)

Of the five columns of B, the middle one, b0, is the most important because it
smooths the value y0, which is symmetrically placed with respect to the other samples
in y, as shown in Fig. 3.2.1.

In smoothing a long block of data, the filter b0 is used during the steady-state period,
whereas the other columns of B are used only during the input-on and input-off tran-
sients. We will refer to b0 and the other columns of B as the steady-state and transient
LPSM filters.

Settingm = 0 into Eq. (3.2.1), we note that the middle smoothed value ŷ0 is equal to
the polynomial coefficient c0. Using Eqs. (3.2.17) and (3.2.20), we find: ŷ0 = c0 = bT0 y =
gT0 y (the middle column of B and the first column of G are always the same, b0 = g0.)

124 3. Local Polynomial Filters

To express (3.2.18) as a true filtering operation acting on an input sequence yn, we
shift the group of five samples to be centered around the nth time instant, that is, we
make the substitution:

[y−2, y−1, y0, y1, y2] −→ [yn−2, yn−1, yn, yn+1, yn+2]

The corresponding five smoothed values will be then:⎡⎢⎢⎢⎢⎢⎢⎣
ŷn−2

ŷn−1

ŷn
ŷn+1

ŷn+2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5

−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
yn−2

yn−1

yn
yn+1

yn+2

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2.21)

In particular, the middle sample yn is smoothed by the filter b0:

x̂n = 1

35

(−3yn−2 + 12yn−1 + 17yn + 12yn+1 − 3yn+2
)

(3.2.22)

where, in accordance with our assumed model of noisy observations yn = xn + vn, we
denoted ŷn by x̂n, i.e., the estimated value of xn.

The other estimated values {ŷn+m , m = ±1,±2}, are not used for smoothing, ex-
cept, as we see later, at the beginning and end of the signal block yn. They may be used,
however, for prediction and interpolation.

The filter (3.2.22) corresponds to fitting every group of five samples {yn−2, yn−1,
yn, yn+1, yn+2} to a quadratic polynomial and replacing the middle sample yn by its
smoothed value x̂n. It is a lowpass filter and is normalized to unity gain at DC, because
its coefficients add up to one.

Its NRR is the sum of the squared filter coefficients. It can be proved in general that
the NRR of any steady-state filter b0 is equal to the middle value of its impulse response,
that is, the coefficient b0(0). Therefore,

R = bT0 b0 =
2∑

m=−2

b0(m)2= b0(0)= 17

35
= 17/7

5
= 2.43

5
= 0.49

By comparison, the length-5 FIR averager operating on the same five samples is:

x̂n = 1

5

(
yn−2 + yn−1 + yn + yn+1 + yn+2

)
(3.2.23)

with R = 1/N = 1/5. Thus, the length-5 quadratic-polynomial filter performs 2.43
times worse in reducing noise than the FIR averager. However, the higher-order polyno-
mial filters have other advantages to be discussed later.

We saw that the coefficient c0 represents the smoothed value of y0 at m = 0. Simi-
larly, the coefficient c1 represents the slope, the derivative, of y0 at m = 0. Indeed, we
have from Eq. (3.2.1) by differentiating and settingm = 0:

˙̂y0 =
dŷm
dm

∣∣∣∣
0
= c1 , ¨̂y0 =

d2ŷm
dm2

∣∣∣∣∣
0

= 2c2

3.2. Local Polynomial Fitting 125

Thus, c1 and 2c2 represent the polynomial estimates of the first and second deriva-
tives atm = 0. Using Eq. (3.2.20) we can express them in terms of the second and third
columns of the matrix G:

˙̂y0 = c1 = gT1 y

¨̂y0 = 2c2 = 2gT2 y
(3.2.24)

Shifting these to the nth time sample, and denoting them by ˆ̇xn and ˆ̈xn, we find the
length-5 local polynomial filters for estimating the first and second derivatives of xn:

ˆ̇xn = 1

35

(−7yn−2 − 3.5yn−1 + 3.5yn+1 + 7yn+2
)

ˆ̈xn = 2

35

(
5yn−2 − 2.5yn−1 − 5yn − 2.5yn+1 + 5yn+2

) (3.2.25)

The above designs can be generalized in a straightforward manner to an arbitrary
degree d of the fitted polynomial and to an arbitrary length N of the data vector y. We
require only that d ≤ N − 1, a restriction to be clarified later. Assuming that N is odd,
say,N = 2M+1, the five-dimensional data vector y = [y−2, y−1, y0, y1, y2]T is replaced
by an N-dimensional one, havingM points on either side of y0:

y = [y−M, . . . , y−1, y0, y1, . . . , yM]T (3.2.26)

The N data samples in y are then fitted by a polynomial of degree d:

ŷm = c0 + c1m+ · · · + cdmd, −M ≤m ≤M (3.2.27)

In this case, there are d+1 polynomial basis vectors si, i = 0,1, . . . , d, defined to
have components:

si(m)=mi, −M ≤m ≤M (3.2.28)

The corresponding N×(d+1) basis matrix S is defined to have the si as columns:

S = [s0, s1, . . . , sd] (3.2.29)

The smoothed values (3.2.27) can be written in the vector form:

ŷ =
d∑
i=0

cisi = [s0, s1, . . . , sd]

⎡⎢⎢⎢⎢⎢⎣
c0

c1

...
cd

⎤⎥⎥⎥⎥⎥⎦ = Sc (3.2.30)

The design steps for the LPSM filters can be summarized then as follows:

F = STS � Fij = sTi sj, i, j = 0,1, . . . , d

G = SF−1 ≡ [g0,g1, . . . ,gd]

B = GST = SF−1ST ≡ [b−M, . . . ,b0, . . . ,bM]

(3.2.31)

126 3. Local Polynomial Filters

The corresponding coefficient vector c and smoothed data vector ŷ will be:

c = GTy � ci = gTi y, i = 0,1, . . . , d

ŷ = BTy � ŷm = bTmy, −M ≤m ≤M
(3.2.32)

The middle smoothed value ŷ0 is given in terms of the middle LPSM filter b0:

ŷ0 = bT0 y =
M∑

k=−M
b0(k)yk

The N-dimensional vector y = [y−M, . . . , y−1, y0, y1, . . . , yM]T can be shifted to the
nth time instant by the replacement:

[y−M, . . . , y−1, y0, y1, . . . , yM] −→ [yn−M, . . . , yn−1, yn, yn+1, . . . , yn+M]

The resulting length-N, order-d, LPSM filter for smoothing a noisy sequence yn will
be, in its steady-state form (denoting again x̂n = ŷn):

x̂n = ŷn =
M∑

k=−M
b0(k)yn+k =

M∑
k=−M

b0(−k)yn−k (3.2.33)

The second equation expresses the output in convolutional form.† Because the filter
b0 is symmetric about its middle, we can replace b0(−k)= b0(k). The non-central
estimated values are obtained from the bm filters:

ŷn+m =
M∑

k=−M
bm(k)yn+k =

M∑
k=−M

bRm(k)yn−k , −M ≤m ≤M (3.2.34)

These filters satisfy the symmetry property bRm(k)= bm(−k)= b−m(k) and can be
used for prediction, as we discuss later.

The d+1 columns of the N×(d+1)-dimensional matrix G give the LPSM differen-
tiation filters, for derivatives of orders i = 0,1, . . . , d. It follows by differentiating
Eq. (3.2.27) i times and settingm = 0:

ŷ(i)0 = diŷm
dmi

∣∣∣∣∣
0

= i! ci = i! gTi y

Shifting these to time n, gives the differentiation convolutional filtering equations:

x̂(i)n = i!
M∑

m=−M
gRi (m)yn−m, i = 0,1, . . . , d (3.2.35)

where, gRi (m)= gi(−m) and as in Eq. (3.2.33), we reversed the order of writing the
terms, but here the filters gi are not necessarily symmetric (actually, they are symmetric
for even i, and antisymmetric for odd i.)
†We use the notation bR to denote the reverse of a double-sided filter b, that is, bR(k)= b(−k).

3.2. Local Polynomial Fitting 127

Example 3.2.1: We construct the length-5 LPSM filters for the cases d = 0 and d = 1. For
d = 0, corresponding to the constant ŷm = c0 in Eq. (3.2.1), there is only one basis vector
s0 defined in Eq. (3.2.3). The basis matrix S = [s0] will have just one column, and the
matrix F will be the scalar

F = STS = sT0 s0 = [1,1,1,1,1]

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ = 5

The matrix G will then be

G = SF−1 = 1

5
s0 = 1

5
[1,1,1,1,1]T

resulting in the LPSM matrix B:

B = GST = 1

5
s0sT0 =

1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ [1,1,1,1,1]=
1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, the steady-state LPSM filter is the length-5 averager:

b0 = 1

5
[1,1,1,1,1]T

For the case d = 1, corresponding to the linear fit ŷm = c0 + c1m, we have the two basis
vectors s0 and s1, given in Eq. (3.2.3). We calculate the matrices S, F, and F−1:

S = [s0, s1]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2
1 −1
1 0
1 1
1 2

⎤⎥⎥⎥⎥⎥⎥⎦ , F = S
TS =

[
5 0
0 10

]
, F−1 = 1

5

[
1 0
0 0.5

]

This gives for G and B:

G = SF−1 = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1
1 −0.5
1 0
1 0.5
1 1

⎤⎥⎥⎥⎥⎥⎥⎦ , B = GST = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
3 2 1 0 −1
2 1.5 1 0.5 0
1 1 1 1 1
0 0.5 1 1.5 2
−1 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, the steady-state LPSM filter b0 is still equal to the length-5 FIR averager. It is a general
property of LPSM filters, that the filter b0 is the same for successive polynomial orders,
that is, for d = 0,1, d = 2,3, d = 4,5, and so on. However, the transient LPSM filters are
different. ��

128 3. Local Polynomial Filters

Example 3.2.2: Here, we construct the LPSM filters of length N = 5 and order d = 3. The
smoothed estimates are given by the cubic polynomial:

ŷm = c0 + c1m+ c2m2 + c3m3

There is an additional basis vector s3 with components s3(m)= m3. Therefore, the basis
matrix S is:

S = [s0, s1, s2, s3]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4 −8
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ F = STS =

⎡⎢⎢⎢⎣
5 0 10 0
0 10 0 34

10 0 34 0
0 34 0 130

⎤⎥⎥⎥⎦

Because of the checkerboard pattern of this matrix, its inverse can be obtained from the
inverses of the two 2×2 interlaced submatrices:[

5 10
10 34

]−1

= 1

70

[
34 −10

−10 5

]
,

[
10 34
34 130

]−1

= 1

144

[
130 −34
−34 10

]

Interlacing these inverses, we obtain:

F−1 =

⎡⎢⎢⎢⎣
34/70 0 −10/70 0

0 130/144 0 −34/144
−10/70 0 5/70 0

0 −34/144 0 10/144

⎤⎥⎥⎥⎦
Then, we compute the derivative filter matrix G:

G = SF−1 = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 35/12 5 −35/12
12 −70/3 −2.5 35/6
17 0 −5 0
12 70/3 −2.5 −35/6
−3 −35/12 5 35/12

⎤⎥⎥⎥⎥⎥⎥⎦
and the LPSM matrix B:

B = SGT = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
34.5 2 −3 2 −0.5

2 27 12 −8 2
−3 12 17 12 −3

2 −8 12 27 2
−0.5 2 −3 2 34.5

⎤⎥⎥⎥⎥⎥⎥⎦
As mentioned above, the steady-state LPSM filter b0 is the same as that of case d = 2. But,
the transient and differentiation filters are different. ��

3.3 Exact Design Equations

In practice, the most common values of d are 0,1,2,3,4. For these ds and arbitrary filter
lengthsN, the LPSM matrix B can be constructed in closed form; see references [36–99],

3.3. Exact Design Equations 129

as well as the extensive tables in [54]. Denoting the inverse of the (d+1)×(d+1)matrix
F = STS by Φ = F−1, we can write

B = SF−1ST = SΦST =
d∑
i=0

d∑
j=0

sis
T
j Φij (3.3.1)

which gives for themkth matrix element

Bmk =
d∑
i=0

d∑
j=0

si(m)sj(k)Φij =
d∑
i=0

d∑
j=0

mikjΦij , −M ≤m,k ≤M (3.3.2)

Because of symmetry, Bmk = Bkm, these matrix elements represent the kth compo-
nent of the LPSM filter bm or themth component of the filter bk, that is,

Bmk = Bkm = bm(k)= bk(m)=
d∑
i=0

d∑
j=0

mikjΦij (3.3.3)

The matrix Φ can be determined easily for the cases 0 ≤ d ≤ 4. The matrix F is a
Hankel matrix, that is, having the same entries along each antidiagonal line. Therefore,
its matrix elements Fij depend only on the sum i+ j of the indices. To see this, we write
Fij as the inner product:

Fij = (STS)ij= sTi sj =
M∑

m=−M
si(m)sj(m)=

M∑
m=−M

mi+j , or,

Fij =
M∑

m=−M
mi+j ≡ Fi+j , 0 ≤ i, j ≤ d (3.3.4)

Note that because of the symmetric limits of summation, Fi+j will be zero whenever
i+ j is odd. This leads to the checkerboard pattern of alternating zeros in F that we saw
in the above examples. Also, because d ≤ 4, the only values of i + j that we need are:
i+ j = 0,2,4,6,8. For those, the summations overm can be done in closed form:

F0 =
M∑

m=−M
m0 = N = 2M + 1

F2 =
M∑

m=−M
m2 = 1

3
M(M + 1)(2M + 1)

F4 =
M∑

m=−M
m4 = 1

5
(3M2 + 3M − 1)F2

F6 =
M∑

m=−M
m6 = 1

7
(3M4 + 6M3 − 3M + 1)F2

F8 =
M∑

m=−M
m8 = 1

15
(5M6 + 15M5 + 5M4 − 15M3 −M2 + 9M − 3)F2

(3.3.5)

130 3. Local Polynomial Filters

We can express F in terms of these definitions for various values of d. For example,
for d = 0,1,2,3, the F matrices are:

[F0] ,
[
F0 0
0 F2

]
,

⎡⎢⎣ F0 0 F2

0 F2 0
F2 0 F4

⎤⎥⎦ ,
⎡⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤⎥⎥⎥⎦
The corresponding inverse matricesΦ = F−1 are obtained by interlacing the inverses

of the checkerboard submatrices, as in Example 3.2.2. For d = 0,1,2, we have for Φ:

[1/F0] ,
[

1/F0 0
0 1/F2

]
,

⎡⎢⎣ F4/D4 0 −F2/D4

0 1/F2 0
−F2/D4 0 F0/D4

⎤⎥⎦ ,
and for d = 3:

Φ = F−1 =

⎡⎢⎢⎢⎣
F4/D4 0 −F2/D4 0

0 F6/D8 0 −F4/D8

−F2/D4 0 F0/D4 0
0 −F4/D8 0 F2/D8

⎤⎥⎥⎥⎦
where the D4 and D8 are determinants of the interlaced submatrices:

D4 = F0F4 − F2
2 =

1

45
M(M + 1)(2M + 1)(2M + 3)(4M2 − 1)

D8 = F2F6 − F2
4 =

3

35
M(M + 2)(M2 − 1)D4

(3.3.6)

Inserting the above expressions for Φ into Eq. (3.3.3), we determine the correspond-
ing LPSM filters. For d = 0, we find for −M ≤m,k ≤M:

bm(k)= Bmk = 1

F0
= 1

N
(3.3.7)

For d = 1:

bm(k)= Bmk = 1

F0
+ mk
F2

(3.3.8)

For d = 2:

bm(k)= Bmk = F4

D4
+ 1

F2
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2 (3.3.9)

For d = 3:

bm(k)= Bmk = F4

D4
+ F6

D8
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3

(3.3.10)

3.3. Exact Design Equations 131

The required ratios are given explicitly as follows:

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

F2

D4
= 15

(2M + 3)(4M2 − 1)

F0

D4
= 45

M(M + 1)(2M + 3)(4M2 − 1)

F6

D8
= 25(3M4 + 6M3 − 3M + 1)
M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

F4

D8
= 35(3M2 + 3M − 1)
M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

F2

D8
= 175

M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

(3.3.11)

In a similar fashion, we also find for the case d = 4:

bm(k)= Bmk =D12

D
+ F6

D8
mk− D10

D
(m2 + k2)+E8

D
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3 + D8

D
(m4 + k4)

− D6

D
(m2k4 + k2m4)+D4

D
m4k4

(3.3.12)

where
D6 = F0F6 − F2F4

D10 = F2F8 − F4F6

D = F0D12 − F2D10 + F4D8

E8 = F0F8 − F2
4

D12 = F4F8 − F2
6 (3.3.13)

These are given explicitly as follows:

D6 = 1

7
(6M2 + 6M − 5)D4

D10 = 1

21
M(M + 2)(M2 − 1)(2M2 + 2M − 3)D4

E8 = 1

5
(4M4 + 8M3 − 4M2 − 8M + 1)D4

D12 = 1

735
M(M + 2)(M2 − 1)(15M4 + 30M3 − 35M2 − 50M + 12)D4

D = 4

11025
M(M + 2)(M2 − 1)(2M + 5)(4M2 − 9)(4M2 − 1)D4

(3.3.14)

132 3. Local Polynomial Filters

and the required ratios are:

D12

D
= 15(15M4 + 30M3 − 35M2 − 50M + 12)

4(2M + 5)(4M2 − 1)(4M2 − 9)

D10

D
= 525(2M2 + 2M − 3)

4(2M + 5)(4M2 − 1)(4M2 − 9)

E8

D
= 2205(4M4 + 8M3 − 4M2 − 8M + 5)

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

D8

D
= 945

4(2M + 5)(4M2 − 1)(4M2 − 9)

D6

D
= 1575(6M2 + 6M − 5)

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

D4

D
= 11025

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

(3.3.15)

In this case, the matrix F and its two interlaced submatrices are:

F =

⎡⎢⎢⎢⎢⎢⎢⎣
F0 0 F2 0 F4

0 F2 0 F4 0
F2 0 F4 0 F6

0 F4 0 F6 0
F4 0 F6 0 F8

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎣ F0 F2 F4

F2 F4 F6

F4 F6 F8

⎤⎥⎦ , [
F2 F4

F4 F6

]

Its inverse—obtained by interlacing the inverses of these two submatrices—can be
expressed in terms of the determinant quantities of Eq. (3.3.13):

Φ = F−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
D12/D 0 −D10/D 0 D8/D

0 F6/D8 0 −F4/D8 0
−D10/D 0 E8/D 0 −D6/D

0 −F4/D8 0 F2/D8 0
D8/D 0 −D6/D 0 D4/D

⎤⎥⎥⎥⎥⎥⎥⎦
Eqs. (3.3.5)–(3.3.15) provide closed-form expressions for the LPSM filters bm(k) of

orders d = 0,1,2,3,4. Setting m = 0, we obtain the explicit forms of the steady-state
filters b0(k), −M ≤ k ≤M. For d = 0,1:

b0(k)= 1

2M + 1
(3.3.16)

for d = 2,3:

b0(k)= 3(3M2 + 3M − 1− 5k2)
(2M + 3)(4M2 − 1)

(3.3.17)

and for d = 4,5:

b0(k)= 15
(
15M4 + 30M3 − 35M2 − 50M + 12− 35(2M2 + 2M − 3)k2 + 63k4

)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(3.3.18)

3.4. Geometric Interpretation 133

Example 3.3.1: Determine the quadratic/cubic LPSM filters of lengthsN = 5,7,9. Using (3.3.17)
withM = 2,3,4, we find (for −M ≤ k ≤M):

b0(k)= 17− 5k2

35
= 1

35
[−3,12,17,12,−3]

b0(k)= 7− k2

21
= 1

21
[−2,3,6,7,6,3,−2]

b0(k)= 59− 5k2

231
= 1

231
[−21,14,39,54,59,54,39,14,−21]

where the coefficients have been reduced to integers as much as possible. ��

Example 3.3.2: Determine the quartic and quintic LPSM filters of length N = 7,9. Using
Eq. (3.3.18) withM = 3,4, we find:

b0(k)= 131− 61.25k2 + 5.25k4

231
= 1

231
[5,−30,75,131,75,−30,5]

b0(k)= 179− 46.25k2 + 2.25k4

429
= 1

429
[15,−55,30,135,179,135,30,−55,15]

3.4 Geometric Interpretation

The LPSM filters admit a nice geometric interpretation, which is standard in least-squares
problems. Let Y be the vector space of the N-dimensional real-valued vectors y, that
is, the space RN, and let S be the (d+1)-dimensional subspace spanned by all linear
combinations of the basis vectors si, i = 0,1, . . . , d.

Thus, the matrix S = [s0, s1, . . . , sd] is a (non-orthogonal) basis of the subspace S.
The smoothed vector ŷ, being a linear combination of the si, belongs to the subspace
S. Moreover, because of the orthogonality equations (3.2.8), ŷ is orthogonal to the error
vector e:

ŷTe = (Sc)Te = cTSTe = 0

Then, the equation e = y− ŷ can be rewritten as the orthogonal decomposition:

y = ŷ+ e (3.4.1)

which expresses y as a sum of a part that belongs to the subspace S and a part that
belongs to the orthogonal complement subspace S⊥. The decomposition is unique and
represents the direct sum decomposition of the full vector space Y:

Y = S⊕ S⊥

This geometric interpretation requires that the dimension of the subspace S not
exceed the dimension of the full space Y, that is, d + 1 ≤ N. The component ŷ that
lies in S is the projection of y onto S. The matrix B in Eq. (3.2.11) is the corresponding
projection matrix. As such, it will be symmetric, BT = B, and idempotent :

B2 = B (3.4.2)

134 3. Local Polynomial Filters

The proof is straightforward:

B2 = (
SF−1ST

)(
SF−1ST

) = SF−1(STS)F−1ST = SF−1ST = B
The matrix (I−B), where I is theN-dimensional identity matrix, is also a projection

matrix, projecting onto the orthogonal subspace S⊥. Thus, the error vector e belonging
to S⊥ can be obtained from y by the projection:

e = y− ŷ = (I − B)y
Because (I−B) is also idempotent and symmetric, (I−B)2= (I−B), we obtain for

the minimized value of the performance index J of Eq. (3.2.6):

Jmin = eTe = yT(I − B)2y = yT(I − B)y = yTy− yTBy (3.4.3)

3.5 Orthogonal Polynomial Bases

Computationally, the non-orthogonal basis S = [s0, s1, . . . , sd] is not the most conve-
nient one. The Gram-Schmidt orthogonalization process may be applied to the columns
of S to obtain an orthogonal basis. This procedure amounts to performing the QR-
factorization† on S, that is,

S = QR (3.5.1)

where Q is an N×(d+1) matrix with orthonormal columns, that is, QTQ = I, and R is
a (d+1)×(d+1) non-singular upper-triangular matrix.

The columns of Q = [q0,q1, . . . ,qd], correspond to the (orthonormalized) discrete
Chebyshev or Gram polynomials qi(n), i = 0,1, . . . , d, constructed from the monomial
basis si(n)= ni by the Gram-Schmidt process. Noting that STS = RT(QTQ)R = RTR,
the design of the filter matrices B,G can be formulated more efficiently as follows:

F = STS = RTR
G = SF−1 = QR−T

B = SF−1ST = QQT
(3.5.2)

which lead to the explicit construction of the differentiation and LPSM filters in terms
of the Chebyshev polynomials qi(n):

gi =
i∑
j=0

qj (R−1)ij ⇒ gi(n)=
i∑
j=0

qj(n) (R−1)ij

B =
d∑
i=0

qi q
T
i ⇒ bm(k)= Bkm =

d∑
i=0

qi(k)qi(m)

(3.5.3)

The expression for bm(k) can be simplified further using the Christoffel-Darboux
identity for orthogonal polynomials. We discuss these matters further in Sec. 4.3. The
MATLAB function lpsm implements (3.5.2). Its inputs are N,d and its outputs B,G:

†see Sec. 15.20.

3.6. Polynomial Predictive and Interpolation Filters 135

[B,G] = lpsm(N,d); % local polynomial smoothing and differentiation filter design

The function constructs the basis matrix Swith the help of the function lpbasis and
carries out its QR-factorization with the help of the built-in function qr. The following
code fragment illustrates the computational steps:

S = lpbasis(N,d); % construct polynomial basis
[Q,R] = qr(S, 0); % economy form, R is (d+1)x(d+1) upper triangular
G = Q/R’; % differentiation filters
B = Q*Q’; % smoothing filters

3.6 Polynomial Predictive and Interpolation Filters

The case d + 1 = N or d = N − 1 is of special interest, corresponding to ordinary
polynomial Lagrange interpolation. Indeed, in this case, the basis matrix S becomes a
square non-singular N×N matrix with an ordinary inverse S−1, which implies that B
becomes the identity matrix,

B = S(STS)−1ST = S(S−1S−T)ST = I

or, equivalently, the subspace S becomes the full space Y. The optimal polynomial of
degree d = N− 1 fits through all the sample points of the N-dimensional vector y, that
is, e = 0 or ŷ = y = Sc, with solution c = S−1y, and interpolates between those samples.
This polynomial is defined for any independent variable t by:

ŷt =
N−1∑
i=0

citi = cTu t = yTS−Tu t ≡ yTb t =
M∑

k=−M
bt(k)yk (3.6.1)

where we set,

u t =

⎡⎢⎢⎢⎢⎢⎣
1
t
...
tN−1

⎤⎥⎥⎥⎥⎥⎦ , b t = S−Tu t ⇒ bt(k)=
N−1∑
i=0

(S−1)ik ti (3.6.2)

The polynomials bt(k) of degree (N−1) in t are the ordinary Lagrange interpolation
polynomials, interpolating through the points yk. To see this, we note that at each
discrete value of t, say t =m with −M ≤m ≤M, we have:

bm(k)=
N−1∑
i=0

(S−1)ik mi =
N−1∑
i=0

(S−1)ik Smi = (SS−1)mk= Imk = δ(m− k) (3.6.3)

so that the polynomial passes through the signal values at the sampling instants:

ŷt
∣∣
t=m =

M∑
k=−M

bm(k)yk =
M∑

k=−M
δ(m− k)yk = ym

136 3. Local Polynomial Filters

It is straightforward to show using the property (3.6.3) that bt(k) is given by the
usual Lagrange interpolation formula:

bt(k)=
M∏

m=−M
m	=k

(
t −m
k−m

)
, −M ≤ k ≤M (3.6.4)

Indeed, Eq. (3.6.4) states that the (2M) roots of bt(k) are the points t = m, for
−M ≤ m ≤ M and m 	= k, which fixes the polynomial up to a constant. That constant
is determined by the condition bk(k)= 1.

Example 3.6.1: For N = 5 and d = N − 1 = 4, the fourth degree Lagrange polynomials, con-
structed from Eq. (3.6.4), can be expanded in powers of t :⎡⎢⎢⎢⎢⎢⎢⎣

bt(−2)
bt(−1)
bt(0)
bt(1)
bt(2)

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

24

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 −1 −2 1
0 −16 16 4 −4

24 0 −30 0 6
0 16 16 −4 −4
0 −2 −1 2 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
t1

t2

t3

t4

⎤⎥⎥⎥⎥⎥⎥⎦
The coefficient matrix is recognized as the inverse transposed of the basis matrix S:

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4 −8 16
1 −1 1 −1 1
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ S−T = 1

24

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 −1 −2 1
0 −16 16 4 −4

24 0 −30 0 6
0 16 16 −4 −4
0 −2 −1 2 1

⎤⎥⎥⎥⎥⎥⎥⎦
which verifies Eq. (3.6.2). ��

We note that bt(k) can be written in the following analytical form, which shows the
relation of the Lagrange interpolation filter to the ideal sinc-interpolation filter:

bt(k)= Γ(M + 1+ t)Γ(M + 1− t)
Γ(M + 1+ k)Γ(M + 1− k) ·

sin
(
π(t − k))
π(t − k) (3.6.5)

Some alternative expressions are as follows:

bt(k)= (−1)M+k
2M∑

m=M+k

(
M + t
m

)(
m

M + k

)
(−1)m (3.6.6)

bt(k)= (−1)M+1−kΓ(M + 1− t)
(t − k)Γ(−M − t)Γ(M + 1+ k)Γ(M + 1− k) (3.6.7)

and since the bt(k) sum up to one, we also have [156]:

bt(k)=
⎡⎣ M∑
n=−M

bt(n)
bt(k)

⎤⎦−1

=
⎡⎣ M∑
n=−M

(−1)k−n
(M + k)! (M − k)!
(M + n)! (M − n)!

t − k
t − n

⎤⎦−1

(3.6.8)

3.6. Polynomial Predictive and Interpolation Filters 137

For polynomial ordersd < N−1, one can still interpolate approximately and smoothly
between the samples ym. In this case, using c = GTy = (STS)−1STy, we have:

ŷt =
d∑
i=0

citi = cTu t = yTGu t ≡ yTb t =
M∑

k=−M
bt(k)yk (3.6.9)

where now

u t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
t1

t2
...
td

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , b t = Gu t = S(STS)−1u t ⇒ bt(k)=
d∑
i=0

Gki ti (3.6.10)

and shifting the origin k = 0 to the arbitrary time instant n, we obtain the interpolation
formula for a shift t relative to the time instant n:

ŷn+t =
M∑

k=−M
bt(k)yn+k =

M∑
k=−M

bRt (k)yn−k (3.6.11)

where bRt (k)= bt(−k). Such formulas can also be used for prediction by choosing
t > M so that n+ t > n+M, that is, it lies beyond the end of the filter range.

We can obtain closed-form expressions for the interpolation filters bt(k) for d =
0,1,2,3,4 and arbitraryM, by replacing in Eqs. (3.3.7)–(3.3.12) the variablem in bm(k)
by the variable t. For example, for d = 1,2,3,4, we have, respectively:

bt(k) = 1

F0
+ tk
F2

bt(k) = F4

D4
+ 1

F2
tk− F2

D4
(t2 + k2)+ F0

D4
t2k2

bt(k) = F4

D4
+ F6

D8
tk− F2

D4
(t2 + k2)+ F0

D4
t2k2 − F4

D8
(kt3 + tk3)+ F2

D8
t3k3

bt(k) = D12

D
+ F6

D8
tk− D10

D
(t2 + k2)+E8

D
t2k2 − F4

D8
(kt3 + tk3)

+ F2

D8
t3k3 + D8

D
(t4 + k4)−D6

D
(t2k4 + k2t4)+D4

D
t4k4

(3.6.12)

where the required coefficient ratios are given by Eqs. (3.3.11) and (3.3.15). The inter-
polation filter (3.6.10) may be written in terms of the columns of G = [g0,g1, . . . ,gd]:

bt(k)=
d∑
i=0

Gkiti =
d∑
i=0

gi(k)ti ⇒ b t =
d∑
i=0

giti (3.6.13)

This representation admits a convenient realization, known as a Farrow structure,
which allows the changing of the parameter t on the fly without having to redesign the

138 3. Local Polynomial Filters

filter. It is essentially a block-diagram realization of Eq. (3.6.13) written in nested form
using Hörner’s rule. For example, if d = 3, we have

b t = g0 + g1t + g2t2 + g3t3 =
(
(g3t + g2)t + g1

)
t + g0 (3.6.14)

Fig. 3.6.1 shows this realization where we replaced gi by their reversed versions gRi ,
which appear in the convolutional filtering equations. The parameter t appears only in
the lower multipliers and can be independently controlled.

Fig. 3.6.1 Farrow structure for interpolating or predictive FIR filter.

The filtering equation (3.6.11) can also be written in a causal manner by setting
t =M + τ and defining the causal filter, where N = 2M + 1:

hτ(k)= bM+τ(M − k) , k = 0,1, . . . ,N − 1 (3.6.15)

Replacing n→ n−M and k→ k−M, Eq. (3.6.11) is transformed into a causal filtering
operation that predicts the future sample yn+τ from the present and past samples yn−k,
k = 0,1, . . . ,N − 1. The mapping of the time indices is explained in Fig. 3.6.2. The
resulting filtering operation reads:

ŷn+τ =
N−1∑
k=0

hτ(k)yn−k , τ ≥ 0 (3.6.16)

Fig. 3.6.2 Double-sided and causal predictive FIR filters, with n′ = n−M and t =M + τ.

Since τ is any real number, the notation n+τ corresponds to the actual time instant
(n+τ)T in seconds, where T is the sampling time interval. The filter h−τ(k)may also
be used for implementing a fractional delay as opposed to prediction, that is,

ŷn−τ =
N−1∑
k=0

h−τ(k)yn−k (fractional delay) (3.6.17)

3.6. Polynomial Predictive and Interpolation Filters 139

The filters bt(k) and hτ(k) satisfy the following polynomial-preserving moment
constraints (being equivalent to STb t = u t), where i = 0,1, . . . , d:

M∑
k=−M

kibt(k)= ti ⇒
N−1∑
k=0

kihτ(k)= (−τ)i ,
N−1∑
k=0

kih−τ(k)= τi (3.6.18)

These constraints imply that Eqs. (3.6.16) and (3.6.17) are exact for polynomials of
degree r ≤ d. For any such polynomial P(n), we have:

N−1∑
k=0

h−τ(k)P(n− k)= P(n− τ) (3.6.19)

For example, we have for the monomial P(n)= nr with r ≤ d:

N−1∑
k=0

h−τ(k)(n− k)r=
N−1∑
k=0

h−τ(k)
r∑
i=0

(
r
i

)
nr−i(−1)iki

=
r∑
i=0

(
r
i

)
nr−i(−1)i

N−1∑
k=0

kih−τ(k)=
r∑
i=0

(
r
i

)
nr−i(−1)iτi = (n− τ)r

It is in the sense of Eq. (3.6.19) that we may think of the transfer function of the filter
h−τ(k) as approximating the ideal fractional delay z−τ:

N−1∑
k=0

h−τ(k)z−k � z−τ (3.6.20)

Further insight into the nature of the approximation (3.6.20) can be gained by con-
sidering the Lagrange interpolation case, d = N − 1. From the definition of h−τ(k)=
bM−τ(M − k) and Eqs. (3.6.4) and (3.6.6), we obtain, for k = 0,1, . . . ,N − 1:

h−τ(k)=
N−1∏
i=0
i	=k

(
τ− i
k− i

)
=

N−1∑
i=N−1−k

(
N−1−τ
i

)(
i

N−1−k

)
(−1)i−(N−1−k) (3.6.21)

The z-transform of h−τ(k) is then,

N−1∑
k=0

h−τ(k)z−k =
N−1∑
k=0

N−1∑
i=N−1−k

(
N−1−τ
i

)(
i

N−1−k

)
(−1)i−(N−1−k)z−k

= z−(N−1)
N−1∑
i=0

N−1∑
k=N−1−i

(
N−1−τ
i

)(
i

N−1−k

)
(−1)i−(N−1−k)zN−1−k

Changing summation variables and using the binomial expansion of (z−1)i, we obtain,

N−1∑
k=0

h−τ(k)z−k = z−(N−1)
N−1∑
i=0

m∑
j=0

(
N−1−τ
i

)(
i
j

)
(−1)i−jzj

= z−(N−1)
N−1∑
i=0

(
N−1−τ
i

)
(z− 1)i

(3.6.22)

140 3. Local Polynomial Filters

Applying the binomial identity,

(1+ x)α=
∞∑
m=0

(
α
i

)
xi (3.6.23)

with x = z− 1 and α = N − 1− τ, we have,

zN−1−τ = (1+ z− 1)N−1−τ=
∞∑
i=0

(
N−1−τ
i

)
(z− 1)i (3.6.24)

We recognize the sum in Eq. (3.6.22) to be the first N terms of (3.6.24). Thus, taking
that sum to approximately represent zN−1−τ, we have,

N−1∑
k=0

h−τ(k)z−k � z−(N−1) zN−1−τ = z−τ (3.6.25)

This approximation becomes exact whenever τ is an integer, say τ = m, with m =
0,1, . . . ,N−1. Indeed in this case, the summation range 0 ≤ i ≤ N−1 in Eq. (3.6.22) can
be restricted to 0 ≤ i ≤ N−1−m because the binomial coefficient vanishes whenever its
(integer) arguments satisfy N − 1−m < i ≤ N − 1. We then have an ordinary binomial
expansion for an integer power:

N−1∑
k=0

h−m(k)z−k = z−(N−1)
N−1−m∑
i=0

(
N−1−m

i

)
(z−1)i= z−(N−1)(1+z−1)N−1−m= z−m

which implies the expected result h−m(k)= δ(k−m). Eq. (3.6.22) is equivalent to New-
ton’s forward interpolation formula. To see this, let us introduce the forward difference
operator Δ = z− 1, or, Δfn = fn+1 − fn, and apply (3.6.22) in the time domain:

ŷn−τ =
N−1∑
k=0

h−τ(k)yn−k =
N−1∑
i=0

(
N−1−τ
i

)
Δiyn−(N−1) (3.6.26)

This interpolates between the points [yn−(N−1), . . . , yn−1, yn]with τmeasured back-
wards from the end-point yn. We may measure the interpolation distance forward from
the first point yn−(N−1) by defining x = N−1−τ. Then, Eq. (3.6.26) reads,

ŷn−(N−1)+x =
N−1∑
i=0

(
x
i

)
Δiyn−(N−1) (3.6.27)

and setting n = N − 1 so that the data range is [y0, y1, . . . , yN−1], we obtain the usual
way of writing Newton’s polynomial interpolation formula:

ŷx =
N−1∑
i=0

(
x
i

)
Δiy0 =

N−1∑
i=0

x(x− 1)· · · (x− i+ 1)
i!

Δiy0 (3.6.28)

We note also that Eq. (3.6.21) is valid for either even or odd values of N. For N =
2,3,4, we obtain for the corresponding filter coefficients:

3.6. Polynomial Predictive and Interpolation Filters 141

[
h−τ(0)
h−τ(1)

]
=

[
1− τ
τ

]
,

⎡⎢⎣ h−τ(0)h−τ(1)
h−τ(2)

⎤⎥⎦ = 1

2

⎡⎢⎣ (τ− 1)(τ− 2)
−2τ(τ− 2)
τ(τ− 1)

⎤⎥⎦
⎡⎢⎢⎢⎣
h−τ(0)
h−τ(1)
h−τ(2)
h−τ(3)

⎤⎥⎥⎥⎦ = 1

6

⎡⎢⎢⎢⎣
−(τ− 1)(τ− 2)(τ− 3)

3τ(τ− 2)(τ− 3)
−3τ(τ− 1)(τ− 3)
τ(τ− 1)(τ− 2)

⎤⎥⎥⎥⎦
(3.6.29)

and the corresponding interpolation formulas:

ŷn−τ = (1− τ)yn + τyn−1

ŷn−τ = 1

2
(τ− 1)(τ− 2)yn − τ(τ− 2)yn−1 + 1

2
τ(τ− 1)yn−2

ŷn−τ = −1

6
(τ− 1)(τ− 2)(τ− 3)yn + 1

2
τ(τ− 2)(τ− 3)yn−1

− 1

2
τ(τ− 1)(τ− 3)yn−2 + 1

6
τ(τ− 1)(τ− 2)yn−3

(3.6.30)

Example 3.6.2: Fig. 3.6.3 shows in the top row an example of a Lagrange fractional-delay filter
with N = 3 and polynomial order d = N − 1 = 2 for the delay values τ = m/10, m =
1,2, . . . ,10.

The bottom row is the case N = 5 and d = N− 1 = 4 with delays τ extending over the in-
terval 0 ≤ τ ≤ 2. This filter interpolates between the samples [yn−4, yn−3, yn−2, yn−1, yn].
The chosen range of τ’s spans the gaps between [yn−2, yn−1, yn]. For the subrange 0 ≤
τ ≤ 1 which spans [yn−1, yn], the magnitude response is greater than one, while it is less
than one for the more central range 1 ≤ τ ≤ 2 which spans [yn−2, yn−1]. The following
MATLAB code segment illustrates the generation of the upper two graphs:

f = linspace(0,1,1001); w= pi*f; % frequencies 0 ≤ω ≤ π
N=3; d=N-1; M = floor(N/2); % d = N−1 for Lagrange interpolation

Hmag = []; Hdel = [];
for m=1:10,

tau = m/10; % desired delays

h = flip(lpinterp(N,d,M-tau)); % lpinterp is discussed in Sec. 3.8

H = freqz(h,1,w);
Hmag = [Hmag; 10*log10(abs(H))]; % magnitude responses in dB

Delay = -angle(H)./w; Delay(1) = tau;
Hdel = [Hdel; Delay]; % phase delays

end

figure; plot(f,Hmag); figure; plot(f,Hdel);

The filters were calculated with the function lpinterp (from Sec. 3.8) with arguments d =
N−1, t =M−τ, with reversed output to account for the definition h−τ(k)= bM−τ(M−k).
In both cases, we observe that the useful bandwidth of operation, within which both the
phase delays have the correct values and the magnitude response is near unity, is fairly
narrow extending to aboutω = 0.2π, or f = fs/10 in units of the sampling rate fs. ��

142 3. Local Polynomial Filters

0 0.2 0.4 0.6 0.8 1
−6

−3

0

ω /π

m
ag

n
it

u
de

 (
dB

)

Fractional− Delay Filters, N = 3, d = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fractional− Delay Filters, N = 3, d = 2

ω /π

ph
as

e
de

la
y

0 0.2 0.4 0.6 0.8 1
−6

−3

0

3

ω /π

m
ag

n
it

u
de

 (
dB

)

Fractional− Delay Filters, N = 5, d = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Fractional− Delay Filters, N = 5, d = 4

ω /π

ph
as

e
de

la
y

Fig. 3.6.3 Lagrange fractional-delay filters with N = 3.

References [152–173] contain further information on predictive FIR and fractional-
delay filters. See also [174–187] for alternative implementations of fractional delay
using maximally-flat and allpass filters. Ref. [162] provides a nice review of various
approaches to the fractional-delay problem.

3.7 Minimum Variance Filters

Next we discuss the equivalence of the least-square polynomial fitting approach to the
minimization of the NRR subject to linear moment constraints. In the actuarial context,
such designs are referred to as “minimum R0” or “minimum variance” filters, as op-
posed to the “minimum Rs” or “minimum roughness” filters— the nomenclature being
explained in Sec. 4.2.

The projection properties of B may be used to calculate the NRR. For example, the
property mentioned previously that the NRR of the filter b0 is the equal to the middle
value b0(0) follows from Eq. (3.4.2). Using the symmetry of B, we have

BT = B = B2 = BTB

3.7. Minimum Variance Filters 143

Taking matrix elements, we have Bkm = (BT)mk= (BTB)mk. But, Bkm is the kth
component of the mth column bm. Using a similar argument as in Eq. (3.2.13), we also
have (BTB)mk= bTmbk. Therefore,

bTmbk = bm(k)

For k =m, we have the diagonal elements of BTB = B:

R = bTmbm = bm(m) (3.7.1)

These are recognized as the NRRs of the filters bm. In particular, form = 0, we have
R = bT0 b0 = b0(0). Setting k = 0 in Eqs. (3.3.16)–(3.3.18), we find that the NRRs of the
cases d = 0,1, d = 2,3, and d = 4,5 are given by the coefficient ratios 1/F0, F4/D4, and
D12/D. Therefore:

(d = 0,1) R = 1

N

(d = 2,3) R = 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

(d = 4,5) R = 15(15M4 + 30M3 − 35M2 − 50M + 12)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(3.7.2)

In the limit of large N orM, we have the approximate asymptotic expressions:

(d = 0,1) R = 1

N

(d = 2,3) R � 9/4
N

= 2.25

N

(d = 4,5) R � 225/64

N
= 3.52

N

(3.7.3)

Thus, the noise reductions achieved by the quadratic/cubic and quartic/quintic cases
are 2.25 and 3.52 times worse than that of the plain FIR averager of the same length N.
Another consequence of the projection nature of B is:

BTS = S, STB = ST (3.7.4)

Indeed, BTS = BS = S(STS)−1STS = S. Column-wise the first equation states that:

BT[s0, s1, . . . , sd]= [s0, s1, . . . , sd] ⇒ BTsi = si, i = 0,1, . . . , d

Thus, the basis vectors si remain invariant under projection, but that is to be ex-
pected because they already lie in S. In fact, any other linear combination of them, such
as Eq. (3.2.30), remains invariant under B, that is, BTŷ = ŷ.

This property answers the question: When are the smoothed values equal to the
original ones, ŷ = y, or, equivalently, when is the error zero, e = 0? Because e = y−BTy,
the error will be zero if and only if BTy = y, which means that y already lies in S, that is,
it is a linear combination of si. This implies that the samples ym are already dth order
polynomial functions ofm, as in Eq. (3.2.27).

144 3. Local Polynomial Filters

The second equation in (3.7.4) implies certain constraints on the filters bm, which
can be used to develop an alternative approach to the LPSM filter design problem in
terms of minimizing the NRR subject to constraints. To see this, we write the (d+1)×N
transposed matrix ST column-wise:

ST = [u−M, . . . ,u−1,u0,u1, . . . ,uM] (3.7.5)

For example, in the N = 5, d = 2 case, we have:

ST =
⎡⎢⎣ 1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4

⎤⎥⎦ ≡ [u−2, u−1, u0, u1, u2]

It is easily verified that themth column um is simply

um =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
m
m2

...
md

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , −M ≤m ≤M (3.7.6)

which is the same as u t at t =m, in terms of the definition (3.6.10). Using B = GST, we
can express the LPSM filters bm in terms of um, as follows:

[b−M, . . . ,b−1,b0,b1, . . . ,bM]= B = GST = G[u−M, . . . ,u−1,u0,u1, . . . ,uM]

which implies:
bm = Gum = SF−1um (3.7.7)

Multiplying by ST, we find STbm = STSF−1um = um, or,

STbm = um ⇒

⎡⎢⎢⎢⎢⎢⎣
sT0 bm
sT1 bm

...
sTdbm

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1
m
...
md

⎤⎥⎥⎥⎥⎥⎦ (3.7.8)

These relationships are the column-wise equivalent of STB = ST. Thus, each LPSM
filter bm satisfies (d+1) linear constraints:

sTi bm =mi, i = 0,1, . . . , d (3.7.9)

Writing the dot products explicitly, we have equivalently:

M∑
n=−M

nibm(n)=mi , i = 0,1, . . . , d (3.7.10)

3.7. Minimum Variance Filters 145

In particular, for the steady-state LPSM filter b0, we have u0 = [1,0,0, . . . ,0]T, with
ith component δ(i). Therefore, the constraint STb0 = u0 reads component-wise:

M∑
n=−M

nib0(n)= δ(i), i = 0,1, . . . , d (3.7.11)

For i = 0, this is the usual DC constraint:

M∑
n=−M

b0(n)= 1 (3.7.12)

and for i = 1,2, . . . , d:
M∑

n=−M
nib0(n)= 0 (3.7.13)

The quantity in the left-hand side of Eq. (3.7.11) is called the ith moment of the
impulse response b0(n). Because of the symmetric limits of summation over n and the
symmetry of b0(n) about its middle, the moments (3.7.13) will be zero for odd i, and
therefore are not extra constraints. However, for even i, they are nontrivial constraints.

These moments are related to the derivatives of the frequency response at ω = 0.
Indeed, defining,

B0(ω)=
M∑

n=−M
b0(n)e−jωn

and differentiating it i times, we have:

jiB(i)0 (ω)= ji
diB0(ω)
dωi

=
M∑

n=−M
nib0(n)e−jωn

Settingω = 0, we obtain:

jiB(i)0 (0)= ji
diB0(ω)
dωi

∣∣∣∣∣
ω=0

=
M∑

n=−M
nib0(n) (3.7.14)

Thus, the moment constraints (3.7.12) and (3.7.13) are equivalent to the DC con-
straint and the flatness constraints on the frequency response atω = 0:

B0(0)= 1, B(i)0 (0)= 0, i = 1,2, . . . , d (3.7.15)

The larger the d, the more derivatives vanish atω = 0, and the flatter the response
B0(ω) becomes. This effectively increases the cutoff frequency of the lowpass filter—
letting through more noise, but at the same time preserving more of the higher frequen-
cies in the desired signal.

Figure 3.7.1 shows the magnitude response |B0(ω)| for the cases N = 7,15 and
d = 0,2,4. The quadratic filters are flatter at DC than the plain FIR averager because
of the extra constraint B′′0 (0)= 0. Similarly, the quartic filters are even flatter because

146 3. Local Polynomial Filters

0 0.5 1
0

0.5

1

ω in units of π

|
B

0
(ω

)|

Magnitude Response, N = 7

 d = 0,1
 d = 2,3
 d = 4,5

0 0.5 1
0

0.5

1

ω in units of π

|
B

0
(ω

)|

Magnitude Response, N = 15

 d = 0,1
 d = 2,3
 d = 4,5

Fig. 3.7.1 LPSM filters of lengths N = 7,15, and orders d = 0,2,4.

they satisfy two flatness conditions: B′′0 (0)= B(4)0 (0)= 0. The cutoff frequencies are
approximately doubled and tripled in the cases d = 2 and d = 4, as compared to d = 0.

A direct consequence of the moment constraints (3.7.11) is that the moments of the
input signal y(n) are preserved by the filtering operation (3.2.33), that is,

∑
n
nix̂(n)=

∑
n
niy(n), i = 0,1, . . . , d (3.7.16)

This can be proved easily working in the frequency domain. Differentiating the
filtering equation X̂(ω)= B0(ω)Y(ω) i times, and using the product rules of differ-
entiation, we obtain:

X̂(i)(ω)=
i∑
j=0

(
i
j

)
B(j)0 (ω)Y(i−j)(ω)

Setting ω = 0 and using the moment constraints satisfied by the filter, B(j)0 (0)=
δ(j), we observe that only the j = 0 term will contribute to the above sum, giving:

X̂(i)(0)= B0(0)Y(i)(0)= Y(i)(0), i = 0,1, . . . , d

which implies Eq. (3.7.16), by virtue of Eq. (3.7.14) as applied to x(n) and y(n).
The preservation of moments is a useful property in applications, such as spectro-

scopic analysis or ECG processing, in which the desired signal has one or more sharp
peaks, whose widths must be preserved by the smoothing operation. In particular, the
second moment corresponding to i = 2 in Eq. (3.7.16) is a measure of the square of the
width [42–52,56,58,178].

The above moment constraints can be used in a direct way to design the LPSM filters.
We consider first the more general problem of designing an optimum length-N filter that
minimizes the NRR subject to d+ 1 arbitrary moment constraints. That is, minimize

R = bTb =
M∑

n=−M
b(n)2= min (3.7.17)

3.7. Minimum Variance Filters 147

subject to the d+ 1 constraints, with a given u = [u0, u1, . . . , ud]T:

sTi b =
M∑

n=−M
nib(n)= ui, i = 0,1, . . . , d ⇒ STb = u (3.7.18)

The minimization of Eq. (3.7.17) subject to (3.7.18) can be carried out with the help
of Lagrange multipliers, that is, adding the constraint terms to the performance index:

J = bTb+ 2
d∑
i=0

λi(ui − sTi b)= bTb+ 2λλλT(u− STb) (3.7.19)

The gradient of J with respect to the unknown filter b is:

∂J
∂b

= 2b− 2Sλλλ

Setting the gradient to zero, and solving for b gives:

b = Sλλλ = [s0, s1, . . . , sd]

⎡⎢⎢⎢⎢⎢⎣
λ0

λ1

...
λd

⎤⎥⎥⎥⎥⎥⎦ =
d∑
i=0

λisi

Component-wise this means that b(n) has the polynomial form:

b(n)=
d∑
i=0

λisi(n)=
d∑
i=0

λini, −M ≤ n ≤M

The Lagrange multiplier vector λλλ is determined by imposing the desired constraint:

u = STb = STSλλλ = Fλλλ ⇒ λλλ = F−1u

resulting in the optimum b:

b = Sλλλ = SF−1u = S(STS)−1u = Gu (3.7.20)

Since the solution minimizes the norm bTb, it is recognized to be the minimum-norm
solution of the (d+1)×N full-rank under-determined linear system STb = u, which
can be obtained by the pseudoinverse of ST, that is, b = (ST)+u, where according to
Eq. (15.4.10), (ST)+= S(STS)−1. In MATLAB, we can simply write b = pinv(ST)u.

Comparing this solution with Eqs. (3.7.7) and (3.7.8), we conclude that the LPSM filters
bm can be thought of as the optimum filters that have minimum NRR with constraint
vectors u = um, that is, the minimization problems,

R = bTmbm = min , subject to STbm = um (3.7.21)

have solutions,
bm = SF−1um = Gum , −M ≤m ≤M (3.7.22)

148 3. Local Polynomial Filters

and putting these together as the columns of B, we obtain Eq. (3.2.31):

B = [. . . ,bm, . . .]= G[. . . ,um, . . .]= GST = SF−1ST (3.7.23)

In particular, the steady-state LPSM filter b0 minimizes the NRR with the constraint
vector u = u0 = [1,0, . . . ,0]T. This was precisely the problem first formulated and
solved using Lagrange multipliers by Schiaparelli [36].

Similarly, the interpolating filter b t = Gu t of Eq. (3.6.10) can be thought of as the
solution of the constrained minimization problem:

R = bTb = min , subject to STb = u t , where u t = [1, t, t2, . . . , td]T

3.8 Predictive Differentiation Filters

Going back to the polynomial fit of Eq. (3.6.9), that is,

ŷt =
d∑
i=0

citi = cTu t = yTGu t = yTb t , where b t = Gu t , (3.8.1)

we recall that the differentiation filters (3.2.24) were derived by differentiating (3.8.1) at
t = 0, and therefore, they correspond to the center of the data vector y:

ŷt
∣∣
t=0 = c0 = bT0 y = gT0 y

˙̂yt
∣∣
t=0 = c1 = gT1 y

¨̂yt
∣∣
t=0 = 2c2 = gT2 y , etc.,

The first derivative at an arbitrary value of t is given by:

˙̂yt = yTḃ t , ḃ t = Gu̇ t

where the differentiation operation can be expressed as matrix multiplication:

u t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
t
t2
...
td

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ⇒ u̇ t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2t
...
dtd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · d 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
t
t2
...
td−1

td

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ Du t (3.8.2)

where D is the (d+1)×(d+1) matrix with the sequence of numbers {1,2, . . . , d} along
its first subdiagonal and zeros everywhere else. Such a matrix can be constructed triv-
ially in MATLAB, for example, by:

D = diag(1:d, -1);

3.8. Predictive Differentiation Filters 149

It follows that the first-order differentiation filter is ḃ t = GDu t. In particular, the
differentiation filter at the sample point t = m is ḃm = GDum and the corresponding
estimated derivative:

˙̂ym = ḃ
T
my = uTmDTGTy , −M ≤m ≤M (3.8.3)

Stacking these together into a column vector, we obtain:

˙̂y = SDTGTy = ḂTy , where Ḃ = GDST = SF−1DST (3.8.4)

so that Ḃ has the ḃm as columns. Higher-order derivatives correspond to higher powers
of the matrix D, for example, ü t = D2u t, and so on, with the highest non-trivial power
beingDd, becauseDd+1 = 0, or equivalently, because the elements of u t are monomials
up to td. Therefore, the order-i differentiation matrix will be:

B(i) = SF−1DiST , i = 0,1, . . . , d (3.8.5)

Centering the data vector y at time n and denoting them-th column of B(i) by b(i)m ,
we obtain the filtering equation for the i-th estimated derivative:

ŷ(i)n+m =
M∑

k=−M
b(i)m (k)yn+k =

M∑
k=−M

b(i)m (−k)yn−k (3.8.6)

We note that at the data-vector center m = 0, we have b(i)0 = gi. For arbitrary t, we

have b(i)t = GDiu t and we obtain the estimated/interpolated derivative:

ŷ(i)n+t =
M∑

k=−M
b(i)t (k)yn+k =

M∑
k=−M

b(i)t (−k)yn−k (3.8.7)

As in Eq. (3.6.15), the redefinition h(i)τ (k)= b(i)M+τ(M − k) will result into a causal
version of the predictive differentiator filter, with Eq. (3.8.7) transforming into:

ŷ(i)n+τ =
N−1∑
k=0

h(i)τ (k)yn−k (causal predictive differentiator) (3.8.8)

One can easily obtain closed-form expressions for the differentiation filters b(i)t (k)
for d = 0,1,2,3,4 and arbitraryM, by replacing the variablem in Eqs. (3.3.7)–(3.3.12) by
the variable t and differentiating i-times with respect to t. For example, for d = 1,2,3,
4, we differentiate Eqs. (3.6.12) once to get the first derivative:

150 3. Local Polynomial Filters

ḃt(k) = k
F2

ḃt(k) = 1

F2
k− F2

D4
(2t)+ F0

D4
(2tk2)

ḃt(k) = F6

D8
k− F2

D4
(2t)+ F0

D4
(2tk2)− F4

D8
(3t2k+ k3)+ F2

D8
(3t2k3)

ḃt(k) = F6

D8
k− D10

D
(2t)+E8

D
(2tk2)− F4

D8
(k3t2 + k3)

+ F2

D8
(3t2k3)+D8

D
(4t3)−D6

D
(2tk4 + k24t3)+D4

D
(4t3k4)

(3.8.9)

For the causal versions, we have for d = 1:

hτ(k) = 1

F0
+ (M + τ)(M − k)

F2
= M(M + 1)+3(M + τ)(M − k)

M(M + 1)(2M + 1)

ḣτ(k) = M − kF2
= 3(M − k)
M(M + 1)(2M + 1)

(3.8.10)

where k = 0,1, . . . ,N − 1. We note that ḣτ can be obtained by differentiating hτ with
respect to τ. The derivative filter is independent of τ because it corresponds to fitting
a first-order polynomial. For d = 2, we have similarly,

hτ(k) = F4

D4
+ 1

F2
(M + τ)(M − k)− F2

D4

(
(M + τ)2+(M − k)2)+ F0

D4
(M + τ)2(M − k)2

ḣτ(k) = 1

F2
(M − k)− F2

D4
2(M + τ)+ F0

D4
2(M + τ)(M − k)2

(3.8.11)
where, we recall from Eq. (3.3.11),

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

,
F2

D4
= 15

(2M + 3)(4M2 − 1)

F0

D4
= 45

M(M + 1)(2M + 3)(4M2 − 1)
,

1

F2
= 3

M(M + 1)(2M + 1)

Example 3.8.1: For the case N = 5, d = 2, we had found in Eqs. (3.2.5) and (3.2.16) that:

S = [s0, s1, s2]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦ , G = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦

3.8. Predictive Differentiation Filters 151

The corresponding first- and second-order differentiation matrices will be:

Ḃ = GD1ST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−27 −17 −7 3 13
6.5 1.5 −3.5 −8.5 −13.5
20 10 0 −10 −20

13.5 8.5 3.5 −1.5 −6.5
−13 −3 7 17 27

⎤⎥⎥⎥⎥⎥⎥⎦ , D1 =
⎡⎢⎣ 0 0 0

1 0 0
0 2 0

⎤⎥⎦

B̈ = GD2ST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
10 10 10 10 10
−5 −5 −5 −5 −5
−10 −10 −10 −10 −10
−5 −5 −5 −5 −5
10 10 10 10 10

⎤⎥⎥⎥⎥⎥⎥⎦ , D2 =
⎡⎢⎣ 0 0 0

0 0 0
2 0 0

⎤⎥⎦

The central columns agree with Eq. (3.2.25). The interpolating smoothing and first-order
differentiation filters are given by:

b t = Gu t = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 1
t
t2

⎤⎥⎦ = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3− 7t + 5t2

12− 3.5t − 2.5t2

17− 5t2

12+ 3.5t − 2.5t2

−3+ 7t + 5t2

⎤⎥⎥⎥⎥⎥⎥⎦

ḃ t = GDu t = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 0 0 0

1 0 0
0 2 0

⎤⎥⎦
⎡⎢⎣ 1
t
t2

⎤⎥⎦ = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−7+ 10t
−3.5− 5t
−10t

3.5− 5t
7+ 10t

⎤⎥⎥⎥⎥⎥⎥⎦
where ḃ t can be obtained either by the indicated matrix multiplication or by simply differ-
entiating b t with respect to t. ��

The MATLAB function lpdiff implements the design of the differentiation matrices:

B = lpdiff(N,d,i); % differentiation filters

Like lpsm, it carries out a Gram-Schmidt QR-transformation on the monomial basis
S and constructs the B(i) by:

S = QR , QTQ = I, R = upper triangular

G = S(STS)−1= QR−T

B(i) = GDiST = Q(R−TDiRT)QT

The predictive/interpolating differentiation filters b(i)t are the minimum-norm solu-
tion of the under-determined linear system STb = Diu t, or, equivalently the solution
of the constrained minimization problem:

R = bTb = min , subject to STb = Diu t
The MATLAB function lpinterp implements the design of predictive and interpo-

lating differentiation filters, essentially carrying out the operation b = pinv(ST)Diu t:

152 3. Local Polynomial Filters

b = lpinterp(N,d,t,i); % local polynomial interpolation and differentiation filters

The case i = 0 corresponds to the predictive interpolation filters of Sec. 3.6. For the
integer values t =m, −M ≤m ≤M, the filter b agrees with the columns of B(i).

Example 3.8.2: Fig. 3.8.1 illustrates the performance of the local polynomial differentiation
filters on noiseless and noisy signals.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

noiseless signal

t
0 2 4 6 8 10

−0.5

0

0.5
differentiated signal

t

 true derivative
 estimated

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

noisy signal

t
0 2 4 6 8 10

−0.5

0

0.5
differentiated signal

t

 true
 differenced
 estimated

Fig. 3.8.1 Differentiating noisy signals.

The noiseless signal is a raised cosine s(t)= 0.5 − 0.5 cos(ωt), with 0 ≤ t ≤ T and
ω = 2π/T, so that it spans one cycle. Choosing a sampling time interval Δt = T/L, we
can construct a noisy signal sampled at time instants tn = nΔt = nT/L, n = 0,1, . . . , L,
by adding zero-mean white gaussian noise vn of variance, say σ2, so that the noisy obser-
vations are:

yn = s(tn)+vn , n = 0,1, . . . , L

The first derivative of s(t) is ṡ(t)= 0.5ω sin(ωt) and its samples, ṡ(tn)= 0.5ω sin(ωtn).
The upper-left graph shows s(tn) versus tn, with T = 10 and L = 50. The upper-right
graph shows ṡ(tn) (dashed line) together with the estimated derivative (solid line) of the
original signal s(tn) filtered through an LPSM differentiation filter designed with N = 31
and polynomial order d = 3. The output of the filter is divided by Δt in order to adjust its
dimensions.

3.9. Filtering Implementations 153

The bottom-left graph shows the noisy signal yn. In the bottom-right graph, the output
(solid line) of the same differentiation filter applied to the noisy signal yn is compared with
the true noiseless differentiated signal ṡn, as well as to the differenced signal diff(y)/Δt.
The following MATLAB code illustrates the generation of the bottom-right graph:

T = 10; L = 50; Dt =T/L; w = 2*pi/T; sigma = 0.1;
t = 0:Dt:T;
s = 0.5 - 0.5*cos(w*t); % noiseless signal

seed=100; randn(’state’,seed);
y = s + sigma * randn(1,length(s)); % noisy signal

N = 31; d = 3; B1 = lpdiff(N,d,1); % first-order differentiation filter

sd = 0.5*w*sin(w*t); % derivative of s(t)
xd = lpfilt(B1,s)/Dt; % estimated derivative of s(t)
x1 = lpfilt(B1,y)/Dt; % estimated derivative from the noisy signal

yd = diff(y)/Dt; td = t(2:end); % differenced signal estimates the derivative

plot(t,sd,’--’, td,yd,’:’, t,x1,’-’);

The differencing operation amplifies the noise and renders the estimated derivative use-
less, whereas the local-polynomial derivative is fairly accurate. The filtering operation is
carried out by the function lpfilt, which is explained in the next section. ��

3.9 Filtering Implementations

In smoothing a length-L signal block yn, n = 0,1, . . . , L − 1, with a double-sided filter
hm, −M ≤m ≤M, the output signal x̂n is given by the convolutional form:

x̂n =
min(n,M)∑

m=max(−M,n−L+1)
hmyn−m , −M ≤ n ≤ L+M − 1 (3.9.1)

The length of x̂n is L+2M, and the first 2M and last 2M output samples correspond
to the input-on and input-off transients, while the central L − 2M points, M ≤ n ≤
L−M−1, correspond to the steady-state output computed from the steady-state version
of Eq. (3.9.1):

x̂n =
M∑

m=−M
hmyn−m , M ≤ n ≤ L−M − 1 (3.9.2)

The range of the output indexn and the limits of summation in (3.9.1) are determined
from the inequalities −M ≤m ≤M and 0 ≤ n−m ≤ L−1 that must be satisfied by the
indices of hm and yn−m. However, only the subrange {x̂n , 0 ≤ n ≤ L− 1} is of interest
since these output samples represent the smoothed values of the corresponding input
samples {yn , n = 0,1, . . . , L− 1}. This is illustrated in Fig. 3.9.1.

The first and last M samples in the subrange 0 ≤ n ≤ L − 1 are still parts of the
input-on and input-off transients. To clarify these remarks, we consider the case L = 8,
M = 2. The full output (3.9.1) may be represented by the usual convolution matrix of
the filter acting on the input signal block:

154 3. Local Polynomial Filters

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂−2

x̂−1

. . .
x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

. . .
x̂8

x̂9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−2 0 0 0 0 0 0 0
h−1 h−2 0 0 0 0 0 0
. .
h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

. .
0 0 0 0 0 0 h2 h1

0 0 0 0 0 0 0 h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3.9.1 Input and output signal blocks from a double-sided filter.

This matrix can be constructed in MATLAB with the built-in function convmtx, or
with its sparse version convmat, or with the function datamat, the latter two being part
of the OSP toolbox. Defining h = [h−M, . . . , h0, . . . , hM]T, we have the syntax:

H = convmtx(h,L); % built-in convolution matrix

H = convmat(h,L); % sparse version of convmtx

H = datamat(h,L-1); % used extensively in Chap. 15

3.9. Filtering Implementations 155

Dropping the first and last two outputs, we obtain the outputs in the subrange 0 ≤ n ≤ 7:

x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Hy (3.9.3)

The first two and last two of these outputs are still transient and are being com-
puted with only a subset of the filter coefficients, and therefore, may not adequately
represent the corresponding smoothed values. This so-called “end-point problem” has
been addressed repeatedly with a number of solutions.

One method that is widely used by the government to process census and business-
cycle data (e.g., the X12-ARIMA method) is to backcast and forecastM estimated values
at the beginning and end of the length-L input block, so that yn is now defined over
−M ≤ n ≤ L− 1+M, and the desired output samples over the subrange 0 ≤ n ≤ L− 1
will be steady-state outputs being computed with the full filter.

Another method is to use different filters for the first M and last M outputs. For
example, one can take the outputs ŷn+m of the LPSM filters bm(k) to estimate the initial
and finalM transients, while using the central filter b0(k) for the steady-state outputs.
Indeed, the first time index when one can use the steady-state filter b0(k) is n =M:

x̂M = ŷM =
M∑

k=−M
b0(k)yM+k

Instead of calculating the previous output x̂M−1 using the transient version of b0(k),

x̂M−1 =
M∑

k=−(M−1)
b0(k)yM−1+k

one could estimate x̂M−1 using ŷM+m with m = −1, that is, using b−1(k), and using
b−2(k), b−3(k), . . . , b−M(k) for the other initialM outputs:

x̂M−1 = ŷM−1 =
M∑

k=−M
b−1(k)yM+k

x̂M−2 = ŷM−2 =
M∑

k=−M
b−2(k)yM+k

...

x̂0 = ŷM−M =
M∑

k=−M
b−M(k)yM+k

(3.9.4)

156 3. Local Polynomial Filters

Similarly, one can use the filters bm(k) for m = 1,2, . . . ,M to calculate the last
M smoothed outputs, starting with the last steady-state output at n = L − 1 −M and
proceeding to the end n = L− 1:

x̂L−M = ŷL−1−M+1 =
M∑

k=−M
b1(k)yL−1−M+k

x̂L−M+1 = ŷL−1−M+2 =
M∑

k=−M
b2(k)yL−1−M+k

...

x̂L−1 = ŷL−1−M+M =
M∑

k=−M
bM(k)yL−1−M+k

(3.9.5)

The following example illustrates the computational steps for the input-on, steady,
and input-off output samples, where we denoted bm,k = bm(k) for simplicity:

x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−2,−2 b−2,−1 b−2,0 b−2,1 b−2,2 0 0 0
b−1,−2 b−1,−1 b−1,0 b−1,1 b−1,2 0 0 0
. .
b0,−2 b0,−1 b0,0 b0,1 b0,2 0 0 0
0 b0,−2 b0,−1 b0,0 b0,1 b0,2 0 0
0 0 b0,−2 b0,−1 b0,0 b0,1 b0,2 0
0 0 0 b0,−2 b0,−1 b0,0 b0,1 b0,2
. .
0 0 0 b1,−2 b1,−1 b1,0 b1,1 b1,2
0 0 0 b2,−2 b2,−1 b2,0 b2,1 b2,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hy

In particular, for N = 5 and d = 2, the convolutional filtering matrix will be:

x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

35

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3 0 0 0
9 13 12 6 −5 0 0 0
. .
−3 12 17 12 −3 0 0 0

0 −3 12 17 12 −3 0 0
0 0 −3 12 17 12 −3 0
0 0 0 −3 12 17 12 −3
. .

0 0 0 −5 6 12 13 9
0 0 0 3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hy

with entries obtained from the matrix B of Eq. (3.2.16):

B = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦ = [b−2, b−1, b0, b1, b2]

More generally, given any smoothing (or differentiation) matrix B whose central col-
umn contains the (reversed) steady-state filter, and its other columns, the (reversed)

3.9. Filtering Implementations 157

filters to be used for the initial and final transients, one can uniquely construct the
corresponding L×L convolutional matrix H for filtering a length-L block of data y.

The procedure is straightforward. First construct the ordinary full (L+2M)×L con-
volution matrix for the central filter, then delete its firstM and lastM rows, and finally,
replace the firstM and lastM rows of the result by the transient filters.

The following MATLAB code segment illustrates the procedure, where the matrix B
is assumed to have size N×N, with N = 2M + 1, with the central column being the
reversed steady-state filter and the other columns, the reversed transient filters:

H = convmat(flip(B(:,M+1)), L); % ordinary (L+2M)×L convolution matrix

H = H(M+1:L+M,:); % extract the L×L convolution submatrix

H(1:M, 1:N) = B(:,1:M)’; % redefine upper-leftM×L corner

H(L-M+1:L, L-N+1:L) = B(:,M+2:N)’; % redefine lower-rightM×L corner

The function flip reverses the central column of B because convmat expects as
input the actual filter, not its reverse. The above steps have been incorporated into the
function lpmat with syntax:

H = lpmat(B,L); % local polynomial filter matrix of size L×L

Once the L×L matrix H is constructed, the actual filtering of a length-L input block
y is straightforward, that is, x̂ = Hy, and efficient because H is defined as sparse.

An alternative way to structure the filtering operation is to directly use Eqs. (3.9.4)
and (3.9.5) for the transient parts and the following equation for the steady part:

x̂n =
M∑

k=−M
b0(k)yn+k , M ≤ n ≤ L− 1−M (3.9.6)

The following MATLAB code illustrates this approach:

y = B(:,1:M)’ * x(1:N); % firstM transient outputs

for n = M+1:L-M, % middle L−2M steady-state outputs

y = [y; B(:,M+1)’ * x(n-M:n+M)]; % filtered by central column of B
end
y = [y; B(:,M+2:N)’ * x(L-N+1:L)]; % lastM transient outputs

These steps are implemented in the MATLAB function lpfilt2. A faster version
is the function lpfilt, which uses MATLAB’s built-in filtering functions. Thus, three
possible ways of computing the filtered output x̂ given a smoothing matrix B are as
follows (assuming that y is a length-L column vector):

x_hat = lpmat(B,L)*y; % use L×L convolution matrix constructed from B

x_hat = lpfilt2(B,y); % use directly the filtering equations (3.9.4)–(3.9.6)

x_hat = lpfilt(B,y); % fast version using the function filtdbl

The function lpfilt internally calls the function filtdbl, which uses the built-in
function conv to implement the FIR filtering by the steady-state double-sided central
filter. The following code segment shows the essential part of lpfilt:

x_hat = filtdbl(flip(B(:,M+1)), y); % filter with the central column of B
x_hat(1:M) = B(:,1:M)’ * y(1:N); % correct the firstM transient outputs

x_hat(end-M+1:end) = B(:,M+2:N)’ * y(end-N+1:end); % correct the lastM transient outputs

158 3. Local Polynomial Filters

where the function filtdbl has usage:

y = filtdbl(h,x); % filtering by double-sided FIR filter

The function filtdbl is essentially the ordinary convolution of the length-(2M+1)
filter h and the length-L signal x, with the first M and last M output points discarded.
The result is equivalent to that obtained using the convolution submatrix, as for example,
in Eq. (3.9.3). We note, in particular, that the B matrix that gives rise to (3.9.3) is:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
h0 h1 h2 0 0
h−1 h0 h1 h2 0
h−2 h−1 h0 h1 h2

0 h−2 h−1 h0 h1

0 0 h−2 h−1 h0

⎤⎥⎥⎥⎥⎥⎥⎦
and contains the reversed filter h in the central column and the transient subfilters in
the other columns.

There are other methods of handling the end-point problem, most notably Mus-
grave’s minimum-revision method that uses end-point asymmetric filters constructed
from a given central filter h. We will discuss it in detail in Sec. 9.8. Here, we note that
the output of this method is a B matrix, which can be passed directly into the filtering
function lpfilt. The MATLAB function minrev implements Musgrave’s method:

B = minrev(h,R); % Musgrave’s minimum revision asymmetric filters

where R is a scalar parameter to be explained in Sec. 9.8. The method is widely used in
the X-11 method of seasonal adjustment and trend extraction.

Example 3.9.1: Schiaparelli was the first one to systematically pose and solve the minimum-
NRR filtering problem. He gave the solution to many specific cases, such as filter lengths
N = 5–13, and polynomial orders d = 3,4.

Here, we reproduce the example from Schiaparelli’s paper on smoothing lunar obser-
vations, the signal yn being a measure of the moon’s influence on atmospheric effects.
Fig. 3.9.2 shows 30 noisy observations (one for each lunar day) and their smoothed ver-
sions produced with an LPSM filter of length N = 13 and polynomial order d = 3 on the
left, and d = 4 on the right (Schiaparelli’s case).

The central filters for the d = 3 and d = 4 cases are:

b0 = 1

143

[−11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, −11
]

b0 = 1

2431

[
110, −198, −135, 110, 390, 600, 677, 600, 390, 110, −135, −198, 110

]
The following program segment illustrates the computations:

Y = loadfile(’schiaparelli.dat’); % data file available in the OSP toolbox

n = Y(:,1); y = Y(:,2); % extract n and yn from the columns of Y

N=13; d=3; M=floor(N/2); % filter length and polynomial order

B = lpsm(N,d); % construct LPSM matrix B
x = lpfilt(B,y); % filter noisy observations

b0 = B(:,M+1); % middle column of B
x0 = filtdbl(b0,y); % filter with b0 only

plot(n,y,’.’, n,x,’-’, n,x0,’--’);

3.9. Filtering Implementations 159

1 10 20 30

0.4

0.5

0.6

N = 13, d = 3

days, n

 noisy data
 smoothed
 with transients

1 10 20 30

0.4

0.5

0.6

N = 13, d = 4

days, n

 noisy data
 smoothed

Fig. 3.9.2 Schiaparelli’s smoothing example.

where the function loadfile extracts only the numerical data from the data file. In the
left graph, we have also added the result of filtering with the steady-state filter b0, which
illustrates the end-point problem. The two filtered curves differ only in their first 6 and
last 6 points. ��

Example 3.9.2: Global Warming Trends. Fig. 3.9.3 shows the annual average temperature anoma-
lies (i.e., the differences with respect to the average of the period 1961–90) over the pe-
riod 1856–2005 in the northern hemisphere. The data are available from the web site:
https://crudata.uea.ac.uk/cru/data/crutem2/.

Five trend extraction methods are compared. In the upper left, a local polynomial smooth-
ing filter was used of length N = 65 and polynomial order d = 3. The following MATLAB
code illustrates the generation of that graph:

Y = loadfile(’tavenh2v.dat’); % data file available in the OSP toolbox

n = Y(:,1); y = Y(:,14); % extract n and yn from Y

N = 65; d = 3; B = lpsm(N,d); % design the LPSM matrix B
x = lpfilt(B,y); % smooth the data vector y

figure; plot(n,y,’:’, n,x,’-’);

In the upper-right graph, a minimum-roughness, or minimum-Rs, Henderson filter was
used with lengthN = 65, polynomial order d = 3, and smoothing order s = 2. Such filters
are discussed in Sec. 4.2. The resulting trend is noticeably smoother than that of the LPSM
filter on the upper-left.

The middle-left graph uses the SVD signal enhancement method, described in Chap. 15,
with embedding order M = 10 and rank r = 2, with K = 40 iterations. The middle-
right graph uses the Whittaker-Henderson smoothing method, discussed in Sec. 8.1, with
smoothing order s = 2 and smoothing parameter λ = 104.

The lower left and right graphs use the Whittaker-Henderson method with the L1 criterion
with differentiation orders s = 2 and s = 3 and smoothing parameterλ = 10, implemented
with the CVX package.† The s = 2 case represents the smoothed signal in piece-wise linear
form, and the s = 3 case, in piece-wise parabolic form. This is further discussed in Sec. 8.7.

†http://cvxr.com/cvx/

160 3. Local Polynomial Filters

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

LPSM filter, N = 65, d = 3

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

LPRS filter, N = 65, d = 3, s = 2

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

SVD enhancement, M = 10, r = 2

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Whittaker− Henderson smoothing

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Whittaker− Henderson with L1, s = 2

 actual
 L

1
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Whittaker− Henderson with L1, s = 3

 actual
 L

1
 trend

Fig. 3.9.3 Temperature trends determined by five methods.

The following MATLAB code segment illustrates the computation of the corresponding
smoothed signals for these four methods:

N=65; d=3; s=2; x = lpfilt(lprs(N,d,s), y); % minimum-Rs Henderson filter

M=10; r=2; K=40; x = svdenh(y,M,r,K); % SVD enhancement method

la = 10000; s=2; x = whsm(y,la,s); % Whittaker-Henderson smoothing

s = 2; la = 10; N = length(y); % Whittaker-Henderson with L1

D = diff(eye(N),s); % s-fold differentiation matrix

3.9. Filtering Implementations 161

cvx_begin % use CVX package

variable x(N)
minimize(sum_square(y-x) + la * norm(D*x,1))

cvx_end

All methods adequately handle the end-point problem. Repeating the same filtering oper-
ation several times results in even smoother trend signals. For example, Fig. 3.9.4 shows
the result of repeating the filtering operation two additional times. The following MATLAB
code illustrates the generation of the left graph:

N = 65; d=3; B = lpsm(N,d); x = y;
for i=1:3, x = lpfilt(B,x); end
figure; plot(n,y,’:’, n,x,’-’);

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

LPSM filter, repeated twice

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Henderson filter, repeated twice

 actual
 trend

Fig. 3.9.4 Filtering repeated two additional times.

For the steady-state filtersB0(ω), filtering a total ofK times is equivalent to an overall filter[
B0(ω)

]K
, an operation which makes a flat passband even flatter and a small stopband

even smaller. The properties of iterated smoothing by local polynomial filters has been
studied by De Forest, Schoenberg, and Greville [67,83,86].

Fig. 3.9.5 shows the estimated derivatives (solid line) of the temperature signal obtained
by filtering it with the LPSM derivative filters, and compares them with the ordinary differ-
encing operation, diff(y), in MATLAB notation. Clearly, differencing is simply too noisy
to give any usable results.

The upper two graphs compute the first derivative of the input by ˙̂x = lpfilt(B1, y) with
the differentiator matrix obtained from B1 = lpdiff(N,d, i) with N = 65 and i = 1, and
with d = 1 in the upper-left, and d = 2 in the upper-right graph. During the two periods
of almost linear growth from 1910–1940 and 1970-2005, the derivative signal becomes an
almost flat positive constant (i.e., the slope). During the other periods, the temperature
signal has a very slow upward or downward trend and the derivative signal is almost zero.

We note the flat end-points in the the case d = 1, which are due to the fact that the
asymmetric derivative filters are the same at the end-points ranges as shown in the first
equation of (3.8.9). The case d = 2 estimates the end-point derivatives better and possibly
indicates a faster than linear growth in recent years.

162 3. Local Polynomial Filters

The lower-left graph uses a minimum-Rs derivative filter with N = 65, d = 2, and smooth-
ness order s = 3, resulting in a noticeably smoother estimated derivative than the LPSM
case (theW input in lpdiff is discussed in the next section.) Finally, the lower-right graph
shows the second derivative computed with the filter B2 = lpdiff(N,d, i) with i = 2, and
compares it with the second difference signal, diff

(
diff(y)

)
, which is even more noisy than

the first difference. The following MATLAB code illustrates the computations:

d=1; i=1; B1 = lpdiff(N,d,i); % LPSM differentiation filters

plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % upper-left graph

d=2; i=1; B1 = lpdiff(N,d,i);
plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % upper-right graph

s=3; W = diag(hend(N,s)); % Henderson weighting matrix

d=2; i=1; B1 = lpdiff(N,d,i,W); % LPRS differentiation filters

plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % lower-left graph

d=2; i=2; B2 = lpdiff(N,d,i); % second derivative filters

plot(n, lpfilt(B2,y), n(3:end), diff(y,2),’:’); % lower-right graph

1850 1900 1950 2000

−0.1

0

0.1

years

fi
rs

t
de

ri
va

ti
ve

N = 65, d = 1, i = 1

 B = lpdiff(N,d,i)
 diff(y,1)

1850 1900 1950 2000

−0.1

0

0.1

years

fi
rs

t
de

ri
va

ti
ve

N = 65, d = 2, i = 1

 B = lpdiff(N,d,i)
 diff(y,1)

1850 1900 1950 2000

−0.1

0

0.1

years

fi
rs

t
de

ri
va

ti
ve

N = 65, d = 1, i = 1, s = 3

 B = lpdiff(N,d,i,W)
 diff(y,1)

1850 1900 1950 2000

−0.1

0

0.1

years

se
co

n
d

de
ri

va
ti

ve

N = 65, d = 2, i = 2

 B = lpdiff(N,d,i)
 diff(y,2)

Fig. 3.9.5 Differentiated temperature signal.

The second derivative is essentially zero, being consistent with piecewise linear trends.
Derivative signals can also be estimated for the SVD and Whittaker-Henderson methods.
Since the outputs x̂n of these methods are smooth signals, the corresponding derivatives

3.9. Filtering Implementations 163

can be simply computed as the difference signals, diff(x̂n), with comparable results as the
local polynomial methods. ��

4
Minimum Roughness Filters

4.1 Weighted Local Polynomial Filters

The design of the LPSM filters was based on a least-squares criterion, such as (3.2.2),
where all error terms were equally weighted within the filter’s window:

J =
M∑

m=−M
e2
m =

M∑
m=−M

(ym − ŷm)2=
M∑

m=−M

⎛⎝ym − d∑
i=0

cimi
⎞⎠2

= min

This can be generalized by using unequal positive weights, wm, −M ≤m ≤M:

J =
M∑

m=−M
wme2

m =
M∑

m=−M
wm

⎛⎝ym − d∑
i=0

cimi
⎞⎠2

= min (4.1.1)

Introducing the diagonal matrix W = diag
(
[w−M, . . . ,w0, . . . ,wM]

)
, we may write

Eq. (4.1.1) compactly as:

J = eTWe = (y− Sc)TW(y− Sc)= min (4.1.2)

where y, S, c have the same meaning as in Eqs. (3.2.26)–(3.2.30). Differentiating with
respect to c gives the orthogonality and normal equations:

STWe = STW(y− Sc)= 0 � (STWS)c = STWy (4.1.3)

with solution for c and the estimate ŷ = Sc:

c = (STWS)−1STWy = GTy

ŷ = Sc = S(STWS)−1STWy = BTy
(4.1.4)

where we defined

G =WS(STWS)−1

B = GST =WS(STWS)−1ST
(4.1.5)

164

4.1. Weighted Local Polynomial Filters 165

The matrix B satisfies the following properties:

STB = ST
BT =W−1BW

BWBT = BW =WBT
(4.1.6)

The first implies the usual polynomial-preserving moment constraints STbm = um,
for −M ≤ m ≤ M, where bm is the mth column of B. The second shows that B is no
longer symmetric, and the third may be used to simplify the minimized value of the
performance index. Indeed, using the orthogonality property, we obtain:

Jmin = eTWe = yTWy− yTBWy− yTWBTy+ yTBWBTy = yTWy− yTBWy

A fourth property follows if we assume that the weights wm are symmetric about
their middle, wm = w−m, or more generally if W is assumed to be positive-definite,
symmetric, and centro-symmetric, which implies that it remains invariant under reversal
of its rows and its columns. The centro-symmetric property can be stated concisely as
JW = WJ, where J is the column-reversing matrix consisting of ones along its anti-
diagonal, that is, the reverse of a column vector is bR = Jb. Under this assumption on
W, it can be shown that B is also centro-symmetric:

JB = BJ ⇒ bRm = b−m , −M ≤m ≤M (4.1.7)

This can be derived by noting that reversing the basis vector si simply multiplies it
by the phase factor (−1)i, so that JS = SΩ, where Ω is the diagonal matrix of phase
factors (−1)i, i = 0,1, . . . , d. This then implies Eq. (4.1.7). Similarly one can show that
JG = GΩ, so that the reverse of each differentiation filter is gRi = (−1)igi.

The filtering equations (3.2.33) and (3.2.34) retain their form. Among the possible
weighting matricesW, we are interested in those such that the polynomial fitting prob-
lem (4.1.2) has an equivalent characterization as the minimization of the NRR subject
to the polynomial-preserving constraints STbm = um. To this end, we consider the
constrained minimization of a generalized or “prefiltered” NRR:

R = bTVb = min , subject to STb = u (4.1.8)

for a given (d+1)-dimensional vector u. The N×N matrix V, where N = 2M+1,
is assumed to be strictly positive-definite, symmetric, and Toeplitz. We may write
component-wise:

R =
M∑

n,m=−M
b(n)Vn−mb(m)= 1

2π

∫ π
−π
|B(ω)|2V(ω)dω (4.1.9)

where we set Vnm = Vn−m because of the Toeplitz property, and introduced the corre-
sponding DTFTs:

B(ω)=
M∑

n=−M
b(n)e−jωn , V(ω)=

∞∑
k=−∞

Vke−jωk (4.1.10)

166 4. Minimum Roughness Filters

One way to guarantee a positive-definiteV is to takeV(ω) to be the power spectrum
of a given filter, say, D(ω), that is, choose V(ω)= |D(ω)|2, so that R will be the
ordinary NRR of the cascaded filter F(ω)= D(ω)B(ω) or F(z)= D(z)B(z):

R = 1

2π

∫ π
−π
|B(ω)|2V(ω)dω = 1

2π

∫ π
−π
|B(ω)D(ω)|2dω (4.1.11)

The minimum-Rs or minimum-roughness filters discussed in Sec. 4.2 correspond to
the choice D(z)= (1− z−1)s, for some integer s. For a general V and u, the solution of
the problem (4.1.8) is obtained by introducing a Lagrange multiplier vector λλλ:

J = bTVb+ 2λλλT(u− STb)= min

leading to the solution:

λλλ = (STV−1S)−1u

b = V−1Sλλλ = V−1S(STV−1S)−1u
(4.1.12)

If we choose um = [1,m,m2, . . . ,md]T as the constraint vectors and put together
the resulting solutions as the columns of a matrix B, then,

B = [· · ·bm · · ·]= V−1S(STV−1S)−1[· · ·um · · ·]
or, because ST = [· · ·um · · ·],

B = V−1S(STV−1S)−1ST (4.1.13)

This solution appears to be different from the solution (4.1.5) of the least-squares
problem, B = WS(STWS)−1ST. Can the two solutions be the same? The trivial choice
V = W = I corresponds to the LPSM filters. The choice V = W−1 is not acceptable
because with V assumed Toeplitz, and W assumed diagonal, it would imply that all
the weights are equal, which is again the LPSM case. A condition that guarantees the
equivalence is the following [123,99]:

VWS = SC ⇒ WS = V−1SC (4.1.14)

where C is an invertible (d+1)×(d+1) matrix. Indeed, then STWS = STV−1SC, and,

G =WS(STWS)−1= V−1S(STV−1S)−1 (4.1.15)

so that
B =WS(STWS)−1ST = V−1S(STV−1S)−1ST (4.1.16)

For the minimum-Rs filters, the particular choices forW,V do indeed satisfy condi-
tion (4.1.14) with an upper-triangular matrix C. With the equivalence of the polynomial-
fitting and minimum-NRR approaches at hand, we can also derive the corresponding
predictive/interpolating differentiation filters. Choosing u = Diu t as the constraint
vector in (4.1.12), we obtain,

b(i)t = V−1S(STV−1S)−1Diu t =WS(STWS)−1Diu t (4.1.17)

4.1. Weighted Local Polynomial Filters 167

and at the sample values t = m, −M ≤ m ≤ M, or, at u t = um, we obtain the differen-
tiation matrix having the b(i)m as columns, B(i) = [· · ·b(i)m · · ·]:

B(i) =WS(STWS)−1DiST = V−1S(STV−1S)−1DiST (4.1.18)

Computationally, it is best to orthogonalize the basis S. Let W = UTU be the
Cholesky factorization of the positive-definite symmetric matrixW, whereU is anN×N
upper-triangular factor. Then, performing the QR-factorization on theN×(d+1)matrix
US, the above computations become:

W = UTU
US = Q0R0 , with QT0Q0 = I , R0 = (d+1)×(d+1) upper-triangular

B = UTQ0QT0U−T

B(i) = UTQ0(R−T0 DiRT0)QT0U−T

b(i)t = UTQ0R−T0 Diu t

(4.1.19)

The MATLAB functions lpsm, lpdiff, lpinterp have the weighting matrixW as an
additional input, which if omitted defaults toW = I. They implement Eqs. (4.1.19) and
their full usage is:

[B,G] = lpsm(N,d,W);

B = lpdiff(N,d,i,W);

b = lpinterp(N,d,t,i,W);

The factorizations in Eq. (4.1.19) lead naturally to a related implementation in terms
of discrete polynomials that are orthogonal with respect to the weighted inner product:

aTWb =
M∑

m=−M
wm a(m)b(m) (4.1.20)

Such polynomials may be constructed from the monomials si(m)=mi, i = 0,1, . . . , d
via Gram-Schmidt orthogonalization applied with respect to the above inner product.
The result of orthogonalizing the basis S = [s0, s1, . . . , sd] isQ = [q0,q1, . . . ,qd]whose
columns qi(m) are polynomials of order i in the variablem that are mutually orthogo-
nal, that is, up to an overall normalization:

qTi Wqj = δijDi , i, j = 0,1, . . . , d ⇒ QTWQ = D (4.1.21)

whereD = diag([D0,D1, . . . ,Dd]) is the diagonal matrix of the (positive) normalization
factors Di. These factors can be selected to be unity if so desired. For the minimum-
roughness filters, these polynomials are special cases of the Hahn orthogonal polyno-
mials, whose properties are discussed in Sec. 4.3. For unity weights wm = 1, the poly-
nomials reduce to the discrete Chebyshev/Gram polynomials.

Numerically, these polynomials can be constructed from the factorization (4.1.19).
SinceD is positive-definite, we may defineD1/2 = diag([D1/2

0 ,D1/2
1 , . . . ,D1/2

d]) to be its
square root. Then we construct Q,R in terms of the factors U,Q0, R0:

Q = U−1Q0D1/2 , R = D−1/2R0 (4.1.22)

168 4. Minimum Roughness Filters

where R is still upper-triangular. Then, we have QTWQ = D and

QR = U−1Q0D1/2D−1/2R0 = U−1Q0R0 = U−1US = S

which is equivalent to the Gram-Schmidt orthogonalization of the basis S, and leads to
the following equivalent representation of Eq. (4.1.19):

S = QR , with QTWQ = D, R = (d+1)×(d+1) upper-triangular

B =WQD−1QT

B(i) =WQD−1(R−TDiRT)QT

b(i)t =WQD−1R−TDiu t

(4.1.23)

Since Q = [q0,q1, . . . ,qd], the matrix B can be expressed as,

B =WQD−1QT =W
d∑
r=0

D−1
r qrq

T
r (4.1.24)

and for diagonalW, we have component-wise:

bm(k)= Bkm = wk
d∑
r=0

qr(k)qr(m)
Dr

−M ≤m,k ≤M (4.1.25)

The sum in (4.1.25) can be simplified further using the Christoffel-Darboux identity
discussed in Sec. 4.3. The polynomial predictive interpolation filters b(i)t can also be
expressed in a similar summation form:

b(i)t (k)= wk
d∑
r=0

qr(k)q
(i)
r (t)

Dr
(4.1.26)

where q(i)r (t) is the ith derivative of the polynomial qr(t) obtained from qr(m) by
replacing the discrete variable m by t. This can be justified as follows. The mth rows
of the matrices S and Q are the (d+1)-dimensional vectors:

uTm = [s0(m), s1(m), . . . , sd(m)]= [1,m, . . . ,md]
pTm = [q0(m), q1(m), . . . , qd(m)]

(4.1.27)

and since S = QR, they are related by uTm = pTmR. Replacing m by t preserves this
relationship, so that uTt = pTt R, or,

u t = RTp t , where p t = [q0(t), q1(t), . . . , qd(t)]T (4.1.28)

Differentiating i times, we obtain

Diu t = u(i)t = RTp(i)t ⇒ p(i)t = R−TDiu t (4.1.29)

4.2. Henderson Filters 169

and therefore b(i)t from Eq. (4.1.23) can be written in the following form, which implies
Eq. (4.1.26):

b(i)t =WQD−1p(i)t (4.1.30)

As in the case of the LPSM filters, for the special case d = N − 1, the interpolation
filters correspond to Lagrange interpolation. In this caseQ becomes an invertibleN×N
matrix satisfying the weighted unitarity property QTWQ = D, which implies

Q−1 = D−1QTW (4.1.31)

from which we obtain the completeness property:

QD−1QT =W−1 (4.1.32)

which shows that B = I. Similarly, using WQD−1 = Q−T, we obtain from (4.1.23) the
usual Lagrange interpolation polynomials:

b t =WQD−1R−Tu t = Q−TR−Tu t = S−Tu t (4.1.33)

With d = N − 1, the matrix Q is an orthogonal basis for the full space RN. One of
the applications of Eq. (4.1.31) is the representation of signals, such as images or speech
in terms of orthogonal-polynomial moments [137–150].

Given an N-dimensional signal block y, such as a row in a scanned image, we define
the N-dimensional vector of moments with respect to the polynomials Q,

μμμ = D−1QTWy ⇒ μr = 1

Dr

M∑
n=−M

qr(n)wnyn , r = 0,1, . . . ,N − 1 (4.1.34)

Because of Eq. (4.1.31), we have μμμ = Q−1y, which allows the reconstruction of y
from its moments:

y = Qμμμ ⇒ yn =
N−1∑
r=0

qr(n)μr , −M ≤ n ≤M (4.1.35)

4.2 Henderson Filters

All the results of the previous section find a concrete realization in the minimum-Rs

filters that we discuss here. Consider the order-s backward difference filter and its
impulse response defined by:

Ds(z)= (1− z−1)s � ds(k)= (−1)k
(
s
k

)
, k = 0,1, . . . , s (4.2.1)

This follows from the binomial expansion:

(1− z−1)s=
s∑
k=0

(−1)k
(
s
k

)
z−k (4.2.2)

170 4. Minimum Roughness Filters

The operation of the filter Ds(z) on a signal fn, with output gn, is usually denoted
in terms of the backward difference operator ∇fn = fn − fn−1 as follows:

gn = ∇sfn =
s∑
k=0

ds(k)fn−k =
s∑
k=0

(−1)k
(
s
k

)
fn−k (4.2.3)

If the signal fn is restricted over the range −M ≤ n ≤ M, then because 0 ≤ k ≤ s
and −M ≤ n− k ≤M, the above equation can be written in the more precise form:

gn = ∇sfn =
min(s,n+M)∑
k=max(0,n−M)

(−1)k
(
s
k

)
fn−k , −M ≤ n ≤M + s (4.2.4)

Eq. (4.2.4) gives the full convolutional output gn = (ds ∗ f)n, while (4.2.3) is the
corresponding steady-state output, obtained by restricting the output index n to the
range −M + s ≤ n ≤ M. Defining the (N+s)-dimensional output vector g and N-
dimensional input vector f, where N = 2M + 1,

g = [g−M, . . . , gM, . . . , gM+s]T , f = [f−M, . . . , fM]T ,

we may write the full filtering equation (4.2.4) in matrix form:

g = Dsf (4.2.5)

where Ds is the full (N+s)×N convolutional matrix of the filter ds(k) defined by its
matrix elements:

(Ds)nm= ds(n−m) , −M ≤ n ≤M + s, −M ≤m ≤M (4.2.6)

and subject to the restriction that only the values 0 ≤ n−m ≤ s will result in a non-zero
matrix element. The MATLAB functions binom and diffmat allow the calculation of the
binomial coefficients ds(k) and the convolution matrix Ds:

d = binom(s,k); % binomial coefficients ds(k)

D = diffmat(s,N); % (N+s)×N difference convolution matrix

For example, the convolution matrix for N = 7 and s = 3 is:

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
−3 1 0 0 0 0 0

3 −3 1 0 0 0 0
−1 3 −3 1 0 0 0

0 −1 3 −3 1 0 0
0 0 −1 3 −3 1 0
0 0 0 −1 3 −3 1
0 0 0 0 −1 3 −3
0 0 0 0 0 −1 3
0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The function diffmat is simply a call to convmat:

4.2. Henderson Filters 171

D = convmat(binom(s),N);

A minimum-Rs filter B(z) is defined to minimize the NRR of the cascaded filter
F(z)= Ds(z)B(z) subject to the d+1 linear constraints STb = u, for a given constraint
vector u, where b denotes the impulse response of B(z) assumed to be double-sided,
that is, bn, −M ≤ n ≤M.

The actual smoothing of data is carried out by the filter B(z) itself, whereas the filter
F(z) is used to design B(z). This is depicted in Fig. 4.2.1 in which the filtered output
is x̂n, and the output of F(z) is the differenced signal ∇sx̂n whose mean-square value
may be taken as a measure of smoothness to be minimized.

Fig. 4.2.1 Design and smoothing by minimum-Rs filter.

Letting fn = ∇sbn be the impulse response of the filter F(z), or in matrix form
f = Dsb, the corresponding cascaded NRR will be:

Rs = fTf =
M+s∑
n=−M

f2
n =

M+s∑
n=−M

(∇sbn)2 = 1

2π

∫ π
−π
|Ds(ω)B(ω)|2 dω

Since fTf = bT(DTs Ds)b, we can state the design condition of the minimum-Rs filters as

Rs =
M+s∑
n=−M

(∇sbn)2 = bT(DTs Ds)b = min , subject to STb = u (4.2.7)

This has exactly the same form as Eq. (4.1.8) with V = DTs Ds. The minimization of
Rs justifies the name “minimum-Rs ” filters. The minimum-R0 LPSM filters of Sec. 3.7
correspond to s = 0. In the actuarial literature, the following criterion is used instead,
which differs from Rs by a normalization factor:

Rs = bT(DTs Ds)b
dTs ds

= Rs
dTs ds

= min (4.2.8)

where Rs is referred as the “smoothing coefficient”, ds is the impulse response vector
of the filter Ds(z), and dTs ds is the NRR of Ds(z). Using a binomial identity (a special
case of (4.2.13) for k = 0), we have,

dTs ds =
s∑

m=0

d2
s(m)=

s∑
m=0

(
s
m

)2

=
(

2s
s

)
(4.2.9)

172 4. Minimum Roughness Filters

The criterion (4.2.7) provides a measure of smoothness. To see this, let x̂n be the
result of filtering an arbitrary stationary signal yn through the filter B(z). If Syy(ω)
is the power spectrum of yn , then the power spectra of the filtered output x̂n and
of the differenced output ∇sx̂n will be |B(ω)|2Syy(ω) and |Ds(ω)B(ω)|2Syy(ω),
respectively. Therefore, the mean-square value of ∇sx̂n will be:

E
[(∇sx̂n)2] = 1

2π

∫ π
−π
|Ds(ω)B(ω)|2Syy(ω)dω (4.2.10)

If yn is white noise of variance σ2, or if we assume that Syy(ω) is bounded from
above by a constant, such as Syy(ω)≤ σ2, then we obtain:

E
[(∇sx̂n)2] ≤ 1

2π

∫ π
−π
|Ds(ω)B(ω)|2σ2 dω =Rsσ2 (4.2.11)

For white noise, Syy(ω)= σ2, Eq. (4.2.11) becomes an equality. Thus, minimizing

Rs will minimize E
[(∇sx̂n)2]

and tend to result in a smoother filtered signal x̂n. This
property justifies the term “minimum-roughness” filters.

The choice s = 2 is preferred in smoothing financial and business-cycle data, and is
used also by the related method of the Whittaker-Henderson or Hodrick-Prescott filter.
The choice s = 3 is standard in the actuarial literature. The choice s = 4 is not com-
mon but it was used by De Forest [65–68] who was the first to formulate and solve the
minimum-Rs problem in 1871. Others, like Hardy and Henderson have considered the
minimum-R3 problem, while Sheppard [76] solved the minimum-Rs problem in general.

Henderson [79] was the first to show the equivalence between the NRR minimization
problem (4.2.7) with V = DTs Ds and the weighted least-squares polynomial fitting prob-
lem (4.1.1) using the so-called Henderson weightswm. Therefore, the minimum-Rs filters
are often referred to as Henderson filters. They are used widely in seasonal-adjustment,
census, and business-cycle extraction applications. We discuss this equivalence next,
following essentially Henderson’s method.

The elements of the N×N matrix V = DTs Ds are (DTs Ds)nm= Vnm = Vn−m, where
Vk is the autocorrelation function of the power spectrum V(ω)= |Ds(ω)|2. Working
in the z-domain, we have the spectral density:

V(z)= Ds(z)Ds(z−1)= (1− z−1)s(1− z)s= (−1)szs(1− z−1)2s (4.2.12)

which shows that V(z) effectively acts as the (2s)-difference operation ∇2s. Taking
inverse z-transforms of both sides of (4.2.12), we obtain:

Vk =
min(s,k+s)∑
m=max(0,k)

ds(m)ds(m− k)= (−1)sd2s(k+ s) , −s ≤ k ≤ s (4.2.13)

or, explicitly in terms of the definition of ds:

Vk = (−1)k
min(s,k+s)∑
m=max(0,k)

(
s
m

)(
s

m− k

)
= (−1)k

(
2s
s+ k

)
, −s ≤ k ≤ s (4.2.14)

or,

Vk = (−1)k
(2s)!

(s+ k)! (s− k)! , −s ≤ k ≤ s (4.2.15)

4.2. Henderson Filters 173

The V matrix is a banded Toeplitz matrix with bandwidth ±s, whose central row or
central column consist of the numbers Vk, −s ≤ k ≤ s, with V0 positioned at the center
of the matrix. As an example,

V = DT3D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 −15 6 −1 0 0 0
−15 20 −15 6 −1 0 0

6 −15 20 −15 6 −1 0
−1 6 −15 20 −15 6 −1

0 −1 6 −15 20 −15 6
0 0 −1 6 −15 20 −15
0 0 0 −1 6 −15 20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with central column or central row:

Vk = {−1, 6, −15, 20, −15, 6, −1} for k = {−2,−1,0,1,2}

To understand the action of V as the difference operator ∇2s, let f be an N dimen-
sional vector indexed for −M ≤m ≤M , and form the output N-dimensional vector:

g = Vf ⇒ gn =
M∑

m=−M
Vn−mfm , −M ≤ n ≤M (4.2.16)

where n−m is further restricted such that −s ≤ n−m ≤ s. Next, consider an extended
version of f obtained by padding s zeros in front and s zeros at the end, so that the
extended vector f ext will be indexed over, −(M + s)≤m ≤ (M + s):

f ext = [
0, . . . ,0︸ ︷︷ ︸

s

, f−M, . . . , f0, . . . , fM, 0, . . . ,0︸ ︷︷ ︸
s

]T
Then, the summation in Eq. (4.2.16) can be extended as,

gn =
M+s∑

m=−M−s
Vn−m f ext

m , −M ≤ n ≤M (4.2.17)

But because of the restriction−s ≤ n−m ≤ s, the above summation can be restricted
to be over n− s ≤m ≤ n+ s, which is a subrange of the range −(M+ s)≤m ≤ (M+ s)
because we assumed −M ≤ n ≤M. Thus, we may write:

gn =
n+s∑

m=−n−s
Vn−m f ext

m , −M ≤ n ≤M

or, changing to k = n−m,

gn =
s∑

k=−s
Vk f ext

n−k = (−1)s
s∑

k=−s
d2s(s+ k)f ext

n−k = (−1)s
2s∑
i=0

d2s(i)f ext
n+s−i (4.2.18)

but that is precisely the ∇2s operator:

gn = (−1)s∇2sf ext
n+s , −M ≤ n ≤M (4.2.19)

174 4. Minimum Roughness Filters

If f ext
m is a polynomial of degree (2s + i), then the (2s)-differencing operation will

result into a polynomial of degree i. Suppose that we start with the weighted monomial:

fm = wmmi , −M ≤m ≤M (4.2.20)

where the weighting function wm is itself a polynomial of degree 2s, then in order for
the extended vector f ext

m to vanish over M < |m| ≤ M + s, the function wm must have
zeros at these points, that is,

wm = 0 , for m = ±(M + 1),±(M + 2), . . . ,±(M + s)

This condition fixes wm uniquely, up to a normalization constant:

wm =
s∏
i=1

[
(M + i)2−m2] (Henderson weights) (4.2.21)

These are called Henderson weights. Because the extended signal f ext
m is a polynomial

of degree (2s+ i), it follows that the signal gn will be a polynomial of degree i.
Defining theN×N diagonal matrixW = diag

(
[w−M, . . . ,w0, . . . ,wM]

)
, we can write

(4.2.20) vectorially in terms of the monomial basis vector si as f = Wsi. We showed
that the matrix operation g = Vf = VWsi results into a polynomial of degree i, which
therefore can be expanded as a linear combination of the monomials s0, s1, . . . , si up to
order i, that is,

VWsi =
i∑
j=0

sjCji (4.2.22)

for appropriate coefficients Cji, which may thought of as the matrix elements of an
upper-triangular matrix. Applying this result to each basis vector of S = [s0, s1, . . . , sd]
up to order d, it follows that

VWS = SC , C = (d+1)×(d+1) upper-triangular (4.2.23)

But, this is exactly the condition (4.1.14). Thus, we have shown the equivalence of
the NRR minimization problem (4.2.7) with V = DTs Ds and the weighted least-squares
polynomial fitting problem (4.1.1) with the Henderson weights wm. The rest of the
results of Sec. 4.1 then carry through unchanged.

The MATLAB function lprs implements the design. It constructs theWmatrix from
the Henderson weights and passes it into the function lpsm:

[B,G] = lprs(N,d,s); % local polynomial minimum-Rs filters

The Henderson weights wm, −M ≤m ≤M are calculated by the function hend:

w = hend(N,s); % Henderson weights

In the next section, we derive closed-form expressions for the Henderson filters using
Hahn orthogonal polynomials. Analytical expressions can also be derived working with

4.2. Henderson Filters 175

the non-orthogonal monomial basis S. It follows from B = WS(STWS)−1ST that the
kth component of themth filter will be:

bm(k)= Bkm = wk
d∑
i,j=0

kimjΦij = wk uTkΦum (4.2.24)

where uk = [1, k, k2, . . . , kd]T and Φ is the inverse of the Hankel matrix F = STWS
whose matrix elements are the weighted inner products:

Fij = (STWS)ij= sTi Wsj =
M∑

m=−M
wmmi+j ≡ Fi+j , i, j = 0,1, . . . , d (4.2.25)

Except for the factorwk and the different values of Φij the expressions are similar to
those of the LPSM filters of Sec. 3.3. The matrix Φ has a similar checkerboard structure.
For example, we have for the commonly used case d = 3 and s = 3:

bm(k)= wk
[
1, k, k2, k3]

⎡⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
m
m2

m3

⎤⎥⎥⎥⎦ (4.2.26)

where
wk =

[
(M + 1)2−k2][(M + 2)2−k2][(M + 3)2−k2] (4.2.27)

and

F =

⎡⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤⎥⎥⎥⎦ ⇒ Φ = F−1 =

⎡⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤⎥⎥⎥⎦
where we obtain from the checkerboard submatrices:[

Φ00 Φ02

Φ20 Φ22

]
=

[
F0 F2

F2 F4

]−1

,
[
Φ11 Φ13

Φ31 Φ33

]
=

[
F2 F4

F4 F6

]−1

(4.2.28)

The corresponding F-factors for s = 3 are:

F0 = 2

35
(2M + 7)(2M + 5)(2M + 3)(2M + 1)(M + 3)(M + 2)(M + 1)

F2 = 1

9
M(M + 4)F0

F4 = 1

11
(3M2 + 12M − 4)F2

F6 = 1

143
(15M4 + 120M3 + 180M2 − 240M + 68)F2

176 4. Minimum Roughness Filters

which give rise to the matrix elements of Φ:

Φ00 = 315(3M2 + 12M − 4)/D1

Φ02 = −3465/D1

Φ22 = 31185/D1

Φ11 = 1155(15M4 + 120M3 + 180M2 − 240M + 68)/D2

Φ13 = −15015(3M2 + 12M − 4)/D2

Φ33 = 165165/D2

with the denominator factors:

D1 = 8(2M + 9)(2M + 7)(2M + 5)(2M + 3)(M + 3)(M + 2)(M + 1)(4M2 − 1)

D2 = 8M(M − 1)(M + 4)(M + 5)D1

In particular, settingm = 0 we find the central filter b0(k), which for the case d = 3
and s = 3, is referred to as “Henderson’s ideal formula:”

b0(k)= wk(Φ00 + k2Φ02)

or, with wk =
[
(M+1)2−k2

][
(M+2)2−k2

][
(M+3)2−k2

]
:

b0(k)= 315
(
3M2 + 12M − 4− 11k2

)
wk

8(2M+9)(2M+7)(2M+5)(2M+3)(M+3)(M+2)(M+1)(4M2−1)
(4.2.29)

The corresponding predictive/interpolating differentiation filters b(i)t (k) are given
by a similar expression:

b(i)t (k)= wkuTkΦDiu t (4.2.30)

or, explicitly, for the d = s = 3 case and differentiation order i = 0,1,2,3:

b(i)t (k)= wk
[
1, k, k2, k3]

⎡⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎤⎥⎥⎥⎦
i ⎡⎢⎢⎢⎣

1
t
t2

t3

⎤⎥⎥⎥⎦ (4.2.31)

Example 4.2.1: USD/Euro exchange rate. Consider four methods of smoothing the USD/Euro
foreign exchange rate for the years 1999-08. The monthly data are available from the web
site: http://research.stlouisfed.org/fred2/series/EXUSEU

The upper-left graph in Fig. 4.2.2 shows the smoothing by an LPSM filter of length N = 19
and polynomial order d = 3. In the upper-right graph a minimum-Rs Henderson filter was
used with N = 19, d = 3, and smoothness order s = 3.

The middle-left graph uses the SVD signal enhancement method with embedding order
M = 8 and rank r = 2.

The middle-right graph uses the Whittaker-Henderson, or Hodrick-Prescott filter with smooth-
ing parameter λ = 100 and smoothness order s = 3.

4.2. Henderson Filters 177

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 LPSM filter, N = 19, d = 3

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 LPRS filter, N = 19, d = 3, s = 3

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 SVD enhancement, M = 8, r = 2

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 Whittaker− Henderson, λ = 100, s = 3

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 WH with L1, λ = 1, s = 2

monthly

 actual
 L

1
 trend

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 WH with L1, λ = 1, s = 3

monthly

 actual
 L

1
 trend

Fig. 4.2.2 Smoothing of USD/Euro exchange rate.

The lower left and right graphs use the Whittaker-Henderson regularization filter with the
L1 criterion with differentiation orders s = 2 and s = 3 and smoothing parameter λ = 1,
implemented with the CVX package.†. The s = 2 case represents the smoothed signal in
piece-wise linear form. The L1 case is discussed further in Sec. 8.7.

The following MATLAB code illustrates the generation of the four graphs:

Y = loadfile(’exuseu.dat’); % data file available in the OSP toolbox

†http://cvxr.com/cvx/

178 4. Minimum Roughness Filters

y = Y(:,4); t = taxis(y,12,1999); % extract signal yn from data file

% the function taxis defines the t-axis

N=19; d=3; x1 = lpfilt(lpsm(N,d),y); % LPSM filter

s=3; x2 = lpfilt(lprs(N,d,s),y); % LPRS filter

M=8; r=2; x3 = svdenh(y,M,r); % SVD enhancement

la=100; s=3; x4 = whsm(y,la,s); % Whittaker-Henderson

s = 2; la = 1; N = length(y); % Whittaker-Henderson with L1 criterion

D = diff(eye(N),s); % for x6, use s = 3

cvx_begin % use CVX package to solve the L1 problem

variable x5(N)
minimize(sum_square(y-x5) + la * norm(D*x5,1))

cvx_end

figure; plot(t,y,’.’, t,x1,’-’); figure; plot(t,y,’.’, t,x2,’-’);
figure; plot(t,y,’.’, t,x3,’-’); figure; plot(t,y,’.’, t,x4,’-’);
figure; plot(t,y,’.’, t,x5,’-’); figure; plot(t,y,’.’, t,x6,’-’);

All methods have comparable performance and can handle the end-point problem. ��
The computational procedures implemented into the function lprs were outlined in

Eq. (4.1.19). The related orthogonalized basis Q defined in Eq. (4.1.23) will be realized
in terms of the Hahn orthogonal polynomials.

A direct consequence of upper-triangular nature of the matrix C in Eq. (4.2.23) is
that the basis Q becomes an eigenvector basis for the matrix VW [123,99]. To see this,
substitute S = QR into (4.2.23),

VWQR = QRC ⇒ VWQ = QΛ, Λ = RCR−1 (4.2.32)

Multiplying both sides by QTW and using the property QTWQ = D, we obtain:

QTWVWQ = QTWQΛ = DΛ (4.2.33)

Because R and C are both upper-triangular, so will be Λ and DΛ. But the left-hand
side of (4.2.33) is a symmetric matrix, and so must be the right-hand side DΛ. This
requires that DΛ and hence Λ be a diagonal matrix, e.g., Λ = diag

(
[λ0, λ1, . . . , λd]

)
.

This means that the rth column of Q is an eigenvector:

VWqr = λrqr , r = 0,1, . . . , d (4.2.34)

Choosing d = N−1 would produce all the eigenvectors of VW. In this case, we have
Q−1 = D−1QTW and we obtain the decomposition:

VW = QΛQ−1 = QΛD−1QTW ⇒ V = Q(ΛD−1)QT

We also find for the inverse of V = DTs Ds:
V−1 =WQΛ−1D−1QTW

There exist [93–95] similar and efficient ways to calculate V−1 = (DTs Ds)−1. The
eigenvalues λr can be shown to be [123]:

λr = (2s+ r)!r!
=

2s∏
i=1

(r + i) , r = 0,1, . . . , d (4.2.35)

4.3. Hahn Orthogonal Polynomials 179

As we see in the next section, the rth column qr(n) of Q is a Hahn polynomial of
degree r in n, and hence Wqr , or component-wise, wnqr(n), will be a polynomial of
degree 2s+r. Moreover, because of the zeros of wn, the polynomial fn = wnqr(n) can
be extended to be over the range −M − s ≤ n ≤M + s. Using the same reasoning as in
Eq. (4.2.19), it follows that (4.2.34) can be written as

(−1)s∇2sf ext
n+s = λrqr(n) , −M ≤ n ≤M

Since this is valid as an identity in n, it is enough to match the highest powers of n
from both sides, that is, nr . Thus, on the two sides we have

f ext
n+s = wn+sqr(n+ s)= (−1)s[(n+ s)2s+· · ·]︸ ︷︷ ︸

wn+s

[arr(n+ s)r+· · ·]︸ ︷︷ ︸
qr(n+s)

, or,

(−1)sf ext
n+s = arrn2s+r + · · · , and also, qr(n)= arrnr + · · ·

where arr is the highest coefficient of qr(n) and the dots indicate lower powers of n.
Dropping the arr constant, the eigenvector condition then becomes:

∇2s[n2s+r + · · ·]= λr[nr + · · ·]

Each operation of ∇ on ni lowers the power by one, that is, ∇(ni)= i ni−1 + · · · ,
∇2(ni)= i(i− 1)ni−2 + · · · , ∇3(ni)= i(i− 1)(i− 2)ni−3 + · · · , etc. Thus, we have:

∇2s[n2s+r + · · ·]= (2s+ r)(2s+ r − 1)(2s+ r − 2)· · · (r + 1)nr + · · ·

which yields Eq. (4.2.35).

4.3 Hahn Orthogonal Polynomials

Starting with Chebyshev [104], the discrete Chebyshev/Gram polynomials have been
used repeatedly in the least-squares polynomial fitting problem, LPSM filter design, and
other applications [104–151]. Bromba and Ziegler [123] were the first to establish a simi-
lar connection between the Hahn orthogonal polynomials and the minimum-Rs problem.
For a review of the Hahn polynomials, see Karlin and McGregor [113].

The Hahn polynomials Qr(x) of a discrete variable x = 0,1,2, . . . ,N− 1 and orders
r ≤ N − 1 satisfy a weighted orthogonality property of the form:

N−1∑
x=0

w(x)Qr(x)Qm(x)= Drδrm , r,m = 0,1, . . . ,N − 1

where the weighting function w(x) depends on two parameters α,β and is defined up
to a normalization constant as follows:

w(x)= (α+ x)!
x!

· (β+N − 1− x)!
(N − 1− x)! , x = 0,1, . . . ,N − 1 (4.3.1)

The length N can be even or odd, but here we will consider only the odd case and
set as usual N = 2M + 1. The interval [0,N − 1] can be mapped onto the symmetric

180 4. Minimum Roughness Filters

interval [−M,M] by making the change of variables x = n +M, with −M ≤ n ≤ M.
Then, the weighting function becomes,

w(n)= (α+M + n)!
(M + n)! · (β+M − n)!

(M − n)! , −M ≤ n ≤M (4.3.2)

Defining qr(n)= Qr(x)
∣∣
x=n+M, the orthogonality property now reads:

M∑
n=−M

w(n)qr(n)qm(n)= Drδrm , r,m = 0,1, . . . ,N − 1 (4.3.3)

The minimum-Rs problem corresponds to the particular choice α = β = s. In this
case, the weighting function w(n) reduces to the Henderson weights of Eq. (4.2.21):

w(n)= (s+M + n)!
(M + n)! · (s+M − n)!

(M − n)! =
s∏
i=1

(M + n+ i)·
s∏
i=1

(M − n+ i) , or,

w(n)=
s∏
i=1

[
(M + i)2−n2] , −M ≤ n ≤M (4.3.4)

For s = 0, the weights reduce to w(n)= 1 corresponding to the discrete Cheby-
shev/Gram polynomials. Because the weights are unity, the Chebyshev/Gram polyno-
mials can be regarded as discrete-time versions of the Legendre polynomials. In fact,
they tend to the latter in the limitN →∞ [133]. Similarly, the Hahn polynomials may be
regarded as discrete versions of the Jacobi polynomials. At the opposite limit, s → ∞,
the Hahn polynomials tend to the Krawtchouk polynomials [133], which are discrete ver-
sions of the Hermite polynomials [130]. We review Krawtchouk polynomials and their
application to the design of maximally flat filters in Sec. 4.4.

In general, the Hahn polynomials are given in terms of the hypergeometric function

3F2(a1, a2, a3;b1, b2;z). For α = β = s, they take the following explicit form:

qr(n)= Qr(x)=
r∑
k=0

ark x[k]
∣∣∣∣
x=n+M

=
r∑
k=0

ark (n+M)[k] , −M ≤ n ≤M (4.3.5)

where x[k] denotes the falling-factorial power,

x[k] = x(x− 1)· · · (x− k+ 1)= x!
(x− k)! =

Γ(x+ 1)
Γ(x− k+ 1)

(4.3.6)

The polynomial coefficients are:

ark = (−1)k
k∏
m=1

[
(r −m+ 1)(2s+ r +m)
(N −m)(s+m)m

]
, k = 0,1, . . . , r (4.3.7)

where ar0 = 1. Expanding the product we have:

ark = (−1)kr(r − 1)· · · (r − k+ 1)·(2s+ r + 1)(2s+ r + 2)· · · (2s+ r + k)
(N − 1)(N − 2)· · · (N − k)·(s+ 1)(s+ 2)· · · (s+ k)·k!

(4.3.8)

4.3. Hahn Orthogonal Polynomials 181

The polynomials satisfy the symmetry property ,

qr(−n)= (−1)rqr(n) (4.3.9)

The orthogonality property (4.3.3) is satisfied with the following values of Dr :

Dr = (s!)2

(2M)!
· r! (2M − r)!

(2M)!
· (2s+ r + 1)(2s+ r + 2)· · · (2s+ r +N)

2s+ 2r + 1
(4.3.10)

For minimum-Rs filter design with polynomial order d ≤ N−1, only polynomials up
to order d are needed, that is, qr(n), r = 0,1, . . . , d. Arranging these as the columns of
theN×(d+1)matrixQ = [q0,q1, . . . ,qd], the orthogonality property can be expressed
as QTWQ = D, where D = diag

(
[D0,D1, . . . ,Dd]

)
.

The relationship to the monomial basis S = [s0, s1, . . . , sd] is through an upper-
triangular invertible matrix R, that is, S = QR. This can be justified by noting that
the power series of qr(n) in n is a linear combination of the monomials si(n)= ni for
i = 0,1, . . . , r. In fact, R can be easily constructed from the Hahn coefficients ark and
the Stirling numbers.

Thus, the construction of the minimum-Rs filters outlined in Eq. (4.1.23) is explicitly
realized by the Hahn polynomial basis matrix Q:

B =WQD−1QT (4.3.11)

or, component-wise,

bm(n)= Bnm = w(n)
d∑
r=0

qr(n)qr(m)
Dr

, −M ≤ n,m ≤M (4.3.12)

A more direct derivation of (4.3.11) is to perform the local polynomial fit in the
Q-basis. The desired degree-d polynomial can be expanded in the linear combination:

ŷm =
d∑
i=0

cimi =
d∑
r=0

arqr(m) ⇒ ŷ = Sc = Qa

Then, minimize the weighted performance index with respect to a:

J = (y−Qa)TW(y−Qa)= min

Using the condition QTWQ = D, the solution leads to the same B:

a = D−1QTWy ⇒ ŷ = Qa = QD−1QTWy = BTy (4.3.13)

The computation of the basisQ is facilitated by the following MATLAB functions. We
note first that the falling factorial powers are related to ordinary powers by the Stirling
numbers of the first and second kind:

x[k] =
k∑
i=0

S1(k, i)xi � xk =
k∑
i=0

S2(k, i)x[i] (4.3.14)

182 4. Minimum Roughness Filters

These numbers may be arranged into lower-triangular matrices S1 and S2, which are
inverses of each other. For example, we have for k = 0,1,2,3:⎡⎢⎢⎢⎣

x[0]

x[1]

x[2]

x[3]

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ �

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x[0]

x[1]

x[2]

x[3]

⎤⎥⎥⎥⎦

S1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎤⎥⎥⎥⎦ , S2 = S−1
1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

⎤⎥⎥⎥⎦
The MATLAB function stirling generates these matrices up to a desired order:

S = stirling(d,kind); % Stirling numbers up to order d of kind = 1,2

A polynomial can be expressed in falling factorial powers or in ordinary powers. The
corresponding coefficient vectors are related by the Stirling numbers:

P(x)=
d∑
k=0

akx[k] =
d∑
i=0

cixi ⇒ c = ST1 a , a = ST2 c

The function polval allows the evaluation of a polynomial in falling (or rising) fac-
torial powers or in ordinary powers at any vector of x values:

P = polval(a,z,type); % polynomial evaluation in factorial powers

The functions hahncoeff, hahnpol, and hahnbasis allow the calculation of the
Hahn coefficients (4.3.7), the evaluation of the polynomial Qr(x) at any vector of x’s,
and the construction of the Hahn basis Q = [q0,q1, . . . ,qd]:

[a,c] = hahncoeff(N,r,s); % Hahn polynomial coefficients ark
Q = hahnpol(N,r,s,x); % evaluate Hahn polynomial Qr(x)

[Q,D,L] = hahnbasis(N,d,s); % Hahn basis Q = [q0,q1, . . . ,qd]

Like all orthogonal polynomials, the Hahn polynomials satisfy a three-term recur-
rence relation of the form:

nqr(n)= αrqr+1(n)+βrqr(n)+γrqr−1(n) (4.3.15)

that starts with r = 0 and q−1(n)= 0 and ends at r = N − 2. The recurrence relation
is a direct consequence of the property (which follows from (4.3.3)) that the order-r
polynomial qr(n) is orthogonal to every polynomial of degree strictly less than r. Let
us denote the weighted inner product by

(a, b)=
M∑

n=−M
w(n)a(n)b(n) (4.3.16)

4.3. Hahn Orthogonal Polynomials 183

Then, since the polynomial nqr(n) has degree r+1, it can be expanded as a linear
combination of the polynomials qi(n) up to degree r+1:

nqr(n)=
r+1∑
i=0

ciqi(n)

The coefficients are determined using the orthogonality property by

(nqr, qi)=
r+1∑
j=0

cj(qj, qi)=
r+1∑
j=0

cjDiδij = Dici ⇒ ci = (nqr, qi)Di
(4.3.17)

This implies that ci = 0 for i ≤ r − 2, therefore, only the terms i = r+1, r, r−1 will
survive, which is the recurrence relation. Indeed, we note that (nqr, qi)= (qr, nqi) and
that nqi(n) has degree (i+ 1). Therefore, as long as i+ 1 < r, or, i ≤ r − 2, this inner
product will be zero. It follows from (4.3.17) that:

αr = (nqr, qr+1)
Dr+1

, βr = (nqr, qr)Dr
, γr = (nqr, qr−1)

Dr−1
(4.3.18)

Because the weights w(n) are symmetric, w(n)= w(−n), and the polynomials sat-
isfy, qr(−n)= (−1)rqr(n), it follows immediately that βr = 0. The coefficient γr can
be related to αr−1 by noting that

αr−1 = (nqr−1, qr)
Dr

= (nqr, qr−1)
Dr

⇒ (nqr, qr−1)= Drαr−1 , and hence,

γr = (nqr, qr−1)
Dr−1

= Drαr−1

Dr−1
(4.3.19)

Moreover,αr is related to the leading coefficients arr of the qr(n) polynomial. From
the definition (4.3.5), we can write

qr(n)= arrnr + pr−1(n) , qr+1(n)= ar+1,r+1nr+1 + pr(n)

where pr−1(n) and pr(n) are polynomials of degree r−1 and r, respectively. Since
Dr+1 = (qr+1, qr+1), we have,

αr = (nqr, qr+1)
(qr+1, qr+1)

= (arrnr+1 + npr−1, qr+1)
(ar+1,r+1nr+1 + pr, qr+1)

= arr(nr+1, qr+1)
ar+1,r+1(nr+1, qr+1)

= arr
ar+1,r+1

where we used the orthogonality of qr+1(n) with npr−1(n) and pr(n), both of which
have order r. Thus,

αr = arr
ar+1,r+1

(4.3.20)

Using Eqs. (4.3.7) and (4.3.10), the expressions for αr and γr simplify into:

αr = −(2M − r)(2s+ r + 1)
2(2s+ 2r + 1)

, γr = −r(2M + 2s+ r + 1)
2(2s+ 2r + 1)

(4.3.21)

184 4. Minimum Roughness Filters

These satisfy the constraint αr + γr = −M, which follows from the recurrence
relation and the conditions qr(−M)= ar0 = 1 for all r. Next, we derive the Christoffel-
Darboux identity which allows the simplification of the sum in (4.3.12). Setting βr = 0,
replacing γr = αr−1Dr/Dr−1 and dividing by Dr , the recurrence relation reads:

nqr(n)
Dr

= αr
Dr
qr+1(n)+αr−1

Dr−1
qr−1(n) (4.3.22)

Multiplying by qr(m), interchanging the roles of n,m, and subtracting, we obtain:

nqr(n)qr(m)
Dr

= αr
Dr
qr+1(n)qr(m)+αr−1

Dr−1
qr−1(n)qr(m)

mqr(m)qr(n)
Dr

= αr
Dr
qr+1(m)qr(n)+αr−1

Dr−1
qr−1(m)qr(n)

(n−m)qr(n)qr(m)
Dr

= αr
Dr

[
qr+1(n)qr(m)−qr(n)qr+1(m)

]−
− αr−1

Dr−1

[
qr(n)qr−1(m)−qr−1(n)qr(m)

]
Summing up over r, and using q−1(n)= 0, the successive terms on the right-hand

side cancel except for the last one, resulting in the Christoffel-Darboux identity:

(n−m)
d∑
r=0

qr(n)qr(m)
Dr

= αd
Dd

[
qd+1(n)qd(m)−qd(n)qd+1(m)

]
, or,

d∑
r=0

qr(n)qr(m)
Dr

= αd
Dd

qd+1(n)qd(m)−qd(n)qd+1(m)
n−m (4.3.23)

Using this identity into the filter equations (4.3.12), we find

bm(n)= w(n) αdDd
qd+1(n)qd(m)−qd(n)qd+1(m)

n−m (4.3.24)

This is valid for −M ≤ n,m ≤ M and for orders 0 ≤ d ≤ N−2. At n = m, the
numerator vanishes, so that the numerator and denominator have a common factor
n −m, which cancels resulting in a polynomial of degree d in n and m. In particular,
the central Henderson filters are:

b0(n)= w(n) αdDd
qd+1(n)qd(0)−qd(n)qd+1(0)

n
(4.3.25)

where either qd(0) or qd+1(0) is zero depending on whether d is odd or even. In fact
for the two successive values d = 2r and d = 2r+1, while the asymmetric filters bm(n)
are different, the central filters are the same and given by:

b0(n)= α2r

D2r
q2r(0)

q2r+1(n)
n

= −α2r+1

D2r+1
q2r+2(0)

q2r+1(n)
n

(4.3.26)

4.3. Hahn Orthogonal Polynomials 185

the equality of the coefficients following by setting d = 2r+ 1 and n = 0 in Eq. (4.3.22).
Next, we derive explicit formulas for some specific cases. The first few Hahn poly-

nomials of orders d = 0,1,2,3,4,5 and arbitraryM and s are, for −M ≤ n ≤M:

q0(n) = 1

q1(n) = − nM

q2(n) = (2s+3)n2 −M(M+s+1)
M(2M−1)(s+ 1)

q3(n) = −(2s+5)n3 − [
3M2 + (s+1)(3M−1)

]
n

M(M−1)(2M−1)(s+1)

q4(n) = (2s+5)(2s+7)n4 − (2s+5)
(
6M2 + 6(s+1)M − 4s−5

)
n2

M(M−1)(2M−1)(2M−3)(s+1)(s+2)

+ 3M(M−1)(s+M+1)(s+M+2)
M(M−1)(2M−1)(2M−3)(s+1)(s+2)

q5(n) = −(2s+7)(2s+9)n5 − 5(2s+7)
(
2M2 + 2(s+1)M − 2s−3

)
n3

M(M−1)(M−2)(2M−1)(2M−3)(s+1)(s+2)

−
[
15M4 + 30(s+1)M3 + 5(3s3+s−7)M2 − (s+1)(s+2)(25M−6)

]
n

M(M−1)(M−2)(2M−1)(2M−3)(s+1)(s+2)

(4.3.27)

They are normalized such that qr(−M)= 1. Setting s = 0, we obtain the correspond-
ing discrete Chebyshev/Gram polynomials:

q0(n) = 1

q1(n) = − nM

q2(n) = 3n2 −M(M+1)
M(2M−1)

q3(n) = −5n3 − (3M2+3M−1)n
M(M−1)(2M−1)

q4(n) = 35n4 − 5(6M2+6M−5)n2 + 3M(M2−1)(M+2)
2M(M−1)(2M−1)(2M−3)

q5(n) = −63n5 − 35(2M2+2M−3)n3 + (15M4+30M3−35M2−50M+12)n
2M(M−1)(M−2)(2M−1)(2M−3)

(4.3.28)

The central Henderson filters for the cases d = 0,1, d = 2,3, and d = 4,5 are as
follows for generalM and s. For d = 0,1:

b0(n)= (2s+ 1)! (2M)!
(s!)2 (2M + 2s+ 1)!

w(n) (4.3.29)

where w(n) is given by Eq. (4.3.4). For d = 2,3, we have:

b0(n)= (M+s+1)(2s+3)! (2M)!
(
3M2 + (s+1)(3M−1)−(2s+5)n2

)
(2M−1)(s!)2 (2M+2s+3)!

w(n) (4.3.30)

186 4. Minimum Roughness Filters

This generalizes Henderson’s ideal formula (4.2.29) to arbitrary s. For s = 1,2, it
simplifies into:

s = 1, b0(n) = 15(3M2 + 6M − 2− 7n2)w1(n)
2(M + 1)(2M + 3)(2M + 5)(4M2 − 1)

s = 2, b0(n) = 105(M2 + 3M − 1− 3n2)w2(n)
2(M + 1)(M + 2)(2M + 3)(2M + 5)(2M + 7)(4M2 − 1)

where w1(n) and w2(n) correspond to (4.3.4) with s = 1 and s = 2. The case s = 0 is,
of course, the same as Eq. (3.3.17). For the case d = 4,5, we find:

b0(n) = (M+s+1)(M+s+2)(2s+ 5)! (2M)!
2(2M−1)(2M−3)

(
(s+ 2)!

)2(2M+2s+5)!
·w(n)·

·
[
(2s+7)(2s+9)n4 − 5(2s+7)

(
2M2 + 2(s+1)M − 2s−3

)
n2 +

+ 15M4 + 30(s+1)M3 + 5(3s2+s−7)M2 + (s+1)(s+2)(25M−6)
]

(4.3.31)

Eqs. (4.3.29)–(4.3.31), as well as the case d = 6,7, have been implemented into the
MATLAB function lprs2, with usage:

b0 = lprs2(N,d,s); % exact forms of the Henderson filters b0(n) for 0 ≤ d ≤ 6

The asymmetric interpolation filters bt(n) can be obtained by replacing the discrete
variablem by t in Eqs. (4.3.12) and (4.3.24):

bt(n)= w(n)
d∑
r=0

qr(n)qr(t)
Dr

= w(n)αd
Dd

qd+1(n)qd(t)−qd(n)qd+1(t)
n− t (4.3.32)

Some specific cases are as follows. For d = 0, we have:

bt(n)= (2s+ 1)! (2M)!
(s!)2 (2M + 2s+ 1)!

w(n) (4.3.33)

For d = 1,

bt(n)= 4(2s+ 1)! (2M−1)!
(s!)2 (2M+2s+2)!

w(n)
[
M2 + (s+1)M + (2s+3)nt

]
(4.3.34)

For d = 2:

bt(n) = 4(2s+1)! (2M−1)!
(s!)2 (2M+2s+2)!

w(n)
[
M(M+s+1)

[
3M2 + 3(s+1)M − s−1

]
+ (s+1)(2M−1)(2M+2s+3)nt −M(M+s+1)(2s+5)(n2 + t2)

+ (s+1)(2M−1)(2M+2s+3)n2t2
] (4.3.35)

The corresponding predictive differentiation filters are obtained by differentiating
with respect to t.

The above closed-form expressions were obtained with the following simple Maple
procedures that define the Hahn coefficients ark, the Hahn polynomials qr(n) and their
norms Dr , and the interpolation filters bt(n):

4.4. Maximally-Flat Filters and Krawtchouk Polynomials 187

factpow := proc(x,k) product((x-m), m=0..k-1); end proc;

a := proc(M,r,s,k)
(-1)^k * product((r-m+1)*(2*s+r+m)/(2*M+1-m)/(s+m)/m, m=1..k);

end proc;

Q := proc(M,r,s,n) if r=0 then 1; else
sum(a(M,r,s,k)*factpow(n+M,k), k=0..r);

end if; end proc;

Dr := proc(M,r,s) GAMMA(s+1)^2 * GAMMA(r+1) * GAMMA(2*M+1-r)
* product(2*s+r+i, i=1..(2*M+1)) / GAMMA(2*M+1)^2 / (2*s+2*r+1);

end proc;

B := proc(M,d,s,n,t)
sum(Q(M,r,s,n)/Dr(M,r,s)*Q(M,r,s,t), r=0..d);

end proc;

where factpow defines the falling-factorial powers, and it is understood that the result
from the procedure B(M,d,s,n,t) must be multiplied by the Henderson weightsw(n).

There are other useful choices for the weighting function w(n), such as binomial,
which are similar to gaussian weights and lead to the Krawtchouk orthogonal poly-
nomials, or exponentially decaying w(n)= λn, with n ≥ 0 and 0 < λ < 1, leading
to the discrete Laguerre polynomials [135,136] and exponential smoothers. However,
these choices do not have an equivalent minimum-NRR characterization. Even so, the
smoothing filters are efficiently computed in the orthogonal polynomial basis by:

B =WS(STWS)−1ST =WQD−1QT , QTWQ = D (4.3.36)

4.4 Maximally-Flat Filters and Krawtchouk Polynomials

Greville [84] has shown that in the limit s→∞ the minimum-Rs filters tend to maximally
flat FIR filters that satisfy the usual flatness constraints at dc, that is, B(i)(ω)

∣∣
ω=0 =

δ(i), for i = 0,1, . . . , d, but also have monotonically decreasing magnitude responses
and satisfy (2M−d) additional flatness constraints at the Nyquist frequency, ω = π.
They are identical to the well-known maximally flat filters introduced by Herrmann [174].
Bromba and Ziegler [123,178] have shown that their impulse responses are given in terms
of the Krawtchouk orthogonal polynomials [109,130,133]. Meer and Weiss [140] have
derived the corresponding differentiation filters based on the Krawtchouk polynomials
for application to images. Here, we look briefly at these properties.

The Krawtchouk polynomials are characterized by a parameter p such that 0 < p < 1
and are defined over the symmetric interval −M ≤ n ≤M by [133]

q̄r(n)=
r∑
k=0

(−1)kr(r − 1)· · · (r − k+ 1)p−k

(N − 1)(N − 2)· · · (N − k)·k!
(n+M)[k] (4.4.1)

where N = 2M + 1 and r = 0,1, . . . ,N − 1. They satisfy the orthogonality property,

M∑
n=−M

w̄(n)q̄r(n)q̄m(n)= D̄rδrm (4.4.2)

188 4. Minimum Roughness Filters

with the following binomial weighting function and norms, where q = 1− p:

w̄(n) =
(

2M
M + n

)
pM+nqM−n = (2M)!

22M(M + n)! (M − n)! p
M+nqM−n

D̄r = r! (2M − r)!(2M)!
qr

pr

(4.4.3)

In the limit s→∞, the Hahn polynomials tend to the special Krawtchouk polynomials
with the parameter p = q = 1/2. To see this, we note that the Hahn polynomials are
normalized such that qr(−M)= 1, and we expect that they would have a straightforward
limit as s→∞. Indeed, it is evident that the limit of the Hahn coefficients (4.3.8) is

ārk = lim
s→∞ark =

(−1)kr(r − 1)· · · (r − k+ 1)·2k
(N − 1)(N − 2)· · · (N − k)·k!

(4.4.4)

and therefore, the Hahn polynomials will tend to

q̄r(n)=
r∑
k=0

(−1)kr(r − 1)· · · (r − k+ 1)·2k
(N − 1)(N − 2)· · · (N − k)·k!

(n+M)[k] (4.4.5)

which are recognized as a special case of (4.4.1) with p = 1/2. The Henderson weights
(4.3.4) and norms (4.3.10) diverge as s → ∞, but we may normalize them by a common
factor, such as s2M(s!)2, so that they will converge. The limits of the rescaled weights
and norms are:

w̄(n) = lim
s→∞

[
(2M)!w(n)
22Ms2M(s!)2

]
= lim
s→∞

[
(2M)! (s+M + n)! (s+M − n)!
22Ms2M(s!)2 (M + n)! (M − n)!

]

D̄r = lim
s→∞

[
(2M)!Dr

22Ms2M(s!)2

]

= lim
s→∞

[
r! (2M − r)!
(2M)!

· (2s+ r + 1)(2s+ r + 2)· · · (2s+ r +N)
22Ms2M(2s+ 2r + 1)

]
They are easily seen to lead to Eqs. (4.4.3) with p = 1/2, that is,

w̄(n) = 1

22M

(
2M
M + n

)
= (2M)!

22M(M + n)! (M − n)!

D̄r = r! (2M − r)!(2M)!

(4.4.6)

4.4. Maximally-Flat Filters and Krawtchouk Polynomials 189

The first few of the Krawtchouk polynomials are:

q̄0(n) = 1

q̄1(n) = − nM

q̄2(n) = 2n2 −M
M(2M−1)

q̄3(n) = − 2n3 − (3M−1)n
M(M−1)(2M−1)

q̄4(n) = 4n4 − (12M−8)n2 + 3M(M−1)
M(M−1)(2M−1)(2M−3)

q̄5(n) = −4n5 − 20(M−1)n3 + (15M2−25M+6)n
M(M−1)(M−2)(2M−1)(2M−3)

(4.4.7)

These polynomials satisfy the three-term recurrence relation:

nq̄r(n)= ᾱrq̄r+1(n)+γ̄rq̄r−1(n) , ᾱr = −2M − r
2

, γ̄r = −r
2

(4.4.8)

with the coefficients ᾱr, γ̄r obtained from Eq. (4.3.21) in the limit s→∞. The three-term
relations lead to the usual Christoffel-Darboux identity from which we may obtain the
asymmetric predictive filters:

b̄t(n)= w̄(n)
d∑
r=0

q̄r(n)q̄r(t)
D̄r

= w̄(n)ᾱd
D̄d

q̄d+1(n)q̄d(t)−q̄d(n)q̄d+1(t)
n− t (4.4.9)

Differentiation with respect to t gives the corresponding predictive differentiation
filters. Some examples are as follows. For d = 0 and d = 1, we have, respectively

b̄t(n)= w̄(n) , b̄t(n)= w̄(n)2nt +M
M

(4.4.10)

For d = 2, the smoothing and first-order differentiation filters are:

b̄t(n) = w̄(n)4n2t2 − 2M(n2 + t2)+2(2M−1)nt +M(3M−1)
M(2M−1)

˙̄bt(n) = w̄(n)2(2M−1)n− 4Mt + 8n2t
M(2M−1)

(4.4.11)

and setting t = 0, the central filters simplify into:

b̄0(n)= w̄(n)3M − 1− 2n2

2M − 1
, ˙̄b0(n)= w̄(n)2n

M
(4.4.12)

For d = 3, we have:

b̄t(n) = w̄(n)
3M(M−1)(2M−1)

[
8n3t3 − 4(3M−1)(n3t + nt3)+12(M−1)n2t2

− 6M(M−1)(n2 + t2)+(30M2−30M+8)nt − 3M(M−1)(3M−1)
] (4.4.13)

190 4. Minimum Roughness Filters

As expected, setting t = 0 produces the same result as the d = 2 case. Numerically,
the smoothing and differentiation filters can be calculated by passing the Krawtchouk
weights w̄(n) into the functions lpsm, lpdiff, and lpinterp:

W = diag(hend(N,inf)); % Krawtchouk weights

B = lpsm(N,d,W); % smoothing filters

Bi = lpdiff(N,d,i,W); % i-th derivative filters

b = lpinterp(N,d,t,i,W); % interpolation filters bt

The function hend(N, s), with s = ∞, calculates the Krawtchouk weights of Eq. (4.4.6).
In turn, the filter matrices B or B(i) may be passed into the filtering function lpfilt.
Alternatively, one can call lprs with s = ∞:

B = lprs(N,d,inf); % LPRS with Krawtchouk weights, maximally-flat filters

It is well-known [84,174–187] that the maximally-flat FIR filters of lengthN = 2M+1
and polynomial order d = 2r + 1 have frequency responses given by the following
equivalent expressions:

B0(ω) =
r∑
i=0

(
M
i

)
xi(1− x)M−i= 1−

M∑
i=r+1

(
M
i

)
xi(1− x)M−i

= (1− x)M−r
r∑
i=0

(
M−r+i−1

i

)
xi , where x = sin2

(
ω
2

) (4.4.14)

Near ω � 0 and near ω � π, the second and third expressions have the following
expansions that exhibit the desired flatness constraints [123]:

ω � 0 ⇒ B0(ω) � 1− (const.)ω2r+2 = 1− (const.)ωd+1

ω � π ⇒ B0(ω) � (const.)(ω−π)2M−2r= (const.)(ω−π)2M−d+1
(4.4.15)

The first implies the flatness constraints at dc, B(i)0 (0)= δ(i), for i = 0,1, . . . , d, and

the second, the flatness constraints at Nyquist, B(i)0 (π)= 0, for i = 0,1, . . . ,2M−d.

Example 4.4.1: For d = 2 or r = 1, the z-transform of b0(n) in Eq. (4.4.12) can be calculated
explicitly resulting in:

B0(z)=
[
(1+ z−1)(1+ z)

4

]M−1
1

4

[
2(M + 1)−(M − 1)(z+ z−1)

]
With z = ejω we may write

x = sin2
(
ω
2

)
= (1− z

−1)(1− z)
4

= 2− z− z−1

4
⇒ z+ z−1

4
= 1

2
− x

1− x = cos2
(
ω
2

)
= (1+ z

−1)(1+ z)
4

Thus, we may express B0(z) in terms of the variable x:

B0(z)= (1− x)M−1
[
1+ (M − 1)x

]
which corresponds to Eq. (4.4.14) for r = 1. ��

4.5. Missing Data and Outliers 191

Example 4.4.2: Fig. 4.4.1 shows the frequency responses B0(ω) for the values N = 13, r = 2,
(d = 4,5), and the smoothness parameter values: s = 3, s = 6, s = 9, and s = ∞.

Because b0(n) is symmetric about n = 0, the quantities B0(ω) are real-valued. In the
limit s → ∞, the response becomes positive and monotonically decreasing. The following
MATLAB code illustrates the generation of the bottom two graphs and verifies Eq. (4.4.14):

N=13; r=2; d = 2*r+1; M = floor(N/2);

B = lprs(N,d,9); b9 = B(:,M+1); % LPRS filter with s = 9

B = lprs(N,d,inf); binf = B(:,M+1); % LPRS with Krawtchouk weights

f = linspace(0,1,1001); w = pi*f; x = sin(w/2).^2;
B9 = real(exp(j*w*M) .* freqz(b9,1,w)); % frequency responses

Binf = real(exp(j*w*M) .* freqz(binf,1,w));

Bth = 0;
for i=0:r,

Bth = Bth + nchoosek(M,i) * x.^i .* (1-x).^(M-i); % Eq. (4.4.14)

end

norm(Bth-Binf) % compare Eq. (4.4.14) with output of LPSM

figure; plot(f,B9); figure; plot(f,Binf);

The calls to lprs and lpsm return the full smoothing matrices B from which the central
column b0 is extracted.

The frequency response function freqz expects its filter argument to be causal. The factor
ejωM compensates for that, corresponding to a time-advance byM units. ��

Finally, we note that the Krawtchouk binomial weighting function w̄(n) tends to a
gaussian for largeM, which is a consequence of the De Moivre-Laplace theorem,

w̄(n)= (2M)!
22M(M + n)! (M − n)! �

1√
πM

e−n
2/M , −M ≤ n ≤M (4.4.16)

In fact, the two sides of (4.4.16) are virtually indistinguishable forM ≥ 10.

4.5 Missing Data and Outliers

The presence of outliers in the observed signal can cause large distortions in the smoothed
signal. The left graph of Fig. 4.5.1 shows what can happen. The two vertical lines indi-
cate the region in which there are four strong outliers, which cause the smoothed curve
to deviate drastically from the desired signal.

One possible solution [53,165] is to ignore the outliers and estimate the smoothed
values from the surrounding available samples using a filter window that spans the out-
lier region. The same procedure can be used if some data samples are missing. Once the
outliers or missing values have been interpolated, one can apply the weighted LPSM fil-
ters as usual. The right graph in Fig. 4.5.1 shows the four adjusted interpolated samples.
The resulting smoothed signal now estimates the desired signal more accurately.

192 4. Minimum Roughness Filters

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = 3

ω in units of π

B
0(

ω
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = 6

ω in units of π

B
0(

ω
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = 9

ω in units of π

B
0(

ω
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = ∞

ω in units of π

B
0(

ω
)

Fig. 4.4.1 Frequency responses of minimum-Rs and maximally-flat filters.

0 25 50

0

0.5

1

1.5
Noisy Signal with Outliers

time samples, t

 filter span

outliers

 desired
 smoothed
 noisy

0 25 50

0

0.5

1

1.5
Smoothed with Adjusted Outliers

time samples, t

 filter span desired
 smoothed
 noisy
 adjusted

Fig. 4.5.1 Smoothing with missing data or outliers.

This solution can be implemented by replacing the outliers or the missing data by
zeros (or, any other values), and assign zero weights to them in the least-squares poly-
nomial fitting problem.

4.5. Missing Data and Outliers 193

Given a long observed signal yn, n = 0,1, . . . , L−1, let us assume that in the vicinity
of n = n0 there is an outlier or missing sample at the time instant n0+m, wherem lies
in the interval −M ≤ m ≤ M, as shown in Fig. 4.5.2. Several outliers or missing data
may be present, not necessarily adjacent to each other, each being characterized by a
similar indexm.

Fig. 4.5.2 Missing sample or outlier and the data window used for estimating it.

The outlier samples yn0+m can be replaced by zeros and their estimated values,
ŷn0+m, can be calculated from the surrounding samples using a filter of length N =
2M+1. The corresponding least-squares polynomial-fitting problem is defined by

J =
M∑

m=−M
pmwm

⎛⎝yn0+m −
d∑
i=0

cimi
⎞⎠2

= min (4.5.1)

where wm are the usual Henderson weights and the pm are zero at the indices for the
missing data, and unity otherwise. Let y = [yn0−M, . . . , yn0 , . . . , yn0+M]T, and denote by
W,P the corresponding diagonal matrices of the weights wm,pm. Then, (4.5.1) reads:

J = (y− Sc)TPW(y− Sc)= min, (4.5.2)

leading to the orthogonality conditions and the solution for c:

STWP(y− Sc)= 0 ⇒ c = (STPWS)−1STWPy (4.5.3)

where we assumed that STPWS is invertible.† The estimated samples will be:

ŷ = Sc = S(STPWS)−1STWPy = BTy (4.5.4)

with the filter matrix,
B = PWS(STPWS)−1ST (4.5.5)

We note that P is a projection matrix (PT = P and P2 = P) and commutes withW,
PW = WP, because both are diagonal. Defining Q = I − P to be the complementary
projection matrix, the estimated signal can be decomposed in two parts: ŷ = Pŷ+Qŷ,
with Qŷ being the part that contains the estimated missing values or adjusted outliers.

The quantity Py represents the samples that are being used to make the estimates,
whereas Qy corresponds to the missing samples and can be set to zero or to an arbitrary
vector Qyarb, in other words, we may replace y by Py + Qyarb without affecting the
solution of Eq. (4.5.4). This so because P(Py+Qyarb)= Py.

†This requires that the number of outliers within the data window be at most N − d− 1.

194 4. Minimum Roughness Filters

Once the estimated missing values have been obtained, we may replace Qyarb by
Qŷ and recompute the ordinary W-weighted least-squares estimate from the adjusted
vector Py+Qŷ. This produces the same ŷ as in (4.5.4). Indeed, one can show that,

ŷ = S(STPWS)−1STWPy = S(STWS)−1STW(Py+Qŷ) (4.5.6)

To see this, start with the orthogonality equation (4.5.3), and replace Pŷ = ŷ−Qŷ:

STWP(y− ŷ)= 0 ⇒ STWPy = STWPŷ = STW(ŷ−Qŷ) , or,

STW(Py+Qŷ)= STWŷ = STWS(STPWS)−1WPy

from which Eq. (4.5.6) follows by multiplying both sides by S(STWS)−1. The MATLAB
function lpmissing implements the calculation of B in (4.5.5):

B = lpmissing(N,d,m,s); % filter matrix for missing data

The following MATLAB code illustrates the generation of Fig. 4.5.1:

t = (0:50)’; x0 = (1-cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(51,1); % noisy signal

n0 = 25; m = [-1 0 1 3]; % four outlier indices relative to n0

y(n0+m+1) = 0; % four outlier or missing values

N= 13; d = 2; s = 0; M=(N-1)/2; % filter specs

x = lpfilt(lprs(N,d,s),y); % distorted smoothed signal

B = lpmissing(N,d,m,s); % missing-data filter B

yhat = B’*y(n0-M+1:n0+M+1); % apply B to the block n0−M ≤ n ≤ n0+M
ynew = y; ynew(n0+m+1) = yhat(M+1+m); % new signal with interpolated outlier values

xnew = lpfilt(lprs(N,d,s),ynew); % recompute smoothed signal

figure; plot(t,x0,’--’, t,y,’o’, t,x,’-’); % left graph

figure; plot(t,x0,’--’, t,y,’o’, t,xnew,’-’); % right graph

hold on; plot(n0+m,yhat(M+1+m),’.’);

The above method of introducing zero weights at the outlier locations can be auto-
mated and applied to the entire signal. Taking a cue from Cleveland’s LOESS method
[192] discussed in the next section, we may apply the following procedure.

Given a length-L signal yn, n = 0,1, . . . , L − 1, with L ≥ N, an LPSM or LPRS filter
with design parameters N,d, s can be applied to yn to get a preliminary estimate of the
smoothed signal x̂n, and compute the error residuals en = yn − x̂n, that is,

B = lprs(N,d, s)

x̂ = lpfilt(B,y)

e = y− x̂

(4.5.7)

4.5. Missing Data and Outliers 195

From the error residual e, one may compute a set of “robustness” weights rn by
using the median of |en| as a normalization factor in the bisquare function:

μ = median
(|en|) , rn =W

(
en
Kμ

)
, n = 0,1, . . . , L− 1 (4.5.8)

where K is a constant such as K = 2–6, andW(u) is the bisquare function,

W(u)=
⎧⎨⎩(1− u2)2, if |u| ≤ 1

0, otherwise
(4.5.9)

If a residual en deviates too far from the median, that is, |en| > Kμ, then the ro-
bustness weight rn is set to zero. A new estimate x̂n can be calculated at each time n
by defining the diagonal matrix P in terms of the robustness weights in the neighbor-
hood of n, and then calculating the estimate using the c0 component of the vector c in
Eq. (4.5.3), that is,

Pn = diag
(
[rn−M, . . . , rn, . . . , rn+M]

)
x̂n = c0 = uT0 (STPnWS)−1STWPny(n)

(4.5.10)

where u0 = [1,0, . . . ,0]T and y(n)= [yn−M, . . . , yn, . . . , yn+M]T. Eq. (4.5.10) may be
used for M ≤ n ≤ L − 1 −M. For 0 ≤ n < M and L − 1 −M < n ≤ L − 1 the values
of x̂n can be obtained from the firstM and last M outputs of ŷ in (4.5.4) applied to the
first and last length-N data vectors and robustness weights:

y = [y0, y1, . . . , yN−1]T , P = diag
(
[r0, r1, . . . , rN−1]

)
y = [yL−N, yL−N+1, . . . , yL−1]T , P = diag

(
[rL−N, rL−N+1, . . . , rL−1]

)
From the new estimates x̂n, one can compute the new residuals en = yn − x̂n, and

repeat the procedure of Eqs. (4.5.8)–(4.5.10) a few more times. A total of 3–4 iterations
is typically adequate. The MATLAB function rlpfilt implements the above steps:

[x,r] = rlpfilt(y,N,d,s,Nit) % robust local polynomial filtering

Its outputs are the estimated signal x̂n and the robustness weights rn. The median
scaling factor K is an additional optional input, which otherwise defaults to K = 6.

If the residuals en are gaussian-distributed with varianceσ2, then μ = 0.6745σ. The
default value K = 6 (Cleveland [192]) corresponds to allowing through 99.99 percent of
the residuals. Other possible values are K = √

6 = 2.44 (Loader [224]) and K = 4
allowing respectively 90 and 99 percent of the values.

Fig. 4.5.3 shows the effect of increasing the number of robustness iterations. It is
the same example as that in Fig. 4.5.1, but we have added another four outliers in the
vicinity of n = 10. The upper-left graph corresponds to ordinary filtering without any
robustness weights. One observes the successive improvement of the estimate as the
number of iterations increases.

The following MATLAB code illustrates the generation of the lower-right graph. The
signal yn is generated exactly as in the previous example; the outlier values are then
introduced around n = 10 and n = 25:

196 4. Minimum Roughness Filters

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 0

time samples, t

outliers

outliers

 desired
 smoothed
 noisy

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 1

time samples, t

 desired
 smoothed
 noisy
 adjusted

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 2

time samples, t

 desired
 smoothed
 noisy
 adjusted

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 4

time samples, t

 desired
 smoothed
 noisy
 adjusted

Fig. 4.5.3 Robust smoothing with outliers.

n1=10; n2=25; m = [-1 0 1 3]; % outlier indices relative to n1 and n2

y(n1+m+1)=1; y(n2+m+1)=0; % outlier values

Nit=4; K=4; x = rlpfilt(y,N,d,s,Nit,K); % robust LP filtering

plot(t,x0,’--’, t,y,’o’, t,x,’-’, n1+m,x(n1+m+1),’.’, n2+m,x(n2+m+1),’.’);

4.6 Problems

4.1 Using binomial identities, prove the equivalence of the three expressions in Eq. (4.4.14) for
the maximally-flat filters. Then, show Eq. (4.4.15) and determine the proportionality con-
stants indicated as (const.).

5
Local Polynomial Modeling

5.1 Weighted Local Polynomial Modeling

The methods of weighted least-squares local polynomial modeling and robust filtering
can be generalized to unequally-spaced data in a straightforward fashion. Such methods
provide enough flexibility to model a wide variety of data, including surfaces, and have
been explored widely in recent years [188–231]. For equally-spaced data, the weighted
performance index centered at time n was:

Jn =
M∑

m=−M

(
yn+m − p(m)

)2w(m)= min , p(m)=
d∑
r=0

cimr (5.1.1)

The value of the fitted polynomial p(m) atm = 0 represents the smoothed estimate
of yn, that is, x̂n = c0 = p(0). Changing summation indices to k = n +m, Eq. (5.1.1)
may be written in the form:

Jn =
n+M∑
k=n−M

(
yk − p(k− n)

)2w(k− n)= min , p(k− n)=
d∑
r=0

ci(k− n)r (5.1.2)

For a set of N unequally-spaced observations
{
tk, y(tk)

}
, k = 0,1, . . . ,N − 1, we

wish to interpolate smoothly at some time instant t, not necessarily coinciding with one
of the observation times tk, but lying in the interval t0 ≤ t ≤ tN−1. A generalization
of the performance index (5.1.2) is to introduce a t-dependent window bandwidth ht,
and use only the observations that lie within that window, |tk − t| ≤ ht, to perform the
polynomial fit:

Jt =
∑

|tk−t|≤ht

(
y(tk)−p(tk − t)

)2w(tk − t)= min , p(tk − t)=
d∑
r=0

cr(tk − t)r (5.1.3)

The estimated/interpolated value at t will be x̂t = c0 = p(0), and the estimated first
derivative, ˆ̇xt = c1 = ṗ(0), and so on for the higher derivatives, with r! cr representing
the rth derivative. As illustrated in Fig. 5.1.1, the fitted polynomial,

p(x− t)=
d∑
r=0

cr(x− t)r , t − ht ≤ x ≤ t + ht

197

198 5. Local Polynomial Modeling

is local in the sense that it fits the observations only within the local window [t−ht, t+ht].
The quantity ŷk = p(tk − t) represents the estimated value of the kth observation yk
within that window.

Fig. 5.1.1 Local polynomial modeling.

The weighting function w(tk − t) is chosen to have bandwidth ±ht. This can be
accomplished by using a functionW(u) with finite support over the standardized range
−1 ≤ u ≤ 1, and setting u = (tk − t)/ht:

w(tk − t)=W
(
tk − t
ht

)
(5.1.4)

Some typical choices forW(u) are as follows [224]:

1. Tricube, W(u)= (1− |u|3)3

2. Bisquare, W(u)= (1− u2)2

3. Triweight, W(u)= (1− u2)3

4. Epanechnikov, W(u)= 1− u2

5. Gaussian, W(u)= e−α2u2/2

6. Exponential, W(u)= e−α|u|
7. Rectangular, W(u)= 1

(5.1.5)

where all types have support |u| ≤ 1 and vanish for |u| > 1. A typical value forα in the
gaussian and exponential cases is α = 2.5. The curve shown in Fig. 5.1.1 is the tricube
function; because it vanishes at u = ±1, the observations that fall exactly at the edges
of the window do not contribute to the fit. The MATLAB function locw generates the
above functions at any vector of values of u:

W = locw(u,type); % local polynomial weighting functionsW(u)

where type takes the values 1–7 as listed in Eq. (5.1.5). The bisquare, triweight, and
Epanechnikov functions are special cases of the more generalW(u)= (1− u2)s, which
may be thought of as the large-M limit of the Henderson weights; in the limit s → ∞
they tend to a gaussian, as in the Krawtchouk case. The various window functions are
depicted in Fig. 5.1.2.

5.1. Weighted Local Polynomial Modeling 199

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Window Functions

u

W
(u

)

 tricube
 bisquare
 triweight
 epanechnikov
 gaussian
 exponential

Fig. 5.1.2 Window functions.

Because of the assumed finite extent of the windows, the summation in Eq. (5.1.3)
can be extended to run over all N observations, as is often done in the literature:

Jt =
N−1∑
k=0

(
y(tk)−p(tk − t)

)2w(tk − t)= min , p(tk − t)=
d∑
r=0

cr(tk − t)r (5.1.6)

We prefer the form of Eq. (5.1.3) because it emphasizes the local nature of the fitting
window. LetNt be the number of observations that fall within the interval [t−ht, t+ht].
We may cast the performance index (5.1.3) in a compact matrix form by defining the
Nt×1 vector of observations yt, theNt×(d+1) basis matrix St, and theNt×Nt diagonal
matrix of weights by

yt = [· · · , y(tk), · · ·]T , for t − ht ≤ tk ≤ t + ht

St =

⎡⎢⎢⎢⎣
...

...
...

...
1 (tk − t) · · · (tk − t)r · · · (tk − t)d
...

...
...

...

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

...
uT(tk − t)

...

⎤⎥⎥⎥⎦
Wt = diag

(
[· · · ,w(tk − t), · · ·]

)
(5.1.7)

where uT(tk− t) is the k-th row of St, defined in terms of the (d+1)-dimensional vector
uT(τ)= [1, τ, τ2, . . . , τd]. For example, if t−ht < t3 < t4 < t5 < t6 < t+ht, thenNt = 4
and for a polynomial order d = 2, we have:

yt =

⎡⎢⎢⎢⎣
y(t3)
y(t4)
y(t5)
y(t6)

⎤⎥⎥⎥⎦ , St =

⎡⎢⎢⎢⎣
1 (t3 − t) (t3 − t)2

1 (t4 − t) (t4 − t)2

1 (t5 − t) (t5 − t)2

1 (t6 − t) (t6 − t)2

⎤⎥⎥⎥⎦

Wt =

⎡⎢⎢⎢⎣
w(t3 − t) 0 0 0

0 w(t4 − t) 0 0
0 0 w(t5 − t) 0
0 0 0 w(t6 − t)

⎤⎥⎥⎥⎦

200 5. Local Polynomial Modeling

With these definitions, Eq. (5.1.3) can be written as

Jt = (yt − Stc)TWt(yt − Stc)= min (5.1.8)

with solution for the coefficient vector c = [c0, c1, . . . , cd]T:

c = (STt WtSt)−1STt Wtyt (5.1.9)

The quantity ŷt = Stc represents the polynomial estimate of the local observation
vector yt. It can be written as

ŷt = BTt yt , Bt =WtSt(STt WtSt)−1STt (5.1.10)

where theNt×Nt matrixBt generalizes (4.1.5), and satisfies a similar polynomial-preserving
property as (4.1.6),

BTt St = St (5.1.11)

Defining the usual (d+1)-dimensional unit vector u0 = [1,0, . . . ,0]T, we obtain the
estimated value at time t by x̂t = c0 = uT0 c, and the first derivative by ˆ̇xt = c1 = uT1 c,
where u1 = [0,1,0, . . . ,0]T,

x̂t = uT0 (STt WtSt)−1STt Wtyt

ˆ̇xt = uT1 (STt WtSt)−1STt Wtyt
(5.1.12)

Thus, the effective estimation weights are:

h(t)=WtSt(STt WtSt)−1u0 , x̂t = hT(t)yt (5.1.13)

Component-wise, we can write:

x̂t = hT(t)yt =
∑

|tk−t|≤ht
hk(t)yk (5.1.14)

where yk = y(tk) and

hk(t)= w(tk − t)uT(tk − t)(STt WtSt)−1u0 (5.1.15)

We note that u0,u1 are related to the vector u(τ) and its derivative by u0 = u(0)
and u1 = u̇(0). We also have,

STt WtSt =
∑

|tk−t|≤ht
u(tk − t)uT(tk − t)w(tk − t) (5.1.16)

or, component-wise,

(STt WtSt)ij=
∑

|tk−t|≤ht
(tk − t)i+j w(tk − t) , i, j = 0,1, . . . , d (5.1.17)

The solution is particularly easy in the special cases d = 0, corresponding to local
constant fitting, and d = 1, corresponding to local linear fits. The case d = 0 leads to the

5.1. Weighted Local Polynomial Modeling 201

so-called kernel smoothing approach first proposed by Nadaraya and Watson [188,189].
In this case u(τ)= [1] and we find:

STt WtSt =
∑

|tk−t|≤ht
w(tk − t) , hk(t)= w(tk − t)∑

|tk−t|≤ht
w(tk − t)

x̂t =
∑

|tk−t|≤ht
hk(t)yk =

∑
|tk−t|≤ht

w(tk − t)yk∑
|tk−t|≤ht

w(tk − t)
(kernel smoothing) (5.1.18)

For d = 1, we have u(τ)= [1, τ]T, and we obtain

STt WtSt =
∑

|tk−t|≤ht

[
1 (tk − t)

(tk − t) (tk − t)2

]
w(tk − t)≡

[
s0(t) s1(t)
s1(t) s2(t)

]

(STt WtSt)−1= 1

s0(t)s2(t)−s21(t)

[
s2(t) −s1(t)
−s1(t) s0(t)

]

which gives for the filter weights hk(t):

hk(t)= w(tk − t)s2(t)−(tk − t)s1(t)s0(t)s2(t)−s21(t)
(locally linear fits) (5.1.19)

In general, the invertibility of STt WtSt requires thatNt ≥ d+1. The QR factorization
can be used to implement the above computations efficiently. If the weight function
W(u) vanishes at the end-points u = ±1, as in the tricube case, then the window interval
must exclude those end-points. In other words, the diagonal entries ofWt are assumed
to be strictly positive. DefiningU to be the diagonal square root factor ofWt and carrying
out the QR factorization of the matrix USt, we obtain the efficient algorithm:

U = sqrt(Wt) , U is diagonal so that UT = U andWt = UTU = U2

USt = QR , QTQ = Id+1 , R = (d+1)×(d+1) upper-triangular

c = R−1QTUyt

(5.1.20)

The above steps are equivalent to reducing the problem to an ordinary unweighted
least-squares problem, that is, c is recognized to be the unique least-squares solution of
the full-rank, overdetermined, Nt×(d+1)-dimensional system (USt)c = Uyt. Indeed,
it follows from Eq. (15.4.10) of Chap. 15 that c is given by:

c = [
(USt)T(USt)

]−1(USt)T(Uyt)= (STt WtSt)−1STt Wtyt (5.1.21)

where
[
(USt)T(USt)

]−1(USt)T is the pseudoinverse of USt. The corresponding per-
formance indices are equivalent:

Jt = (yt − Stc)TWt(yt − Stc)= ‖Uyt −UStc‖2 = min

202 5. Local Polynomial Modeling

In MATLAB the least-squares solution (5.1.21) can be obtained by the backslash oper-
ation: c = (USt)\(Uyt). The construction of the quantities yt, St,Wt is straightforward.
Given the column vectors of observation times and observations,

tobs = [t0, t1, . . . , tN−1]T , yobs =
[
y(t0), y(t1), . . . , y(tN−1)

]T
(5.1.22)

we may determine, with the help of locw, the column vector of indices k for which tk
lies in the local window, and then carry out the procedure (5.1.21):

w = locw((tobs - t)/h_t, type); % weights of all observation times relative to a given t and ht
k = find(w); % column vector of indices of nonzero weights within window

yt = yobs(k); % column vector of corresponding local observations yt
Wt = diag(w(k)); % diagonal matrix of nonzero local weightsWt
St = [];
for r=0:d,

St = [St, (tobs(k) - t).^r]; % construct local polynomial basis St column-wise

end
U = sqrt(Wt); % diagonal square root ofWt
c = (U*St)\(U*yt); % least-squares solution

Most of thew’s obtained from the first line of code are zero, except for those tk that
lie within the local window t±ht. The second line, k = find(w), finds the latter. These
steps have been incorporated into the MATLAB function locpol:

[xhat,C] = locpol(tobs,yobs,t,h,d,type); % local polynomial modeling

where tobs,yobs are as in (5.1.22), t,h are L-dimensional vectors of times and band-
widths at which to carry out the fit, and d,type are the polynomial order and window
type, with default values d = 1, type = 1. The output xhat is the L-dimensional vector
of estimates x̂t, and C is an L×(d+1)matrix, whose ith row is the vector [c0, c1, . . . , cd]
of polynomial coefficients corresponding to the ith fitting time and bandwidth t(i), h(i).
Thus, the first column of C is the same as xhat, while the second column contains the
first derivatives. Separating the first column of C into xhat is done only for convenience
in using the function.

The choice of the bandwidth ht is an important consideration that influences the
quality of the estimate x̂t. Too large an ht will oversmooth the signal but reduce the
noise (i.e., increasing bias but lowering variance), and too small an ht will undersmooth
the signal and not reduce the noise as much (i.e., reducing bias and increasing variance).

Two simple bandwidth choices are the fixed and the nearest-neighbor bandwidths.
In the fixed case, one chooses the same bandwidth at each fitting time, that is, ht = h, for
all t. In the nearest-neighbor case, one chooses a fixed number, sayK, of observations to
lie within each local window, whereK is a fraction of the total number of observationsN,
that is,K = �αN�, truncated to an integer, whereα ≤ 1. Typical values areα = 0.2–0.8.
Given K, one calculates the distances of all the observation times from t, that is, |tk− t|,
k = 0,1, . . . ,N − 1, then sorts them in increasing order, and picks ht to be the Kth
shortest distance, and therefore, there will be K observations satisfying |tk− t| ≤ ht. In
summary, the fixed case selects ht = h but with varying Nt, and the nearest-neighbor
case selects varying ht but with fixed Nt = K.

The MATLAB function locband may be used to calculate the bandwidths ht at each
t, using either the fixed method, or the nearest-neighbor method:

5.1. Weighted Local Polynomial Modeling 203

h = locband(tobs,t,alpha,h0); % bandwidth for local polynomial regression

where if α = 0, the fixed bandwidth h0 is selected, and if 0 < α < 1, the K-nearest
bandwidths are selected, where t is a length-L vector of fitting times.

Example 5.1.1: As an example, consider the following 16 observation times tobs, and 5 fitting
times t, and choose α = 0.25 so that K = αN = 0.25×16 = 4:

tobs = [0.5, 0.8, 1.1, 1.2, 1.8, 2.4, 2.5, 3.4, 3.5, 3.7, 4.0, 4.2, 4.9, 5.0, 5.1, 6.2]

t = [0.5, 1.5, 2.9, 3.6, 5.1]

then one finds the corresponding bandwidths for each of the five t’s

h = locband(tobs,t,0.25,0) = [0.7, 0.7, 0.6, 0.6, 0.9]

and the corresponding local intervals, each containing K = 4 observation times:

ht t − ht t t + ht included tks
0.7 −0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.6 2.3 2.9 3.5 2.4, 2.5, 3.4, 3.5
0.6 3.5 4.1 4.7 3.5, 3.7, 4.0, 4.2
0.9 4.2 5.1 6.0 4.2, 4.9, 5.0, 5.1

By contrast, had we chosen a fixed bandwidth, say h = 0.7 (the average of the above five),
then the corresponding intervals and included observation times would have been:

ht t − ht t t + ht included tks
0.7 −0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.7 2.2 2.9 3.6 2.4, 2.5, 3.4, 3.5
0.7 2.9 3.6 4.3 3.4, 3.5, 3.7, 4.0, 4.2
0.7 4.4 5.1 5.8 4.9, 5.0, 5.1

where now the number Nt of included observations depends on t. As can be seen from
this example, both the nearest-neighbor and fixed bandwidth choices adapt well at the
end-points of the available observations. ��

Choosing t to be one of the observation times, t = ti, Eq. (5.1.12) can be written in
the simplified notation:

x̂i = uT0 (S
T
i WiSi)

−1STi Wiyi ≡ hTi yi , hTi = uT0 (S
T
i WiSi)

−1STi Wi (5.1.23)

where x̂i, Si,Wi,yi are the quantities x̂t, St,Wt,yt evaluated at t = ti. Component-wise,

x̂i =
∑

|tj−ti|≤hi
uT0 (S

T
i WiSi)

−1u(tj − ti)w(tj − ti)yj =
∑

|tj−ti|≤hi
Hij yj (5.1.24)

where the matrix elements Hij are,

Hij = hj(ti)= uT0 (S
T
i WiSi)

−1u(tj − ti)w(tj − ti) (5.1.25)

204 5. Local Polynomial Modeling

Similarly, one may express STi WiSi and STi Wiyi as,

STi WiSi =
∑

|tj−ti|≤hi
u(tj − ti)uT(tj − ti)w(tj − ti)

STi Wiyi =
∑

|tj−ti|≤hi
u(tj − ti)w(tj − ti)yj

(5.1.26)

Because the factor w(tj − ti) vanishes outside the local window ti ± hi, the sum-
mations in (5.1.24) and (5.1.26) over tj can be extended to run over all N observations.
Defining theN-dimensional vectors x̂ = [x̂0, x̂1, . . . , x̂N−1]T and y = [y0, y1, . . . , yN−1]T,
we may write (5.1.24) in the compact matrix form:

x̂ = Hy (5.1.27)

The filtering matrix H is also known as the “hat” matrix or the “smoothing” matrix.
Its diagonal elementsHii play a special role in bandwidth selection, where w0 = w(0),†

Hii = hi(ti)= w0 uT0 (S
T
i WiSi)

−1 u0 (5.1.28)

5.2 Bandwidth Selection

There exist various automatic schemes for choosing the bandwidth. Such schemes may
at best be used as guidelines. Ultimately, one must rely on one’s judgment in making
the final choice.

A popular bandwidth selection method is the so-called cross-validation criterion that
selects the bandwidth h that minimizes the sum of squared prediction errors:

CV(h)= 1

N

N−1∑
i=0

(yi − x̂−i)2= min (5.2.1)

where x̂−i is the estimate or prediction of the sample xi = x(ti) obtained by deleting the
ith observation yi and basing the estimation on the remaining observations, where we
are assuming the usual additive-noise model y(ti)= x(ti)+v(ti)with x(ti) representing
the desired signal to be extracted from y(ti). We show below that the predicted estimate
x̂−i is related to the estimate x̂i based on all observations by the relationship:

x̂−i =
x̂i −Hii yi

1−Hii (5.2.2)

where Hii is given by (5.1.28). It follows from (5.2.2) that the corresponding estimation
errors will be related by:

yi − x̂−i =
yi − x̂i
1−Hii (5.2.3)

†w0 = 1 for all the windows in Eq. (5.1.5), but any other normalization can be used.

5.2. Bandwidth Selection 205

and therefore, the CV index can be expressed as:

CV(h)= 1

N

N−1∑
i=0

(yi − x̂−i)2= 1

N

N−1∑
i=0

(
yi − x̂i
1−Hii

)2

= min (5.2.4)

A related selection criterion is based on the generalized cross-validation index, which
replaces Hii by its average over i, that is,

GCV(h)= 1

N

N−1∑
i=0

(
yi − x̂i
1− H̄

)2

= min , H̄ = 1

N

N−1∑
i=0

Hii = 1

N
tr(H) (5.2.5)

If the bandwidth is to be selected by the nearest-neighbor method, then, the CV
and GCV indices may be regarded as functions of the fractional parameter α and min-
imized. Similarly, one could consider minimizing with respect to the polynomial order
d, although in practice d is usually chosen to be 1 or 2.

Eq. (5.2.2) can be shown as follows. If the tj = ti observation is deleted from
Eq. (5.1.23), the corresponding optimum polynomial coefficients and optimum estimate
will be given by

c− = (STi WiSi)−1− (S
T
i Wiyi)− , x̂−i = uT0 c−

where the minus subscripts indicate that the tj = ti terms are to be omitted. It follows
from Eq. (5.1.26) that

STi WiSi = (STi WiSi)−+w0u0uT0

STi Wiyi = (STi Wiyi)−+w0u0yi
(5.2.6)

and then,
c− =

[
STi WiSi −w0u0uT0]−1[STi Wiyi −w0u0yi

]
(5.2.7)

Setting Fi = STi WiSi and noting that c = F−1
i S

T
i Wiyi or STi Wiyi = Fic, we may write,

c− =
[
Fi −w0u0uT0]−1[Fi c−w0u0yi

]
Using the matrix inversion lemma, we have,

[
Fi −w0u0uT0]−1= F−1

i + w0F−1
i u0uT0F

−1
i

1−w0uT0F
−1
i u0

(5.2.8)

Noting that Hii = w0uT0F
−1
i u0, we obtain,

c− =
[
F−1
i + w0F−1

i u0uT0F
−1
i

1−Hii

][
Fi c−w0u0yi

]
=

[
I + w0F−1

i u0uT0
1−Hii

][
c−w0F−1

i u0yi
]

= c−w0F−1
i u0yi + w0F−1

i u0
[
uT0 c−w0uT0F

−1
i u0yi

]
1−Hii

and since x̂i = uT0 c, we find,

c− = c−w0F−1
i u0yi + w0F−1

i u0
[
x̂i −Hiiyi

]
1−Hii = c+w0F−1

i u0
x̂i − yi
1−Hii

206 5. Local Polynomial Modeling

from which we find for x̂−i = uT0 c−,

x̂−i = x̂i +
Hii(x̂i − yi)

1−Hii = x̂i −Hiiyi
1−Hii (5.2.9)

In practice, the CV and GCV indices are evaluated over a certain range of the smooth-
ing parameter h or α to look for a minimum. The MATLAB function locgcv evaluates
these indices at any vector of parameter values:

[GCV,CV] = locgcv(tobs,yobs,d,type,b,btype); % CV and GCV evaluation

where type is the window type, b is either a vector of hs or a vector of αs at which
to evaluate CV and GCV, and the string btype takes the values ’f’ or ’nn’ specifying
whether the parameter vector b corresponds to a fixed or nearest-neighbor bandwidth.

5.3 Local Polynomial Interpolation

The primary advantage of local polynomial modeling is its flexibility and ease of smooth-
ing unequally-spaced data. Its main disadvantage is the potentially high computational
cost, that is, the calculations (5.1.12) must be performed for each t, and generally a
dense set of such t’s might be required in order to get a visually smooth curve.

One way to cut down the cost is to evaluate the smoothed values x̂t at a less dense
grid of ts, and then interpolate smoothly between the computed points. This is akin
to what plotting programs do by connecting the dots by straight-line segments (linearly
interpolating)—the result being a visually continuous curve. But here, we can do better
than just connecting the dots because we have available the slopes at each grid point.
These slopes are contained in the second column of the fitting matrix C resulting from
locpol, assuming of course that d ≥ 1.

Consider two time instants t1, t2 at which the fitted signal values are a1, a2 with
corresponding slopes b1, b2, as shown below. The lowest-degree polynomial P(t) inter-
polating between the two points t1, t2 that matches the fitted values and their slopes at
t1 and t2 is a cubic polynomial—the method being known as cubic Hermite interpolation.
The four polynomial coefficients are fixed uniquely by the four conditions:

P(t1) = a1 , Ṗ(t1)= b1

P(t2) = a2 , Ṗ(t2)= b2

which result into the cubic polynomial, where T = t2 − t1,

P(t)=
(
t − t2
T

)2 [
a1 + (Tb1 + 2a1)

(
t − t1
T

)]

+
(
t − t1
T

)2 [
a2 + (Tb2 − 2a2)

(
t − t2
T

)] (5.3.1)

5.3. Local Polynomial Interpolation 207

For local-polynomial orders d ≥ 1, we use Eq. (5.3.1) to interpolate at a denser grid
of points between the less dense grid of fitted points. For the special case, d = 0, the
slopes are not available and we can only use linear interpolation, that is,

P(t)= a1 + (a2 − a1)
(
t − t1
T

)
(5.3.2)

The MATLAB function locval takes the output matrix C from locpol corresponding
to a grid of fitting points t, and computes the interpolated points ygrid at the denser grid
of points tgrid:

ygrid = locval(C,t,tgrid); % interpolating local polynomial fits

The auxiliary function locgrid helps establish a uniform grid between the t points:

tgrid = locgrid(t, Ngrid); % uniform grid with respect to t

which is simply a shorthand for,

tgrid = linspace(min(t), max(t), Ngrid);

Example 5.3.1: The motorcycle acceleration dataset [231] has served as a benchmark in many
studies of local polynomial modeling and spline smoothing. The ordinate represents head
acceleration (in units of g) during impact, and the abscissa is the time (in msec).

Fig. 5.3.1 shows a plot of the GCV index as a function of the nearest-neighbor fractional
parameter α on the left, and as a function of the fixed bandwidth h on the right, for the
two polynomial orders d = 1,2.

0.1 0.2 0.3 0.4 0.5
300

400

500

600

700

800
GCV score

NN parameter, α

 d = 1
 d = 2

2 4 6 8 10
300

400

500

600

700

800
GCV score

bandwidth, h

 d = 1
 d = 2

Fig. 5.3.1 GCV score for nearest-neighbor (left) and fixed bandwidths (right).

The “optimal” values of these parameters that minimize the GCV (and indicated by dots
on the graphs) are as follows, where the subscripts indicate the value of d:

α1 = 0.16 , α2 = 0.33 , h1 = 3.9 , h2 = 7.8

The graphs (for d = 1) were produced by the MATLAB code:

208 5. Local Polynomial Modeling

Y = loadfile(’mcyc.dat’); % file included in the OSP toolbox

tobs = Y(:,1); yobs = Y(:,2); % 133 data points

alpha = linspace(0.1, 0.5, 51); % vary over 0.1 ≤ α ≤ 0.5

d=1; type=1;
gcv = locgcv(tobs,yobs,d,type,alpha,’nn’); % GCV as function of α
[F,i] = min(gcv); alpha1 = alpha(i); % minimum at α = α1

figure; plot(alpha,gcv); % left graph

h = linspace(2, 10, 51); % vary over 2 ≤ h ≤ 10

gcv = locgcv(tobs,yobs,d,type,h,’f’); % GCV as function of h
[F,i] = min(gcv); h1 = h(i); % minimum at h = h1

Fig. 5.3.2 shows the local polynomial fits corresponding to the above optimal parameter
values. The left graph shows the nearest-neighbor cases for d = 1,2, and the right graph,
the fixed bandwidth cases. The tricube window was used (type=1).

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 d = 1
 d = 2

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 d = 1
 d = 2

Fig. 5.3.2 Nearest-neighbor (left) and fixed bandwidths (right).

In all cases, the actual fitting was performed at 100 equally-spaced points t within the
observation range tobs and were connected by straight-line segments by the plotting pro-
gram, instead of being interpolated by locval. Continuing with the above MATLAB code,
the graphs were generated by

t = locgrid(tobs,101); % equally-spaced fitting times

h = locband(tobs, t, alpha1, 0); % NN bandwidths at each t
x1 = locpol(tobs,yobs,t,h,1,type); % fit at times t with d = 1

h = locband(tobs, t, alpha2, 0);
x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % left graph

h = locband(tobs, t, 0, h1); % fixed bandwidths at each t
x1 = locpol(tobs,yobs,t,h,1,type); % fit at times t with d = 1

h = locband(tobs, t, 0, h2);

5.3. Local Polynomial Interpolation 209

x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % right graph

Fig. 5.3.3 demonstrates the Hermite interpolation procedure. The fitting times are 20
equally-spaced points spanning the observation interval tobs. The 20 fitted points are then
interpolated at 100 equally-spaced points over tobs. The interpolated curves are essentially
identical to those fitted earlier at 100 points.

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 fit points
 interpolated

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 fit points
 interpolated

Fig. 5.3.3 Nearest-neighbor (left) and fixed bandwidths (right).

The polynomial order was d = 1 and the bandwidth parameters wereα1 = 0.21 for the left
graph and h1 = 4.4 for the right one. The left graph was generated by the code segment:

tf = locgrid(tobs,21); % fitting times

h = locband(tobs, tf, alpha1, 0); % NN bandwidths at tf

[xf,C] = locpol(tobs,yobs,tf,h,1,type); % fitted values and derivatives

tint = locgrid(tf,101); % interpolation times

xint = locval(C, tf, tint); % interpolated values

figure; plot(tobs,yobs,’.’, tf,xf,’o’, tint,xint,’-’);

Example 5.3.2: The ethanol dataset [230] is also a benchmark example for smoothing tech-
niques. The ordinate NOx represents nitric oxide concentrations in the engine exhaust
gases, and the abscissa E is the equivalence ratio, which is a measure of the richness of
the ethanol/air mixture.

The GCV and CV bandwidth selection criteria tend sometimes to result in undersmoothed
signals. This can be seen in Fig. 5.3.4 in which the GCV criterion for fixed bandwidth selects
the values h1 = 0.039 and h2 = 0.058, for orders d = 1,2.

As can be seen, the resulting fits are jagged, and can benefit form increasing the fitting
bandwidth somewhat. The minima of the GCV plot are fairly broad and any neighboring
values of the bandwidth would be just as good in terms of the GCV value. A similar effect
happens in this example for the nearest-neighbor bandwidth method, in which the GCV
criterion selects the value α = 0.19 corresponding to jagged graph (not shown). Fig. 5.3.5

210 5. Local Polynomial Modeling

0.02 0.04 0.06 0.08
0

0.1

0.2

0.3
GCV score

bandwidth, h

 d = 1
 d = 2

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, h1 = 0.038, h2 = 0.058

E

N
O

x

 data
 d = 1
 d = 2

Fig. 5.3.4 GCV and local polynomial fits with d = 1,2.

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, d = 1, h = 0.08

E

N
O

x

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, d = 1, α = 0.3

E

N
O

x

Fig. 5.3.5 Fits with fixed (left) and nearest-neighbor (right) bandwidths.

shows the fits when the fixed bandwidth is increased to h = 0.08 and the nearest-neighbor
one to α = 0.3. The resulting fits are much smoother.

The MATLAB code for generating the graphs of Fig. 5.3.4 is as follows:

Y = loadfile(’ethanol.dat’); % file available in OSP toolbox

tobs = Y(:,1); yobs = Y(:,2); % data

t = locgrid(tobs,101); % uniform grid of 101 fitting points

h = linspace(0.02, 0.08, 41); % vary h over 0.02 ≤ h ≤ 0.08

gcv1 = locgcv(tobs,yobs,1,1,h,’f’); % GCV as function of h
gcv2 = locgcv(tobs,yobs,2,1,h,’f’);

figure; plot(h,gcv1,’-’, h,gcv2,’--’); % left graph

h = locband(tobs, t, 0, h1); % fixed bandwidths at t
x1 = locpol(tobs,yobs,t,h,1,1); % fit with d = 1 and tricube window

h = locband(tobs, t, 0, h2);

5.4. Variable Bandwidth 211

x2 = locpol(tobs,yobs,t,h,2,1); % fit with d = 2 and tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % right graph

The MATLAB code for generating Fig. 5.3.5 is as follows:

h0 = 0.08; h = locband(tobs, t, 0, h0); % fixed bandwidth case

x1 = locpol(tobs,yobs,t,h,1,1); % order d = 1, tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’); % left graph

alpha = 0.3; h = locband(tobs, t, alpha, 0); % nearest-neighbor bandwidth case

x1 = locpol(tobs,yobs,t,h,1,1); x1 = C(:,1); % order d = 1, tricube windowm
figure; plot(tobs,yobs,’.’, t,x1,’-’); % right graph

Fig. 5.3.6 shows a fit at 10 fitting points and interpolated over 101 points. The fitting
parameters are as in the right graph of Fig. 5.3.5. The following code generates Fig. 5.3.6:

tf = locgrid(tobs,10); % fitting points

alpha = 0.3; h = locband(tobs, tf, alpha, 0); % nearest-neighbor bandwidths

[xf,C] = locpol(tobs,yobs,tf,h,1,1); % order 1, tricube window

ti = locgrid(tf,101); yi = locval(C,tf,ti); % interpolated points

figure; plot(tobs,yobs,’.’, ti,yi,’-’, tf,xf,’o’);

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, d = 1, α = 0.3

E

N
O

x

 data
 interp
 fitted

Fig. 5.3.6 Interpolated fits.

5.4 Variable Bandwidth

The issue of selecting the right bandwidth has been studied extensively, with approaches
ranging from finding an optimum bandwidth that minimizes a selection criterion such as
the GCV to using a locally-adaptive criterion that allows the bandwidth to automatically
adapt to the local nature of the signal with different bandwidths being used in different
parts of the signal [188–231].

212 5. Local Polynomial Modeling

There is no selection criterion that is universally successful or universally agreed
upon and one must use one’s judgment and visual inspection to decide how much
smoothing is satisfactory. The basic idea is always to reduce the bandwidth in regions
where the curvature of the signal is high in order not to oversmooth.

The function locpol can accept a different bandwidth ht for each fitting time t. As
we saw in the above examples, the function locband generates such bandwidths for
input to locpol. However, locband generates either fixed or or nearest-neighbor band-
widths and is not adaptive to the local nature of the signal. One could manually, divide
the range of the signal in non-overlapping regions and use a different fixed bandwidth
in each region. In some cases, as in the Doppler example below, this is possible but in
other cases a more automatic way of adapting is desirable.

A naive, but as we see in the examples below, quite effective way is to estimate the
curvature, sayκt, of the signal and define the bandwidth in terms of a suitable decreasing
function ht = f(κt). We may define the curvature in terms of the estimate of the second
derivative of the signal and normalize it to its maximum value:

κt = |ˆ̈xt|
max
t
|ˆ̈xt| (5.4.1)

The second derivative ˆ̈xt can be estimated by performing a local polynomial fit with
polynomial order d ≥ 2 using a fixed bandwidth h0 or a nearest-neighbor bandwidth α.
If one could determine a bandwidth range [hmin, hmax] such that hmax would provide
an appropriate amount of smoothing in certain parts of the signal and hmin would be
appropriate in regions where the signal appears to have larger curvature, then one may
choose hmin ≤ h0 ≤ hmax, with h0 = hmax as an initial trial value. An ad hoc but very
simple choice for the bandwidth function f(κt) then could be

ht = hmax

(
hmin

hmax

)κt
(5.4.2)

Other simple choices are possible, for example,

ht = hmaxhmin

hmin + (hmax − hmin)κ
p
t

for some power p. Since κt varies in 0 ≤ κt ≤ 1, these choices interpolate between hmax

at κt = 0 when the curvature is small, and hmin at κt = 1 when the curvature is large.
We illustrate the use of (5.4.2) with the three examples in Figs. 5.4.1–5.4.3, and we

make a different bandwidth choice for Fig. 5.4.4. All four examples have been used
as benchmarks in studying wavelet denoising methods [821] and we will be discussing
them again in that context in Sec. 10.7.

In all cases, we use a second-order polynomial to determine the curvature, and then
perform a locally linear fit (d = 1) using the variable bandwidth. Fig. 5.4.1 illustrates
the test function “bumps” defined by

s(t)=
11∑
i=1

ai[
1+ |t − ti|/wi

]4 , 0 ≤ t ≤ 1

5.4. Variable Bandwidth 213

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noise free

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth, ht /hmax

Fig. 5.4.1 Bumps function.

with the parameter values:

ti = [10,13,15,23,25,40,44,65,76,78,81]/100

ai = [40,50,30,40,50,42,21,43,31,51,42]·1.0523

wi = [5,5,6,10,10,30,10,10,5,8,5]/1000

The function s(t) is sampled at N = 2048 equally-spaced points tn in the interval
[0,1) and zero-mean white gaussian noise of variance σ2 = 1 is added so that the noisy
signal is yn = sn+vn, where sn = s(tn). The factor 1.0523 in the amplitudes ai ensures
that the signal-to-noise ratio has the standard benchmark value σs/σv = 7, where σs
is the standard deviation of sn, that is, σs = std(s). The bandwidth range is defined
by hmax = 0.01 and hmin = 0.00025. The value for hmax was chosen so that the flat
portions of the signal between peaks are adequately smoothed.

The curvature κt, estimated using the bandwidth h0 = hmax, is shown in the upper
right graph. The corresponding variable bandwidth ht derived from Eq. (5.4.2) is shown
in the bottom-right graph. The bottom-left graph shows the resulting local linear fit
using the variable bandwidth ht, while the bottom-middle graph shows the fit using
the fixed bandwidth hmax. Although hmax is adequate for smoothing the valleys of the
signal, it is too large for the peaks and results in broadened peaks of reduced heights. On
the other hand, the variable bandwidth preserves the peaks fairly well, while achieving
comparable smoothing of the valleys. The MATLAB code for this example was as follows:

N=2048; t=linspace(0,1,N); s=zeros(size(t));
F = inline(’1./(1 + abs(t)).^4’); % bumps function

214 5. Local Polynomial Modeling

ti = [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
wi = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(ai), % construct signal

s = s + ai(i)*F((t-ti(i))/wi(i));
end

hmax=10e-3; hmin=2.5e-4; h0=hmax; % bandwidth limits

seed=2009; randn(’state’,seed); % noisy signal

y = s + randn(size(t));

d=2; type=1; % fit with d = 2 and tricube window

[x,C] = locpol(t,y,t,h0,d,type); % using fixed bandwidth h0

kt = abs(C(:,3)); kt = kt/max(kt); % curvature, κt
ht = hmax * (hmin/hmax).^kt; % bandwidth, ht

d=1; type=1; % fit with d = 1

xv = locpol(t,y,t,ht,d,type); % use variable bandwidth ht
xf = locpol(t,y,t,h0,d,type); % use fixed bandwidth h0

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

Fig. 5.4.2 shows the “blocks” function defined by

s(t)=
11∑
i=1

aiF(t − ti) , F(t)= 1

2
(1+ sign t) , 0 ≤ t ≤ 1

with the same delays ti as above and amplitudes:

ai = [40,−50,30,−40,50,−42,21,43,−31,21,−42]·0.3655

The noisy signal is yn = sn + vn with zero-mean unit-variance white noise. The
amplitude factor 0.3655 in ai is adjusted to give the same SNR as above, std(s)/σ = 7.
The MATLAB code generating the six graphs is identical to the above, except for the part
that defines the signal and the bandwidth limits hmax = 0.03 and hmin = 0.0015:

N=2048; t=linspace(0,1,N); s=zeros(size(t));

ti = [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,-50,30,-40,50,-42,21,43,-31,21,-42] * 0.3655;

for i=1:length(ai),
s = s + ai(i) * (1 + sign(t - ti(i)))/2; % blocks signal

end

hmax=0.03; hmin=0.0015; h0=hmax; % bandwidth limits

We observe that the flat parts of the signal are smoothed equally well by the variable
and fixed bandwidth choices, but in the fixed case, the edges are smoothed too much.
The “HeaviSine” signal shown in Fig. 5.4.3 is defined by

s(t)= [
4 sin(4πt)−sign(t − 0.3)−sign(0.72− t)] · 2.357 , 0 ≤ t ≤ 1

5.4. Variable Bandwidth 215

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noise free

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth, ht /hmax

Fig. 5.4.2 Blocks function.

where the factor 2.357 is adjusted to give std(s)= 7. The graphs shown in Fig. 5.4.3 are
again generated by the identical MATLAB code, except for the parts defining the signal
and bandwidths:

s = (4*sin(4*pi*t)-sign(t-0.3)-sign(0.72-t))*2.357; % HeaviSine signal

hmax=0.035; hmin=0.0035; h0=hmax; % bandwidth limits

We note that the curvature κt is significantly large—and the bandwidth ht is signif-
icantly small—only near the discontinuity points. The fixed bandwidth case smoothes
the discontinuities too much, whereas the variable bandwidth tends to preserve them
while reducing the noise equally well in the rest of the signal.

In the “doppler” example shown in Fig. 5.4.4, noticing that the curvature κt is sig-
nificantly large only in the range 0 ≤ t ≤ 0.2, we have followed a simpler strategy to
define a variable bandwidth (although the choice (5.4.2) still works well). We took a fixed
but small bandwidth over the range 0 ≤ t ≤ 0.2 and transitioned gradually to a larger
bandwidth for 0.2 ≤ t ≤ 1. The signal is defined by

s(t)= 24
√
t(1− t) sin

(
2.1π
t + 0.05

)
, 0 ≤ t ≤ 1

The auxiliary unit-step function ustep was used to define the two-step bandwidth
with a given rise time. The MATLAB code generating the six graphs was as follows:

N = 2048; t = linspace(0,1,N);

s = 24*sqrt(t.*(1-t)) .* sin(2.1*pi./(t+0.05)); % doppler signal

216 5. Local Polynomial Modeling

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth, ht /hmax

Fig. 5.4.3 HeaviSine function.

seed=2009; randn(’state’,seed); % noisy signal

y = s + randn(size(t));

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

variable bandwidth, ht /hmax

Fig. 5.4.4 Doppler function.

5.5. Repeated Observations 217

hmax=0.02; hmin=0.002; h0=hmax; % bandwidth limits

d=2; type=1; % fit with d = 2 and tricube window

[x,C] = locpol(t,y,t,h0,d,type); % using fixed bandwidth h0

kt = abs(C(:,3)); kt = kt/max(kt); % curvature, κt
ht = hmin + (hmax-hmin) * ustep(t-0.2, 0.1); % two-step bandwidth, ht

% ustep is in the OSP toolbox

d=1; type=1;
xv = locpol(t,y,t,ht,d,type); % fixed bandwidth h0

xf = locpol(t,y,t,h0,d,type); % fixed bandwidth h0

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

The local polynomial fitting results from these four benchmark examples are very
comparable with the wavelet denoising approach discussed in Sec. 10.7.

5.5 Repeated Observations

Until now we had implicitly assumed that the observations were unique, that is, one
observation y(tk) at each time tk. However, in experimental data one often has repeated
observations at a given tk, all of which are listed as part of the data set. This is in fact
true of both the motorcycle and the ethanol data sets. For example, in the motorcycle
data, we have six repeated observations at t = 14.6,

k tk yk
...

...
...

22 14.6 −13.3
23 14.6 −5.4
24 14.6 −5.4
25 14.6 −9.3
26 14.6 −16.0
27 14.6 −22.8

...
...

...

and there other similar instances within the data set. In fact, among the 133 given
observations, only 94 correspond to unique observation times.

To handle repeated observations one possibility is to simply keep one and ignore the
rest—but which one? A better possibility is to allow all of them to be part of the least-
squares performance index. It is easy to see that this is equivalent to replacing each
group of repeated observations by their average and modifying the weighting function
by the corresponding multiplicity of the group.

Let nk denote the multiplicity of the observations at time tk, that is, let yi(tk), i =
1,2, . . . , nk be the observation values that are given at the unique observation time tk.
Then, the performance index (5.1.3) must be modified to include all of the yi(tk):

Jt =
∑

|tk−t|≤ht

nk∑
i=1

[
yi(tk)−uT(tk − t)c

]2w(tk − t)= min (5.5.1)

218 5. Local Polynomial Modeling

Setting the gradient with respect to c to zero, gives the normal equations:

∑
|tk−t|≤ht

nk∑
i=1

w(tk − t)u(tk − t)uT(tk − t) c =
∑

|tk−t|≤ht
w(tk − t)u(tk − t)

nk∑
i=1

yi(tk)

Defining the average of the nk observations,

ȳ(tk)= 1

nk

nk∑
i=1

yi(tk)

and noting that the left-hand side has no dependence on i, we obtain:∑
|tk−t|≤ht

nkw(tk − t)u(tk − t)uT(tk − t)c =
∑

|tk−t|≤ht
nkw(tk − t)u(tk − t)ȳ(tk) (5.5.2)

This is recognized to be the solution of an equivalent least-squares local polyno-
mial fitting problem in which each unique tk is weighted by nkwk(tk − t) with the kth
observation replaced by the average ȳ(tk), that is,

J̄t =
∑

|tk−t|≤ht

[
ȳ(tk)−uT(tk − t)c

]2nkw(tk − t)= min (5.5.3)

Internally, the function locpol calls the function avobs, which takes in the raw data
tobs,yobs and determines the unique observation times ta, averaged observations ya,
and their multiplicities na:

[ta,ya,na] = avobs(tobs,yobs); % average repeated observations

For example, if

tobs = [1 1 1 3 3 5 5 3 4 7 9 9 9 9];
yobs = [20 22 21 11 12 13 15 19 21 25 28 29 31 32];

the function first sorts the ts in increasing order,

tobs = [1 1 1 3 3 3 4 5 5 7 9 9 9 9];
yobs = [20 21 22 11 12 19 21 13 15 25 28 29 31 32];

and then returns the output,

ta = [1 3 4 5 7 9];
ya = [21 14 21 14 25 30];
na = [3 3 1 2 1 4];

5.6 Loess Smoothing

Loess, which is a shorthand for local regression, is a method proposed by Cleveland
[192] for handling data with outliers. A version of it was discussed in Sec. 4.5. The
method carries out a local polynomial regression using a nearest-neighbor bandwidth
and the tricube window function, and then uses the resulting error residuals to iteratively
readjust the window weights giving less importance to the outliers.

5.6. Loess Smoothing 219

The method is described as follows [192]. Given theN-dimensional vectors of obser-
vation times and observations tobs, yobs, the nearest-neighbor bandwidth parameter α,
and the polynomial order d, the method begins by performing a preliminary fit to all the
observation times. For example, in the notation of the locband and locpol functions:

h = locband(tobs, tobs,α,0); (find local bandwidths at tobs)

x̂ = locpol(tobs, yobs, tobs, h, d,1); (perform fit at all tobs)
(5.6.1)

where the last argument of locpol designates the use of the tricube window. From the
resulting N-dimensional signal x̂k, k = 0,1, . . . ,N − 1, we calculate the corresponding
error residuals ek and use their median to calculate “robustness” weights rk:

ek = yk − x̂k , k = 0,1, . . . ,N − 1

μ = median
0≤k≤N−1

(|ek|)
rk =W

(
ek
6μ

) (5.6.2)

where W(u) is the bisquare function defined in (5.1.5). The local polynomial fitting is
now repeated at all observation points tobs, but instead of using the weights w(tk −
tobs) for the kth observation’s contribution to the fit, one uses the modified weights
rkw(tk − tobs). The new residuals are then computed as in (5.6.2) and the process is
repeated a few more times or until convergence (i.e., until the estimated signal x̂k no
longer changes).

After the final iteration resulting in the final values of the rks, one can carry out the
fit at any other time point t, but again using weights rkw(tk− t) for the contribution of
the kth observation, that is, the weight matrixWt in Eq. (5.1.7) is replaced by

Wt = diag
([· · · , rkw(tk − t), · · ·])

The MATLAB function loess implements these steps:

[xhat,C] = loess(tobs,yobs,t,alpha,d,Nit); % Loess smoothing

where t are the final fitting times and xhat and C have the same meaning as in locpol.
This function is similar in spirit to the robust local polynomial filtering function rlpfilt
that was discussed in Sec. 4.5.

Example 5.6.1: Fig. 5.6.1 shows the same example as that of Fig. 4.5.3, with nearest-neighbor
bandwidth parameter α = 0.4 and an order-2 polynomial. The graphs show the results of
Nit = 0,2,4,6 iterations—the first one corresponding to ordinary fitting with no robust-
ness iterations. The MATLAB code for the top two graphs was:

t = (0:50); x0 = (1 - cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(size(x0)); % noisy signal

m = [-1 0 1 3]; % outlier indices

n0=25; y(n0+m+1) = 0; % outlier values

n1=10; y(n1+m+1) = 1;

220 5. Local Polynomial Modeling

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 0

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 2

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 4

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 6

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

Fig. 5.6.1 Loess smoothing with d = 2, α = 0.4, and different iterations.

alpha=0.4; d=2; % bandwidth parameter and polynomial order

Nit=0; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % left graph

Nit=2; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % right graph

The loess fit was performed at all t. We observe how successive iterations gradually di-
minish the distorting influence of the outliers. ��

5.7 Problems

5.1 Prove the matrix inversion lemma identity (5.2.8). Using this identity, show that

Hii = H−ii
1+H−ii

, where H−ii = w0uT0 F
−
i u0 , F−i = (STi WiSi)−

then, argue that 0 ≤ Hii ≤ 1.

6
Exponential Smoothing

6.1 Mean Tracking

l
The exponential smoother, also known as an exponentially-weighted moving average

(EWMA) or more simply an exponential moving average (EMA) filter is a simple, effective,
recursive smoothing filter that can be applied to real-time data. By contrast, the local
polynomial modeling approach is typically applied off-line to a block a signal samples
that have already been collected.

The exponential smoother is used routinely to track stock market data and in fore-
casting applications such as inventory control where, despite its simplicity, it is highly
competitive with other more sophisticated forecasting methods [232–279].

We have already encountered it in Sec. 2.3 and compared it to the plain FIR averager.
Here, we view it as a special case of a weighted local polynomial smoothing problem
using a causal window and exponential weights, and discuss some of its generalizations.
Both the exponential smoother and the FIR averager are applied to data that are assumed
to have the typical form:

yn = an + vn (6.1.1)

where an is a low-frequency trend component, representing an average or estimate of
the local level of the signal, and vn a random, zero-mean, broadband component, such
as white noise. If an is a deterministic signal, then by taking expectations of both sides
we see that an represents the mean value of yn, that is, an = E[yn]. If yn is stationary,
then an is a constant, independent of n.

The output of either the FIR or the exponential smoothing filter tracks the signal an.
To see how such filters arise in the context of estimating the mean level of a signal, con-
sider first the stationary case. The mean m = E[yn] minimizes the following variance
performance index (e.g., see Example 1.3.5):

J = E[
(yn − a)2] = min ⇒ aopt =m = E[yn] (6.1.2)

with minimized value Jmin = σ2
y . This result is obtained by setting the gradient with

respect to a to zero:
∂J
∂a

= −2E[yn − a]= 0 (6.1.3)

221

222 6. Exponential Smoothing

In general, given a theoretical performance index J, one must replace it in practice
by an experimental one, say Ĵ, expressible in terms of the actual available data. The
minimization of Ĵ provides then estimates of the parameters or signals to be estimated.

Depending on the index Ĵ, the estimates may be calculated in a block processing
manner using an entire block of data, or, on a sample-by-sample basis with the estimate
being updated in real time in response to each new data sample. All adaptive filtering
algorithms follow the latter approach.

We illustrate these ideas with the help of the simple performance index (6.1.2). We
will apply this approach extensively in Chap. 16. Four possible practical definitions for

Ĵ that imitate (6.1.2) are:

Ĵ =
L−1∑
n=0

(yn − â)2= min (6.1.4a)

Ĵ =
n∑
k=0

(yk − â)2= min (6.1.4b)

Ĵ =
n∑

k=n−N+1

(yk − â)2= min (6.1.4c)

Ĵ =
n∑
k=0

λn−k(yk − â)2= min (6.1.4d)

The first assumes a length-L block of data [y0, y1, . . . , yL−1]. The last three are
suitable for real-time implementations, where n denotes the current time. The second
and fourth use the first n+1 data [y0, y1, . . . , yn], while the third uses a length-N sliding
window [yn−N+1, . . . , yn−1, yn]. The third choice leads to the FIR averager, also known
as the simple moving average (SMA), and the fourth, to the exponential smoother, or,
exponential moving average (EMA), where we require that the exponential “forgetting
factor” λ be in the range 0 < λ < 1. These time ranges are depicted below.

In order for the Ĵs to be unbiased estimates of J, the above expressions should
have been divided by the sum of their respective weights, namely, the quantities L,

6.1. Mean Tracking 223

(n+1),N, and (1+λ+· · ·+λn), respectively. However, such factors do not affect the
minimization solutions, which are easily found to be:

â = y0 + y1 + · · · + yL−1

L
(6.1.5a)

ân = y0 + y1 + · · · + yn
n+ 1

(6.1.5b)

ân = yn + yn−1 + · · · + yn−N+1

N
(6.1.5c)

ân = yn + λyn−1 + λ2yn−2 + · · ·λny0

1+ λ+ λ2 + · · · + λn (6.1.5d)

We have tacked on a subscript n to the last three to emphasize their dependence
of their performance index on the current time instant n. Eqs. (6.1.4c) and (6.1.5c)
tentatively assume that n ≥ N − 1; for 0 ≤ n < N − 1, one should use the running
average (6.1.4b) and (6.1.5b). Initialization issues are discussed further in Sections 6.6
and 6.19.

All four estimates are unbiased estimators of the true meanm. Their quality as esti-
mators can be judged by their variances, which are (assuming that yn −m are mutually
independent):

σ2
â = E

[
(â−m)2] = σ2

y

L
(6.1.6a)

σ2
ân = E

[
(ân −m)2] = σ2

y

n+ 1
(6.1.6b)

σ2
ân = E

[
(ân −m)2] = σ2

y

N
(6.1.6c)

σ2
ân = E

[
(ân −m)2] = σ2

y
1− λ
1+ λ ·

1+ λn+1

1− λn+1
(6.1.6d)

The first two, corresponding to ordinary sample averaging, are asymptotically con-
sistent estimators having variances that tend to zero as L → ∞ or n → ∞. The last two
are not consistent. However, their variances can be made as small as desired by proper
choice of the parameters N or λ.

The exponential smoothing filter may also be derived from a different point of view.
The estimates (6.1.5) are the exact least-squares solutions of the indices (6.1.4). An
alternative to using the exact solutions is to derive an LMS (least-mean-square) type of
adaptive algorithm which minimizes the performance index iteratively using a steepest-
descent algorithm that replaces the theoretical gradient (6.1.3) by an “instantaneous”
one in which the expectation instruction is ignored:

∂J
∂a

= −2E[yn − a] −→ ∂̂J
∂a

= −2
[
yn − ân−1

]
(6.1.7)

The LMS algorithm then updates the previous estimate by adding a correction in the
direction of the negative gradient using a small positive adaptation parameter μ:

Δa = −μ∂̂J
∂a
, ân = ân−1 +Δa (6.1.8)

224 6. Exponential Smoothing

The resulting difference equation is identical to that of the steady-state exponential
smoother (see Eq. (6.1.11) below),

ân = ân−1 + 2μ(yn − ân−1)

In adaptive filtering applications, the use of the exponentially discounted type of
performance index (6.1.4d) leads to the so-called recursive least-squares (RLS) adaptive
filters, which are in general different from the LMS adaptive filters. They happened to
coincide in this particular example because of the simplicity of the problem.

The sample mean estimators (6.1.5a) and (6.1.5b) are geared to stationary data,
whereas (6.1.5c) and (6.1.5d) can track nonstationary changes in the statistics of yn.
If yn is nonstationary, then its mean an = E[yn] would be varying with n and a good
estimate should be able to track it well and efficiently. To see the problems that arise
in using the sample mean estimators in the nonstationary case, let us cast Eqs. (6.1.5b)
and (6.1.5d) in recursive form. Both can be written as follows:

ân = (1−αn)ân−1 +αnyn = ân−1 +αn(yn − ân−1) (6.1.9)

where the gain parameter αn is given by

αn = 1

n+ 1
, αn = 1

1+ λ+ · · · + λn =
1− λ
1− λn+1

(6.1.10)

for (6.1.5b) and (6.1.5d), respectively. The last side of Eq. (6.1.9) is written in a so-
called “predictor/corrector” Kalman filter form, where the first term ân−1 is a tentative
prediction of ân and the second term is the correction obtained by multiplying the
“prediction error” (yn − ân−1) by a positive gain factor αn. This term always corrects
in the right direction, that is, if ân−1 overestimates/underestimates yn then the error
tends to be negative/positive reducing/increasing the value of ân−1.

There is a dramatic difference between the two estimators. For the sample mean,
the gainαn = 1/(n+1) tends to zero rapidly with increasing n. For stationary data, the
estimate ân will converge quickly to the true mean. Once n is fairly large, the correction
term becomes essentially unimportant because the gain is so small. If after converging
to the true mean the statistics of yn were to suddenly change with a new value of the
mean, the sample-mean estimator ân would have a very hard time responding to such
a change and converging to the new value because the new changes are communicated
only through the already very small correction term.

On the other hand, for the exponential smoother case (6.1.5d), the gain tends to a
constant for large n, that is, αn → α = 1 − λ. Therefore, the correction term remains
finite and can communicate the changes in the statistics. The price one pays for that is
that the estimator is not consistent. Asymptotically, the estimator (6.1.5d) becomes the
ordinary exponential smoothing filter described by the difference equation,

ân = λân−1 +αyn = ân−1 +α(yn − ân−1) (6.1.11)

Its transfer function and asymptotic variance are:

H(z)= α
1− λz−1

, σ2
ân = E

[
(ân −m)2] = σ2

y
1− λ
1+ λ (6.1.12)

6.1. Mean Tracking 225

The quantity σ2
ân/σ

2
y is the NRR of this filter. The differences in the behavior of

the sample-mean and exponential smoother can be understood by inspecting the corre-
sponding performance indices, which may be written in an expanded form:

Ĵ = (yn − â)2+(yn−1 − â)2+(yn−2 − â)2+· · · + (y0 − â)2

Ĵ = (yn − â)2+λ(yn−1 − â)2+λ2(yn−2 − â)2+· · · + λn(y0 − â)2
(6.1.13)

The first index weighs all terms equally, as it should for stationary data. The second
index emphasizes the terms arising from the most recent observation yn and exponen-
tially forgets, or discounts, the earlier observations and thus can respond more quickly
to new changes. Even though the second index appears to have an ever increasing num-
ber of terms, in reality, the effective number of terms that are significant is finite and
can be estimated by the formula:

n̄ =

∞∑
n=0

nλn

∞∑
n=0

λn
= λ

1− λ (6.1.14)

This expression is only a guideline and other possibilities exist. For example, one
can define n̄ to be the effective time constant of the filter:

λn̄ = ε ⇒ n̄ = ln ε
lnλ

� ln(ε−1)
1− λ , for λ � 1 (6.1.15)

where ε is a small user-specified parameter such as ε = 0.01. The sliding window esti-
mator (6.1.5c) is recognized as a length-N FIR averaging filter of the type we considered
in Sec. 2.4. It also can track a nonstationary signal at the expense of not being a consis-
tent estimator. Requiring that it achieve the same variance as the exponential smoother
gives the conditions:

1

N
σ2
y =

1− λ
1+ λσ

2
y ⇒ λ = N − 1

N + 1
⇒ α = 1− λ = 2

N + 1
(6.1.16)

Such conditions are routinely used to set the parameters of FIR and exponential
smoothing filters in inventory control applications and in tracking stock market data. A
similar weighted average as in Eq. (6.1.14) can be defined for any filter by:

n̄ =

∑
n
nhn∑
n
hn

(effective filter lag) (6.1.17)

where hn is the filter’s impulse response. Eq. (6.1.17) may also be expressed in terms
of the filter’s transfer function H(z)= ∑

n hnz−n and its derivative H′(z)= dH(z)/dz
evaluated at DC, that is, at z = 1:

n̄ = − H
′(z)
H(z)

∣∣∣∣
z=1

(effective filter lag) (6.1.18)

226 6. Exponential Smoothing

Alternatively, n̄ is recognized as the filter’s group delay at DC, that is, given the
frequency response H(ω)=∑

n hne−jωn = |H(ω)|ej argH(ω), we have (Problem 6.1):

n̄ = − d
dω

argH(ω)
∣∣∣∣
ω=0

(group delay at DC) (6.1.19)

The exponential smoother is a special case of (6.1.17) with hn = αλnu(n), where
u(n) is the unit-step function. We may apply this definition also to the FIR averager
filter that has hn = 1/N, for n = 0,1, . . . ,N − 1,

n̄ = 1

N

N−1∑
n=0

n = N − 1

2

The FIR averager can be mapped into an “equivalent” exponential smoother by equat-
ing the n̄ lags of the two filters, that is,

n̄ = N − 1

2
= λ

1− λ (6.1.20)

This condition is exactly equivalent to condition (6.1.16) arising from matching the
NRRs of the two filters. The two equations,

E
[
(ân −m)2] = 1− λ

1+ λσ
2
y =

1

N
σ2
y , n̄ = λ

1− λ =
N − 1

2
(6.1.21)

capture the main tradeoff between variance and speed in using an exponential smoother
or an equivalent FIR averager, that is, the closer λ is to unity or the larger the N, the
smaller the variance and the better the estimate, but the longer the transients and the
slower the speed of response.

We summarize the difference equations for the exact exponential smoother (6.1.5d)
and the steady-state one (6.1.11),

ân = λ− λ
n+1

1− λn+1
ân−1 + α

1− λn+1
yn = ân−1 + α

1− λn+1
(yn − ân−1)

ân = λân−1 +αyn = ân−1 +α(yn − ân−1)
(6.1.22)

Clearly, the second is obtained in the large-n limit of the first, but in practice the
steady one is often used from the start at n = 0 because of its simplicity.

To start the recursions at n = 0, one needs to specify the initial value â−1. For
the exact smoother, â−1 can have an arbitrary value because its coefficient vanishes at
n = 0. This gives for the first smoothed value â0 = 0 · â−1 + 1 · y0 = y0. For the steady
smoother it would make sense to also require that â0 = y0, which would imply that
â−1 = y0 because then

â0 = λâ−1 +αy0 = λy0 +αy0 = y0

There are other reasonable ways of choosing â−1, for example one could take it to
be the average of a few initial values of yn. The convolutional solution of the steady
smoother with arbitrary nonzero initial conditions is obtained by convolving the filter’s

6.1. Mean Tracking 227

impulse responseαλnu(n)with the causal input yn plus adding a transient term arising
from the initial value:

ân = α
n∑
k=0

λn−kyk + λn+1â−1 (6.1.23)

The influence of the initial value disappears exponentially.

Example 6.1.1: Fig. 6.1.1 illustrates the ability of the sample mean and the exponential smoother
to track a sudden level change.

0 500 1000 1500 2000

−1

0

1

2

3

non−stationary signal, yn

n
0 500 1000 1500 2000

0

0.5

1

1.5

2
sample mean, mn

n

0 500 1000 1500 2000
0

0.5

1

1.5

2
exponential smoother, λ = 0.98

n
0 500 1000 1500 2000

0

0.5

1

1.5

2
exponential smoother, λ = 0.995

n

 EMA
 FIR

Fig. 6.1.1 Mean tracking with sample mean, exponential smoother, and FIR averager.

The first 1000 samples of the signal yn depicted on the upper-left graph are independent
gaussian samples of mean and variance m1 = 1, σ1 = 1. The last 1000 samples are
gaussian samples withm2 = 1.5 and σ2 = 0.5.

The upper-right graph shows the sample mean computed recursively using (6.1.9) with
αn = 1/(n + 1) and initialized at â−1 = 0 (although the initial value does not matter
since α0 = 1). We observe that the sample mean converges very fast to the first value
of m1 = 1, with its fluctuations becoming smaller and smaller because of its decreasing
variance (6.1.6b). But it is extremely slow responding to the sudden change in the mean.

The bottom two graphs show the steady-state exponential smoother initialized at â−1 = 0
with the two values of the forgetting factor λ = 0.98 and λ = 0.995. For the smaller λ
the convergence is quick both at the beginning and after the change, but the fluctuations

228 6. Exponential Smoothing

quantified by (6.1.21) remain finite and do not improve even after convergence. For the
larger λ, the fluctuations are smaller, but the learning time constant is longer. In the
bottom-right graph, we have also added the equivalent FIR averager withN related to λ by
(6.1.16), which givesN = 399. Its learning speed and fluctuations are comparable to those
of the exponential smoother. ��

Example 6.1.2: Fig. 6.1.2 shows the daily Dow-Jones Industrial Average (DJIA) from Oct. 1, 2007
to Dec. 31, 2009. In the left graph an exponential smoothing filter is used with λ = 0.9.
In the right graph, an FIR averager with an equivalent length of N = (1+λ)/(1−λ)= 19
is used. The data were obtained from http://finance.yahoo.com.

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with λ = 0.9

 smoothed
 data

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

equivalent FIR with N = 19

 smoothed
 data

Fig. 6.1.2 Dow-Jones industrial average from 10-Oct-2007 to 31-Dec-2009.

The following code fragment generates the two graphs:

Y = loadfile(’dow-oct07-dec09.dat’); % data file in OSP toolbox

y = Y(:,4)/1000; % extract closing prices

n = (0:length(y)-1);

la = 0.9; al = 1-la;
s0 = la*y(1); % s0 is the initial state

m = filter(al, [1,-la], y, s0); % filter with initial state

% m = stema(y,0,la, y(1)); % equivalent calculation

figure; plot(n,m,’-’, n,y,’:’);

N = round((1+la)/(1-la));
h = ones(N,1)/N; % FIR averager

x = filter(h,1,y);

figure; plot(n(N:end),x(N:end),’-’, n,y,’:’); % discard first N−1 outputs

The initial value was set such that to get â0 = y0 for the EMA. The built-in function filter

allows one to specify the initial state. Because filter uses the transposed realization, in
order to have â0 = y0, the initial state must be chosen as sin = λy0. This follows from
the sample processing algorithm of the transposed realization for the EMA filter (6.1.12),

6.1. Mean Tracking 229

which reads as follows where s is the state:

for each input sample y do:
â = s+αy
s = λâ

or
ân = sn +αyn
sn+1 = λân

Thus, in order for the first pass to give â0 = y0, the initial state must be such that s0 =
â0 −αy0 = λy0. The FIR averager was run with zero initial conditions and therefore, the
firstN−1 outputs were discarded as transients. After n ≥ N, the EMA and the FIR outputs
are comparable since they have the same n̄. ��

Example 6.1.3: It is evident by inspecting the graphs of the previous example that both the
EMA and the FIR filter outputs are lagging behind the data signal. To see this lag more
clearly, consider a noiseless signal consisting of three straight-line segments defined by,

sn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
20+ 0.8n, 0 ≤ n < 75

80− 0.3(n− 75), 75 ≤ n < 225

35+ 0.4(n− 225), 225 ≤ n ≤ 300

Fig. 6.1.3 shows the corresponding output from an EMA with λ = 0.9 and an equivalent
FIR averager with N = 19 as in the previous example. The dashed line is the signal sn and
the solid lines, the corresponding filter outputs.

0 75 150 225 300
0

20

40

60

80

100

n

EMA with λ = 0.9

0 75 150 225 300
0

20

40

60

80

100

n

equivalent FIR with N = 19

Fig. 6.1.3 Lag introduced by EMA and FIR averager filters.

The EMA was run with initial value â−1 = s0 = 20. The FIR filter was run with zero
initial conditions, and therefore, its firstN−1 outputs are transients. The amount of delay
introduced by the filters is exactly equal to the quantity n̄ of Eq. (6.1.20). ��

The delay n̄ is a consequence of the causality of the filters. Symmetric non-causal
filters, such as the LPSM or LPRS filters, do not introduce a delay, that is, n̄ = 0.

To see how such a delay arises, consider an arbitrary causal filter hn and a causal
input that is a linear function of time, xn = a + bn, for n ≥ 0. The corresponding
convolutional output will be:

yn =
n∑
k=0

hkxn−k =
n∑
k=0

hk
[
a+ b(n− k)] = (a+ bn) n∑

k=0

hk − b
n∑
k=0

khk

230 6. Exponential Smoothing

For large n, we may replace the upper limit of the summations by k = ∞,

yn = (a+ bn)
∞∑
k=0

hk − b
∞∑
k=0

khk = (a+ bn)
∞∑
k=0

hk − bn̄
∞∑
k=0

hk =
[
a+ b(n− n̄)] ∞∑

k=0

hk

where we used the definition (6.1.17) for n̄. For filters that have unity gain at DC, the
sum of the filter coefficients is unity, and we obtain,

yn = a+ b(n− n̄)= xn−n̄ (6.1.24)

Such delays are of concern in a number of applications, such as the real-time mon-
itoring of financial data. For FIR filters, the problem of designing noise reducing filters
with a prescribed amount of delay n̄ has already been discussed in Sec. 3.8. However, we
discuss it a bit further in Sec. 6.10 and 6.15 emphasizing its use in stock market trading.
The delay n̄ can also be controlled by the use of higher-order exponential smoothing
discussed in Sec. 6.5.

6.2 Forecasting and State-Space Models

We make a few remarks on the use of the first-order exponential smoother as a forecast-
ing tool. As we already mentioned, the quantity ân−1 can be viewed as a prediction of
yn based on the past observations {y0, y1, . . . , yn−1}. To emphasize this interpretation,
let us denote it by ŷn/n−1 = ân−1, and the corresponding prediction or forecast error by
en/n−1 = yn − ŷn/n−1. Then, the steady exponential smoother can be written as,

ŷn+1/n = ŷn/n−1 +αen/n−1 = ŷn/n−1 +α(yn − ŷn/n−1) (6.2.1)

As discussed in Chapters 1 and 12, if the prediction is to be optimal, then the pre-
diction error en/n−1 must be a white noise signal, called the innovations of the sequence
yn and denoted by εn = en/n−1. It represents that part of yn that cannot be predicted
from its past. This interpretation implies a certain innovations signal model for yn. We
may derive it by working with z-transforms. In the z-domain, Eq. (6.2.1) reads,

zŶ(z)= Ŷ(z)+αE(z)= Ŷ(z)+α(
Y(z)−Ŷ(z)) = λŶ(z)+αY(z) (6.2.2)

Therefore, the transfer functions from Y(z) to Ŷ(z) and from Y(z) to E(z) are,

Ŷ(z)=
(
αz−1

1− λz−1

)
Y(z) , E(z)=

(
1− z−1

1− λz−1

)
Y(z) (6.2.3)

In the time domain, using the notation ∇yn = yn − yn−1, we may write the latter as

∇yn = εn − λεn−1 (6.2.4)

Thus, yn is an integrated ARMA process, ARIMA(0,1,1), or more simply an integrated
MA process, IMA(1,1). In other words, if yn is such a process, then the exponential
smoother forecast ŷn/n−1 is optimal in the mean-square sense [242].

6.3. Higher-Order Polynomial Smoothing Filters 231

The innovations representation model can also be cast in an ordinary Wiener and
Kalman filter form of the type discussed in Chap. 11. The state and measurement equa-
tions for such a model are:

xn+1 = xn +wn
yn = xn + vn (6.2.5)

where wn, vn are zero-mean white-noise signals that are mutually uncorrelated. This
model is referred to as a “constant level” state-space model, and represents a random-
walk observed in noise. The optimal prediction estimate x̂n/n−1 of the state xn is equiv-
alent to ân−1. The equivalence between EMA and this model results in the following
relationship between the parameters α and q = σ2

w/σ2
v :

q = α2

1−α ⇒ α =
√
q2 + 4q− q

2
(6.2.6)

We defer discussion of such state-space models until chapters 11 and 13.

6.3 Higher-Order Polynomial Smoothing Filters

We recall that in fitting a local polynomial of orderd to a local block of data {yn−M, . . . , yn,
. . . , yn+M}, the performance index was

J =
M∑

k=−M

[
yn+k − p(k)

]2 =
M∑

k=−M

[
yn+k − uTk c

]2 = min

where p(k) is a dth degree polynomial, representing the estimate ŷn+k = p(k),

p(k)= uTkc =
[
1, k, . . . , kd

]
⎡⎢⎢⎢⎢⎢⎣
c0

c1

...
cd

⎤⎥⎥⎥⎥⎥⎦ =
d∑
i=0

ciki

and we defined the monomial basis vector uk =
[
1, k, k2, . . . , kd

]T
. The higher-order

exponential smoother is obtained by restricting the data range to {y0, y1, . . . , yn} and
using exponential weights, and similarly, the corresponding FIR version will be restricted
to {yn−N+1, . . . , yn−1, yn}. The resulting performance indices are then,

Jn =
0∑

k=−n
λ−k

[
yn+k − uTk c

]2 = min

Jn =
0∑

k=−N+1

[
yn+k − uTk c

]2 = min

or, replacing the summation index k by −k, the performance indices read,

(EMA) Jn =
n∑
k=0

λk
[
yn−k − uT−kc

]2 = min

(FIR) Jn =
N−1∑
k=0

[
yn−k − uT−kc

]2 = min

(6.3.1)

232 6. Exponential Smoothing

In both cases, we may interpret the quantities p(±τ)= uT±τc as the estimates ŷn±τ.
We will denote them by ŷn±τ/n to emphasize their causal dependence only on data up to
the current time n. In particular, the quantity c0 = uT0 c = p(0) represents the estimate
ŷn, or ŷn/n, that is, an estimate of the local level of the signal. Similarly, c1 = ṗ(0)=
u̇Tτc|τ=0 represents the local slope, and 2c2 = p̈(0), the local acceleration. Eqs. (6.1.4d)
and (6.1.4c) are special cases of (6.3.1) corresponding to d = 0.

Both indices in Eq. (6.3.1) can be written in the following compact vectorial form,
whose solution we have already obtained in previous chapters:

J = (y− Sc)TW(y− Sc)= min ⇒ c = (STWS)−1STWy (6.3.2)

where the data vector y is defined as follows in the EMA and FIR cases,

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
y0

⎤⎥⎥⎥⎥⎥⎦ , y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−N+1

⎤⎥⎥⎥⎥⎥⎦ (6.3.3)

with the polynomial basis matrices S,

Sn =
[
u0,u−1, . . . ,u−n

]T , SN =
[
u0,u−1, . . . ,u−N+1

]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT0
uT−1
...
uT−k
...
uT−N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.3.4)

with, uT−k =
[
1, (−k), (−k)2, . . . , (−k)d] , and weight matricesW in the two cases,

Wn = diag
(
[1, λ, . . . , λn]

)
, or, W = IN (6.3.5)

The predicted estimates can be written in the filtering form:

ŷn+τ/n = uTτc(n)= hTτ(n)y(n) (6.3.6)

where in the exponential smoothing case,

c(n) = (STnWnSn)−1STnWny(n)

hτ(n) =WnSn(STnWnSn)−1uτ
(EMA) (6.3.7)

We will see in Eq. (6.5.19) and more explicitly in (6.6.5) that c(n) can be expressed
recursively in the time n. Similarly, for the FIR case, we find:

c(n) = (STNSN)−1STNy(n)

hτ = SN(STNSN)−1uτ
(FIR) (6.3.8)

6.4. Linear Trend FIR Filters 233

We note also that the the solution for c in Eq. (6.3.2) can be viewed as the least-squares
solution of the over-determined linear system, W1/2Sc = W1/2y, which is particularly
convenient for the numerical solution using MATLAB’s backslash operation,

c = (
W1/2S

)\(W1/2y
)

(6.3.9)

In fact, this corresponds to an alternative point of view to filtering and is followed
in the so-called “linear regression” indicators in financial market trading, as we discuss
in Sec. 6.18, where the issue of the initial transients, that is, the evaluation of c(n) for
0 ≤ n ≤ N − 1 in the FIR case, is also discussed.

In the EMA case, the basis matrices Sn are full rank for n ≥ d. For 0 ≤ n < d, we may
restrict the polynomial order d to to dn = n and thus obtain the first dn coefficients of
the vector c(n), and set the remaining coefficients to zero. For the commonly used case
of d = 1, this procedure amounts to setting c(0)= [y0, 0]T. Similarly, in the FIR case,
we must have N ≥ d+ 1 to guarantee the full rank of SN.

6.4 Linear Trend FIR Filters

The exact solutions of the FIR case have already been found in Sec. 3.8. The d = 1
and d = 2 closed-form solutions were given in Eqs. (3.8.10) and (3.8.11). The same
expressions are valid for both even and odd N. For example, replacingM = (N − 1)/2
in (3.8.10), we may express the solution for the d = 1 case as follows,

hτ(k)= 2(N − 1)(2N − 1− 3k)+6(N − 1− 2k)τ
N(N2 − 1)

, k = 0,1, . . . ,N − 1 (6.4.1)

A direct derivation of (6.4.1) is as follows. From the definition (6.3.4), we find:

STNSN =
N−1∑
k=0

u−kuT−k =
N−1∑
k=0

[
1 −k

−k k2

]

=
[

N −N(N − 1)/2
−N(N − 1)/2 N(N − 1)(2N − 1)/6

]

(STNSN)
−1 = 2

N(N2 − 1)

[
(N − 1)(2N − 1) 3(N − 1)

3(N − 1) 6

]
(6.4.2)

then, from Eq. (6.3.8), because the kth row of SN is uT−k, we obtain the kth impulse
response coefficient:

hτ(k)= uT−k(S
T
NSN)

−1uτ = 2

N(N2 − 1)
[
1, −k][

(N − 1)(2N − 1) 3(N − 1)
3(N − 1) 6

][
1
τ

]

which leads to Eq. (6.4.1). Thus, we obtain,

hτ(k)= ha(k)+hb(k)τ , k = 0,1, . . . ,N − 1 (6.4.3)

with

234 6. Exponential Smoothing

ha(k)= 2(2N − 1− 3k)
N(N + 1)

, hb(k)= 6(N − 1− 2k)
N(N2 − 1)

(6.4.4)

These are the FIR filters that generate estimates of the local level and local slope of
the input signal. Indeed, setting c(n)= [an, bn]T, where an, bn represent the local level
and local slope† at time n, we obtain from (6.3.8),[

an
bn

]
= (STNSN)−1STNy(n)= (STNSN)−1

N−1∑
k=0

u−kyn−k

which is equivalent, component-wise, to the filtering equations:

an =
N−1∑
k=0

ha(k)yn−k = local level

bn =
N−1∑
k=0

hb(k)yn−k = local slope

(6.4.5)

Since, ŷn+τ/n = an+bnτ, it is seen that the local level an is equal to ŷn/n. Similarly,
the sum an+bn is the one-step-ahead forecast ŷn+1/n obtained by extrapolating to time
instant n+ 1 by extending the local level an along the straight line with slope bn. This
is depicted in the figure below. The sum, an + bn, can be generated directly by the
predictive FIR filter, h1(k)= ha(k)+hb(k), obtained by setting τ = 1 in (6.4.1):

h1(k)= 2(2N − 2− 3k)
N(N − 1)

, k = 0,1, . . . ,N − 1 (predictive FIR filter) (6.4.6)

The filters ha(k), hb(k), and h1(k) find application in the technical analysis of
financial markets [280]. Indeed, the filter ha(k) is equivalent to the so-called linear
regression indicator, hb(k) corresponds to the linear regression slope indicator, and
h1(k), to the time series forecast indicator. We discuss these in more detail, as well as
other indicators, in Sections 6.14–6.24.

†a,b are the same as the components c0, c1 of the vector c.

6.5. Higher-Order Exponential Smoothing 235

More generally, for order d polynomials, it follows from the solution (6.3.8), that the
FIR filters hτ satisfy the moment constraints STNhτ = uτ, or, component-wise:

N−1∑
k=0

(−k)rhτ(k)= τr , r = 0,1, . . . , d (6.4.7)

In fact, the solution hτ = SN(STNSN)−1uτ is recognized (from Chap. 15) to be the
minimum-norm, pseudoinverse, solution of the under-determined system STNh = uτ,
that is, it has minimum norm, or, minimum noise-reduction ratio, R = hTh = min. A
direct derivation is as follows. Introduce a (d + 1)×1 vector of Lagrange multipliers,
λλλ = [λ0, λ1, . . . , λd]T, and incorporate the constraint into the performance index,

J = hTh+ 2λλλT(uτ − STNh)= min

Then, its minimization leads to,

∂J
∂h

= 2h− 2SNλλλ = 0 ⇒ h = SNλλλ

and, imposing the constraint STNh = uτ leads to the solutions for λλλ and for h,

uτ = STNh = STNSNλλλ ⇒ λλλ = (STNSN)−1uτ ⇒ h = SNλλλ = SN(STNSN)−1uτ

Returning to Eq. (6.4.3) and setting τ = 0, we note that the d = 1 local-level filter
ha(k) satisfies the explicit constraints:

N−1∑
k=0

ha(k)= 1 ,
N−1∑
k=0

kha(k)= 0 (6.4.8)

The latter implies that its lag parameter n̄ is zero, and therefore, straight-line inputs
will appear at the output undelayed (see Example 6.5.1). It has certain limitations as a
lowpass filter that we discuss in Sec. 6.10, but its NRR is decreasing with N:

R = 2(2N − 1)
N(N + 1)

(6.4.9)

A direct consequence of Eq. (6.4.7) is that the filter hτ(k) generates the exact pre-
dicted value of any polynomial of degree d, that is, for any polynomial P(x) with degree
up to d in the variable x, we have the exact convolutional result,

N−1∑
k=0

P(n− k)hτ(k)= P(n+ τ) , with deg(P)≤ d (6.4.10)

6.5 Higher-Order Exponential Smoothing

For any value of d, the FIR filters hτ have length N and act on the N-dimensional data
vector y(n)= [yn, yn−1, . . . , yn−N+1]T. By contrast, the exponential smoother weights
hτ(n) have an ever increasing length. Therefore, it proves convenient to recast them

236 6. Exponential Smoothing

recursively in time. The resulting recursive algorithm bears a very close similarity to the
so-called exact recursive-least-squares (RLS) adaptive filters that we discuss in Chap. 16.
Let us define the quantities,

Rn = STnWnSn =
n∑
k=0

λku−kuT−k = (d+1)×(d+1) matrix

rn = STnWny(n)=
n∑
k=0

λku−kyn−k = (d+1)×1 vector

(6.5.1)

Then, the optimal polynomial coefficients (6.3.7) are:

c(n)= R−1
n rn (6.5.2)

Clearly, the invertibility of Rn requires that n ≥ d, which we will assume from now
on. The sought recursions relate c(n) to the optimal coefficients c(n − 1)= R−1

n−1rn−1

at the previous time instant n−1. Therefore, we must actually assume that n > d.
To proceed, we note that the basis vector uτ = [1, τ, τ2, . . . , τd]T satisfies the time-
propagation property:

uτ+1 = Fuτ (6.5.3)

where F is a (d+1)×(d+1) unit lower triangular matrix whose ith row consists of the
binomial coefficients:

Fij =
(
i
j

)
, 0 ≤ i ≤ d , 0 ≤ j ≤ i (6.5.4)

This follows from the binomial expansion:

(τ+ 1)i=
i∑
j=0

(
i
j

)
τj

Some examples of the F matrices are for d = 0,1,2:

F = [1], F =
[

1 0
1 1

]
, F =

⎡⎢⎣ 1 0 0
1 1 0
1 2 1

⎤⎥⎦ (6.5.5)

It follows from Eq. (6.5.3) that uτ = Fuτ−1, and inverting uτ−1 = F−1uτ. The inverse
matrixG = F−1 will also be unit lower triangular with nonzero matrix elements obtained
from the binomial expansion of (τ− 1)i:

Gij = (−1)i−j
(
i
j

)
, 0 ≤ i ≤ d , 0 ≤ j ≤ i (6.5.6)

For example, we have for d = 0,1,2,

G = [1], G =
[

1 0
−1 1

]
, G =

⎡⎢⎣ 1 0 0
−1 1 0

1 −2 1

⎤⎥⎦ (6.5.7)

6.5. Higher-Order Exponential Smoothing 237

It follows from uτ−1 = Guτ that u−k−1 = Gu−k. This implies the following recursion
for Rn:

Rn =
n∑
k=0

λku−kuT−k = u0uT0 +
n∑
k=1

λku−kuT−k

= u0uT0 + λ
n∑
k=1

λk−1u−kuT−k

= u0uT0 + λ
n−1∑
k=0

λku−k−1uT−k−1

= u0uT0 + λG
⎛⎝n−1∑
k=0

λku−kuT−k

⎞⎠GT = u0uT0 + λGRn−1GT

where in the third line we changed summation variables from k to k−1, and in the fourth,
we used u−k−1 = Gu−k. Similarly, we have for rn,

rn =
n∑
k=0

λku−kyn−k = u0yn +
n∑
k=1

λku−kyn−k

= u0yn + λ
n−1∑
k=0

λku−k−1yn−k−1

= u0yn + λG
⎛⎝n−1∑
k=0

λku−ky(n−1)−k

⎞⎠ = u0yn + λGrn−1

Thus, Rn, rn satisfy the recursions:

Rn = u0uT0 + λGRn−1GT

rn = u0yn + λGrn−1

(6.5.8)

and they may be initialized to zero, R−1 = 0 and r−1 = 0. Using ŷn+τ/n = uTτc(n), we
may define the smoothed estimates, predictions, and the corresponding errors:

ŷn/n = uT0 c(n) , en/n = yn − ŷn/n
ŷn+1/n = uT1 c(n)= uT0FTc(n) , en+1/n = yn+1 − ŷn+1/n

ŷn/n−1 = uT1 c(n− 1)= uT0FTc(n− 1) , en/n−1 = yn − ŷn/n−1

(6.5.9)

where we used u1 = Fu0. In the language of RLS adaptive filters, we may refer to
ŷn/n−1 and ŷn/n as the a priori and a posteriori estimates of yn, respectively. Using the
recursions (6.5.8), we may now obtain a recursion for c(n). Using c(n− 1)= R−1

n−1rn−1

and the matrix relationship GF = I, we have,

Rnc(n) = rn = u0yn + λGrn−1 = u0yn + λGRn−1c(n− 1)

= u0yn + λGRn−1GTFTc(n− 1)= u0yn + (Rn − u0uT0)FTc(n− 1)

= RnFTc(n− 1)+u0
(
yn − uT0FTc(n− 1)

) = RnFTc(n− 1)+u0(yn − ŷn/n−1)

= RnFTc(n− 1)+u0en/n−1

238 6. Exponential Smoothing

where in the second line we used λGRn−1GT = Rn − u0uT0 . Multiplying both sides by
R−1
n , we obtain,

c(n)= FTc(n− 1)+R−1
n u0en/n−1 (6.5.10)

Again, in the language of RLS adaptive filters, we define the so-called a posteriori
and a priori “Kalman gain” vectors kn and kn/n−1,

kn = R−1
n u0 , kn/n−1 = λ−1FTR−1

n−1Fu0 (6.5.11)

and the “likelihood” variables,

νn = uT0 kn/n−1 = λ−1uT0FTR
−1
n−1Fu0 = λ−1uT1R

−1
n−1u1 , μn = 1

1+ νn (6.5.12)

Starting with the recursion Rn = u0uT0 + λGRn−1GT and multiplying both sides by
R−1
n from the left, then by FT from the right, then by R−1

n−1 from the left, and then by F
from the right, we may easily derive the equivalent relationship:

λ−1FTR−1
n−1F = R−1

n u0 λ−1uT0FTR
−1
n−1F +R−1

n (6.5.13)

Multiplying on the right by u0 and using the definitions (6.5.11), we find

kn/n−1 = knνn + kn = (1+ νn)kn , or,

kn = μnkn/n−1 (6.5.14)

Substituting this into (6.5.13), we obtain a recursion for the inverse matrixR−1
n , which

is effectively a variant of the matrix inversion lemma:

R−1
n = λ−1FTR−1

n−1F − μnkn/n−1kTn/n−1 (6.5.15)

This also implies that the parameter μn can be expressed as

μn = 1− uT0R−1
n u0 = 1− uT0 kn (6.5.16)

The a priori and a posteriori errors are also proportional to each other. Using (6.5.16),
we find,

ŷn/n = uT0 c(n)= uT0
(
FTc(n−1)+knen/n−1

) = ŷn/n−1+(1−μn)en/n−1 = yn−μnen/n−1

which implies that
en/n = μnen/n−1 (6.5.17)

The coefficient updates (6.5.10) may now be expressed as:

c(n)= FTc(n− 1)+knen/n−1 (6.5.18)

We summarize the complete set of computational steps for high-order exponential
smoothing. We recall that the invertibility conditions require that we apply the recur-
sions for n > d:

6.5. Higher-Order Exponential Smoothing 239

1. kn/n−1 = λ−1FTR−1
n−1Fu0 = λ−1FTR−1

n−1u1

2. νn = uT0 kn/n−1 , μn = 1/(1+ νn)
3. kn = μnkn/n−1

4. ŷn/n−1 = uT1 c(n− 1) , en/n−1 = yn − ŷn/n−1

5. en/n = μnen/n−1 , ŷn = yn − en/n
6. c(n)= FTc(n− 1)+knen/n−1

7. R−1
n = λ−1FTR−1

n−1F − μnkn/n−1kTn/n−1

(6.5.19)

For 0 ≤ n ≤ d, the fitting may be done with polynomials of varying degree dn = n,
and the coefficient estimate computed by explicit matrix inversion, c(n)= R−1

n rn. The
above computational steps and initialization have been incorporated into the MATLAB
function ema with usage:

C = ema(y,d,lambda); % exponential moving average - exact version

The input y is an L-dimensional vector (row or column) of samples to be smoothed,
with a total number L > d, and C is an L×(d+1)matrix whose nth row is the coefficient
vector c(n)T. Thus, the first column, holds the smoothed estimate, the second column
the estimated first derivative, and so on.

To understand the initialization process, consider an input sequence {y0, y1, y2, . . . }
and the d = 1 smoother. At n = 0, we use a smoother of order d0 = 0, constructing the
quantities R0, r0 using the definition (6.5.1):

R0 = [1] , r0 = [y0] ⇒ c(0)= R−1
0 r0 = y0

Next, at n = 1 we use a d1 = 1 smoother, and definition (6.5.1) now implies,

R1 =
[

1 0
0 0

]
+ λ

[
1 −1
−1 1

]
=

[
1+ λ −λ
−λ λ

]

r1 =
[

1
0

]
y1 + λ

[
1
−1

]
y0 =

[
y1 + λy0

−λy0

] ⇒ c(1)= R−1
1 r1 =

[
y1

y1 − y0

]

Starting with R1, r1, the recursion (6.5.8) may then be continued for n ≥ d+ 1 = 2.
If we had instead d = 2, then there is one more initialization step, giving

R2 =
⎡⎢⎣ 1+ λ+ λ2 −λ− 2λ2 λ+ 4λ2

−λ− 2λ2 λ+ 4λ2 −λ− 8λ2

λ+ 4λ2 −λ− 8λ2 λ+ 16λ2

⎤⎥⎦ , r2 =
⎡⎢⎣ y2 + λy1 + λ2y0

−λy1 − 2λ2y0

λy1 + 4λ2y0

⎤⎥⎦
resulting in

c(2)= R−1
2 r2 =

⎡⎢⎣ y2

1.5y2 − 2y1 + 0.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦ (6.5.20)

We note that the first d+ 1 smoothed values get initialized to the first d+ 1 values
of the input sequence.

240 6. Exponential Smoothing

Example 6.5.1: Fig. 6.5.1 shows the output of the exact exponential smoother with d = 1 and
λ = 0.9 applied on the same noiseless input sn of Example 6.1.3. In addition, it shows the
d = 1 FIR filter ha(k) designed to have zero lag according to Eq. (6.4.4).

Because d = 1, both filters can follow a linear signal. The input sn (dashed curve) is barely
visible under the filter outputs (solid curves). The length of the FIR filter was chosen
according to the rule N = (1+ λ)/(1− λ).
The following MATLAB code generates the two graphs; it uses the function upulse which
is a part of the OSP toolbox that generates a unit-pulse of prescribed duration

n = 0:300;
s = (20 + 0.8*n) .* upulse(n,75) + ... % upulse is in the OSP toolbox

(80 - 0.3*(n-75)) .* upulse(n-75,150) + ...
(35 + 0.4*(n-225)) .* upulse(n-225,76);

la = 0.9; al = 1-la; d = 1;

C = ema(s,d,la); % exact exponential smoother output

x = C(:,1);

N = round((1+la)/(1-la)); % equivalent FIR length, N=19

k=0:N-1;
ha = 2*(2*N-1-3*k)/N/(N+1); % zero-lag FIR filter

xh = filter(ha,1,s); % FIR filter output

figure; plot(n,s,’--’, n,x,’-’); % left graph

figure; plot(n,s,’--’, n,xh,’-’); % right graph

0 75 150 225 300
0

20

40

60

80

100

n

exact EMA with d = 1, λ = 0.9

 input
 output

0 75 150 225 300
0

20

40

60

80

100

n

zero− lag FIR with equivalent N = 19

 input
 output

Fig. 6.5.1 Exact EMA with order d = 1, and zero-lag FIR filter with equivalent length.

Next, we add some noise yn = sn+4vn, where vn is zero-mean, unit-variance, white noise.
The top two graphs of Fig. 6.5.2 show the noisy signal yn and the response of the exact
EMA with d = 0 and λ = 0.9.

The bottom two graphs show the exact EMA with d = 1 as well as the response of the same
zero-lag FIR filter to the noisy data. ��

6.6. Steady-State Exponential Smoothing 241

0 75 150 225 300
0

20

40

60

80

100

n

noisy input

 noisy input
 noise−free

0 75 150 225 300
0

20

40

60

80

100

n

exact EMA with d = 0, λ = 0.9

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

exact EMA with d = 1, λ = 0.9

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

zero− lag FIR with equivalent N = 19

 noise−free
 output

Fig. 6.5.2 EMA with order d = 1, and zero-lag FIR filter with equivalent length.

6.6 Steady-State Exponential Smoothing

Next, we look in more detail at the cases d = 0,1,2, which are the most commonly used
in practice, with d = 1 providing the best performance and flexibility. We denote the
polynomial coefficients by:

c(n)= [an] , c(n)=
[
an
bn

]
, c(n)=

⎡⎢⎣ anbn
cn

⎤⎥⎦ (6.6.1)

Then, with uτ = [1], uτ = [1, τ]T, and uτ = [1, τ, τ2]T, the implied predicted
estimates will be for arbitrary τ:

ŷn+τ/n = uTτc(n)= an
ŷn+τ/n = uTτc(n)= an + bnτ
ŷn+τ/n = uTτc(n)= an + bnτ+ cnτ2

(6.6.2)

Thus, an, bn represent local estimates of the level and slope, respectively, and 2cn

242 6. Exponential Smoothing

represents the acceleration. The one-step-ahead predictions are,

ŷn/n−1 = uT1 c(n− 1)= an−1

ŷn/n−1 = uT1 c(n− 1)= an−1 + bn−1

ŷn/n−1 = uT1 c(n− 1)= an−1 + bn−1 + cn−1

(6.6.3)

Denoting the a posteriori gains kn by,

kn = [α(n)] , kn =
[
α1(n)
α2(n)

]
, kn =

⎡⎢⎣α1(n)
α2(n)
α3(n)

⎤⎥⎦ (6.6.4)

then, the coefficient updates (6.5.18) take the forms, where en/n−1 = yn − ŷn/n−1,

an = an−1 +α(n)en/n−1[
an
bn

]
=

[
1 1
0 1

][
an−1

bn−1

]
+

[
α1(n)
α2(n)

]
en/n−1

⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1(n)
α2(n)
α3(n)

⎤⎥⎦en/n−1

(6.6.5)

Since kn = R−1
n u0, the gains depend only on λ and n and converge to steady-state

values for large n. For example, for d = 0, we have,

Rn =
n∑
k=0

λk = 1− λn+1

1− λ ⇒ kn = R−1
n = 1− λ

1− λn+1
→ 1− λ ≡ α

Thus, the steady-state form of the d = 0 EMA smoother is as expected:

en/n−1 = yn − ŷn/n−1 = yn − an−1

an = an−1 + (1− λ)en/n−1
(single EMA, d = 0) (6.6.6)

initialized as usual at a−1 = y0. The corresponding likelihood variable μn = 1 − uT0 kn
tends to μ = 1− (1− λ)= λ. Similarly, we find for d = 1,

Rn =
n∑
k=0

λk
[

1
−k

]
[1,−k]=

n∑
k=0

λk
[

1 −k
−k k2

]
≡

[
R00(n) R01(n)
R10(n) R11(n)

]

where

R00(n)= 1− λn+1

1− λ , R01(n)= R10(n)= −λ+ λn+1
[
1+ n(1− λ)]

(1− λ)2

R11(n)= λ(1+ λ)−λ
n+1

[
1+ λ− 2n(1− λ)+n2(1− λ)2

]
(1− λ)3

6.6. Steady-State Exponential Smoothing 243

which have the limit as n→∞,

Rn →R = 1

(1− λ)3

[
(1− λ)2 −λ(1− λ)
−λ(1− λ) λ(1+ λ)

]

R−1 =
[

1− λ2 (1− λ)2

(1− λ)2 λ−1(1− λ)3

] (6.6.7)

It follows that the asymptotic gain vector k = R−1u0 will be the first column of R−1:

kn → k =
[
α1

α2

]
=

[
1− λ2

(1− λ)2

]
(6.6.8)

and the steady-state version of the d = 1 EMA smoother becomes:

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1)[
an
bn

]
=

[
1 1
0 1

][
an−1

bn−1

]
+

[
1− λ2

(1− λ)2

]
en/n−1

(double EMA, d = 1) (6.6.9)

with estimated level ŷn/n = an and one-step-ahead prediction ŷn+1/n = an + bn. The
corresponding limit of the likelihood parameter is μ = 1 − uT0 k = 1 − (1 − λ2)= λ2.
The difference equation may be initialized at a−1 = 2y0−y1 and b−1 = y1−y0 to agree
with the first outputs of the exact smoother. Indeed, iterating up to n = 1, we find the
same answer for c(1) as the exact smoother:[

a0

b0

]
=

[
1 1
0 1

][
a−1

b−1

]
+

[
α1

α2

]
e0/−1 =

[
y0

y1 − y0

]
[
a1

b1

]
=

[
1 1
0 1

][
a0

b0

]
+

[
α1

α2

]
e1/0 =

[
y1

y1 − y0

]

Of course, other initializations are possible, a common one being to fit a straight line
to the first few input samples and choose the intercept and slope as the initial values.
This is the default method used by the function stema (see below). For the d = 2 case,
the asymptotic matrix R is

R =
∞∑
k=0

λku−kuT−k =
∞∑
k=0

λk

⎡⎢⎣ 1 −k k2

−k k2 −k3

k2 −k3 k4

⎤⎥⎦
which may be summed to

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1− λ − λ
(1− λ)2

λ(1+ λ)
(1− λ)3

− λ
(1− λ)2

λ(1+ λ)
(1− λ)3

−λ(1+ 4λ+ λ2)
(1− λ)4

λ(1+ λ)
(1− λ)3

−λ(1+ 4λ+ λ2)
(1− λ)4

λ(1+ λ)(1+ 10λ+ λ2)
(1− λ)5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

244 6. Exponential Smoothing

with an inverse

R−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− λ3 3

2
(1+ λ)(1− λ)2 1

2
(1− λ)3

3

2
(1+ λ)(1− λ)2 (1+ λ)(1− λ)3(1+ 9λ)

4λ2

(1− λ)4(1+ 3λ)
4λ2

1

2
(1− λ)3 (1− λ)4(1+ 3λ)

4λ2

(1− λ)5

4λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The asymptotic gain vector k = R−1u0 and μ parameter are,

k =
⎡⎢⎣α1

α2

α3

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1− λ3

3

2
(1+ λ)(1− λ)2

1

2
(1− λ)3

⎤⎥⎥⎥⎥⎥⎦ , μ = 1−α1 = λ3 (6.6.10)

and the steady-state d = 2 EMA smoother becomes:

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1 + cn−1)⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1

α2

α3

⎤⎥⎦en/n−1

(triple EMA, d = 2) (6.6.11)

They may be initialized to reach the same values at n = 2 as the exact smoother,
that is, Eq. (6.5.20). This requirement gives:⎡⎢⎣ a−1

b−1

c−1

⎤⎥⎦ =
⎡⎢⎣ y2 − 3y1 + 3y0

−1.5y2 + 4y1 − 2.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦ ⇒
⎡⎢⎣ a2

b2

c2

⎤⎥⎦ =
⎡⎢⎣ y2

1.5y2 − 2y1 + 0.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦
Alternatively, they may be initialized by fitting a second degree polynomial to the first

few input samples, as is done by default in the function stema, or they may be initialized
to a zero vector, or to any other values, for example, [a−1, b−1, c−1]= [y0,0,0].

For arbitrary polynomial order d, the matrixRn converges to a (d+1)×(d+1)matrix
R that must satisfy the Lyapunov-type equation:

R = u0uT0 + λGRGT (6.6.12)

where G is the backward boost matrix, G = F−1. This follows by considering the limit
of Eq. (6.5.1) as n→∞ and using the property u−k−1 = Gu−k. Multiplying from the left
by F, and noting that Fu0 = u1, we have

FR = u1uT0 + λRGT (6.6.13)

Taking advantage of the unit-lower-triangular nature of F and G, this equation can
be written component-wise as follows:

i∑
k=0

FikRkj = u1(i)u0(j)+λ
j∑
k=0

RikGjk , 0 ≤ i, j ≤ d (6.6.14)

6.6. Steady-State Exponential Smoothing 245

Noting that u1(i)= 1 and u0(j)= δ(j), and setting first i = j = 0, we find

R00 = 1+ λR00 ⇒ R00 = 1

1− λ (6.6.15)

Then, setting i = 0 and 1 ≤ j ≤ d,

R0j = λ
j∑
k=0

RikGjk = λR0j + λ
j−1∑
k=0

R0kGjk

which can be solved recursively for R0j:

R0j = Rj0 = λ
1− λ

j−1∑
k=0

R0kGjk , j = 1,2, . . . , d (6.6.16)

Next, take i ≥ 1 and j ≥ i, and use the symmetry of R:

Rij +
i−1∑
k=0

FikRkj = λRij + λ
j−1∑
k=0

RikGjk

or, for i = 1,2, . . . , d , j = i, i+ 1, . . . , d,

Rij = Rji = 1

1− λ

⎡⎣λ j−1∑
k=0

RikGjk −
i−1∑
k=0

FikRkj

⎤⎦ (6.6.17)

To clarify the computations, we give the MATLAB code below:

R(1,1) = 1/(1-lambda);
for j=2:d+1,
R(1,j) = lambda * R(1,1:j-1) * G(j,1:j-1)’ / (1-lambda);
R(j,1) = R(1,j);

end
for i=2:d+1,
for j=i:d+1,
R(i,j) = (lambda*R(i,1:j-1)*G(j,1:j-1)’ - F(i,1:i-1)*R(1:i-1,j))/(1-lambda);
R(j,i) = R(i,j);

end
end

Once R is determined, one may calculate the gain vector k = R−1u0. Then, the
overall filtering algorithm can be stated as follows, for n ≥ 0,

ŷn/n−1 = uT1 c(n− 1)

en/n−1 = yn − ŷn/n−1

c(n)= FTc(n− 1)+ken/n−1

(steady-state EMA) (6.6.18)

which requires specification of the initial vector c(−1). The transfer function from the
input yn to the signals c(n) can be determined by taking z-transforms of Eq. (6.6.18):

C(z)= z−1FTC(z)+k
(
Y(z)−z−1uT1 C(z)

)
, or,

246 6. Exponential Smoothing

H(z)= C(z)
Y(z)

= [
I − (FT − kuT1)z−1]−1

k (6.6.19)

The computational steps (6.6.18) have been incorporated in the MATLAB function
stema, with usage,

C = stema(y,d,lambda,cinit); % steady-state exponential moving average

where C,y,d,lambda have the same meaning as in the function ema. The parameter
cinit is a (d+1)×1 column vector that represents the initial vector c(−1). If omitted,
it defaults to fitting a polynomial of order d to the first L input samples, where L is
the effective length corresponding to λ, that is, L = (1 + λ)/(1 − λ). The fitting is
carried out with the help of the function lpbasis from Chap. 3, and is given in MATLAB
notation by:

cinit = lpbasis(L,d,-1) \ y(1:L); % fit order-d polynomial to first L inputs

where the fit is carried out with respect to the time origin n = −1. The length Lmust be
less than the length of the input vector y. If not, another, shorter L can be used. Other
initialization possibilities for cinit are summarized in the help file for stema.

To clarify the fitting operation, we note that fitting the first L samples yn, n =
0,1, . . . , L − 1, to a polynomial of degree d centered at n = −1 amounts to the mini-
mization of the performance index:

J =
L−1∑
n=0

(yn − pn)2= min , pn =
d∑
i=0

(n+ 1)ici = uTn+1c

which can be written compactly as

J = ‖y− Sc‖2 = min , S = [u1,u2, . . . ,un+1, . . . ,uL]T

with solution c = (STS)−1STy = S\y in MATLAB notation.† The actual fitted values
p = [p0, p1, . . . , pL−1]T are then computed by p = Sc.

Selecting n = −1 as the centering time, assumes that the filtering operation will
start at n = 0 requiring therefore the value c(−1). The centering can be done at any
other reference time n = n0, for example, one would choose n0 = L− 1 if the filtering
operation were to start at n = L. The performance index would be then,

J =
L−1∑
n=0

(yn − pn)2= min , pn =
d∑
i=0

(n− n0)ici = uTn−n0
c̄

with another set of coefficients c̄. The MATLAB implementation is in this case,

cinit = lpbasis(L,d,n0) \ y(1:L); % fit order-d polynomial to first L inputs

From un+1 = Fun, we obtain un+1 = Fn0+1un−n0 . By requiring that the fitted poly-
nomials be the same, pn = uTn+1c = uTn−n0

c̄, it follows that,

c̄ = (FT)n0+1c (6.6.20)

†assuming that S has full rank, which requires L > d.

6.7. Smoothing Parameter Selection 247

In Sec. 6.8, we discuss the connection to conventional multiple exponential smooth-
ing obtained by filtering in cascade through d+1 copies of a single exponential smooth-
ing filter H(z)= α/(1− λz−1), that is, through

[
H(z)

]d+1
. Example 6.11.1 illustrates

the above initialization methods, as well as how to map the initial values of c(n) to the
initial values of the cascaded filter outputs.

6.7 Smoothing Parameter Selection

The performance of the steady-state EMA may be judged by computing the covariance of
the estimates c(n), much like the case of thed = 0 smoother. Starting with c(n)= R−1

n rn
and rn = STnWny(n), we obtain for the correlation matrix,

E
[
c(n)cT(n)

] = R−1
n STnWnE

[
y(n)yT(n)

]
WnSnR−1

n

and for the corresponding covariance matrix,

Σcc = R−1
n STnWnΣyyWnSnR−1

n (6.7.1)

Under the typical assumption that yn is white noise, we have Σyy = σ2
yIn+1, where

In+1 is the (n+1)-dimensional unit matrix. Then,

Σcc = σ2
y R−1

n QnR−1
n , Qn = STnW2

nSn (6.7.2)

In the limit n→∞, the matrices Rn,Qn tend to steady-state values, so that

Σcc = σ2
y R−1QR−1 (6.7.3)

where the limit matrices R,Q are given by

R =
∞∑
k=0

λku−ku−k , Q =
∞∑
k=0

λ2ku−ku−k (6.7.4)

Since ŷn/n = uT0 c(n) and ŷn+1/n = uT1 c(n), the corresponding variances will be:

σ2
ŷn/n = uT0 Σccu0 , σ2

ŷn+1/n
= uT1 Σccu1 ≡ σ2

ŷ , (6.7.5)

Because yn was assumed to be an uncorrelated sequence, the two terms in the pre-
diction error en+1/n = yn+1 − ŷn+1/n will be uncorrelated since ŷn+1/n depends only on
data up to n. Therefore, the variance of the prediction error en+1/n will be:

σ2
e = σ2

y +σ2
ŷ = σ2

y
[
1+ uT1R−1QR−1u1

]
(6.7.6)

For the case d = 0, we have

R =
∞∑
k=0

λk = 1

1− λ , Q =
∞∑
k=0

λ2k = 1

1− λ2

which gives the usual results:

σ2
ŷ = Σcc = 1− λ

1+ λσ
2
y , σ2

e = σ2
y +σ2

ŷ =
2

1+ λσ
2
y

248 6. Exponential Smoothing

For d = 1, we have as in Eq. (6.6.7),

R = 1

(1− λ)3

[
(1− λ)2 −λ(1− λ)
−λ(1− λ) λ(1+ λ)

]
,

with the Q matrix being obtained from R by replacing λ→ λ2,

Q = 1

(1− λ2)3

[
(1− λ2)2 −λ2(1− λ2)
−λ2(1− λ2) λ2(1+ λ2)

]

It follows then that

Σcc = σ2
y R−1QR−1 = 1− λ

(1+ λ)3

[
1+ 4λ+ 5λ2 (1− λ)(1+ 3λ)
(1− λ)(1+ 3λ) 2(1− λ)2

]
(6.7.7)

The diagonal entries are the variances of the level and slope signals an, bn:

σ2
a =

(1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

σ2
y , σ2

b =
2(1− λ)3

(1+ λ)3
σ2
y (6.7.8)

For the prediction variance, we find

σ2
ŷ = σ2

y uT1 (R−1QR−1)u1 = (1− λ)(λ
2 + 4λ+ 5)

(1+ λ)3
σ2
y (6.7.9)

which gives for the prediction error:

σ2
e = σ2

y +σ2
ŷ =

[
1+ (1− λ)(λ

2 + 4λ+ 5)
(1+ λ)3

]
σ2
y =

2(3+ λ)
(1+ λ)3

σ2
y (6.7.10)

In order to achieve an equivalent smoothing performance with a d = 0 EMA, one
must equate the corresponding prediction variances, or mean-square errors. If λ0, λ1

denote the equivalent d = 0 and d = 1 parameters, the condition reads:

2

1+ λ0
= 2(3+ λ1)
(1+ λ1)3

⇒ λ0 = (1+ λ1)3

3+ λ1
− 1 (6.7.11)

Eq. (6.7.11) may also be solved for λ1 in terms of λ0,

λ1 = 1

3
D0 + 1+ λ0

D0
− 1 , D0 =

[
27(1+ λ0)+

√
27(1+ λ0)2(26− λ0)

]1/3
(6.7.12)

Setting λ0 = 0 givesD0 = (27+3
√

78)1/3 and λ1 = 0.5214. For all λ1 ≥ 0.5214, the
equivalent λ0 is non-negative and the NRR σ2

ŷ/σ2
y of the prediction filter remains less

than unity.
The corresponding FIR averager would have lengthN0 = (1+λ0)/(1−λ0), whereas

an equivalent zero-lag FIR filter should have length N1 that matches the corresponding
NRRs. We have from Eq. (6.4.9):

2(2N1 − 1)
N1(N1 + 1)

= 1− λ0

1+ λ0

6.7. Smoothing Parameter Selection 249

which gives,

λ0 = N
2
1 − 3N1 + 2

N2
1 + 5N1 − 2

� N1 =
3+ 5λ0 +

√
33λ2

0 + 30λ0 + 1

2(1− λ0)
(6.7.13)

The MATLAB function emap implements Eq. (6.7.12),

la1 = emap(la0); % mapping equivalent λ’s between d = 0 and d = 1 EMAs

The computed λ1 is an increasing function of λ0 and varies over 0.5214 ≤ λ1 ≤ 1
as λ0 varies over 0 ≤ λ0 ≤ 1.

Example 6.7.1: The lower-right graph of Fig. 6.7.1 shows a zero-lag FIR filter defined by Eq. (6.4.4)
with length N1 = 100 and applied to the noisy signal shown on the upper-left graph. The
noisy signal was yn = 20 + 0.2n + 4vn, for 0 ≤ n ≤ 300, with zero-mean, unit-variance,
white noise vn.

0 75 150 225 300
0

20

40

60

80

100

n

noisy data

0 75 150 225 300
0

20

40

60

80

100

n

steady EMA with d = 0, λ = λ0

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

steady EMA with d = 1, λ = λ1

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

zero− lag FIR with equivalent length N1

 noise−free
 output

Fig. 6.7.1 Comparison of two equivalent steady-state EMAs with equivalent zero-lag FIR.

The equivalent EMA parameter for d = 0 was found from (6.7.13) to be λ0 = 0.9242,
which was then mapped to λ1 = 0.9693 of an equivalent d = 1 EMA using Eq. (6.7.12).
The upper-right graph shows the d = 0 EMA output, and the lower-left graph, the d = 1
EMA. The steady-state version was used for both EMAs with default initializations. The
following MATLAB code illustrates the calculations:

250 6. Exponential Smoothing

t = 0:300; s = 20 + 0.2*t;
randn(’state’, 1000);
y = s + 4 * randn(size(t)); % noisy input

N1 = 100;
la0 = (N1^2-3*N1+2)/(N1^2+5*N1-2); % equivalent λ0

la1 = emap(la0); % equivalent λ1

C = stema(y,0,la0); x0 = C(:,1); % steady EMA with d = 0, λ = λ0

C = stema(y,1,la1); x1 = C(:,1); % steady EMA with d = 1, λ = λ1

k=0:N1-1; h = 2*(2*N1-1-3*k)/N1/(N1+1); % zero-lag FIR of length N1

% h = lpinterp(N1,1,-(N1-1)/2)’; % alternative calculation

xh = filter(h,1,y);

figure; plot(t,y,’-’, t,s,’-’); figure; plot(t,s,’--’, t,x0,’-’);
figure; plot(t,s,’--’, t,x1,’-’); figure; plot(t,s,’--’, t,xh,’-’);

We observe that all three outputs achieve comparable noise reduction. The d = 0 EMA
suffers from the expected delay. Both the d = 1 EMA and the zero-lag FIR filter follow the
straight-line input with no delay, after the initial transients have subsided. ��

The choice of the parameterλ is more of an art than science. There do exist, however,
criteria that determine an “optimum” value. Given the prediction ŷn/n−1 = uT1 c(n− 1)
of yn, and prediction error en/n−1 = yn− ŷn/n−1, the following criteria, to be minimized
with respect to λ, are widely used:

MSE = mean(e2
n/n−1) , (mean square error)

MAE = mean
(|en/n−1|

)
, (mean absolute error)

MAPE = mean
(
100|en/n−1/yn|

)
, (mean absolute percentage error)

(6.7.14)

where the mean may be taken over the entire data set or over a portion of it. Usually,
the criteria are evaluated over a range of λ’s and the minimum is selected. Typically,
the criteria tend to underestimate the value of λ, that is, they produce too small a λ to
be useful for smoothing purposes. Even so, the optimum λ has been used successfully
for forecasting applications. The MATLAB function emaerr calculates these criteria for
any vector of λ’s and determines the optimum λ in that range:

[err,lopt] = emaerr(y,d,lambda,type); % mean error criteria

where type takes one of the string values ’mse’,’mae’,’mape’ and err is the criterion
evaluated at the vector lambda, and lopt is the corresponding optimum λ.

Example 6.7.2: Fig. 6.7.2 shows the same Dow-Jones data of Example 6.1.2. The MSE criterion
was searched over the range 0.1 ≤ λ ≤ 0.9. The upper-left graph shows the MSE versus λ.
The minimum occurs at λopt = 0.61.

The upper-right graph shows the d = 1 exact EMA run with λ = λopt. The EMA output
is too rough to provide adequate smoothing. The other criteria are even worse. The MAE
and MAPE optima both occur at λopt = 0.56. For comparison, the bottom two graphs show
the d = 1 exact EMA run with the two higher values λ = 0.90 and λ = 0.95. The MATLAB
code generating these graphs was as follows:

6.7. Smoothing Parameter Selection 251

0 0.2 0.4 0.6 0.8 1
0.03

0.04

0.05

0.06

0.07

λ

MSE, λopt = 0.61

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with d = 1, λ = λopt

 data
 smoothed

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with d = 1, λ = 0.9

 data
 smoothed

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with d = 1, λ = 0.95

 data
 smoothed

Fig. 6.7.2 MSE criterion for the DJIA data.

Y = loadfile(’dow-oct07-dec09.dat’); % read data

y = Y(:,1)/1000; n = (0:length(y)-1)’;

d = 1; u1 = ones(d+1,1); % polynomial order for EMA

la = linspace(0.1, 0.9, 81); % range of λ’s to search

[err,lopt] = emaerr(y,d,la,’mse’); % evaluate MSE at this range of λ’s

figure; plot(la,err, lopt,min(err),’.’); % upper-left graph

C = ema(y,d,lopt); yhat = C*u1;
figure; plot(n,y,’:’, n,yhat,’-’); % upper-right graph

la=0.90; C = ema(y,d,la); yhat = C*u1; % bottom-left graph

figure; plot(n,y,’:’, n,yhat,’-’); % use la=0.95 for bottom-right

We note that the d = 1 smoother is more capable in following the signal than the d = 0 one.
We plotted the forecasted value ŷn+1/n = cT(n)u1 versus n. Because the output matrix C

from the ema function has the cT(n) as its rows, the entire vector of forecasted values can
be calculated by acting by C on the unit vector u1, that is, yhat = C*u1. ��

252 6. Exponential Smoothing

6.8 Single, Double, and Triple Exponential Smoothing

Single exponential smoothing is the same as first-order, d = 0, steady-state exponential
smoothing. We recall its filtering equation and corresponding transfer function:

a[1]n = λa[1]n−1 +αyn , H[1](z)= H(z)= α
1− λz−1

(6.8.1)

where α = 1 − λ. Double smoothing refers to filtering a[1]n one more time through
the same filter H(z); and triple smoothing, two more times. The resulting filtering
equations and transfer functions (from the overall input yn to the final outputs) are:

a[2]n = λa[2]n−1 +αa[1]n , H[2](z)=
(

α
1− λz−1

)2

a[3]n = λa[3]n−1 +αa[2]n , H[3](z)=
(

α
1− λz−1

)3
(6.8.2)

yn −→ H −→ a[1]n −→ H −→ a[2]n −→ H −→ a[3]n
Thus, the filter H(z) acts once, twice, three times, or in general d+1 times, in cas-

cade, producing the outputs,

yn−→ H −→a[1]n −→ H −→a[2]n −→ H −→a[3]n −→· · ·−→a[d]n −→ H −→a[d+1]
n (6.8.3)

The transfer function and the corresponding causal impulse response from yn to the
r-th output a[r]n are, for r = 1,2, . . . , d+1 with u(n) denoting the unit-step function:

H[r](z)= [
H(z)

]r = (
α

1− λz−1

)r
� h[r](n)= αrλn (n+ r − 1)!

n!(r − 1)!
u(n) (6.8.4)

Double and triple exponential smoothing are in a sense equivalent to the d = 1 and
d = 2 steady-state EMA filters of Eq. (6.6.9) and (6.6.11). From Eq. (6.6.19), which in this
case reads H(z)= [Ha(z),Hb(z)]T, we may obtain the transfer functions from yn to
the outputs an and bn:

Ha(z)= (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

, Hb(z)= (1− λ)
2(1− z−1)

(1− λz−1)2
(6.8.5)

It is straightforward to verify that Ha and Hb are related to H and H2 by

Ha = 2H −H2 = 1− (1−H)2

Hb = αλ (H −H
2)

(local level filter)

(local slope filter)
(6.8.6)

In the time domain this implies the following relationships between thean, bn signals
and the cascaded outputs a[1]n , a[2]n :

an = 2a[1]n − a[2]n = local level

bn = αλ
(
a[1]n − a[2]n

) = local slope
(6.8.7)

6.8. Single, Double, and Triple Exponential Smoothing 253

which can be written in a 2×2 matrix form:[
an
bn

]
=

[
2 −1
α/λ −α/λ

][
a[1]n
a[2]n

]
⇒

[
a[1]n
a[2]n

]
=

[
1 −λ/α
1 −2λ/α

][
an
bn

]
(6.8.8)

Similarly, for the d = 2 case, the transfer functions from yn to an, bn, cn are:

Ha(z) = α
[
1+ λ+ λ2 − 3λ(1+ λ)z−1 + 3λ2z−2

]
(1− λz−1)3

Hb(z) = 1

2

α2(1− z−1)
[
3(1+ λ)−(5λ+ 1)z−1

]
(1− λz−1)3

Hc(z) = 1

2

α3(1− z−1)2

(1− λz−1)3

(6.8.9)

which are related to H,H2,H3 by the matrix transformation:⎡⎢⎣HH2

H3

⎤⎥⎦ =
⎡⎢⎣ 1 −λ/α λ(λ+ 1)/α2

1 −2λ/α 2λ(2λ+ 1)/α2

1 −3λ/α 3λ(3λ+ 1)/α2

⎤⎥⎦
⎡⎢⎣HaHb
Hc

⎤⎥⎦ (6.8.10)

implying the transformation between the outputs:⎡⎢⎢⎣ a
[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦ =
⎡⎢⎣ 1 −λ/α λ(λ+ 1)/α2

1 −2λ/α 2λ(2λ+ 1)/α2

1 −3λ/α 3λ(3λ+ 1)/α2

⎤⎥⎦
⎡⎢⎣ anbn
cn

⎤⎥⎦ (6.8.11)

with corresponding inverse relationships,⎡⎢⎣HaHb
Hc

⎤⎥⎦ = 1

2λ2

⎡⎢⎣ 6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎦
⎡⎢⎣HH2

H3

⎤⎥⎦ (6.8.12)

⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2λ2

⎡⎢⎢⎣
6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦ (6.8.13)

In particular, we have:

Ha = 3H − 3H2 +H3 = 1− (1−H)3 (6.8.14)

and
ŷn/n = an = 3a[1]n − 3a[2]n + a[3]n (6.8.15)

More generally, for an order-d polynomial EMA, we have [243],

Ha = 1− (1−H)d+1 (6.8.16)

ŷn/n = an = −
d+1∑
r=1

(−1)r
(
d+ 1

r

)
a[r]n (6.8.17)

254 6. Exponential Smoothing

6.9 Exponential Smoothing and Tukey’s Twicing Operation

There is an interesting interpretation [255] of these results in terms of Tukey’s twic-
ing operation [257] and its generalizations to thricing, and so on. To explain twicing,
consider a smoothing operation, which for simplicity we may assume that it can be rep-
resented by the matrix operation ŷ = Hy, or if so preferred, in the z-domain as the
multiplication of z-transforms Ŷ(z)= H(z)Y(z).

The resulting residual error is e = y− ŷ = (I −H)y. In the twicing procedure, the
residuals are filtered through the same smoothing operation, which will smooth them
further, ê = He = H(I−H)y, and the result is added to the original estimate to get an
improved estimate:

ŷimpr = ŷ+ ê = [
H +H(I −H)]y = [

2H −H2]y (6.9.1)

which is recognized as the operation (6.8.6). The process can be continued by repeating
it on the residuals of the residuals, and so on. For example, at the next step, one would
compute the new residual r = e − ê = (I −H)e = (I −H)2y, then filter it through H,
r̂ = Hr = H(I −H)2y, and add it to get the “thriced” improved estimate:

ŷimpr = ŷ+ ê+ r̂ = [
H +H(I −H)+H(I −H)2]y = [

3H − 3H2 +H3]y (6.9.2)

which is Eq. (6.8.14). The process can be continued d times, resulting in,

ŷimpr = H
[
I + (I −H)+(I −H)2+· · · + (I −H)d]y = [

I − (I −H)d+1]y (6.9.3)

Twicing and its generalizations can be applied with benefit to any smoothing oper-
ation, for example, if we used an LPRS filter designed by B = lprs(N,d, s), the compu-
tational steps for twicing would be:

ŷ = lpfilt(B,y) ⇒ e = y− ŷ ⇒ ê = lpfilt(B, e) ⇒ ŷimpr = ŷ+ ê

A limitation of twicing is that, while it drastically improves the passband of a lowpass
smoothing filter, it worsens its stopband. To see this, we write for the improved transfer
function,Himpr(z)= 1−(

1−H(z))d+1
. In the passband,H is near unity, sayH ≈ 1−ε,

with |ε| � 1, then,
Himpr = 1− (

1− (1− ε))d+1 = 1− εd+1

thus, making the passband ripple (d+1) orders of magnitude smaller. On the other
hand, in the stopband, H is near zero, say H ≈ ±ε, resulting in a worsened stopband,

Himpr = 1− (1∓ ε)d+1≈ 1− (
1∓ (d+ 1)ε

) = ±(d+ 1)ε

The twicing procedure has been generalized by Kaiser and Hamming [258] to the
so-called “filter sharpening” that improves both the passband and the stopband. For
example, the lowest-order filter combination that achieves this is,

Himpr = H2(3− 2H)= 3H2 − 2H3 (6.9.4)

6.10. Twicing and Zero-Lag Filters 255

where now both the passband and stopband ripples are replaced by ε → ε2. More
generally, it can be shown [258] that the filter that achieves pth order tangency atH = 0
and qth order tangency at H = 1 is given by

Himpr = Hp+1
q∑
k=0

(p+ k)!
p!k!

(1−H)k (6.9.5)

The multiple exponential moving average case corresponds to p = 0 and q = d,
resulting in Himpr = 1− (1−H)d+1, whereas Eq. (6.9.4) corresponds to p = q = 1.

6.10 Twicing and Zero-Lag Filters

Another advantage of twicing and, more generally, filter sharpening is that the resulting
improved smoothing filter always has zero lag, that is, n̄ = 0.

Indeed, assuming unity DC gain for the original filter, H(z)
∣∣
z=1 = 1, it is straight-

forward to show that the general formula (6.9.5) gives for the first derivative:

H′impr(z)
∣∣
z=1 = 0 (6.10.1)

which implies that its lag is zero, n̄ = 0, by virtue of Eq. (6.1.18). The twicing procedure,
or its generalizations, for getting zero-lag filters is not limited to the exponential moving
average. It can be applied to any other lowpass filter. For example, if we apply it to an
ordinary length-N FIR averager, we would obtain:

H(z)= 1

N

N−1∑
n=0

z−n = 1

N
1− z−N
1− z−1

⇒ Ha(z)= 2H(z)−H2(z) (6.10.2)

The impulse response of Ha(z) can be shown to be, where 0 ≤ n ≤ 2(N − 1),

ha(n)=
(

2N − 1− n
N2

)[
u(n)−2u(n−N)+u(n− 2N + 1)

]
(6.10.3)

It is straightforward to show that n̄a = 0 and that its noise-reduction ratio is

R = 8N2 − 6N + 1

3N3
(6.10.4)

Because of their zero-lag property, double and triple EMA filters are used as trend
indicators in the financial markets [297,298]. The application of twicing to the modified
exponential smoother of Eq. (2.3.5) gives rise to a similar indicator called the instanta-
neous trendline [285], and further discussed in Problem 6.8. We discuss such market
indicators in Sections 6.14–6.24.

The zero-lag property for a causal lowpass filter comes at a price, namely, that al-
though its magnitude response is normalized to unity atω = 0 and has a flat derivative
there, it typically bends upwards developing a bandpass peak near DC before it attenu-
ates to smaller values at higher frequencies. See, for example, Fig. 6.10.1.

This behavior might be deemed to be objectionable since it tends to unevenly amplify
the low-frequency passband of the filter.

256 6. Exponential Smoothing

To clarify these remarks, consider a lowpass filter H(ω) (with real-valued impulse
response hn) satisfying the gain and flatness conditions H(0)= 1 and H′(0)= 0 at
ω = 0. The flatness condition implies the zero-lag property n̄ = 0. Using these two
conditions, it is straightforward to verify that the second derivative of the magnitude
response at DC is given by:

d2

dω2

∣∣H(ω)∣∣2
ω=0 = 2 Re

[
H′′(0)

]+ 2|H′(0)|2 = 2 Re
[
H′′(0)

] = −2
∞∑
n=0

n2hn

(6.10.5)
Because n̄ = ∑

n nhn = 0, it follows that some of the coefficients hn must be nega-
tive, which can cause (6.10.5) to become positive, implying thatω = 0 is a local minimum
and hence the response will rise for ωs immediately beyond DC. This is demonstrated
for example in Problem 6.7 by Eq. (6.25.1), so that,

d2

dω2

∣∣H(ω)∣∣2
ω=0 = −2

∞∑
n=0

n2hn = 4λ2

(1− λ)2

A similar calculation yields the result,

d2

dω2

∣∣H(ω)∣∣2
ω=0 = −2

∞∑
n=0

n2hn = 1

3
(N − 1)(N − 2)

for the optimum zero-lag FIR filter of Eq. (6.4.4),

ha(k)= 2(2N − 1− 3k)
N(N + 1)

, k = 0,1, . . . ,N − 1 (6.10.6)

We note that the first derivative of the magnitude response |H(ω)|2 is always zero at
DC, regardless of whether the filter has zero lag or not. Indeed, it follows fromH(0)= 1
and the reality of hn that,

d
dω

∣∣H(ω)∣∣2
ω=0 = 2 Re

[
H′(0)

] = 0 (6.10.7)

Example 6.10.1: Zero-Lag Filters. In Problem 6.7, we saw that the double EMA filter has transfer
function and magnitude response:

Ha(z) = (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

|Ha(ω)|2 = (1− λ)
2
[
1+ 2λ+ 5λ2 − 4λ(1+ λ)cosω

][
1− 2λ cosω+ λ2

]2

and that a secondary peak develops at,

cosωmax = 1+ 4λ− λ2

2(1+ λ) , |Ha(ωmax)|2 = (1+ λ)
2

1+ 2λ

The left graph of Fig. 6.10.1 shows the magnitude responses for the two cases of λ = 0.8
and λ = 0.9. The calculated peak frequencies are ωmax = 0.1492 and ωmax = 0.0726
rads/sample, corresponding to periods of 2π/ωmax = 42 and 86 samples/cycle. The peak
points are indicated by black dots on the graph.

6.10. Twicing and Zero-Lag Filters 257

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω in units of π

|H
a(ω

)|
2

double EMA filters

 λ = 0.8
 λ = 0.9
 max

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω in units of π

|H
0(ω

)|
2

zero−lag FIR filters

 N = 15
 N = 33

Fig. 6.10.1 Double EMA and zero-lag FIR filter responses.

The right graph shows the magnitude responses of the optimum zero-lag FIR filter ha(k)
of Eq. (6.10.6) for the two lengths N = 15 and N = 33. The lengths N were calculated to
achieve equivalent behavior in the vicinity of DC, i.e., equal second derivatives atω = 0,

4λ2

(1− λ)2
= 1

3
(N − 1)(N − 2) ⇒ N = 3

2
+

√
12λ2

(1− λ)2
+ 1

4

The magnitude responses were computed from the above formulas for the double EMA
cases, and by the following MATLAB code in the FIR cases:

w = linspace(0,1,1001); %ω in units of π
N = 15; k = (0:N-1);
h = 2*(2*N-1-3*k)/N/(N+1);
H2 = abs(freqz(h,1,pi*w)).^2; % magnitude response squared

We observe from these examples that the zero-lag filters have less than desirable pass-
bands. However, they do act as lowpass filters, attenuating the high frequencies and
thereby smoothing the input signal. ��

Local Level, Local Slope, and Local Acceleration Filters

Since the twicing operation can be applied to any lowpass filter H(z) resulting in the
zero-lag local-level filter,Ha(z)= 2H(z)−H2(z), it raises the question as to what would
be the corresponding local-slope filterHb(z), in other words, what is the generalization
of Eqs. (6.8.6) for an arbitrary filter H(z), and similarly, what is the generalization of
Eq. (6.8.12) for the thricing operations.

Starting with an arbitrary causal lowpass filter H(z), with impulse response h(n),
and assuming that it has unity gain at DC, the local level, slope, and acceleration filters
depend on the following two filter moments:

μ1 = n̄ =
∞∑
n=0

nh(n) , μ2 =
∞∑
n=0

n2h(n) (6.10.8)

258 6. Exponential Smoothing

In terms of these parameters, the generalization of Eq. (6.8.6) is then,

Ha(z) = 2H(z)−H2(z)

Hb(z) = 1

μ1

[
H(z)−H2(z)

] (local level filter)

(local slope filter)
(6.10.9)

while the generalization of (6.8.12) is,⎡⎢⎣Ha(z)Hb(z)
Hc(z)

⎤⎥⎦ = 1

2μ3
1

⎡⎢⎣ 6μ3
1 −6μ3

1 2μ3
1

μ2 + 4μ2
1 −2(μ2 + 3μ2

1) μ2 + 2μ2
1

μ1 −2μ1 μ1

⎤⎥⎦
⎡⎢⎣H(z)H2(z)
H3(z)

⎤⎥⎦ (6.10.10)

and in particular,
Ha = 3H − 3H2 +H3 = 1− (1−H)3 (6.10.11)

For an EMA filter, h(n)= (1− λ)λnu(n), we have,

μ1 = λ
1− λ , μ2 = λ(1+ λ)(1− λ)2

and Eqs. (6.10.9) and (6.10.10) reduce to (6.8.6) and (6.8.12), respectively. To justify
(6.10.9), consider a noiseless straight-line input signal, yn = a+ bn. Since it is linearly
rising and noiseless, the local-level will be itself, and the local-slope will be constant,
that is, we may define,

an ≡ a+ bn , bn ≡ b
Following the calculation leading to Eq. (6.1.24), we can easily verify that the two

successive outputs, a[1]n , a[2]n , from the twice-cascaded filter h(n), will be,

a[1]n = a+ b(n− μ1)= (a− μ1b)+bn = a+ bn− μ1b = an − μ1bn

a[2]n = (a− μ1b− μ1b)+bn = (a− 2μ1b)+bn = an − 2μ1bn

These may be solved for an, bn in terms of a[1]n , a[2]n , leading to the following time-
domain relationships, which are equivalent to Eqs. (6.10.9),

an = 2a[1]n − a[2]n

bn = 1

μ1

(
a[1]n − a[2]n

)
For the thricing case, consider a noiseless input that is quadratically varying with

time, yn = a + bn + cn2, so that its local level, local slope, and local acceleration may
be defined as,†

an ≡ a+ bn+ cn2 , bn ≡ b+ 2cn , cn ≡ c
†true acceleration would be represented by 2c.

6.11. Basis Transformations and EMA Initialization 259

Upon passing through the first stage of h(n), the output will be,

a[1]n =
∑
k

[
a+ b(n− k)+c(n− k)2]h(k)

=
∑
k

[
a+ b(n− k)+c(n2 − 2nk+ k2)

]
h(k)

= a+ b(n− μ1)+c(n2 − 2nμ1 + μ2)

= (a− bμ1 + cμ2)+(b− 2cμ1)n+ cn2

and applying the same formula to the second and third stages of h(n), we find the
outputs,

a[1]n = (a− bμ1 + cμ2)+(b− 2cμ1)n+ cn2

a[2]n = (a− 2bμ1 + 2cμ2 + 2cμ2
1)+(b− 4cμ1)n+ cn2

a[3]n = (a− 3bμ1 + 3cμ2 + 6cμ2
1)+(b− 6cμ1)n+ cn2

which can be re-expressed in terms of the an, bn, cn signals,

a[1]n = an − μ1bn + μ2cn

a[2]n = an − 2μ1bn + 2(μ2 + μ2
1)cn

a[3]n = an − 3μ1bn + 3(μ2 + 2μ2
1)cn

Solving these for an, bn, cn leads to the time-domain equivalent of Eq. (6.10.10),⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2μ3
1

⎡⎢⎣ 6μ3
1 −6μ3

1 2μ3
1

μ2 + 4μ2
1 −2(μ2 + 3μ2

1) μ2 + 2μ2
1

μ1 −2μ1 μ1

⎤⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦
and in particular,

an = 3a[1]n − 3a[2]n + a[3]n

6.11 Basis Transformations and EMA Initialization

The transformation matrix between the c(n)= [c0(n), c1(n), . . . , cd(n)]T basis and
the cascaded basis a(n)= [a[1]n , a[2]n , . . . , a[d+1]

n]T can be written in the general form:

a(n)=Mc(n) ⇒ a[r]n =
d∑
i=0

Mrici(n) , r = 1,2, . . . , d+1 (6.11.1)

The matrix elementsMri can be found by looking at the special case when the input
is a polynomial of degree d,

xn+τ =
d∑
i=0

τici(n)

260 6. Exponential Smoothing

The convolutional output of the filter H[r](z) is then,

a[r]n =
∞∑
k=0

h[r](k)xn−k =
∞∑
k=0

h[r](k)
d∑
i=0

(−k)ici(n)

It follows that,

Mri =
∞∑
k=0

h[r](k)(−k)i=
∞∑
k=0

αrλk
(k+ r − 1)!
k!(r − 1)!

(−k)i (6.11.2)

with 1 ≤ r ≤ d+ 1 and 0 ≤ i ≤ d. The matrices for d = 1 and d = 2 in Eqs. (6.8.8) and
(6.8.11) are special cases of (6.11.2). The function emat calculatesM numerically,

M = emat(d,lambda); % polynomial to cascaded basis transformation matrix

One of the uses of this matrix is to determine the initial condition vector in the a[r]n
basis, a init =Mc init, where c init is more easily determined, for example, using the default
method of the function stema.

The function mema implements the multiple exponential moving average in cascade
form, generating the individual outputs a[r]n :

[a,A] = mema(y,d,la,ainit); % multiple exponential moving average

where A is anN×(d+1)matrix whose nth row is a(n)T= [
a[1]n , a[2]n , . . . , a[d+1]

n
]
, and a

is the an output of Eq. (6.8.17). The (d+1)×1 vector ainit represents the initial values
of a(n), that is, a init =

[
a[1]init , a

[2]
init , . . . , a

[d+1]
init

]T
. If the argument ainit is omitted, it

defaults to the following least-squares fitting procedure:

L = round((1+la)/(1-la)); % effective length of single EMA

cinit = lpbasis(L,d,-1) \ y(1:L); % fit order-d polynomial to first L inputs

M = emat(d,la); % transformation matrix to cascaded basis

ainit = M*cinit; % (d+1)×1 initial vector

The function mema calculates the filter outputs using the built-in function filter
to implement filtering by the single EMA filter H(z)= α/(1 − λz−1) and passing each
output to the next stage, for example, with a[0]n = yn,

a[r] = filter
(
α, [1,−λ], a[r−1], λa[r]init

)
, r = 1,2, . . . , d+ 1 (6.11.3)

The last argument of filter imposes the proper initial state on the filtering op-
eration (the particular form is dictated from the fact that filter uses the transposed
realization.) Eq. (6.11.3) is equivalent to the operations:

a[r]n = λa[r]n−1 +αa[r−1]
n , r = 1,2, . . . , d+ 1 (6.11.4)

Example 6.11.1: EMA Initialization. To clarify these operations and the initializations, we con-
sider a small example using d = 1 (double EMA) and λ = 0.9, α = 1− λ = 0.1. The data
vector y has length 41 and is given in the code segment below.

The top two graphs in Fig. 6.11.1 show the default initialization method in which a linear
fit (because d = 1) is performed to the first L = (1+λ)/(1−λ)= 19 data samples. In the

6.11. Basis Transformations and EMA Initialization 261

bottom two graphs, the initialization is based on performing the linear fit to just the first
L = 5 samples.

In all cases, the linearly-fitted segments are shown on the graphs (short dashed lines). In
the left graphs, the initialization parameters c init, a init were determined at time n = −1
and processing began at n = 0. In the right graphs, the c init, a init were recalculated to
correspond to time n = L−1 (i.e., n = 18 and n = 4 for the top and bottom graphs), and
processing was started at n = L. The table below displays the computations for the left
and right bottom graphs.

For both the left and right tables, the same five data samples {yn,0 ≤ n ≤ 4} were used to
determine the initialization vectors c init, which were then mapped into a init =Mc init. The
transformation matrixM is in this example (cf. Eq. (6.8.8)):

M =
[

1 −λ/α
1 −2λ/α

]
=

[
1 −9
1 −18

]

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = −1, filter for n ≥ 0

 double EMA
 linear fit, L = 19
 data

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = L−1, filter for n ≥ L

 double EMA
 linear fit, L = 19
 data

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = −1, filter for n ≥ 0

 double EMA
 linear fit, L = 5
 data

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = L−1, filter for n ≥ L

 double EMA
 linear fit, L = 5
 data

Fig. 6.11.1 Double-EMA initialization examples.

262 6. Exponential Smoothing

n yn a[1]n a[2]n
−1 −5.2000 −18.7000

0 7 −3.9800 −17.2280
1 14 −2.1820 −15.7234
2 12 −0.7638 −14.2274
3 19 1.2126 −12.6834
4 12 2.2913 −11.1860

5 14 3.4622 −9.7211
6 16 4.7160 −8.2774
...

...
...

...
39 44 39.2235 30.5592
40 47 40.0011 31.5034

n yn a[1]n a[2]n
−1

0 7
1 14
2 12
3 19
4 12 2.3000 −11.2000

5 14 3.4700 −9.7330
6 16 4.7230 −8.2874
...

...
...

...
39 44 39.2237 30.5596
40 47 40.0013 31.5037

For the left table, the data fitting relative to n = −1 gives:

c init =
[

8.3
1.5

]
⇒ a init =Mc init =

[
1 −9
1 −18

][
8.3
1.5

]
=

[
−5.2
−18.7

]

obtained from cinit = S\y(1:L), indeed, with S = lpbasis(L, d,−1), we find

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ c init = (STS)−1STy1:L =
[

0.8 0.5 0.2 −0.1 −0.4
−0.2 −0.1 0.0 0.1 0.2

]
⎡⎢⎢⎢⎢⎢⎢⎣

7
14
12
19
12

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

8.3
1.5

]

These initial values are shown at the top of the left table. The rest of the table entries are
computed by cranking the difference equations for n ≥ 0,

a[1]n = λa[1]n−1 +αyn
a[2]n = λa[2]n−1 +αa[1]n

for example,

a[1]0 = λa[1]−1 +αy0 = (0.9)(−5.2)+(0.1)(7)= −3.980

a[2]0 = λa[2]−1 +αa[1]0 = (0.9)(−18.7)+(0.1)(−3.98)= −17.228

For the right table, the initialization coefficients relative ton = L−1 = 4 may be determined
by boosting those for n = −1 by L = 5 time units:

c̄ init = (FT)Lc init =
[

1 1
0 1

]5 [
8.3
1.5

]
=

[
1 5
0 1

][
8.3
1.5

]
=

[
15.8
1.5

]

ā init =Mc̄ init =
[

1 −9
1 −18

][
15.8
1.5

]
=

[
2.3

−11.2

]

6.11. Basis Transformations and EMA Initialization 263

Alternatively, c̄ init can be computed from cinit = lpbasis(L,d,L-1)\y(1:L), i.e.,

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −4
1 −3
1 −2
1 −1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ c̄ init = (STS)−1STy1:L =
[
−0.2 0.0 0.2 0.4 0.6
−0.2 −0.1 0.0 0.1 0.2

]
⎡⎢⎢⎢⎢⎢⎢⎣

7
14
12
19
12

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

15.8
1.5

]

The ā init values are shown on the right table at the n = 4 line. The rest of the table is
computed by cranking the above difference equations starting at n = 5. For example,

a[1]5 = λa[1]4 +αy5 = (0.9)(2.3)+(0.1)(14)= 3.47

a[2]5 = λa[2]4 +αa[1]5 = (0.9)(−11.2)+(0.1)(3.47)= −9.733

We note that the filtered values at n = L− 1 = 4 on the left table and the initial values on
the right table are very close to each other, and therefore, the two initialization methods
produce very comparable results for the output segments n ≥ L. The following MATLAB
code illustrates the generation of the bottom graphs in Fig. 6.11.1:

y = [7 14 12 19 12 14 16 26 24 22 13 22 26 15 22 28 28 29 34 23 26 ...
39 29 34 32 38 40 40 40 35 32 41 45 41 41 48 42 44 52 44 47]’;

n = (0:length(y)-1)’;

d=1; F=binmat(d,1); L=5; % F = boost matrix - not needed

la = 0.9; al = 1-la;
% L = round((1+la)/(1-la)); % use this L for the top two graphs

cinit = lpbasis(L,d,-1)\y(1:L); % fit relative to n = −1

M = emat(d,la); % transformation matrix

ainit = M*cinit; % initial values for cascade realization

C = stema(y,d,la,cinit); % needed for testing purposes only

[a,A] = mema(y,d,la,ainit); % filter for n ≥ 0

N1 = norm(A-C*M’) + norm(a-C(:,1)); % compare stema and mema outputs

t = (0:L-1)’; p = lpbasis(L,d,-1)*cinit; % initial L fitted values

figure; plot(n,y,’.’, n,a,’-’, t,p,’--’, n,y,’:’); % bottom left graph

cinit = lpbasis(L,d,L-1)\y(1:L); % fit relative to n = L− 1

% or, multiply previous cinit by (F’)^L

ainit = M*cinit; % initial values for cascade realization

nL = n(L+1:end); yL = y(L+1:end); % restrict input to n ≥ L

C = stema(yL,d,la,cinit); % needed for testing purposes only

[a,A] = mema(yL,d,la,ainit); % filter for n ≥ L

N2 = norm(A-C*M’) + norm(a-C(:,1)); % compare stema and mema outputs

t = (0:L-1)’; p = lpbasis(L,d,L-1)*cinit; % initial L fitted values

figure; plot(n,y,’.’, nL,a,’-’, t,p,’--’, n,y,’:’); % bottom right graph

Ntot = N1 + N2 % overall test – should be zero

264 6. Exponential Smoothing

The first initialization scheme (finding c init, a init at n = −1 and starting filtering at n = 0)
is generally preferable because it produces an output of the same length as the input. ��

An alternative initialization scheme that is more common in financial market trading
applications of EMA is discussed in Sec. 6.17.

6.12 Holt’s Exponential Smoothing

We recall that the d = 1 steady-state EMA was given by[
an
bn

]
=

[
1 1
0 1

][
an−1

bn−1

]
+

[
α1

α2

]
(yn − an−1 − bn−1) (6.12.1)

with asymptotic gain factorsα1 = 1−λ2 andα2 = (1−λ)2, which are both computable
from a single λ parameter.

Holt [240] has generalized (6.12.1) to allow arbitrary values for α1,α2. The addi-
tional flexibility has been found to be effective in applications. There is an alternative
way of writing (6.12.1). From the first equation, we have

an = an−1+bn−1+α1(yn−an−1−bn−1) ⇒ yn−an−1−bn−1 = 1

α1
(an−an−1−bn−1)

and substituting into the second,

bn = bn−1 +α2(yn − an−1 − bn−1)= bn−1 + α2

α1
(an − an−1 − bn−1)

Defining ᾱ2 = α2/α1, we may write the new system as follows:

an = an−1 + bn−1 +α1(yn − an−1 − bn−1)

bn = bn−1 + ᾱ2(an − an−1 − bn−1)
(6.12.2)

and defining the effective λ-parameters λ1 = 1−α1 and λ̄2 = 1− ᾱ2,

an = λ1(an−1 + bn−1)+α1yn

bn = λ̄2bn−1 + ᾱ2(an − an−1)
(Holt’s exponential smoothing) (6.12.3)

Eq. (6.12.1) is referred to a exponential smoothing with “local trend”. The first equa-
tion tracks the local level an, and the second, the local slope bn, which is being deter-
mined by smoothing the first-order difference of the local level an − an−1.

The predicted value is as usual ŷn/n−1 = an−1 + bn−1, and for the next time instant,
ŷn+1/n = an + bn, and τ steps ahead, ŷn+τ/n = an + bnτ. The MATLAB function holt
implements Eq. (6.12.1):

C = holt(y,a1,a2,cinit); % Holt’s exponential smoothing

6.13. State-Space Models for Holt’s Method 265

where C has the same meaning as stema, its nth row cT(n)= [an, bn] holding the local
level and slope at time n. The initialization vector cinit can be chosen as in stema by
a linear fit to the first L samples of y, where L = (1 + λ)/(1 − λ), with λ determined
from α1 from the relationship α1 = 1 − λ2 or λ = √1−α1. Another possibility is to
choose c init = [y0,0]T, or, [y0, y1 − y0]T.

Like emaerr, the MATLAB function holterr evaluates the MSE/MAE/MAPE errors over
any set of parameter pairs (α1,α2) and produces the corresponding optimum pair
(α1,opt,α2,opt):

[err,a1opt,a2opt] = holterr(y,a1,a2,type,cinit); % mean error measures

By taking z-transforms of Eq. (6.12.1), we obtain the transfer functions from yn to
the two outputs an, bn:

Ha(z) = α1 + (α2 −α1)z−1

1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

Hb(z) = α2(1− z−1)
1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

(6.12.4)

The transfer function from yn to the predicted output ŷn+1/n isH(z)= Ha(z)+Hb(z).
Making the usual assumption that yn is a white noise sequence, the variance of ŷn+1/n
will be σ2

ŷ =Rσ2
y , where R is the NRR of H(z):

R =
∞∑
n=0

h2(n)= 2α2
1 +α1α2 + 2α2

α1(4− 2α1 −α2)
(6.12.5)

This reduces to Eq. (6.7.9) in the EMA case of α1 = 1 − λ2 and α2 = (1 − λ)2,
while Eq. (6.12.4) reduces to (6.8.5). It can be shown that R remains less than unity
for 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 2α1(1 − α1)/(1 + α1), with R reaching unity at α1 =√

2− 1 = 0.4142 and α2 = 2α1(1−α1)/(1+α1)= 2(3− 2
√

2)= 0.3431.

6.13 State-Space Models for Holt’s Method

Just like the d = 0 local level case could be represented by an innovations model, so
can the linear trend model. We may define the model by assuming that the prediction
is perfect and thus, the prediction error en/n−1 = yn − ŷn/n−1 ≡ εn is a white noise
signal. The state vector may be defined as xn = [an, bn]T, leading to the innovations
state-space model,

yn = [1,1]xn−1 + εn

xn =
[

1 1
0 1

]
xn−1 +

[
α1

α2

]
εn

(6.13.1)

Eliminating the state vector, we may obtain the transfer function from the innova-
tions sequence εn to the observation yn,

Y(z)
E(z) =

1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

(1− z−1)2

266 6. Exponential Smoothing

which leads to an ARIMA(0,2,2) or IMA(2,2) equivalent signal model:

∇2yn = yn − 2yn−2 + yn−2 = εn + (α1 +α2 − 2)εn−1 + (1−α1)εn−2 (6.13.2)

For α1 = 1− λ2 and α2 = (1− λ)2, we obtain the special case [253],

Y(z)
E(z) =

(1− λz−1)2

(1− z−1)2
, ∇2yn = εn − 2λεn−1 + λ2εn−2 (6.13.3)

The following more conventional formulation of the linear trend state-space model
has steady-state Kalman filtering equations that are equivalent to Holt’s method:[

an+1

bn+1

]
=

[
1 1
0 1

][
an
bn

]
+

[
wn
un

]
, yn = [1,0]

[
an
bn

]
+ vn (6.13.4)

where an, bn represent the local level and local slope, respectively, and wn,un, vn are
zero-mean, mutually uncorrelated, white-noise signals of variances σ2

w,σ2
u,σ2

v . Denot-
ing the state vector and its filtered and predicted estimates by,

xn =
[
an
bn

]
, x̂n/n =

[
ân
b̂n

]
, x̂n+1/n =

[
1 1
0 1

][
ân
b̂n

]

it turns out that the steady-state Kalman filtering equations take exactly the innovations
form of Eq. (6.13.1):

εn = yn − (ân−1 + b̂n−1) ,
[
ân
b̂n

]
=

[
1 1
0 1

][
ân−1

b̂n−1

]
+

[
α1

α2

]
εn (6.13.5)

where α1,α2 are related to the noise variances by:

σ2
w

σ2
v
= α

2
1 +α1α2 − 2α2

1−α1
,
σ2
u

σ2
v
= α2

2

1−α1
(6.13.6)

State-space models provide a modern way of thinking about exponential smoothing
and will be explored further in Chap. 13.

There is an extensive literature on exponential smoothing, a small subset of which
is [232–279]. There are many other variants (no less than 15), such as multiplicative,
seasonal, adaptive versions. A recent review of all cases that emphasizes the state-space
point of view is found in [239].

We finish by mentioning the Holt-Winters generalization [241] of Holt’s method to
seasonal data. In addition to tracking the level and slope signals an, bn the method also
tracks the local seasonal component, say sn. For the additive version, we have:

an = λ1(an−1 + bn−1)+α1(yn − sn−D)
bn = λ̄2bn−1 + ᾱ2(an − an−1)

sn = λ3sn−D +α3(yn − an−1 − bn−1)

(Holt-Winters) (6.13.7)

whereD is the assumed periodicity of the seasonal data, andα3 and λ3 = 1−α3 are the
smoothing parameters associated with the seasonal component. The predicted estimate
is obtained by ŷn+1/n = an + bn + sn−D.

6.14. Filtering Methods in Financial Market Trading 267

6.14 Filtering Methods in Financial Market Trading

Technical analysis of financial markets refers to a family of signal processing methods
and indicators used by stock market traders to make sense of the constantly fluctuating
market data and arrive at successful “buy” or “sell” decisions.

Both linear and nonlinear filtering methods are used. A comprehensive reference on
such methods is the Achelis book [280]. Some additional references are [281–347].

Here, we look briefly at some widely used indicators arising from FIR or EMA filters,
and summarize their properties and their MATLAB implementation. In order to keep
the discussion self-contained, some material from the previous sections is repeated.

6.15 Moving Average Filters – SMA, WMA, TMA, EMA

Among the linear filtering methods are smoothing filters that are used to smooth out
the daily fluctuations and bring out the trends in the data. The most common filters are
the simple moving average (SMA) and the exponentially weighted moving average (EMA),
and variations, such as the weighted or linear moving average (WMA) and the triangular
moving average (TMA). The impulse responses of these filters are:

(SMA) h(n)= 1

N
, 0 ≤ n ≤ N − 1

(WMA) h(n)= 2(N − n)
N(N + 1)

, 0 ≤ n ≤ N − 1

(TMA) h(n)= N −
∣∣n−N + 1

∣∣
N2

, 0 ≤ n ≤ 2N − 2

(EMA) h(n)= (1− λ)λn , 0 ≤ n <∞

(6.15.1)

with transfer functions,

(SMA) H(z)= 1+ z−1 + z−2 + · · · + z−N+1

N
= 1

N
1− z−N
1− z−1

(WMA) H(z)= 2

N(N + 1)
N − (N + 1)z−1 + z−N−1

(1− z−1)2

(TMA) H(z)=
[

1

N
1− z−N
1− z−1

]2

(EMA) H(z)= α
1− λz−1

, α = 1− λ

(6.15.2)

whereN denotes the filter span for the SMA and WMA cases, while for the EMA case, λ is
a forgetting factor such that 0 < λ < 1, which is usually specified in terms an equivalent
FIR length N given by the following condition, which implies that the SMA and the EMA
filters have the same lag and the same noise reduction ratio, as discussed in Sec. 6.1,

N = 1+ λ
1− λ ⇒ λ = N − 1

N + 1
⇒ α = 1− λ = 2

N + 1
(6.15.3)

268 6. Exponential Smoothing

The TMA filter has length 2N − 1 and is evidently the convolution of two length-N
SMAs. Denoting by yn the raw data, where n represents the nth trading day (or, weekly,
monthly, or quarterly sample periods), we will denote the output of the moving average
filters by an representing the smoothed local level of yn. The corresponding I/O filtering
equations are then,

(SMA) an = yn + yn−1 + yn−2 + · · · + yn−N+1

N

(WMA) an = 2

N(N + 1)

N−1∑
k=0

(N − k)yn−k

(TMA) an = 1

N2

2N−2∑
k=0

(
N − |k−N + 1|)yn−k

(EMA) an = λan−1 + (1− λ)yn

(6.15.4)

The typical trading rule used by traders is to “buy” when an is rising and yn lies
above an, and to “sell” when an is falling and yn lies below an.

Unfortunately, these widely used filters have an inherent lag, which can often result
in false buy/sell signals. The basic tradeoff is that longer lengths N result in longer
lags, but at the same time, the filters become more effective in smoothing and reducing
noise in the data. The noise-reduction capability of any filter is quantified by its “noise-
reduction ratio” defined by,

R =
∞∑
n=0

h2(n) (6.15.5)

with smaller R corresponding to more effective noise reduction. By construction, the
above filters are lowpass filters with unity gain at DC, therefore, satisfying the constraint,

∞∑
n=0

h(n)= 1 (6.15.6)

The “lag” is defined as the group delay at DC which, after using Eq. (6.15.6), is given by,

n̄ =
∞∑
n=0

nh(n) (6.15.7)

One can easily verify that the noise-reduction ratios and lags of the above filters are:

(SMA) R = 1

N
, n̄ = N − 1

2

(WMA) R = 4N + 2

3N(N + 1)
, n̄ = N − 1

3

(TMA) R = 2N2 + 1

3N3
, n̄ = N − 1

(EMA) R = 1− λ
1+ λ =

1

N
, n̄ = λ

1− λ =
N − 1

2
, for equivalent N

(6.15.8)

6.15. Moving Average Filters – SMA, WMA, TMA, EMA 269

The tradeoff is evident, with R decreasing and n̄ increasing with N.
We include one more lowpass smoothing filter, the integrated linear regression slope

(ILRS) filter [307] which is developed in Sec. 6.16. It has unity DC gain and its impulse
response, transfer function, lag, and NRR are given by,

(IRLS) h(n)= 6(n+ 1)(N − 1− n)
N(N2 − 1)

, n = 0,1, . . . ,N − 1

H(z)= 6

N(N2 − 1)
N(1− z−1)(1+ z−N)−(1− z−N)(1+ z−1)

(1− z−1)3

n̄ = N − 2

2
, R = 6(N2 + 1)

5N(N2 − 1)

(6.15.9)

Fig. 6.15.1 compares the frequency responses of the above filters. We note that
the ILRS has similar bandwidth as the WMA, but it also has a smaller NRR and more
suppressed high-frequency range, thus, resulting in smoother output.

0 0.1 0.2 0.3 0.4 0.5

−36

−30

−24

−18

−12

−6

0

ω / π

dB

frequency responses, N = 19, λ = 0.90

 SMA
 WMA
 TMA
 ILRS
 EMA

0 0.1 0.2 0.3 0.4 0.5

−36

−30

−24

−18

−12

−6

0

ω / π

dB

frequency responses, N = 39, λ = 0.95

 SMA
 WMA
 TMA
 ILRS
 EMA

Fig. 6.15.1 Frequency responses of SMA, WMA, TMA, ILRS, and EMA filters.

As a small example, we also give for comparison the impulse responses, h = [h0, h1, . . .],
of the SMA, WMA, TMA, and ILRS filters for the case N = 5,

(SMA) h = 1

5

[
1, 1, 1, 1, 1

]
(WMA) h = 1

15

[
5, 4, 3, 2, 1

]
(TMA) h = 1

25

[
1, 2, 3, 4, 5, 4, 3, 2, 1

]
(ILRS) h = 1

10

[
2, 3, 3, 2, 0

]
with the SMA having constant weights, the WMA having linearly decreasing weights, the
TMA has triangular weights, and the last coefficient hN−1 of the ILRS always being zero.

270 6. Exponential Smoothing

The following MATLAB functions implement the SMA, WMA, TMA, and ILRS moving
averages. The input array y represents the financial data to be filtered.

a = sma(y,N,yin); % simple moving average

a = wma(y,N,yin); % weighted moving average

a = tma(y,N,yin); % triangular moving average

a = ilrs(y,N,yin); % integrated linear regression slope

The string variable yin specifies the way the filters are initialized and can take on
the following values as explained further in Sec. 6.19,

yin = ’f’, % progressive filtering (default method)

yin = ’n’, % initial transients are NaNs (facilitates plotting)

yin = ’c’, % standard convolutional transients

Some comparisons of these and other moving average indicators are presented in
Figures 6.18.2 and 6.21.1.

6.16 Predictive Moving Average Filters

The predictive FIR and double EMA filters discussed in Sects. 6.4 and 6.8 find application
in stock market trading. Their main property is the elimination or shortening of the
lag, which is accomplished by tracking both the local level and the local slope of the
data. More discussion of these filters and their application in the trading context may
be found in Refs. [297–308].

The local-level and local-slope FIR filters ha(k) and hb(k) were given in Eq. (6.4.4),
and their filtering equations by (6.4.5). They define the following market indicators:

an =
N−1∑
k=0

ha(k)yn−k = linear regression indicator

bn =
N−1∑
k=0

hb(k)yn−k = linear regression slope indicator

an + bn =
N−1∑
k=0

h1(k)yn−k = time-series forecast indicator

(6.16.1)

where h1(k)= ha(k)+hb(k). The quantity an + bn, denoted by ŷn+1/n, represents the
one-step ahead forecast or prediction to time n+1 based on the data up to time n. More
generally, the prediction τ steps ahead from time n is given by the following indicator,
which we will refer to as the predictive moving average (PMA),

ŷn+τ/n = an + τbn =
N−1∑
k=0

hτ(k)yn−k (PMA) (6.16.2)

where, as follows from Eq. (6.4.4), we have for n = 0,1, . . . ,N − 1,

6.16. Predictive Moving Average Filters 271

hτ(n)= ha(n)+τhb(n)= 2(2N − 1− 3n)
N(N + 1)

+ τ 6(N − 1− 2n)
N(N2 − 1)

(6.16.3)

The time “advance” τ can be non-integer, positive, or negative. Positive τs corre-
spond to forecasting, negative τs to delay or lag. In fact, the SMA and WMA are special
cases of Eq. (6.16.3) for the particular choices of τ = −(N− 1)/2 and τ = −(N− 1)/3,
respectively.

The phrase “linear regression indicators” is justified in Sec. 6.18. The filters hτ(n)
are very flexible and useful in the trading context, and are actually the optimal filters that
have minimum noise-reduction ratio subject to the two constraints of having unity DC
gain and lag equal to −τ, that is, for fixed N, hτ(n) is the solution of the optimization
problem (for N = 1, we ignore the lag constraint to get, hτ(n)= 1, for n = 0, and all τ):

R =
N−1∑
n=0

h2(n)= min, subject to
N−1∑
n=0

h(n)= 1 ,
N−1∑
n=0

nhτ(n)= −τ (6.16.4)

This was solved in Sec. 6.4. The noise-reduction-ratio of these filters is,

Rτ =
N−1∑
n=0

h2
τ(n)=

1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)
(6.16.5)

We note the two special cases, first for the SMA filter having τ = −(N − 1)/2, and
second, for the zero-lag filter ha(n) having τ = 0,

RSMA = 1

N
, Ra = 4N − 2

N(N + 1)

The transfer functions of the FIR filters ha(n), hb(n) are not particularly illuminat-
ing, however, they are given below in rational form,

Ha(z) =
N−1∑
n=0

ha(n)z−n = 2

N(N + 1)
N(1− z−1)(2+ z−N)−(1+ 2z−1)(1− z−N)

(1− z−1)2

Hb(z) =
N−1∑
n=0

hb(n)z−n = 6

N(N2 − 1)
N(1− z−1)(1+ z−N)−(1+ z−1)(1− z−N)

(1− z−1)2

By a proper limiting procedure, one can easily verify the unity-gain and zero-lag
properties, Ha(z)

∣∣
z=1 = 1, and, n̄ = −H′a(z)

∣∣
z=1 = 0.

The ILRS filter mentioned in the previous section is defined as the integration, or
cumulative sum, of the slope filter, which can be evaluated explicitly resulting in (6.15.9),

h(n)=
n∑
k=0

hb(k)=
n∑
k=0

6(N − 1− 2k)
N(N2 − 1)

= 6(n+ 1)(N − 1− n)
N(N2 − 1)

(6.16.6)

where 0 ≤ n ≤ N − 1. For n > N, since hb(k) has duration N, the above sum remains
constant and equal to zero, i.e., equal to its final value,

N−1∑
k=0

hb(k)= 0

272 6. Exponential Smoothing

The corresponding transfer function is the integrated (accumulated) form of Hb(z)
and is easily verified to be as in Eq. (6.15.9),

H(z)= Hb(z)
1− z−1

The following MATLAB function, pma, implements Eq. (6.16.2) and the related indi-
cators, where the input array y represents the financial data to be filtered. The function,
pmaimp, implements the impulse response of Eq. (6.16.3).

at = pma(y,N,tau,yin); % at = a + tau*b, prediction distance tau

a = pma(y,N,0,yin); % local-level indicator
b = pma(y,N,1,yin)-pma(y,N,0,yin); % local-slope indicator

af = pma(y,N,1,yin); % time-series forecast indicator, af = a + b

ht = pmaimp(N,tau); % impulse response of predictive filter
ha = pmaimp(N,0); % impulse response of local level filter
hb = pmaimp(N,1)-pmaimp(N,0); % impulse response of local slope filter

and again, the string variable yin specifies the way the filters are initialized and can take
on the following values,

yin = ’f’, % progressive filtering (default method)

yin = ’n’, % initial transients are NaNs (facilitates plotting)

yin = ’c’, % standard convolutional transients

A few examples of impulse responses are as follows, for N = 5,8,11,

N = 5 , ha = 1

5

[
3 , 2 , 1 , 0 , −1

]
(local level)

hb = 1

10

[
2 , 1 , 0 , −1 , −2

]
(local slope)

h1 = 1

10

[
8 , 5 , 2 , −1 , −4

]
(time-series forecast)

N = 8 , ha = 1

12

[
5 , 4 , 3 , 2 , 1 , 0 , −1 , −2

]
hb = 1

84

[
7 , 5 , 3 , 1 , −1 , −3 , −5 , −7

]
h1 = 1

28

[
14 , 11 , 8 , 5 , 2 , −1 , −4 , −7

]
N = 11 , ha = 1

22

[
7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 , −3

]
hb = 1

110

[
5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 , −3 , −4 , −5

]
h1 = 1

55

[
20 , 17 , 14 , 11 , 8 , 5 , 2 , −1 , −4 , −7 , −10

]
Some comparisons of PMA with other moving average indicators are shown in Figures

6.18.2 and 6.21.1.

6.17. Single, Double, and Triple EMA Indicators 273

6.17 Single, Double, and Triple EMA Indicators

As discussed in Sec. 6.6, the single EMA (SEMA), double EMA (DEMA), and triple EMA
(TEMA) steady-state exponential smoothing recursions are as follows,

en/n−1 = yn − ŷn/n−1 = yn − an−1

an = an−1 + (1− λ)en/n−1
(SEMA) (6.17.1)

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1)[
an
bn

]
=

[
1 1
0 1

][
an−1

bn−1

]
+

[
1− λ2

(1− λ)2

]
en/n−1

(DEMA) (6.17.2)

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1 + cn−1)⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1

α2

α3

⎤⎥⎦en/n−1

(TEMA) (6.17.3)

where

α1 = 1− λ3 , α2 = 3

2
(1− λ)(1− λ2) , α3 = 1

2
(1− λ)3

and ŷn/n−1 represents the forecast of yn based on data up to time n−1. More generally,
the forecast ahead by a distance τ is given by,

(SEMA) ŷn+τ/n = an
(DEMA) ŷn+τ/n = an + bnτ
(TEMA) ŷn+τ/n = an + bnτ+ cnτ2

⇒
ŷn/n−1 = an−1

ŷn/n−1 = an−1 + bn−1

ŷn/n−1 = an−1 + bn−1 + cn−1

(6.17.4)

We saw in Sec. 6.8 that an alternative way of computing the local level and local slope
signals an, bn in the DEMA case is in terms of the outputs of the cascade of two single
EMAs, that is, with α = 1− λ,

a[1]n = λa[1]n−1 +αyn
a[2]n = λa[2]n−1 +αa[1]n

(6.17.5)

an = 2a[1]n − a[2]n = local level DEMA indicator

bn = αλ
(
a[1]n − a[2]n

) = local slope DEMA indicator
(6.17.6)

The transfer functions from yn to the signals an, bn were given in Eq. (6.8.5), and
are expressible as follows in terms of the transfer function of a single EMA, H(z)=
α/(1− λz−1),

274 6. Exponential Smoothing

Ha(z) = α(1+ λ− 2λz−1)
(1− λz−1)2

= 2H(z)−H2(z)= 1− [
1−H(z)]2

Hb(z) = α
2(1− z−1)
(1− λz−1)2

= α
λ

[
H(z)−H2(z)

] (6.17.7)

Similarly, in the TEMA case, the signals an, bn, cn can be computed from the outputs
of three successive single EMAs via the following relationships,

a[1]n = λa[1]n−1 +αyn
a[2]n = λa[2]n−1 +αa[1]n
a[3]n = λa[3]n−1 +αa[2]n

(6.17.8)

⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2λ2

⎡⎢⎢⎣
6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n
a[3]n

⎤⎥⎥⎦ (6.17.9)

where α = 1− λ. See also Eqs. (6.8.9)–(6.8.13). In particular, we have,

an = 3a[1]n − 3a[2]n + a[3]n (local level TEMA indicator) (6.17.10)

Initialization issues for the single EMA, DEMA, and TEMA recursions are discussed
in Sec. 6.19. The following MATLAB functions implement the corresponding filtering
operations, where the input array y represents the financial data to be filtered.

a = sema(y,N,yin); % single exponential moving average
[a,b,a1,a2] = dema(y,N,yin); % double exponential moving average

[a,b,c,a1,a2,a3] = tema(y,N,yin); % triple exponential moving average

The variable yin specifies the way the filters are initialized and can take on the
following possible values,

yin = y(1) % default for SEMA
yin = ’f’ % fits polynomial to first N samples, default for DEMA, TEMA
yin = ’c’ % cascaded initialization for DEMA, TEMA, described in Sect. 6.19
yin = any vector of initial values of [a], [a;b], or [a;b;c] at n=-1
yin = [0], [0;0], or [0;0;0] for standard convolutional output

Even though the EMA filters are IIR filters, traders prefer to specify the parameter λ
of the EMA recursions through the SMA-equivalent length N defined as in Eq. (6.1.16),

λ = N − 1

N + 1
� N = 1+ λ

1− λ (6.17.11)

The use of DEMA and TEMA as market indicators with less lag was first advocated
by Mulloy [297,298]. Some comparisons of these with other moving average indicators
are shown in Fig. 6.18.2.

6.18. Linear Regression and R-Square Indicators 275

6.18 Linear Regression and R-Square Indicators

In the literature of technical analysis, the PMA indicators of Eq. (6.16.1) are usually not
implemented as FIR filters, but rather as successive fits of straight lines to the past N
data from the current data point, that is, over the time span, [n−N+ 1, n], for each n.
This is depicted Fig. 6.18.1 below.

Fig. 6.18.1 Local linear regression and prediction.

They have been rediscovered many times in the past and different names given to
them. For example, Lafferty [300] calls them “end-point moving averages”, while Rafter
[303] refers to them as “moving trends.” Their application as a forecasting tool was
discussed first by Chande [299].

Because of the successive fitting of straight lines, the signals an, bn are known as
the “linear regression” indicator and the “linear regression slope” indicator, respectively.
The an indicator is also known as “least-squares moving average” (LSMA).

For each n ≥ N − 1, the signals an, bn can be obtained as the least-squares solution
of the following N×2 overdetermined system of linear equations in two unknowns:

an − kbn = yn−k , k = 0,1, . . . ,N − 1 (6.18.1)

which express the fitting of a straight line, a + bτ, to the data [yn−N+1, . . . , yn−1, yn],
that is, over the time window, [n−N+ 1, n], where a is the intercept at the end of the
line. The overdetermined system (6.18.1) can be written compactly in matrix form by
defining the length-N column vectors,

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
...
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
...
k
...

N − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−k

...
yn−N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ [

u,−k
][
an
bn

]
= yn (6.18.2)

with the least-squares solution expressed in the following MATLAB-like vectorial nota-
tion using the backslash operator,

276 6. Exponential Smoothing

[
an
bn

]
= [

u,−k
] \yn (6.18.3)

Indeed, this is the solution for the local level and local slope parameters a,b that
minimize the following least-squares performance index, defined for each n,

Jn =
N−1∑
k=0

(
a− bk− yn−k

)2 = min (6.18.4)

In order to account also for the initial transient period, 0 ≤ n ≤ N − 1, we may
change the upper limit of summation in Eq. (6.18.4) to,

Jn =
min(n,N−1)∑

k=0

(
a− bk− yn−k

)2 = min (6.18.5)

which amounts to fitting a straight line to a progressively longer and longer data vector
until its length becomes equal to N, that is, starting with a0 = y0 and b0 = 0,† we fit a
line to [y0, y1] to get a1, b1, then fit a line to [y0, y1, y2] to get a2, b2, and so on until
n = N − 1, and beyond that, we continue with a length-N data window.

Thus, we may state the complete solution for all 0 ≤ n ≤ L−1, where L is the length
of the data vector yn, using the backslash notation,‡

for each, n = 0,1,2, . . . , L− 1, do:

Kn = min(n,N − 1)+1 = fitting length, Kn = N when n ≥ N − 1

k = [
0 : Kn − 1

]′ = column vector, length Kn

yn = y(n− k)= column vector, [yn, yn−1, . . . , yn−Kn+1]T

u = ones(Kn,1)= column vector[
an
bn

]
= [

u,−k
] \yn = linear regression indicators

R2(n)= (
corr(−k,yn)

)2 = 1− det
(
corrcoef(−k,yn)

) = R2 indicator

(6.18.6)

where we also included the so-called R-square indicator,∗ which is the coefficient of
determination for the linear fit, and quantifies the strength of the linear relationship,
that is, higher values of R2 suggest that the linear fit is statistically significant with a
certain degree of confidence (usually taken to be at the 95% confidence level).

The MATLAB function, r2crit in the OSP toolbox, calculates the critical values R2
c of

R2 for a given N and given confidence level p, such that if R2(n)> R2
c , then the linear

fit is considered to be statistically significant for the nth segment. Some typical critical
values of R2

c at the p = 0.95 and p = 0.99 levels are listed below in Eq. (6.18.7), and
were computed with the following MATLAB commands (see also [280]),

†b0 = 0 is an arbitrary choice since b0 is indeterminate for N = 1.
‡the backslash solution also correctly generates the case n = 0, i.e., a0 = y0 and b0 = 0.
∗where, corr, det, and corrcoef, are built-in MATLAB functions.

6.18. Linear Regression and R-Square Indicators 277

N = [5, 10, 14, 20, 25, 30, 50, 60, 120];

R2c = r2crit(N,0.95);

R2c = r2crit(N,0.99);

N p = 0.95 p = 0.99
5 0.7711 0.9180

10 0.3993 0.5846
14 0.2835 0.4374
20 0.1969 0.3152
25 0.1569 0.2552
30 0.1303 0.2143
50 0.0777 0.1303
60 0.0646 0.1090

120 0.0322 0.0549

(6.18.7)

The standard errors for the successive linear fits, as well as the standard errors
for the quantities an, bn, can be computed by including the following lines within the
for-loop in Eq. (6.18.6),

en = yn −
[
u,−k

][
an
bn

]
= fitting error, column vector

σe(n) =
√

eTnen
Kn − 2

= standard error

σa(n) =
√

2(2Kn − 1)
Kn(Kn + 1)

σe(n)= standard error for an

σb(n) =
√

12

Kn(K2
n − 1)

σe(n)= standard error for bn

(6.18.8)

The derivation of the expressions for σe,σa,σb follows from the standard theory
of least-squares linear regression. For example, linear regression based on the K pairs,
(xk, yk), k = 0,1, . . . , K− 1, results in the estimates, ŷk = a+ bxk, and error residuals,
ek = yk − ŷk, from which the standard errors can be calculated from the following
expressions [349],

σ2
e =

1

K − 2

N−1∑
k=0

e2
k , σ2

a = σ2
e
x2

Kσ2
x
, σ2

b =
σ2
e

Kσ2
x

(6.18.9)

For our special case of equally-spaced data, xk = −k, we easily find,

x = −k = − 1

K

K−1∑
k=0

k = −K − 1

2

x2 = k2 = 1

K

K−1∑
k=0

k2 = (K − 1)(2K − 1)
6

σ2
x = σ2

k = k2 − k2 = K
2 − 1

12

⇒
σ2
a =

2(2K − 1)
K(K + 1)

σ2
e

σ2
b =

12

K(K2 − 1)
σ2
e

278 6. Exponential Smoothing

Standard error bands [329], as well as other types of bands and envelopes, and their
use as market indicators, are discussed further in Sec. 6.22. The MATLAB function, lreg,
implements Eqs. (6.18.6) and (6.18.8) with usage,

[a,b,R2,se,sa,sb] = lreg(y,N,init); % linear regression indicators

y = data a = local level se = standard error
N = window length b = local slope sa = standard error for a
init = initialization R2 = R-square sb = standard error for b

where init specifies the initialization scheme and takes on the following values,

init = ’f’, progressive linear fitting of initial N-1 samples, default

init = ’n’, replacing initial N-1 samples of a,b,R2,se,sa,sb by NaNs

The local level and local slope outputs an, bn are identical to those produced by the
function pma of Sec. 6.16.

Generally, these indicators behave similarly to the DEMA indicators, but both indica-
tor types should be used with some caution since they are too quick to respond to price
changes and sometimes tend to produce false buy/sell signals. In other words, some
delay may miss the onset of a trend but provides more safety.

Example 6.18.1: Fig. 6.18.2 compares the SMA, EMA, WMA, PMA/linear regression, DEMA, TEMA
indicators. The data are from [305] and represent daily prices for Nicor-Gas over 130
trading days starting on Sept. 1, 2006. The included excel file, nicor.xls, contains the
open-high-low-close prices in its first four columns. The left graphs were produced by
the following MATLAB code, in which the function, ohlc, from the OSP toolbox, makes an
OHLC† bar chart,

Y = xlsread(’nicor.xls’); % read Nicor-Gas data
Y = Y(1:130,:); % keep only 130 trading days
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % filter length

figure; % SMA, EMA, WMA
plot(t,sma(y,N),’r-’, t,sema(y,N),’k--’, t,wma(y,N),’g-.’); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

figure; % PMA/lreg, DEMA, TEMA
plot(t,pma(y,N,0),’r-’, t,dema(y,N),’k--’, t,tema(y,N),’g-.’); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

The filter length wasN = 20. The right graphs are an expanded view of the range [45,90]
days and show more clearly the reduced lag of the PMA, DEMA, and TEMA indicators. At
about the 57th trading day, these indicators turn downwards but still lie above the data,
therefore, they would correctly issue a “sell” signal. By contrast, the SMA, EMA, and WMA
indicators are rising and lie below the data, and they would issue a “buy” signal.

†Open–High–Low–Close

6.18. Linear Regression and R-Square Indicators 279

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 SMA
 EMA
 WMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 SMA
 EMA
 WMA
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 PMA
 DEMA
 TEMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 PMA
 DEMA
 TEMA
 data

Fig. 6.18.2 Comparison of SMA, EMA, WMA with PMA/LREG, DEMA, TEMA indicators.

Fig. 6.21.1 in Sec. 6.21 compares the PMA with two other indicators of reduced lag, namely,
the Hull moving average (HMA), and the exponential Hull moving average (EHMA).

The R-squared and slope indicators are also useful in determining the direction of trend.
Fig. 6.18.3 shows the PMA/linear regression indicator, an, for the same Nicor data, together
with the corresponding R2(n) signal, and the slope signal bn, using again a filter length
of N = 20. They were computed with the MATLAB code:

[a,b,R2] = lreg(y,N); % local level, local slope, and R-squared

% equivalent calculation:
% a = pma(y,N,0);
% b = pma(y,N,1)-pma(y,N,0);

ForN = 20, the critical value of R2 at the 95% confidence level is R2
c = 0.1969, determined

in Eq. (6.18.7), and is displayed as the horizontal dashed line on the R2 graph.

280 6. Exponential Smoothing

0 20 40 60 80 100 120
42

44

46

48

50

52
linear regression indicator, N = 20

 lreg
 data

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

R−squared, N = 20

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

linear regression slope, N = 20

Fig. 6.18.3 PMA/linear regression, R-squared, and linear regression slope indicators.

When R2(n) is small, below R2
c , it indicates lack of a trend with the data moving sideways,

and corresponds to slope bn near zero.

When R2(n) rises near unity, it indicates a strong trend, but it does not indicate the direc-
tion, upwards or downwards. This is indicated by the slope indicator bn, which is positive
when the signal is rising, and negative, when it is falling. More discussion on using these
three indicators in conjunction may be found in [305]. ��

6.19 Initialization Schemes

In Eq. (6.18.6), one solves a shorter linear fitting problem of progressively increasing
length during the transient period, 0 ≤ n < N − 1, and then switches to fixed length N
for n ≥ N − 1.

6.19. Initialization Schemes 281

The same idea can be applied to all FIR filters, such as the SMA, WMA, TMA, and the
PMA filter, hτ(n), that is, to use the same type of filter, but of progressively increasing
length, during the period 0 ≤ n < N − 1, and then switch to using the filters of fixed
length N for n ≥ N − 1. The first N − 1 outputs computed in this manner are not the
same as the standard convolutional outputs obtained from the built-in function filter,
because the latter uses the same length-N filter and assumes zero initial internal states.

To clarify this, consider the SMA case with N = 5, then the above procedure and
the standard convolutional one compute the outputs in the following manner, agreeing
only after n ≥ N − 1 = 4,

progressive convolutional

a0 = y0 a0 = 1

5
y0

a1 = 1

2
(y1 + y0) a1 = 1

5
(y1 + y0)

a2 = 1

3
(y2 + y1 + y0) a2 = 1

5
(y2 + y1 + y0)

a3 = 1

4
(y3 + y2 + y1 + y0) a3 = 1

5
(y3 + y2 + y1 + y0)

a4 = 1

5
(y4 + y3 + y2 + y1 + y0) a4 = 1

5
(y4 + y3 + y2 + y1 + y0)

a5 = 1

5
(y5 + y4 + y3 + y2 + y1) a5 = 1

5
(y5 + y4 + y3 + y2 + y1)

· · · · · ·
Similarly, the local level PMA filters, ha, of lengths up to N = 5 can be determined

from Eq. (6.16.3), leading to the following progressive initializations,

N = 1 , ha = [1] , a0 = y0

N = 2 , ha = [1,0] , a1 = y1

N = 3 , ha = 1

6
[5,2,−1] , a2 = 1

6
(5y2 + 2y1 − y0)

N = 4 , ha = 1

10
[7,4,1,−2] , a3 = 1

10
(7y3 + 4y2 + y1 − 2y0)

N = 5 , ha = 1

5
[3,2,1,0,−1] , a4 = 1

5
(3y4 + 2y3 + y2 − y0)

and for the local slope filters hb,

N = 1 , hb = [0] , b0 = 0

N = 2 , hb = [1,−1] , b1 = y1 − y0

N = 3 , hb = 1

2
[1,0,−1] , b2 = 1

2
(y2 − y0)

N = 4 , hb = 1

10
[3,1,−1,−3] , b3 = 1

10
(3y3 + y2 − y1 − 3y0)

N = 5 , hb = 1

10
[2,1,0,−1,−2] , b4 = 1

10
(2y4 + y3 − y1 − 2y0)

282 6. Exponential Smoothing

where, we arbitrarily set hb = [0] for the case N = 1, since the slope is meaningless
for a single data point. To see the equivalence of these with the least-square criterion
of Eq. (6.18.5) consider, for example, the case N = 5 and n = 2,

J2 = (a− y2)2+(a− b− y1)2+(a− 2b− y0)2= min

with minimization conditions,

∂J2

∂a
= 2(a− y2)+2(a− b− y1)+2(a− 2b− y0)= 0

∂J2

∂b
= −2(a− b− y1)−4(a− 2b− y0)= 0

⇒
3a− 3b = y2 + y1 + y0

3a− 5b = y1+ 2y0

resulting in the solution,

a = 1

6
(5y2 + 2y1 − y0) , b = 1

2
(y2 − y0)

Similarly we have for the cases n = 0 and n = 1,

J0 = (a− y0)2= min ⇒ a = y0 , b = indeterminate

J1 = (a− y1)2+(a− b− y0)2= min ⇒ a = y1 , b = y1 − y0

EMA Initializations

The single, double, and triple EMA difference equations (6.17.1)–(6.17.3), also need to
be properly initialized at n = −1. For the single EMA case, a good choice is a−1 = y0,
which leads to the same value at n = 0, that is,

a0 = λa−1 +αy0 = λy0 +αy0 = y0 (6.19.1)

This is the default initialization for our function, sema. Another possibility is to
choose the mean of the first N data samples, a−1 = mean

(
[y0, y1, . . . , yN−1]

)
.

For DEMA, if we initialize both the first and the second EMAs as in Eq. (6.19.1), then
we must choose, a[1]−1 = y0, which leads to a[1]0 = y0, which then would require that,

a[2]−1 = a[1]0 = y0, thus, in this scheme, we would choose,⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ y0

y0

⎤⎦ ⇒
⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 2 −1

α/λ −α/λ

⎤⎦⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ y0

0

⎤⎦ (6.19.2)

This is the default initialization method for our function, dema. Another possibility
is to fit a straight line to a few initial data [297,348], such as the first N data, where
N is the equivalent SMA length, N = (1 + λ)/(1 − λ), and then extrapolate the line
backwards to n = −1. This can be accomplished in MATLAB-like notation as follows,

n = [
1 : N

]′ = column vector

y = [y0, y1, . . . , yN−1]′= column vector

u = ones
(
size(n)

)
[
a−1

b−1

]
= [

u,n
] \y

(6.19.3)

6.19. Initialization Schemes 283

If one wishes to use the cascade of two EMAs, then the EMA signals, a[1]n , a[2]n , must
be initialized by first applying Eq. (6.19.3), and then using the inverse matrix relationship
of Eq. (6.17.6), i.e., ⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ 1 −λ/α

1 −2λ/α

⎤⎦⎡⎣ a−1

b−1

⎤⎦ (6.19.4)

A third possibility [280] is to initialize the first EMA with a[1]−1 = y0, then calculate
the output at the time instant n = N − 1 and use it to initialize the second EMA at
n = N, that is, define a[2]N−1 = a[1]N−1. This value can be iterated backwards to n = −1 to

determine the proper initial value a[2]−1 such that, if iterated forward, it would arrive at

the chosen value a[2]N−1 = a[1]N−1. Thus, the steps in this scheme are as follows,

a[1]−1 = y0

for n = 0,1, . . . ,N − 1,

a[1]n = λa[1]n−1 +αyn
end

⇒

a[2]N−1 = a[1]N−1

for n = N−1, . . . ,1,0,

a[2]n−1 =
1

λ
(
a[2]n −αa[1]n

)
end

(6.19.5)

Upon exit from the second loop, one has a[2]−1 , then, one can transform the calculated

a[1]−1 , a
[2]
−1 to the an, bn basis in order to get the DEMA recursion started,⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 2 −1

α/λ −α/λ

⎤⎦⎡⎣ a[1]−1

a[2]−1

⎤⎦
Such cascaded initialization scheme for DEMA (and TEMA below) is somewhat ad

hoc since the EMA filters are IIR and there is nothing special about the time n = N;
one, could just as well wait until about n = 6N when typically all transient effects have
disappeared. We have found that the schemes described in Eqs. (6.19.2) and (6.19.3)
work the best.

Finally, we note that for ordinary convolutional output, one would choose zero initial
values, ⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 0

0

⎤⎦ ⇒
⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ 0

0

⎤⎦
All of the above initialization choices are incorporated in the function, dema. For

TEMA, the default initialization is similar to that of Eq. (6.19.2), that is,⎡⎢⎢⎢⎣
a[1]−1

a[2]−1

a[3]−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y0

y0

y0

⎤⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎣
a−1

b−1

c−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y0

0

0

⎤⎥⎥⎥⎦ (6.19.6)

Alternatively, one can fit a second-order polynomial to the first few data samples,
such as the first 2N samples [297], and extrapolate them back to n = −1. The fitting
can be done with the following MATLAB-like code,

284 6. Exponential Smoothing

n = [
1 : 2N − 1

]′ = column vector

y = [y0, y1, . . . , y2N−1]′= column vector

u = ones
(
size(n)

)
⎡⎢⎣ a−1

b−1

c−1

⎤⎥⎦ = [
u, n, n2] \y

The cascaded initialization scheme is also possible in which the output of the first
EMA at time n = N − 1 serves to initialize the second EMA at n = N, and the output
of the second EMA at n = 2N − 1 serves to initialize the third EMA at n = 2N. This,
as well as the second-order polynomial fitting initialization schemes are incorporated
in the function, tema.

A special case of the EMA indicator is “Wilder’s Exponential Moving Average” [281],
known as WEMA. It is used widely and appears in several other indicators, such as the
“Relative Strength Index” (RSI), the “Average True Range” (ATR), and the “Directional
Movement System” (±DMI and ADX), discussed in Sec. 6.23. AnN-point WEMA is defined
to be an ordinary EMA with λ,α parameters,

α = 1

N
, λ = 1−α = 1− 1

N
(WEMA parameters) (6.19.7)

It is equivalent to an EMA with effective length, Ne, determined as follows,

λ = Ne − 1

Ne + 1
= 1− 1

N
⇒ Ne = 2N − 1 (6.19.8)

The corresponding filtering equation for calculating the smoothed local-level signal
an from the input data yn, will be,

an = λan−1 +αyn = an−1 +α(yn − an−1)

or, for n ≥ 0,

an = an−1 + 1

N
(yn − an−1) (WEMA) (6.19.9)

The required initial value a−1 can be chosen in a variety of ways, just as in EMA.
However, by convention [281], the default way of fixing it is similar to that in Eq. (6.19.5).
It is defined by choosing the value of an at time n = N−1 to be the mean of firstN input
values, then, aN−1 is back-tracked to time n = −1, thus, we have,

aN−1 = 1

N
(y0 + y1 + · · · + yN−1)

for n = N−1, . . . ,1,0,

an−1 = 1

λ
(
an −αyn

)
end

(6.19.10)

6.20. Butterworth Moving Average Filters 285

Upon exit from the loop, one has the proper starting value of a−1. The following
MATLAB function, wema, implements WEMA with such default initialization scheme,

a = wema(y,N,ain); % Wilder’s EMA

y = signal to be smoothed

N = effective length, (EMA alpha = 1/N, lambda = 1-1/N)

ain = any initial value

= ’m’, default, as in Eq.(6.19.10)

= 0, for standard convolutional output

a = smoothed version of y

6.20 Butterworth Moving Average Filters

Butterworth moving average (BMA) lowpass filters, are useful alternatives [285] to the
first-order EMA filters, and have comparable smoothing properties and shorter lag. Here,
we summarize their properties and filtering implementation, give explicit design equa-
tions for ordersM = 1,2,3, and derive a general expression for their lag.

Digital Butterworth filters are characterized by two parameters, the filter order M,
and the 3-dB cutoff frequency f0 in Hz, or, the corresponding digital frequency in units
of radians per sample,ω0 = 2πf0/fs, where fs is the sampling rate in Hz. We may also
define the period of f0 in units of samples/cycle, N = fs/f0, so that,ω0 = 2π/N.

We follow the design method of Ref. [30] based on the bilinear transformation, al-
though the matched z-transform method has also been used [285]. If the filter order is
even, say,M = 2K, then, there are K second-order sections, and if it is odd,M = 2K+1,
there is an additional first-order section. Both cases can be combined into one by writing,

M = 2K + r , r = 0,1 (6.20.1)

Then, the transfer function can be expressed in the following cascaded and direct forms,

H(z) =
[
G0(1+ z−1)
1+ a01z−1

]r K∏
i=1

[
Gi(1+ z−1)2

1+ ai1z−1 + ai2z−2

]

= G(1+ z−1)M

1+ a1z−1 + a2z−2 + · · · + aMz−M

(6.20.2)

where the notation []r means that the first-order factor is absent if r = 0 and present
if r = 1. The corresponding first-order coefficients are,

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(6.20.3)

The second-order coefficients are , for i = 1,2, . . . , K,

286 6. Exponential Smoothing

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2

(6.20.4)

where the angles θi are defined by,

θi = π
2M
(M − 1+ 2i) , i = 1,2, . . . , K (6.20.5)

and the quantity Ω0 is the equivalent analog 3-dB frequency defined as,

Ω0 = tan
(
ω0

2

)
= tan

(
πf0
fs

)
= tan

(
π
N

)
(6.20.6)

We note that the filter sections have zeros at z = −1, that is, at the Nyquist frequency,
f = fs/2, or, ω = π. Setting Ω = tan(ω/2), the magnitude response of the designed
digital filter can be expressed simply as follows:

|H(ω)|2 = 1

1+ (
Ω/Ω0

)2M = 1

1+ (
tan(ω/2)/Ω0

)2M (6.20.7)

Each section has unity gain at DC. Indeed, setting z = 1 in Eq. (6.20.2), we obtain the
following condition, which can be verified from the given definitions,

4Gi
1+ ai1 + ai2 = 1 and

2G0

1+ a01
= 1

Moreover, the filter lag can be shown to be (cf. Problem 6.12), for anyM ≥ 1 andN > 2,

n̄ = 1

2Ω0 sin
(
π

2M

) = 1

2 tan
(
π
N

)
sin

(
π

2M

) (lag) (6.20.8)

ForM � 2 and N � 5, it can be approximated well by [284],

n̄ = MN
π2

The overall numerator gain in the direct form is the product of gains,

G = Gr0G1G2 · · ·GK
and the direct-form numerator coefficients are the coefficients of the binomial expansion
of (1 + z−1)M times the overall gain G. The direct-form denominator coefficients are
obtained by convolving the coefficients of the individual sections, that is, setting, a = [1]
if M is even, and, a = [1, a01] if M is odd, then the vector, a = [1, a1, a2, . . . , aM], can
be constructed recursively by,

for i = 1,2, . . . , K
a = conv

(
a, [1, ai1, ai2]

) (6.20.9)

6.20. Butterworth Moving Average Filters 287

For example, we have,

M = 2 , a = [1, a11, a12]
M = 3 , a = conv

(
[1, a01], [1, a11, a12]

)= [1, a01 + a11, a12 + a01a11, a01a12]

From these, we obtain the following explicit expressions, forM = 2,

G = Ω2
0

Ω2
0 +

√
2Ω0 + 1

, a1 = 2(Ω2
0 − 1)

Ω2
0 +

√
2Ω0 + 1

, a2 = Ω
2
0 −

√
2Ω0 + 1

Ω2
0 +

√
2Ω0 + 1

H(z)= G(1+ 2z−1 + z−2)
1+ a1z−1 + a2z−2

, n̄ = 1√
2Ω0

(6.20.10)

and, forM = 3,

G = Ω3
0

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

, a1 = (Ω0 − 1)(3Ω2
0 + 5Ω0 + 3)

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

a2 = 3Ω2
0 − 5Ω0 + 3

Ω2
0 +Ω0 + 1

, a3 = (Ω0 − 1)(Ω2
0 −Ω0 + 1)

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

H(z)= G(1+ 3z−1 + 3z−2 + z−3)
1+ a1z−1 + a2z−2 + a3z−3

, n̄ = 1

Ω0

(6.20.11)

We note also that the M = 1 case has lag, n̄ = 1/(2Ω0), and is equivalent to the
modified EMA of Eq. (2.3.5). This can be seen by rewriting H(z) in the form,

H(z)= G0(1+ z−1)
1+ a01z−1

=
1
2(1− λ)(1+ z−1)

1− λz−1
, λ = −a01 = 1−Ω0

1+Ω0

where 0 < λ < 1 for Ω0 < 1, which requires N > 4.
The MATLAB function, bma, implements the design and filtering operations for any

filter orderM and any period N > 2,† with usage,

[y,nlag,b,a] = bma(x,N,M,yin); % Butterworth moving average
[y,nlag,b,a] = bma(x,N,M);

where

x = input signal

N = 3-dB period, need not be integer, but N>2

M = filter order

yin = any Mx1 vector of initial values of the output y

default, yin = repmat(x(1),M,1)

yin = ’c’ for standard convolutional output

y = output signal

nlag = filter lag

b = [b0, b1, b2, ..., bM], numerator filter coefficients

a = [1, a1, a2, ..., aM], denominator filter coefficients

†the sampling theorem requires, f0 < fs/2, or, N = fs/f0 > 2

288 6. Exponential Smoothing

Fig. 6.20.1 shows the BMA output for Butterworth orders M = 2,3 applied to the
same Nicor-Gas data of Fig. 6.18.2. It has noticeably shorter lag than SMA. The graphs
were produced by the MATLAB code,

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % period, SMA lag = (N-1)/2 = 9.50
[y2,n2] = bma(y,N,2); % order-2 Butterworth, lag n2 = 4.46
[y3,n3] = bma(y,N,3); % order-3 Butterworth, lag n3 = 6.31

figure; plot(t,sma(y,N), t,y2, t,y3); % plot SMA, y2, y3
hold on; ohlc(t,Y,’color’,’b’); % add OHLC bar chart

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20, Butterworth M = 2,3

 SMA
 M=2
 M=3
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20, Butterworth M = 2,3

 SMA
 M=2
 M=3
 data

Fig. 6.20.1 Comparison of SMA and Butterworth filters of ordersM = 2,3.

6.21 Moving Average Filters with Reduced Lag

The PMA/linear regression and the DEMA/TEMA indicators have zero lag by design.
There are other useful indicators that are easily implemented and have zero or very
much reduced lag. Examples are twicing and Kaiser-Hamming (KH) filter sharpening
[60], the Hull moving average (HMA) [309], the zero-lag EMA indicator (ZEMA) [284],
the generalized DEMA (GDEMA) [307], and their variants. Here, we discuss a general
procedure for constructing such reduced-lag filters, including the corresponding local-
slope filters.

Consider three lowpass filters H1(z),H2(z),H3(z) with unity DC gains and lags,
n̄1, n̄2, n̄2, respectively, and define the following filters for estimating the local level and
local slope of the data, generalizing the twicing operations of Eq. (6.10.9),

6.21. Moving Average Filters with Reduced Lag 289

Ha(z) = H1(z)
[
(1+ v)H2(z)−vH3(z)

] = local level

Hb(z) = 1

n̄3 − n̄2
H1(z)

[
H2(z)−H3(z)

] = local slope
(6.21.1)

where v is a positive constant. One may viewHa(z) as the smoothed, byH1(z), version
of (1 + v)H2(z)−vH3(z). The filter Ha(z) will still have unity DC gain as follows by
evaluating Eq. (6.21.1) at z = 1, that is,

Ha(1)= (1+ v)H1(1)H2(1)−vH1(1)H3(1)= (1+ v)−v = 1

Using the fact that the lag of a product of filters is the sum of the corresponding
lags (cf. Problem 6.2), we find that the lag of Ha(z) is,

n̄a = (1+ v)(n̄1 + n̄2)−v(n̄1 + n̄3) , or,

n̄a = n̄1 + (1+ v)n̄2 − vn̄3 (6.21.2)

By appropriately choosing the parameters v, n̄1, n̄2, n̄3, the lag n̄a can be made very
small, even zero. Indeed, the following choice for v will generate any particular n̄a,

v = n̄1 + n̄2 − n̄a
n̄3 − n̄2

(6.21.3)

Below we list a number of examples that are special cases of the above constructions.
In this list, the filterH(z), whose lag is denoted by n̄, represents any unity-gain lowpass
filter, such as WMA, EMA, or SMA and similarly,HN(z) represents either a length-N FIR
filter such as WMA or SMA, or an EMA filter with SMA-equivalent length N. Such filters
have a lag related to N via a relationship of the form, n̄ = r · (N − 1), for example,
r = 1/3, for WMA, and, r = 1/2, for EMA and SMA.

reduced-lag filters lag

(twicing) Ha(z)= 2H(z)−H2(z) , n̄a = 0

(GDEMA) Ha(z)= (1+ v)H(z)−vH2(z) , n̄a = (1− v)n̄
(KH) Ha(z)= (1+ v)H2(z)−vH3(z), n̄a = (2− v)n̄

(HMA) Ha(z)= H√N(z)
[
2HN/2(z)−HN(z)

]
, n̄a = r

[√
N − 2

]
(ZEMA) Ha(z)= 2H(z)−z−dH(z) , n̄a = n̄− d
(ZEMA) Ha(z)= (1+ v)H(z)−vz−dH(z) , n̄a = n̄− vd

(6.21.4)

The corresponding local-slope filters are as follows (they do not depend on v),

290 6. Exponential Smoothing

local-slope filters

(DEMA/GDEMA) Hb(z)= 1

n̄
[
H(z)−H2(z)

]
(KH) Hb(z)= 1

n̄
[
H2(z)−H3(z)

]
(HMA) Hb(z)= 2

rN
H√N(z)

[
HN/2(z)−HN(z)

]
(ZEMA) Hb(z)= 1

d
[
H(z)−z−dH(z)]

(6.21.5)

The standard twicing method, Ha(z)= 2H(z)−H2(z), coincides with DEMA if we
choose H(z) to be a single EMA filter,

HEMA(z)= α
1− λz−1

, α = 1− λ , λ = N − 1

N + 1
, n̄ = N − 1

2
(6.21.6)

but the filterH(z) can also be chosen to be an SMA, WMA, or BMA filter, leading to what
may be called, “double SMA,” or, “double WMA,”, or, ‘double BMA.”

The generalized DEMA, HGDEMA(z)= (1 + v)H(z)−vH2(z), also has, H = HEMA,
and is usually operated in practice with v = 0.7. It reduces to standard DEMA for v = 1.
The so-called Tillson’s T3 indicator [307] is obtained by cascading GDEMA three times,

HT3(z)=
[
HGDEMA(z)

]3
(T3 indicator) (6.21.7)

The Kaiser-Hamming (KH) filter sharpening case is not currently used as an indicator,
but it has equally smooth output as GDEMA and T3. It reduces to the standard filter
sharpening case with zero lag for v = 2.

In the original Hull moving average [309],Ha(z)= H√N(z)
[
2HN/2(z)−HN(z)

]
, the

filterHN is chosen to be a length-N weighted moving average (WMA) filter, as defined in
Eqs. (6.15.1) and (6.15.2), and similarly, HN/2 and H√N are WMA filters of lengths N/2
and

√
N respectively. Assuming for the moment that these filter lengths are integers,

then the corresponding lags of the three WMA filters, H√N,HN/2,HN, will be,

n̄1 =
√
N − 1

3
, n̄2 = N/2− 1

3
, n̄3 = N − 1

3
,

and setting v = 1 in Eq. (6.21.2), we find,

n̄a = n̄1 + 2n̄2 − n̄3 =
√
N − 1

3
+ N − 2

3
− N − 1

3
=
√
N − 2

3
(6.21.8)

Thus, for larger Ns, the lag is effectively reduced by a factor of
√
N. The extra

filter factor H√N(z) provides some additional smoothing. In practice, the filter lengths
N1 =

√
N and N2 = N/2 are replaced by their rounded values. This changes the lag

n̄a somewhat. If one wishes to maintain the same lag as that given by Eq. (6.21.8), then
one can compensate for the replacement of N1,N2 by their rounded values by using a

6.21. Moving Average Filters with Reduced Lag 291

slightly different value for v. It is straightforward to show that the following procedure
will generate the desired lag value, where the required v is evaluated from Eq. (6.21.3),

N1 = round
(√
N

)
, ε1 = N1 −

√
N = rounding error

N2 = round
(
N
2

)
, ε2 = N2 − N

2
= rounding error

v = n̄1 + n̄2 − n̄a
n̄3 − n̄2

= N/2+ ε1 + ε2

N/2− ε2

n̄a = N1 − 1

3
+ (1+ v)N2 − 1

3
− vN − 1

3
=
√
N − 2

3

n̄3 − n̄2 = N −N2

3

(6.21.9)

with transfer functions,

Ha(z)= HN1(z)
[
(1+ v)HN2(z)−vHN(z)

] = local level

Hb(z)= 1

n̄3 − n̄2
HN1(z)

[
HN2(z)−HN(z)

] = local slope
(6.21.10)

The WMA filters in the HMA indicator can be replaced with EMA filters resulting in
the so-called “exponential Hull moving average” (EHMA), which has been found to be
very competitive with other indicators [347]. Because N does not have to be an integer
in EMA, it is not necessary to round the lengths N1 =

√
N and N2 = N/2, and one can

implement the indicator as follows, where HN denotes the single EMA of Eq. (6.21.6),

n̄a =
√
N − 2

2
, n̄3 − n̄2 = N

4

Ha(z)= H√N(z)
[
2HN/2(z)−HN(z)

]
Hb(z)= 4

N
H√N(z)

[
HN/2(z)−HN(z)

]
One can also replace the WMA filters by SMAs leading to the “simple Hull moving

average” (SHMA). The filter HN now stands for a length-N SMA filter, resulting in n̄a =
(
√
N − 1)/2, and n̄3 − n̄2 = (N −N2)/2. Except for these changes, the computational

procedure outlined in Eq. (6.21.9) remains the same.
The following MATLAB code illustrates the computation of the local-level output

signal an from the data yn, for the three versions of HMA and a given value of N > 1,

N1 = round(sqrt(N)); e1 = N1 - sqrt(N);

N2 = round(N/2); e2 = N2 - N/2;

v = (N/2 + e1 + e2) / (N/2 - e2);

a = wma((1+v)*wma(y,N2) - v*wma(y,N), N1); % HMA

a = sma((1+v)*sma(y,N2) - v*sma(y,N), N1); % SHMA

a = sema(2*sema(y,N/2) - sema(y,N), sqrt(N); % EHMA

292 6. Exponential Smoothing

The functions, hma, shma, ehma, which are discussed below, implement these op-
erations but offer more options, including the computation of the slope signals.

In the zero-lag EMA (ZEMA or ZLEMA) indicator [284], Ha(z)= 2H(z)−z−dH(z),
the filter H(z) is chosen to be a single EMA filter of the form of Eq. (6.21.6), and the
delay d is chosen to coincide with the filter lag, that is, d = n̄ = (N − 1)/2 . It follows
from Eq. (6.21.4) that the lag will be exactly zero, n̄a = n̄− d = 0. This assumes that n̄
is an integer, which happens only for odd N. For even N, the delay d may be chosen as
the rounded-up version of n̄, that is,

d = round(n̄)= round
(
N − 1

2

)
= N

2
, N = even

Then, the lag n̄a can still be made to be zero by choosing the parameter v such that
n̄a = n̄− vd = 0, or, v = n̄/d = n̄/round(n̄). Thus, the generalized form of the ZEMA
indicator is constructed by,

n̄ = N − 1

2
, d = round(n̄) , v = n̄

d

Ha(z)= (1+ v)H(z)−vz−dH(z)

Hb(z)= 1

d
[
H(z)−z−dH(z)]

(6.21.11)

The code segment below illustrates the computation of the local-level ZEMA signal.
It uses the function, delay, which implements the required delay.

nbar = (N-1)/2;

d = round(nbar);

v = nbar/d;

a = (1+v)*sema(y,N) - v*delay(sema(y,N), d); % ZEMA

The following MATLAB functions implement the reduced-lag filters discussed above,
where the input array y represents the financial data to be filtered, and the outputs a,b
represent the local-level and local-slope signals.

[a,b] = hma(y,N,yin); % Hull moving average
[a,b] = ehma(y,N,yin); % exponential Hull moving average
[a,b] = shma(y,N,yin); % simple Hull moving average
[a,b] = zema(y,N,yin); % zero-lag EMA

y = delay(x,d); % d-fold delay, y(n) = x(n-d)
a = gdema(y,N,v,yin); % generalized DEMA
a = t3(y,N,v,yin); % Tillson’s T3

The input variable yin defines the initialization and defaults to progressive filtering
for hma, shma, and zema, yin=’f’, and to, yin = y0, for ehma.

Fig. 6.21.1 compares the PMA/linear regression indicator with HMA, EHMA, and
ZEMA on the same Nicor-Gas data, with filter length N = 20. Fig. 6.21.2 compares the
corresponding slope indicators. The MATLAB code below illustrates the computation.

6.21. Moving Average Filters with Reduced Lag 293

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 PMA
 EHMA
 HMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 PMA
 EHMA
 HMA
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 ZEMA
 EHMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 ZEMA
 EHMA
 data

Fig. 6.21.1 Comparison of PMA/LREG, HMA, EHMA, and ZEMA indicators.

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % keep 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % filter length

[al,bl] = lreg(y,N); % PMA/LREG
[ah,bh] = hma(y,N); % HMA
[ae,be] = ehma(y,N); % EHMA
[az,bz] = zema(y,N); % ZEMA

figure; plot(t,al, t,ae, t,ah); % PMA/LREG, EHMA, HMA
hold on; ohlc(t,Y); % add OHLC chart

figure; plot(t,az, t,ae); % ZEMA, EHMA
hold on; ohlc(t,Y); % add OHLC chart

294 6. Exponential Smoothing

figure; plot(t,bh, t,be); hold on; % HMA, EHMA slopes
stem(t,bl,’marker’,’none’); % plot LREG slope as stem

figure; plot(t,bh, t,bz); hold on; % HMA, ZEMA slopes
stem(t,bl,’marker’,’none’);

We note that the reduced-lag HMA, EHMA, and ZEMA local-level and local-slope filters
have comparable performance as the PMA/linear regression and DEMA/TEMA filters,
with a comparable degree of smoothness.

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

 hma
 ehma

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

 hma
 zema

Fig. 6.21.2 Slope indicators, linear regression (stem) vs. HMA, EHMA, ZEMA.

6.22 Envelopes, Bands, and Channels

Moving averages help market traders discern trends by smoothing out variations in
the data. However, such variations can provide additional useful information, such as
gauging volatility, or, identifying extremes in the data that provide trading opportunities,
or observing how prices settle into their trends.

Trading envelopes or bands or channels consist of two curves drawn above and below
a moving average trendline. The two bounds define a zone of variation, or volatility,
about the average, within which most of the price fluctuations are expected to lie.

The typical trading rule is that when a price closes near or above the upper bound,
it signals that the stock is overbought and suggests trading in the opposite direction.
Similarly, if a price moves below the lower bound it signals that the stock is oversold
and suggests an opposite reaction.

6.22. Envelopes, Bands, and Channels 295

In this section we discuss the following types of bands and their computation,

– Bollinger bands – Standard-error bands

– Projection bands – Donchian channels

– Fixed-width bands – Keltner bands

– Starc bands – Parabolic SAR

Examples of these are shown in Figs. 6.22.1 and 6.22.2 applied to the same Nicor
data that we used previously. Below we give brief descriptions of how such bands are
computed. We use our previously discussed MATLAB functions, such as SMA, LREG,
etc., to summarize the computations. Further references are given in [323–334].

Bollinger Bands

Bollinger bands [323–327] are defined relative to an N-day SMA of the closing prices,
where typically, N = 14. The two bands are taken to be two standard deviations above
and below the SMA. The following MATLAB code clarifies the computation,

M = sma(y,N); % N-point SMA of closing prices y

S = stdev(y,N); % std-dev relative to M

L = M - 2*S; % lower bound

U = M + 2*S; % upper bound

where the function, stdev, uses the built-in function std to calculate the standard devi-
ation over each length-N data window, and its essential code is,

for n=1:length(y),

S(n) = std(y(max(1,n-N+1):n));

end

where the data window length isN for n ≥ N, and n during the initial transients n < N.

Standard-Error Bands

Standard-error bands [329] use the PMA/linear-regression moving average as the middle
trendline and shift it by two standard errors up and down. The calculation is summa-
rized below with the help of the function lreg, in which the quantities, y, a, se, represent
the closing prices, the local level, and the standard error,

[a,~,~,se] = lreg(y,N); % N-point linear regression

L = a - 2*se; % lower bound

U = a + 2*se; % upper bound

296 6. Exponential Smoothing

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, Bollinger bands, N = 20

 sma
 bands
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, standard−error bands, N = 20

 lreg
 bands
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, projection bands, N = 20

 lreg
 bands
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, Donchian channels, N = 20

 sma
 bands
 data

Fig. 6.22.1 Bollinger bands, standard-error bands, projection bands, and Donchian channels.

Projection Bands

Projection bands [328] also use the linear regression function lreg to calculate the local
slopes for the high and low prices,H,L. The value of the upper (lower) band at the n-th
time instant is determined by considering the values of the highs H (lows L) over the
look-back period, n −N + 1 ≤ t ≤ n, extrapolating each of them linearly according to
their slope to the current time instant n, and taking the maximum (minimum) among
them. The following MATLAB code implements the procedure,

6.22. Envelopes, Bands, and Channels 297

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, 3% fixed bands, N = 10

 bands
 middle
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, Keltner bands, N = 10

 bands
 middle
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, STARC bands, N = 10

 bands
 middle
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, parabolic SAR

 PSAR
 data

Fig. 6.22.2 Fixed-width bands, Keltner bands, STARC bands, and parabolic SAR.

[~,bL] = lreg(L,N); % linear regression slope for Low

[~,bH] = lreg(H,N); % linear regression slope for High

for n=0:length(H)-1,

t = (max(0,n-N+1) : n)’; % look-back interval

Lo(n+1) = min(L(t+1) + bL(n+1)*(n-t)); % lower band

Up(n+1) = max(H(t+1) + bH(n+1)*(n-t)); % upper band

end

Donchian Channels

Donchian channels [331] are constructed by finding, at each time instant n, the highest
high (resp. lowest low) over the past time interval, n−N ≤ t ≤ n− 1, that is, the value
of the upper bound at the n-th day, is the maximum of the highs over the previous N

298 6. Exponential Smoothing

days, not including the current day, i.e., max
[
Hn−1,Hn−2, . . . ,Hn−N

]
. The code below

describes the procedure,

for n = 2:length(H) % n is MATLAB index

t = max(1,n-N) : n-1; % past N days

Lo(n) = min(L(t)); % lower band

Up(n) = max(H(t)); % upper band

end

Mid = (Up + Lo)/2; % middle band

Fixed-Width Bands

Fixed-width bands or envelopes [330] shift an N-point SMA of the closing prices by a
certain percentage, such as, typically, 3 percent,

M = sma(C,N); % N-point SMA of closing prices C

L = M - p*M; % lower band, e.g., p = 0.03

U = M + p*M; % upper band

Keltner Bands

Keltner bands or channels [330], use as the middle trendline an N-point SMA of the
average of the high, low, and closing prices, (H+L+C)/3, and use an N-point SMA of
the difference (H−L) as the bandwidth, representing a measure of volatility. The code
below implements the operations,

M = sma((H+L+C)/3,N); % SMA of (H+L+C)/3

D = sma(H-L,N); % SMA of (H-L)

L = M - D; % lower band

U = M + D; % upper band

The typical value of N is 10, and the trading rule is that a “buy” signal is generated
when the closing priceC lies above the upper band, and a “sell” signal whenC lies below
the lower band.

Starc Bands

In Starc† bands [330] all three prices, high, low, and closing, H,L,C, are used. The
middle band is an N -point SMA of the closing prices C, but the bandwidth is defined
in terms of an Na-point of the so-called “average true range” (ATR), which represents
another measure of volatility. The code below describes the computation,

M = sma(C,N); % SMA of closing prices

R = atr([H,L,C],Na); % ATR = average true range

L = M - 2*R; % lower and

U = M + 2*R; % upper band

†Stoller Average Range Channels

6.22. Envelopes, Bands, and Channels 299

The ATR [281] is an Na -point WEMA of the “true range”, defined as follows, at each
time n,

Tn = max
[
Hn − Ln, Hn −Cn−1, Cn−1 − Ln

] = true range in n-th day

Rn = wema(Tn,Na)= ATR
(6.22.1)

and is implemented by the function atr, with the help of the delay function. Its essential
MATLAB code is as follows, where H,L,C are column vectors,

T = max([H-L, H-delay(C,1), delay(C,1)-L], [], 2); % row-wise max

R = wema(T,N);

MATLAB Functions

The following MATLAB functions implement the band indicators discussed above, where
the various parameters are fully explained in the help files for these functions,

[L,U,M] = bbands(y,N,d); % Bollinger bands
[L,U,a] = sebands(y,N,d,init); % standard-error bands
[L,U,R,Rs] = pbands(Y,N,Ns); % projection bands & oscillator
[L,U,M] = donch(Y,N); % Donchian channels
[L,U,M] = fbands(Y,N,p); % fixed-width bands
[L,U,M] = kbands(Y,N); % Keltner bands
[L,U,M] = stbands(Y,N,Na); % Starc bands

S = stdev(y,N,flag); % standard deviation
[R,TR] = atr(Y,N); % average true range

The essential MATLAB code for generating Figs. 6.22.1 and 6.22.2 is as follows,

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % used in Fig.6.22.1

[L,U,M] = bbands(y,N); % Bollinger
figure; ohlc(t,Y); hold on; % make OHLC bar chart
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,a] = sebands(y,N); % standard-error
figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--’, t,L,’r--’);

a = lreg(y,N);
[L,U] = pbands(Y,N); % projection
figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = donch(Y,N); % Donchian
figure; ohlc(t,Y); hold on;
plot(t,M,’r--’, t,L,’r--’, t,U,’r--’);
plot(t,sma(y,N),’g-’);

300 6. Exponential Smoothing

N=10; % used in Fig.6.22.2

p=0.03;
[L,U,M] = fbands(Y,N,p); % fixed-width
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = kbands(Y,N); % Keltner
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = stbands(Y,N); % Starc
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

H = Y(:,2); L = Y(:,3); ni=1; Ri=1; % parabolic SAR
S = psar(H,L,Ri,ni);
figure; ohlc(t,Y); hold on;
plot(t,S,’r.’);

Parabolic SAR

Wilder’s parabolic stop & reverse (SAR) [281] is a trend-following indicator that helps a
trader to switch positions from long to short or vice versa.

While holding a long position during a period of increasing prices, the SAR indicator
lies below the prices and is also increasing. When the prices begin to fall and touch the
SAR from above, then a “sell” signal is triggered with a reversal of position from long
to short, and the SAR switches sides and begins to fall, lying above the falling prices. If
subsequently, the prices begin to rise again and touch the SAR from below, then a “buy”
signal is triggered and the position is reversed from short to long again, and so on.

The indicator is very useful as it keeps a trader constantly in the market and works
well during trending markets with steady periods of increasing or decreasing prices,
even though it tends to recommend buying relatively high and selling relatively low—
the opposite of what is the ideal. It does not work as well during “sideways” or trading
markets causing so-called “whipsaws.” It is usually used in conjunction with other indi-
cators that confirm trend, such as the RSI or DMI. Some further references on the SAR
are [335–340].

The SAR is computed in terms of the high and low price signalsHn,Ln and is defined
as the exponential moving average of the extreme price reached within each trending
period, but it uses a time-varying EMA parameter, λn = 1 − αn, as well as additional
conditions that enable the reversals. Its basic EMA recursion from day n to day n+1 is,

Sn+1 = λnSn +αnEn = (1−αn)Sn +αnEn , or,

Sn+1 = Sn +αn(En − Sn) (SAR) (6.22.2)

where En is the extreme price reached during the current trending position, that is, the
highest high reached up to day n during an up-trending period, or the lowest low up to
day n during a down-trending period. At the beginning of each trending period, Sn is
initialized to be the extreme price of the previous trending period.

6.22. Envelopes, Bands, and Channels 301

The EMA factor αn increases linearly with time, starting with an initial value, αi, at
the beginning of each trending period, and then increasing by a fixed incrementΔα, but
only every time a new extreme value is reached, that is,

αn+1 =
⎧⎨⎩αn +Δα , if En+1 	= En
αn , if En+1 = En

(6.22.3)

where we note that En+1 	= En happens when En+1 is strictly greater than En during an
up-trend, or, En+1 is strictly less than En during a down-trend. Moreover, an additional
constraint is that αn is not allowed to exceed a certain maximum value, αm. The values
recommended by Wilder [281] are,

αi = 0.02 , Δα = 0.02 , αm = 0.2

Because of the increasingαn parameter, the EMA has a time-varying decreasing lag,†

thus, tracking more quickly the extreme prices as time goes by. As a result, Sn has a
particular curved shape that resembles a parabola, hence the name “parabolic” SAR.

The essential steps in the calculation of the SAR are summarized in the following
MATLAB code, in which the inputs are the quantities, H,L, representing the high and low
price signals, Hn,Ln, while the output quantities, S,E,a,R, represent, Sn, En,αn,Rn,
where Rn holds the current position and is equal to ±1 for long/short.

Hi = max(H(1:ni)); % initial highest high, default
Li = min(L(1:ni)); % initial lowest low

R(ni) = Ri; % initialize outputs at starting time n=ni
a(ni) = ai;
S(ni) = Li*(Ri==1) + Hi*(Ri==-1);
E(ni) = Hi*(Ri==1) + Li*(Ri==-1);

for n = ni : length(H)-1

S(n+1) = S(n) + a(n) * (E(n) - S(n)); % SAR update

r = R(n); % current position

if (r==1 & L(n+1)<=S(n+1)) | (r==-1 & H(n+1)>=S(n+1)) % reversal
r = -r; % reverse r
S(n+1) = E(n); % reset new S
E(n+1) = H(n+1)*(r==1) + L(n+1)*(r==-1); % reset new E
a(n+1) = ai; % reset new a

else % no reversal
if n>2 % new S
S(n+1) = min([S(n+1), L(n-1), L(n)])*(r==1) ... % additional

+ max([S(n+1), H(n-1), H(n)])*(r==-1); % conditions
end

E(n+1) = max(E(n),H(n+1))*(r==1) ... % new E
+ min(E(n),L(n+1))*(r==-1);

a(n+1) = min(a(n) + (E(n+1)~=E(n)) * Da, am); % new a
end

R(n+1) = r; % new R

end % for-loop

†The EMA equivalent length decreases from, Ni = 2/αi − 1 = 99, down to, Nm = 2/αm − 1 = 9.

302 6. Exponential Smoothing

If the current trading position is long (r = 1), corresponding to an up-trending
market, then, a reversal of position to short (r = −1) will take place at time n+1 if the
low price Ln+1 touches or becomes less than the SAR, that is, if, Ln+1 ≤ Sn+1. Similarly, if
the current position is short, corresponding to a down-trending market, then, a reversal
of position to long will take place at time n+1 if the high priceHn+1 touches or becomes
greater than the SAR, that is, if, Hn+1 ≥ Sn+1. At such reversal time points, the SAR is
reset to be equal to the extreme price of the previous trend, that is, Sn+1 = En, and the
En+1 is reset to be either Ln+1 if reversing to short, orHn+1 if reversing to long, and the
EMA parameter is reset to, αn+1 = αi.

An additional condition is that during an up-trend, the SAR for tomorrow, Sn+1, is
not allowed to become greater that either today’s or yesterday’s lows, Ln, Ln−1, and in
such case it is reset to the minimum of the two lows. Similarly, during a down-trend, the
Sn+1 is not allowed to become less that either today’s or yesterday’s highs, Hn,Hn−1,
and is reset to the maximum of the two highs. This is enforced by the code line,

Sn+1 = min
(
[Sn+1, Ln−1, Ln]

)·(r==1)+ max
(
[Sn+1,Hn−1,Hn]

)·(r==−1)

The parabolic SAR is implemented with the MATLAB function psar, with usage,

[S,E,a,R] = psar(H,L,Ri,ni,af,Hi,Li); % parabolic SAR

H = vector of High prices, column
L = vector of Low prices, column, same length as H
Ri = starting position, long Ri = 1, short Ri = -1
ni = starting time index, default ni = 1, all outputs are NaNs for n<ni
af = [ai,da,am] = [initial EMA factor, increment, maximum factor]

default, af = [0.02, 0.02, 0.2]
Hi,Li = initial high and low used to initialize S(n),E(n) at n=ni,

default, Hi = max(H(1:ni)), Li = min(L(1:ni))

S = parabolic SAR, same size as H
E = extremal price, same size as H
a = vector of EMA factors, same size as H
R = vector of positions, R = +1/-1 for long/short, same size as H

The SAR signal Sn is usually plotted with dots, as shown for example, in the bottom
right graph of Fig. 6.22.2. Fig. 6.22.3 shows two more examples.

The left graph reproduces Wilder’s original example [281] and was generated by the
following MATLAB code,

Y = xlsread(’psarexa.xls’); % data from Wilder [281]
t = Y(:,1); H = Y(:,2); L = Y(:,3); % extract H,L signals

Ri = 1; ni = 4; % initialize SAR
[S,E,a,R] = psar(H,L,Ri,ni);

num2str([t, H, L, a, E, S, R], ’%8.2f’); % reproduces table on p.13 of [281]

figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

The right graph is from Achelis [280]. The SAR is plotted with filled dots, but at the
end of each trending period and shown with open circles are the points that triggered
the reversals. The MATLAB code for this example is similar to the above,

6.23. Momentum, Oscillators, and Other Indicators 303

0 4 8 12 16 20 24 28 32 36 40
49

50

51

52

53

54

55

56

57

58

59

days

parabolic SAR

 SAR
 Hi/Lo

0 3 6 9 12 15 18 21 24 27
83

85

87

89

91

93

95

97

days

parabolic SAR

 SAR
 reversal
 Hi/Lo

Fig. 6.22.3 Parabolic SAR examples from Wilder [281] and Achelis [280].

Y = xlsread(’psarexb.xls’); % data from Ref.[208]
t = Y(:,1); H = Y(:,2); L = Y(:,3);

Ri = 1; ni = 1; % initialize
[S,E,a,R] = psar(H,L,Ri,ni); % compute SAR

num2str([t ,H, L, a, E, S, R], ’%9.4f’); % reproduces table from Ref.[280]
figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

The first up-trending period ends at day n = 9 at which the would be SAR, shown
as an opened-circle, lies above the low of that day, thus, causing a reversal to short
and that SAR is then replaced with the filled-circle value that lies above the highs, and
corresponds to the highest high of the previous period that had occurred on day n = 6.

The second down-trending period ends at n = 15 at which point the SAR, shown
as an opened-circle, is breached by the high on that day, thus causing a reversal to
long, and the SAR is reset to the filled-circle value on that day lying below the data, and
corresponds to the lowest low during the previous period that had been reached on day
n = 12. Finally, another such reversal takes place on day n = 27 and the SAR is reset to
the highest high that had occurred on day n = 18. To clarify, we list below the values
of the SAR at the reversal points before and after the reversal takes place,

n Sbefore(n) Safter(n)
9 91.5448 95.1875 = H6

15 92.3492 85.0625 = L12

27 89.8936 95.2500 = H18

6.23 Momentum, Oscillators, and Other Indicators

There exist several other indicators that are used in technical analysis, many of them
built on those we already discussed. The following MATLAB functions implement some

304 6. Exponential Smoothing

of the more popular ones, several are also included in MATLAB’s financial toolbox. Ad-
ditional references can be found in the Achelis book [280] and in [281–347].

R = rsi(y,N,type); % relative strength index, RSI

R = cmo(y,N); % Chande momentum oscillator, CMO

R = vhfilt(y,N); % Vertical Horizontal Filter, VHF

[Dp,Dm,DX,ADX] = dirmov(Y,N); % directional movement system, +-DI,DX,ADX

--

[y,yr,ypr] = mom(x,d,xin); % momentum and price rate of change

[y,ys,ypr] = prosc(x,N1,N2,N3); % price oscillator & MACD

[pK,pD] = stoch(Y,K,Ks,D,M); % stochastic, %K, %D oscillators

--

R = accdist(Y); % accumulation/distribution line

R = chosc(Y,N1,N2); % Chaikin oscillator

R = cmflow(Y,N); % Chaikin money flow

R = chvol(Y,N); % Chaikin volatility

--

[P,N] = pnvi(Y,P0); % positive/negative volume indices, PVI/NVI

R = cci(Y,N); % commodity channel index, CCI

R = dpo(Y,N); % detrended price oscillator, DPO

[R,N] = dmi(y,Nr,Ns,Nm); % dynamic momentum index, DMI

[R,Rs] = forosc(y,N,Ns); % forecast oscillator

--

[R,Rs] = trix(y,N,Ns,yin); % TRIX oscillator

a = vema(y,N,Nv); % variable-length EMA

Below we discuss briefly their construction. Examples of their use are included in
their respective help files. Several online examples can be found in the Fidelity Guide
[345] and in the TradingView Wiki [346].

Relative Strength Index, RSI

The relative strength index (RSI) was introduced by Wilder [281] to be used in conjunction
with the parabolic SAR to confirm price trends. It is computed as follows, where y is the
column vector of daily closing prices,

x = diff(y); % price differences

xu = +x.*(x>0); % upward differences

xd = -x.*(x<=0); % downward differences

su = wema(xu,N); % smoothed differences

sd = wema(xd,N);

RSI = 100*su/(su+sd); % RSI

Chande Momentum Oscillator, CMO

If the wema function is replaced by sma, one obtains the Chande momentum oscillator,

6.23. Momentum, Oscillators, and Other Indicators 305

x = diff(y); % price differences

xu = +x.*(x>0); % upward differences

xd = -x.*(x<=0); % downward differences

su = sma(xu,N); % smoothed differences

sd = sma(xd,N);

CMO = 100*(su-sd)/(su+sd); % CMO

Thus, the SMA-based RSI is related to CMO via,

CMO = 2 RSI− 100 � RSI = CMO+ 100

2

Vertical Horizontal Filter, VHF

The vertical horizontal filter (VHF) is similar to the RSI or CMO and helps to confirm a
trend in trending markets. It is computed as follows, where the firstN outputs are NaNs,

x = [NaN; diff(y)]; % y = column of closing prices

% x = price differences

for n=N+1:length(y),

yn = y(n-N+1:n); % length-N look-back window

xn = x(n-N+1:n);

R(n) = abs(max(yn)-min(yn)) / sum(abs(xn)); % VHF

end

Directional Movement System

The directional movement system was also proposed by Wilder [281] and consists of
several indicators, the plus/minus directional indicators, (±DI), the directional index
(DX), and the average directional index (ADX). These are computed as follows,

R = atr(Y,N); % average true range

DH = [0; diff(H)]; % high price differences

DL = [0; -diff(L)]; % low price differences

Dp = DH .* (DH>DL) .* (DH>0); % daily directional movements

Dm = DL .* (DL>DH) .* (DL>0); %

Dp = wema(Dp,N); % averaged directional movements

Dm = wema(Dm,N); %

Dp = 100 * Dp ./ R; % +DI,-DI directional indicators

Dm = 100 * Dm ./ R;

DX = 100*abs(Dp - Dm)./(Dp + Dm); % directional index, DI

ADX = wema(DX,N); % average directional index, ADX

Momentum and Price Rate of Change

In its simplest form a momentum indicator is the difference between a price today,
x(n), and the price d days ago, x(n−d), but it can also be expressed as a ratio, or as a

306 6. Exponential Smoothing

percentage, referred to as price rate of change,

y(n) = x(n)−x(n− d)= momentum

yr(n) = 100 · x(n)
x(n− d) = momentum as ratio

yp(n) = 100 · x(n)−x(n− d)
x(n− d) = price rate of change

It can be implemented simply with the help of the function, delay,

y = x - delay(x,d);

yr = x/delay(x,d) * 100;

yp = (x-delay(x,d))/delay(x,d) * 100;

Price Oscillator and MACD

The standard moving average convergence/divergence (MACD) indicator is defined as
the difference between two EMAs of the daily closing prices: a length-12 shorter/faster
EMA and a length-26 longer/slower EMA. A length-9 EMA of the MACD difference is also
computed as a trigger signal.

Typically, a buy (sell) signal is indicated when the MACD rises above (falls below)
zero, or when it rises above (falls below) its smoothed signal line.

The MACD can also be represented as a percentage resulting into the price oscillator,
and also, different EMA lengths can be used. The following code segment illustrates the
computation, where x are the closing prices,

y1 = sema(x,N1); % fast EMA, default N1=12

y2 = sema(x,N2); % slow EMA, default N2=26

y = y1 - y2; % MACD

ys = sema(y,N3); % smoothed MACD signal, default N3=9

ypr = 100 * y./y2; % price oscillator

Stochastic Oscillator

H = Y(:,1); L = Y(:,2); C = Y(:,3); % extract H,L,C inputs

Lmin = NaN(size(C)); Hmax = NaN(size(C)); % NaNs for n<K

for n = K:length(C), % look-back period K

Lmin(n) = min(L(n-K+1:n)); % begins at n=K

Hmax(n) = max(H(n-K+1:n));

end

pK = 100 * sma(C-Lmin, Ks) ./ sma(Hmax-Lmin, Ks); % percent-K

pD = sma(Pk, D); % percent-D

Fast Stochastic has Ks = 1, i.e., no smoothing, and Slow Stochastic has, typically, Ks = 3.

6.23. Momentum, Oscillators, and Other Indicators 307

Accumulation/Distribution

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V

R = cumsum((2*C-H-L)./(H-L).*V); % ACCDIST

Chaikin Oscillator

y = accdist(Y); % Y = [H,L,C,V] data matrix

R = sema(y,N1) - sema(y,N2); % CHOSC, default, N1=3, N2=10

Chaikin Money Flow

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V

R = sma((2*C-H-L)./(H-L).*V, N) ./ sma(V,N); % CMFLOW

Chaikin Volatility

S = sema(H-L,N); % H,L given

R = (S - delay(S,N)) ./ delay(S,N) * 100; % volatility

Positive/Negative Volume Indices, PNVI

These are defined recursively as follows, in MATLAB-like notation, where Cn,Vn are the
closing prices and the volume,

Pn = Pn−1 + (Vn > Vn−1)·Cn −Cn−1

Cn−1
· Pn−1 = Pn−1

(
Cn
Cn−1

)(Vn>Vn−1)
= PVI

Nn = Nn−1 + (Vn < Vn−1)·Cn −Cn−1

Cn−1
·Nn−1 = Nn−1

(
Cn
Cn−1

)(Vn<Vn−1)
= NVI

and initialized to some arbitrary initial value, such as, P0 = N0 = 1000. The MATLAB
implementation uses the function, delay,

P = P0 * cumprod((C./delay(C,1)) .^ (V>delay(V,1))); % PNVI

N = P0 * cumprod((C./delay(C,1)) .^ (V<delay(V,1)));

Commodity Channel Index, CCI

T = (H+L+C)/3; % H,L,C given

M = sma(T,N);

for n=N+1:length(C),

D(n) = mean(abs(T(n-N+1:n) - M(n))); % mean deviation

end

R = (T-M)./D/0.015; % CCI

308 6. Exponential Smoothing

Detrended Price Oscillator, DPO

S = sma(y,N,’n’); % y = column of closing prices

M = floor(N/2) + 1; % advancing time

R = y - delay(S,-M,’n’); % DPO, i.e., R(n) = y(n) - S(n+M)

Dynamic Momentum Index, DMI

x = [NaN; diff(y)]; % y = column of closing prices

xu = x .* (x>0); % updward differences

xd = -x .* (x<=0); % downward differences

S = stdev(y,Ns); % Ns-period stdev

V = S ./ sma(S,Nm); % volatility measure

N = floor(Nr ./ V); % effective length

N(N>Nmax) = Nmax; % restrict max and min N

N(N<Nmin) = Nmin;

Nstart = Nr + Ns + Nm;

su1 = mean(xu(2:Nstart)); % initialize at start time

sd1 = mean(xd(2:Nstart));

switch lower(type)

case ’wema’ % WEMA type

for n = Nstart+1:length(y),

su(n) = su1 + (xu(n) - su1) / N(n); su1 = su(n);

sd(n) = sd1 + (xd(n) - sd1) / N(n); sd1 = sd(n);

end

case ’sma’ % SMA type

for n = Nstart+1:length(y),

su(n) = mean(xu(n-N(n)+1:n));

sd(n) = mean(xd(n-N(n)+1:n));

end

end

R = 100 * su./(su+sd); % DMI

Forecast Oscillator

yp = pma(y,N,1); % time series forecast

x = y - delay(yp,1);

R = 100 * x./y; % forecast oscillator

Rs = sma(R,Ns); % trigger signal

6.24. MATLAB Functions 309

TRIX Oscillator

[~,~,~,~,~,a3] = tema(y,N,cin); % triple EMA

R = 100*(a3 - delay(a3,1))./a3; % TRIX

Rs = sma(R,Ns); % smoothed TRIX

Variable-Length EMA

la = (N-1)/(N+1); al = 1-la; % EMA parameter

switch lower(type)

case ’cmo’ % CMO volatility

V = abs(cmo(y,Nv))/100;

case ’r2’ % R^2 volatility

[~,~,V] = lreg(y,Nv);

end

for n=Nv+1:length(y), % default si=y(Nv)

s(n) = si + al*V(n)*(y(n)-si); % EMA recursion

si = s(n);

end

6.24 MATLAB Functions

We summarize the MATLAB functions discussed in this chapter:

% ------------------------------------
% Exponential Moving Average Functions
% ------------------------------------
% ema - exponential moving average - exact version
% stema - steady-state exponential moving average
% lpbasis - fit order-d polynomial to first L inputs
% emap - map equivalent lambdas’s between d=0 and d=1 EMAs
% emaerr - MSE, MAE, MAPE error criteria
% emat - transformation matrix from polynomial to cascaded basis
% mema - multiple exponential moving average
% holt - Holt’s exponential smoothing
% holterr - MSE, MAE, MAPE error criteria for Holt

The technical analysis functions are:

% ----------------------------
% Technical Analysis Functions
% ----------------------------
% accdist - accumulation/distribution line
% atr - true range & average true range
% cci - commodity channel index
% chosc - Chaikin oscillator
% cmflow - Chaikin money flow
% chvol - Chaikin volatility
% cmo - Chande momentum oscillator
% dirmov - directional movement system, +-DI, DX, ADX
% dmi - dynamic momentum index (DMI)

310 6. Exponential Smoothing

% dpo - detrended price oscillator
% forosc - forecast oscillator
% pnvi - positive and negative volume indices, PVI, NVI
% prosc - price oscillator & MACD
% psar - Wilder’s parabolic SAR
% rsi - relative strength index, RSI
% stdev - standard deviation index
% stoch - stochastic oscillator, %K, %D oscillators
% trix - TRIX oscillator
% vhfilt - Vertical Horizontal Filter
%
% ------------ moving averages ---------------------------
%
% bma - Butterworth moving average
% dema - steady-state double exponential moving average
% ehma - exponential Hull moving average
% gdema - generalized dema
% hma - Hull moving average
% ilrs - integrated linear regression slope indicator
% delay - delay or advance by d samples
% mom - momentum and price rate of change
% lreg - linear regression, slope, and R-squared indicators
% pma - predictive moving average, linear fit
% pmaimp - predictive moving average impulse response
% pma2 - predictive moving average, polynomial order d=1,2
% pmaimp2 - predictive moving average impulse response, d=1,2
% sema - single exponential moving average
% shma - SMA-based Hull moving average
% sma - simple moving average
% t3 - Tillson’s T3 indicator, triple gdema
% tema - triple exponential moving average
% tma - triangular moving average
% vema - variable-length exponential moving average
% wema - Wilder’s exponential moving average
% wma - weighted or linear moving average
% zema - zero-lag EMA
%
% --------------- bands ----------------------------------
%
% bbands - Bollinger bands
% donch - Donchian channels
% fbands - fixed-envelope bands
% kbands - Keltner bands or channels
% pbands - Projection bands and projection oscillator
% sebands - standard-error bands
% stbands - STARC bands
%
% --------------- misc ----------------------------------
%
% ohlc - make Open-High-Low-Close bar chart
% ohlcyy - OHLC with other indicators on the same graph
% yylim - adjust left/right ylim
%
% r2crit - R-squared critical values
% tcrit - critical values of Student’s t-distribution
% tdistr - cumulative t-distribution

6.25. Problems 311

6.25 Problems

6.1 Consider a filter with a real-valued impulse response hn. Let H(ω)= M(ω)e−jθ(ω) be
its frequency response, where M(ω)= |H(ω)| and θ(ω)= − argH(ω). First, argue that
θ(0)= 0 andM′(0)= 0, whereM′(ω)= dM(ω)/dω. Then, show that the filter delay n̄ of
Eq. (6.1.18) is the group delay at DC, that is, show Eq. (6.1.19),

n̄ = dθ(ω)
dω

∣∣∣∣
ω=0

6.2 The lag of a filter was defined by Eqs. (6.1.17) and (6.1.18) to be,

n̄ =

∑
n
nhn∑
n
hn

= − H
′(z)
H(z)

∣∣∣∣
z=1

If the filter H(z) is the cascade of two filters, H(z)= H1(z)H2(z), with individual lags,
n̄1, n̄2, then show that, regardless of whether H1(z),H2(z) are normalized to unity gain at
DC, the lag of H(z) will be the sum of the lags,

n̄ = n̄1 + n̄2

6.3 Consider a low-frequency signal s(n) whose spectrum S(ω) is limited within a narrow band
around DC, |ω| ≤ Δω, and therefore, its inverse DTFT representation is:

s(n)= 1

2π

∫ Δω
−Δω

S(ω)ejωn dω

For the purposes of this problem, we may think of the above relationship as defining s(n)
also for non-integer values of n. Suppose that the signal s(n) is filtered through a filter
H(ω) with real-valued impulse response whose magnitude response |H(ω)| is approxi-
mately equal to unity over the ±Δω signal bandwidth. Show that the filtered output can be
written approximately as the delayed version of the input by an amount equal to the group
delay at DC, that is,

y(n)= 1

2π

∫ Δω
−Δω

H(ω)S(ω)ejωn dω ≈ s(n− n̄)

6.4 Show that the general filter-sharpening formula (6.9.5) results in the following special cases:

p = 0, q = d ⇒ Himpr = 1− (1−H)d+1

p = 1, q = d ⇒ Himpr = 1− (1−H)d+1
[
1+ (d+ 1)H

]
6.5 Prove the formulas in Eqs. (6.10.5) and (6.10.7).

6.6 Prove Eq. (6.4.10).

6.7 Consider the single and double EMA filters:

H(z)= 1− λ
1− λz−1

, Ha(z)= 2H(z)−H2(z)= (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

a. Show that the impulse response of Ha(z) is:

ha(n)= (1− λ)
[
1+ λ− (1− λ)n]

λnu(n)

312 6. Exponential Smoothing

b. Show the relationships:

∞∑
n=0

nha(n)= 0,
∞∑
n=0

n2ha(n)= − 2λ2

(1− λ)2
(6.25.1)

c. Show that the NRR of the filter Ha(z) is:

R =
∞∑
n=0

h2
a(n)=

(1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

d. Show that the magnitude response squared of Ha(z) is:

|Ha(ω)|2 = (1− λ)
2
[
1+ 2λ+ 5λ2 − 4λ(1+ λ)cosω

][
1− 2λ cosω+ λ2

]2 (6.25.2)

e. Show that Eq. (6.25.2) has local minima atω = 0 andω = π, and a local maximum at
ω =ωmax:

cosωmax = 1+ 4λ− λ2

2(1+ λ) (6.25.3)

and that the corresponding extremal values are:

|Ha(0)|2 = 1 , |Ha(π)|2 = (1− λ)
2(1+ 3λ)2

(1+ λ)4

|Ha(ωmax)|2 = (1+ λ)
2

1+ 2λ

(6.25.4)

6.8 Consider the modified EMA of Eq. (2.3.5) and its twicing,

H(z)= (1− λ)(1+ z
−1)

2(1− λz−1)
, Ha(z)= 2H(z)−H2(z)= (1− λ)

(
1+ z−1)(3+ λ− z−1(1+ 3λ)

)
4(1− λz−1)2

a. Show the relationships:

∞∑
n=0

nha(n)= 0,
∞∑
n=0

n2ha(n)= − (1+ λ)
2

2(1− λ)2

b. Show that the NRR of the filter Ha(z) is:

R =
∞∑
n=0

h2
a(n)=

1

8
(1− λ)(3λ+ 7)

6.9 Consider the optimum length-N predictive FIR filter hτ(k) of polynomial order d = 1 given
by Eq. (6.4.1).

a. Show that its effective lag is related to the prediction distance τ by n̄ = −τ.

b. Show that its NRR is given by

R =
N−1∑
k=0

h2
τ(k)=

1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)

Thus, it is minimized when τ = −(N − 1)/2. What is the filter hτ(k) in this case?

6.25. Problems 313

c. Show that the second-derivative of its frequency response at DC is given by:

d2

dω2
H(ω)ω=0= −

∞∑
n=0

k2hτ(k)= 1

6
(N − 1)(N − 2+ 6τ)

Determine the range of τs for which
∣∣H(ω)∣∣2

is sloping upwards or downwards in
the immediate vicinity ofω = 0.

d. It is evident from the previous question that the value τ = −(N − 2)/6 corresponds
to the vanishing of the second-derivative of the magnitude response. Show that in this
case the filter is simply,

h(k)= 3N(N − 1)−2k(2N − 1)
N(N2 − 1)

, k = 0,1, . . . ,N − 1

and verify explicitly the results:

N−1∑
k=0

h(k)= 1 ,
N−1∑
k=0

kh(k)= N − 2

6
,

N−1∑
k=0

k2h(k)= 0 ,
N−1∑
k=0

h2(k)= 7N2 − 4N − 2

3N(N2 − 1)

e. Show that hτ(k) interpolates linearly between the τ = 0 and τ = 1 filters, that is,
show that for k = 0,1, . . . ,N − 1,

hτ(k)= (1− τ)ha(k)+τh1(k)= ha(k)+
[
h1(k)−ha(k)

]
τ

f. Another popular choice for the delay parameter is τ = −(N − 1)/3. Show that,

h(k)= 2(N − k)
N(N + 1)

, k = 0,1, . . . ,N − 1

and that,

N−1∑
k=0

h(k)= 1 ,
N−1∑
k=0

kh(k)= N − 1

3
,

N−1∑
k=0

k2h(k)= N(N − 1)
6

,
N−1∑
k=0

h2(k)= 2(2N + 1)
3N(N + 1)

In financial market trading, the cases τ = −(N−1)/2 and τ = −(N−1)/3 correspond,
respectively, to the so-called “simple” and “weighted” moving average indicators. The
case τ = −(N − 2)/6 is not currently used, but it provides a useful compromise
between reducing the lag while preserving the flatness of the passband. By comparison,
the relative lags of three cases are:

1

6
(N − 2)<

1

3
(N − 1)<

1

2
(N − 1)

6.10 Computer Experiment: Response of predictive FIR filters. Consider the predictive FIR filter
hτ(k) of the previous problem. For N = 9, compute and on the same graph plot the magni-
tude responses |H(ω)|2 for the following values of the prediction distance:

τ = −N − 1

2
, τ = −N − 2

6
, τ = 0 , τ = 1

Using the calculated impulse response values hτ(k), 0 ≤ k ≤ N−1, and for each value of τ,
calculate the filter lag, n̄, the NRR, R, and the “curvature” parameter of Eq. (6.10.5). Recall
from part (d) of the Problem 6.9 that the second τ should result in zero curvature.

Repeat all the questions for N = 18.

314 6. Exponential Smoothing

6.11 Moving-Average Filters with Prescribed Moments. The predictive FIR filter of Eq. (6.16.3) has
lag equal to n̄ = −τ by design. Show that its second moment is not independently specified
but is given by,

n2 =
N−1∑
n=0

n2h(n)= −1

6
(N − 1)(N − 2+ 6τ) (6.25.5)

The construction of the predictive filters (6.16.3) can be generalized to allow arbitrary spec-
ification of the first and second moments, that is, the problem is to design a length-N FIR
filter with the prescribed moments,

n0 =
N−1∑
n=0

h(n)= 1 , n1 =
N−1∑
n=0

nh(n)= −τ1 , n2 =
N−1∑
n=0

n2h(n)= τ2 (6.25.6)

Show that such filter is given by an expression of the form,

h(n)= c0 + c1n+ c2n2 , n = 0,1, . . . ,N − 1

where the coefficients c0, c1, c2 are the solutions of the linear system,⎡⎢⎣ S0 S1 S2

S1 S2 S3

S2 S3 S4

⎤⎥⎦
⎡⎢⎣ λ0

λ1

λ2

⎤⎥⎦ =
⎡⎢⎣ 1
−τ1

τ2

⎤⎥⎦
where

Sp =
N−1∑
n=0

np , p = 0,1,2,3,4

Then, show that the Sp are given explicitly by,

S0 = N , S1 = 1

2
N(N − 1) , S2 = 1

6
N(N − 1)(2N − 1)

S3 = 1

4
N2(N − 1)2 , S4 = 1

30
N(N − 1)(2N − 1)(3N2 − 3N − 1)

and that the coefficients are given by,

c0 = 3(3N2 − 3N + 2)+18(2N − 1)τ1 + 30τ2

N(N + 1)(N + 2)

c1 = −18(N − 1)(N − 2)(2N − 1)+12(2N − 1)(8N − 11)τ1 + 180(N − 1)τ2

N(N2 − 1)(N2 − 4)

c2 = 30(N − 1)(N − 2)+180(N − 1)τ1 + 180τ2

N(N2 − 1)(N2 − 4)

Finally, show that the condition c2 = 0 recovers the predictive FIR case of Eq. (6.16.3) with
second moment given by Eq. (6.25.5).

6.12 Consider the Butterworth filter of Eq. (6.20.2). Show that the lag of the first-order section
and the lag of the ith second-order section are given by,

n̄0 = 1

2Ω0
, n̄i = − cosθi

Ω0
, i = 1,2, . . . , K

Using these results, prove Eq. (6.20.8) for the full lag n̄, and show that it is valid for both
even and odd filter ordersM.

7
Smoothing Splines

7.1 Interpolation versus Smoothing

Besides their extensive use in drafting and computer graphics, splines have many other
applications. A large online bibliography can be found in [350]. A small subset of
references on interpolating and smoothing splines and their applications is [351–404].

We recall from Sec. 4.2 that the minimum-Rs filters had the property of maximizing
the smoothness of the filtered output signal by minimizing the mean-square value of
the s-differenced output, that is, the quantity E

[
(∇sx̂n)2

]
in the notation of Eq. (4.2.11).

Because of their finite span, minimum-Rs filters belong to the class of local smoothing
methods. Smoothing splines are global methods in the sense that their design criterion
involves the entire data signal to be smoothed, but their objective is similar, that is, to
maximize smoothness.

We assume an observation model of the form y(t)= x(t)+v(t), where x(t) is a
smooth trend to be estimated on the basis ofN noisy observations yn = y(tn)measured
at N time instants tn, for n = 0,1, . . . ,N − 1, as shown below.

The times tn, called the knots, are not necessarily equally-spaced, but are in increas-
ing order and are assumed to lie within a slightly larger interval [ta, tb], that is,

ta < t0 < t1 < t2 < · · · < tN−1 < tb

A smoothing spline fits a continuous function x(t), taken to be the estimate of the
underlying smooth trend, by solving the optimization problem:

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
x(s)(t)

]2dt = min (7.1.1)

where x(s)(t) denotes the s-th derivative of x(t), λ is a positive “smoothing parameter,”
and wn are given non-negative weights.

315

316 7. Smoothing Splines

The performance index strikes a balance between interpolation and smoothing. The
first term attempts to interpolate the data by x(t), while the second attempts to min-
imize the roughness or maximize the smoothness of x(t). The balance between the
two terms is controlled by the parameter λ; larger λ increases smoothing, smaller λ
interpolates the data more closely.

Schoenberg [357] has shown that the solution to the problem (7.1.1) is a so-called
natural smoothing spline of polynomial order 2s−1, that is, x(t) has 2s−2 continuous
derivatives, it is a polynomial of degree 2s−1 within each subinterval (tn, tn+1), for
n = 0,1, . . . ,N − 2, and it is a polynomial of order s−1 within the end subintervals
[ta, t0) and (tN−1, tb].

For discrete-time sampled data, the problem was originally posed and solved for
special cases of s by Thiele, Bohlmann, Whittaker, and Henderson [405–412], and is
referred to as Whittaker-Henderson smoothing. We will consider it in Sec. 8.1. In this
case, the performance index becomes:

J =
N−1∑
n=0

wn
(
yn − xn

)2 + λ
N−1∑
n=s

[∇sxn]2 = min (7.1.2)

In this chapter, we concentrate on the case s = 2 for the problem (7.1.1), but allow
an arbitrary s for problem (7.1.2). For s = 2, the performance index (7.1.1) reads:

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.1.3)

Eq. (7.1.3) will be minimized under the assumption that the desired x(t) and its first
and second derivatives ẋ(t), ẍ(t) are continuous over [ta, tb].

In the next section we solve the problem from a variational point of view and derive
the solution as a natural cubic spline.

7.2 Variational Approach

We begin with a short review of variational calculus [354]. Consider first a Lagrangian
L(x, ẋ) that depends on a function x(t) and its first derivative ẋ(t).†

A prototypical variational problem is to find the function x(t) that maximizes or
minimizes the “action” functional:

J(x)=
∫ tb
ta

L(x, ẋ)dt = extremum (7.2.1)

The optimum function x(t) is found by solving the Euler-Lagrange equation for (7.2.1):

∂L
∂x

− d
dt
∂L
∂ẋ

= 0 (7.2.2)

This can be derived as follows. Consider a small deviation from the optimum solu-
tion, x(t)→ x(t)+δx(t). Then, the corresponding first-order variation of the functional

†L can also have an explicit dependence on t, but we suppress it in the notation.

7.2. Variational Approach 317

(7.2.1) will be:

δJ = J(x+ δx)−J(x)=
∫ tb
ta

[L(x+ δx, ẋ+ δẋ)−L(x, ẋ)]dt
=

∫ tb
ta

[
∂L
∂x
δx+ ∂L

∂ẋ
δẋ

]
dt =

∫ tb
ta

[
∂L
∂x
δx−

(
∂L
∂ẋ

)′
δx+

(
∂L
∂ẋ
δx

)′]
dt

where we used the differential identity‡(
∂L
∂ẋ
δx

)′
= ∂L
∂ẋ
δẋ+

(
∂L
∂ẋ

)′
δx (7.2.3)

Integrating the last term in δJ, we obtain:

δJ =
∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

]
δxdt + ∂L

∂ẋ
δx

∣∣∣∣
tb
− ∂L
∂ẋ
δx

∣∣∣∣
ta

(7.2.4)

The boundary terms can be removed by assuming the condition:

∂L
∂ẋ
δx

∣∣∣∣
tb
− ∂L
∂ẋ
δx

∣∣∣∣
ta
= 0 (7.2.5)

It follows that

δJ =
∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

]
δxdt (7.2.6)

which defines the functional derivative of J(x):
δJ
δx

= ∂L
∂x

− d
dt
∂L
∂ẋ

(7.2.7)

The Euler-Lagrange equation (7.2.2) is obtained by requiring the vanishing of the
functional derivative, or the vanishing of the first-order variation δJ around the opti-
mum solution for any choice of δx subject to (7.2.5).

The boundary condition (7.2.5) can be achieved in a number of ways. The typical
one is to assume that the variation δx(t) vanish at the endpoints, δx(ta)= δx(tb)= 0.
Alternatively, if no restrictions are to be made on δx(t), then one must assume the
so-called natural boundary conditions [354]:

∂L
∂ẋ

∣∣∣∣
ta
= ∂L
∂ẋ

∣∣∣∣
tb
= 0 (7.2.8)

A mixed case is also possible in which at one end one assumes the vanishing of δx
and at the other end, the vanishing of ∂L/∂ẋ.

The above results can be extended to the case when the Lagrangian is also a function
of the second derivative ẍ, that is, L(x, ẋ, ẍ). Using Eq. (7.2.3) and the identity,

∂L
∂ẍ
δẍ =

(
∂L
∂ẍ
δẋ−

(
∂L
∂ẍ

)′
δx

)′
+

(
∂L
∂ẍ

)′′
δx

‡primes and dots denote differentiation with respect to t.

318 7. Smoothing Splines

the first-order variation of J becomes

δJ = J(x+ δx)−J(x)=
∫ tb
ta

[L(x+ δx, ẋ+ δẋ, ẍ+ δẍ)−L(x, ẋ, ẍ)]dt
=

∫ tb
ta

[
∂L
∂x
δx+ ∂L

∂ẋ
δẋ+ ∂L

∂ẍ
δẍ

]
dt =

∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

]
δxdt

+
(
∂L
∂ẋ

− d
dt
∂L
∂ẍ

)
δx

∣∣∣∣tb
ta
+ ∂L
∂ẍ
δẋ

∣∣∣∣tb
ta

To eliminate the boundary terms, we must assume that(
∂L
∂ẋ

− d
dt
∂L
∂ẍ

)
δx

∣∣∣∣tb
ta
+ ∂L
∂ẍ
δẋ

∣∣∣∣tb
ta
= 0 (7.2.9)

Then, the first-order variation and functional derivative of J become:

δJ =
∫ tb
ta

[
∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

]
δxdt ,

δJ
δx

= ∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

(7.2.10)

Their vanishing leads to the Euler-Lagrange equation for this case:

∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

= 0 (7.2.11)

subject to the condition (7.2.9). In the spline problem, because the endpoints ta, tb
lie slightly outside the knot range, we do not want to impose any restrictions on the
values of δx and δẋ there. Therefore, to satisfy (7.2.9), we will assume the four natural
boundary conditions:

∂L
∂ẋ

− d
dt
∂L
∂ẍ

∣∣∣∣
ta
= 0 ,

∂L
∂ẍ

∣∣∣∣
ta
= 0 ,

∂L
∂ẋ

− d
dt
∂L
∂ẍ

∣∣∣∣
tb
= 0 ,

∂L
∂ẍ

∣∣∣∣
tb
= 0 (7.2.12)

The spline problem (7.1.3) can be put in a variational form as follows,

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt =
∫ tb
ta

Ldt = min (7.2.13)

where the Lagrangian depends only on x and ẍ,

L =
N−1∑
n=0

wn
(
yn − x(t)

)2δ(t − tn) + λ
[
ẍ(t)

]2
(7.2.14)

The Euler-Lagrange equation (7.2.11) then reads:

∂L
∂x

− d
dt
∂L
∂ẋ

+ d2

dt2
∂L
∂ẍ

= −2
N−1∑
n=0

wn
(
yn − x(t)

)
δ(t − tn) + 2λ

....
x (t)= 0 , or,

....
x (t)= λ−1

N−1∑
n=0

wn
(
yn − x(tn)

)
δ(t − tn) (7.2.15)

where we replaced
(
yn−x(t)

)
δ(t− tn) by

(
yn−x(tn)

)
δ(t− tn) in the right-hand side.

The natural boundary conditions (7.2.12) become:
...
x(ta)= 0 , ẍ(ta)= 0 ,

...
x(tb)= 0 , ẍ(tb)= 0 (7.2.16)

7.3. Natural Cubic Smoothing Splines 319

7.3 Natural Cubic Smoothing Splines

Eq. (7.2.15) implies that
....
x (t)= 0 for all t except at the knot times tn. This means

that x(t) must be a cubic polynomial in t. Within each knot interval [tn, tn+1], for
n = 0,1, . . . ,N−2, and within the end-point intervals [ta, t0] and [tN−1, tb], the function
x(t) must be a cubic polynomial, albeit with different coefficients in each interval.

Specifically, the boundary conditions (7.2.16) imply that within [ta, t0] and [tN−1, tb],
the third-degree polynomials must actually be polynomials of first-degree. Thus, x(t)
will have the form:

x(t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p−1(t)= a−1 + b−1(t − ta) , ta ≤ t ≤ t0
pn(t)= an + bn(t − tn)+1

2
cn(t − tn)2+1

6
dn(t − tn)3 , tn ≤ t ≤ tn+1

pN−1(t)= aN−1 + bN−1(t − tN−1) , tN−1 ≤ t ≤ tb
(7.3.1)

where n = 0,1, . . . ,N−2 for the interval [tn, tn+1], and we have referred the time origin
to the left end of each subinterval. We note that an = x(tn)= pn(tn), bn = ṗn(tn),
cn = p̈n(tn), and dn =

...
pn(tn), for n = 0,1, . . . ,N−1. The an are the smoothed values.

The polynomial pieces join continuously at the knots. The term “natural” cubic
spline refers to the property that x(t) is a linear function of t outside the knot range,
and consists of cubic polynomial pieces that are continuous and have continuous first
and second derivatives at the knot times. Fig. 7.3.1 illustrates the case ofN = 5 and the
numbering convention that we follow.

Fig. 7.3.1 Smoothing with natural cubic splines.

Although x(t), ẋ(t), ẍ(t) are continuous at the knots, Eq. (7.2.15) implies that the
third derivatives

...
x(t) must be discontinuous. Indeed, integrating (7.2.15) around the

interval [tn − ε, tn + ε] and taking the limit ε → 0, we obtain the N discontinuity
conditions:

...
x(tn)+ − ...

x(tn)− = λ−1wn(yn − an) , n = 0,1, . . . ,N − 1 (7.3.2)

where
...
x(tn)±= limε→0

...
x(tn±ε), and an = x(tn). Expressed in terms of the polynomial

pieces, the continuity and discontinuity conditions can be stated as follows:

320 7. Smoothing Splines

pn(tn)= pn−1(tn) , n = 0,1, . . . ,N − 1

ṗn(tn)= ṗn−1(tn)

p̈n(tn)= p̈n−1(tn)
...
pn(tn)−

...
pn−1(tn)= λ−1wn(yn − an)

(7.3.3)

These provide 4N equations. The number of unknown coefficients is also 4N. In-
deed, there are N−1 strictly cubic polynomials plus the two linear polynomials at the
ends, thus, the total number of coefficients is 4(N − 1)+2 · 2 = 4N.

In solving these equations, we follow Reinsch’s procedure [358] that eliminatesbn, dn
in favor of an, cn. We begin by applying the continuity conditions (7.3.3) at t = t0,

a0 = a−1 + b−1(t0 − ta)
b0 = b−1

c0 = 0

d0 = λ−1w0(y0 − a0)

(7.3.4)

where in the last two we used c−1 = d−1 = 0. From the first two, it follows that the
left-most polynomial can be referred to time origin t0 and written alternatively as,

p−1(t)= a−1 + b−1(t − ta)= a0 + b0(t − t0) (7.3.5)

For n = 1,2, . . . ,N − 1, defining hn−1 = tn − tn−1, conditions (7.3.3) read:

an = an−1 + bn−1hn−1 + 1

2
cn−1h2

n−1 +
1

6
dn−1h3

n−1

bn = bn−1 + cn−1hn−1 + 1

2
dn−1h2

n−1

cn = cn−1 + dn−1hn−1

dn − dn−1 = λ−1wn(yn − an)

(7.3.6)

Since cN−1 = dN−1 = 0, we have at n = N − 1:

aN−1 = aN−2 + bN−2hN−2 + 1

2
cN−2h2

N−2 +
1

6
dN−2h3

N−2

bN−1 = bN−2 + cN−2hN−2 + 1

2
dN−2h2

N−2

0 = cN−2 + dN−2hN−2

0− dN−2 = λ−1wN−1(yN−1 − aN−1)

7.3. Natural Cubic Smoothing Splines 321

Using the third into the first two equations, we may rewrite them as,

aN−1 = aN−2 + bN−2hN−2 + 1

3
cN−2h2

N−2

bN−1 = bN−2 + 1

2
cN−2hN−2

cN−2 = −dN−2hN−2

dN−2 = −λ−1wN−1(yN−1 − aN−1)

(7.3.7)

From the third of Eq. (7.3.6), we have

dn−1 = cn − cn−1

hn−1
, n = 1,2, . . . ,N − 1 (7.3.8)

In particular, we obtain at n = 1 and n = N − 1,

d0 = c1 − c0

h0
= c1

h0
= λ−1w0(y0 − a0)

−dN−2 = −cN−1 − cN−2

hN−2
= cN−2

hN−2
= λ−1wN−1(yN−1 − aN−1)

(7.3.9)

where we used Eqs. (7.3.4) and (7.3.7). Inserting Eq. (7.3.8) into the last of (7.3.6), we
obtain for n = 1,2, . . . ,N − 2:

dn − dn−1 = cn+1 − cn
hn

− cn − cn−1

hn−1
= λ−1wn(yn − an) (7.3.10)

Thus, combining these with (7.3.9), we obtain an N×(N−2) tridiagonal system of
equations that relates the (N−2)-dimensional vector c = [c1, c2, . . . , cN−2]T to the N-
dimensional vector a = [a0, a1, . . . , aN−1]T:

c1

h0
= λ−1w0(y0 − a0)

1

hn−1
cn−1 −

(
1

hn−1
+ 1

hn

)
cn + 1

hn
cn+1 = λ−1wn(yn − an) , n = 1,2, . . . ,N − 2

cN−2

hN−2
= λ−1wN−1(yN−1 − aN−1)

(7.3.11)
where we must use c0 = cN−1 = 0. These may be written in a matrix form by defining
the vector y = [y0, y1, . . . , yN−1]T and weight matrixW = diag

(
[w0,w1, . . . ,wN−1]

)
,

Qc = λ−1W(y− a) (7.3.12)

The N×(N−2) tridiagonal matrix Q has non-zero matrix elements:

Qn−1,n = 1

hn−1
, Qn,n = −

(
1

hn−1
+ 1

hn

)
, Qn+1,n = 1

hn
(7.3.13)

322 7. Smoothing Splines

forn = 1,2, . . . ,N−2. We note that the matrix elementsQni were assumed to be indexed
such that 0 ≤ n ≤ N − 1 and 1 ≤ i ≤ N − 2. Next, we determine another relationship
between an and cn. Substituting Eq. (7.3.8) into the first and second of (7.3.6), we obtain:

an − an−1 = bn−1hn−1 + 1

6
(cn + 2cn−1)h2

n−1 , n = 1,2, . . . ,N − 1

bn − bn−1 = 1

2
(cn + cn−1)hn−1

(7.3.14)

The first of these can be solved for bn−1 in terms of an:

bn−1 = an − an−1

hn−1
− 1

6
(cn + 2cn−1)hn−1 , n = 1,2, . . . ,N − 1

bn = an+1 − an
hn

− 1

6
(cn+1 + 2cn)hn , n = 0,1, . . . ,N − 2

(7.3.15)

Substituting these into the second of (7.3.14), we obtain for n = 1,2, . . . ,N − 2:

1

hn−1
an−1 −

(
1

hn−1
+ 1

hn

)
an + 1

hn
an+1 = 1

6
hn−1cn−1 + 1

3
(hn−1 + hn)cn + 1

6
hncn+1

(7.3.16)
This an (N−2)×N tridiagonal system with the transposed of Q appearing on the

left, and the following (N−2)×(N−2) symmetric tridiagonal matrix on the right,

Tn,n = 1

3
(hn−1 + hn) , 1 ≤ n ≤ N − 2

Tn+1,n = Tn,n+1 = 1

6
hn , 1 ≤ n ≤ N − 3

(7.3.17)

Thus, the system (7.3.16) can be written compactly as,

QTa = Tc (7.3.18)

To summarize, the optimal coefficients a, c are coupled by

QTa = Tc

Qc = λ−1W(y− a)
(7.3.19)

To clarify the nature of the matrices Q,T, consider the case N = 6 with data vector
y = [y0, y1, y2, y3, y4, y5]T. The matrix equations (7.3.19) read explicitly,

⎡⎢⎢⎢⎣
h−1

0 −(h−1
0 + h−1

1) h−1
1 0 0 0

0 h−1
1 −(h−1

1 + h−1
2) h−1

2 0 0
0 0 h−1

2 −(h−1
2 + h−1

3) h−1
3 0

0 0 0 h−1
3 −(h−1

3 + h−1
4) h

−1
4

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

6

⎡⎢⎢⎢⎣
2(h0 + h1) h1 0 0

h1 2(h1 + h2) h2 0
0 h2 2(h2 + h3) h3

0 0 h3 2(h3 + h4)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c1

c2

c3

c4

⎤⎥⎥⎥⎦

7.3. Natural Cubic Smoothing Splines 323

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−1
0 0 0 0

−(h−1
0 + h−1

1) h−1
1 0 0

h−1
1 −(h−1

1 + h−1
2) h−1

2 0
0 h−1

2 −(h−1
2 + h−1

3) h−1
3

0 0 h−1
3 −(h−1

3 + h−1
4)

0 0 0 h−1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
c1

c2

c3

c4

⎤⎥⎥⎥⎦ = λ−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0(y0 − a0)
w1(y1 − a1)
w2(y2 − a2)
w3(y3 − a3)
w4(y4 − a4)
w5(y5 − a5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
In order to have a non-trivial vector c, we will assume that N ≥ 3. Eqs. (7.3.19) can

be solved in a straightforward way. Since T is square and invertible, we may solve the
first for c = T−1QTa and substitute into the second,

QT−1QTa = λ−1W(y− a) ⇒ (W + λQT−1QT)a =Wy or,

a = (W + λQT−1QT)−1Wy (7.3.20)

so that the filtering (the so-called “hat”) matrix for the smoothing operation a = Hy is

H = (W + λQT−1QT)−1W (7.3.21)

Although both Q and T are banded matrices with bandwidth three, the inverse T−1

is not banded and neither is (W + λQT−1QT). Therefore, the indicated matrix inverse
is computationally expensive, requiring O(N3) operations. However, there is an alter-
native algorithm due to Reinsch [358] that reduces the computational cost to O(N)
operations. From the second of (7.3.19), we have after multiplying it by QTW−1,

λW−1Qc = y− a ⇒ λQTW−1Qc = QTy−QTa = QTy−Tc

which may be solved for c

(T + λQTW−1Q)c = QTy ⇒ c = (T + λQTW−1Q)−1QTy

where now becauseW is diagonal, the matrix R = T+λQTW−1Q is banded with band-
width five, and therefore it can be inverted in O(N) operations. This leads to Reinsch’s
efficient computational algorithm:

R = T + λQTW−1Q
c = R−1QTy

a = y− λW−1Qc

(7.3.22)

This implies an alternative expression for the matrix H. Eliminating c, we have,

a = y− λW−1QR−1QTy ⇒ a = (
I − λW−1QR−1QT

)
y , or,

H = I − λW−1QR−1QT = I − λW−1Q(T + λQTW−1Q)−1QT (7.3.23)

The equivalence of Eqs. (7.3.21) and (7.3.23) follows from the matrix inversion lemma.
Once the polynomial coefficients c = [c1, c2, . . . , cN−2]T and a = [a0, a1, . . . , aN−1]T

324 7. Smoothing Splines

have been computed, the bn and dn coefficients can be obtained from Eqs. (7.3.8) and
(7.3.14), and (7.3.7), with c0 = cN−1 = 0,

dn = cn+1 − cn
hn

, n = 0,1, . . . ,N − 2 , and dN−1 = 0

bn = an+1 − an
hn

− 1

6
(cn+1 + 2cn)hn , n = 0,1, . . . ,N − 2

bN−1 = bN−2 + 1

2
cN−2hN−2

(7.3.24)

Eqs. (7.3.22) and (7.3.24) provide the complete solution for the coefficients for all the
polynomial pieces. We note two particular limits of the solution. For λ = 0, Eq. (7.3.22)
gives R = T and

c = T−1QTy , a = y (7.3.25)

Thus, the smoothing spline interpolates the data, that is, x(tn)= an = yn. Interpo-
lating splines are widely used in image processing and graphics applications.

For λ → ∞, the solution corresponds to fitting a straight line to the entire data set.
In this case, Eq. (7.3.23) has a well-defined limit,

H = I − λW−1Q(T + λQTW−1Q)−1QT → I −W−1Q(QTW−1Q)−1QT (7.3.26)

and Eqs. (7.3.22) become:

c = 0 , a = y−W−1Q(QTW−1Q)−1QTy (7.3.27)

Since c = 0, Eqs. (7.3.24) imply that dn = 0, therefore, the polynomial pieces pn(t)
are first-order polynomials, and we also have bn = (an+1−an)/hn. The vector a lies in
the null space of QT. Indeed, multiplying by QT, we have from (7.3.27),

QTa = QTy− (QTW−1Q)(QTW−1Q)−1QTy = QTy−QTy = 0

Component-wise this means that the slopes bn of the pn(t) polynomials are the same,

(QTa)n= an+1 − an
hn

− an − an−1

hn−1
= bn − bn−1 = 0 (7.3.28)

Thus, the polynomials pn(t) represent pieces of the same straight line. Indeed,
setting bn ≡ β, and using an = an−1 + βhn−1, we obtain,

pn(t)= an + β(t − tn)= an−1 + βhn−1 + β(t − tn)= an−1 + β(t − tn−1)= pn−1(t)

This line corresponds to a weighted least-squares straight-line fit through the data
yn, that is, fitting a polynomial p(t)= α+ βt to

J =
N−1∑
n=0

wn
(
yn − p(tn)

)2 = (y− ŷ)TW(y− ŷ)= min

It is easily verified that the coefficients and fitted values ŷ = [
p(t0), p(t1), . . . , p(tn)

]T
are given by [

α
β

]
= (STWS)−1STWy , ŷ = S(STWS)−1STWy (7.3.29)

7.4. Optimality of Natural Splines 325

where S is the N×2 polynomial basis matrix defined by

S =
[

1 1 · · · 1
t0 t1 · · · tN−1

]T
(7.3.30)

The fitted values ŷ are exactly equal to those of (7.3.27), as can be verified using the
following projection matrix identity, which can be proved using the property QTS = 0,

W−1Q(QTW−1Q)−1QT + S(STWS)−1STW = I (7.3.31)

7.4 Optimality of Natural Splines

The smoothing spline solution just derived is not only an extremum of the performance
index (7.1.3), but also a minimum. To show this, consider a deviation from the optimum
solution, x(t)+f(t), where x(t) is the solution (7.3.1) and f(t) an arbitrary twice dif-
ferentiable function. Then, we must show that J(x+ f)≥ J(x). Noting that an = x(tn)
and denoting fn = f(tn) , we have,

J(x+ f) =
N−1∑
n=0

wn(yn − an − fn)2+λ
∫ tb
ta

[
ẍ(t)+f̈ (t)]2dt

J(x) =
N−1∑
n=0

wn(yn − an)2+λ
∫ tb
ta

[
ẍ(t)

]2dt

and by subtracting,

J(x+ f)−J(x) =
N−1∑
n=0

wn
[
f2
n − 2(yn − an)fn

]+ λ∫ tb
ta

[
f̈ (t)2+2ẍ(t)f̈(t)

]
dt

=
N−1∑
n=0

wnf2
n + λ

∫ tb
ta
f̈(t)2 dt − 2

N−1∑
n=0

wn(yn − an)fn + 2λ
∫ tb
ta
ẍ(t)f̈(t)dt

The first two terms are non-negative. Therefore, the desired result J(x+ f)≥ J(x)
would follow if we can show that the last two terms that are linear in f cancel each
other. Indeed, this follows from the optimality conditions (7.3.3). Splitting the integra-
tion range as a sum over the subintervals, and replacing ẍ(t) by p̈n(t) over the nth
subinterval, we have,

∫ tb
ta
ẍ(t)f̈(t)dt =

∫ t0
ta
p̈−1(t)f̈(t)dt +

N−2∑
n=0

∫ tn+1

tn
p̈n(t)f̈(t)dt +

∫ tb
tN−1

p̈N−1(t)f̈(t)dt

=
N−2∑
n=0

∫ tn+1

tn

[(
p̈n(t)ḟ(t)

)′ − ...
pn(t)ḟ(t)

]
dt

where we dropped the first an last integrals because p−1(t) and pN−1(t) are linear and
have vanishing second derivatives, and used the identity p̈nf̈ = (p̈nḟ)′−

...
pnḟ . The first

326 7. Smoothing Splines

term is a complete derivative and can be integrated simply. In the second term, we may
use

...
pn(t)= dn over the nth subinterval to obtain,

∫ tb
ta
ẍ(t)f̈(t)dt = p̈N−2(tN−1)ḟ(tN−1)−p̈0(t0)ḟ(t0)−

N−2∑
n=0

∫ tn+1

tn
dnḟ(t)dt

= p̈N−2(tN−1)f̈(tN−1)−p̈0(t0)f̈(t0)−
N−2∑
n=0

dn(fn+1 − fn)

From the continuity at t = t0 and t = tN−1, we have p̈N−2(tN−1)= p̈N−1(tN−1)= 0
and p̈0(t0)= p̈−1(t0)= 0. Thus, we find,

∫ tb
ta
ẍ(t)f̈(t)dt = −

N−2∑
n=0

dn(fn+1 − fn)= d0f0 +
N−2∑
n=1

(dn − dn−1)fn − dN−2fN−1

Using Eqs. (7.3.4), (7.3.6), and (7.3.7), we obtain

∫ tb
ta
ẍ(t)f̈(t)dt = λ−1

N−1∑
n=0

wn(yn − an)fn

Thus, these two terms cancel in the difference of the performance indices,

J(x+ f)−J(x)=
N−1∑
n=0

wnf2
n + λ

∫ tb
ta
f̈(t)2 dt (7.4.1)

Hence, J(x + f)≥ J(x), with equality achieved when f̈ (t)= 0 and fn = f(tn)= 0,
which imply that f(t)= 0.

Although we showed that the interpolating spline case corresponds to the special
case λ = 0, it is worth looking at its optimality properties from a variational point of
view. Simply setting λ = 0 into the performance index (7.1.3) is not useful because it
only implies the interpolation property x(tn)= yn. An alternative point of view is to
consider the following constrained variational problem:

J =
∫ tb
ta

[
ẍ(t)

]2dt = min

subject to x(tn)= yn , n = 0,1, . . . ,N − 1

(7.4.2)

The constraints can be incorporated using a set of Lagrange multipliers μn,

J =
N−1∑
n=0

2μn
(
yn − x(tn)

)+ ∫ tb
ta

[
ẍ(t)

]2dt = min (7.4.3)

The corresponding effective Lagrangian is,

L =
N−1∑
n=0

2μn
(
yn − x(t)

)
δ(t − tn)+

[
ẍ(t)

]2
(7.4.4)

7.5. Generalized Cross Validation 327

The Euler-Lagrange equation (7.2.11) then gives,

....
x (t)=

N−1∑
n=0

μnδ(t − tn) (7.4.5)

which is to be solved subject to the same natural boundary conditions as (7.2.16),

...
x(ta)= 0 , ẍ(ta)= 0 ,

...
x(tb)= 0 , ẍ(tb)= 0 (7.4.6)

This is identical to the smoothing spline case with the replacement of λ−1(yn−an)
by μn, or, vectorially λ−1W(y− a)→ μμμ. Therefore, the solution will be a natural spline
with Eq. (7.3.19) replaced by

QTy = Tc , Qc = μμμ
which is the same as the λ = 0 smoothing spline case. Thus, the interpolating spline
solution is defined by a = y and c = T−1QTy, with the equation Qc = μμμ fixing the
Lagrange multiplier vector.

7.5 Generalized Cross Validation

The cross-validation and generalized cross-validation criteria are popular ways of choos-
ing the smoothing parameter λ. We encountered these criteria in sections 4.5 and 5.2.

The cross-validation criterion selects the λ that minimizes the weighted sum of
squared errors [352]:

CV(λ)= 1

N

N−1∑
i=0

wi(yi − a−i)2= min (7.5.1)

where a−i is the estimate of the sample yi obtained by deleting the ith observation yi and
basing the spline smoothing on the remaining observations. As was the case in Sec. 5.2,
we may show that

yi − a−i =
yi − ai
1−Hii (7.5.2)

whereHii is the ith diagonal element of the filtering matrixH of the smoothing problem
with the observation yi included, and ai, the corresponding estimate of yi. Thus, the
CV index can be expressed as:

CV(λ)= 1

N

N−1∑
i=0

wi(yi − a−i)2= 1

N

N−1∑
i=0

wi
(
yi − ai
1−Hii

)2

= min (7.5.3)

The generalized cross-validation criterion replaces Hii by its average over i, that is,

GCV(λ)= 1

N

N−1∑
i=0

wi
(
yi − ai
1− H̄

)2

= min , H̄ = 1

N

N−1∑
i=0

Hii = 1

N
tr(H) (7.5.4)

The GCV can be evaluated efficiently withO(N) operations for each value of λ using
the algorithm of [377]. Noting that 1−H̄ = (

N−tr(H)
)
/N = tr(I−H)/N, and defining

e = y− a = (I −H)y, the GCV can be written in a slightly different form,

328 7. Smoothing Splines

1

N
GCV(λ)=

∑N−1
i=0 wi(yi − ai)2[

tr(I −H)]2 = eTWe[
tr(I −H)]2 = min (7.5.5)

To show Eq. (7.5.2), consider the index (7.1.3) with the i-th observation yi deleted:

J− =
N−1∑
n=0
n	=i

wn
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.5.6)

The i-th term can be included provided we attach zero weight to it, that is, we may
define w−n = wn, if n 	= i, and w−i = 0:

J− =
N−1∑
n=0

w−n
(
yn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.5.7)

It follows from Eq. (7.3.20) that the optimum solutions with and without the i obser-
vation are given by

a = Hy = F−1Wy , F =W + λQT−1QT

a− = H−y = F−1− W−y , F− =W− + λQT−1QT
(7.5.8)

whereW− is the diagonal matrix of the w−n . Defining the i-th unit vector that has one in
its i-th slot, ui = [0, . . . ,0,1,0, . . . ,0]T, thenW− is related to the originalW by

W− =W −wi uiuTi ⇒ F− = F −wi uiuTi
It follows from Eq. (7.5.8) that,

F−a− =W−y ⇒ (F −wi uiuTi)a− = (W −wi uiuTi)y

Noting that yi = uTi y and a−i = uTi a−, we have after multiplying by F−1,

a− −wiF−1ui a−i = a−wiF−1uiyi ⇒ a− a− = wiF−1ui(yi − a−i)

Multiplying by uTi and noting that Hii = uTi Hui = uTi F−1Wui = (uTi F−1ui)wi, we find,

ai − a−i = Hii(yi − a−i) (7.5.9)

which is equivalent to (7.5.2). An intuitive interpretation [352] of a− is that it is obtain-
able by the original filtering matrixH acting on a modified observation vector y∗ whose
i-th entry has been replaced by the estimated value y∗i = a−i , and whose other entries
agree with those of y. To show it, we note thatWy∗ =W−y+wiuiy∗i . Then, we have

F−a− =W−y ⇒ (F−wi uiuTi)a− =Wy∗−wiuiy∗i ⇒ Fa− =Wy∗−wiui(y∗i −a−i)

Thus, if we choose y∗i = a−i , we haveFa− =Wy∗, which gives a− = F−1Wy∗ = Hy∗.
A similar result was obtained in Sec. 4.5.

7.6. Repeated Observations 329

7.6 Repeated Observations

We discussed how to handle repeated observations in local polynomial modeling in
Sec. 5.5, replacing the repeated observations by their averages and using their multi-
plicities to modify the weighting function. A similar procedure can be derived for the
spline smoothing case.

Assuming that at each knot time tn there aremn observations, yni with weightswni,
i = 1,2, . . . ,mn, the performance index (7.1.3) may be modified as follows:

J =
N−1∑
n=0

mn∑
i=1

wni
(
yni − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt = min (7.6.1)

Let us define the weighted-averaged observations and corresponding weights by:

ȳn = 1

w̄n

mn∑
i=1

wniyni , w̄n =
mn∑
i=1

wni (7.6.2)

If the weightswni are unity, ȳn and w̄n reduce to ordinary averages and multiplicities.
It is easily verified that J can be written in the alternative form:

J =
N−1∑
n=0

w̄n
(
ȳn − x(tn)

)2 + λ
∫ tb
ta

[
ẍ(t)

]2dt + const. = min (7.6.3)

up to a constant that does not depend on the unknown function x(t) to be determined.
Thus, the case of multiple observations may be reduced to an ordinary spline smoothing
problem.

7.7 Equivalent Filter

The filtering equation of a smoothing spline, a = Hy, raises the question of whether it
is possible to view it as an ordinary convolutional filtering operation. Such a viewpoint
indeed arises if we replace the performance index (7.1.3) with the following one, which
assumes the availability of continuous-time observations y(t) for −∞ < t <∞,

J =
∫∞
−∞

∣∣y(t)−x(t)∣∣2dt + λ
∫∞
−∞

∣∣ẍ(t)∣∣2dt = min (7.7.1)

The solution can be carried out easily in the frequency domain. Using Parseval’s
identity and denoting the Fourier transforms of y(t), x(t) by Y(ω),X(ω), and noting
that the transform of ẍ(t) is −ω2X(ω), we obtain the equivalent criterion,

J =
∫∞
−∞

∣∣Y(ω)−X(ω)∣∣2 dω
2π

+ λ
∫∞
−∞
ω4

∣∣X(ω)∣∣2 dω
2π

= min (7.7.2)

Setting the functional derivative of J with respect toX∗(ω) to zero,† we obtain the
Euler-Lagrange equation in this case:‡

δJ
δX∗(ω)

= −[
Y(ω)−X(ω)]+ λω4X(ω)= 0 (7.7.3)

†X(ω) and its complex conjugateX∗(ω) are treated as independent variables in Eqs. (7.7.2) and (7.7.3).
‡The boundary conditions for this variational problem are that X(ω)→ 0 forω→ ±∞.

330 7. Smoothing Splines

which leads to the transfer functionH(ω)= X(ω)/Y(ω) between the inputY(ω) and
the output X(ω):

H(ω)= 1

1+ λω4
(equivalent smoothing filter) (7.7.4)

Its impulse response (i.e., the inverse Fourier transform) is

h(t)= a
2

(
sina|t| + cosat

)
e−a|t| , −∞ < t <∞ (7.7.5)

where a = (4λ)−1/4. The impulse response h(t) is double-sided, and therefore, it
cannot be used in real-time applications. However, it is evident that the filter is a lowpass
filter with a (6-dB) cutoff frequency of ω0 = λ−1/4. Fig. 7.7.1 depicts h(t) and H(ω)
for three values of the smoothing parameter, λ = 1, λ = 1/5, and λ = 5.

−10 −5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

t

effective impulse response h(t)

 λ = 1
 λ = 1/5
 λ = 5

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

ω

effective frequency response H(ω)

 λ = 1
 λ = 1/5
 λ = 5

Fig. 7.7.1 Effective impulse and frequency responses in spline smoothing.

One can also work in the time-domain with similar results. The Euler-Lagrange equa-
tion (7.2.11) leads to,

x(t)−y(t)+λ....
x (t)= 0 ⇒ x(t)+λ....

x (t)= y(t) (7.7.6)

Fourier transforming both sides we obtain (1+λω4)X(ω)= Y(ω), which leads to
Eq. (7.7.4) by solving for H(ω)= X(ω)/Y(ω).

A similar approach will be used in the Whittaker-Henderson discrete-time case dis-
cussed in Sec. 8.1 The resulting filter is often referred to in the business and finance
literature as the Hodrick-Prescott filter.

Variants of the Whittaker-Henderson approach were first introduced in 1880 by
Thiele [405,406] and in 1899 by Bohlmann [407]. Bohlmann considered and solved both
the discrete- and continuous-time versions of the performance index,

J =
N−1∑
n=0

(yn − xn)2+λ
N−1∑
n=1

(xn − xn−1)2= min

J =
∫ tb
ta

∣∣y(t)−x(t)∣∣2dt + λ
∫ tb
ta

∣∣ẋ(t)∣∣2dt = min

(7.7.7)

7.8. Stochastic Model 331

In the continuous-time case, the Euler-Lagrange equation, transfer function, and im-
pulse response of the resulting smoothing filter are:

x(t)−λẍ(t)= y(t) ⇒ H(ω)= 1

1+ λω2
, h(t)= 1

2
√
λ
e−|t|/

√
λ (7.7.8)

Thiele considered the unequally-spaced knot case and the weighted performance index:

J =
N−1∑
n=0

1

σ2
n

[
yn − x(tn)

]2 +
N−1∑
n=1

1

w2
n

[
x(tn)−x(tn−1)

]2 = min (7.7.9)

It is remarkable that Thiele formulated this problem as a state-space model—to use
modern parlance—and solved it recursively using essentially the Kalman filter and asso-
ciated smoother. Moreover, he showed how to estimate the unknown model parameters
using the EM algorithm. We will be discussing these ideas later on.

7.8 Stochastic Model

Like the exponential smoothing case, spline smoothing can be given a stochastic state-
space model interpretation [397–404]. The spline function solution x(t) of Eq. (7.3.1)
can be regarded as an optimum linear estimate of the underlying stochastic process
based on theN observations {y0, y1, . . . , yN−1} subject to some additional assumptions
on the initial conditions [399].

The state-space model allows the use of Kalman filtering techniques resulting in
efficient computational algorithms, which like the Reinsch algorithm are alsoO(N). But
in addition, the state-space model allows the estimation of the smoothing parameter.

The basis of such a stochastic model (for the cubic spline case) is the stochastic
differential equation:

ẍ(t)= w(t) (7.8.1)

where w(t) is a zero-mean white-noise process of variance σ2
w, that is, its autocorrela-

tion function is E
[
w(t)w(τ)

] = σ2
wδ(t − τ).

In the observation model y(t)= x(t)+v(t), we may assume that v(t) is uncorrelated
withw(t) and is white noise with varianceσ2

v . It turns out that the smoothing parameter
can be identified as the ratio λ = σ2

v/σ2
w. The N actual observed values are yn =

x(tn)+v(tn). Integrating Eq. (7.8.1) over the interval [tn, t], we obtain,

ẋ(t) = ẋ(tn)+
∫ t
tn
w(τ)dτ

x(t) = x(tn)+(t − tn)ẋ(tn)+
∫ t
tn
(t − τ)w(τ)dτ

(7.8.2)

The process ẋ(t) is integrated white noise, or a Wiener or Brownian process. The
process x(t) is an integrated Wiener process. We may write these in vector form by
defining the state and noise vectors,

x t =
[
x(t)
ẋ(t)

]
, xn =

[
x(tn)
ẋ(tn)

]
, wt =

∫ t
tn

[
t − τ

1

]
w(τ)dτ (7.8.3)

332 7. Smoothing Splines

and the state transition matrix,

A(t, tn)=
[

1 t − tn
0 1

]
(7.8.4)

Then, Eq. (7.8.2) can be written compactly as

x t = A(t, tn)xn +wt (7.8.5)

The covariance matrix of the noise component wt is:

E[wtwTt] =
∫ t
tn

∫ t
tn

[
t − τ

1

][
t − τ′, 1

]
E
[
w(τ)w(τ′)

]
dτdτ′

=
∫ t
tn

∫ t
tn

[
t − τ

1

][
t − τ′, 1

]
σ2
w δ(τ− τ′)dτdτ′

= σ2
w

⎡⎢⎢⎣
1

3
(t − tn)3 1

2
(t − tn)2

1

2
(t − tn)2 (t − tn)

⎤⎥⎥⎦
(7.8.6)

At t = tn+1, we obtain the state equation,

xn+1 = A(tn+1, tn)xn +wn+1 , wn+1 =
∫ tn+1

tn

[
tn+1 − τ

1

]
w(τ)dτ (7.8.7)

where, using hn = tn+1 − tn,

A(tn+1, tn)=
[

1 hn
0 1

]
, E[wn+1wTn+1]= σ2

w

⎡⎢⎢⎣
1

3
h3
n

1

2
h2
n

1

2
h2
n hn

⎤⎥⎥⎦ (7.8.8)

In terms of the spline coefficients, we have an = x(tn) and bn = ẋ(tn) at t = tn,
and similarly at t = tn+1. Following [28], we would like to show the following estimation
result. Given the state-vectors xn,xn+1 at the two end points of the interval [tn, tn+1],
the spline function x(t) of (7.3.1), and its derivative ẋ(t), can be regarded as the mean-
square estimates of the state-vector x t based on xn,xn+1, that is, assuming gaussian
noises, given by the conditional mean,

x̂ t = E[x t|xn,xn+1] (7.8.9)

If we orthogonalize xn+1 with respect to xn, that is, replacing it by the innovations
vector εεεn+1 = xn+1 − E[xn+1|xn], then we may use the regression lemma from Chap. 1
to write (7.8.9) in the form:

x̂ t = E[x t|xn,xn+1]= E[x t|xn]+Σxtεn+1Σ
−1
εn+1εn+1

εεεn+1 (7.8.10)

We have from Eq. (7.8.5) and (7.8.7),

E[x t|xn]= A(t, tn)xn , E[xn+1|xn]= A(tn+1, tn)xn (7.8.11)

7.8. Stochastic Model 333

the latter implying,

εεεn+1 = xn+1 − E[xn+1|xn]= xn+1 −A(tn+1, tn)xn = wn+1 (7.8.12)

and therefore, we have for the covariance matrices:

Σxtεn+1 = E[x tεεεTn+1]= E[x twTn+1]= E[wtwTn+1] , Σεn+1εn+1 = E[wn+1wTn+1]

The latter has already been calculated in (7.8.7). For the former, we split the integra-
tion range of wn+1 as follows,

wn+1 =
∫ tn+1

tn

[
tn+1 − τ

1

]
w(τ)dτ =

(∫ t
tn
+

∫ tn+1

t

)[
tn+1 − τ

1

]
w(τ)dτ

and note that only the first term is correlated with wt, thus, resulting in

Σxtεn+1 = E[wtwTn+1]=
∫ t
tn

∫ t
tn

[
t − τ

1

][
tn+1 − τ′, 1

]
E
[
w(τ)w(τ′)

]
dτdτ′

= σ2
w

∫ t
tn

[
t − τ

1

][
tn+1 − τ ,1

]
dτ

=

⎡⎢⎢⎣
1

6
(t − tn)2(tn + 2hn − t) 1

2
(t − tn)2

1

2
(t − tn)(tn + 2hn − t) (t − tn)

⎤⎥⎥⎦
(7.8.13)

We may now calculate the estimation matrix Hn+1 = Σxtεn+1Σ−1
εn+1εn+1

,

Hn+1 =

⎡⎢⎢⎢⎣
1

h3
n
(t − tn)2(2tn + 3hn − 2t)

1

h2
n
(t − tn)2(t − tn − hn)

6

h3
n
(t − tn)(tn + hn − t) 1

h2
n
(t − tn)(3t − 3tn − 2hn)

⎤⎥⎥⎥⎦ (7.8.14)

It follows that the estimate x̂ t is

x̂ t = E[x t|xn]+Hn+1εεεn+1 = A(t, tn)xn +Hn+1
(
xn+1 −A(tn+1, tn)xn

)
(7.8.15)

Setting

x̂ t =
[
x̂(t)
ˆ̇x(t)

]
, xn =

[
an
bn

]
, xn+1 =

[
an+1

bn+1

]
we obtain

x̂(t) = an + bn(t − tn)+ 1

h3
n
(t − tn)2(2tn + 3hn − 2t)(an+1 − an − bnhn)

+ 1

h2
n
(t − tn)2(t − tn − hn)(bn+1 − bn)

ˆ̇x(t) = bn + 6

h3
n
(t − tn)(tn + hn − t)(an+1 − an − bnhn)

+ 1

h2
n
(t − tn)(3t − 3tn − 2hn)(bn+1 − bn)

334 7. Smoothing Splines

Using the continuity relationships (7.3.6),

an+1 = an + bnhn + 1

2
cnh2

n +
1

6
dnh3

n

bn+1 = bn + cnhn + 1

2
dnh2

n

it follows that the expressions for x̂(t) and ˆ̇x(t) reduce to those of Eq. (7.3.1),

x̂(t) = an + bn(t − tn)+1

2
cn(t − tn)2+1

6
dn(t − tn)3

ˆ̇x(t) = bn + cn(t − tn)+1

2
dn(t − tn)2

the second being of course the derivative of the first. The asymptotic filter (7.7.4) may
also be given a stochastic interpretation in the sense that it can be regarded as the
optimum double-sided (i.e., unrealizable) Wiener filter of estimating x(t) from y(t) of
the signal model,

y(t)= x(t)+v(t) , ẍ(t)= w(t) (7.8.16)

We will see in Chap. 11 that for stationary signals x(t), y(t), with power spectral
densities Sxy(ω) and Syy(ω), the optimum double-sided Wiener filter has frequency
response:

H(ω)= Sxy(ω)
Syy(ω)

(7.8.17)

Because x(t) is an integrated Wiener process, it is not stationary, and therefore,
Sxy(ω) and Syy(ω) do not exist. However, it has been shown [643–649] that for cer-
tain types of nonstationary signals, which have the property that they become stationary
under a suitable filtering transformation, Eq. (7.8.17) remains valid in the following mod-
ified form:

H(ω)= Sx̄ȳ(ω)
Sȳȳ(ω)

(7.8.18)

where x̄(t), ȳ(t) are the stationary filtered versions of x(t), y(t). For the model of
Eq. (7.8.16), the necessary filtering operation is double differentiation, x̄(t)= ẍ(t)=
w(t), which can be expressed in the frequency domain as X̄(ω)= D(ω)X(ω), with
D(ω)= (jω)2= −ω2. For the observation signal, we have similarly ȳ(t)= ÿ = ẍ + v̈.
Since w(t), v(t) are uncorrelated, we find

Sx̄ȳ(ω) = Sww(ω)= σ2
w

Sȳȳ(ω) = Sww(ω)+Svv(ω)|D(ω)|2 = σ2
w +σ2

v ω4

which leads to

H(ω)= Sx̄ȳ(ω)
Sȳȳ(ω)

= σ2
w

σ2
w +σ2

v ω4
= 1

1+ λω4
, λ = σ

2
v

σ2
w

(7.8.19)

This can be written in the form,

H(ω)= σ2
w/ω4

σ2
w/ω4 +σ2

v
(7.8.20)

7.9. Computational Aspects 335

which is what we would get from Eq. (7.8.17) had we pretended that the spectral densities
did exist. Indeed it would follow in such a case from Eq. (7.8.16) that Sxy(ω)= σ2

w/ω4

and Syy(ω)= σ2
w/ω4 +σ2

v .

7.9 Computational Aspects

Eqs. (7.3.22) and (7.3.24) describing the complete spline solution have been implemented
by the MATLAB function splsm,

P = splsm(t,y,lambda,w); % spline smoothing

where t,y are the knot times [t0, t1, . . . , tN−1] and data [y0, y1, . . . , yN−1] (entered as
row or column vectors), lambda is the smoothing parameter λ, and w the vector of
weights [w0,w1, . . . ,wN−1], which default to unity values. The output P is an N×4
matrix whose n-th row are the polynomial coefficients [an, bn, cn, dn]. Thus, the vector
a is the first column of P. Internally, the matrices T,Q are computed as sparse banded
matrices with the help of the function splmat,

[T,Q] = splmat(h); % spline sparse matrices T,Q

where h is the vector of knot spacings [h0, h1, . . . , hN−1], which is simply computed by
the diff operation on the knot times t, that is, h=diff(t). The smoothing spline may
be evaluated at any value of t in the range ta ≤ t ≤ tb using Eq. (7.3.1). The function
splval performs the evaluation of x(t) at any vector of t’s,

ys = splval(P,t,ts); % spline evaluation at a vector of grid points ts

where ys is the vector of values x(ts), and P,t are the spline coefficients and knot times.
The GCV criterion (7.5.5) (with the 1/N factor removed) may be calculated for any vector
of λ values by the function splgcv:

gcv = splgcv(t,y,lambda,w); % GCV evaluation at a vector of λ’s

The optimum λ may be selected by finding the minimum of the GCV over the com-
puted range. Alternatively, the optimum λ may be computed by the related function
splambda, which performs a golden-mean search over a given interval of λ’s,

[lopt,gcvopt] = splambda(t,y,la,lb,Nit,w); % determine optimum λ

The starting interval is [λa, λb] and Nit denotes the number of golden-mean itera-
tions (typically, 10–20). The function splsm2 is a “robustified” version of splsm,

[P,ta] = splsm2(t,y,la,w,Nit); % robust spline smoothing

The function starts with the original triplet [t,y,w] and uses the LOESS method of
repeatedly modifying the weights (with a total of Nit iterations), with the outliers being
given smaller weights. Because of the modification and zeroing of some of the weights,
the output matrix P will have dimensionNa×4 withNa ≤ N. The function also outputs

336 7. Smoothing Splines

the corresponding knot times ta (alsoNa-dimensional) that survive the down-weighting
process.

All of the above functions assume that the observations yn are unique at the knot
times tn. If there are repeated observations, then the weighted observations and their
weights given by Eq. (7.6.2) must be the inputs to the above functions. They may be
determined with the function splav, which is similar in spirit to the function avobs,
except that it computes weighted averages instead of plain averages:

[ta,ya,wa] = splav(t,y,w); % weighted averages of repeated observations

where the outputs [ta,ya,wa] are the resulting unique knot times, observations, and
weights.

Example 7.9.1: Motorcycle data. The usage of these functions is illustrated by the motorcycle
data that we considered earlier in local polynomial modeling. The upper-left graph of
Fig. 7.9.1 shows a plot of the GCV calculated with the function splgcv. The optimum
value was found to be λopt = 15.25 by the function splambda and placed on the graph.

0 10 20 30 40 50
5.5

6

6.5

7
GCV versus λ

λ
0 20 40 60

−150

−100

−50

0

50

100

motorcycle acceleration, λ = λopt

t (msec)

0 20 40 60
−150

−100

−50

0

50

100

motorcycle acceleration, λ = 0

t (msec)
0 20 40 60

−150

−100

−50

0

50

100

motorcycle acceleration, λ = ∞

t (msec)

Fig. 7.9.1 Spline smoothing of motorcycle data.

The MATLAB code used for this graph was:

7.9. Computational Aspects 337

Y = loadfile(’mcyc.dat’); % load data

tobs = Y(:,1); yobs = Y(:,2); % extract knot times and observations

[t,y,w] = splav(tobs,yobs); % average repeated observations

la1=1; la2=50; Nit=30; % search interval and no. of iterations

[lopt,gcvopt] = splambda(t,y,la1,la2,Nit,w); % determine optimum λ

la = linspace(la1,la2,100); % evaluate GCV over λ1 ≤ λ ≤ λ2

gcv = splgcv(t,y,la,w);

figure; plot(la,gcv, lopt,gcvopt, ’.’); % plot GCV versus λ

The upper-right graph shows the smoothing spline corresponding to λ = λopt, and eval-
uated at a uniform grid of time points. The lower two graphs depict the special cases of
λ = 0 corresponding to spline interpolation, and λ = ∞ corresponding to a linear fit. The
following MATLAB code generates these graphs:

P = splsm(t,y,lopt,w); % spline coefficients

ts = locgrid(t,1001); % grid time points

ys = splval(P,t,ts); % evaluate spline at grid

figure; plot(tobs,yobs,’.’, ts,ys,’-’); % upper-right graph

la = 0; P = splsm(t,y,la,w); % spline coefficients for λ = 0

ys = splval(P,t,ts); % evaluate spline at grid

figure; plot(t,y,’.’, ts,ys,’-’); % lower-left graph

la = inf; P = splsm(t,y,la,w); % spline coefficients for λ = ∞
ys = splval(P,t,ts);

figure; plot(t,y,’.’, ts,ys,’-’); % lower-right graph

Because the motorcycle data have repeated observations, the actual observations were
replaced by their averaged values prior to evaluating the splines. The solid-line curves
represent the evaluated splines, and the dots are the original data points, except for the
lower-left graph in which the dots represent the averaged observations with the spline
curve interpolating through them instead of the original points. ��
.

Example 7.9.2: Robust spline smoothing. Fig. 7.9.2 shows an example of robust spline smooth-
ing. It is the same example considered earlier in Figs. 4.5.3 and 5.6.1.

The optimum value of λ was determined by the function splambda to be λ = 3.6562, but
neighboring value would be just as good. The left graph shows the case of ordinary spline
smoothing with no robustness iterations, and the right graph, using Nit = 10 iterations.
The MATLAB code generating the right graph was as follows,

t = (0:50)’; u = t/max(t);
x0 = (1-cos(2*pi*u))/2; % noise-free signal

seed=2005; randn(’state’,seed);

338 7. Smoothing Splines

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
robust spline smoothing, Nit = 0

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
robust spline smoothing, Nit = 10

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

Fig. 7.9.2 Robust spline smoothing.

y = x0 + 0.1 * randn(size(x0)); % noisy observations

m = [-1 0 1 3]; % outlier indices relative to n0, n1

n0=25; y(n0+m+1)=0.0;
n1=10; y(n1+m+1)=1.0;

la = splambda(t,y,1,10,30); % optimum λ = 3.6562

w = ones(size(t)); Nit = 10; % initial weights

[P,ta] = splsm2(t,y,la,w,Nit); % robust spline smoothing

ya = P(:,1); % smoothed values

plot(t,x0,’--’, t,y,’.’, ta,ya,’-’); % right graph

The optimum λ was searched for in the interval 1 ≤ λ ≤ 10 calling splambda with 30

golden-mean iterations. The resulting knot vector ta has length 42, while the original

vector t had length 51. The missing knot times correspond to the positions of the outliers.

Example 7.9.3: NIST ultrasonic data. We apply spline smoothing to a nonlinear least-squares
benchmark example from the NIST Statistical Reference Dataset Archives. The data file
Chwirut1.dat is available online from the NIST web sites:

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

http://www.itl.nist.gov/div898/strd/nls/data/chwirut1.shtml

The data are from a NIST study involving ultrasonic calibration and represent ultrasonic
response versus metal distance. There are multiple observations for each distance. In fact,
there are 214 observation pairs (xn, yn), but only 22 unique xns. The data have been fit
by NIST using a nonlinear least squares method to a function of the form:

y = exp(−b1x)
b2 + b3x

(NIST fit)

with the following fitted parameter values:

b1 = 0.19027818370 , b2 = 0.0061314004477 , b3 = 0.0010530908399

7.9. Computational Aspects 339

The right graph in Fig. 7.9.3 compares the smoothing spline curve (solid line) with the
above NIST fit (dotted line). Except for the rightmost end of the curves, the agreement is
very close and the curves are almost indistinguishable.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1.1

1.2

1.3

λ

G
C

V

GCV vs. λ, λopt = 0.1425

0 1 2 3 4 5 6
0

20

40

60

80

100

x

y

spline and nonlinear fitting

 data
 spline fit
 NIST fit

Fig. 7.9.3 Spline smoothing vs. Nonlinear fitting.

The function splav is called first to determine the unique xns and the corresponding aver-
aged observations and their multiplicities. These are then used in splambda to determine
the optimum GCV smoothing parameter, λopt = 0.1425, which is used by the function
splsm to perform the spline smoothing fit. The GCV is evaluated and plotted at a range of
λs to illustrate its minimum. Finally, the spline is evaluated at dense grid of x-abscissas
for plotting. The following code segment illustrates the computations:

Y = loadfile(’Chwirut1.dat’); % data file in OSP toolbox

x = Y(:,2); y = Y(:,1); % read (x, y) observation pairs

[x,i] = sort(x); y = y(i); % sort x’s in increasing order

b1 = 1.9027818370E-01; b2 = 6.1314004477E-03; b3 = 1.0530908399E-02;

yf = exp(-b1*x)./(b2+b3*x); % NIST fit

[xa,ya,wa] = splav(x,y); % unique x’s, averaged observations, and multiplicities

la1=0.01; la2=1; Nit=20; % search interval

[lopt,gopt] = splambda(xa,ya,la1,la2,Nit,wa); % determine optimum λ

la = linspace(0.05,0.4,51); % range of λ’s

gcv = splgcv(xa,ya,la,wa); % evaluate GCV

figure; plot(la,gcv, lopt,gopt,’.’); % left graph

P = splsm(xa,ya,lopt,wa); % spline smoothing coefficients

xs = locgrid(xa,200); % evaluation grid of abscissas

ys = splval(P,xa,xs); % evaluate spline at xs

figure; plot(x,y,’.’, xs,ys,’-’, x,yf,’:’); % right graph

340 7. Smoothing Splines

7.10 Problems

7.1 Show that the matrices Q,S defined in Eqs. (7.3.13) and (7.3.30) satisfy the orthogonality
property QTS = 0. Assuming that the weighting diagonal matrix W has positive diagonal
entries, argue that the N×N matrix A = [W−1/2Q,W1/2S] is non-singular. Using this fact,
prove the projection matrix property (7.3.31). [Hint: work with A(ATA)−1AT .]

7.2 Show that the Euler-Lagrange equation for the variational problem (7.6.1) is:

....
x (t)= λ−1

N−1∑
n=0

mn∑
i=1

wni
(
yni − x(tn)

)
δ(t − tn)

and show that it is equivalent to

....
x (t)= λ−1

N−1∑
n=0

w̄n
(
ȳn − x(tn)

)
δ(t − tn)

where w̄n, ȳn were defined in (7.6.2). This is an alternative way to establish the equivalence
of the variational problems (7.6.1) and (7.6.3).

7.3 First prove the following Fourier transform pair:

exp
(−b|t|)←→ 2b

b2 +ω2

where b is any complex number with Re(b)> 0. Then, use it to prove that Eqs. (7.7.4) and
(7.7.5) are a Fourier transform pair. Show the same for the pair in Eq. (7.7.8).

8
Whittaker-Henderson Smoothing

8.1 Whittaker-Henderson Smoothing Methods

Whittaker-Henderson smoothing is a discrete-time version of spline smoothing for equa-
lly spaced data. Some of the original papers by Bohlmann, Whittaker, Henderson and
others,† and their applications to trend extraction in the actuarial sciences, physical
sciences, and business and finance, are given in [405–438], including Hodrick-Prescott
filters in finance [439–467], and recent realizations in terms of the �1 norm [468–478],
as well as extensions to seasonal data [622–625,636,638]. The performance index was
defined in Eq. (7.1.2),

J =
N−1∑
n=0

wn
∣∣yn − xn∣∣2 + λ

N−1∑
n=s

∣∣∇sxn∣∣2 = min (8.1.1)

where ∇sxn represents the backward-difference operator ∇xn = xn − xn−1 applied s
times. We encountered this operation in Sec. 4.2 on minimum-Rs Henderson filters. The
corresponding difference filter and its impulse response are

Ds(z)= (1− z−1)s

ds(k)= (−1)k
(
s
k

)
, 0 ≤ k ≤ s

(8.1.2)

For example, we have for s = 1,2,3,

d1 =
[

1
−1

]
, d2 =

⎡⎢⎣ 1
−2

1

⎤⎥⎦ , d3 =

⎡⎢⎢⎢⎣
1
−3

3
−1

⎤⎥⎥⎥⎦
Because Ds(z) is a highpass filter, the performance index attempts, in its second

term, to minimize the spectral energy of xn at the high frequency end, while attempt-
ing to interpolate the noisy observations with the first term. The result is a lowpass,

†Bohlmann considered the case s = 1, Whittaker and Henderson, s = 3, and Hodrick-Prescott, s = 2.

341

342 8. Whittaker-Henderson Smoothing

smoothing, operation. In fact, the filter Ds(z) may be replaced by any other (causal)
FIR highpass filter D(z), or dn in the time domain, with a similar result. Thus, a more
general version of (8.1.1) would be:

J =
N−1∑
n=0

wn
∣∣yn − xn∣∣2 + λ

N−1∑
n=s

∣∣dn ∗ xn∣∣2 = min (8.1.3)

where dn ∗ xn denotes convolution and s is the filter order, that is, we assume that the
impulse response is dn =

[
d0, d1, . . . , ds

]
. The criteria (8.1.1) and (8.1.3) are examples

of the method of regularization, which we discuss in more general terms in Sec. 8.6 and
for ill-conditioned linear systems in particular in Sec. 15.10.

The summation limits of the second terms in Eqs. (8.1.1) and (8.1.3) restrict the
convolutional operations to their steady-state range. For example, for a length-N causal
input {x0, x1, . . . , xN−1}, the s-difference filter has the full convolutional output:

gn = ∇sxn =
min(s,n)∑

k=max(0,n−N+1)
ds(k)xn−k , 0 ≤ n ≤ N − 1+ s (8.1.4)

and the steady-state output (assuming N > s):

gn = ∇sxn =
s∑
k=0

ds(k)xn−k , s ≤ n ≤ N − 1 (8.1.5)

Similarly, we have in the more general case,

gn = dn ∗ xn =
min(s,n)∑

k=max(0,n−N+1)
dkxn−k , 0 ≤ n ≤ N − 1+ s

gn = dn ∗ xn =
s∑
k=0

dkxn−k , s ≤ n ≤ N − 1

(8.1.6)

In Sec. 4.2 we worked with the full convolutional form (8.1.4) and implemented it in
a matrix form using the convolution matrix. We recall that the MATLAB functions binom
and diffmat can be used to compute the impulse response ds(k) and the corresponding
(N+s)×N full convolutional matrix Ds.

The filtering operation gn = ∇sxn, 0 ≤ n ≤ N−1+s, can be expressed vectorially as
g = Dsx, where x is the N-dimensional input vector x = [x0, x1, . . . , xN−1]T, and g =
[g0, g1, . . . , gN−1+s]T, the (N+s)-dimensional output vector. Similarly, the operation
gn = dn ∗ xn can be expressed as g = Dfull x, where the (N+s)×N full convolution
matrix can be constructed using convmat—the sparse version of convmtx,

Dfull = convmat(d,N); % sparse full convolution matrix

where d = [d0, d1, . . . , ds]T. The steady-state versions of the full convolution matrices
are obtained by extracting their middle N−s rows, and therefore, they have dimension
(N−s)×N. For example, we have for N = 5 and s = 2, with d = [d0, d1, d2]T,

8.1. Whittaker-Henderson Smoothing Methods 343

Dfull =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 0 0 0 0
d1 d0 0 0 0

d2 d1 d0 0 0
0 d2 d1 d0 0
0 0 d2 d1 d0

0 0 0 d2 d1

0 0 0 0 d2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ D =

⎡⎢⎣d2 d1 d0 0 0
0 d2 d1 d0 0
0 0 d2 d1 d0

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
d2 0 0
d1 d2 0
d0 d1 d2

0 d0 d1

0 0 d0

⎤⎥⎥⎥⎥⎥⎥⎦

T

The last expression shows that the steady matrix can also be viewed as the trans-
posed of the convolution matrix of the reversed filter with N−s columns. Thus, in
MATLAB two possible ways of constructing D are:

1) Dfull = convmat(d,N); D = Dfull(s+ 1 : N, :)
2) D = convmat(flip(d),N − s)′; (8.1.7)

For the s-difference filter, we can use the equivalent (sparse) constructions:

1) Dfull = diffmat(s,N); D = Dfull(s+ 1 : N, :)
2) D = (−1)s∗diffmat(s,N − s)′;
3) D = diff(speye(N), s);

(8.1.8)

where the second method is valid because the reversed binomial filter is (−1)s times
the unreversed one. The third method is the fastest [428], but does not generalize to an
arbitrary filter d. As an example, we have for N = 7, s = 2, and d = [1,−2,1]T:

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎦
The corresponding steady-state output vector g = [gs, gs+1, . . . , gN−1]T is given by

g = Dx, with squared norm,

N−1∑
n=s
[dn ∗ xn]2=

N−1∑
n=s
g2
n = gTg = xT(DTD)x

Therefore, the performance index (8.1.1) or (8.1.3) can be written compactly as:

J = (y− x)TW(y− x)+λxT(DTD)x = min (8.1.9)

where W is the diagonal matrix of the weights, W = diag
(
[w0,w1, . . . ,wN−1]

)
. The

optimum solution is obtained by setting the gradient with respect to x to zero,

∂J
∂x

= −2W(y− x)+2λ(DTD)x = 0 ⇒ (W + λDTD)x =Wy

344 8. Whittaker-Henderson Smoothing

with solution, which may be regarded as the estimate of x in the signal model y = x+v,

x̂ = (W + λDTD)−1Wy (8.1.10)

The matrix D plays the same role as the matrix QT in the spline smoothing case,
but for equally-spaced data. As was the case in Sec. 4.2, the matrix DTD is essentially
equivalent to the (2s)-differencing operator ∇2s, after ignoring the first s and last s
rows. For example, we have for N = 7 and s = 2,

DTD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 0
−2 5 −4 1 0 0 0

1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0
0 0 1 −4 6 −4 1

0 0 0 1 −4 5 −2
0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where we recognize the expansion coefficients (1−z−1)4= 1−4z−1+6z−2−4z−3+z−4.

The N×N matrix (W + λDTD) is sparse and banded with bandwidth 2s + 1, and
therefore, MATLAB solves Eq. (8.1.10) very efficiently by default (as long as it is imple-
mented by the backslash operator). The function whsm implements Eq. (8.1.10):

x = whsm(y,lambda,s,w); % Whittaker-Henderson smoothing

where method (2) is used internally to compute D, and w is the vector of weights, which
defaults to unity. The function whgen is the generalized version that uses an arbitrary
highpass filter d, whose steady convolution matrix D is also computed by method (2):

x = whgen(y,lambda,d,w); % generalized Whittaker-Henderson smoothing

Denoting the “hat” filtering matrixH = (W+λDTD)−1W, and defining the error e =
y− x̂ = (I−H)y, we may define a generalized cross-validation criterion for determining
the smoothing parameter λ, which is analogous to that of Eq. (7.5.5):

GCV(λ)= eTWe[
tr(I −H)]2 = min (8.1.11)

The function whgcv calculates it at any vector of λ’s and finds the corresponding
optimum:

[gcv,lopt] = whgcv(y,la,s,w); % Whittaker-Henderson GCV evaluation

The GCV criterion should be used with some caution because it suffers from the
same problem, as in the spline case, of typically underestimating the proper value of λ.

The Whittaker-Henderson method was compared to the local polynomial and mini-
mum roughness filters in Examples 3.9.2 and 4.2.1. Some additional examples are dis-
cussed below.

8.1. Whittaker-Henderson Smoothing Methods 345

Example 8.1.1: NIST ENSO data. We apply the Whittaker-Henderson (WH) smoothing method
to the ENSO data which are another benchmark example in the NIST Statistical Reference
Dataset Archives, and original reference [1240]. The data file ENSO.dat is available online
from the NIST web sites:

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

http://www.itl.nist.gov/div898/strd/nls/data/enso.shtml

The data represent the monthly averaged atmospheric pressure differences between Easter
Island and Darwin, Australia. In the nonlinear NIST fit, the data are fitted to three sinusoids
of unknown amplitudes and frequencies, except that one of the sinusoids is kept at the
annual frequency. There are three significant cycles at 12, 26, and 44 months.

The upper-left graph of Fig. 8.1.1 compares the NIST fit with the Whittaker-Henderson
method. We used s = 3 and smoothing parameter λopt = 6.6. which was determined by
the GCV function whgcv.

The lower-left graph shows the corresponding periodogram spectra plotted versus period
in units of months/cycle. The three dominant peaks are evident. In the spectrum graphs,
the digital frequency isω = 2πf rads/month, with f measured in cycles/month, and with
the corresponding period p = 1/f measured in months/cycle.

0 20 40 60 80 100 120 140 160

0

5

10

15

20

t (months)

Whittaker− Henderson Smoothing

 data
 smoothed
 NIST fit

0 20 40 60 80 100 120 140 160

0

5

10

15

20

t (months)

SVD Enhancement, M = 20, r = 6

 data
 smoothed
 NIST fit

6 12 18 24 30 36 42 48 54
0

0.2

0.4

0.6

0.8

1

months/cycle

periodogram spectra

 WH method
 data
 NIST fit

6 12 18 24 30 36 42 48 54
0

0.2

0.4

0.6

0.8

1

months/cycle

periodogram spectra

 SVD method
 data
 NIST fit

Fig. 8.1.1 Smoothed ENSO signal and spectra.

346 8. Whittaker-Henderson Smoothing

The time-domain WH signal agrees fairly well with the NIST fit. We note that in the places
where the two disagree, the WH fit appears to be a better representation of the noisy data.

The upper-right graph shows the application of the SVD enhancement method, which typ-
ically works well for sinusoids in noise. The embedding dimension was M = 20 and
the assumed rank r = 6 (three real sinusoids are equivalent to six complex ones.) The
lower-right graph shows the corresponding spectral peaks. The following MATLAB code
illustrates the generation of the four graphs:

Y = loadfile(’ENSO.dat’); % data file in OSP toolbox

y = Y(:,1); t = Y(:,2); % extract data signal

b1 = 1.0510749193E+01; b2 = 3.0762128085E+00; b3 = 5.3280138227E-01;
b4 = 4.4311088700E+01; b5 =-1.6231428586E+00; b6 = 5.2554493756E-01;
b7 = 2.6887614440E+01; b8 = 2.1232288488E-01; b9 = 1.4966870418E+00;

yf = b1 + b2*cos(2*pi*t/12) + b3*sin(2*pi*t/12) + b5*cos(2*pi*t/b4) ...
+ b6*sin(2*pi*t/b4) + b8*cos(2*pi*t/b7) + b9*sin(2*pi*t/b7);

s=3; la = linspace(2,10,100); % search range for λ
[gcv,lopt]=whgcv(y,la,s); % λopt = 6.6

yw = whsm(y,lopt,s); % WH smoothing method

M=20; r=6; ye = svdenh(y,M,r); % SVD enhancement method

figure; plot(t,y,’.’, t,yw,’-’, t,yf,’:’); % upper-left graph

figure; plot(t,y,’.’, t,ye,’-’, t,yf,’:’); % upper-right graph

p = linspace(6,54, 481); w = 2*pi./p; % period in months/cycle

Sy = abs(freqz(zmean(y), 1, w)).^2; Sy = Sy/max(Sy); % spectra

Sf = abs(freqz(zmean(yf), 1, w)).^2; Sf = Sf/max(Sf);
Sw = abs(freqz(zmean(yw), 1, w)).^2; Sw = Sw/max(Sw);
Se = abs(freqz(zmean(ye), 1, w)).^2; Se = Se/max(Se);

figure; plot(p,Sw, p,Sy,’:’, p,Sf,’--’); % lower-left graph

figure; plot(p,Se, p,Sy,’:’, p,Sf,’--’); % lower-right graph

The bi parameters and the signal yf represent the NIST fit. Anticipating the three relevant
peaks, the spectra were computed only over the period range 6 ≤ p ≤ 54 months. The
function zmean removes the mean of the signal so that the spectrum is not masked by the
DC component. ��

8.2 Regularization Filters

Most of the results of the spline smoothing case carry over to the discrete case. For
example, we may obtain an equivalent digital filter by taking the signals to be double-
sided and infinite. Using the Parseval identity, the performance index (8.1.3) becomes:

J =
∞∑

n=−∞
|yn − xn|2 + λ

∞∑
n=−∞

|dn ∗ xn|2 =

=
∫ π
−π

∣∣Y(ω)−X(ω)∣∣2 dω
2π

+ λ
∫ π
−π

∣∣D(ω)X(ω)∣∣2 dω
2π

= min

(8.2.1)

8.2. Regularization Filters 347

whereD(ω) is the frequency response† of the filter dn, and we assumed unity weights,
wn = 1. The vanishing of the functional derivative of J with respect to X∗(ω),

δJ
δX∗(ω)

= X(ω)−Y(ω)+λ|D(ω)|2X(ω)= 0 (8.2.2)

gives the effective equivalent smoothing filter H(ω)= X(ω)/Y(ω):

H(ω)= 1

1+ λ|D(ω)|2 (8.2.3)

The corresponding z-domain transfer function is obtained by noting that for real-
valued dn, we have |D(ω)|2 = D(z)D(z−1), where z = ejω, so that,

H(z)= 1

1+ λD(z)D(z−1)
(8.2.4)

Such “recursive regularization filters” have been considered in [440]. In particular,
for the s-difference filter Ds(z)= (1− z−1)s, we have:

H(z)= 1

1+ λ(1− z−1)s(1− z)s (Whittaker-Henderson filter) (8.2.5)

Similarly, Eq. (8.2.2) can be written in the z-domain and converted back to the time do-
main. Noting thatDs(z)Ds(z−1)= (1−z−1)s(1−z)s= (−1)szs(1−z−1)2s= (−1)szsD2s(z),
we have:

X(z)−Y(z)+λ(−1)szs(1− z−1)2sX(z)= 0 , or,

(−1)szsD2s(z)X(z)= λ−1(Y(z)−X(z)),
resulting in the time-domain (2s)-difference equation:

(−1)s∇2sxn+s = λ−1(yn − xn) (8.2.6)

In the early years, some ingenious methods were developed for solving this type of
equation [407–416]. Noting that |Ds(ω)| = |1 − e−jω|s = 2s

∣∣sin(ω/2)
∣∣s, we obtain

the frequency response of (8.2.5):

H(ω)= 1

1+ λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s (8.2.7)

The complementary highpass filter Hc(z)= 1 − H(z) extracts the error residual
component from the observations yn, that is, en = yn − xn, or in the z-domain, E(z)=
Y(z)−X(z)= Y(z)−H(z)Y(z)= Hc(z)Y(z). Its transfer function and frequency re-
sponse are given by:

Hc(z)= λ(1− z−1)s(1− z)s
1+ λ(1− z−1)s(1− z)s , Hc(ω)=

λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s

1+ λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s (8.2.8)

Fig. 8.2.1 shows a plot of H(ω) and Hc(ω) for s = 1,2,3 and the two values of
the smoothing parameter λ = 5 and λ = 50. Increasing λ narrows the response of the
lowpass filter and widens the response of the highpass one.

†Here,ω is the digital frequency in units of radians per sample.

348 8. Whittaker-Henderson Smoothing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

λ = 5

 s = 3
 s = 2
 s = 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

λ = 50

 s = 3
 s = 2
 s = 1

Fig. 8.2.1 Frequency responses of Whittaker-Henderson filters.

8.3 Hodrick-Prescott Filters

In macroeconomic applications such as extracting business cycles from GDP data, the
standard signal model yn = xn + vn is interpreted to consist of a long-term trend rep-
resented by xn and a shorter-term cyclical component vn. The filters H(z) and Hc(z)
extract the trend and cyclical components, respectively.

The use of Whittaker-Henderson smoothing with s = 2 has been advocated by Ho-
drick and Prescott [439] and has become standard in such applications. The Whittaker-
Henderson filters are referred to as Hodrick-Prescott filters and there is a very large
literature on the subject and on the use of other types of bandpass filters for extracting
business cycles, a subset of which is [439–465].

As is the case in typical filter design, the filter parameter λ can be fixed by specifying
a desired value for the filter’s cutoff frequencyωc corresponding to some standardized
value of the gain. For the lowpass filter we have for general s, the condition:

1

1+ λ
∣∣∣∣2 sin

ωc
2

∣∣∣∣2s = Gc (8.3.1)

whereGc is desired value of the gain. The 3-dB cutoff frequencyωc corresponds toGc =
1/
√

2. In macroeconomic applications, the 6-dB frequency is often used, corresponding
to the choice Gc = 1/2. For the highpass case, measuring the gain Gc relative to that at
the Nyquist frequencyω = π, we have the condition:

λ
∣∣∣∣2 sin

ωc
2

∣∣∣∣2s

1+ λ
∣∣∣∣2 sin

ωc
2

∣∣∣∣2s = Gc
22sλ

1+ 22sλ
(8.3.2)

Typically, business cycles are defined [446] as having frequency components with
periods between 6 and 32 quarters (1.5 to 8 years). A bandpass filter with a passband
[ω1,ω2]= [2π/32, 2π/6] radians/quarter would extract such cycles.

8.3. Hodrick-Prescott Filters 349

The Hodrick-Prescott highpass filterHc(ω)must therefore have a cutoff frequency
of about ωc = ω1 = 2π/32. Hodrick-Prescott advocate the use of λ = 1600 for
quarterly data. Interestingly, the values of λ = 1600 and ωc = 2π/32 rads/quarter,
correspond to almost a 3-dB gain. Indeed, the gain calculated from Eq. (8.3.2) with s = 2
turns out to be Gc = 0.702667 ≡ −3.065 dB.

Using the sameωc and Gc, but different values of s requires adjusting the value of
λ. For example, solving Eq. (8.3.2) for λ with s = 1,2,3 gives:

λ = 1600 (s = 2), λ = 60.654 (s = 1), λ = 41640 (s = 3) (8.3.3)

Similarly, the value of λmust be adjusted if the sampling frequency is changed. For
example, the same cutoff frequency expressed in different units is:

ωc = 2π
32

radians

quarter
= 2π

8

radians

year
= 2π

96

radians

month
(8.3.4)

The above value Gc = 0.702667 used in (8.3.2) with s = 2 then gives the following
values of λ for quarterly, yearly, and monthly sampled data:

λ = 1600 (quarterly) , λ = 6.677 (yearly) , λ = 128878 (monthly) (8.3.5)

Similarly, using the slightly more exact value Gc = 1/
√

2 and s = 2 gives:

λ = 1634.5 (quarterly) , λ = 6.822 (yearly) , λ = 131659 (monthly) (8.3.6)

There is not much agreement as to the values of λ to be used for annual and monthly
data. Two other sets of values are as follows, with the first being used by the European
Central Bank and the second recommended by [456,463],

λ = 1600/42 = 100 (yearly) , λ = 1600× 32 = 14400 (monthly)
λ = 1600/44 = 6.25 (yearly) , λ = 1600× 34 = 129600 (monthly)

(8.3.7)

The latter choice is essentially the same as that of Eq. (8.3.5) based on the criterion
(8.3.2). Indeed, for smallωc, we may make the approximation 2 sin(ωc/2)≈ωc. Since
22sλ is typically much larger than unity, the right-hand side of Eq. (8.3.2) can be replaced
by Gc, resulting in the following approximate solution, which turns out to be valid up
to aboutωc ≤ 0.3π,

λω2s
c

1+ λω2s
c
= Gc ⇒ λ = Gc

(1−Gc)ω2s
c

(8.3.8)

If in this formula, we adjust Gc to get λ = 1600 at ωc = 2π/32, we find Gc =
0.70398 ≡ −3.049 dB, which in turn generates the second set of values in Eq. (8.3.7).

Example 8.3.1: US GDP for investment. A protypical example is the application of the Hodrick-
Prescott filter to the US GDP. Fig. 8.3.1 shows the real gross domestic product in chained
(2000) dollars from private domestic investment, seasonally adjusted at annual rates. The
data can be retrieved (as Table 1.1.6) from the BEA web sites:

http://www.bea.gov/
http://www.bea.gov/national/nipaweb/Index.asp

350 8. Whittaker-Henderson Smoothing

The signal to be smoothed is the log of the GDP, that is, y = log10(GDP), and the ordinate
units are such that y = 12 corresponds to GDP = 1012, or, one trillion dollars. The data
are quarterly and span the years 1947–2008.

The upper-left graph shows the raw data and the WH-smoothed signal computed with s = 2
and λ = 1600, which as we mentioned above correspond to an approximate 3-dB cutoff
frequency of 32 quarters. The upper-right graph shows the residual cyclical component.
Its deviations above or below zero indicate the business cycles.

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing, s = 2

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−0.2

−0.1

0

0.1

0.2

years in quarters

cyclical component = (GDP) − (trend)

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing, s = 3

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

SVD enhancement, M = 9, r = 1

 trend
 data

Fig. 8.3.1 U.S. quarterly GDP in private investment, 1947–2008.

For comparison, the left-bottom graph shows the WH-smoothed signal with s = 3 and
λ = 41640 adjusted to match the same 3-dB cutoff frequency as the s = 2 case, see
Eq. (8.3.3). The lower-right graph shows the smoothed trend from the SVD enhancement
method applied with embedding dimensionM = 9 and rank r = 1. The following MATLAB
code illustrates the generation of the four graphs:

Y = loadfile(’USGDP_Inv.dat’); % data file in OSP toolbox

y = log10(Y(:,2) * 1e9); % Y was in billions

t = taxis(y,4,1947); % t-axis in quarters since 1947

s = 2; la = 1600; yt = whsm(y,la,s); % WH smoothing with s = 2

figure; plot(t,yt,’-’, t,y,’--’); % upper-left graph

8.4. Poles and Impulse Response 351

yc = y-yt; % cyclical component

figure; plot(t,yc, ’-’); % upper-right graph

s = 3; la = 41640.16; yt = whsm(y,la,s); % WH smoothing with s = 3

figure; plot(t,yt,’-’, t,y,’--’); % bottom-left graph

M=9; r=1; ye = svdenh(y,M,r); % SVD enhancement method

figure; plot(t,ye,’-’, t,y,’--’); % bottom-right graph

Except near the end-points, the smoothed trend for s = 3 is virtually indistinguishable
from the s = 2 case, and therefore, it would lead to the same prediction of business cycles.
The SVD trend is also very comparable. ��

8.4 Poles and Impulse Response

Because of the invariance under the substitution z→ z−1, the 2s poles of the filterH(z)
of Eq. (8.2.5) come in two groups with s poles inside the unit circle and their reciprocals
outside. It follows that H(z) can be expressed in the factored form:

H(z)= 1

1+ λ(1− z−1)s(1− z)s =
s∏
k=1

[
(1− zk)2

(1− zkz−1)(1− zkz)

]
(8.4.1)

where zk, k = 1,2, . . . , s, denote the s poles inside the unit circle. The numerator factors
(1 − zk)2 ensure that the right-hand side has unity gain at DC (z = 1), as does the
left-hand side. The stable impulse response is double-sided and can be obtained by
performing an inverse z-transform with the unit circle as the inversion contour [12]:

hn =
∮

u.c.
H(z)zn

dz
2πjz

, −∞ < n <∞ (8.4.2)

Inserting the factored form (8.4.1) into (8.4.2), we find

hn =
s∑
k=1

Akz
|n|
k , −∞ < n <∞ (8.4.3)

where the coefficients Ak are given by

Ak =
(

1− zk
1+ zk

) s∏
i=1
i	=k

[
(1− zi)2

(1− ziz−1
k)(1− zizk)

]
, k = 1,2, . . . , s (8.4.4)

The poles can be obtained in the form zk = ejωk , where ωk are the complex fre-
quencies of the denominator, that is, the frequencies that are solutions of the equation:

1+ λ
[

2 sin
ω
2

]2s
= 0 (8.4.5)

where we note that even thoughω is complex, we still have (1−z−1)(1−z)= 4 sin2(ω/2)
for z = ejω. The solution of Eq. (8.4.5) is straightforward. The s frequencies ωk that
lead to poles zk that are inside the unit circle can be parametrized as follows:[

2 sin
ω
2

]2s
= −1

λ
= e

jπ(2k−1)

λ
⇒ sin

ωk
2
= e

jπ(2k−1)/(2s)

2λ1/(2s) , k = 1,2, . . . , s

352 8. Whittaker-Henderson Smoothing

Thus, the desired set of poles are:

zk = ejωk , ωk = 2 arcsin

[
ejθk

2λ1/(2s)

]
, θk = π(2k− 1)

2s
, k = 1,2, . . . , s (8.4.6)

If s is even, then the zk (and the coefficients Ak) come in conjugate pairs. If s is odd,
then the zero at k = (s+1)/2 is real and the rest come in conjugate pairs. In either case,
hn given by (8.4.3) is real-valued and decays exponentially from either side of the time
axis. The MATLAB function whimp calculates hn at any vector of ns and also produces
the poles and residues zk,Ak, k = 1,2, . . . , s,

[h,z,A] = whimp(lambda,s,n); % Whittaker-Henderson impulse response and poles

Fig. 8.4.1 shows the impulse responses for s = 1,2,3 with λs chosen as in (8.3.3)
so that the (complementary) filters have the same 3-dB cutoff frequency. The impulse
response of the complementary filter is hc(n)= δ(n)−h(n). Therefore, the three re-
sponses will have roughly the same time width.

−40 −20 0 20 40

0

0.02

0.04

0.06

WH impulse response

n

h
n

 s = 1
 s = 2
 s = 3

Fig. 8.4.1 Impulse responses of Whittaker-Henderson filters.

8.5 Wiener Filter Interpretation

Finally, we note that, as in the spline smoothing case, the equivalent filter H(z) can be
regarded as the optimum unrealizable Wiener filter for estimating xn from the observa-
tions yn in the signal model:

yn = xn + vn , ∇sxn = wn (8.5.1)

where vn,wn are mutually uncorrelated white noise signals with variances σ2
v,σ2

w. In-
deed, the transformed signals

x̄n = ∇sxn = wn , ȳn = ∇syn = wn +∇svn

8.6. Regularization and Kernel Machines 353

are stationary and it follows from the results of [643–649] that the optimum Wiener
filter will be in this case:

H(z)= Sx̄ȳ(z)
Sȳȳ(z)

= Sww(z)
Sww(z)+Ds(z)Ds(z−1)Svv(z)

= σ2
w

σ2
w +σ2

vDs(z)Ds(z−1)
(8.5.2)

Thus, we may identify λ = σ2
v/σ2

w. Using such a model, the optimum estimation
filter based on a finite, length-N, set of observations yn can be implemented efficiently
as a Kalman filter smoother requiringO(N) operations. On the other hand, the solution
of the matrix equation (8.1.10) is just as efficient due to the sparse and banded nature
of the linear system.

8.6 Regularization and Kernel Machines

Regularization was initially invented as a method for solving ill-posed, inconsistent,
overdetermined, and ill-conditioned inverse problems. Recently it has been applied also
to support-vector machines and kernel methods for machine learning. There is a huge
literature on the subject, a small subset of which is [480–519]. Here, we present a short
discussion with particular emphasis on deconvolution and kernel regression methods.

Both spline and Whittaker-Henderson smoothing are examples of regularization. The
performance index Eq. (8.1.3) can be generalized further to cover the case of deconvo-
lution, or inverse filtering,

J =
∑
n
|yn − fn ∗ xn|2 + λ

∑
n
|dn ∗ xn|2 = min (8.6.1)

where fn anddn are FIR filters. This attempts to solve yn = fn∗xn for xn by deconvolving
the effect of fn. We may write (8.6.1) in a compact matrix form using the convolution
matrices F,D of the two filters:

J = ‖y− Fx‖2 + λ‖Dx‖2 = (y− Fx)T(y− Fx)+λxT(DTD)x = min (8.6.2)

The solution is obtained from the gradient,

∂J
∂x

= −2FT(y− Fx)+2λDTDx = 0 , or,

x̂ = (FTF + λDTD)−1FTy (8.6.3)

The problem (8.6.2) is of course much more general than inverse filtering. The
method is known as Tikhonov regularization and as ridge regression. The linear sys-
tem y = Fx may in general be overdetermined, or underdetermined, or rank defective.
We discuss such cases in Chap. 15. To simplify the discussion, we assume here that the
linear system is either square and invertible or overdetermined but F having full rank.
For λ = 0, we obtain x̂ = (FTF)−1FTy, which is recognized as the unique pseudoin-
verse least-squares solution. In the square case, we have x̂ = F−1y. We are envisioning
a signal model of the form y = Fx+ v and the objective is to determine an estimate of
x. We have then,

x̂ = F−1y = F−1(Fx+ v)= x+ F−1v (8.6.4)

354 8. Whittaker-Henderson Smoothing

A potential problem with this estimate is that if F is ill-conditioned with a large con-
dition number—a common occurrence in practice—the resulting inverse-filtered noise
component u = F−1v may be magnified to such an extent that it will mask the desired
term x, rendering the estimate x̂ useless. The same can happen in the overdetermined
case. The presence of the regularization term helps in this regard by providing a more
well-conditioned inverse. For the deconvolution problem, one typically selects D to be
the unit matrix, D = I, leading to the solution,

x̂ = (FTF + λI)−1FTy (8.6.5)

To see how regularization improves the condition number, let λmax, λmin be the max-
imum and minimum eigenvalues of FTF. Then, the condition numbers of FTF and
FTF + λI are λmax/λmin and (λmax + λ)/(λmin + λ). A highly ill-conditioned problem
would have λmin � λmax. It is straightforward to verify that the larger the λ, the more
the condition number of the regularized matrix is reduced:

λ� 1 ⇒ λmax + λ
λmin + λ �

λmax

λmin

For example, if λmin = 10−3 and λmax = 103, we have λmax/λmin = 106, but the
regularized version (λmax + λ)/(λmin + λ) takes approximately the values 11, 2, 1.1,
for λ = 102,103,104, respectively.

Regularization is not without problems. For noisy data the basic tradeoff is that
improving the condition number by increasing λ causes more distortion and smoothing
of the desired signal component x. As usual, choosing the proper value of λ is more of
an art than science and requires some trial-and-error experimentation. The method of
cross-validation can also be applied [368] as a guide.

Other choices forD, for example differencing matrices, are used in applications such
as edge-preserving deblurring of images. We discuss deconvolution and inverse filter
design further in Sections 12.14 and 15.11.

Next, we consider briefly the connection of regularization to machine learning and
reproducing kernel Hilbert spaces. We recall that the objective of the spline smoothing
performance index,

J =
N−1∑
n=0

[
yn − f(tn)

]2 + λ
∫ tb
ta

[
f̈ (t)

]2dt = min (8.6.6)

was to “learn” the unknown function f(t) from a finite subset of N noisy observations
yn = f(tn)+vn, n = 0,1, . . . ,N − 1. The concept can be generalized from functions
of time to multivariable functions of some independent variable, say x, such as three-
dimensional space. The observed data samples are of the form yn = f(xn)+vn, and the
objective is to learn the unknown function f(x). The performance index is replaced by,

J =
N−1∑
n=0

[
yn − f(xn)

]2 + λ‖f‖2 = min (8.6.7)

where ‖f‖ is an appropriate norm that depends on the approach one takes to the mini-
mization problem. One possible and very successful approach is to use a neural network

8.6. Regularization and Kernel Machines 355

to model the unknown function f(x). In this case the regularization norm depends
on the parameters of the neural network and its assumed structure (typically a single-
hidden layer is sufficient.)

The reproducing kernel approach that we discuss here is to assume that f(x) can be
represented as a linear combination of a finite or infinite set of nonlinear basis functions
φi(x), i = 1,2, . . . ,M, where for now we will assume thatM is finite,

f(x)=
M∑
i=1

φi(x)ci =φφφT(x)c , φφφ(x)=

⎡⎢⎢⎢⎢⎢⎣
φ1(x)
φ2(x)

...
φM(x)

⎤⎥⎥⎥⎥⎥⎦ , c =

⎡⎢⎢⎢⎢⎢⎣
c1

c2

...
cM

⎤⎥⎥⎥⎥⎥⎦ (8.6.8)

This is analogous to the approach of Chap. 3 where f(t) was modeled as a polyno-
mial in t and expanded in the monomial basis functions si(t)= ti. Here, we define the
regularization norm in terms of the coefficients ci as follows:

‖f‖2 =
M∑
i=1

c2
i
λi
= cTΛ−1c (8.6.9)

where λi is a set of some given positive coefficients, and Λ = diag
(
[λ1, λ2, . . . , λM]

)
.

The function values at the N observation points are f(xn)= φφφT(xn)c , and can be ar-
ranged into an N-dimensional column vector:

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x0)
...
f(xn)
...
f(xN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Φc , Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

φφφT(x0)
...
φφφT(xn)

...
φφφT(xN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.6.10)

where Φ has dimension N×M. Thus, the performance index can be written compactly,

J = (y−Φc)T(y−Φc)+λcTΛ−1c = min (8.6.11)

The solution for the optimum coefficients c is obtained by setting the gradient to zero:

∂J
∂c

= −2ΦT(y−Φc)+2λΛ−1c = 0 ⇒ (λΛ−1 +ΦTΦ)c = ΦTy (8.6.12)

c = (λΛ−1 +ΦTΦ)−1ΦTy (8.6.13)

Using the matrix-inversion lemma, we have:

(λΛ−1 +ΦTΦ)−1= 1

λ
[
Λ−ΛΦT(λI +ΦΛΦT)−1ΦΛ

]
(8.6.14)

from which it follows that:

(λΛ−1 +ΦTΦ)−1ΦT = ΛΦT(λI +ΦΛΦT)−1 (8.6.15)

356 8. Whittaker-Henderson Smoothing

where I is the N×N identity matrix. Thus, the optimal coefficients are given by

c = ΛΦT(λI +ΦΛΦT)−1y (8.6.16)

The observation vector f = Φc and estimated function value f(x)=φφφT(x)c are then,

f = ΦΛΦT(λI +ΦΛΦT)−1y

f(x)=φφφT(x)ΛΦT(λI +ΦΛΦT)−1y
(8.6.17)

The appearance of the bilinear products of the basis functions suggests that we
define the kernel function:

K(x,x′)=φφφT(x)Λφφφ(x′)=
M∑
i=1

λiφi(x)φi(x′) (8.6.18)

Let us also define the N×N symmetric positive-definite kernel matrix K and N-
dimensional coefficient vector a = [a0, a1, . . . , aN−1]T by

K = ΦΛΦT
a = (λI +K)−1y

(8.6.19)

so that c = ΛΦTa and f = Φc = ΦΛΦTa = Ka and f(x)= φφφT(x)ΛΦTa. The matrix
elements of K can be expressed in terms of the kernel function:

Knm =
(
ΦΛΦT

)
nm =φφφT(xn)Λφφφ(xm)= K(xn,xm) (8.6.20)

for n,m = 0,1, . . . ,N − 1. Similarly, we have for f(x),

f(x) =φφφT(x)ΛΦTa =φφφT(x)Λ[
φφφ(x0), . . . ,φφφ(xn), . . . ,φφφ(xN−1)

]
a

= [
K(x,x1), . . . , K(x,xn), . . . , K(x,xN−1

]
a =

N−1∑
n=0

K(x,xn)an
(8.6.21)

Thus, we may express (8.6.17) directly in terms of the kernel function and the coef-
ficient vector a ,

f = Ka , f(x)=
N−1∑
n=0

K(x,xn)an (8.6.22)

Moreover, since c = ΛΦTa , the norm ‖f‖2 can also be expressed in terms of K and
the vector a as follows, ‖f‖2 = cTΛ−1c = (aTΦΛ)Λ−1(ΛΦTa)= aT(ΦΛΦT)a , or,

‖f‖2 = aTKa (8.6.23)

Thus, the knowledge of the kernel function K(x,x′)—rather than the knowledge of
the possibly infinite set of basis functions φi(x)—is sufficient to formulate and solve

8.6. Regularization and Kernel Machines 357

the regularization problem. Indeed, an equivalent optimization problem to (8.6.11) is
the following, with the performance index to be minimized with respect to a:

J = (y−Ka)T(y−Ka)+λaTKa = min (8.6.24)

The vanishing of gradient with respect to a leads to the same solution as (8.6.19),

∂J
∂a

= −2KT(y−Ka)+2λKa = 0 ⇒ (λK +KTK)a = KTy ⇒ a = (λI +K)−1y

where we used the symmetry property KT = K and assumed that K was invertible.
The linear vector space of functions of the form f(x)=φφφT(x)c , spanned by the set

of basis functions {φi(x), i = 1,2, . . . ,M}, can be turned into an inner-product space
(a Hilbert space if M = ∞) by endowing it with the inner product induced by the norm
(8.6.9). That is, for any two functions f1(x)= φφφT(x)c1 and f2(x)= φφφT(x)c2, we define
the inner product:

〈f1, f2〉 = cT1Λ−1c2 (8.6.25)

The resulting vector space, sayH, is referred to as a reproducing kernel Hilbert space.
By writing the kernel function in the form, K(x,x′)=φφφT(x)Λφφφ(x′)≡φφφT(x)c(x′), with
c(x′)= Λφφφ(x′), we see that, as a function of x for each fixed x′, it lies in the space H,
and satisfies the two reproducing-kernel properties:

f(x′)= 〈
f(·),K(·,x′)〉 , K(x,x′)= 〈

K(·,x),K(·,x′)〉 (8.6.26)

These follow from the definition (8.6.25). Indeed, given f(x)=φφφT(x)c , we have,〈
f(·),K(·,x′)〉= cTΛ−1c(x′)= cTΛ−1Λφφφ(x′)= cTφφφ(x′)= f(x′)〈
K(·,x),K(·,x′)〉 = c(x)TΛ−1c(x′)=φφφT(x)ΛΛ−1Λφφφ(x′)=φφφT(x)Λφφφ(x′)= K(x,x′)

One can re-normalize the basis functions by defining φ̄i(x)= λ−1/2
i φi(x), or, vec-

torially φ̄φφ(x)= Λ−1/2φφφ(x), which imply the renormalized basis matrix Φ̄ = ΦΛ1/2 and
coefficient vector c̄ = Λ−1/2c . We obtain then the alternative expressions:

c̄ = Φ̄Ta

f = Φc = Φ̄c̄

K = ΦΛΦT = Φ̄Φ̄T
‖f‖2 = cTΛ−1c = c̄Tc̄

(8.6.27)

and kernel function,

K(x,x′)=φφφT(x)Λφφφ(x′)= φ̄φφT(x)φ̄φφ(x′) (8.6.28)

Eq. (8.6.28) expresses the kernel function as the dot product of two vectors and is
known as the kernel trick. Given a kernel functionK(x,x′) that satisfies certain positive-
definiteness conditions, the existence of basis functions satisfying Eq. (8.6.28) is guar-
anteed by Mercer’s theorem [512]. The remarkable property of the kernel regularization
approach is Eq. (8.6.22), which is known as the representer theorem [512],

f(x)=
N−1∑
n=0

K(x,xn)an (8.6.29)

358 8. Whittaker-Henderson Smoothing

It states that even though the original least-squares problem (8.6.11) was formulated
in a possibly infinite-dimensional Hilbert space, the resulting solution is represented by
a finite number of terms in Eq. (8.6.29). This property is more general than the above
case and it applies to a performance index of the form:

J = L(y−Φc)+λcTΛ−1c = min (8.6.30)

where L(z) is an arbitrary (convex, increasing, and differentiable) scalar function that
replaces the quadratic norm L(z)= zTz. Indeed, the vanishing of the gradient gives,

∂J
∂c

= −ΦT ∂L
∂y

+ 2λΛ−1c = 0 ⇒ c = ΛΦT 1

2λ
∂L
∂y

which implies for f = Φc and f(x)=φφφT(x)c ,

f = Ka , f(x)=
N−1∑
n=0

K(x,xn)an , with a = 1

2λ
∂L(y−Ka)

∂y
(8.6.31)

where the last equation is a nonlinear equation for the N-vector a. Of course, in the
quadratic-norm case, L(z)= zTz, we obtain the equivalent of (8.6.19),

a = 1

λ
(y−Ka)

Kernels and the above representation property are used widely in machine learning
applications, such as support vector machines [499]. Some typical kernels that satisfy
the representation property (8.6.28) are polynomial and gaussian of the type:

K(x,x′) = (c+ x · x′)p

K(x,x′) = exp
(
−‖x− x′‖2

2σ2

) (8.6.32)

By mapping nonlinear problems into linear ones, kernel methods offer a new paradigm
for solving many of the classical problems of estimation and classification, including the
“kernelization” of methods such as principal component analysis [513], canonical cor-
relation analysis, array processing [516], and adaptive filtering [519]. Some accessible
overviews of kernel methods with emphasis on regularization are [504,510,515]. For
more details, the reader may consult the references [480–519].

8.7 Sparse Whittaker-Henderson Methods

Several variations of the Whittaker-Henderson method have been proposed in the lit-
erature that use different norms for the two terms of Eq. (8.1.1), such as the following
criterion based on the �q and the �p norms, and using unity weights wn for simplicity,

Jqp =
N−1∑
n=0

∣∣yn − xn∣∣q + λN−1∑
n=s

∣∣∇sxn∣∣p = min (8.7.1)

8.7. Sparse Whittaker-Henderson Methods 359

Such criteria are capable of handling outliers in the data more effectively. Eq. (8.7.1)
can be written vectorially with the help of the s-differencing matrix D of Eq. (8.1.8),

Jqp =
∥∥y− x

∥∥q
q + λ

∥∥Dx
∥∥p
p = min (8.7.2)

where ‖x‖p denotes the �p norm of the vector x = [x0, x1, · · · , xN−1]T,

‖x‖p =
⎡⎣N−1∑
n=0

|xn|p
⎤⎦ 1
p

⇒ ∥∥x
∥∥p
p =

N−1∑
n=0

|xn|p

For p = ∞, we have instead,
‖x‖∞ = max

0≤n≤N−1

∣∣xn∣∣
For p = 0, we define ‖x‖0 as the cardinality of the vector x, that is, the number of
nonzero elements of x. We note that ‖x‖p is a proper norm only for p ≥ 1, however, the
cases 0 ≤ p < 1 have also been considered.

The case J11 was studied in [422,426] and formulated as a linear programming prob-
lem, the case Jpp, including the �∞ norm case, p = ∞, was studied in [424], and the
more general case, Jqp, in [425]. More recently, the case J21, called �1 trend filtering,
has been considered in [468] and has received a lot of attention [469–478].

Generally, the cases J2p are examples of so-called �p-regularized least-squares prob-
lems, which have been studied very extensively in inverse problems, with renewed inter-
est in sparse modeling, statistical learning, compressive sensing applications—a small
and very incomplete set of references on regularization and sparse regularization meth-
ods is [479–590]. We discuss such regularization issues in more detail in Chap. 15. Next,
we concentrate on the original J22 criterion, and the J21 and J20 criteria,

J22 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥2

2 = min

J21 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥

1 = min

J20 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥

0 = min

(8.7.3)

The J21 and J20 criteria tend to promote the sparsity of the regularizing term Dx,
that is, Dx will be a sparse vector consisting mostly of zeros with a few nonzero entries.
Since Dx represents the s-differenced signal, ∇sxn, its piecewise vanishing implies that
the trend xn will be a piecewise polynomial of order s − 1, with the polynomial pieces
joining continuously at few break (or, kink) points where ∇sxn is nonzero.

This is similar to the spline smoothing case, except here the locations of the break
points are determined dynamically by the solution of the optimization problem, whereas
in the spline case they are at prescribed locations.

For differencing order s = 2, used in Hodrick-Prescott and �1-trend-filtering cases,
the trend signal xn will be a piecewise linear function of n, with a sparse number of
slope changes. The case s = 3, used originally by Whittaker and Henderson, would
correspond to piecewise parabolic segments in n. The case s = 1, corresponding to
the original Bohlmann choice, results in a piecewise constant trend signal xn. This case
is known also as total variation minimization method and has been applied widely in
image processing.

360 8. Whittaker-Henderson Smoothing

The J21 problem can be implemented easily in MATLAB with the CVX package.†

The J20 problem, which produces the sparsest solution, can be solved by an itera-
tive reweighted �1-regularized method [468], or alternatively, by an iterative reweighted
least-squares method, and can also be used to solve the J21 and the J2p problems.

There are several variants of the iterative reweighted least-squares (IRLS) method,
[520–528,532,553,557,560,565,566], but the basic idea is to replace the �p norm with a
weighted �2 norm, which can be solved iteratively. Given any real number 0 ≤ p ≤ 2,
let q = 2− p, and note that for any real number x 	= 0, we can write,

|x|p = |x|2
|x|q ≈

|x|2
|x|q + ε

where ε is a sufficiently small positive number needed to also allow the case x = 0.
Similarly, we can write for the �p-norm of a vector x ∈ RN,

‖x‖pp =
N−1∑
i=0

|xi|p ≈
N−1∑
i=0

|xi|2
|xi|q + ε = xTW(x)x

W(x) = diag
[

1

|x|q + ε
]
= diag

[
1

|x0|q + ε ,
1

|x1|q + ε , . . . ,
1

|xN−1|q + ε
] (8.7.4)

Then, the �p-regularized problem J2p can be written in the form,

J = ∥∥y− x
∥∥2

2 + λ
∥∥Dx

∥∥p
p =

∥∥y− x
∥∥2

2 + λxTDTW(Dx)Dx = min (8.7.5)

which leads to to the following iterative algorithm,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
Dx(k−1))

x(k) = arg min
x

∥∥y− x
∥∥2

2 + λxTDTWk−1Dx

(IRLS) (8.7.6)

with the algorithm initialized to the ordinary least-squares solution of criterion J22,

x(0) = (
I + λDTD)−1

y

The solution of the optimization problem in (8.7.6) at the kth step is:

x(k) = (
I + λDTWk−1D

)−1
y

Thus, the choices p = 0 and p = 1 should resemble the solutions of the �0 and �1

regularized problems.

Example 8.7.1: Global Warming Trends. This is a continuation of Example 3.9.2 in which
we compared several smoothing methods. Fig. 8.7.1 compares the Whittaker-Henderson
trends for the �2, �1, and �0 cases, with s = 2, as well as the corresponding regularizing
differenced signals, ∇sxn.

†http://cvxr.com/cvx/

8.7. Sparse Whittaker-Henderson Methods 361

The �1 case was computed with the CVX package. The corresponding IRLS implementation
is not shown since it produces virtually indistinguishable graphs from CVX.

The �0 case was implemented with the IRLS method and produced slightly sparser differ-
enced signals as can be observed in the graphs. The MATLAB code used to generate these
graphs is summarized below.

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L2 , s = 2

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

years

s− th difference, ∇sx(n), s = 2

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L1 , CVX, s = 2

 actual
 L

1
 trend

1850 1875 1900 1925 1950 1975 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

years

s− th difference, ∇sx(n), s = 2

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L0 , IRLS, s = 2

 actual
 L

0
 IRLS

 L
1
 CVX

1850 1875 1900 1925 1950 1975 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

years

s− th difference, ∇sx(n), s = 2

Fig. 8.7.1 Comparison of �2, �1, and �0 trends, and differenced signals for s = 2.

362 8. Whittaker-Henderson Smoothing

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L2 , s = 3

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.01

0

0.01

years

s− th difference, ∇sx(n), s = 3

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L1 , CVX, s = 3

 actual
 L

1
 trend

1850 1875 1900 1925 1950 1975 2000
−0.01

0

0.01

years

s− th difference, ∇sx(n), s = 3

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L0 , IRLS, s = 3

 actual
 L

0
 IRLS

 L
1
 CVX

1850 1875 1900 1925 1950 1975 2000
−0.01

0

0.01

years

s− th difference, ∇sx(n), s = 3

Fig. 8.7.2 Comparison of �2, �1, and �0 trends, and differenced signals for s = 3.

Y = loadfile(’tavenh2v.dat’); % load temperature data file

n = Y(:,1); y = Y(:,14); N = length(y); % extract dates and data

s = 2; Ds = diff(speye(N),s); % (N-s)xN differencing matrix
ns = n(s:end-1);

8.8. Computer Project – US GDP Macroeconomic Data 363

la = 10000; x = whsm(y,la,s); % Whittaker-Henderson with L2 norm

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

la = 10; % Whittaker-Henderson with L1 norm
cvx_quiet(true); % CVX package, http:/cvxr.com/cvx/
cvx_begin

variable x(N)
minimize(sum_square(y-x) + la * norm(Ds*x,1))

cvx_end

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

p = 0; q = 2 - p; epsilon = 1e-8; % Whittaker-Henderson with L0 norm
I = speye(N); K = 10; % using K=10 IRLS iterations
la = 0.05;

x = (I + la*Ds’*Ds) \ y; % initialize iteration

for k=1:K, % IRLS iteration
W = diag(1./(abs(Ds*x).^q + epsilon));
xk = (I + la*Ds’*W*Ds) \ y;
x = xk;

end

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

Fig. 8.7.2 compare the �2, �1, �0 cases for s = 3, which fits piecewise quadratic polynomials
to the data. The �0 case is again the sparsest. (Color graphs online). ��

8.8 Computer Project – US GDP Macroeconomic Data

In this project you will study the Whittaker-Henderson smoothing method formulated
with the L2 and L1 norms, and apply it to the US GDP macroeconomic data. For a
length-N signal, yn, 0 ≤ n ≤ N−1, the optimization criteria for determining a length-N
smoothed signal xn are,

(L2): J =
N−1∑
n=0

∣∣yn − xn∣∣2 + λ
N−1∑
n=s

∣∣∇sxn∣∣2 = ∥∥y− x
∥∥2

2 + λ
∥∥Dsx∥∥2

2 = min

(L1): J =
N−1∑
n=0

∣∣yn − xn∣∣2 + λ
N−1∑
n=s

∣∣∇sxn∣∣ = ∥∥y− x
∥∥2

2 + λ
∥∥Dsx∥∥

1 = min

(8.8.1)

where Ds is the (N − s)×N convolution matrix corresponding the s-difference op-
erator ∇s. It can be constructed in MATLAB by,

Ds = diff(eye(N),s); % or, in sparse form, Ds = diff(speye(N),s);

The solution of problem (L2) is straightforward:

x = (I + λDTs Ds)−1y (8.8.2)

364 8. Whittaker-Henderson Smoothing

The solution of problem (L1) can be obtained with the CVX package as follows:

cvx_begin
variable x(N)
minimize(sum_square(x-y) + lambda * norm(Ds*x,1));

cvx_end

It can also be solved with the iterative reweighted least-squares (IRLS) algorithm, as
discussed in Sec. 8.7.

The second column of the OSP data file, USGDP_Inv.dat, represents the quarterly
US GDP for private investment in billions of dollars. Read this column with the help of
the function loadfile and then take its log:

Y = loadfile(’USGDP_Inv.dat’);
y = log10(Y(:,2) * 1e9);

These data represent a prototypical example for the application of Whittaker-Henderson
filters, referred to in this context as Hodrick-Prescott filters.

a. Choose difference order s = 2 and regularization parameter λ = 1600. Solve the
Whittaker-Henderson problem (L2) and plot the solution x together with the actual
data y.

b. Calculate the SVD enhanced version of y, by the following steps: (i) remove and save
the mean from y, (ii) form its forward/backward data matrix using an embedding
order ofM = 9, (iii) subject it to K = 8 SVD enhancement iterations using rank r = 1,
(iv) extract the enhanced signal from the enhanced data matrix, and (v) add the mean
that was removed. Plot the resulting enhanced signal together with y. The MATLAB
steps are summarized in Sec. 15.17 (use, type=2, for the F/B case).

c. For the value λ1 = λ/480 = 1600/480 and difference order s = 2, solve problem
(L1), and plot the solution x together with the actual data y. Moreover, on a separate
graph, plot the differenced signal Dsx using a stem plot and observe its sparseness,
which means that x is piece-wise linear. The particular choice for λ1 was made in
order for the (L2) and (L1) problems to have comparable RMS errors.

d. Repeat parts (a) and (c) for s = 1 and regularization parameter λ = 60.65 for the (L2)
problem (justified in Sec. 8.3), and λ1 = 1 for the (L1) problem, chosen to achieve
comparable RMS errors. Notice how the (L1) problem results in a piece-wise constant
fit. But Dsx is not as sparse because s = 1 is not really a good choice.

The s = 1 case is an example of the so-called total-variation minimization method,
used widely in image processing.

e. Repeat parts (a) and (c) for s = 3 and regularization parameter λ = 41640.16 for the
(L2) problem (justified in Sec. 8.3), and λ1 = λ/1000 for the (L1) problem, chosen
to achieve comparable RMS errors. Here, the (L1) problem will result in piece-wise
quadratic polynomial fits. Some example graphs are shown below.

8.8. Computer Project – US GDP Macroeconomic Data 365

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
, s = 2

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

SVD ehancement, M = 9, r = 1

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
, s = 2

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−8

−6

−4

−2

0

2

4

6
x 10

−3 sparse s−differenced signal, s = 2

years in quarters

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
, s = 1

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
, s = 3

 trend
 data

366 8. Whittaker-Henderson Smoothing

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
, s = 1

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−0.01

0

0.01

0.02

0.03

0.04

0.05

years in quarters

sparse s−differenced signal, s = 1

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
, s = 3

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2
x 10

−4

years in quarters

sparse s−differenced signal, s = 3

8.9 Problems

8.1 For the case s = 1, show that the Whittaker-Henderson filter has poles z1, 1/z1, where

z1 = e−α , α = 2 asinh
(

1

2
√
λ

)
For the case s = 2, show that the filter has poles {z1, z∗1 , 1/z1, 1/z∗1 }, where

z1 =
(√

1− ja2 + jaejπ/4
)2

= 1

2
D2

(
1− a

D

)2 (
1+ j a

D

)2

, D =
√

1+
√

1+ a4 , a = 1

2λ1/4

Show that in both cases |z1| < 1.

8.2 Determine explicit expressions in terms of λ for the quantities σ2 and z1 that appear in the
factorization of the denominator of the Hodrick-Prescott filter:

1+ λ(1− z−1)2(1− z)2= σ2(1− z1z−1)(1− z∗1 z−1)(1− z1z)(1− z∗1 z)

What are the numerical values ofσ2, z1 for λ = 1600? What are the values of the coefficients
of the second-order filter

(
1− 2 Re(z1)z−1 + |z1|2z−2

)
?

8.9. Problems 367

8.3 Consider the performance index (8.6.1) for a regularized deconvolution problem. Making the
enough assumptions, show that the performance index can be written in terms of frequency
responses as follows,

J =∑
n
|yn − fn ∗ xn|2 + λ

∑
n
|dn ∗ xn|2

=
∫ π
−π

[∣∣Y(ω)−F(ω)X(ω)∣∣2 + λ∣∣D(ω)X(ω)∣∣2
] dω

2π
= min

Determine the optimumX(ω) that minimizes this index. Then, show that the corresponding
optimum deconvolution filter H(z)= X(z)/Y(z) is given by:

H(z)= F(z−1)
F(z)F(z−1)+λD(z)D(z−1)

What would be the stochastic state-space model for xn, yn that has thisH(z) as its optimum
double-sided (unrealizable) Wiener filter for estimating xn from yn?

9
Periodic Signal Extraction

Many physical, financial, and social time series have a natural periodicity in them, such
as daily, monthly, quarterly, yearly. The observed signal can be regarded as having three
components: a periodic (or nearly periodic) seasonal part sn, a smooth trend tn, and a
residual irregular part vn that typically represents noise,

yn = sn + tn + vn
The model can also be assumed to be multiplicative, yn = sntnvn. The signal processing
task is to extract both the trend and the seasonal components, tn and sn, from the
observed signal yn.

For example, many climatic signals, such as CO2 emissions, are characterized by an
annual periodicity. Government agencies routinely estimate and remove the seasonal
component from business and financial data and only the “seasonally-adjusted” signal
an = tn+vn is available, such as the US GDP that we considered in Example 8.3.1. Further
processing of the deseasonalized signal an, using for example a trend extraction filter
such as the Hodrick-Prescott filter, can reveal additional information, such as business
cycles.

Periodic signals appear also in many engineering applications. Some examples are:
(a) Electrocardiogram recordings are subject to power frequency interference (e.g., 60 Hz
and its higher harmonics) which must be removed by appropriate filters. (b) All biomed-
ical signals require some sort of signal processing for their enhancement. Often weak
biomedical signals, such as brain signals from visual responses or muscle signals, can
be evoked periodically with the responses accumulated (averaged) to enhance their SNR;
(c) TV video signals have two types of periodicities in them, one due to line-scanning
and one due to the frame rate. In the pre-HDTV days, the chrominance (color) TV signals
were put on a subcarrier signal and added to the luminance (black & white) signal, and
the composite signal was then placed on another carrier for transmission. The subcar-
rier’s frequency was chosen carefully so as to shift the line- and frame-harmonics of
the chrominance signal relative to those of the luminance so that at the receiving end
the two could be separated by appropriately designed comb filters [30]. (d) GPS signals
contain a repetitive code word that repeats with a period of one millisecond. The use of
comb filters can enhance their reception. (e) Radars send out repetitive pulses so that

368

9.1. Notch and Comb Filters for Periodic Signals 369

the returns from slowly moving targets have a quasi-periodic character. By accumulat-
ing these return, the SNR can be enhanced. As we see below, signal averaging is a form
of comb filtering.

In this chapter, we discuss the design of comb and notch filters for extracting pe-
riodic signals or canceling periodic interference. We discuss also the specialized comb
filters, referred to as “seasonal filters,” that are used by standard seasonal decomposi-
tion methods, such as the census X-11 method, and others.

9.1 Notch and Comb Filters for Periodic Signals

To get started, we begin with the signal plus interference model yn = sn + vn in which
either the signal or the noise is periodic, but not both.

If the noise vn is periodic, its spectrum will be concentrated at the harmonics of
some fundamental frequency, sayω1. The noise reduction filter must be an ideal notch
filter with notches at the harmonics kω1, k = 0,1, . . . , as shown in Fig. 9.1.1. If the filter
notches are narrow, then the distortion of the desired signal sn will be minimized.

Fig. 9.1.1 Notch filter for reducing periodic interference.

On the other hand, if the desired signal sn is periodic and the noise is a wideband
signal, the signal enhancement filter for extracting sn must be an ideal comb filter with
peaks at the harmonics of the desired signal, as shown in Fig. 9.1.2. If the comb peaks
are narrow, then only a minimal amount of noise will pass through the filter (that is, the
portion of the noise whose power lies within the narrow peaks.)

A discrete-time periodic signal sn with a period of D samples admits the following
finiteD-point DFT and inverse DFT representation [29] in terms of theD harmonics that
lie within the Nyquist interval,ωk = 2πk/D = kω1, for k = 0,1, . . . ,D− 1,

(DFT) Sk =
D−1∑
n=0

sne−jωkn , k = 0,1, . . . ,D− 1

(IDFT) sn = 1

D

D−1∑
k=0

Skejωkn , n = 0,1, . . . ,D− 1

(9.1.1)

370 9. Periodic Signal Extraction

Fig. 9.1.2 Comb filter for enhancing a periodic signal.

where Sk is the D-point DFT of one period [s0, s1, . . . , sD−1] of the time signal. Because
of the periodicity, the IDFT formula is actually valid for all n in the interval−∞ < n <∞.

We note that a periodic continuous-time signal s(t) does not necessarily result into
a periodic discrete-time signal when sampled at some arbitrary rate. For the sampled
signal sn = s(nT) to be periodic innwith a period ofD samples, whereT is the sampling
interval, the sampling rate fs = 1/Tmust beD times the fundamental harmonic f1, that
is, fs = Df1, or equivalently, one periodTper = 1/f1 must containD samples,Tper = DT.
This implies periodicity in n,

sn+D = s
(
(n+D)T) = s(nT +DT)= s(nT +Tper)= s(nT)= sn

The assumed periodicity of sn implies that the sum of any D successive samples,
(sn + sn−1 + · · · + sn−D+1), is a constant independent of n. In fact, it is equal to the
DFT component S0 at DC (ωk = 0),

sn + sn−1 + · · · + sn−D+1 = S0 , −∞ < n <∞ (9.1.2)

In a seasonal+ trend model such as yn = sn+tn+vn, we may be inclined to associate
any DC term with the trend tn rather with the periodic signal sn. Therefore, it is common
to assume that the DC component of sn is absent, that is, the sum (9.1.2) is zero, S0 = 0.
In such cases, the comb filter for extracting sn must be designed to have peaks only at
the non-zero harmonics, ωk = kω1, k = 1,2, . . . ,D − 1. Similarly, the notch filter for
removing periodic noise must not have a notch at DC.

The typical technique for designing notch and comb filters for periodic signals is by
frequency scaling, that is, the mapping of frequencies ω → ωD, or equivalently, the
mapping of the z-domain variable

z→ zD (9.1.3)

The effect of the transformation is to shrink the spectrum by a factor of D and then
replicate itD times to fill the new Nyquist interval. An example is shown in Fig. 9.1.3 for
D = 4. Starting with a lowpass filter HLP(ω), the frequency-scaled filter will be a comb
filter, Hcomb(ω)= HLP(ωD). Similarly, a highpass filter is transformed into a notch
filter Hnotch(ω)= HHP(ωD).

9.1. Notch and Comb Filters for Periodic Signals 371

Fig. 9.1.3 Mapping of a lowpass filter to a comb filter by frequency scaling.

In the z-domain, we have the following simple prescriptions for turning lowpass and
highpass filters into comb and notch filters:

Hcomb(z) = HLP(zD)

Hnotch(z) = HHP(zD)
(9.1.4)

For example, the simplest comb and notch filters are generated by,

HLP(z) = 1

2
(1+ z−1)

HHP(z) = 1

2
(1− z−1)

⇒
Hcomb(z) = 1

2
(1+ z−D)

Hnotch(z) = 1

2
(1− z−D)

(9.1.5)

Their magnitude responses are shown in Fig. 9.1.4 for D = 10. The harmonics
ωk = 2πk/D = 2πk/10, k = 0,1, . . . ,9 are the peaks/notches of the comb/notch
filters. The original lowpass and highpass filter responses are shown as the dashed
lines. The factors 1/2 in Eq. (9.1.5) normalize the peak gains to unity. The magnitude
responses of the two filters are:∣∣Hcomb(ω)

∣∣2 = cos2(ωD/2) ,
∣∣Hnotch(ω)

∣∣2 = sin2(ωD/2) (9.1.6)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
comb filter, D = 10

ω / π

|
H

co
m

b(
ω

)|
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
notch filter, D = 10

ω / π

|
H

n
ot

ch
(ω

)|
2

Fig. 9.1.4 Simple comb and notch filters with D = 10.

The filters are complementary, as well as power-complementary, in the sense,

Hcomb(z)+Hnotch(z)= 1 ,
∣∣Hcomb(ω)

∣∣2 + ∣∣Hnotch(ω)
∣∣2 = 1 (9.1.7)

372 9. Periodic Signal Extraction

The 3-dB widths Δω of the comb peaks or the notch dips are fixed by the period D.
Indeed, they are defined by the condition sin2(DΔω/4)= 1/2, which gives Δω = π/D.
They are indicated on Fig. 9.1.4 as the short horizontal lines at the half-power level.

In order to control the width, we must consider IIR or higher order FIR filters. For
example, we may start with the lowpass filter given in Eq. (2.3.5), and its highpass version,

HLP(z)= b 1+ z−1

1− az−1
, b = 1− a

2
, HHP(z)= b 1− z−1

1− az−1
, b = 1+ a

2
(9.1.8)

where 0 < a < 1. The transformation z→ zD gives the comb and notch filters [30]:

Hcomb(z) = b 1+ z−D
1− az−D , b = 1− a

2

Hnotch(z) = b 1− z−D
1− az−D , b = 1+ a

2

(9.1.9)

The filters remain complementary, and power-complementary, with magnitude responses:

∣∣Hcomb(ω)
∣∣2 = β2

β2 + tan2(ωD/2)
, β ≡ 1− a

1+ a∣∣Hnotch(ω)
∣∣2 = tan2(ωD/2)

β2 + tan2(ωD/2)

(9.1.10)

Their 3-dB width Δω is controlled by the pole parameter a through the relation [30]:

tan
(
DΔω

4

)
= 1− a

1+ a = β (9.1.11)

The noise reduction ratio of the comb filter is the same as that of the lowpass filter
HLP(z), which was calculated in Chap. 2,

R = 1− a
2

= β
1+ β (9.1.12)

and can be made as small as desired by increasing a towards unity, but at the expense of
also increasing the time constant of the filter. The canonical (direct-form II) realization
of the comb filter and its sample processing algorithm using a circular buffer imple-
mentation of the multiple delay z−D is as follows in the notation of [30], where p is the
circular pointer,

for each x do:
sD = ∗(p+D)
s0 = bx+ asD
y = s0 + sD
∗p = s0
p−−

Example 9.1.1: Fig. 9.1.5 shows two examples designed with D = 10 and 3-dB widths Δω =
0.05π and Δω = 0.01π. By comparison, the simple designs had Δω = π/D = 0.1π. For
Δω = π/D, we have tan(DΔω/4)= tan(π/4)= 1, which implies that a = 0 and b = 1/2,
reducing to the simple designs of Eq. (9.1.5). ��

9.1. Notch and Comb Filters for Periodic Signals 373

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
IIR comb filters, D = 10

ω / π

|
H

co
m

b(
ω

)|
2

 Δω = 0.05π
 Δω = 0.01π

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
IIR notch filters, D = 10

ω / π

|
H

n
ot

ch
(ω

)|
2

 Δω = 0.05π
 Δω = 0.01π

Fig. 9.1.5 Recursive comb and notch filters with D = 10.

Example 9.1.2: Fig. 9.1.6 shows on the left a simulated electrocardiogram (ECG) signal cor-
rupted by 60 Hz power frequency interference and its harmonics. On the right, it shows
the result of filtering by an IIR notch filter. The underlying ECG is recovered well after the
initial transients die out.

The sampling rate was fs = 600 Hz and the fundamental frequency of the noise, f1 = 60
Hz. This gives for the period D = fs/f1 = 10. The ECG beat was taken to be 1 sec and
therefore there were 600 samples in each beat for a total of 1200 samples in the two beats
shown in the figure.

0 1 2

−1

0

1

ECG + 60 Hz noise

t (sec)
0 1 2

−1

0

1

filtered ECG

t (sec)

 filtered
 noise free

Fig. 9.1.6 Eliminating 60 Hz harmonics from ECG signal.

The IIR notch filter was designed to achieve a 3-dB width of Δf = f1/50, that is, a Q-
factor of Q = f1/Δf = 50. Therefore, in units of rads/sample, the notch width is Δω =
2πΔf/fs = 2π/(DQ)= 0.004π, which results in the filter parameters a = 0.9391 and
b = (1+ a)/2 = 0.9695. Thus, the designed notch filter was:

Hnotch(z)= 0.9695
1− z−10

1− 0.9391z−10

374 9. Periodic Signal Extraction

The noise was simulated by adding the following harmonic components,

vn =
D/2−1∑
k=1

Ak sin(ωkn) , with ωk = 2πk
D
, Ak = 1

2k2

where the amplitudes Ak were arbitrarily chosen. Note that only the non-zero harmonics
that lie in the interval 0 < ω < π were used.

The 40-dB time-constant of the notch filter was neff = D ln(0.01)/ ln(a)= 732 samples or
equivalently, τ = neff/fs = 732/600 = 1.22 sec. It is evident from the figure that beyond
this time, the transients essentially die out. The MATLAB code for generating these graphs
was as follows:

nbeats = 2; L = 600; M = 15; % 600 samples per beat

s = ecgsim(nbeats,L,M); % simulated ECG

n = (0:length(s)-1)’; t = n/L; % time in seconds

D = 10; v = 0;
for k=1:D/2-1,

v = v + (0.5/k^2) * sin(2*pi*k*n/D); % generate noise

end

y = s + v; % noisy ECG

Q = 50; beta = tan(pi/2/Q);
a = (1-beta)/(1+beta); b = (1+a)/2; % filter parameters

aD = up([1,-a],D); % upsampled denominator coefficients

bD = up([b,-b],D); % upsampled numerator coefficients

x = filter(bD,aD,y); % filtered ECG

figure; plot(t,y); % left graph

figure; plot(t,x, t,s,’:’); % right graph

The MATLAB function ecgsim, which is part of the OSP toolbox, was used to generate
the simulated ECG. It is based on the function ecg from [30]. The function up is used to
upsample the highpass filter’s coefficient vectors by a factor ofD, generating the coefficient
vectors of the notch filter, so that the built-in filtering function filter can be used. ��

The upsampling operation used in the previous example is the time-domain equiva-
lent of the transformation z → zD and it amounts to inserting D−1 zeros between any
two original filter coefficients. For example, applied to the vector [h0, h1, h2, h3] with
D = 4, it generates the upsampled vector:

[h0, h1, h2, h3] → [h0,0,0,0, h1,0,0,0, h2,0,0,0, h3]

The function up implements this operation,

g = up(h,D); % upsampled vector

It is similar to MATLAB’s built-in function upsample, except it does not appendD−1
zeros at the end. The difference is illustrated by the following example,

up([1,2,3,4],4) = [1 0 0 0 2 0 0 0 3 0 0 0 4]
upsample([1,2,3,4],4) = [1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0]

9.2. Notch and Comb Filters with Fractional Delay 375

In addition to enhancing periodic signals or removing periodic interference, comb
and notch filters have many other applications. The transformation z → zD is widely
used in audio signal processing for the design of reverberation algorithms emulating
the delays arising from reflected signals within rooms or concert halls or in other types
of audio effects [30]. The mapping z → zD is also used in multirate signal process-
ing applications, such as decimation or interpolation [30]. The connection to multirate
applications can be seen by writing the frequency mapping ω′ = ωD in terms of the
physical frequency f in Hz and sampling rate fs,

2πf ′

f ′s
= 2πf
fs
D

In the signal enhancement context, the sampling rates are the same f ′s = fs, but
we have frequency scaling f ′ = fD. On the other hand, in multirate applications, the
frequencies remain the same f ′ = f and the above condition implies the sampling rate
change f ′s = fs/D, which can be thought of as decimation by a factor ofD from the high
rate fs to the low rate f ′s , or interpolation from the low to the high rate.

9.2 Notch and Comb Filters with Fractional Delay

The implementation of comb and notch filters requires that the sampling rate be related
to the fundamental harmonic by fs = Df1 with D an integer, so that z−D represents a
D-fold multiple delay. In some applications, one may not have the freedom of choosing
the sampling rate and the equation D = fs/f1 may result into a non-integer number.

One possible approach, discussed at the end of this section, is simply to design
individual comb/notch filters for each desired harmonic fk = kf1 = kfs/D, k = 1,2, . . . ,
that lies within the Nyquist interval, and then either cascade the filters together in the
notch case, or add them in parallel in the comb case.

Another approach is to approximate the desired non-integer delay z−D by an FIR
filter and then use the IIR comb/notch structures of Eq. (9.1.9). Separating D into its
integer and fractional parts, we may write:

D = Dint + d (9.2.1)

where Dint = floor(D) and 0 < d < 1. The required multiple delay can be written then
as z−D = z−Dintz−d. The fractional part z−d can be implemented by replacing it with an
FIR filter that approximates it, that is, H(z)≈ z−d, so that z−D ≈ z−DintH(z). Then, the
corresponding IIR comb/notch filters (9.1.9) will be approximated by

Hcomb(z) = b 1+ z−DintH(z)
1− az−DintH(z)

, b = 1− a
2

Hnotch(z) = b 1− z−DintH(z)
1− az−DintH(z)

, b = 1+ a
2

(9.2.2)

Fig. 9.2.1 shows a possible realization. There exist many design methods for such
approximate fractional delay filters [162]. We encountered some in Sec. 3.6. For example,

376 9. Periodic Signal Extraction

Fig. 9.2.1 Comb and notch filters with fractional delay.

the transfer functions of the causal Lagrange interpolation filters of orders 1 and 2
approximating the required non-integer delay d can be obtained from Eq. (3.6.30),

H(z) = d+ (1− d)z−1

H(z) = 1

2
(d− 1)(d− 2)−d(d− 2)z−1 + 1

2
d(d− 1)z−2

(9.2.3)

Such interpolation filters accurately cover only a fraction, typically 10–20%, of the
Nyquist interval, and therefore, would be appropriate only if the first few harmonics are
significant. A more effective approach suggested by [168] is to impose linear constraints
on the design of H(z) that preserve the required filter response at all the harmonics.

For integer delay D, the comb filter peaks or the notch filter nulls occur at the D-th
roots of unity zk = ejωk ,ωk = 2πk/D, which satisfy zDk = 1.

For non-integer D, we require the same constraints for the delay filter z−DintH(z),
that is, z−Dint

k H(zk)= 1, or in terms of the frequency response, e−jωkDintH(ωk)= 1,
where again zk = ejωk ,ωk = 2πk/D. Since e−jωkD = 1, we have,

e−jωkDintH(ωk)= 1 = e−jωkD = e−jωk(Dint+d) ⇒ H(ωk)= e−jωkd

These are the constraints to be imposed on the design of H(z). In order to obtain
a real-valued impulse response for this filter, we must work with the harmonics that lie
in the symmetric Nyquist interval, that is, −π ≤ωk ≤ π, or,

−π ≤ 2πk
D

≤ π ⇒ −D
2
≤ k ≤ D

2

Writing Dint = 2p + q and D = Dint + d = 2p + q + d, with integer p and q = 0,1,
the above condition reads:

−p− 1

2
(q+ d)≤ k ≤ p+ 1

2
(q+ d)

Since 0 < d < 1 and k must be an integer, we obtain,

− p ≤ k ≤ p (9.2.4)

9.2. Notch and Comb Filters with Fractional Delay 377

Thus, the design problem is to determine an FIR filterH(z) such thatH(ω)≈ e−jωd,
and subject to the constraints:

H(ωk)= e−jωkd , −p ≤ k ≤ p (9.2.5)

When q = d = 0, we must choose −p ≤ k ≤ p−1, because k = ±p both are mapped
onto the Nyquist frequency ω = ±π and need be counted only once. In this case, of
course, we expect the design method to produce the identity filter H(z)= 1.

Following [168], we use a constrained least-squares design criterion with the follow-
ing performance index into which the constraints have been incorporated by means of
complex-valued Lagrange multipliers λk:

J =
∫ απ
−απ

∣∣H(ω)−e−jωd∣∣2 dω
2π

+
p∑

k=−p

[
e−jωkd −H(ωk)

]
λ∗k + c.c. = min (9.2.6)

where “c.c.” denotes the complex conjugate of the second term. The approximation
H(ω)≈ e−jωd is enforced in the least-squares sense over a portion of the Nyquist in-
terval, [−απ,απ], where typically, 0.9 ≤ α ≤ 1, with α = 1 covering the full interval.
Assuming an Mth order filter h = [h0, h1, . . . , hM]T, we can write the frequency re-
sponse in terms of the (M+1)-dimensional vectors,

H(ω)=
M∑
n=0

hne−jnω = s†ωh , sω =

⎡⎢⎢⎢⎢⎢⎣
1
ejω

...

ejMω

⎤⎥⎥⎥⎥⎥⎦ , h =

⎡⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤⎥⎥⎥⎥⎥⎦ (9.2.7)

Similarly, we can express the gain constraints in the vector form,

S†h = g (9.2.8)

where S is an (M+1)×(2p+1) matrix and g a (2p+1)-dimensional column vector de-
fined component-wise by

Snk = ejnωk , 0 ≤ n ≤M , −p ≤ k ≤ p
gk = e−jωkd , −p ≤ k ≤ p

(9.2.9)

that is,

S = [. . . , sωk , . . .] , g =

⎡⎢⎢⎢⎢⎣
...

e−jωkd
...

⎤⎥⎥⎥⎥⎦ (9.2.10)

It follows that the performance index can be written compactly as,

J =
∫ απ
−απ

∣∣s†ωh− e−jωd∣∣2 dω
2π

+λλλ†(g− S†h)+(g− S†h)†λλλ = min (9.2.11)

378 9. Periodic Signal Extraction

where λλλ = [. . . , λk , . . .]T is the vector of Lagrange multipliers. Expanding the first
term of J, we obtain,

J = h†Rh− h†r− r†h+α+λλλ†(g− S†h)+(g† − h†S)λλλ = min (9.2.12)

where the matrix R and vector r are defined by,

R = 1

2π

∫ απ
−απ

sωs†ω dω, r = 1

2π

∫ απ
−απ

sωe−jωd dω (9.2.13)

and component-wise,

Rnm =
∫ απ
−απ

ejω(n−m)
dω
2π

= sin
(
απ(n−m))
π(n−m) , n,m = 0,1, . . . ,M

rn =
∫ απ
−απ

ejω(n−d)
dω
2π

= sin
(
απ(n− d))
π(n− d) , n = 0,1, . . . ,M

(9.2.14)

We note that for α = π, R reduces to the identity matrix. The optimal solution for
h is obtained by setting the gradient of J to zero:

∂J
∂h∗

= Rh− r− Sλλλ = 0 ⇒ h = R−1r+R−1Sλλλ = hu +R−1Sλλλ

where hu = R−1r is the unconstrained solution of the least-squares problem. The La-
grange multiplier λλλ can be determined by multiplying both sides by S† and using the
constraint (9.2.8):

g = S†h = S†hu + S†R−1Sλλλ ⇒ λλλ = (S†R−1S)−1(g− S†hu)

Finally, substituting λλλ into the solution for h, we obtain,

h = hu +R−1S(S†R−1S)−1(g− S†hu) (9.2.15)

This type of constrained least-squares problem appears in many applications. We
will encounter it again in the context of designing linearly constrained minimum vari-
ance beamformers for interference suppression, and in the problem of optimum stock
portfolio design.

The MATLAB function combfd implements the above design method. Its inputs are
the fractional period D, the orderM of the filter H(z), the comb/notch pole parameter
a, and the Nyquist factor α,

[bD,aD,h,zmax] = combfd(D,M,a,alpha); % comb/notch filter design with fractional delay

Entering the parameter a as negative indicates the design of a notch filter. The
outputs bD,aD are the coefficients of the numerator and denominator polynomials of
the comb/notch filters (9.2.2):

BD(z) = b
[
1± z−DintH(z)

]
AD(z) = 1− az−DintH(z)= 1− az−Dint

(
h0 + h1z−1 + · · · + hMz−M

) (9.2.16)

9.2. Notch and Comb Filters with Fractional Delay 379

The output h is the impulse response vector h, and zmax is the maximum pole ra-
dius of the denominator filter AD(z), which can be used to monitor the stability of the
designed comb/notch filter. The pole parameter a can be fixed using the bandwidth
equation (9.1.11), which is still approximately valid.

Fig. 9.2.2 shows a design example with fractional period D = 9.1, so that Dint = 9
and d = 0.1. The other parameters wereM = 8, a = RD with R = 0.95, and α = 1.

−1 0 1
0

0.5

1

Comb, D = 9.1, M = 8, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

−1 0 1
0

0.5

1

Notch, D = 9.1, M = 8, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

Fig. 9.2.2 Comb and notch filters with D = 9.1, and their pole/zero patterns.

The 3-dB widths obtained from Eq. (9.1.11) are indicated on the graphs by the two
short horizontal lines at the half-power levels. The frequency plots are over the sym-
metric interval −π ≤ ω ≤ π. The comb peaks have unity gain at the harmonics. For
the notch case, the response between the notch dips is not very flat, but can be made
flatter by decreasing the bandwidth, i.e., increasing the parameter a towards unity.

The right graphs depict the pole/zero patterns of the polynomialsBD(z) andAD(z).
These polynomials have orders Dint +M = 9+ 8 = 17. For the comb filter, we observe
how the Dint = 9 poles arrange themselves around the unit circle at the harmonic fre-
quencies, while the remaining 8 poles lie inside the unit circle.

The zeros of BD(z) also arrange themselves in two groups, 8 of them lying on the
unit circle halfway between the comb peak poles, and the remaining 9 lying inside the

380 9. Periodic Signal Extraction

unit circle, with a group of 7 poles and 7 zeros almost falling on top of each other,
almost canceling each other.

A similar pattern occurs for the notch filter, except now the notch zeros at the har-
monics have poles lying almost behind them in order to sharpen the notch widths, while
the remaining pole/zero pairs arrange themselves inside the unit-circle as in the comb
case.

Generally, this design method tends to work well wheneverD is near an odd integer,
such as in the above example and in the top graphs of Fig. 9.2.4, which have D = 9.1
and D = 8.9. The method has some difficulty when D is near an even integer, such as
D = 9.9 or D = 8.1, as shown in Figs. 9.2.3 and the bottom of 9.2.4.

In such cases, the method tends to place a pole or pole/zero pair on the real axis
near z = −1 resulting in an unwanted peak or dip at the Nyquist frequency ω = π.
Such poles are evident in the pole/zero plots of Fig. 9.2.3. If D were exactly an even
integer, then such pole/zero pair at Nyquist would be present, but for non-integer D,
the Nyquist frequency is not one of the harmonics. Removing that pole/zero pair from
the design, does not improve the problem.

−1 0 1
0

0.5

1

Comb, D = 9.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

−1 0 1
0

0.5

1

Notch, D = 9.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

Fig. 9.2.3 Comb and notch filters with D = 9.9, and their pole/zero patterns.

The MATLAB code for generating the magnitude responses and pole/zero plots is
the same for all three figures. In particular, Fig. 9.2.2 was generated by,

9.2. Notch and Comb Filters with Fractional Delay 381

−1 0 1
0

0.5

1

Comb, D = 8.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Notch, D = 8.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Comb, D = 8.1, M = 60, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1

−1 0 1
0

0.5

1

Notch, D = 8.1, M = 60, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 9.2.4 Comb and notch filters with D = 8.9 and D = 8.1.

f = linspace(-1,1,4001); w = pi*f; % frequency range

D=9.1; R=0.95; a=R^D; M=8; alpha=1; % design parameters

beta = (1-a)/(1+a); Dw = 4/D * atan(beta); % bandwidth calculation

[bD,aD,h,zmax] = combfd(D,M,a,alpha); % comb, param a entered as positive

Hcomb = abs(freqz(bD,aD,w)).^2; % comb’s magnitude rresponse

figure; plot(w/pi,Hcomb); figure; zplane(bD,aD); % upper two graphs

[bD,aD,h,zmax] = combfd(D,M,-a,alpha); % notch, param a entered as negative

Hnotch = abs(freqz(bD,aD,w)).^2;

figure; plot(w/pi,Hnotch); figure; zplane(bD,aD); % lower two graphs

Parallel and Cascade Realizations

As we mentioned in the beginning of the previous section, an alternative approach is to
design individual peak or notch filters at the harmonics and then combine the filters in
parallel for the comb case, and in cascade for the notch case. Fig. 9.2.5 illustrates this

382 9. Periodic Signal Extraction

type of design for the two “difficult” cases of D = 9.9 and D = 8.1 using second-order
peak/notch filters designed to have the same bandwidth as in Fig. 9.2.3.

−1 0 1
0

0.5

1

Parallel comb, D = 9.9, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 9.9, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 9.2.5 Second-order parallel comb and cascaded notch filters.

Let Hk(z) be the peak/notch filter for the kth harmonic ωk = kω1 = 2πk/D,
k = 0,1, . . . , p and its negative −ωk. Then, the transfer functions of the comb and
notch filters will be:

Hcomb(z)=
p∑
k=0

Hk(z) , Hnotch(z)=
p∏
k=0

Hk(z) (9.2.17)

In their simplest form, the individual filters Hk(z) are second-order and can be
obtained from the lowpass and highpass filters (9.1.8) by the lowpass-to-bandpass z-
domain transformation [30,595]:

z → z′ = z(cosωk − z)
1− z cosωk

(9.2.18)

9.2. Notch and Comb Filters with Fractional Delay 383

The resulting second-order peaking and notch filters are [30], for k = 1,2, . . . , p:

peak: Hk(z)= b 1− z−2

1− (1+ a)cosωk z−1 + az−2
, b = 1− a

2

notch: Hk(z)= b 1− 2 cosωk z−1 + z−2

1− (1+ a)cosωk z−1 + az−2
, b = 1+ a

2

(9.2.19)

The filter parameter a is fixed in terms of the 3-dB width of the peak or the notch by,

tan
(
Δω

2

)
= 1− a

1+ a = β (9.2.20)

For k = 0, we may use the first-order lowpass/highpass filters of Eq. (9.1.8) with-
out any z-domain transformation. But in order for their 3-dB frequency to match the
specified 3-dB width Δω, their parameter a must be redefined as follows:

tan
(
Δω

4

)
= 1− a

1+ a = β (9.2.21)

To clarify the construction, we give below the MATLAB code for generating the left
graphs of Fig. 9.2.5,

f = linspace(-1,1,4001); w = pi*f; % frequency range −π ≤ω ≤ π

D = 9.9; p = floor(D/2); w1 = 2*pi/D; % design parameters

R = 0.95; a = R^2;

beta = (1-a)/(1+a); dw = 2*atan(beta); % 3-dB width calculation

beta0 = tan(dw/4); a0 = (1-beta0)/(1+beta0); % bandwidth parameter for k = 0 section

A = [1, -a0, 0]; % denominator coefficients for k = 0

Bcomb = [1, 1, 0] * (1-a0)/2; % numerator coefficients for k = 0

Bnotch = [1,-1, 0] * (1+a0)/2;

Hcomb = freqz(Bcomb,A,w); % k = 0 section, H0(ω)
Hnotch = freqz(Bnotch,A,w);

for k=1:p, % non-zero harmonics

A = [1, -(1+a)*cos(k*w1), a]; % denominator of Hk(z)
Bcomb = [1, 0, -1] * (1-a)/2; % numerator of peak Hk(z)
Bnotch = [1, -2*cos(k*w1), 1] * (1+a)/2; % numerator of notch Hk(z)
Hcomb = Hcomb + freqz(Bcomb,A,w); % add in parallel for comb

Hnotch = Hnotch .* freqz(Bnotch,A,w); % cascade for notch

end

figure; plot(w/pi, abs(Hcomb).^2, ’-’); left graphs

figure; plot(w/pi, abs(Hnotch).^2,’-’);

It is evident from Fig. 9.2.5 that this design method is flexible enough to correctly
handle any values of the fractional periodD. However, because of the mutual interaction
between the individual filters, the peaks of the comb do not quite have unity gains, and
the segments between the nulls of the notch filter are not quite flat.

This behavior can be fixed by decreasing the widthΔω. However, for a fixed value of
Δω, the only way to improve the response is by using higher-order filters. For example,

384 9. Periodic Signal Extraction

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 2

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 3

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 2

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 3

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 9.2.6 High-order Butterworth parallel comb and cascaded notch filters.

Fig. 9.2.6 illustrates the cases of designing the individual filters using Butterworth filter
prototypes of orders N = 2 and N = 3, whereas Fig. 9.2.5 corresponds to N = 1.

The following MATLAB code illustrates the generation of the left graphs in Fig. 9.2.6,
and uses the functions hpeq and frespc from the high-order equalizer design toolbox
in [595], which is also included in the OSP toolbox:

f = linspace(-1,1,4001); w = pi*f;

D = 8.1; p = floor(D/2); w1 = 2*pi/D;
R = 0.95; a = R^2;

beta = (1-a)/(1+a); dw = 2*atan(beta); % 3-dB width

N = 2; GB = -20*log10(2); % Butterworth order and bandwidth gain

[B0,A0] = hpeq(N, -inf, 0, GB, 0, dw/2); % k = 0 for comb, cutoff = half-bandwidth

Hcomb = frespc(B0,A0,w);

for k=1:p
[B,A] = hpeq(N, -inf, 0, GB, k*w1, dw); % non-zero harmonics

Hcomb = Hcomb + frespc(B,A,w); % add in parallel

end

9.3. Signal Averaging 385

figure; plot(w/pi,abs(Hcomb).^2,’-’); upper-left graph

[B0,A0] = hpeq(N, 0, -inf, GB, 0, dw/2); % k = 0 for notch

Hnotch = frespc(B0,A0,w);

for k=1:p
[B,A] = hpeq(N, 0, -inf, GB, k*w1, dw);
Hnotch = Hnotch .* frespc(B,A,w); % cascade in series

end

figure; plot(w/pi,abs(Hnotch).^2,’-’); % lower-left graph

The higher-order designs can also be based on Chebyshev or elliptic filters. In all
cases, the starting point is a lowpass (or highpass) analog prototype filter Ha(s), which
is transformed into a peaking (or notch) filter centered at ωk using the s-to-z domain
bandpass transformation [30,595]:

H(z)= Ha(s) , s = z
′ − 1

z′ + 1
= z

2 − 2 cosωk z+ 1

z2 − 1
(9.2.22)

where z′ is given by Eq. (9.2.18). For example, the analog Butterworth prototype filters
of orders N = 1,2,3 are:

Ha(s)= β
β+ s , Ha(s)= β2

β2 +√2βs+ s2 , Ha(s)= β
β+ s ·

β2

β2 + βs+ s2

Similarly, for the notch filters, the analog prototypes are the highpass filters:

Ha(s)= s
β+ s , Ha(s)= s2

β2 +√2βs+ s2 , Ha(s)= s
β+ s ·

s2

β2 + βs+ s2

For arbitrary N, the Butterworth lowpass and highpass filters are:

Ha(s)=
[
σ
β+ s

]r L∏
i=1

[
σ2

β2 + 2βs sinφi + s2
]
, φi = π(2i− 1)

2N
(9.2.23)

where N = 2L + r, with integer L and r = 0,1, and with σ = β in the lowpass case,
and σ = s in the highpass one. The parameter β is related to the 3-dB width through
β = tan(Δω/2). The filters of Eq. (9.2.19) are obtained by applying the transformation
(9.2.22) to the N = 1 case.

Each peaking or notching filter is the cascade of L second-order sections in s or
fourth-order sections in z (and possibly a second-order section in z if r = 1). The
function frespc is used to calculate the corresponding frequency responses in such
cascaded form. Further details on high-order designs and a description of the function
hpeq can be found in [595].

9.3 Signal Averaging

Signal averaging is a technique for estimating a repetitive signal in noise. Evoked bio-
logical signals, GPS, and radar were some applications mentioned at the beginning of

386 9. Periodic Signal Extraction

this chapter. A variant of the method can also be used to deseasonalize business, social,
and climate data—the difference being here that the non-periodic part of the measured
signal is not only noise but it can also contain a trend component. The typical assumed
noise model in signal averaging has the form:

yn = sn + vn (9.3.1)

where sn is periodic with some periodD, assumed to be an integer, and vn is zero-mean
white noise. The periodic signal sn can be extracted by filtering yn through any comb
filter, such as the IIR filter of Eq. (9.1.9).

Signal averaging is equivalent to comb filtering derived by applying the D-fold repli-
cating transformation z→ zD to an ordinary, length-N, lowpass FIR averaging filter:

HLP(z)= 1

N
[
1+ z−1 + z−2 + · · · + z−(N−1)] = 1

N
1− z−N
1− z−1

(9.3.2)

The definition H(z)= HLP(zD), then gives the comb filter:

H(z)= 1

N
[
1+ z−D + z−2D + · · · + z−(N−1)D] = 1

N
1− z−ND
1− z−D (9.3.3)

The latter equation shows thatH(z) has zeros at all the (ND)-th roots of unity that
are not D-th roots of unity. At the latter, the filter has unity-gain peaks.

An example is shown in Fig. 9.3.1, with period D = 10 and N = 5 and N = 10. The
comb peaks are at the D-th roots of unityωk = 2πk/D = 2πk/10, k = 0,1, . . . ,9. The
3-dB width of the peaks is indicated on the graphs by the short horizontal lines at the
half-power level centered around the first harmonic.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

ω /π

m
ag

n
it

u
de

 s
qu

ar
e

D = 10, N = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

ω /π

m
ag

n
it

u
de

 s
qu

ar
e

D = 10, N = 10

Fig. 9.3.1 Signal averaging filters with D = 10 and N = 5,10.

The 3-dB width is given by

Δω = 0.886
2π
ND

(9.3.4)

which follows from the frequency response of H(z):

H(ω)= 1

N
1− e−jωND
1− e−jωD = 1

N
sin(NDω/2)
sin(Dω/2)

e−j(ω(N−1)D/2 (9.3.5)

9.3. Signal Averaging 387

Thus, the peaks get narrower with increasing number N of averaging periods. This
has the effect of decreasing the noise, while letting through the periodic signal sn.

The signal averaging interpretation can be seen from the time-domain operation of
the filter. The corresponding output is the estimated periodic signal,

ŝn = 1

N
[
yn + yn−D + yn−2D + · · · + yn−(N−1)D

]
(9.3.6)

Inserting yn = sn + vn and using the periodicity property sn−D = sn, we obtain,

ŝn = sn + 1

N
[
vn + vn−D + · · · + vn−(N−1)D

] ≡ sn + v̂n (9.3.7)

Because vn was assumed to be stationary uncorrelated white noise, the variance of
the filtered noise v̂n will be reduced by a factor of N,

σ2
v̂ =

1

N2

[
var(vn)+var(vn−D]+· · · + var(vn−(N−1)D)

] = 1

N2
(Nσ2

v)=
1

N
σ2
v (9.3.8)

which implies that the NRR of the comb filter is R = 1/N. Thus, by choosing N suffi-
ciently large, the noise can be reduced, enabling the estimation of sn.

Let the signal yn be collected over N periods, that is, 0 ≤ n ≤ ND − 1, and divide
the signal into N length-D period segments as shown below,

The filtering operation (9.3.6) can be thought of as the averaging the N subblocks
together. Indeed, let yi(n)= yiD+n, for n = 0,1, . . . ,D − 1, be the samples within the
i-th subblock, i = 0,1, . . . ,N − 1. Then, we have

1

N

N−1∑
i=0

yi(n)= 1

N

N−1∑
i=0

yiD+n = 1

N

N−1∑
k=0

y(N−1)D+n−kD = ŝ(N−1)D+n (9.3.9)

or, in words, the lastD filter output samples, that is, over the period
[
(N−1)D, ND−1

]
,

are the average of the samples over the lastN periods. This can also be seen more simply
by writing (9.3.6) in recursive form, which follows from Eq. (9.3.3),

ŝn = ŝn−D + 1

N
(
yn − yn−ND

) = ŝn−D + 1

N
yn , 0 ≤ n ≤ ND− 1 (9.3.10)

where the term yn−ND was dropped because of the causal nature of yn and the assumed
range of n, that is, 0 ≤ n ≤ ND−1. Thus, Eq. (9.3.10) shows that ŝn is the accumulation
and averaging of the N period segments of yn.

The MATLAB implementation of signal averaging is straightforward, for example,
assuming that the array y has length at least ND,

s = 0;
for i=0:N-1,

yi = y(i*D+1 : i*D+D); % extract i-th period

s = s + yi; % accumulate i-th period

end
s = s/N; % average of N periods

388 9. Periodic Signal Extraction

So far we have not imposed the constraint S0 = sn + sn−1 + · · · + sn−D+1 = 0. If
in addition to the noise component vn, there is a slowly-varying background or trend
present, say, tn, so that the observation signal is yn = sn+tn+vn, then we may associate
the constant S0 with the trend and assume that S0 = 0. To guarantee this constraint,
we may subtract from each block yi(n) its local average, and compute the estimated
periodic component by:

ŝn = 1

N

N−1∑
i=0

[
yi(n)−μi

]
, μi = 1

D

D−1∑
n=0

yi(n) (9.3.11)

which does satisfy S0 = 0. By replicating the μi by D times within the i-th time period[
iD, iD +D − 1

]
, and stringing the replicated values together over all the periods, we

obtain a step-wise estimate of the trend component tn. The following MATLAB code
illustrates how to do that:

y = y(:);
L = length(y);
N = floor(L/D); % number of periods in y

r = mod(L,D); % L = ND + r

s = 0;
for i=0:N-1,

yi = y(i*D+1 : i*D+D); % i-th period

m(i+1) = mean(yi); % mean to be removed

s = s + yi - m(i+1); % accumulate i-th period

end
s = s / N; % estimated period

ys = repmat(s,N,1); % replicate N periods

ys(end+1:end+r) = s(1:r); % extend to length L by appending a portion of s

yt = repmat(m,D,1); yt = yt(:); % repeat each mean D times within its period

yt(end+1:end+r) = yt(end); % extend to length L by replicating last mean r times

where ys represents the estimated periodic signal, replicated over N periods, and yt is
the estimated step-function trend. These above steps have been incorporated into the
MATLAB function sigav:

[ys,s,yt] = sigav(y,D); % signal averaging

Example 9.3.1: Fig. 9.3.2 shows a simulated signal averaging example. The period is D = 10
and the total number of periods N = 100. The graphs display only the first 10 periods to
improve visibility. The periodic signal was superimposed on a slowly-varying trend and
noise was added:

yn = sn + tn + vn , sn = 0.5 sin
(

4πn
D

)
+ 0.5 sin

(
6πn
D

)
, tn = sin

(
2πn
10D

)

where n = 0,1, . . . ,ND − 1, and vn is zero-mean, unit-variance, white noise. The upper
row shows the noise-free case (with vn = 0). The upper-right graph shows the periodic
signal sn. The estimated one resulting from the output of sigav is essentially identical to
sn and thus not displayed. The step-function estimated trend is shown on the upper-left.

9.3. Signal Averaging 389

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

noise− free periodic signal with trend

 data
 true trend
 step trend

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

periodic component

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

noisy periodic signal with trend

 data
 true trend
 step trend

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

estimated periodic component

 true
 estimated

Fig. 9.3.2 Signal averaging of noisy periodic signal with slowly-varying trend.

The lower-left graph shows the noisy case, including the estimated step-trend signal. The
lower-right graph shows the estimated periodic signal from the output of sigav. The
following MATLAB code illustrates the generation of the bottom graphs:

D = 20; N = 100; n = 0:N*D;

s = (sin(4*pi*n/D) + sin(6*pi*n/D))/2; % periodic component

t = sin(2*pi*n/D/10); % trend component

seed = 2008; randn(’state’,seed);
v = randn(size(n));

y = s + t + v; % noisy observations

[ys,p,yt] = sigav(y,D); % signal averaging, p = one period

figure; plot(n,y,’--’, n,t,’-.’, n,yt,’-’); % yt is the estimated trend

xlim([0,200]); % show only the first 10 periods

figure; plot(n,ys, ’-’); % estimated periodic component

xlim([0,200]);

390 9. Periodic Signal Extraction

Example 9.3.2: Housing Starts. Fig. 9.3.3 shows the application of signal averaging to the
monthly, not seasonally adjusted, new privately-owned housing starts, for the 25 year
period from January 1984 to December 2008. The data are from the US Census Bureau
from the web link: http://www.census.gov/ftp/pub/const/starts_cust.xls.

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal component

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 WH trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal + irregular component

Fig. 9.3.3 Signal averaging and smoothing of monthly housing data.

The upper graphs show the estimated step-wise trend and the seasonal, periodic, compo-
nent. Although there is clear annual periodicity in the data, the signal averaging method
is not the best approach to this application because it does not result into a smooth trend.
We consider better methods to deseasonalize such data in the next sections.

As an alternative method, the bottom graphs show the application of the Whittaker Hender-
son smoothing method to estimate the smooth trend. The optimal smoothing parameter
was determined by the GCV criterion to be λ = 6850 and the smoothing order was s = 2.

The difference between the raw data and the estimated trend represents the seasonal plus
irregular component and is plotted in the bottom-right graph. Further application of signal
averaging to this component will generate an estimate of the seasonal component. It is
not plotted because it is essentially identical to that shown in the upper-right graph.

The following MATLAB code illustrates the generation of the four graphs, including, but
commented out, the computation of the seasonal part for the bottom graphs:

Y = loadfile(’newhouse.dat’); % data file available in the OSP toolbox

9.4. Ideal Seasonal Decomposition Filters 391

i = find(Y(:,1)==109.1); % finds the beginning of the year 1984

y = Y(i:end-4,1); % keep data from Jan.1984 to Dec.2008

t = taxis(y,12,1984); % define time axis

[ys,s,yt] = sigav(y,12); % signal averaging with period 12

figure; plot(t,y,’--’, t,yt,’-’); % upper-left graph

figure; plot(t,ys,’-’); % upper-right graph

s = 2; la = 6800:2:6900; % smoothing order and search-range of λ’s

[gcv,lopt] = whgcv(y,la,s); % optimum smoothing parameter, λopt = 6850

yt = whsm(y,lopt,s); % Whittaker-Henderson smoothing

ysi = y-yt; % seasonal + irregular component

% ys = sigav(ysi,12); % seasonal component, not shown

figure; plot(t,y,’--’, t,yt,’-’); % bottom-left graph

figure; plot(t,ysi,’-’); % bottom-right graph

% figure; plot(t,ys,’-’); % essentially the same as upper-right graph

9.4 Ideal Seasonal Decomposition Filters

A possible approach for separating the three components of the signal yn = sn+tn+vn
is to first estimate the trend tn using a lowpass filter, and then extract the seasonal
component sn by applying a comb filter to the residual rn = yn − tn = sn + vn, which
consists of the seasonal and irregular parts.

The technique assumes of course that the trend is a slowly-varying, low-frequency,
signal. Fig. 9.4.1 illustrates some typical frequency spectra for the three components
and the ideal filters that might be used to extract them.

Fig. 9.4.1 Ideal filters for decomposition into trend and seasonal components.

Let Htrend(z) be the trend-extraction filter and Hcomb(z) the comb filter with peaks
at the seasonal harmonics (excluding the one at DC). Then, the filtering equations for

392 9. Periodic Signal Extraction

extracting the three components from yn can be expressed in the z-domain as follows:

T(z) = Htrend(z)Y(z)

R(z) = S(z)+V(z)= Y(z)−T(z)= [
1−Htrend(z)

]
Y(z)

S(z) = Hcomb(z)R(z)= Hcomb(z)
[
1−Htrend(z)

]
Y(z)≡ HS(z)Y(z)

V(z) = R(z)−S(z)= [
1−Hcomb(z)

][
1−Htrend(z)

]
Y(z)≡ HI(z)Y(z)

where Y(z), S(z),T(z),V(z),R(z) are the z-transforms of yn, sn, tn, vn, rn. Thus, the
filters for extracting the three components are:

HT(z)= Htrend(z) (trend)

HS(z)= Hcomb(z)
[
1−Htrend(z)

]
(seasonal)

HI(z)=
[
1−Hcomb(z)

][
1−Htrend(z)

]
(irregular)

(9.4.1)

The three filters satisfy the complementarity property:

HT(z)+HS(z)+HI(z)= 1 (9.4.2)

In Example 9.3.2, we followed exactly this approach where the trend filter was im-
plemented as a Whittaker-Henderson smoother and the comb filter as a signal averager.
Other possibilities exist for these filters and a lot of research has gone into making
choices that try to balance a good filter response versus the ability to work well with
short data records, including the handling of the end-point problem.

Example 9.4.1: Housing Starts. The housing starts signal considered in Example 9.3.2 displays
the typical frequency spectra shown in Fig. 9.4.1.

The left graph in Fig. 9.4.2 shows the corresponding magnitude spectrum of the original
data signal yn, normalized to unity maximum and plotted over the symmetric Nyquist
interval [−π,π] in units of the fundamental harmonic ω1 = 2π/12. The spectrum is
dominated by the low-frequency trend signal. The right graph shows the spectrum of the
seasonal plus irregular component rn = yn − tn = sn + vn, which displays the harmonics
more clearly.

The following MATLAB code illustrates the computation of the spectra:

Y = loadfile(’newhouse.dat’); % data file available in the OSP toolbox

i = find(Y(:,1)==109.1); % finds the beginning of the year 1984

y = Y(i:end-4,1); % keep data from Jan.1984 to Dec.2008

s = 2; lopt = 6850 % use optimum λ from Example 9.3.2

yt = whsm(y,lopt,s); % Whittaker-Henderson smoothing

ysi = y - yt; % seasonal + irregular component

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequencyω = kω1

L = length(y);
wind = 0.54 - 0.46*cos(2*pi*(0:L-1)/(L-1))’; % Hamming window

Y = abs(freqz(y.*wind,1,w)); Y = Y/max(Y); % normalized spectrum

Ysi = abs(freqz(ysi.*wind,1,w)); Ysi = Ysi/max(Ysi);

figure; plot(k,Y); figure; plot(k,Ysi); % left and right graphs

9.5. Classical Seasonal Decomposition 393

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

ω / ω
1

m
ag

n
it

u
de

 s
pe

ct
ru

m

spectrum of original signal yn

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

ω / ω
1

m
ag

n
it

u
de

 s
pe

ct
ru

m

spectrum of seasonal + irregular part rn

Fig. 9.4.2 Spectra of monthly housing data with and without trend.

The signals were windowed by a Hamming window prior to computing their DTFTs. ��

Ideally, it does not matter if Hcomb(z) excludes or not the peak at DC because it
would be canceled from HS(z) by the presence of the factor

[
1−Htrend(z)

]
. However,

in practice because the filters are non-ideal, an extra step is usually taken to ensure that
this peak is absent or minimized from sn. For example, an additional de-trending step
may be applied to S(z), that is,

Sprelim(z)= Hcomb(z)R(z)

S(z)= Sprelim(z)−Htrend(z)Sprelim(z)= Hcomb(z)
[
1−Htrend(z)

]2Y(z)
(9.4.3)

This results in the modified extraction filters, which still satisfy (9.4.2):

HT(z)= Htrend(z) (trend)

HS(z)= Hcomb(z)
[
1−Htrend(z)

]2
(seasonal)

HI(z)=
[
1−Htrend(z)

]{
1−Hcomb(z)

[
1−Htrend(z)

]}
(irregular)

(9.4.4)

Further refinements will be discussed later on.

9.5 Classical Seasonal Decomposition

The classical seasonal decomposition method is the simplest realization of the proce-
dure outlined in the previous section. Consider the following two possible lowpass
trend-extraction filters:

Htrend(z) = 1

D
[
1+ z−1 + z−2 + · · · + z−(D−1)]

Htrend(z) = 1

D
[
1+ z−1 + z−2 + · · · + z−(D−1)] · 1

2
(1+ z−1)

(9.5.1)

where D is the period of the seasonal component. The first is typically used when D is
odd, and the second, when D is even. They are referred to as the 1×D and 2×D trend

394 9. Periodic Signal Extraction

filters, the notation N1×N2 denoting the convolution of a length-N1 with a length-N2

averaging filter:

1

N1

[
1+ z−1 + · · · + z−(N1−1)] · 1

N2

[
1+ z−1 + · · · + z−(N2−1)] (9.5.2)

The filters (9.5.1) are not perfect but are widely used. They have the desirable prop-
erty of having nulls at the non-zero harmonicsωk = kω1 = 2πk/D, k = 1,2, . . . ,D−1.
Their 3-dB cutoff frequency is about one-half the fundamental harmonicω1, that is,

ωc = 0.886
π
D

(9.5.3)

Eq. (9.5.3) can easily be derived for the 1×D case and is a good approximation for
the 2×D case. Fig. 9.5.1 shows the magnitude response

∣∣Htrend(ω)
∣∣ versusω over the

symmetric Nyquist interval, −π ≤ω ≤ π. The 3-dB frequency is indicated on the graph
at the 1/

√
2 level.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

ω / ω
1

m
ag

n
it

u
de

 r
es

po
n

se

trend filter, D = 12

 2 x 12
 1 x 12

Fig. 9.5.1 Trend-extraction filters with D = 12.

In order to avoid delays introduced by the filters, the filters can be made symmetric
with respect to the time origin. LetD = 2p+1 orD = 2p in the even or odd case. Then,
the symmetrized versions of the filters (9.5.1) are obtained by advancing them by p time
units, that is, multiplying them by a factor of zp:

D = 2p+ 1 , Htrend(z)= zp 1

D
[
1+ z−1 + · · · + z−(D−1)]

D = 2p , Htrend(z)= zp 1

D
[
1+ z−1 + · · · + z−(D−1)] · 1

2
(1+ z−1)

(9.5.4)

The corresponding frequency responses are obtained by setting z = ejω:

D = 2p+ 1 , Htrend(ω)= sin(Dω/2)
D sin(ω/2)

D = 2p , Htrend(ω)= sin(Dω/2)
D sin(ω/2)

· cos(ω/2)
(9.5.5)

9.5. Classical Seasonal Decomposition 395

where we used the identity 1+z−1+· · ·+z−(D−1) = (1−z−D)/(1−z−1). The symmetric
impulse responses are:

D = 2p+ 1 , h trend = 1

D
[
1, 1, . . . , 1︸ ︷︷ ︸

2p−1 ones

, 1
]

D = 2p , h trend = 1

D
[
0.5, 1, . . . , 1︸ ︷︷ ︸

2p−1 ones

, 0.5
] (9.5.6)

In both cases, the filter length is 2p+1, and the time-domain operation for calculating
the estimated trend is by the symmetric convolutional equation:

t̂n =
p∑

i=−p
htrend(i)yn−i (9.5.7)

The issues of filtering with double-sided filters were discussed in Sec. 3.9. We recall
that for a length-L input signal yn, the steady-state filtered output is over the time
range p ≤ n ≤ L−1−p. The first p and last p output transients can be computed using
appropriate asymmetric filters, and there exist many possibilities for these. Musgrave’s
minimum-revision method, discussed in Sec. 9.8, constructs such asymmetric filters
from a given symmetric filter such as h trend.

The calculation of the trend estimate, incorporating also the end-point asymmetric
filters, can be carried out with the MATLAB functions trendma, minrev, and lpfilt,

htrend = trendma(D); % trend filters of Eq. (9.5.6)

B = minrev(htrend,R); % corresponding smoothing matrix

t_hat = lpfilt(B,y); % filtering operation

where y denotes the input data vector, and R is the Musgrave parameter to be explained
in Sec. 9.8. The use of asymmetric filters affects only the first p and last p outputs.

In the so-called classical decomposition method, we apply the above filtering proce-
dure to calculate the trend, and then apply ordinary signal averaging on the residual
rn = yn − tn to calculate the seasonal component. The following computational steps
describe the method:

B = minrev(trendma(D),R); % trend moving-average, with minimum-revision end-filters

yt = lpfilt(B,y); % trend component

yr = y - yt; % seasonal + irregular components

ys = sigav(yr,D); % seasonal component

yi = yr - ys; % irregular component

For a multiplicative decomposition, yn = sntnvn, the last three steps are replaced by,

yr = y ./ yt; % seasonal + irregular components

ys = sigav(yr,D); % seasonal component

yi = yr ./ ys; % irregular component

The function cldec implements the above steps,

[yt,ys,yi] = cldec(y,D,R,type); % classical decomposition method

396 9. Periodic Signal Extraction

where the string type takes on the values ’a’ or ’m’ for additive (the default) or mul-
tiplicative decomposition. The default value of R is zero, which simply omits the com-
putation of the first and last p transients and replaces them with the corresponding
samples of the input signal yn.

Example 9.5.1: Housing Starts. Fig. 9.5.2 the trend and seasonal components of the housing
starts data extracted by the classical decomposition method versus the methods discussed
in Example 9.3.2.

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal component

Fig. 9.5.2 Classical decomposition of monthly housing data.

The Musgrave parameter was chosen to be R = 10. Since D = 12, the value of R affects
only the first and last 6 outputs. The MATLAB code for generating these graphs was,

Y = loadfile(’newhouse.dat’);
i = find(Y(:,1)==109.1);
y = Y(i:end-4,1); t = taxis(y,12,1984);

D=12; R=10;
[yt,ys,yi] = cldec(y,D,R); % classical decomposition method

figure; plot(t,y,’--’, t,yt,’-’); % left graph

figure; plot(t,ys,’-’); % right graph

The estimated trend is not as smooth as that of the Whittaker-Henderson method, but the
estimated seasonal component is essentially the same as that of Example 9.3.2. ��

Example 9.5.2: Global Carbon Dioxide Data. Figure 9.5.3 shows on the upper-left the monthly
global CO2 data for the period of January 1980 to March 2009, obtained from the NOAA
web site: http://www.esrl.noaa.gov/gmd/ccgg/trends/.

The vertical axis is in parts per million (ppm), which represents the dry air mole fraction,
that is, the number of CO2 molecules divided by the number of all air molecules, after
water vapor has been removed.

The upper graphs show the application of the classical seasonal decomposition method.
The upper-left graph shows the trend tn extracted by a 2×12 moving-average filter, while
the right graph shows the seasonal component sn.

9.5. Classical Seasonal Decomposition 397

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
classical seasonal decomposition

year

pp
m

 data
 trend

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4
seasonal component

year

pp
m

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−120

−100

−80

−60

−40

−20

0

ω / ω
1

dB

spectrum of original signal yn

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

ω / ω
1

m
ag

n
it

u
de

spectrum of seasonal + irregular part rn

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
local polynomial smoothing, N = 59, d = 2

year

pp
m

 data
 trend

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
Whittaker− Henderson, λ = 4000, s = 3

year

pp
m

 data
 trend

Fig. 9.5.3 Monthly global CO2 data and spectra.

The middle graphs show the spectra of the original data on the left, and of the residual
part rn = yn − tn = sn + vn on the right. The frequency axis is the symmetric Nyquist
interval [−π,π] in units of the fundamental harmonicω1 = 2π/12. The trend dominates
the spectrum of yn and swamps the smaller harmonic peaks of the seasonal part. Indeed,
the level of the seasonal component relative to the trend can be estimated in dB to be:

20 log10

(
std(sn)

mean(yn)

)
= 20 log10

(
1.46

360

)
= −47.8 dB

398 9. Periodic Signal Extraction

Therefore, the spectrum of the seasonal component is too small to be visible if plotted in
absolute units. In order to make it visible, a Kaiser window with an 80-dB sidelobe level
was applied to yn prior to computing its spectrum and then plotted in dB. On the other
hand, after the trend is removed, the harmonics in the residual component rn are quite
visible if plotted in absolute units as in the middle-right graph.

The bottom two graphs show the trend component tn extracted by a local polynomial
smoothing filter on the left (with length N = 59 and length d = 2), and by a Whittaker-
Henderson smoother on the right (with λ = 4000 and s = 3). The corresponding seasonal
components obtained by signal averaging of the residual rn = yn − tn are not shown
because they are essentially the same as that of the upper-right graph. The MATLAB code
used to generate these six graphs was as follows:

Y = loadfile(’co2_mm_gl.dat’); % data file in the OSP toolbox

t = Y(:,3); y = Y(:,4); yt0 = Y(:,5); % extract times and signals

R = 15; [yt,ys,yi] = cldec(y,12,R); % classical decomposition

figure; plot(t,y, t,yt); % upper-left graph

figure; plot(t,ys); upper-right graph

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency in units ofω1

L = length(y); Rdb = 80; % Kaiser window parameters

wind = kwindow(L,Rdb)’; % Kaiser window in the OSP toolbox

ysi = y - yt; % seasonal + irregular component

Y = abs(freqz(y.*wind,1,w)); Y = Y/max(Y); % DTFT computation

Ysi = abs(freqz(ysi.*wind,1,w)); Ysi = Ysi/max(Ysi);

figure; plot(k, 20*log10(Y)); % middle-left graph

figure; plot(k, Ysi); % middle-right graph

N=59; d=2; yt = lpfilt(lpsm(N,d),y); % LPSM smoother

figure; plot(t,y, t,yt); % bottom-left graph

% ys = sigav(y-yt,12); % seasonal part, not shown

% figure; plot(t,ys);

la=4000; s=3; yt = whsm(y,la,s); % Whittaker-Henderson smoother

figure; plot(t,y, t,yt); % bottom-right graph

The signal yt0 extracted from the 5th column of the data file (as in the second line of code
above) represents the already de-seasonalized data, and therefore, we can compare it to
the trend extracted by the above three methods. It is not plotted because it is virtually
identical to the above extracted trends.

The percentage error defined as 100*norm(yt-yt0)/norm(yt0) is found to be 0.05%,
0.07%, and 0.05% for the classical, LPSM, and WH methods, respectively. ��

To gain some further insight into the nature of the filtering operations for the classi-
cal decomposition method, we show in Fig. 9.5.4 the magnitude responses of the filters
HS(ω), HT(ω), and HI(ω) for extracting the seasonal, trend, and irregular compo-

9.5. Classical Seasonal Decomposition 399

nents, as defined by Eq. (9.4.1). The trend filterHtrend(ω) is given by Eq. (9.5.5), and the
comb filterHcomb(ω) by Eq. (9.3.5) with the phase factor removed to make it symmetric.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|, N = 15, uniform

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 ω /ω1

|HI (ω)| and |HT (ω)|

 irregular
 trend

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|, N = 15, Kaiser

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 ω /ω1

|HI (ω)| and |HT (ω)|

 irregular
 trend

Fig. 9.5.4 Component extraction filters HS(ω), HT(ω), and HI(ω).

The upper graphs in Fig. 9.5.4 show the case of D = 12 and N = 15. We observe
the absence of the harmonic at DC in HS(ω). The irregular filter does not quite extract
the noise component vn, but rather a filtered version thereof. Ideally, the irregular filter
HI(ω) should have zeros at the harmonics, be very small in the passband of HT(ω),
and be flat between the harmonics. The actual filter HI(ω) does approximate these
features.

The sidelobe behavior about the harmonics in HS(ω), or about the nulls in HI(ω),
is due to the sidelobes introduced by the signal averaging filterHcomb(ω) of Eq. (9.3.5),
which was obtained by applying the seasonalizing transformation z→ zD to a length-N
FIR filter with uniform weights—the sidelobes being effectively the D-fold replicated
versions of the sidelobes of a length-N rectangular window.

Such sidelobes are suppressed only by about 13 dB relative to the main peaks and are
quire visible (at the level of 10−13/20 = 0.22). The sidelobes can be suppressed further
by replacing the rectangular FIR filter by a length-N windowed version thereof, using for
example a Hamming or a Kaiser window. To be precise, the comb filter obtained from a

400 9. Periodic Signal Extraction

window w(n), −M ≤ n ≤M, where N = 2M + 1, is defined by

W(z)=
M∑

n=−M
w(n)z−n ⇒ Hcomb(z)=W(zD)=

M∑
n=−M

w(n)z−nD (9.5.8)

where w(n) must be normalized to add up to unity. The two lower graphs of Fig. 9.5.4
show the filters obtained from a Kaiser window of length N = 15 and sidelobe level
RdB = 50 dB. The sidelobes are suppressed to the level of 10−50/20 = 0.003 and are not
visible if plotted in absolute scales. The price one pays for suppressing the sidelobes
is, of course, the widening of the harmonic peaks. To clarify these ideas, we give below
the MATLAB code for generating the graphs in Fig. 9.5.4:

D = 12; N = 15;
k = linspace(-6,6,1201); w = 2*pi*k/D; % frequency axis

ht = trendma(D); Ht = abs(freqz(ht,1,w)); % trend filter Htrend(ω)
hc = up(ones(1,N)/N, D); Hc = abs(freqz(hc,1,w)); % comb filter Hcomb(ω)
hs = conv(hc, compl(ht)); Hs = abs(freqz(hs,1,w)); % seasonal filter HS(ω)
hi = conv(compl(hs), compl(ht)); Hi = abs(freqz(hi,1,w)); % irregular filter HI(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % seasonal adjustment filter

figure; plot(k, Hs); figure; plot(k, Hi, k,Ht,’r--’); % upper graphs

figure; plot(k, Ha); % left graph in Fig. 9.5.5

Rdb=50; hk = kwindow(N,Rdb); hk = hk/sum(hk); % Kaiser window

hc = up(hk, D); Hc = abs(freqz(hc,1,w)); % new Hcomb(ω)
hs = conv(hc, compl(ht)); Hs = abs(freqz(hs,1,w)); % new HS(ω)
hi = conv(compl(hs), compl(ht)); Hi = abs(freqz(hi,1,w)); % new HI(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % seasonal adjustment filter

figure; plot(k, Hs); figure; plot(k, Hi, k,Ht,’r--’); % lower graphs

figure; plot(k, Ha); % right graph in Fig. 9.5.5

The impulse response definitions in this code implement Eq. (9.4.1) in the time do-
main. The upsampling function up was described in Sec. 9.1. The function compl com-
putes the impulse response of the complement of a double-sided symmetric filter, that
is, H(z)→ 1 − H(z), or hn → δn − hn. The function kwindow computes the Kaiser
window (for spectral analysis) [604] for a given length N and sidelobe level Rdb in dB,
and it is part of the OSP toolbox.

Fig. 9.5.5 illustrates the complementarity property more clearly by showing the sea-
sonal adjustment filter HA(ω)= 1 −HS(ω)= HT(ω)+HI(ω), that is, the filter that
removes the seasonal component from the data. As expected, the filter has nulls at the
harmonics and is essentially flat in-between.

9.6 Seasonal Moving-Average Filters

Signal averaging can be thought of as ordinary filtering by the seasonalized FIR averager
filter of Eq. (9.3.3). However, as we saw in Eq. (9.3.9), the averaged period builds up
gradually at the filter output and becomes available only as the last D output points.
This is so because the filter length ND is essentially the same as the signal length so

9.6. Seasonal Moving-Average Filters 401

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 ω /ω1

|HA (ω)|, N = 15, uniform

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 ω /ω1

|HA (ω)|, N = 15, Kaiser

Fig. 9.5.5 Seasonal adjustment filter HA(ω)= 1−HS(ω)= HT(ω)+HI(ω).

that the filter operates mostly in its transient state. Indeed, if L is the length of the
signal yn, the number of periods is N = floor(L/D) so that L ≈ ND.

In the classical decomposition method, the final accumulated period is replicatedN
times to make up the seasonal component sn. This procedure is appropriate only if sn
is truly periodic. However, in many practical applications sn is only quasi-periodic with
slowly changing periods. In order to be able to estimate sn more accurately we must
use a shorter seasonal moving-average filter that tracks the local (i.e., within the filter’s
moving window) periodic component.

Example 9.6.1: Fig. 9.6.1 illustrates the filtering point of view for extracting the seasonal part
sn. The same CO2 data are used as in Example 9.5.2. The classical decomposition method is
applied first to determine the trend tn, and then the residual signal is formed rn = yn− tn.
In this example, the number of periods contained in the yn signal is N = 29.

The upper-left graph shows the result of ordinary causal filtering of the residual signal rn
by the signal averaging comb filter (9.3.3) using MATLAB’s built-in function filter. We
observe that the transients eventually build up to the same final period as that obtained
by signal averaging (shown as the dotted line.)

In the upper-right graph, the residual rn was filtered by the double-sided filtering function
filtdbl discussed in Sec. 3.9, which is ordinary causal convolution followed by advancing
the result by (N−1)D/2 samples. Again, we observe the input-on and input-off transients
and the build-up of the correct period at the middle.

The transient portions of the double-sided filter output can be adjusted by using Mus-
grave’s minimum-revision asymmetric filters for the left and right end points. The result-
ing filter output is shown in the lower-left graph, in which the Musgrave parameter was
chosen to be R = ∞ (see Sec. 9.8 for more on that.)

The lower-right graph shows the result of filtering rn through a so-called 3×3 double-sided
seasonal moving-average filter, which is discussed below. The MATLAB code for generating
these graphs is as follows:

Y = loadfile(’co2_mm_gl.dat’);
t = Y(:,3); y = Y(:,4); % CO2 data

402 9. Periodic Signal Extraction

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

causal filtering

 filter
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

double− sided filtering

 filtdbl
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

double− sided with end− point filters

 lpfilt
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

3x3 seasonal moving− average

 3x3
 cldec

Fig. 9.6.1 Filtering versions of seasonal filter.

D=12; N=floor(length(y)/D); M=33; R=inf; % filter parameters

[yt,ys,yi] = cldec(y,D,R); yr = y - yt; % yr = residual component rn

h = ones(1,N)/N; % length-N moving-average

hc = up(h, D); % seasonalized comb filter obtained from h

Bc = upmat(minrev(h,R), D); % seasonalized minimum-revision filter matrix

ys1 = filter(hc,1,yr); % ordinary causal filtering by the comb filter hc

ys2 = filtdbl(hc,yr); % double-sided filtering

ys3 = lpfilt(Bc, yr); % double-sided filtering and end-point filters

[yt4,ys4] = smadec(y, D, M, R); % ys4 is the 3×3 moving-average output

figure; plot(t,ys1, t,ys,’:’); figure; plot(t,ys2, t,ys,’:’); % upper graphs

figure; plot(t,ys3, t,ys,’:’); figure; plot(t,ys4, t,ys,’:’); % lower graphs

The smadec function is a simple alternative to cldec and is discussed below. The
function upmat upsamples a filter matrix by a factor ofD for its use in comb filtering. It
upsamples each row and then each column by D and then, it replaces each group of D
columns by the corresponding convolution matrix arising from the first column in each
group. It can be passed directly into the filtering function lpfilt,

9.6. Seasonal Moving-Average Filters 403

Bup = upmat(B,D; % upsampling a filtering matrix

For example, the asymmetric filters associated with the 3×3 seasonal moving-average
filter [618] are as follows for D = 3, where the middle column is the 3×3 filter and the
other columns, the asymmetric filters to be used at the ends of the data record, and the
function smat is described below:

B = smat(1,33) = 1

27

⎡⎢⎢⎢⎢⎢⎢⎣
11 7 3 0 0
11 10 6 3 0
5 7 9 7 5
0 3 6 10 11
0 0 3 7 11

⎤⎥⎥⎥⎥⎥⎥⎦

Bup = upmat(B,3)= 1

27

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 0 0 7 0 0 3 0 0 0 0 0 0
0 11 0 0 7 0 0 3 0 0 0 0 0
0 0 11 0 0 7 0 0 3 0 0 0 0

11 0 0 10 0 0 6 0 0 3 0 0 0
0 11 0 0 10 0 0 7 0 0 5 0 0
0 0 11 0 0 10 0 0 7 0 0 5 0
5 0 0 7 0 0 9 0 0 7 0 0 5
0 5 0 0 7 0 0 10 0 0 11 0 0
0 0 5 0 0 7 0 0 10 0 0 11 0
0 0 0 3 0 0 6 0 0 10 0 0 11
0 0 0 0 3 0 0 7 0 0 11 0 0
0 0 0 0 0 3 0 0 7 0 0 11 0
0 0 0 0 0 0 3 0 0 7 0 0 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.6.1)

The simple 3×3, 3×5, and 3×9 seasonal moving-average filters are widely used in
de-seasonalizing business, government, and census data. They are obtained by sym-
metrizing theN1×N2 filters of Eq. (9.5.2) and then applying the transformation z→ zD.
For example, the resulting 3×3 and 3×5 comb filters are:

H33(z) = 1

3
(zD + 1+ z−D)·1

3
(zD + 1+ z−D)

H35(z) = 1

3
(zD + 1+ z−D)·1

5
(z2D + zD + 1+ z−D + z−2D)

(9.6.2)

with symmetric impulse responses,

h33 = 1

9
[1, 0, . . . ,0︸ ︷︷ ︸

D−1 zeros

,2,0, . . . ,0,3,0, . . . ,0,2,0, . . . ,0,1]

h35 = 1

15
[1,2,0, . . . ,0,3,0, . . . ,0,3,0, . . . ,0,3,0, . . . ,0,2,0, . . . ,0,1]

(9.6.3)

The MATLAB function smav calculates such impulse responses,

h = smav(N1,N2,D); % seasonal moving-average filters

404 9. Periodic Signal Extraction

It is simply:

h = up(conv(ones(1,N1), ones(1,N2))/(N1*N2), D);

These filters are to be applied to the residual signal rn = yn − tn. Their end-point
effects can be handled by using Musgrave’s minimum-revision filters or by any other
appropriate asymmetric filters. In fact, the census X-11/X-12 methods use asymmetric
filters that are specially constructed for the 3×3, 3×5, and 3×9 filters, and may be found
in Ref. [618]. They have been incorporated into the smadec and x11dec. For example,
Eq. (9.6.1) shows the 3×3 filter matrix before and after it is upsampled.

To summarize, the filtering approach for de-seasonalizing a signal yn = sn+ tn+vn
with period D consists of the following two basic steps:

1. Apply a lowpass filter to extract the trend component tn, incorporating also asym-
metric end-point filters. The trend-extraction filter can be a simple 1×D or 2×D
moving average, or, any other lowpass filter such as a local-polynomial or Whittaker-
Henderson smoother.

2. Apply a comb filter to the de-trended residual signal rn = yn − tn to extract the
seasonal part sn, incorporating asymmetric filters for the end-points. The comb
filter can be a simple seasonalized 3×3, 3×5, or 3×9 lowpass filter, or a more
general seasonalized filter such as one obtained from a non-rectangular window.
The de-seasonalized, or seasonally adjusted, signal is then an = yn − sn.

The MATLAB function smadec carries out this program using the simple 1×D or
2×D moving-average filter for de-trending and the 3×3, 3×5, or 3×9 comb filters for
the seasonal part. It has usage:

[yt,ys,yi] = smadec(y,D,M,R,iter,type); % seasonal moving-average decomposition

where yt, ys, yi are the estimated components tn, sn, vn, and y is the input data
vector. The integer values M = 33,35,39 select the 3×3, 3×5, or 3×9 seasonal comb
filters, other values ofM can also be used. The Musgrave parameter defaults to R = ∞,
the parameter iter specifies the number of iterations of the filtering process, which
correspond to applying the trend filter iter times. The string type takes on the values
’a’, ’m’ for additive or multiplicative decomposition. To clarify the operations, we
give below the essential part of the code in smadec for the additive case:

F = minrev(trendma(D),R); % trend moving-average, with minimum-revision end-filters

B = smat(D,M,R); % seasonal moving averages, with end-filters

yt = y; % initialize iteration

for i=1:iter,
yt = lpfilt(F,yt); % T component

yr = y - yt; % S+I component

ys = lpfilt(B,yr); % S component

yi = yr - ys; % I component

end

The function smat generates the filtering matrix of the seasonalized comb filters,
including the specific asymmetric filters for the 3×3, 3×5, or 3×9 cases, as well for
other cases.

9.6. Seasonal Moving-Average Filters 405

Example 9.6.2: Unemployment Data 1965–1979. The data set representing the monthly num-
ber of unemployed 16–19 year old men for the period Jan. 1965 to Dec. 1979 has served as
a benchmark for comparing seasonal adjustment methods [633,637]. The data set is avail-
able from the US Bureau of Labor Statistics web site: http://www.bls.gov/data/ (series
ID: LNU03000013, under category: Unemployment > Labor Force Statistics > on-screen
data search).

The upper graphs of Fig. 9.6.2 illustrate the application of the smadec function using D =
12, M = 35 (which selects the 3×5 comb), one iteration, Musgrave parameter R = ∞ for
the 2×D trend filter, and additive decomposition type. The left graph shows the trend
tn and the right, the estimated seasonal component sn, which is not exactly periodic but
exhibits quasi-periodicity. The results are comparable to those of Refs. [633,637].

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

2x12 trend moving− average

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal 3x5 filter

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

Whittaker− Henderson trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal Kaiser filter

Fig. 9.6.2 Trend/seasonal decomposition of monthly unemployment data for 1965–1979.

The lower graphs show the decomposition obtained by de-trending using a Whittaker-
Henderson smoother of order s = 2, followed by a Kaiser comb filter. The function whgcv

was used to determine the optimum smoothing parameter, λopt = 2039. The Kaiser win-
dow had length N = 15 and relative sidelobe level of Rdb = 50 dB. The MATLAB code for
generating these graphs was as follows:

Y = loadfile(’unemp-1619-nsa.dat’); % data file in OSP toolbox

i=find(Y==1965); Y = Y(i:i+14,2:13)’; % extract 1965-1979 data

406 9. Periodic Signal Extraction

y = Y(:)/1000; t = taxis(y,12,65); % y units in millions

D=12; M=35; R=inf; iter=1; type=’a’; % smadec input parameters

[yt,ys,yi] = smadec(y,D,M,R,iter,type); % yt,ys represent tn, sn

figure; plot(t,y, t,yt); figure; plot(t,ys); % upper graphs

s = 2; la = 2000:2050; % search range of λ’s

[gcv,lopt] = whgcv(y,la,s); % optimum λopt = 2039

yt = whsm(y,lopt,s); % extract tn component

yr = y-yt; % residual S+I component

Rdb=50; N=15; h = kwindow(N,Rdb); hk = h/sum(h); % Kaiser window

B = upmat(minrev(hk,R), D); % Kaiser comb with end-filters

ys = lpfilt(B, yr); % extract sn component

figure; plot(t,y, t,yt); figure; plot(t,ys); % bottom graphs

The Whittaker-Henderson method results in a smoother trend. However, the trend from
smadec can be made equally smooth by increasing the number of iterations, for example,
setting iter=3. The frequency responses of the various filters are shown in Eq. (9.6.3).

The filters HT(ω),HS(ω) for extracting the trend and seasonal components, and the
seasonal-adjustment filter HA(ω)= 1 − HS(ω) are constructed from Eq. (9.4.1). The
MATLAB code for generating these graphs was:

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency range [−π,π]

ht = trendma(12); Ht = abs(freqz(ht,1,w)); % 2×12 trend filter

hc = smav(3,5,12); % upsampled 3×5 comb filter

hs = conv(hc,compl(ht)); Hs = abs(freqz(hs,1,w)); % seasonal filter, HS(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % adjustment filter, 1−HS(ω)

figure; plot(k,Hs, k,Ht,’--’); figure; plot(k,Ha); % upper graphs

Ht = 1 ./ (1 + lopt * (2*sin(w/2)).^(2*s)); % Whittaker-Henderson trend filter

hc = up(hk,12); % Kaiser comb impulse response

Hc = freqz(hc,1,w) .* exp(j*(N-1)*D*w/2); % Kaiser comb frequency response

Hs = Hc .* (1-Ht); Ha = 1 - Hs; % HS(ω) and HA(ω)= 1−HS(ω)
Hs = abs(Hs); Ha = abs(Ha);

figure; plot(k,Hs, k,Ht,’--’); figure; plot(k,Ha); % bottom graphs

The Whittaker-Henderson trend filter was computed using Eq. (8.2.7). The frequency re-
sponse of the Kaiser comb filter was multiplied by ejω(N−1)D/2 to make the filter symmetric.
It is evident that the WH/Kaiser filters perform better. ��

The steps implementing the Whittaker-Henderson/Kaiser decomposition have been
incorporated into the MATLAB function whkdec,

[yt,ys,yi] = whkdec(y,D,s,la,N,Rdb,R,type); % WH/Kaiser decomposition

9.7. Census X-11 Decomposition Filters 407

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

|HS (ω)| and |HT (ω)| with 3x5 comb

 seasonal filter
 trend filter

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

seasonal adjustment filter |HA (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

|HS (ω)| and |HT (ω)| with Kaiser comb

 seasonal filter
 trend filter

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

seasonal adjustment filter |HA (ω)|

Fig. 9.6.3 Frequency responses of trend, seasonal, and seasonal-adjustment filters.

The WH parameters s,la must be selected in advance, for example, λ can be ten-
tatively estimated using the GCV function whgcv, but it should be noted that the GCV
does not always give a “good” value for λ. The Kaiser window length N must be odd and
the sidelobe level must be restricted to the range [13,120] dB. The Musgrave parameter
R affects only the Kaiser comb filter because the WH trend already takes into account
the end points. The parameter type is as in the function smadec.

9.7 Census X-11 Decomposition Filters

The Census X-11/X-12 seasonal adjustment procedures have become a standard for de-
seasonalizing economic data [605–621]. They are based on a series of filtering operations
that represent a refined version of the procedures outlined in the previous section.

Here, we only discuss the relevant filtering operations, leaving out details such as
adjustments for outliers or calendar effects. The most recent version, X-12-ARIMA, is
available from the web site [607]. The web pages [608,609] contain a number of papers
on the development of the X-11/X-12 methods.

408 9. Periodic Signal Extraction

As outlined in [610,613], the X-11 method involves the repeated application of the
2×12 trend filter of Eq. (9.5.1), the 3×3 and 3×5 comb filters of Eq. (9.6.2), and the
Henderson filters of lengths 9, 13, or 25, with polynomial and smoothing orders d =
s = 3 given by Eq. (4.2.29) of Chap. 4. The basic X-11 filtering steps are as follows,
assuming an additive model yn = sn + tn + vn,

1. Apply a 2×12 trend filter to yn to get a preliminary estimate of the trend tn.

2. Subtract tn from yn to get a preliminary estimate of the residual rn = yn − tn.

3. Apply the 3×3 comb filter to rn to get a preliminary estimate of sn.

4. Get an improved sn by removing its filtered version by the 2×12 trend filter.

5. Subtract sn from yn to get a preliminary adjusted signal an = yn − sn = tn + vn.

6. Filter an by a Henderson filter to get an improved estimate of the trend tn.

7. Subtract tn from yn to get an improved residual rn = yn − tn.

8. Apply the 3×5 comb filter to rn to get an improved estimate of sn.

9. Get the final sn by removing its filtered version by the 2×12 trend filter.

10. Subtract sn from yn to get the final adjusted signal an = yn − sn = tn + vn.

11. Filter an by a Henderson filter to get the final estimate of the trend tn.

12. Subtract tn from an to get the final estimate of the irregular component vn.

These steps are for monthly data. For quarterly data, replace the 2×12 trend filter
by a 2×4 filter. The steps can be expressed concisely in the z-domain as follows:

1. Ypre
T = FY

2. Ypre
R = Y −Ypre

T = (1− F)Y
3. Ypre

S = H33Y
pre
R = H33(1− F)Y

4. Yimp
S = Ypre

S − FYpre
S = H33(1− F)2Y

5. Ypre
A = Y −Yimp

S = [
1−H33(1− F)2

]
Y

6. Yimp
T = HYpre

A = H[
1−H33(1− F)2

]
Y

7. Yimp
R = Y −Yimp

T =
[

1−H[
1−H33(1− F)2

]]
Y

8. Yimp
S = H35Y

imp
R = H35

[
1−H[

1−H33(1− F)2
]]
Y

9. YS = Yimp
S − FYimp

S = (1− F)H35

[
1−H[

1−H33(1− F)2
]]
Y ≡ HSY

10. YA = Y −YS = (1−HS)Y ≡ HAY
11. YT = HYA = H(1−HS)Y ≡ HTY
12. YI = YA −YT = (1−H)(1−HS)Y ≡ HIY

(9.7.1)

where Ypre
T = FY stands for Ypre

Y (z)= F(z)Y(z), etc., and F(z),H33(z),H35(z),H(z)
denote the 2×12 trend filter, the 3×3 and 3×5 comb filters, and the Henderson filter,
and the z-transforms of the data, trend, seasonal, adjusted, and irregular components
are denoted by Y(z), YT(z), YS(z), YA(z), and YI(z).

9.7. Census X-11 Decomposition Filters 409

It follows that the effective filters for extracting the seasonal, seasonally-adjusted,
trend, and irregular components are:

HS = (1− F)H35

[
1−H[

1−H33(1− F)2
]]

(seasonal)

HA = 1−HS (seasonally-adjusted)

HT = H(1−HS) (trend)

HI = (1−H)(1−HS) (irregular)

(9.7.2)

They satisfy the complementarity property HT(z)+HS(z)+HI(z)= 1.

Example 9.7.1: X-11 Filters. The construction of the time-domain impulse responses of the X-
11 decomposition filters (9.7.2) is straightforward. For example, the following MATLAB
code evaluates the impulse responses (using a 13-term Henderson filter), as well as the
corresponding frequency responses shown in Fig. 9.7.1,

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency axis −π ≤ω ≤ π

hf = trendma(12); % 2×12 trend filter, F
hfc = compl(hf); % complement of trend filter, 1− F
h33 = smav(3,3,12); % 3×3 comb filter, H33

h35 = smav(3,5,12); % 3×5 comb filter, H35

N=13; he = lprs2(N,3,3); % 13-term Henderson filter, H
g = conv(hfc,hfc); % G = (1− F)2, G is temporary variable

g = compl(conv(h33, g)); % G = 1−H33(1− F)2
g = compl(conv(he,g)); % G = 1−H[

1−H33(1− F)2
]

g = conv(h35,g); % G = H35
{
1−H[

1−H33(1− F)2
]}

% HS = (1− F)H35
{
1−H[

1−H33(1− F)2
]}

hs = conv(hfc,g); Hs = abs(freqz(hs,1,w)); % seasonal

ha = compl(hs); Ha = abs(freqz(ha,1,w)); % adjustment

ht = conv(he,ha); Ht = abs(freqz(ht,1,w)); % trend

hi = conv(compl(he),ha); Hi = abs(freqz(hi,1,w)); % irregular

figure; plot(k, Hs); figure; plot(k, Ht); % upper graphs

figure; plot(k, Ha); figure; plot(k, Hi); % lower graphs

We note that the filters have the expected shapes. All cases described in [613] can be
generated by variations of this code. ��

The MATLAB function x11dec implements the above steps, amended by the use of
asymmetric filters to handle the end-points of the time series,

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 decomposition method

where D is the seasonal period, M1,M2 the sizes of the first and second comb filters
(entered as 33, 35, or 39), N1,N2 are the lengths of the first and second Henderson filters,
R is the Musgrave minimum-revision parameter affecting both the Henderson filters and
the trend filter, and type designates an additive or multiplicative decomposition. The
Musgrave parameter R is usually assigned the following values, depending on the length

410 9. Periodic Signal Extraction

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HT (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HA (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HI (ω)|

Fig. 9.7.1 X-11 decomposition filters (with 13-term Henderson).

N of the Henderson filter [618]:
N R
5 0.001
7 4.5
9 1.0

13 3.5
23 4.5

(9.7.3)

Example 9.7.2: Unemployment Data 1980–2008. Fig. 9.7.2 shows the X-11 decomposition of
the monthly unemployment data for 20 year and older men for the period Jan. 1980 to
Dec. 2008. The data are from the US BLS web site: http://www.bls.gov/data/, series
LNU03000025, under category: Unemployment > Labor Force Statistics > on-screen data
search. The already seasonally adjusted data are also available as series LNS13000025.

The upper-left graph shows the original data and the extracted trend tn assuming an addi-
tive model yn = tn+sn+vn. The lower-left graph is the extracted seasonal component sn.
The upper-right graph shows the seasonally-adjusted signal an = yn − sn = tn + vn to be
compared with that of the lower-right graph, which shows the already available adjusted
signal— the two agreeing fairly well. The graphs were generated by the following code:

Y = loadfile(’unemp-20-nsa.dat’); % not-seasonally adjusted data

9.7. Census X-11 Decomposition Filters 411

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

X− 11 trend

 data
 trend

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

computed seasonally adjusted

1980 1984 1988 1992 1996 2000 2004 2008
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

year

m
il

li
on

s

seasonal component

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

available seasonally adjusted

Fig. 9.7.2 X-11 decomposition of unemployment data 1980-2008.

i = find(Y==1980); Y = Y(i:end,2:13)’; % select years 1980-2008

y = Y(:)/1000; t = taxis(y,12,1980); % data vector y, and time axis

% data sets available in the OSP toolbox

Y = loadfile(’unemp-20-sa.dat’); % seasonally adjusted data

i = find(Y==1980); Y = Y(i:end,2:13)’;
yadj = Y(:)/1000; % yadj = already available adjusted data

D=12; M1=33; M2=35; N1=13; N2=13; R=3.5; type=’a’; % X-11 parameters

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 method

ya = y-ys; % seasonally adjusted

%s = 2; la = 1000; N=15; Rdb=50; % WH/K parameters

%[yt,ys,yi] = whkdec(y,D,s,la,N,Rdb,R,type); % Whittaker-Henderson/Kaiser

%ya = y-ys; % seasonally adjusted

figure; plot(t,y,’:’, t,yt,’-’); figure; plot(t,ya); % upper graphs

figure; plot(t,ys); figure; plot(t,yadj); % lower graphs

The value of R was 3.5 because a 13-term Henderson filter was used. The purpose of this
example was to compare the performance of our simplified X-11 implementation with the
results that are already available from the Bureau of Labor Statistics. We note that the use
of the Whittaker-Henderson/Kaiser decomposition method also works comparably well,

412 9. Periodic Signal Extraction

for example with parameters s = 2, λ = 1000, Kaiser lengthN = 15, and Rdb = 50 dB. The
code for that is included above but it is commented out. ��

9.8 Musgrave Asymmetric Filters

The handling of the end-point problem by the use of asymmetric filters was discussed in
Sec. 3.9. We saw that the output yn of filtering a length-L signal xn, 0 ≤ n ≤ L− 1, by a
double-sided filter hm, −M ≤m ≤M, using for example the function filtdbl, consists
ofM initial andM final transient output samples, and L−2M steady-state samples, the
latter being computed by the steady-state version of the convolutional equation:

yn =
M∑

m=−M
hmxn−m , M ≤ n ≤ L− 1−M (9.8.1)

The overall operation can be cast in convolution matrix form. For example, for L = 8
andM = 2, we have:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

. . .
x2

x3

x4

x5

. . .
x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.8.2)

The middle L − 2M = 4 output samples are steady, while the first and last M = 2
are transient and are computed by using fewer filter weights that the steady ones. The
transient and steady filters can be arranged into a matrix B, which is for the above
example,

B =

⎡⎢⎢⎢⎢⎢⎢⎣
h0 h1 h2 0 0
h−1 h0 h1 h2 0
h−2 h−1 h0 h1 h2

0 h−2 h−1 h0 h1

0 0 h−2 h−1 h0

⎤⎥⎥⎥⎥⎥⎥⎦ (9.8.3)

The convolution matrix H can be built from the knowledge of B as described in
Sec. 3.9. The matrix B conveniently summarizes the relevant filters and can be used as
an input to the filtering function lpfilt.

As discussed in Sec. 3.9, local polynomial smoothing filters, including Henderson
filters, generate their own matrix B to handle the series end-points, with the non-central
columns of B consisting of the corresponding prediction filters.

However, when one does not have available such prediction filters, but only the
central filter hm, −M ≤m ≤M, one must use appropriately designed end-point filters.

9.8. Musgrave Asymmetric Filters 413

For example, Eq. (9.8.2) would change to:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0
0 f0

−1 f0
−2 0 0 0 0 0

f1
1 f1

0 f1−1 f1−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 g1

2 g1
1 g1

0 g1−1

0 0 0 0 0 g0
2 g0

1 g0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

. . .
x2

x3

x4

x5

. . .
x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.8.4)

where the filters f0
m and f1

m are used for computing the first two transient outputs y0, y1,
and the filters g0

m and g1
m are for the last two outputs y7, y6. The correspondingBmatrix

would be in this case:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0
0 f1

1 h2 0 0

f0
−1 f1

0 h1 g1
2 0

f0
−2 f1−1 h0 g1

1 g0
2

0 f1−2 h−1 g1
0 g0

1

0 0 h−2 g1−1 g0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9.8.5)

More generally, the filters f im , gim , i = 0,1, . . . ,M − 1, compute the first M and last
M output samples yi , yL−1−i , respectively, through the convolutional equations:

yi =
i∑

m=−M
fimxi−m =

M∑
m=−i

f i−mxi+m = f ii x0 + · · · + f i0xi + · · · + f i−Mxi+M

yL−1−i =
M∑

m=−i
gimxL−1−i−m = giMxL−1−i−M + · · · + gi0xL−1−i + · · · + gi−ixL−1

(9.8.6)

for i = 0,1, . . . ,M − 1, where the limits of summations follow by the requirement that
only available xn samples appear in the sums.

Musgrave’s method [615,616] constructs such asymmetric filters from the knowledge
only of the central filter hm. The construction applies to filters hm that are symmetric,
hm = h−m, and are normalized to unity gain at DC, such as lowpass trend filters,

M∑
m=−M

hm = 1 (9.8.7)

The asymmetric filters f im, gim are required to satisfy similar moment constraints:

i∑
m=−M

fim = 1 ,
M∑

m=−i
gim = 1 (9.8.8)

The design is based on a minimum-revision criterion. When the data record has
length L, the ith output from the end, yL−1−i, is computed with the filter gim. If or

414 9. Periodic Signal Extraction

when the series is extended to length L− 1+M, then the same output can actually be
computed with the symmetric filter hm resulting in a revised output yrev

L−1−i, that is,

yL−1−i =
M∑

m=−i
gimxL−1−i−m , yrev

L−1−i =
M∑

m=−M
hmxL−1−i−m

Musgrave’s criterion selectsgim to minimize the mean-square revision errorE[e2
L−1−i],

where eL−1−i = yL−1−i−yrev
L−1−i, under the assumption that locally the input series is lin-

ear, that is, xL−1−i−m = a+bm+vm, with a,b constant parameters, and vm zero-mean
white noise with variance σ2. The mean-square error becomes then,

E[e2
L−1−i] = E

[[M∑
m=−i

gim(a+ bm+ vm)−
M∑

m=−M
hm(a+ bm+ vm)

]2
]

= E
[[
b

M∑
m=−i

mgim +
M∑

m=−i
(gim − hm)vm −

−i−1∑
m=−M

hmvm
]2

]

= σ2
M∑

m=−i
(gim − hm)2+b2

(M∑
m=−i

mgim
)2

+ const.

(9.8.9)

where “const.” is a positive term independent of gim. In deriving this, we used the mo-
ment constraints (9.8.7) and (9.8.8), and the property

∑M
m=−Mmhm = 0, which follows

from the assumed symmetry of hm. Defining the constant β2 = b2/σ2, it follows that
the optimum filter gim will be the solution of the following optimization criterion, which
incorporates the constraint (9.8.8) by means of a Lagrange multiplier λ:

J =
M∑

m=−i
(gm − hm)2+β2

(M∑
m=−i

mgm
)2

+ λ
(

1−
M∑

m=−i
gm

)
= min (9.8.10)

In a similar fashion, we can show that the filters f im are the solutions of

J =
i∑

m=−M
(fm − hm)2+β2

(i∑
m=−M

mfm
)2

+ λ
(

1−
i∑

m=−M
fm

)
= min (9.8.11)

Because hm is even inm it follows (by changing variablesm→ −m in the sums) that
f im = gi−m, that is, the beginning filters are the reverse of the end filters. Thus, only gim
need be determined and is found to be [616]:

gim = hm +
Ai

M + i+ 1
+ β

2Bi
Di
(m− μi) , −i ≤m ≤M (9.8.12)

for i = 0,1, . . . ,M − 1, with the constants Ai, Bi,Di, μi defined by,

Ai =
−i−1∑
m=−M

hm , Bi =
−i−1∑
m=−M

(m− μi)hm , i = 0,1, . . . ,M − 1

μi = M − i
2

, Di = 1+ β
2

12
(M + i)(M + i+ 1)(M + i+ 2)

(9.8.13)

9.8. Musgrave Asymmetric Filters 415

To show Eq. (9.8.12), we set the gradient of J in (9.8.10) to zero, ∂J/∂gm = 0, to get,

gm = hm + λ− β2Gm, G =
M∑

m=−i
mgm (9.8.14)

Summing up over m and using the constraint (9.8.8), and then, multiplying by m
and summing up overm, results in two equations for the two unknowns λ,G:

1 =
M∑

m=−i
hm +

(M∑
m=−i

1
)
λ−

(M∑
m=−i

m
)
β2G

G =
M∑

m=−i
mhm +

(M∑
m=−i

m
)
λ−

(M∑
m=−i

m2
)
β2G

(9.8.15)

Using the properties,

1−
M∑

m=−i
hm =

−i−1∑
m=−M

hm ,
M∑

m=−i
mhm = −

−i−1∑
m=−M

mhm

and the identities,

M∑
m=−i

1 =M + i+ 1

M∑
m=−i

m = 1

2
(M + i+ 1)(M − i)= (M + i+ 1)μi

M∑
m=−i

m2 = (M + i+ 1)μ2
i +

1

12
(M + i)(M + i+ 1)(M + i+ 2)

(9.8.16)

and solving Eqs. (9.8.15) for the constants λ,G and substituting them in (9.8.14), gives
the solution (9.8.12). The parameter β is usually computed in terms of the Musgrave
parameter R, the two being related by

R2 = 4

πβ2
⇒ β2 = 4

πR2
(9.8.17)

The MATLAB function minrev implements Eq. (9.8.12) and arranges the asymmetric
filters into a filtering matrix B, which can be passed into the filtering function lpfilt,

B = minrev(h,R); % minimum-revision asymmetric filters

The input is any odd-length symmetric filter hm and the parameterR. Typical values
of R are given in Eq. (9.7.3). The value R = ∞ corresponds to slope β = 0. For R = 0
or β = ∞, the limit of the solution (9.8.12) is ignored and, instead, the function minrev
generates the usual convolutional transients for the filter hm, resulting in a matrix B
such that in Eqs. (9.8.3).

We have made extensive use of this function since Chap. 3. As a further example,
we compare the filtering matrix B for a 7-term Henderson filter resulting from minrev

416 9. Periodic Signal Extraction

with the standard value R = 4.5 to that resulting from the function lprs using the
corresponding prediction filters for the same Henderson filter:

h = lprs2(7,3,3)=[−0.0587, 0.0587, 0.2937, 0.4126, 0.2937, 0.0587, −0.0587]

B = minrev(h,4.5)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5345 0.2892 0.0336 −0.0587 0 0 0
0.3833 0.4103 0.2747 0.0587 −0.0531 0 0
0.1160 0.2937 0.3997 0.2937 0.0582 −0.0542 0
−0.0338 0.0610 0.2870 0.4126 0.2870 0.0610 −0.0338

0 −0.0542 0.0582 0.2937 0.3997 0.2937 0.1160
0 0 −0.0531 0.0587 0.2747 0.4103 0.3833
0 0 0 −0.0587 0.0336 0.2892 0.5345

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B = lprs(7,3,3)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8182 0.1836 −0.0587 −0.0587 0.0336 0.0682 −0.1049
0.4895 0.4510 0.2741 0.0587 −0.0951 −0.0874 0.1818
−0.2448 0.4283 0.5245 0.2937 −0.0140 −0.1486 0.1399
−0.2797 0.1049 0.3357 0.4126 0.3357 0.1049 −0.2797

0.1399 −0.1486 −0.0140 0.2937 0.5245 0.4283 −0.2448
0.1818 −0.0874 −0.0951 0.0587 0.2741 0.4510 0.4895
−0.1049 0.0682 0.0336 −0.0587 −0.0587 0.1836 0.8182

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The mean-square revision error (9.8.9) was calculated assuming a local linear func-

tion of time for the input. The criterion can be generalized to higher-order polynomials.
For example, for a second-order polynomial,

xL−1−i−m = a+ bm+ cm2 + vm
the mean-square revision error will be:

E[e2
L−1−i] = E

[[M∑
m=−i

gm(a+ bm+ cm2 + vm)−
M∑

m=−M
hm(a+ bm+ cm2 + vm)

]2
]

= σ2
M∑

m=−i
(gm − hm)2+c2

(M∑
m=−i

m2gm
)2

+ const.

(9.8.18)
where we assumed that hm is symmetric, has unity gain at DC, and zero second moment
(i.e., it reproduces second-order polynomials). Similarly, we assumed that gm has unity
gain at DC and zero first moment (so that it reproduces first-order polynomials). Thus,
the expression (9.8.18) was obtained under the constraints:

hm = h−m ,
M∑

m=−M

⎡⎢⎣ 1
m
m2

⎤⎥⎦hm =
⎡⎢⎣ 1

0
0

⎤⎥⎦ , M∑
m=−i

[
1
m

]
gm =

[
1
0

]
(9.8.19)

Defining γ2 = c2/σ2, we obtain the following optimization criterion, which incorporates
the above constraints on gm with two Lagrange multipliers λ1, λ2:

J =
M∑

m=−i
(gm−hm)2+γ2

(M∑
m=−i

m2gm
)2

+λ1

(
1−

M∑
m=−i

gm
)
−λ2

(M∑
m=−i

mgm
)

(9.8.20)

9.9. Seasonal Whittaker-Henderson Decomposition 417

The vanishing of the gradient gives:

gm = hm + λ1 + λ2m− γ2Gm2 , G =
M∑

m=−i
m2gm (9.8.21)

By multiplying by m0,m1,m2 and summing up over m, we obtain three equations
for the three unknowns λ1, λ2, G,

1 =
M∑

m=−i
hm +

(M∑
m=−i

1
)
λ1 +

(M∑
m=−i

m
)
λ2 −

(M∑
m=−i

m2
)
γ2G

0 =
M∑

m=−i
mhm +

(M∑
m=−i

m
)
λ1 +

(M∑
m=−i

m2
)
λ2 −

(M∑
m=−i

m3
)
γ2G

G =
M∑

m=−i
m2hm +

(M∑
m=−i

m2
)
λ1 +

(M∑
m=−i

m3
)
λ2 −

(M∑
m=−i

m4
)
γ2G

(9.8.22)

Substituting the solutions for λ1, λ2, G into (9.8.21) gives the solution:

gim = hm +
Ai

M + i+ 1
+ Bi
Σi
(m− μi)+γ

2Ci
Δi

[
(m− μi)2−ν2

i
]
, −i ≤m ≤M (9.8.23)

for i = 0,1, . . . ,M − 1, with the same constants Ai, Bi, μi as in Eq. (9.8.13), and with
Σi,Δi, νi, Ci are defined by

Σi = 1

12
(M + i)(M + i+ 1)(M + i+ 2) , ν2

i =
1

12
(M + i)(M + i+ 2)

Δi = 1+ γ2

180
(M + i− 1)(M + i)(M + i+ 1)(M + i+ 2)

Ci =
−i−1∑
m=−M

[
(m− μi)2−ν2

i
]
hm

(9.8.24)

9.9 Seasonal Whittaker-Henderson Decomposition

There are several other seasonal decomposition methods. The Holt-Winters exponential
smoothing method [239–241], which was briefly discussed in Eq. (6.13.7), is a simple,
effective, method of simultaneously tracking trend and seasonal components.

Another method is based on a seasonal generalization of the Whittaker-Henderson
method [622–625] and we discuss it a more detail in this section.

Model-based methods of seasonal adjustment [626–642] are widely used and are
often preferred over the X-11/X-12 methods. They are based on making ARIMA-type
models for the trend and seasonal components and then estimating the components
using optimum Wiener filters, or their more practical implementation as Kalman filters
[643–664]. We encountered some examples in making signal models of exponential-
smoothing, spline, and Whittaker-Henderson filters. We will be discussing the state-
space approach in a later chapter.

418 9. Periodic Signal Extraction

The seasonal generalization of the Whittaker-Henderson method, which was origi-
nally introduced by Leser, Akaike, and Schlicht [622–624], differs from the Whittaker-
Henderson/Kaiser method that we discussed earlier in that the latter determines the
trend tn using ordinary Whittaker-Henderson smoothing, and then applies a Kaiser-
window comb filter to the residual rn = yn − tn to extract the seasonal part sn. By
contrast, in the seasonalized version, tn and sn are determined simultaneously from a
single optimization criterion. We recall that the ordinary Whittaker-Henderson perfor-
mance index for estimating the trend tn is,

J =
N−1∑
n=0

(yn − tn)2+λ
N−1∑
n=s

(∇stn)2 = min (9.9.1)

where s is the smoothing order and N, the length of yn. The seasonalized version with
period D replaces this by,

J =
N−1∑
n=0

(yn−tn−sn)2+λ
N−1∑
n=s
(∇stn)2+α

N−1∑
n=D−1

(sn+sn−1+· · ·+sn−D+1)2= min (9.9.2)

A fourth term, β
∑N−1
n=D(sn − sn−D)2, may be added [623,624], but it is generally not

necessary for the following reason. The minimization of J forces the sum

Sn = sn + sn−1 + · · · + sn−D+1 (9.9.3)

to become small, ideally zero, and as a consequence the quantity sn− sn−D = Sn−Sn−1

will also be made small. Nevertheless, such a term has been implemented as an option
in the function swhdec below. Eq. (9.9.2) can be written in a compact vectorial form as,

J = (y−t−s)T(y−t−s)+λ tT(DTs Ds) t+α sT(ATA)s = min (9.9.4)

where, as discussed in general terms in Sec. 8.1, the matrices Ds,A have dimensions
(N−s)×N and (N−D+1)×N, respectively, and are the steady-state versions of the
convolution matrices of the corresponding filters, that is,

Ds(z)= (1− z−1)s , ds = binom(s) , Ds = convmat
(
flip(ds), N − s

)T
A(z)=

D−1∑
k=0

z−k , a = [1, 1, . . . ,1︸ ︷︷ ︸
D ones

] , A = convmat
(
flip(a), N−D+1

)T (9.9.5)

For example, we have for N = 7, s = 2, and D = 4:

Ds =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎣
1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1

⎤⎥⎥⎥⎦ (9.9.6)

The solution of the minimization problem (9.9.4) is obtained from the vanishing of
the gradient of J with respect to t and s, which results in the system and its solution:

(I + P)t+ s = y

t+ (I +Q)s = y
⇒

t = (Q + P+QP)−1Qy

s = y− (I + P)t
(9.9.7)

9.9. Seasonal Whittaker-Henderson Decomposition 419

where we defined P = λ(DTs Ds) and Q = α(ATA). The matrices P,Q and (Q + P +
QP) are banded sparse matrices and therefore the indicated inverse† in (9.9.7) can be
computed very efficiently with O(N) operations (provided it is implemented by the
backslash operator in MATLAB.)

From the above system we also have, t = (I+ P)−1(y− s), which has the appealing
interpretation that the trend is obtained by an ordinary Whittaker-Henderson smoother,
i.e., the operator (I + P)−1, applied to the seasonally-adjusted signal (y − s), which is
similar to how the X-11 method obtains the final trend by applying a Henderson filter.

The function swhdec implements this method. It has an optional argument for the
fourth β-term mentioned above:

[yt,ys,yi] = swhdec(y,D,s,lambda,alpha,beta); % seasonal Whittaker-Henderson

The larger the parametersα,β, the closer to zero the quantity (9.9.3), and the “more
periodic” the seasonal component. Thus, if one wants to extract a slowly evolving pe-
riodic component, one should choose smaller values for these parameters, relative to
λ. The latter, can be estimated using the GCV criterion. The simultaneous estimation
of λ,α,β can be accomplished by maximizing an appropriate likelihood function in a
Bayesian formulation of this method [623,636,638].

The �1-regularized version can be obtained by replacing the �2 norms of the regu-
larizing parts by their �1 norms, that is,

J =
N−1∑
n=0

(yn − tn − sn)2+λ
N−1∑
n=s

∣∣∇stn∣∣+α N−1∑
n=D−1

∣∣sn + sn−1 + · · · + sn−D+1
∣∣ = min

J = ∥∥y− t− s)
∥∥2

2 + λ
∥∥Ds t

∥∥
1 +α

∥∥A s
∥∥

1 = min (9.9.8)

and can be solved easily with the CVX package.‡

Example 9.9.1: We revisit the unemployment data for 16–19 year old men for the 1965–79
period, which we encountered in Example 9.6.2. Fig. 9.9.1 compares the trend/seasonal
decomposition obtained by the X-11 method (top graphs) and by the seasonal Whittaker-
Henderson (middle graphs), as well as the corresponding L1 version (bottom graphs). The
input parameters were as follows, where λ was determined in Example 9.6.2 by the GCV
criterion,

D = 12, s = 2, λ = 2039, α = 10, β = 0

The MATLAB code used to generate the six graphs was as follows:

Y = loadfile(’unemp-1619-nsa.dat’); i=find(Y==1965); % read data

Y = Y(i:i+14,2:13)’; y = Y(:)/1000; t = taxis(y,12,65); % extract 1965-79 range

D=12; M1=33; M2=35; N1=13; N2=13; R=3.5; type=’a’; % X-11 input parameters

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 decomposition

figure; plot(t,y, t,yt); figure; plot(t,ys); % upper graphs

†It can be shown [624] that the inverse exists for all positive values of λ,α.
‡http://cvxr.com/cvx

420 9. Periodic Signal Extraction

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

X− 11 trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

seasonal WH trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

seasonal WH trend, L1 version

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component, L1 version

Fig. 9.9.1 X-11 and seasonal Whittaker-Henderson decomposition methods.

D=12; s=2; la=2039; alpha=10; % input parameters

[yt,ys,yi] = swhdec(y,D,s,la,alpha); % seasonal WH decomposition

figure; plot(t,y, t,yt); figure; plot(t,ys); % middle graphs

la=5; alpha=10; % L1 version

9.9. Seasonal Whittaker-Henderson Decomposition 421

N = length(y); s=2; Ds = diff(eye(N),s); % construct matrices Ds and A
A = convmat(ones(1,D), N-D+1)’;

cvx_quiet(true); % CVX package

cvx_begin
variable X(2*N) % pack trend and seasonal into X

T = X(1:N); S = X(N+1:2*N);
minimize(sum_square(y-T-S) + la * norm(Ds*T,1) + alpha * norm(A*S,1));

cvx_end

yt = X(1:N); ys = X(N+1:2*N); % extract trend and seasonal parts

figure; plot(t,y, t,yt); figure; plot(t,ys); % lower graphs

The seasonal components extracted by the methods are comparable, as are the outputs of
this method and the Whittaker-Henderson/Kaiser method plotted in Fig. 9.6.2. ��

In Sec. 8.2 we obtained the equivalent Whittaker-Henderson trend-extraction filter
and showed that it could be thought of as the optimum unrealizable Wiener filter of a
particular state-space model. The optimum filter had frequency response:

H(ω)= 1

1+ λ∣∣Ds(ω)∣∣2 , where Ds(ω)=
(
1− e−jω)s

(9.9.9)

and the state-space model was defined by

yn = tn + vn , ∇stn = wn (9.9.10)

where vn,wn were zero-mean, mutually-uncorrelated, white-noise signals of variances
σ2
v,σ2

w, and the smoothing parameter was identified as λ = σ2
v/σ2

w.
All of these results carry over to the seasonal case. First, we obtain the effective trend

and seasonal filters HT(ω),HS(ω) for extracting tn, sn. Then, we show that they are
optimal in the Wiener sense. As we did in Sec. 8.2, we consider a double-sided infinitely-
long signal yn and using Parseval’s identity, we may write the performance index (9.9.2)
in the frequency domain, as follows:

J =
∫ π
−π

[∣∣Y(ω)−T(ω)−S(ω)∣∣2 + λ∣∣Ds(ω)T(ω)∣∣2 +α∣∣A(ω)S(ω)∣∣2
] dω

2π
(9.9.11)

where Ds(ω) and A(ω) are the frequency responses of the filters in Eq. (9.9.5). From
the vanishing of the gradients ∂J/∂T∗ and ∂J/∂S∗, we obtain the equations:

T(ω)+λ∣∣Ds(ω)∣∣2T(ω)+S(ω) = Y(ω)

S(ω)+α∣∣A(ω)∣∣2S(ω)+T(ω) = Y(ω)
(9.9.12)

which may be solved for the transfer functions HT(ω)= T(ω)/Y(ω) and HS(ω)=
S(ω)/Y(ω), resulting in,

HT(ω) = α
∣∣A(ω)∣∣2

λ
∣∣Ds(ω)∣∣2 +α∣∣A(ω)∣∣2 + λα∣∣Ds(ω)∣∣2∣∣A(ω)∣∣2

HS(ω) = λ
∣∣Ds(ω)∣∣2

λ
∣∣Ds(ω)∣∣2 +α∣∣A(ω)∣∣2 + λα∣∣Ds(ω)∣∣2∣∣A(ω)∣∣2

(9.9.13)

422 9. Periodic Signal Extraction

with
∣∣Ds(ω)∣∣2

and
∣∣A(ω)∣∣2

given by,∣∣Ds(ω)∣∣2 = ∣∣1− e−jω∣∣2s = ∣∣2 sin(ω/2)
∣∣2s

∣∣A(ω)∣∣2 = ∣∣1+ e−jω + · · · + e−j(D−1)ω∣∣2 =
∣∣∣∣sin(ωD/2)

sin(ω/2)

∣∣∣∣2 (9.9.14)

The filters (9.9.13) generalize the Whittaker-Henderson, or Hodrick-Prescott filter
(9.9.9) to the seasonal case. The filters may be identified as the optimum Wiener filters
for the following signal model:

yn = tn + sn + vn , ∇stn = wn , sn + sn−1 + · · · + sn−D+1 = un (9.9.15)

where vn,wn, un are mutually-uncorrelated, zero-mean, white noises. The model can be
written symbolically in operator form:

yn = tn + sn + vn , Ds(z)tn = wn , A(z)sn = un (9.9.16)

The signals tn, sn are not stationary, but nevertheless the optimum Wiener filters can
be derived as though the signals were stationary [643–649]. Alternatively, multiplication
byDs(z)A(z) acts as a stationarity-inducing transformation, resulting in the stationary
signal model,

ȳn = Ds(z)A(z)yn = t̄n + s̄n + v̄n = A(z)wn +Ds(z)un +Ds(z)A(z)vn
t̄n = Ds(z)A(z)tn = A(z)wn
s̄n = Ds(z)A(z)sn = Ds(z)un
v̄n = Ds(z)A(z)vn

(9.9.17)

with spectral densities:

St̄ȳ(ω) = St̄t̄(ω)= σ2
w
∣∣A(ω)∣∣2

Ss̄ȳ(ω) = Ss̄s̄(ω)= σ2
u
∣∣Ds(ω)∣∣2

Sȳȳ(ω) = σ2
u
∣∣Ds(ω)∣∣2 +σ2

w
∣∣A(ω)∣∣2 +σ2

v
∣∣Ds(ω)A(ω)∣∣2

It follows from [643–649] that the optimum Wiener filters for estimating tn, sn will be:

HT(ω) = St̄ȳ(ω)Sȳȳ(ω)
= σ2

w
∣∣A(ω)∣∣2

σ2
u
∣∣Ds(ω)∣∣2 +σ2

w
∣∣A(ω)∣∣2 +σ2

v
∣∣Ds(ω)A(ω)∣∣2

HS(ω) = Ss̄ȳ(ω)Sȳȳ(ω)
= σ2

u
∣∣Ds(ω)∣∣2

σ2
u
∣∣Ds(ω)∣∣2 +σ2

w
∣∣A(ω)∣∣2 +σ2

v
∣∣Ds(ω)A(ω)∣∣2

(9.9.18)

It is evident that these are identical to (9.9.13) with the identifications λ = σ2
v/σ2

w
and α = σ2

v/σ2
u. For a finite, length-N, signal yn, the model (9.9.15) has been used to

derive Kalman smoothing algorithms for estimating tn, sn with O(N) operations, and
for efficiently evaluating the model’s likelihood function [636,638]. We note, however,
that the matrix solutions (9.9.7) are equally efficient.

9.9. Seasonal Whittaker-Henderson Decomposition 423

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HT (ω)|, α = 10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HS (ω)|, α = 10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HI (ω)|, α = 100

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HS (ω)|, α = 100

Fig. 9.9.2 Frequency responses of seasonal Whittaker-Henderson filters.

Example 9.9.2: Fig. 9.9.2 plots the frequency responsesHT(ω) andHS(ω) of Eq. (9.9.13). For
the upper graphs, the parameter values were the same as those of Example 9.9.1, that is,
D = 12, s = 2, λ = 2039, α = 10. We note that the responses have the expected shapes.

In the lower graphs, we increased the parameter α to 100 in order to sharpen the comb
peaks. The lower-left graph depicts the filter HI(ω)= 1−HT(ω)−HS(ω) for extracting
the irregular component, and the right graph depictsHS(ω). The trend filter is not shown
since it is virtually identical to that of the upper-left graph. The MATLAB code used to
generate the upper graphs was as follows:

k = linspace(-6,6,2401); w = 2*pi*k/12; % frequencies −π ≤ ω ≤ π

D = 12; s = 2; la = 2039; alpha = 10;

a = ones(D,1); A = freqz(a,1,w); % calculate A(ω)

P = la * abs(1 - exp(-j*w)).^(2*s); % evaluate P(ω) = λ |Ds(ω)|2
Q = alpha * abs(A).^2; % evaluate Q(ω) = α |A(ω)|2
R = Q + P + Q.*P;

HT = Q./R; HS = P./R; HI = 1-HS-HT;

424 9. Periodic Signal Extraction

figure; plot(k,HT); figure; plot(k,HS); % upper graphs

9.10 Problems

9.1 First prove Eq. (9.1.2) for all n. Then, using the DFT/IDFT pair in Eq. (9.1.1), show that a more
general form of (9.1.2) is,

D−1∑
m=0

sn−mejωkm = ejωknSk , k = 0,1, . . . ,D− 1, −∞ < n <∞

9.2 Consider the analog signal s(t)= cos(2πf1t) and its sampled version sn = cos(2πf1nT),
where T is the sampling interval related to the sampling rate by fs = 1/T. It is required that
sn be periodic in n with period of D samples, that is, cos

(
2πf1(n+D)T

) = cos(2πf1nT),
for all n. How does this requirement constrain fs and f1?

9.3 Show that the IIR comb and notch filters defined in Eq. (9.1.9) are complementary and power
complementary in the sense that they satisfy Eqs. (9.1.7).

Working with the magnitude response
∣∣Hcomb(ω)

∣∣2
show that the 3-dB width of the comb

peaks is given by Eq. (9.1.11).

9.4 Show that the solution of the system (9.9.7) can be written in the more symmetric, but
computationally less efficient, form:

t = (Q + P+QP)−1Qy

s = (P+Q + PQ)−1Py

10
Wavelets

Over the past two decades, wavelets have become useful signal processing tools for sig-
nal representation, compression, and denoising [665–833]. There exist several books on
the subject [665–686], and several tutorial reviews [687–708]. The theory of wavelets
and multiresolution analysis is by now very mature [709–761] and has been applied
to a remarkably diverse range of applications, such as image compression and cod-
ing, JPEG2000 standard, FBI fingerprint compression, audio signals, numerical analy-
sis and solution of integral equations, electromagnetics, biomedical engineering, astro-
physics, turbulence, chemistry, infrared spectroscopy, power engineering, economics
and finance, bioinformatics, characterization of long-memory and fractional processes,
and statistics with regression and denoising applications [762–833].

In this chapter, we present a short review of wavelet concepts, such as multires-
olution analysis, dilation equations, scaling and wavelet filters, filter banks, discrete
wavelet transforms in matrix and convolutional forms, wavelet denoising, and undeci-
mated wavelet transforms. Our discussion emphasizes computational aspects.

10.1 Multiresolution Analysis

Wavelet multiresolution analysis expands a time signal into components representing
different scales—from a coarser to a finer resolution. Each term in the expansion cap-
tures the signal details at a particular scale level. The expansion is defined in terms
of a sequence of nested closed subspaces Vj of the space L2(R) of square integrable
functions on the real line R:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R) (10.1.1)

The space Vj approximates a signal at a scale j with a resolution of 2−j time units.
Roughly speaking, if T0 is the sampling time interval in subspace V0, then the sampling
interval in Vj will be Tj = 2−jT0, which is coarser if j < 0, and finer if j > 0. The union
of the Vj subspaces is the entire L2(R) space, and their intersection, the zero function:

lim
j→∞

Vj =
∞⋃

j=−∞
Vj = L2(R) , lim

j→−∞
Vj =

∞⋂
j=−∞

Vj = {0} (10.1.2)

425

426 10. Wavelets

The spaces Vj have a special structure, being defined as the linear spans of the
scaled and translated replicas of a single function φ(t), called the scaling function, or
the father wavelet, which can be of compact support. The scaled/translated replicas of
φ(t) are defined for any integers j, n by:

φjn(t)= 2j/2φ(2jt − n) (10.1.3)

The functions φjn(t) are orthonormal for each fixed j, and form a basis of Vj. The
orthonormality condition is defined with respect to the L2(R) inner product:†

(φjn,φjm)=
∫∞
−∞
φjn(t)φjm(t)dt = δnm (10.1.4)

The factor 2j/2 in Eq. (10.1.3) serves to preserve the unit norm ofφjn for each j. Con-
ditions (10.1.1)–(10.1.4) are strong constraints and it is remarkable that such functions
φ(t) exist other than the simple Haar function defined to be unity over 0 ≤ t ≤ 1 and
zero otherwise. Fig. 10.1.1 shows three examples, the Haar, and the Daubechies D2 and
D3 cases, all of which have compact support (the support of D2 is 3 time units and that
ofD3, 5 units). The figure also shows a related functionψ(t) derived fromφ(t), called
the wavelet function, or the mother wavelet.

Fig. 10.1.1 Haar, Daubechies D2 and D3 scaling and wavelet functions φ(t),ψ(t).

Fig. 10.1.2 shows the scaled versions of the scaling and wavelet functions (for the
D2 case). Each successive copy φ(t),φ(2t),φ(22t),φ(23t), etc., is compressed by a
factor of two relative to the previous one, so that for higher and higher values of j, the
basis function φ(2jt) is capable of capturing smaller and smaller signal details.

The projection of an arbitrary signal f(t)∈ L2(R) onto the subspace Vj is defined
by the following expansion in the φjn basis:

fj(t)=
∑
n
cjnφjn(t)=

∑
n
cjn 2j/2φ(2jt − n) (10.1.5)

†In this chapter, all time signals are assumed to be real-valued.

10.1. Multiresolution Analysis 427

with coefficients following from the orthonormality of φjn(t):

cjn = (fj,φjn)= (f,φjn)=
∫∞
−∞
f(t)φjn(t)dt =

∫∞
−∞
f(t)2j/2φ(2jt − n)dt (10.1.6)

Fig. 10.1.2 Daubechies D2 functions φ(t),ψ(t) and their compressed versions.

The projection fj(t) can be thought of as an approximation of f(t) at scale j with
time resolution of 2−j. Because Vi ⊂ Vj for i ≤ j, the signal fj(t) incorporates informa-
tion about f(t) from all coarser resolutions (cf. Eq. (10.2.8)).

The significance of the wavelet functionψ(t) is that the orthogonal complement V⊥j
of Vj with respect to L2(R) is actually spanned by the scaled and translated versions of
ψ, that is, ψin(t)= 2i/2ψ(2it − n) for i ≥ j, which are orthogonal to φjn(t), and are
also mutually orthonormal,

(φjn,ψim)= 0 , i ≥ j , (ψin,ψi′n′)= δii′δnn′ (10.1.7)

Thus, we have the direct sum L2(R)= Vj ⊕ V⊥j , resulting in the decomposition of
f(t) into two orthogonal parts:

f(t)= fj(t)+wj(t) , fj(t)∈ Vj , wj(t)∈ V⊥j , fj(t)⊥ wj(t) (10.1.8)

The component wj(t) is referred to as the “detail,” and incorporates the details of
f(t) at all the higher resolution levels i ≥ j, or finer time scales 2−i ≤ 2−j. It admits the
ψ-basis expansion:

wj(t)=
∑
i≥j

∑
n
dinψin(t)=

∑
i≥j

∑
n
din2i/2ψ(2it − n) (10.1.9)

with detail coefficients din = (wj,ψin)= (f,ψin). In summary, one form of the mul-
tiresolution decomposition is,

f(t)= fj(t)+wj(t)=
∑
n
cjnφjn(t)+

∞∑
i=j

∑
n
dinψin(t) (10.1.10)

428 10. Wavelets

Another form is obtained in the limit j → −∞. Since V−∞ = {0}, we have f−∞(t)= 0,
and we obtain the representation of f(t) purely in terms of the wavelet basis ψin(t):

f(t)=
∞∑

i=−∞

∑
n
dinψin(t) , din =

∫∞
−∞
f(t)ψin(t)dt (10.1.11)

Yet another, and most practical, version of the multiresolution decomposition is
obtained by noting that V∞ = L2(R). We may assume then that our working signal
f(t) belongs to some VJ for a sufficiently large value of J, representing the highest
desired resolution, or finest scale. Since f(t)∈ VJ, it follows from the decomposition
f(t)= fJ(t)+wJ(t) that wJ(t)= 0, which implies that din = 0 for i ≥ J, and therefore,

f(t)= fJ(t)=
∑
n
cJnφJn(t) (10.1.12)

Combining this with Eq. (10.1.10) applied at some lower resolution j < J, we obtain
the two alternative forms (cf. Eq. (10.2.10)):

f(t)=
∑
n
cJnφJn(t)=

∑
n
cjnφjn(t)+

J−1∑
i=j

∑
n
dinψin(t)= fj(t)+wj(t) (10.1.13)

The mapping of the expansion coefficients from level J to levels j through J − 1,

cJn →
{
cjn ; din, j ≤ i ≤ J − 1

}
(10.1.14)

is essentially the discrete wavelet transform (DWT). For sufficiently large J, the coeffi-
cients cJn can be taken to be the time samples of f(t), sampled at the rate fs = 2J, or
sampling time interval TJ = 2−J. To see this, we note that the function 2Jφ(2Jt − n)
tends to a Dirac delta function for large J (see [665] for a proof), so that,

2Jφ(2Jt − n)≈ 2Jδ(2Jt − n)= δ(t − n2−J) (10.1.15)

Therefore, 2J/2φ(2Jt − n)≈ 2−J/2δ(t − n2−J), and Eq. (10.1.6) gives,

cJn ≈
∫∞
−∞
f(t)2−J/2δ(t − n2−J)Φ0dt = 2−J/2 f(n2−J) (10.1.16)

In practice, we may ignore the factor 2−J/2 and set simply cJn = f(n2−J)= f(nTJ).
The coefficients cJn serve as the input to the discrete wavelet transform. The approxi-
mation of cJn by the time samples is usually adequate, although there exist more precise
ways to initialize the transform.

Example 10.1.1: An example of the decomposition (10.1.13) is shown in Fig. 10.1.3 using the
Haar basis. The original signal (dotted line) is defined by sampling the following discon-
tinuous function at N = 28 = 256 equally spaced points over the interval 0 ≤ t ≤ 1,

f(t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(4πt), 0 ≤ t < 0.25

sin(2πt), 0.25 ≤ t < 0.75

sin(4πt), 0.75 ≤ t < 1

(10.1.17)

10.1. Multiresolution Analysis 429

Thus, the highest resolution level is J = log2N = 8. The upper graphs show the compo-
nents fj(t),wj(t) for the lower resolution level of j = 5. The bottom graphs correspond
to j = 6. As j increases, the step-function approximation becomes more accurate and
captures better the two sharp breaks of the original signal. For each j, the sums of the left
and right graphs make up the original signal.

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 6

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 6

Fig. 10.1.3 Haar-basis projections fj(t),wj(t) from scale J = 8 to scales j = 5,6.

Fig. 10.1.4 shows the case of using the Daubechies D3 wavelet basis for the same signal
(10.1.17). The following MATLAB code generates the top graphs in the two figures:

J = 8; N = 2^J;
t1 = (0:N/4-1)’/N; t2 = (N/4:3*N/4-1)’/N; t3 = (3*N/4:N-1)’/N;
t = [t1; t2; t3];
y = [sin(4*pi*t1); sin(2*pi*t2); sin(4*pi*t3)]; % define signal

h = daub(1); % use h=daub(3) for Fig. 10.1.4

j = 5; Y = dwtdec(y,h,j); % DWT decomposition to level j
fj = Y(:,1); wj = sum(Y(:,2:end),2); % approximation fj(t) and detail wj(t)

figure; plot(t,fj, t,y,’:’); figure; plot(t,wj); % left, right graphs

The function dwtdec is explained in Sec. 10.5, but we mention here that its output Y is
an N×(J−j+1) matrix whose first column holds the projection fj(t), and the sum of its
other columns are the detail wj(t). ��

430 10. Wavelets

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 6

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 6

Fig. 10.1.4 Daubechies–D3 projections fj(t),wj(t) from scale J = 8 to scales j = 5,6.

10.2 Dilation Equations

The subspaces Vj have even more interesting structure than described so far. Since
V0 ⊂ V1, it follows that the scaling function φ(t)∈ V0 can be expanded in the basis
φ1n(t)= 21/2φ(2t−n) that spans V1, that is, there must exist coefficients hn such that

φ(t)=
∑
n
hn 21/2φ(2t − n) (dilation equation) (10.2.1)

which is known as the dilation or refinement equation. The coefficients hn are given by:

hn = (φ,φ1n)= 21/2
∫∞
−∞
φ(t)φ(2t − n)dt (10.2.2)

Moreover, the wavelet function ψ(t) and its translates ψ0n = ψ(t − n) form an
orthonormal basis for the orthogonal complement of V0 relative to V1, that is, the space
W0 = V1 \V0, so that we have the direct-sum decomposition:

V0 ⊕W0 = V1 (10.2.3)

The space W0 is referred to as the “detail” subspace. Because ψ(t)∈ W0 ⊂ V1, it
also can be expanded in the φ1n(t) basis, as in Eq. (10.2.1),

ψ(t)=
∑
n
gn 21/2φ(2t − n) (10.2.4)

10.2. Dilation Equations 431

In a similar fashion, we have the decomposition Vj ⊕Wj = Vj+1, for all j, with Wj
being spanned by the scaled/translated ψ-basis, ψjn(t)= 2j/2ψ(2jt − n). The dilation
equations can also be written with respect to the φjn,ψjn bases. For example,

φjk(t)= 2j/2φ(2jt − k)=
∑
m
hm2(j+1)/2φ(2j+1t − 2k−m)=

∑
m
hmφj+1,m+2k(t)

and similarly for ψjk(t). Thus, we obtain the alternative forms,

φjk(t) =
∑
m
hmφj+1,m+2k(t)=

∑
n
hn−2kφj+1,n(t)

ψjk(t) =
∑
m
gmφj+1,m+2k(t)=

∑
n
gn−2kφj+1,n(t)

(10.2.5)

Using the orthogonality property (φj+1,n,φj+1,m)= δnm, we have the inner products,

hn−2k = (φjk,φj+1,n)

gn−2k = (ψjk,φj+1,n)
(10.2.6)

Also, because φj+1,n(t) is a basis for Vj+1 = Vj ⊕Wj, it may be expanded into its
two orthogonal parts belonging to the subspaces Vj andWj, which are in turn spanned
by φjk and ψjk, that is,

φj+1,n =
∑
k
(φj+1,n,φjk)φjk +

∑
k
(φj+1,n,ψjk)ψjk

Using (10.2.6), we may rewrite this as,

φj+1,n(t)=
∑
k
hn−2kφjk(t)+

∑
k
gn−2kψjk(t) (10.2.7)

Eqs. (10.2.5)–(10.2.7) are the essential tools for deriving Mallat’s pyramidal multires-
olution algorithm for the discrete wavelet transform.

The various decompositions discussed in Sec. 10.1 can be understood in the geomet-
ric language of subspaces. For example, starting at level j and repeating the direct-sum
decomposition, and using V−∞ = {0}, we obtain the representation of the subspace Vj,

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1 = · · · =
j−1⊕
i=−∞

Wi (10.2.8)

which states thatVj incorporates the details of all coarser resolutions. Similarly, increas-
ing j and using V∞ = L2(R), we obtain the subspace interpretation of Eq. (10.1.10),

Vj+1 = Vj ⊕Wj
Vj+2 = Vj+1 ⊕Wj+1 = Vj ⊕Wj ⊕Wj+1

Vj+3 = Vj+2 ⊕Wj+2 = Vj ⊕Wj ⊕Wj+1 ⊕Wj+2

· · ·
L2(R) = Vj ⊕

(
Wj ⊕Wj+1 ⊕Wj+2 ⊕ · · ·

) = Vj ⊕V⊥j
(10.2.9)

432 10. Wavelets

which explains the remark that the term wj(t) in (10.1.10) incorporates all the higher-
level details. Finally, going from level j < J to level J − 1, we obtain the geometric
interpretation of Eq. (10.1.13),

VJ = Vj⊕
(
Wj ⊕Wj+1 ⊕ · · · ⊕WJ−1

)
, j < J (10.2.10)

The coefficients hn define a lowpass filter H(z)=∑
n hnz−n called the scaling filter.

Similarly, gn define a highpass filterG(z), the wavelet filter. The coefficientshn, gn must
satisfy certain orthogonality relations, discussed below, that follow from the dilation
equations (10.2.5).

The filters hn, gn can be IIR or FIR, but the FIR ones are of more practical interest,
and lead to functionsφ(t),ψ(t) of compact support. Daubechies [665] has constructed
several families of such FIR filters: the minimum-phase family or daublets, the least-
asymmetric family or symmlets, and coiflets. The MATLAB function daub incorporates
these three families:

h = daub(K,type); % Daubechies scaling filters - daublets, symmlets, coiflets

h = daub(K,1) = Daublets K = 1,2,3,4,5,6,7,8,9,10, denoted as DK (D1 = Haar)
h = daub(K,2) = Symmlets K = 4,5,6,7,8,9,10, denoted as SK
h = daub(K,3) = Coiflets K = 1,2,3,4,5
h = daub(K) = equivalent to daub(K,1)

Daublets (minimum phase) have length = 2K and K vanishing moments for ψ(t).
Symmlets (least asymmetric) have length = 2K and K vanishing moments for ψ(t).
Coiflets have length = 6K and 2K vanishing moments for ψ(t), and 2K-1 for φ(t).

for coiflets, h(n) is indexed over -2K <= n <= 4K-1

all filters have norm(h) = 1 and sum(h) =
√

2

For example, the scaling filters for the Haar, and daublet D2 and D3 cases, whose
φ(t),ψ(t) functions were shown in Fig. 10.1.1, are obtained from the MATLAB calls:

h = daub(1) ⇒ h = [0.7071 0.7071]
h = daub(2) ⇒ h = [0.4830 0.8365 0.2241 -0.1294]
h = daub(3) ⇒ h = [0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352]

The filters hn can be taken to be causal, i.e., hn, 0 ≤ n ≤ M, where M is the filter
order, which is odd for the above three families, with M = 2K − 1 for daublets and
symmlets, andM = 6K − 1 for coiflets (these are defined to be slightly anticausal, over
−2K ≤ n ≤ 4K − 1). The parameter K is related to certain flatness constraints or
moment constraints for hn at the Nyquist frequencyω = π.

The filters gn are defined to be the conjugate or quadrature mirror filters to hn, that
is, gn = (−1)nhRn , where hRn = hM−n, n = 0,1, . . . ,M is the reversed version of hn.

In the z-domain, we have HR(z)= z−MH(z−1), while multiplication by (−1)n is
equivalent to the substitution z → −z, therefore, G(z)= HR(−z)= (−z)−MH(−z−1).
In the frequency domain, this reads:

G(ω)= e−jM(ω+π)H∗(ω+π) � gn = (−1)nhM−n , 0 ≤ n ≤M (10.2.11)

10.2. Dilation Equations 433

with the frequency-responses defined by:

G(ω)=
M∑
n=0

gne−jωn , H(ω)=
M∑
n=0

hne−jωn (10.2.12)

The function cmf implements this definition:

g = cmf(h); % conjugate mirror filter

For example, if h = [h0, h1, h2, h3], then, g = [h3,−h2, h1,−h0], e.g., we have for
the daublet D2:

h = daub(2) = [0.4830 0.8365 0.2241 -0.1294]
g = cmf(h) = [-0.1294 -0.2241 0.8365 -0.4830]

Fig. 10.2.1 shows the magnitude responses of the Haar, DaubechiesD2, and Symmlet
S6 scaling and wavelet filters.

For all scaling filters, the DC gain ofH(ω), and the Nyquist gain of G(ω), are equal
to
√

2 because of the conditions (which are a consequence of the dilation equation):

H(0) =
M∑
n=0

hn =
√

2

G(π) =
M∑
n=0

(−1)ngn =
M∑
n=0

hM−n = H(0)=
√

2

(10.2.13)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω / π

|
H

(ω
)|

,
|G

(ω
)|

lowpass and highpass filters

 Haar
 D2
 S6

Fig. 10.2.1 Haar, Daubechies D2, and Symmlet S6 scaling and wavelet filters.

The dilation equations can be expressed in the frequency domain as follows:

Φ(ω) = 2−1/2H(2−1ω)Φ(2−1ω)

Ψ(ω) = 2−1/2G(2−1ω)Φ(2−1ω)
(10.2.14)

where Φ(ω),Ψ(ω) are the Fourier transforms:

Φ(ω)=
∫∞
−∞
φ(t)e−jωt dt , Ψ(ω)=

∫∞
−∞
ψ(t)e−jωt dt (10.2.15)

434 10. Wavelets

In fact, settingω = 0 in the first of (10.2.14) and assuming that Φ(0)	= 0, we imme-
diately obtain the gain conditions (10.2.13). The iteration of Eqs. (10.2.14) leads to the
infinite product expressions:

Φ(ω) = Φ(0)
∞∏
j=1

[
2−1/2H(2−jω)

]

Ψ(ω) = Φ(0)
[

2−1/2G(2−1ω)
] ∞∏
j=2

[
2−1/2H(2−jω)

] (10.2.16)

We show later that Φ(0) can be chosen to be unity, Φ(0)= 1. As an example,
Fig. 10.2.2 shows the normalized magnitude spectra |Φ(ω)| and |Ψ(ω)|, where the
infinite products were replaced by a finite number of factors up to a maximum j ≤ J
chosen such that the next factor J + 1 would add a negligible difference to the answer.
For Fig. 10.2.2, an accuracy of 0.001 percent was achieved with the values of J = 7 and
J = 5 for the left and right graphs, respectively. The following MATLAB code illustrates
the generation of the left graph:

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ω / π

Daubechies− D2

 |Φ(ω)|
 |Ψ(ω)|

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ω / π

Symmlet− S6

 |Φ(ω)|
 |Ψ(ω)|

Fig. 10.2.2 Fourier transforms Φ(ω),Ψ(ω) of scaling and wavelet functions φ(t),ψ(t).

epsilon = 1e-5; Jmax = 30; % percent error = 100ε
f = linspace(0,10,513); w = pi*f; % frequency range in units of π
h = daub(2)/sqrt(2); g = cmf(h); % normalize hn such that H(0) = 1.

% use h=daub(6,2)/sqrt(2) for right graph

Phi0 = abs(freqz(h,1,w/2)); % initialize recursions at |H(ω/2)|, |G(ω/2)|
Psi0 = abs(freqz(g,1,w/2));

for J = 2:Jmax,
Phi = Phi0 .* abs(freqz(h,1,w/2^J)); % update by the factor |H(2−Jω)|
Psi = Psi0 .* abs(freqz(h,1,w/2^J));
if norm(Phi-Phi0) < norm(Phi0) * epsilon, J, break; end % stopping J
Phi0 = Phi;
Psi0 = Psi;

end

figure; plot(f,Phi, f,Psi,’--’);

10.2. Dilation Equations 435

We observe from the graphs that Φ(ω) has zeros atω = 2πm for non-zero integers
m. This is justified in the next section. Similarly, Ψ(ω) vanishes atω = 2πm for even
m, including zero.

Given the filters hn, gn, the dilation equations (10.2.1) and (10.2.4) can be solved iter-
atively for the functions φ(t),ψ(t) by the so-called cascade algorithm, which amounts
to the iterations,

φ(r+1)(t) =
∑
n
hn 21/2φ(r)(2t − n)

ψ(r+1)(t) =
∑
n
gn 21/2φ(r)(2t − n)

(10.2.17)

for r = 0,1,2, . . . , starting with some simple initial choice, such as φ(0)(t)= 1. The
iteration converges quickly for all the scaling filters incorporated into the function daub.
The algorithm can be cast as a convolutional operation with the so-called à trous† filters
generated from the scaling filter. First, we note that if hn, gn have order M, and are
defined over 0 ≤ n ≤M, then the dilation equations imply thatφ(t) andψ(t) will have
compact support over 0 ≤ t ≤ M. Thus, we may evaluate the rth iterate φ(r)(t) at the
equally-spaced points, t = 2−rn, for 0 ≤ n ≤ M2r , spanning the support interval. To
this end, we define the discrete-time signals of the sampled φ(r)(t):

f(r)(n)= 2−r/2φ(r)(2−rn) (10.2.18)

where 2−r/2 is a convenient normalization factor. It follows then from Eq. (10.2.17) that

2−(r+1)/2φ(r+1)(2−(r+1)n)=
∑
m
hm 2−r/2φ(r)(2−rn−m) , or,

f(r+1)(n)=
∑
m
hm f(r)(n− 2rm)=

∑
k
h[r](k)f(r)(n− k) (10.2.19)

where we defined the à trous filter corresponding to the interpolation factor 2r by

h[r](k)=
∑
m
hmδ(k− 2rm) (10.2.20)

which is the original filterhn with (2r−1) zeros inserted between thehn samples, so that
its z-transform and frequency response are H[r](z)= H(z2r) and H[r](ω)= H(2rω).

Thus, Eq. (10.2.19) can be interpreted as the convolution of the rth iterate with the
rth à trous filter. The recursion can be iterated for r = 0,1,2, . . . , J, for sufficiently large
J (typically, J = 10 works well.) The MATLAB function casc implements this algorithm:

[phi,psi,t] = casc(h,J,phi0); % cascade algorithm

where t is the vector of final evaluation points t = 2−Jn, 0 ≤ n ≤M2J. For example, the
Daubechies D2 functions φ(t),ψ(t) shown in Fig. 10.1.1 can be computed and plotted
by the following code:

h = daub(2); J = 10; phi0 = 1;

[phi,psi,t] = casc(h,J,phi0);

figure; plot(t,phi, t,psi,’--’);

†“a trous” means “with holes” in French. The filters are similar to the comb “seasonal” filters of Chap. 9.

436 10. Wavelets

The scaling function output phi is normalized to unit L2-norm, and the wavelet
output psi is commensurately normalized. The following MATLAB code fragment from
casc illustrates the construction method:

phi0=1;
for r=0:J-1,

phi = conv(phi, upr(h,r));
end

where the function upr constructs the à trous filter h[r](k) by upsampling hn by a factor
of 2r . This function can also be implemented using the MATLAB’s built-in function
upsample. For example, if h = [h0, h1, h2, h3], then for r = 2, the à trous filter will be,

h[r] = upr(h, r)= upsample(h,2r)= [h0,0,0,0, h1,0,0,0, h2,0,0,0, h3,0,0,0]

10.3 Wavelet Filter Properties

The scaling and wavelet filters hn, gn must satisfy certain necessary constraints which
are a consequence of the orthogonality of the scaling and wavelet basis functions. Using
the property (φj+1,n, φj+1,m)= δnm, it follows from Eq. (10.2.5) that,

(φj0,φjk)=
(∑
n
hnφj+1,n,

∑
m
hm−2kφj+1,m

) = ∑
n,m
hnhm−2k(φj+1,n, φj+1,m)=

∑
n
hnhn−2k

Similarly, we find,

(ψj0,ψjk) =
(∑
n
gnφj+1,n,

∑
m
gm−2kφj+1,m

) =∑
n
gngn−2k

(φj0,ψjk) =
(∑
n
hnφj+1,n,

∑
m
gm−2kφj+1,m

) =∑
n
hngn−2k

But (φj0,φjk)= (ψj0,ψjk)= δk and (φj0,ψjk)= 0, therefore hn, gn must satisfy
the orthogonality properties: ∑

n
hnhn−2k = δk∑

n
gngn−2k = δk∑

n
hngn−2k = 0

(10.3.1)

These may also be expressed in the frequency domain. We will make use of the
following cross-correlation identities that are valid for any two filters hn, gn and their
frequency responses H(ω),G(ω):∑

n
hngn−k � H(ω)G∗(ω)

(−1)k
∑
n
hngn−k � H(ω+π)G∗(ω+π)

[
1+ (−1)k

]∑
n
hngn−k � H(ω)G∗(ω)+H(ω+π)G∗(ω+π)

(10.3.2)

10.3. Wavelet Filter Properties 437

where the second follows from the “modulation” property of Fourier transforms, and
the third, by adding the first two. We note next that Eqs. (10.3.1) can be written in the
following equivalent manner obtained by replacing 2k by any k, even or odd:[

1+ (−1)k
]∑
n
hnhn−k = 2δk

[
1+ (−1)k

]∑
n
gngn−k = 2δk

[
1+ (−1)k

]∑
n
hngn−k = 0

(10.3.3)

Taking the Fourier transforms of both sides of (10.3.3) and using the transform prop-
erties (10.3.2), we obtain the frequency-domain equivalent conditions to Eqs. (10.3.1):

|H(ω)|2 + |H(ω+π)|2 = 2

|G(ω)|2 + |G(ω+π)|2 = 2

H(ω)G∗(ω)+H(ω+π)G∗(ω+π)= 0

(10.3.4)

The conjugate mirror filter choice (10.2.11) forG(ω) automatically satisfies the third
of Eqs. (10.3.4). Indeed, using the 2π-periodicity of H(ω), we have,

G∗(ω) = ejM(ω+π)H(ω+π)
G∗(ω+π) = ejM(ω+2π)H(ω+ 2π)= ejMωH(ω)

so that,

H(ω)G∗(ω)+H(ω+π)G∗(ω+π)= ejMωH(ω)H(ω+π)
[
ejMπ + 1

]
= 0

where ejMπ = −1, because M was assumed to be odd. With this choice of G(ω), the
first of (10.3.4) can be written in the following form, which will be used later on to derive
the undecimated wavelet transform:

1

2

[
H∗(ω)H(ω)+G∗(ω)G(ω)] = 1 (10.3.5)

Settingω = 0 in the first of Eqs. (10.3.4), and using the DC gain constraintH(0)= √2,
we find immediately that H(π)= 0, that is, the scaling filter must have a zero at the
Nyquist frequencyω = π. Since

H(π)=
∑
n
(−1)nhn =

∑
n=even

hn −
∑
n=odd

hn ,

it follows in conjunction with the DC condition that:

∑
n=even

hn =
∑
n=odd

hn = 1√
2

(10.3.6)

438 10. Wavelets

The correlation constraints and the DC gain condition,∑
n
hnhn−2k = δk ,

∑
n
hn =

√
2, (10.3.7)

provide onlyN/2+1 equations, whereN is the (even) length of the filter hn. Therefore,
one has N/2 − 1 additional degrees of freedom to specify the scaling filters uniquely.
For example, Daubechies’ minimum-phase DK filters have length N = 2K and K zeros
at Nyquist. These zeros translate into K equivalent moment constraints, or derivative
flatness constraints at Nyquist:

N−1∑
n=0

(−1)nnihn = 0 �
diH(ω)
dωi

∣∣∣∣∣
ω=π

= 0 , i = 0,1, . . . , K − 1 (10.3.8)

The i = 0 case is already a consequence of the correlation constraint, therefore, this
leaves K − 1 additional conditions, which together with the K + 1 equations (10.3.7),
determines the N = 2K coefficients hn uniquely. The construction method may be
found in [665]. As an example, we work out the three cases D1,D2,D3 explicitly. The
Haar D1 case corresponds to K = 1 or N = 2K = 2, so that h = [h0, h1] must satisfy:

h2
0 + h2

1 = 1 , h0 + h1 =
√

2 (10.3.9)

with (lowpass) solution h0 = h1 = 1/
√

2. For the Daubechies D2 case, we have K = 2
and N = 2K = 4, so that h = [h0, h1, h2, h3] must satisfy,

h2
0 + h2

1 + h2
2 + h2

3 = 1

h0 + h2 = 1√
2
, h1 + h3 = 1√

2

− h1 + 2h2 − 3h3 = 0

(10.3.10)

where the third is the Nyquist moment constraint with i = 1, and the middle two are
equivalent to the DC gain and the h0h2 + h1h3 = 0 correlation constraint; indeed, this
follows from the identity:(

h0 + h2 − 1√
2

)2

+
(
h1 + h3 − 1√

2

)2

=

= 1+ (h2
0 + h2

1 + h2
2 + h2

3)−
√

2(h0 + h1 + h2 + h3)+2(h0h2 + h1h3)

Solving the three linear ones for h1, h2, h3 in terms of h0 and inserting them in the
first one, we obtain the quadratic equation for h0, with solutions:

4h2
0 −

√
2h0 − 1

4
= 0 ⇒ h0 = 1±√3

4
√

2

The “+” choice leads to the following minimum-phase filter (the “−” choice leads to the
reverse of that, which has maximum phase):

h = [h0, h1, h2, h3] = 1

4
√

2

[
1+√3 , 3+√3 , 3−√3 , 1−√3

]
= [0.4830 , 0.8365 , 0.2241 , −0.1294]

(10.3.11)

10.3. Wavelet Filter Properties 439

The corresponding transfer functionH(z) has a double zero at Nyquist z = −1 and
one inside the unit circle at z = 2−√3. In fact, H(z) factors as follows:

H(z)= h0(1+ z−1)2(1− (2−√3)z−1)

For the D3 case corresponding to K = 3, we have the following two quadratic equa-
tions and four linear ones that must be satisfied by the filter h = [h0, h1, h2, h3, h4, h5]:

h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 = 1 , h0h4 + h1h5 = 0

h0 + h2 + h4 = 1/
√

2 , h1 + h3 + h5 = 1/
√

2

− h1 + 2h2 − 3h3 + 4h4 − 5h5 = 0

− h1 + 22h2 − 32h3 + 42h4 − 52h5 = 0

(10.3.12)

where the last two correspond to the values i = 1,2 in (10.3.8), and we have omitted
the correlation constraint h0h2 + h1h3 + h2h4 + h3h5 = 0 as it is obtainable from
Eqs. (10.3.12). Solving the linear ones for h2, h3, h4, h5 in terms of h0, h1, we find,

h2 = −4h0 + 2h1 +
√

2/8

h3 = −2h0 + 3
√

2/8

h4 = 3h0 − 2h1 + 3
√

2/8

h5 = 2h0 − h1 +
√

2/8

(10.3.13)

Inserting these into the first two of Eqs. (10.3.12), we obtain the quadratic system:

34h2
0 − (32h1 −

√
2/4)h0 + 10h2

1 − 5
√

2h1/4− 3/8 = 0

h2
1 −

√
2h1/8− 3h2

0 − 3
√

2h0/8 = 0
(10.3.14)

Solving the second for h1 in terms of h0, we find:

h1 = 1

16

[√
2+

√
768h2

0 + 96
√

2h0 + 2
]

(10.3.15)

and inserting this into the first of (10.3.14), we obtain:

64h2
0 + 2

√
2h0 − 2h0

√
768h2

0 + 96
√

2h0 + 2− 3

8
= 0

or, the equivalent quartic equation:

1024h4
0 − 128

√
2h3

0 − 48h2
0 −

3
√

2

2
h0 + 9

64
= 0 (10.3.16)

which has two real solutions and two complex-conjugate ones. Of the real solutions, the
one that leads to a minimum-phase filter h is

h0 =
√

2

32

[
1+√10+

√
5+ 2

√
10

]
(10.3.17)

440 10. Wavelets

With this solution for h0, Eqs. (10.3.15) and (10.3.13) lead to the desired minimum-
phase filter. Its transfer function H(z) factors as:

H(z)= h0+h1z−1+h2z−2+h3z−3+h4z−4+h5z−5 = h0(1+z−1)3(1−z1z−1)(1−z∗1 z−1)

where z1 is the following zero lying inside the unit circle:

z1 =
√

10− 1+ j
√

2
√

10− 5

1+√10+
√

5+ 2
√

10
⇒ |z1| =

√
6

1+√10+
√

5+ 2
√

10
= 0.3254 (10.3.18)

Finally, we mention that the K flatness constraints (10.3.8) at ω = π for H(ω) are
equivalent to K flatness constraints for the wavelet filter G(ω) at DC, that is,

diG(ω)
dωi

∣∣∣∣∣
ω=0

= 0 , i = 0,1, . . . , K − 1 (10.3.19)

In turn, these are equivalent to the K vanishing moment constraints for the wavelet
function ψ(t), that is, ∫∞

−∞
tiψ(t)dt = 0 , i = 0,1, . . . , K − 1 (10.3.20)

The equivalence between (10.3.19) and (10.3.20) is easily established by differentiat-
ing the dilation equation (10.2.14) for Ψ(ω) with respect toω and settingω = 0.

Because theDK filters have minimum phase by construction, their energy is concen-
trated at earlier times and their shape is very asymmetric. Daubechies’ other two families
of scaling and wavelet filters, the “least asymmetric” symmlets, and the coiflets, have a
more symmetric shape. They are discussed in detail in [665].

Another consequence of the orthonormality of the φ and ψ bases can be stated in
terms of the Fourier transforms Φ(ω) and Ψ(ω) as identities inω:

∞∑
m=−∞

∣∣Φ(ω+ 2πm)
∣∣2 =

∞∑
m=−∞

∣∣Ψ(ω+ 2πm)
∣∣2 = 1

∞∑
m=−∞

Φ(ω+ 2πm)Ψ∗(ω+ 2πm)= 0

(10.3.21)

These follow by applying Parseval’s identity to the cross-correlation inner products
of the φ and ψ bases. For example, we have,

δk = (φj0,φjk)= (φ00,φ0k)=
∫∞
−∞
φ(t)φ(t − k)dt = 1

2π

∫∞
−∞

∣∣Φ(ω)∣∣2ejωk dω

= 1

2π

∫ π
−π

[∞∑
m=−∞

∣∣Φ(ω+ 2πm)
∣∣2

]
ejωk dω

where the last expression was obtained by noting that because k is an integer, the ex-
ponential ejωk is periodic in ω with period 2π, which allowed us to fold the infinite
integration range into the [−π,π] range. But this result is simply the inverse DTFT of

10.4. Multiresolution and Filter Banks 441

the first of Eqs. (10.3.21). The other results are shown in a similar fashion using the
inner products (ψj0,ψjk)= δk and (φj0,ψjk)= 0.

It can be easily argued from Eqs. (10.2.16) that Φ(2πm)= 0 for all non-zero integers
m. Indeed, settingm = 2p(2q+ 1) for some integers p ≥ 0, q ≥ 0, it follows that after
p iterations, an H-factor will appear such that H

(
(2q + 1)π)

) = H(π)= 0. Setting
ω = 0 in the first of Eqs. (10.3.21) and using this property, it follows that |Φ(0)|2 = 1.
Thus, up to a sign, we may set:

Φ(0)=
∫∞
−∞
φ(t)dt = 1 (10.3.22)

10.4 Multiresolution and Filter Banks

We saw in Eq. (10.1.12) that a signal belonging to a higher-resolution subspace can be
expanded in terms of its lower-resolution components. If J and J0 are the highest and
lowest resolutions of interest, then for a signal f(t)∈ VJ, the multiresolution expansion
will have the form:

f(t)=
∑
n
cJnφJn(t)=

∑
k
cJ0kφJ0k(t)+

J−1∑
j=J0

∑
k
djkψjk(t) (10.4.1)

with the various terms corresponding to the direct-sum decomposition:

VJ = VJ0 ⊕
(
WJ0 ⊕WJ0+1 ⊕ · · · ⊕WJ−1

)
(10.4.2)

The choice of J, J0 is dictated by the application at hand. Typically, we start with a
signal f(t) sampled atN = 2J samples that are equally-spaced over the signal’s duration.
The duration interval can always be normalized to be 0 ≤ t ≤ 1 so that the sample
spacing is 2−J. The lowest level is J0 = 0 corresponding to sample spacing 2−J0 = 1,
that is, one sample in the interval 0 ≤ t ≤ 1. One does not need to choose J0 = 0; any
value 0 ≤ J0 ≤ J − 1 could be used.

The lower-level expansion coefficients {cJ0k;djk, J0 ≤ j ≤ J − 1} can be computed
from those of the highest level cJn by Mallat’s multiresolution algorithm [721], which
establishes a connection between multiresolution analysis and filter banks.

The algorithm successively computes the coefficients at each level from those of
the level just above. It is based on establishing the relationship between the expansion
coefficients for the decomposition Vj+1 = Vj ⊕Wj and iterating it over J0 ≤ j ≤ J − 1.
An arbitrary element f(t) of Vj+1 can be expanded in two ways:

f(t)=
∑
n
cj+1,nφj+1,n(t)︸ ︷︷ ︸

Vj+1

=
∑
k
cjkφjk(t)︸ ︷︷ ︸
Vj

+
∑
k
djkψjk(t)︸ ︷︷ ︸
Wj

(10.4.3)

The right-hand side coefficients are:

cjk = (f,φjk)=
(∑
n
cj+1,nφj+1,n,φjk

)
=

∑
n
cj+1,n(φj+1,n,φjk)

djk = (f,ψjk)=
(∑
n
cj+1,nφj+1,n,ψjk

)
=

∑
n
cj+1,n(φj+1,n,ψjk)

442 10. Wavelets

which become, using Eq. (10.2.6),

cjk =
∑
n
hn−2kcj+1,n

djk =
∑
n
gn−2kcj+1,n

(analysis) (10.4.4)

for j = J−1, J−2, . . . , J0, initialized at cJn = f(tn), n = 0,1, . . . ,2J−1, with tn = n2−J,
that is, the 2J samples of f(t) in the interval 0 ≤ t ≤ 1. Conversely, the coefficients
cj+1,n can be reconstructed from cjk, djk:

cj+1,n = (f,φj+1,n)=
⎛⎝∑
k
cjkφjk +

∑
k
djkψjk , φj+1,n

⎞⎠
=

∑
k
cjk(φjk,φj+1,n)+

∑
k
djk(ψjk,φj+1,n)

or,

cj+1,n =
∑
k
hn−2kcjk +

∑
k
gn−2kdjk (synthesis) (10.4.5)

for j = J0, J0 + 1, . . . , J − 1. To see the filter bank interpretation of these results, let
us define the time-reversed filters h̄n = h−n and ḡn = g−n, and the downsampling and
upsampling operations by a factor of two [670]:

ydown(n)= x(2n)

yup(n)=
∑
k
x(k)δ(n− 2k)=

⎧⎨⎩x(k), if n = 2k
0, otherwise

(10.4.6)

and pictorially,

The downsampling operation decreases the sampling rate by a factor of two by keep-
ing only the even-index samples of the input. The upsampling operation increases the
sampling rate by a factor of two by inserting a zero between successive input samples.
It is the same as the “à trous” operation for filters that we encountered earlier.

With these definitions, the analysis algorithm (10.4.4) is seen to be equivalent to
convolving with the time-reversed filters, followed by downsampling. Symbolically,

cjk =
∑
n
h̄2k−ncj+1,n =

(
h̄∗ cj+1

)
(2k)

djk =
∑
n
ḡ2k−ncj+1,n =

(
ḡ∗ cj+1

)
(2k)

⇒
cj =

(
h̄∗ cj+1

)
down

dj =
(
ḡ∗ cj+1

)
down

(10.4.7)

Similarly, the synthesis algorithm (10.4.5) is equivalent to upsampling the signals
cjk and djk by two and then filtering them through hn, gn,

cj+1,n =
∑
k
hn−2kcjk +

∑
k
gn−2kdjk =

∑
m
hn−mc

up
jm +

∑
m
gn−md

up
jm (10.4.8)

10.4. Multiresolution and Filter Banks 443

where cup
jm =

∑
k cjkδ(m− 2k). Symbolically,

cj+1 = h∗ c
up
j + g∗ d

up
j (10.4.9)

Fig. 10.4.1 shows a block diagram realization of the analysis and synthesis equations
(10.4.7) and (10.4.9) in terms of a so-called tree-structured iterated filter bank.

Fig. 10.4.1 Analysis and synthesis filter bank.

In the figure, we used J = 3 and J0 = 0. Each stage of the analysis bank produces
the coefficients at the next coarser level. Similarly, the synthesis bank starts with the
coarsest level and successively reconstructs the higher levels.

The time-reversed filters h̄n, ḡn are still lowpass and highpass, indeed, their fre-
quency responses are H̄(ω)= H∗(ω) and Ḡ(ω)= G∗(ω). Therefore, at the first
analysis stage, the input signal c3 is split into the low- and high-frequency parts c2, d2

representing, respectively, a smoother trend and a more irregular detail. At the second
stage, the smooth trend c2 is split again into a low and high frequency part, c1, d1, and
so on. The subband frequency operation of the filter bank can be understood by looking
at the spectra of the signals at the successive output stages.

Because successive stages operate at different sampling rates, it is best to character-
ize the spectra using a common frequency axis, for example, the physical frequency f .
The spectrum of a discrete-time signal x(n) sampled at a rate fs is defined by,

X(f)=
∑
n
x(n)e−jωn =

∑
n
x(n)e−2πjfn/fs (10.4.10)

whereω = 2πf/fs is the digital frequency in radians/sample. We will use the notation
X(f, fs) whenever it is necessary to indicate the dependence on fs explicitly.

Just like the sampling of a continuous-time signal causes the periodic replication of
its spectrum at multiples of the sampling rate, the operation of downsampling causes
the periodic replication of the input spectrum at multiples of the downsampled rate. It
is a general result [30] that for a downsampling ratio by a factor L, and input and output

444 10. Wavelets

rates of fs and fdown
s = fs/L, the downsampled signal ydown(n)= x(nL) will have the

following replicated spectrum at multiples of fdown
s :

Ydown(f)= 1

L

L−1∑
m=0

X(f −mfdown
s) (10.4.11)

where according to (10.4.10),

Ydown(f)=
∑
n
ydown(n)e−2πjfn/fdown

s =
∑
n
x(nL)e−2πjfnL/fs (10.4.12)

In particular, for downsampling by L = 2, we have fdown
s = fs/2 and

Ydown(f)= 1

2

[
X(f)+X(f − fdown

s)
]
=

∑
n
x(2n)e−2πjf2n/fs (10.4.13)

If fs is the sampling rate at the input stage for the signal c3 of the analysis bank,
then the rates for the signals c2, c1, c0 will be fs/2, fs/4, fs/8, respectively. Fig. 10.4.2
shows the corresponding spectra, including the effect of filtering and downsampling.

Fig. 10.4.2 Spectra of the signals c3, c2, c1, c0 at successive stages of the analysis bank of
Fig. 10.4.1.

For clarity, we took H̄(f) to be an ideal lowpass filter with cutoff frequency equal
to half the Nyquist frequency, that is, fs/4. Starting at the top left with the input spec-
trum C3(f), which is replicated at multiples of fs, the first lowpass filtering operation
produces the spectrum at the upper right. According to Eq. (10.4.13), downsampling

10.4. Multiresolution and Filter Banks 445

will replicate this spectrum at multiples of fdown
s = fs/2, thereby filling the gaps created

by the ideal filter, and resulting in the spectrum C2(f) shown on the left graph of the
second row. The sampling rate at that stage is now fs/2.

The second lowpass filtering operation of the signal c2 indicated on Fig. 10.4.1 will
be by the filter H̄(f, fs/2) which is equal to H̄(2f , fs) if referred to the original sampling
rate fs; indeed, we have,

H̄(f, fs/2)=
∑
n
h̄ne−2πjfn/(fs/2) =

∑
n
h̄ne−2πjf2n/fs = H̄(2f , fs) (10.4.14)

The filter H̄(2f , fs) is the twice-compressed version of H̄(f, fs), and still has an
ideal shape but with cutoff frequency fs/8. The result of the second filtering operation
is shown on the right graph of the second row. The lowpass-filtered replicas are at
multiples of fs/2, and after the next downsampling operation, they will be replicated at
multiples of fs/4 resulting in the spectrum C1(f) of the signal c1 shown on the left of
the third row. At the new sampling rate fs/4, the third-stage lowpass filter will be:

H̄(f, fs/4)= H̄(2f , fs/2)= H̄(4f , fs) (10.4.15)

which is the four-times compressed version of that at rate fs, or twice-compressed of
that of the previous stage. Its cutoff is now at fs/16. The result of filtering by H̄(4f , fs) is
shown on the right of the third row, and its downsampled version replicated at multiples
of fs/8 is shown on the bottom left as the spectrum C0(f).

Thus, the output spectra C2(f),C1(f),C0(f) capture the frequency content of the
original signal in the corresponding successive subbands, each subband having half the
passband of the previous one (often referred to as an octave filter bank.)

The bottom-right graph shows an equivalent way of obtaining the same final output
C0(f), namely, by first filtering by the combined filter,

H̄(f, fs) H̄(2f , fs) H̄(4f , fs)= H̄(f, fs) H̄(f, fs/2) H̄(f, fs/4)

running at the original rate fs, and then dropping the rate all at once by a factor of
23 = 8, which will cause a replication at multiples of fs/8. This point of view is justified
by applying the standard multirate identity depicted below [670]:

Fig. 10.4.3 shows the successive application of this identity to the three stages of
Fig. 10.4.1 until all the downsamplers are pushed to the right-most end and all the filters
to the left-most end. The corresponding sampling rates are indicated at the outputs of
the downsamplers.

For non-ideal filters H̄(f), Ḡ(f), such as the scaling and wavelet filters, the down-
sampling replication property (10.4.13) will cause aliasing. However, because of Eq. (10.3.4),
the filter bank satisfies the so-called pefect reconstruction property, which allows the
aliasing to be canceled at the reconstruction, synthesis, stage.

446 10. Wavelets

Fig. 10.4.3 Equivalent realizations of the lowpass portion of the analysis bank of Fig. 10.4.1.

10.5 Discrete Wavelet Transform

We summarize the analysis and synthesis algorithms:

cj−1 =
(
h̄∗ cj

)
down

dj−1 =
(
ḡ∗ cj

)
down

j = J, J−1, . . . , J0 + 1 (10.5.1)

cj = h∗ c
up
j−1 + g∗ d

up
j−1 j = J0+1, J0+2, . . . , J (10.5.2)

The discrete wavelet transform (DWT) consists of the coefficients generated by the
analysis algorithm. The DWT can be defined for each resolution level. Starting with
an input signal vector x = [x0, x1, . . . , xN−1]T, where N = 2J, the DWTs at successive
stages are defined as the following sets of coefficients:

x = cJ → [cJ−1,dJ−1], (level J−1)
→ [cJ−2,dJ−2,dJ−1], (level J−2)
→ [cJ−3,dJ−3,dJ−2,dJ−1], (level J−3)

...
→ [cJ0 ,dJ0 ,dJ0+1, . . . ,dJ−1], (level J0)

(10.5.3)

Starting with the coefficients at any level, the inverse discrete wavelet transform
(IDWT) applies the synthesis algorithm to reconstruct the original signal x.

In practice, there are as many variants of the DWT as there are ways to implement
the filtering operations in (10.5.1)–(10.5.2), such as deciding on how to deal with the
filter transients (the edge effects), realizing convolution in a matrix form, periodizing or
symmetrizing the signals or not, and so on.

There exist several commercial implementations in MATLAB, Mathematica, Maple,
and S+, incorporating the many variants, as well as several freely available packages in
MATLAB, C++, and R [834–848].

In this section, we consider only the periodized version implemented both in matrix
form and in filtering form using circular convolutions. Given a (possibly infinite) signal
x(n), we define its “modulo-N reduction” [29] as its periodic extension with period N:

x̃(n)=
∞∑

p=−∞
x(n+ pN) (10.5.4)

10.5. Discrete Wavelet Transform 447

The signal x̃(n) is periodic with period N, and therefore, we only need to know it
over one period, 0 ≤ n ≤ N− 1. It is characterized by the property that it has the same
N-point DFT as the signal x(n), that is,

X(ωk)=
∞∑

n=−∞
x(n)e−jωkn =

N−1∑
n=0

x̃(n)e−jωkn (10.5.5)

where ωk are the DFT frequencies ωk = 2πk/N, k = 0,1, . . . ,N − 1. The signal x̃(n)
can be visualized as dividing the original signal x(n) into contiguous blocks of length
N, then aligning them in time, and adding them up. This operation is referred to as
“mod-N wrapping” and is depicted in Fig. 10.5.1 for a signal x(n) of length 4N.

Fig. 10.5.1 Modulo-N reduction or wrapping.

The MATLAB function modwrap implements this operation. Its argument can be a
row or column vector, or a matrix. For the matrix case, it wraps each column moduloN:

Y = modwrap(X,N); % mod-N reduction of a matrix

For example, we have for the signal x = [1,2,3,4,5,6,7,8] and N = 3,

Circular convolution is defined as the modulo-N reduction of ordinary linear convo-
lution, that is,

y = h∗ x ⇒ ycirc = ỹ = 6h∗ x (10.5.6)

or more explicitly,

y(n)=
∑
m
h(m)x(n−m) ⇒ ỹ(n)=

∑
p
y(n+ pN)

Its MATLAB implementation is straightforward with the help of the function mod-
wrap, for example,

y = modwrap(conv(h,x), N);

This code has been incorporated into the function circonv, with usage:

448 10. Wavelets

y = circonv(h,x,N); % mod-N circular convolution

For example, we have the outputs for N = 8:

Circular convolution can also be implemented in the frequency domain by computing
theN-point DFTs of the signals h,x, multiplying them pointwise together, and perform-
ing an inverse N-point DFT. Symbolically,

ycirc = ỹ = 6h∗ x = IDFT
[
DFT(h)·DFT(x)

]
(10.5.7)

or, explicitly,

ỹ(n)= 1

N

N−1∑
k=0

H(ωk)X(ωk)ejωkn (10.5.8)

where H(ωk),X(ωk) are N-point DFTs as in Eq. (10.5.5). The following MATLAB code
illustrates the implementation of the above example in the frequency and time domains:

h = [1 2 3 2 1];
x = [1 2 3 4 5 6 7 8];
H = fft(h,8); X = fft(x,8); % calculate 8-point DFTs

Y = H.*X; % point-wise multiplication of the DFTs

ytilde = ifft(Y,8); % inverse DFT generates ỹ = [55,48,33,26,27,36,45,54]
ytilde = circonv(h,x,8); % time-domain calculation

The frequency method (10.5.7) becomes efficient if FFTs are used in the right-hand
side. However, for our DWT functions, we have used the time-domain implementations,
which are equally efficient because the typical wavelet filter lengths are fairly short.
The convolutional operations in Eqs. (10.5.1) and (10.5.2) can now be replaced by their
circular versions, denoted symbolically,

cj−1 =
(
circonv(h̄, cj)

)
down

dj−1 =
(
circonv(ḡ, cj)

)
down

j = J, J−1, . . . , J0 + 1

cj = circonv(h, cup
j−1)+circonv(g, cup

j−1) j = J0+1, J0+2, . . . , J

(10.5.9)

DWT in Matrix Form

The convolutional operation y = h∗ x can be represented in matrix form:

y = Hx

10.5. Discrete Wavelet Transform 449

where H is the convolution matrix of the filter hn, defined by its matrix elements:

Hnm = hn−m
The convolution matrix corresponding to the time-reversed filter h̄n = h−n is given

by the transposed matrix
H̄ = HT

because H̄nm = h̄n−m = hm−n = Hmn. Thus, in matrix notation, the typical convo-
lutional and down- and up-sampling operations being performed at the analysis and
synthesis stages have the forms:

y = (HTx)down , y = Hxup (10.5.10)

Moreover, replacing the linear convolutions by circular ones amounts to replac-
ing the convolutional matrices by their mod-N wrapped versions obtained by reduc-
ing their columns modulo-N, where N is the length of the input vector x. Denoting
H̃ = modwrap(H,N), then the circular version of (10.5.10) would read:

ỹ = (H̃Tx)down , ỹ = H̃xup (10.5.11)

The reduced matrix H̃ will have size N×N, and after downsampling, the output
ỹ = (H̃Tx)down will have sizeN/2. Similarly, in the operation ỹ = H̃xup, the upsampled
vector xup will have length N, as will the output ỹ. Before upsampling, the input x had
length N/2. Because every other entry of xup is zero, the matrix operation H̃xup can
be simplified by replacing H̃ by its “downsampled” version H̃down obtained by keeping
every other column, and acting on the original vector x, that is, H̃xup = H̃downx. The
matrix elements of Hdown, before they are wrapped modulo-N, are (Hdown)nk= hn−2k.

To clarify these remarks, we look at some examples. Consider a length-6 filter, such
as D3 or a Coiflet-1 filter, h = [h0, h1, h2, h3, h4, h5]T and take N = 8. If the length-4
signal vector x = [x0, x2, x4, x6]T is upsampled by a factor of two, it will become the
length-8 vector xup = [x0,0, x2,0, x4,0, x6,0]T. Before wrapping them modulo-8, the
convolution matrices H,Hdown generate the following equivalent outputs:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0 0 0 0
h1 h0 0 0 0 0 0 0
h2 h1 h0 0 0 0 0 0
h3 h2 h1 h0 0 0 0 0
h4 h3 h2 h1 h0 0 0 0
h5 h4 h3 h2 h1 h0 0 0
0 h5 h4 h3 h2 h1 h0 0
0 0 h5 h4 h3 h2 h1 h0

0 0 0 h5 h4 h3 h2 h1

0 0 0 0 h5 h4 h3 h2

0 0 0 0 0 h5 h4 h3

0 0 0 0 0 0 h5 h4

0 0 0 0 0 0 0 h5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

0
x2

0
x4

0
x6

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0
h1 0 0 0
h2 h0 0 0
h3 h1 0 0
h4 h2 h0 0
h5 h3 h1 0
0 h4 h2 h0

0 h5 h3 h1

0 0 h4 h2

0 0 h5 h3

0 0 0 h4

0 0 0 h5

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x0

x2

x4

x6

⎤⎥⎥⎥⎦

450 10. Wavelets

or, y = Hxup = Hdownx. The circular convolution output can be obtained by either
wrapping y modulo-8 or by wrapping H,Hdown columnwise:

ỹ = H̃xup = H̃downx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 h4 h2

h1 0 h5 h3

h2 h0 0 h4

h3 h1 0 h5

h4 h2 h0 0
h5 h3 h1 0
0 h4 h2 h0

0 h5 h3 h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x0

x2

x4

x6

⎤⎥⎥⎥⎦ (10.5.12)

Similarly, in the analysis operation ỹ = (H̃Tx)down, downsampling amounts to keep-
ing every other row of the matrix H̃T, which is H̃Tdown. For example, for the length-8 signal
x = [x0, x1, x2, x3, x4, x5, x6, x7]T, the corresponding operation will be:

ỹ = (H̃Tx)down= H̃Tdownx =

⎡⎢⎢⎢⎣
h0 h1 h2 h3 h4 h5 0 0
0 0 h0 h1 h2 h3 h4 h5

h4 h5 0 0 h0 h1 h2 h3

h2 h3 h4 h5 0 0 h0 h1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10.5.13)

The wrapped/downsampled convolution matrix H̃down can be calculated very simply
in MATLAB, using, for example, the built-in convolution matrix function convmtx and
the function modwrap:

H = convmtx(h(:), N); % ordinary convolution matrix with N columns, h entered as column

H = H(:, 1:2:N); % downsampled convolution matrix

H = modwrap(H, N); % wrapped column-wise modulo-N

Because h is fairly short and N typically large, the convolution matrix H can be
defined as sparse. This can be accomplished by replacing convmtx by the function
convmat, which we encountered before in Sec. 3.9. Similar convolution matrices G̃down

can be constructed for the conjugate mirror filter gn. The function dwtmat constructs
both matrices for any scaling filter h and signal length N using convmat:

[H,G] = dwtmat(h,N); % sparse DWT matrices

The output matricesH,G are defined as sparse and have dimensionN×(N/2). They
represent the matrices H̃down, G̃down.

We can now state the precise form of the matrix version of the periodized DWT
algorithm. Given a signal (column) vector x of lengthN = 2J, we define the DWT matrices
Hj,Gj at level j with dimension Nj×(Nj/2), where Nj = 2j, by

[Hj,Gj]= dwtmat(h,Nj) , J0 + 1 ≤ j ≤ J (10.5.14)

10.5. Discrete Wavelet Transform 451

Then, the analysis and synthesis algorithms are as follows, initialized with cJ = x,

(DWT)
cj−1 = HTj cj

dj−1 = GTj cj
j = J, J−1, . . . , J0 + 1

(IDWT) cj = Hj cj−1 +Gj dj−1 j = J0+1, J0+2, . . . , J

(10.5.15)

The column vector cj has dimensionNj = 2j, while the vectors cj−1,dj−1 have dimen-
sion half of that, Nj−1 = Nj/2 = 2j−1. The computations for the forward and inverse
transforms are illustrated in Fig. 10.5.2. The discrete wavelet transform of x to level J0

is the concatenation of the coefficient vectors:

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

dJ0

dJ0+1

...
dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (DWT) (10.5.16)

Its total dimension is N = 2J, as can be verified easily,

2J0 + 2J0 + (
2J0+1 + · · · + 2J−1)= 2J

Fig. 10.5.2 Forward and inverse DWT in matrix form.

At each level j, theNj×Nj matrix Uj = [Hj,Gj] is an orthogonal matrix, as required
by the consistency of the analysis and synthesis steps:[

cj−1

dj−1

]
=

[
HTj
GTj

]
cj � cj = Hj cj−1 +Gj dj−1 = [Hj,Gj]

[
cj−1

dj−1

]

implying the conditions UTj Uj = UjUTj = INj , or,[
HTj
GTj

]
[Hj,Gj]= [Hj,Gj]

[
HTj
GTj

]
= INj

452 10. Wavelets

which are equivalent to the orthogonality conditions:

HTj Hj = GTj Gj = INj/2 , HTj Gj = 0 , HjHTj +GjGTj = INj (10.5.17)

These follow from the scaling filter orthogonality properties (10.3.1). To see the
mechanics by which this happens, consider again our length-6 filter hn and the corre-
sponding CMF filter gn defined by [g0, g1, g2, g3, g4, g5]= [h5,−h4, h3,−h2, h1,−h0].
Let us also define the cross-correlation quantities:

Rk =
∑
n
hnhn−2k ⇒

⎧⎪⎪⎨⎪⎪⎩
R0 = h2

0 + h2
1 + h2

2 + h2
3 + h2

4 + h2
5

R1 = h5h3 + h4h2 + h3h1 + h2h0

R2 = h5h1 + h4h0

(10.5.18)

From Eq. (10.3.1), we have Rk = δk, but let us not assume this just yet, but rather
treat hn as an arbitrary filter and gn as the corresponding CMF filter. Then, starting with
level J = 3, the wavelet matrices Hj at j = 3,2,1, will be:

H3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 h4 h2

h1 0 h5 h3

h2 h0 0 h4

h3 h1 0 h5

h4 h2 h0 0
h5 h3 h1 0
0 h4 h2 h0

0 h5 h3 h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H2 =

⎡⎢⎢⎢⎣
h0 + h4 h2

h1 + h5 h3

h2 h0 + h4

h3 h1 + h5

⎤⎥⎥⎥⎦
H1 =

[
h0 + h2 + h4

h1 + h3 + h5

] (10.5.19)

with similar definitions for Gj, j = 3,2,1. By explicit multiplication, we can verify:

HT3H3 = GT3G3 =

⎡⎢⎢⎢⎣
R0 R1 2R2 R1

R1 R0 R1 2R2

2R2 R1 R0 R1

R1 2R2 R1 R0

⎤⎥⎥⎥⎦ , HT3G3 = 0

H3HT3 +G3GT3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0 0 R1 0 2R2 0 R1 0
0 R0 0 R1 0 2R2 0 R1

R1 0 R0 0 R1 0 2R2 0
0 R1 0 R0 0 R1 0 2R2

2R2 0 R1 0 R0 0 R1 0
0 2R2 0 R1 0 R0 0 R1

R1 0 2R2 0 R1 0 R0 0
0 R1 0 2R2 0 R1 0 R0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similarly, we have,

HT2H2 = GT2G2 =
[
R0 + 2R2 2R1

2R1 R0 + 2R2

]
, HT2G2 = 0

H2HT2 +G2GT2 =

⎡⎢⎢⎢⎣
R0 + 2R2 0 2R1 0

0 R0 + 2R2 0 2R1

2R1 0 R0 + 2R2 0
0 2R1 0 R0 + 2R2

⎤⎥⎥⎥⎦

10.5. Discrete Wavelet Transform 453

HT1H1 = GT1G1 = R0 + 2R1 + 2R2 , HT1G1 = 0

H1HT1 +G1GT1 =
[
R0 + 2R1 + 2R2 0

0 R0 + 2R1 + 2R2

]
Setting R0 = 1 and R1 = R2 = 0 in all of the above, we verify the orthogonality

properties (10.5.17) at all levels j = 3,2,1. We note that the matrix Hj−1 can be derived
very simply from Hj by keeping only the first Nj−1/2 = Nj/4 columns and wrapping
them modulo-Nj−1, that is, in MATLAB notation:

Hj−1 = modwrap
(
Hj(: , 1 : Nj−1/2), Nj−1

)
, j = J, J−1, . . . , J0 + 1 (10.5.20)

and similarly for Gj−1. This simple operation has been incorporated into the function
dwtwrap, with usage:

H_lower = dwtwrap(H); % wrap a DWT matrix into a lower one

This is evident in Eq. (10.5.19), where H2 is derivable from H3, and H1 from H2.
Because the successive DWT matrices Hj,Gj have different dimensions, 2j×2j−1, it is
convenient to use a cell array to store them in MATLAB. The function dwtcell constructs
and stores them in sparse form:

F = dwtcell(h,N); % cell array of sparse DWT matrices

with the conventions Hj = F{1, j} and Gj = F{2, j}, for J0 + 1 ≤ j ≤ J, where N is the
highest dimension. The function fwtm implements the analysis algorithm in (10.5.15).
Its inputs are the signal vector x, the cell array F, and the lowest desired level J0,

w = fwtm(x,F,J0); % fast wavelet transform in matrix form

The vector w is as in Eq. (10.5.16). If J0 is omitted, it defaults to J0 = 0. Once the cell
array F is created, the function fwtm is extremely fast, even faster than the convolution-
based function fwt discussed below. The function ifwtm implements the inverse DWT
synthesis algorithm in (10.5.15),

x = ifwtm(w,F,J0); % inverse fast wavelet transform in matrix form

An example is the following MATLAB code using the D3 scaling filter:

x = [1 2 3 4 5 6 7 8];
h = daub(3); % h = [0.3327, 0.8069, 0.4599, −0.1350, −0.0854, 0.0352]
F = dwtcell(h,8); % construct cell array of DWT matrices

w = fwtm(x,F,0); % w = [12.7279, −1.4794, −4.4090, 2.2467, 0, 0, −3.7938, 0.9653]
x = ifwtm(w,F,0); % returns x = [1, 2, 3, 4, 5, 6, 7, 8]

% similarly, for J0 = 1,2,3, we find,

w = fwtm(x,F,1); % w = [7.9539, 10.0461, −4.409, 2.2467, 0, 0, −3.7938, 0.9653]
w = fwtm(x,F,2); % w = [2.5702, 5.3986, 8.6288, 8.8583, 0, 0, −3.7938, 0.9653]
w = fwtm(x,F,3); % w = [1, 2, 3, 4, 5, 6, 7, 8] = x, as expected since J = 3

454 10. Wavelets

These outputs can be understood by looking at the individual matrix operations.
Defining, c3 = x = [1,2,3,4,5,6,7,8]T, and the level-3 matrices H3, G3, obtained from
the call, [H3, G3]= dwtmat(h,8),

H3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3327 0 −0.0854 0.4599
0.8069 0 0.0352 −0.1350
0.4599 0.3327 0 −0.0854
−0.1350 0.8069 0 0.0352
−0.0854 0.4599 0.3327 0

0.0352 −0.1350 0.8069 0
0 −0.0854 0.4599 0.3327
0 0.0352 −0.1350 0.8069

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0352 0 0.8069 −0.1350
0.0854 0 −0.3327 −0.4599
−0.1350 0.0352 0 0.8069
−0.4599 0.0854 0 −0.3327

0.8069 −0.1350 0.0352 0
−0.3327 −0.4599 0.0854 0

0 0.8069 −0.1350 0.0352
0 −0.3327 −0.4599 0.0854

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
we calculate the level-2 coefficient vectors c2,d2, and the level-2 DWT,

c2 = HT3 c3 =

⎡⎢⎢⎢⎣
2.5702
5.3986
8.6288
8.8583

⎤⎥⎥⎥⎦ , d2 = GT3 c3 =

⎡⎢⎢⎢⎣
0
0

−3.7938
0.9653

⎤⎥⎥⎥⎦ , w =
[

c2

d2

]

which agrees with the above MATLAB output of fwtm(x,F,2). Then, from the matrices
H2, G2, obtained from [H2, G2]= dwtmat(h,4), or, from H2 = dwtwrap(H3),

H2 =

⎡⎢⎢⎢⎣
0.2472 0.4599
0.8421 −0.1350
0.4599 0.2472
−0.1350 0.8421

⎤⎥⎥⎥⎦ , G2 =

⎡⎢⎢⎢⎣
0.8421 −0.1350
−0.2472 −0.4599
−0.1350 0.8421
−0.4599 −0.2472

⎤⎥⎥⎥⎦
we calculate the level-1 coefficient vectors c1,d1, and the level-1 DWT,

c1 = HT2 c2 =
[

7.9539
10.0461

]
, d1 = GT2 c2 =

[
−4.4090

2.2467

]
, w =

⎡⎢⎣ c1

d1

d2

⎤⎥⎦
which agrees with the above MATLAB output of fwtm(x,F,1). Finally, from the matrices
H1, G1, obtained from [H1, G1]= dwtmat(h,2), or, from H1 = dwtwrap(H2),

H1 =
[

0.7071
0.7071

]
, G1 =

[
0.7071
−0.7071

]

we find the level-0 coefficient vectors c0,d0, and the level-0 DWT,

c0 = HT1 c1 = 12.7279 , d0 = GT1 c1 = −1.4794 , w =

⎡⎢⎢⎢⎣
c0

d0

d1

d2

⎤⎥⎥⎥⎦

10.5. Discrete Wavelet Transform 455

Orthogonal DWT Transformation

The mapping of a length-N signal vector x to the length-N vector w of wavelet coeffi-
cients given in Eq. (10.5.16) is equivalent to an orthogonal matrix transformation, say,
w = WTx, with inverse x = Ww, such that WTW = WWT = IN. The overall N×N ma-
trixW depends on the stopping level J0 and can be constructed in terms of the matrices
Hj,Gj of the successive stages of the analysis or synthesis algorithms. For example, we
have for N = 23, and J0 = 2,1,0,

W = [H3, G3]

W = [
H3[H2, G2], G3

] = [H3H2, H3G2, G3]

W = [
H3H2[H1, G1], H3G2, G3

] = [H3H2H1, H3H2G1, H3G2, G3]

We verify the reconstruction of x from w starting at J0 = 0,

[H3H2H1, H3H2G1, H3G2, G3]

⎡⎢⎢⎢⎣
c0

d0

d1

d2

⎤⎥⎥⎥⎦ =
⎧⎪⎪⎨⎪⎪⎩
H3H2(H1c0 +G1d0)+H3G2d1 +G3d2 =
H3(H2c1 +G2d1)+G3d2 =
H3c2 +G3d2 = c3 = x

The construction of W can be carried out with the following very simple recursive
algorithm, stated in MATLAB notation,

W = IN , (N = 2J)
for j = J, J−1, . . . , J0 + 1,

W(: , 1 : 2j)=W(: , 1 : 2j)[Hj,Gj]
(10.5.21)

The algorithm updates the first 2j columns ofW at each level j. The MATLAB function
fwtmat implements (10.5.21) and constructsW as a sparse matrix:

W = fwtmat(h,N,J0); % overall DWT orthogonal matrix

As an example, for the D3 scaling filter and N = 8 and lowest level J0 = 0, we find:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3536 −0.3806 0.0802 −0.2306 0.0352 0 0.8069 −0.1350
0.3536 −0.0227 0.7368 −0.0459 0.0854 0 −0.3327 −0.4599
0.3536 0.2197 0.3443 −0.1940 −0.1350 0.0352 0 0.8069
0.3536 0.5535 −0.3294 −0.3616 −0.4599 0.0854 0 −0.3327
0.3536 0.3806 −0.2306 0.0802 0.8069 −0.1350 0.0352 0
0.3536 0.0227 −0.0459 0.7368 −0.3327 −0.4599 0.0854 0
0.3536 −0.2197 −0.1940 0.3443 0 0.8069 −0.1350 0.0352
0.3536 −0.5535 −0.3616 −0.3294 0 −0.3327 −0.4599 0.0854

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which generates the same DWT as the example above:

x = [1 2 3 4 5 6 7 8]’; h = daub(3); W = fwtmat(h,8,0);
w = W’*x; % gives w = [12.7279, −1.4794, −4.4090, 2.2467, 0, 0, −3.7938, 0.9653]T

The matrix W becomes more and more sparse as N increases. Its sparsity pattern
is illustrated in Fig. 10.5.3, for the case of the D3 scaling filter and dimensions N = 64
and N = 512. The graphs were generated by the MATLAB code:

h = daub(3); N = 64; W = fwtmat(h,N,0); spy(W); percent_nonzero = 100*nnz(W)/N^2

The percentages of nonzero entries were 30.5 % for N = 64, and 6.7 % for N = 512.

456 10. Wavelets

0 64

0

64

N = 64

0 512

0

512

N = 512

Fig. 10.5.3 Sparsity patterns of DWT matrices.

DWT in Convolutional Form

Next, we look at the detailed implementation of Eq. (10.5.9) using filtering by circular
convolution. For practical implementation, we must replace the time-reversed filters
h̄n, ḡn of the analysis algorithm by their reversed versions, which are delayed by the
filter order M to make them causal, that is, hRn = h̄n−M = hM−n, or in the z-domain
HR(z)= z−MH̄(z)= z−MH(z−1).

In order to get the same output as the matrix implementation, we must compensate
for such a delay by advancing the input by the same amount. In other words, filtering by
H̄(z) is equivalent to advancing the input and then filtering byHR(z). In the z-domain,

Y(z)= H̄(z)X(z)= zMHR(z)X(z)= HR(z)[zMX(z)]
With these changes, Eq. (10.5.9) now reads,

advance(cj,M)
cj−1 =

(
circonv(hR, cj)

)
down

dj−1 =
(
circonv(gR, cj)

)
down

j = J, J−1, . . . , J0 + 1

cj = circonv(h, cup
j−1)+circonv(g, cup

j−1) j = J0+1, J0+2, . . . , J

(10.5.22)

The concrete MATLAB implementation for computing the forward DWT is:

g = cmf(h); % conjugate mirror of h

hR = flip(h); % reversed h

gR = flip(g);
M = length(h) - 1; % filter order

c = x(:); % initial smooth, x has length 2J

w = []; % DWT coefficient vector

for j=J:-1:J0+1, % loop from finest down to coarsest level

c = advance(c, M); % length(c) = 2j

d = dn2(circonv(gR, c, 2^j)); % convolve circularly and downsample

10.5. Discrete Wavelet Transform 457

c = dn2(circonv(hR, c, 2^j));
w = [d; w]; % prepend detail d to previous details

end

w = [c; w]; % prepend last smooth

The function advance actually performs a circular time-advance modulo the length
of its argument vector. The function dn2 performs downsampling by a factor of two.
The results of each loop calculation are appended into the DWT vector w. Similarly, the
inverse DWT can be calculated by the loop:

w = w(:); % work columnwise

c = wcoeff(w,J0); % coarsest smooth at level J0

for j=J0+1:J,
d = wcoeff(w,J0,j-1); % get detail at level j−1

c = circonv(h, up2(c), 2^j) + circonv(g, up2(d), 2^j); % output c is 2j-dimensional

end
x = c; % reconstructed x

Here, the function wcoeff(w,J0,j-1) extracts the subvector dj−1 from the wavelet
transform vector w, and the function up2 upsamples by a factor of two.

The MATLAB functions fwt and ifwt incorporate the above code segments to realize
the convolutional forms of the DWT and IDWT:

w = fwt(x,h,J0); % fast wavelet transform

x = ifwt(w,h,J0); % inverse fast wavelet transform

Some examples are,

x = [1 2 3 4 5 6 7 8];
h = daub(3);
w = fwt(x,h,0); % w = [12.7279, −1.4794, −4.4090, 2.2467, 0, 0, −3.7938, 0.9653]
x = ifwt(w,h,0); % returns x = [1, 2, 3, 4, 5, 6, 7, 8]
w = fwt(x,h,1); % w = [7.9539, 10.0461, −4.409, 2.2467, 0, 0, −3.7938, 0.9653]
w = fwt(x,h,2); % w = [2.5702, 5.3986, 8.6288, 8.8583, 0, 0, −3.7938, 0.9653]
w = fwt(x,h,3); % w = [1, 2, 3, 4, 5, 6, 7, 8] = x, as expected

A second optional output of fwt (and fwtm) is the N×(J−J0+1) matrix V whose
columns are the sub-blocks of w according to their resolution,

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

dJ0

dJ0+1

...
dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ⇒ V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0 0 0 · · · 0
0 dJ0 0 · · · 0
0 0 dJ0+1 · · · 0
...

...
...

. . .
...

0 0 0 · · · dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (10.5.23)

It is obtained by the calls,

[w,V] = fwt(x,h,J0);

[w,V] = fwtm(x,F,J0);

458 10. Wavelets

The computations in fwt are very efficient, resulting in anO(N) algorithm, or more
precisely, O(MN), where M is the filter order. By contrast, the FFT is an O(N log2N)
algorithm. However, because of their sparsity, the matrix versions are just as efficient
if the sparse wavelet matrices are precomputed.

We mentioned earlier that there are several different implementations of the DWT.
Different packages may produce different answers, sometimes only differing by a sign or
a cyclic permutation within each level. For example, we obtained the following answers
for the above example (x = [1,2,3,4,5,6,7,8] with D3 and J0 = 0) from the packages:

w = [12.7279,−1.4794,−4.4090, 2.2467, 0.0000, 0.0000,−3.7938, 0.9653]= fwt - ours
w = [12.7279, 1.4794, 4.4090,−2.2467, 3.7938,−0.9653, 0.0000, 0.0000]= Wavelab850, Ref. [836]
w = [12.7279,−1.4794,−4.4090, 2.2467,−3.7938, 0.9653, 0.0000, 0.0000]= Wavethresh, Ref. [840]
w = [12.7279, 1.4794,−2.2467, 4.4090,−0.9653, 3.7938, 0.0000, 0.0000]= WMTSA, Ref. [844]
w = [12.7279,−1.4794, 2.2467,−4.4090, 0.9653, 0.0000, 0.0000,−3.7938]= Uvi-Wave, Ref. [845]
w = [12.7279, 1.4794, 4.4090,−2.2467, 0.0000, 0.0000, 3.7938,−0.9653]= Getz, Ref. [846]
w = [12.7279,−1.4794,−4.4090, 2.2467, 0.0000, 0.0000,−3.7938, 0.9653]= Wavekit, Ref. [847]

10.6 Multiresolution Decomposition

The multiresolution decomposition defined in Eq. (10.1.13), with coarsest level J0, which
was illustrated by Example 10.1.1, and implemented by the function dwtdec,

f(t)=
∑
n
cJnφJn(t)=

∑
n
cJ0nφJ0n(t)+

J−1∑
j=J0

∑
n
djnψjn(t), (10.6.1)

can be given a vectorial interpretation. Let x be the N = 2J dimensional vector of time
samples of the function f(t) at the finest level J, and let W be the orthogonal DWT
matrix down to level J0, with corresponding DWT, w =WTx, and inverse x =Ww.

Writing the DWT w in the partitioned form of Eq. (10.5.23), we may write x as the
sum of multiresolution components, corresponding to the terms of (10.6.1), with each
term representing the part of x arising from a particular level j with all the other levels
having zero coefficients:

x =W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

dJ0

dJ0+1

...
dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =W
⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦+W
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
dJ0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦+W
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
dJ0+1

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦+ · · · +W
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= xJ0 + (

x̄J0 + x̄J0+1 + · · · + x̄J−1
)︸ ︷︷ ︸

x⊥J0

= xJ0 + x⊥J0

(10.6.2)

The terms xJ0 ,x
⊥
J0

represent the two parts of x lying in the subspaces VJ0 and V⊥J0
.

The individual terms of x⊥J0
= x̄J0 + x̄J0+1 + · · · + x̄J−1 contain all the details for levels

J0 ≤ j ≤ J − 1. The various components are mutually orthogonal, as follows from the

10.7. Wavelet Denoising 459

propertyWWT = I, and the non-overlapping of the sub-blocks of w,

xTJ0
x̄j = 0, J0 ≤ j ≤ J − 1

x̄Ti x̄j = 0, J0 ≤ i, j ≤ J − 1 , i 	= j
(10.6.3)

For the “diagonal” terms, we obtain the norms, again following fromWWT = I,

‖xJ0‖2 = ‖cJ0‖2 , ‖x̄j‖2 = ‖dj‖2 , J0 ≤ j ≤ J − 1 (10.6.4)

where ‖x‖2 = xTx, which lead to the sum,

‖x‖2 = ‖xJ0‖2 +
J−1∑
j=J0

‖x̄j‖2 = ‖cJ0‖2 +
J−1∑
j=J0

‖dj‖2 = ‖w‖2 (10.6.5)

The N×(J−J0+1) matrix X = [
xJ0 , x̄J0 , x̄J0+1 · · · x̄J−1

]
incorporates the individ-

ual orthogonal columns and is produced as the output of the MATLAB function dwtdec,

X = dwtdec(x,h,J0); % DWT decomposition into orthogonal multiresolution components

In fact, X is the product X = WV, where V is the DWT-component matrix given in
(10.5.23). As an example of dwtdec, we have for x = [1,2,3,4,5,6,7,8]T and D3,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6
7
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279
−1.4794
−4.4090

2.2467
0
0

−3.7938
0.9653

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.5000 0.5631 −0.8716 −3.1915
4.5000 0.0337 −3.3518 0.8181
4.5000 −0.3251 −1.9538 0.7789
4.5000 −0.8188 0.6399 −0.3211
4.5000 −0.5631 1.1967 −0.1336
4.5000 −0.0337 1.8578 −0.3241
4.5000 0.3251 1.6287 0.5462
4.5000 0.8188 0.8541 1.8271

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
generated with the MATLAB code and test,

h = daub(3); x = [1 2 3 4 5 6 7 8]’; X = dwtdec(x,h,0);
[w,V] = fwt(x,h,0); W = fwtmat(h,8,0); norm(X-W*V)

10.7 Wavelet Denoising

Figure 10.7.1 shows some wavelet denoising examples consisting of the same four sig-
nals (bumps, blocks, heavisine, doppler) that we discussed in Sec. 5.4 under local poly-
nomial modeling with adaptive variable bandwidth. These examples have served as
benchmarks in the wavelet denoising literature [821–824].

Fig. 10.7.1 should be compared with Figs. 5.4.1–5.4.4. It should be evident that the
results are comparable, with, perhaps, local polynomial modeling doing a bit better. The
MATLAB codes generating the noisy signals were given in Sec. 5.4. The following code
segment illustrates the generation of the upper row of graphs and demonstrates the use
of the denoising function wdenoise:

460 10. Wavelets

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noisy signal

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noise free

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

denoised

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noise free

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

denoised

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

denoised

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

denoised

Fig. 10.7.1 Wavelet denoising.

F = inline(’1./(1 + abs(x)).^4’); % bumps function

N = 2048; t = (0:N-1)’/N; x = zeros(size(t)); % normalize time to 0 ≤ t ≤ 1

t0 = [10 13 15 23 25 40 44 65 76 78 81]/100; % signal parameters

a = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
w = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(a), % construct noise-free signal

10.7. Wavelet Denoising 461

x = x + a(i) * F((t-t0(i))/w(i));
end

seed=2009; randn(’state’,seed); v = randn(size(t)); % generate noise

y = x + v; % noisy signal with SNR, σx/σv = 7

h = daub(8,2); J0=5; type=1; % use Symmlet-8 and soft thresholding

xd = wdenoise(y,h,J0,type); % wavelet denoising

figure; plot(t,y,’-’); figure; plot(t,x,’-’); figure; plot(t,xd,’r-’); % top row

The main idea in wavelet denoising is to (a) perform a DWT on the noisy signal down
to some lower resolution level , (b) modify the wavelet detail coefficients by reducing
them to zero if they fall below a certain threshold, and (c) perform an inverse DWT to
obtain the denoised signal. The procedure is depicted below:

x
DWT−→ w

thresh−→ wthr
IDWT−→ xthr

Given a wavelet coefficientd, we denote the thresholding operation bydthr = f(d,λ),
where λ is threshold. There are various thresholding functions, but the two simplest
ones are the so-called hard and soft thresholding, defined with the help of the unit-step
function u(x) as follows:

dthr = f(d,λ)= du(|d| − λ) (hard)

dthr = f(d,λ)= sign(d)(|d| − λ)u(|d| − λ)
(soft)

(10.7.1)

or, equivalently,

dhard
thr =

⎧⎨⎩d , |d| ≥ λ
0 , |d| < λ , dsoft

thr =
⎧⎨⎩d− sign(d)λ , |d| ≥ λ

0 , |d| < λ

If the wavelet transform starts at level J (input length N = 2J) and proceeds down
to level J0, the wavelet transform coefficients will be w = {cJ0n ; djn , J0 ≤ j ≤ J − 1}.
The thresholding operation is applied only to the detail coefficients djn, replacing them
by their thresholded values, with a possibly level-dependent threshold λj, that is,

dthr
jn = f(djn, λj) (10.7.2)

The simplest possibility is to use the same threshold for all levels. Donoho & John-
stone [821] suggest the following “universal” threshold,

λ = σ
√

2 log2N (universal threshold) (10.7.3)

where σ2 is the variance of the additive noise in the data. Since σ is not known, it can
be estimated from the wavelet detail coefficients dJ−1 at level J−1, which for a smooth
desired signal are presumably dominated mostly by the noise component. The vector
d ≡ dJ−1 has length N/2 = 2J−1 and one may estimate σ by using either the standard
deviation of d, or its mean-absolute-deviation (MAD), that is,

σ̂ = std(d) , σ̂ = mad(d)
0.6745

= median
(∣∣d−median(d)

∣∣)
0.6745

(10.7.4)

462 10. Wavelets

where the factor 0.6745 arises from the implicit assumption that d is a vector of zero-
mean independent normally-distributed components (for a zero-mean, unit-variance,
gaussian random variable x, one has the relationship, median(|x|)= 0.6745).

Donoho & Johnstone’s [821] so-called VisuShrink method uses the universal thresh-
old with the MAD estimate of σ and soft thresholding. The MATLAB function wdenoise
implements the VisuShrink procedure, but also allows the use of hard thresholding:

y = wdenoise(x,h,J0,type); % wavelet denoising

It is possible to derive the soft thresholding rule, as well as some of the other rules,
from a regularized optimization point of view. Let y and w = WTy be the noisy data
vector and its DWT, and let x̂ and ŵ =WTŷ be the sought estimate and its DWT of the
desired signal component x in the noisy signal model y = x + v. An estimation crite-
rion similar to the smoothing spline and reproducing kernel criteria that we considered
earlier is the following performance index,

J = ‖y− x̂‖2 + P(x̂)= min

where the first term is the L2-norm and the second, a positive penalty term. Since
the DWT matrix W is orthogonal the first term can be written in terms of the DWTs
‖y − x̂‖2 = ‖w − ŵ‖2. Therefore, with a redefinition of P, we may replace the above
criterion with one that is formulated in the wavelet domain:

J = ‖w− ŵ‖2 + P(ŵ)

= ‖cJ0 − ĉJ0‖2 +
J−1∑
j=J0

‖dj − d̂j‖2 + P(d̂J0 , . . . , d̂J−1)= min
(10.7.5)

where in the second expression, we used the component representation (10.5.23), and we
assumed that P depends only on the wavelet detail coefficients. The following particular
choice of P using the L1 norm leads to the soft thresholding rule:

J = ‖cJ0 − ĉJ0‖2 +
J−1∑
j=J0

Nj−1∑
n=0

‖djn − d̂jn‖2 + 2λ
J−1∑
j=J0

Nj−1∑
n=0

|d̂jn| = min (10.7.6)

where Nj = 2j is the dimension of the vector dj. The minimization with respect to cJ0

gives ĉJ0 = cJ0 . Since the djn terms are decoupled, their minimization can be carried on
a typical such term, that is, with the simple scalar criterion:

J = |d− d̂|2 + 2λ|d̂| = min (10.7.7)

whose solution is the soft-thresholding rule,

d̂ =
⎧⎨⎩d− sign(d)λ , |d| ≥ λ

0 , |d| < λ (10.7.8)

Other variants of wavelet thresholding and other applications and uses of wavelets
in statistics can be found in Refs. [819–833].

10.8. Undecimated Wavelet Transform 463

10.8 Undecimated Wavelet Transform

In this section, we discuss the undecimated wavelet transform (UWT), also known as the
stationary, redundant, maximum-overlap, translation- or shift-invariant wavelet trans-
form [748–761]. It has certain advantages over the conventional DWT exhibiting, for
example, better performance in denoising applications. Its minor disadvantage is that
it generates N log2N wavelet coefficients instead of N, and its computational cost is
O(N log2N) instead of O(N).

The essential feature of the wavelet transform is the property that successive stages
of the analysis filter bank in Fig. 10.4.1 probe the frequency content of the input signal
at successively lower frequency bands.

This property was depicted in Fig. 10.4.2 in which the output spectrum after three
stages, shown at the bottom two graphs, was the result of filtering by the cascaded filter
H̄(ω)H̄(2ω)H̄(4ω), where ω = 2πf/fs, with fs being the sampling rate at the finest
scale. This frequency property is preserved whether the output is undecimated, as in
the bottom right graph of Fig. 10.4.2, or decimated as in the left bottom graph. The
reason for downsampling the outputs after each splitting stage is to keep constant the
total number of samples produced by the two filters.

Fig. 10.8.1 shows the analysis bank redrawn to emphasize this frequency property.
In the middle graph, all downsamplers are pushed to the overall outputs, and in the
bottom graph, the downsamplers have been removed altogether.

Fig. 10.8.1 Decimated and undecimated filter banks.

The bottom graph effectively implements the undecimated wavelet transform. The
individual stages no longer have the orthogonality properties of the usual DWT, such
as Eqs. (10.5.17). However, perfect reconstruction can still be achieved by using the

464 10. Wavelets

property (10.3.5) for the scaling and wavelet filters:

1

2

[
H̄(ω)H(ω)+Ḡ(ω)G(ω)] = 1 (10.8.1)

where H̄(ω)= H∗(ω) denotes the frequency response of the time-reversed filter h̄n.
This relationship admits a block diagram realization as shown in Fig. 10.8.2.

Fig. 10.8.2 Analysis and synthesis of single stage.

Because it is an identity in ω, the same relationship and block diagram will still
be valid for the filter pairs H(2ω),G(2ω) and H(4ω),G(4ω) leading to an overall
analysis and synthesis filter bank with perfect reconstruction as shown in Fig. 10.8.3.

Fig. 10.8.3 Analysis and synthesis filter banks for the UWT.

Thus, it is possible with undecimated filtering operations to achieve (a) the desirable
subband filter characteristics of the DWT, and (b) perfect reconstruction. To make the
algorithm more concrete, first we recall that the filter with frequency responseH(2rω)
is the à trous filter defined in Eq. (10.2.20), that is,

h[r](k)=
∑
n
h(n)δ(k− 2rn) � H[r](ω)= H(2rω) (10.8.2)

Then, denoting the successive analysis bank output signals by aj(n), bj(n), we ob-
tain the following analysis and synthesis algorithm written in convolutional form:

aj−1 = h̄
[J−j] ∗ aj

bj−1 = ḡ[J−j] ∗ aj
J ≥ j ≥ J0 + 1, (analysis)

aj = 1

2

[
h[J−j] ∗ aj−1 + g[J−j] ∗ bj−1

]
J0 + 1 ≤ j ≤ J, (synthesis)

(10.8.3)

where J, J0 are the finest and coarsest desired resolution levels, and we must initialize
the analysis algorithm by the overall input aJ(n)= x(n). Different à trous filters are

10.8. Undecimated Wavelet Transform 465

used in each stage, unlike the DWT that uses the same filters h,g. The correctness of the
algorithm can be verified by writing Eqs. (10.8.3) in the frequency domain and applying
the identity (10.8.1).

To make the algorithm practical we may use mod-N circular convolutions, where
N = 2J is the length of the input signal block x. The à trous filters h[r],g[r] can be
represented by N×N matrices Hr,Gr , which are the ordinary convolution matrices of

h[r],g[r] reduced modulo-N column-wise. Similarly, the time-reversed filters h̄
[r], ḡ[r]

will be represented by the transposed matrices HTr ,GTr . The construction of these ma-
trices is straightforward, for example,

h = h(:); g = cmf(h); % h,g filters

hr = upr(h,r); gr = upr(g,r); % upsample by 2r

Hr = convmtx(hr, N); Gr = convmtx(gr, N); % ordinary convolution matrices

Hr = modwrap(Hr, N); Gr = modwrap(Gr, N); % wrapped mod-N column-wise

These steps have been incorporated into the function uwtmat, except the function
convmat is used in place of convmtx to make the matrices sparse:

[Hr,Gr] = uwtmat(h,N,r); % undecimated wavelet transform matrices

The matrices Hr,Gr satisfy the matrix version of Eq. (10.8.1):

1

2

[
HrHTr +GrGTr

]
= IN (10.8.4)

The concrete matrix realization of the UWT can be stated then as follows:

aj−1 = HTJ−j aj
bj−1 = GTJ−j aj

J ≥ j ≥ J0 + 1, (analysis)

aj = 1

2

[
HJ−j aj−1 +GJ−j bj−1

]
J0 + 1 ≤ j ≤ J, (synthesis)

(10.8.5)

where all the vectors are N-dimensional, initialized at aJ = x. The algorithm is illus-
trated in Fig. 10.8.4. The UWT is the N×(J−J0+1) matrix U defined column-wise by:

U = [aJ0 , bJ0 , bJ0+1, . . . , bJ−1] (UWT) (10.8.6)

The MATLAB functions uwtm and iuwtm implement the algorithms in Eq. (10.8.5):

U = uwtm(x,h,J0); % UWT in matrix form

x = iuwtm(U,h); % inverse UWT in matrix form

An example is as follows:

h = daub(3); x = [1 2 3 4 5 6 7 8]’;
J0=0; U = uwtm(x,h,J0); % or, set J0 = 1 and J0 = 2

xinv = iuwtm(U,h); norm(x-xinv)

466 10. Wavelets

Fig. 10.8.4 Undecimated wavelet transform.

which generates, for J0 = 2,1,0,

U = uwtm(x,h,2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.5702 0
3.9844 0
5.3986 0
6.5310 2.6614
8.6288 −3.7938

11.1231 −0.1147
8.8583 0.9653
3.8173 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [a2,b2]

U = uwtm(x,h,1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.9539 −4.4090 0
11.0848 −1.5166 0
12.3278 0.0351 0
12.1992 0.4022 2.6614
10.0461 2.2467 −3.7938
6.9152 4.8818 −0.1147
5.6722 2.1272 0.9653
5.8008 −3.7674 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [a1,b1,b2]

U = uwtm(x,h,0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279 −1.4794 −4.4090 0
12.7279 2.9484 −1.5166 0
12.7279 4.7063 0.0351 0
12.7279 4.5243 0.4022 2.6614
12.7279 1.4794 2.2467 −3.7938
12.7279 −2.9484 4.8818 −0.1147
12.7279 −4.7063 2.1272 0.9653
12.7279 −4.5243 −3.7674 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [a0,b0,b1,b2]

(10.8.7)

The functions uwtm and iuwtm are somewhat slow because they generate the required
matrices Hr,Gr on the fly at each stage. Of course, it would be possible to precompute
the matrices and save them in a cell or a three-dimensional array as was done in the
function fwtm. The functions uwt and iuwt are much faster versions that produce the
same results and are implemented using circular convolutions:

10.8. Undecimated Wavelet Transform 467

U = uwt(x,h,J0); % UWT in convolutional form

x = iuwt(U,h); % inverse UWT

The following MATLAB code shows a possible implementation of the analysis part:

M=length(h)-1;
g=cmf(h); hR=flip(h); gR=flip(g); % construct reversed filters

a = x; % x is N = 2J dimensional column vector

for r=0:J-J0-1, % à trous interpolation factor is 2r , level j = J − r
a = advance(a, 2^r*M); % establishes equivalence with matrix form

hRr = upr(hR,r); % reversed filters upsampled by 2r

gRr = upr(gR,r);
b = circonv(gRr,a,N); % modulo-N circular convolution

a = circonv(hRr,a,N);
U = [b,U]; % accumulate the columns of U

end
U = [a,U];

The time-advancing operation is necessary to compensate for the use of the reversed
filters rather than the time-reversed ones. Although this algorithm works, it is wasteful
because the à trous filters h[r] have length 2r(M + 1) consisting mostly of zeros and
only (M+1) nonzero coefficients, where M is the filter order of h. The computational
cost of the indicated circular convolution operations is of the order of 2r(M + 1)N. It
is possible to restructure these operations so that only the nonzero filter coefficients
are used, thereby reducing the computational cost to (M + 1)N. Ordinary and mod-N
circular convolution by the à trous filter (10.8.2) can be written as follows:

y(n) =
∑
k
h[r](k)x(n− k)=

∑
m
hmx(n− 2rm)

ỹ(n)mod-N =
∑
p
y(n+ pN)=

∑
p,m
hmx(n+ pN − 2rm)

We assume that N = 2J and that the à trous factor is such that r ≤ J, so that we
may write N = 2rL, where L = 2J−r . Thus, a length-N block can be divided into 2r

sub-blocks of length L. We show below that the mod-N circular convolution can be
replaced by 2r mod-L circular convolutions. The total computational cost reduces then
to 2rL(M+ 1)= N(M+ 1). Setting n = 2ri+ k, with 0 ≤ k ≤ 2r − 1, we may define the
k-th sub-block input and output signals:

xk(i)= x(2ri+ k) , yk(i)= y(2ri+ k) , 0 ≤ k ≤ 2r − 1

It follows then that yk(i) is the convolution of xk(i) with the original filter hm, and
that the mod-N circular convolution output can be obtained by mod-L reduction:

yk(i)= y(2ri+ k) =
∑
m
hmx(2ri+ k− 2rm)=

∑
m
hmxk(i−m)

ỹ(2ri+ k)mod-N =
∑
p,m
hmx(2ri+ k+ 2rpL− 2rm)=

∑
p,m
hmxk(i+ pL−m)

=
∑
p
yk(i+ pL)= ỹk(i)mod-L

These operations have been incorporated into the MATLAB function convat,

468 10. Wavelets

y = convat(h,x,r); % convolution à trous

which is equivalent to the mod-N operation, where N is the length of x:

y = circonv(upr(h,r),x,N);

The essential part of the function uwt is then,

M=length(h)-1;
g=cmf(h); hR=flip(h); gR=flip(g); % construct reversed filters

a = x; % x is N = 2J dimensional column vector

for r=0:J-J0-1, % à trous interpolation factor is 2r , level j = J − r
a = advance(a, 2^r*M); % establishes equivalence with matrix form

b = convat(gR, a, r); % convolution à trous

a = convat(hR, a, r);
U = [b,U]; % accumulate the columns of U

end
U = [a,U];

Because all stages of the analysis and synthesis filter banks in Fig. 10.8.3 operate
at the same sampling rate, the UWT satisfies a time-invariance property, in the sense
that a time-delay in the input will cause the same delay in the outputs from all stages.
Hence, the alternative name “stationary” or “translation-invariant” wavelet transform.
Such time-invariance property is not shared by the ordinary DWT.

As an example, the DWTs and UWTs of a signal and its circularly-delayed version by
three time units are as follows, using the D3 scaling filter and coarsest level J0 = 0:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6
7
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279
−1.4794
−4.4090

2.2467
0
0

−3.7938
0.9653

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279 −1.4794 −4.4090 0
12.7279 2.9484 −1.5166 0
12.7279 4.7063 0.0351 0
12.7279 4.5243 0.4022 2.6614
12.7279 1.4794 2.2467 −3.7938
12.7279 −2.9484 4.8818 −0.1147
12.7279 −4.7063 2.1272 0.9653
12.7279 −4.5243 −3.7674 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
7
8
1
2
3
4
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279
−2.9484

4.8818
−1.5166
−0.1147

0.2818
0

2.6614

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279 −2.9484 4.8818 −0.1147
12.7279 −4.7063 2.1272 0.9653
12.7279 −4.5243 −3.7674 0.2818
12.7279 −1.4794 −4.4090 0
12.7279 2.9484 −1.5166 0
12.7279 4.7063 0.0351 0
12.7279 4.5243 0.4022 2.6614
12.7279 1.4794 2.2467 −3.7938

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We note that every column of U gets delayed circularly by three time units.

Multiresolution Decomposition with the UWT

The synthesis filter bank or the synthesis algorithm for the UWT can be viewed as a
system with J−J0+1 inputs, i.e., the columns of U = [aJ0 , bJ0 , bJ0+1, . . . , bJ−1], and

10.8. Undecimated Wavelet Transform 469

one output, the signal x. The UWT multiresolution decomposition resolves x into com-
ponents arising from the individual inputs when the other inputs are zero:

U = [aJ0 , bJ0 , bJ0+1, . . . , bJ−1]
IUWT−→ x

= [aJ0 , 0, 0, . . . , 0] IUWT−→ xJ0

+ [0, bJ0 , 0, . . . , 0] IUWT−→ x̄J0

+ [0, 0, bJ0+1, . . . , 0] IUWT−→ x̄J0+1

.
+ [0, 0, 0, . . . , bJ−1]

IUWT−→ x̄J−1

so that we have the sum,

x = xJ0 + x̄J0 + x̄J0+1 + · · · + x̄J−1 (10.8.8)

This is similar to the DWT decomposition (10.6.2), with each term reflecting a dif-
ferent resolution level, except that the terms are not mutually orthogonal. The MATLAB
function uwtdec implements this decomposition:

X = uwtdec(x,h,J0); % UWT multiresolution decomposition

where X consists of the columns, X = [xJ0 , x̄J0 , x̄J0+1, . . . , x̄J−1].
Fig. 10.8.5 shows an application to the monthly housing starts from January 1988

to April 2009 (i.e., 256 months), using the symmlet S8 scaling filter and going down to
resolution level J0 = 5. This a subset of the dataset that we used repeatedly in Chap. 9.

The upper left graph shows the smooth component arising from the UWT coefficients
aJ0 . The remaining graphs arise from the detail coefficients. bj, J0 ≤ j ≤ J − 1. The
sum of the four components is equal to the original data (dotted line in the upper-left
graph.) The following MATLAB code generates the four graphs:

Y = loadfile(’newhouse.dat’); % data file in OSP toolbox

y = Y(349:end,1); % selects Jan.88 - Apr.09 = 256 months

t = taxis(y,12,1988)’; % adjust time axis

h=daub(8,2); J0=5; % symmlet S8, note N = 256 = 28 ⇒ J = 8

X = uwtdec(y,h,J0); % UWT decomposition, try also X = dwtdec(y,h,J0)

figure; plot(t,y,’:’, t,X(:,1), ’-’); % upper left graph

figure; plot(t,X(:,2)); % upper right

figure; plot(t,X(:,3)); figure; plot(t,X(:,4)); % lower graphs

See Fig. 10.9.1 for an alternative way of plotting the UWT (or DWT) decomposition
and the UWT (or DWT) wavelet coefficients using the function plotdec.

Wavelet Denoising with the UWT

The application of the UWT to denoising applications follows the same approach as
the DWT. The detail columns bj of U get thresholded by a possibly level-dependent
threshold and the inverse UWT is constructed. The procedure is depicted below:

x
UWT−→ U = [aJ0 , bJ0 , . . . , bJ−1]

thresh−→ Uthr = [aJ0 , bthr
J0
, . . . , bthr

J−1]
IUWT−→ xthr

470 10. Wavelets

1989 1994 1999 2004 2009

40

80

120

160

200

UWT smooth component, xJ0

year
1989 1994 1999 2004 2009

−30

0

30
UWT detail component, x̄J0

year

1989 1994 1999 2004 2009
−30

0

30
UWT detail component, x̄J0+1

year
1989 1994 1999 2004 2009

−30

0

30
UWT detail component, x̄J0+2

year

Fig. 10.8.5 UWT decomposition of monthly housing data, using S8 with J = 8 and J0 = 5.

The MATLAB function wduwt implements this denoising procedure using the univer-
sal threshold (10.7.3) and soft or hard thresholding:

y = wduwt(x,h,J0,type); % wavelet denoising with UWT

Fig. 10.8.6 shows the same denoising example as that in Fig. 10.7.1, but denoised
using the UWT. The following MATLAB code generates the top-row graphs:

F = inline(’1./(1 + abs(x)).^4’); % bumps function

N = 2048; t = (0:N-1)’/N; x = zeros(size(t)); % normalize time to 0 ≤ t ≤ 1

t0 = [10 13 15 23 25 40 44 65 76 78 81]/100; % signal parameters

a = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
w = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(a), % construct noise-free signal

x = x + a(i) * F((t-t0(i))/w(i));
end

seed=2009; randn(’state’,seed); v = randn(size(t)); % generate noise

y = x + v; % noisy signal with SNR, σx/σv = 7

10.8. Undecimated Wavelet Transform 471

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noisy signal

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noise free

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

denoised

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noise free

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

denoised

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

denoised

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

denoised

Fig. 10.8.6 Wavelet denoising with the UWT.

h = daub(8,2); J0=5; type=1; % use Symmlet-8 and soft thresholding

xd = wduwt(y,h,J0,type); % wavelet denoising using the UWT

figure; plot(t,y,’-’); figure; plot(t,x,’-’); figure; plot(t,xd,’r-’); % top row

Comparing Figs. 10.7.1 and 10.8.6, we note that the UWT outperforms the DWT, an
observation that has been made repeatedly in the denoising literature.

472 10. Wavelets

10.9 MATLAB Functions

We summarize the MATLAB functions that we discussed in this chapter, and give few
more details about plotdec that can be used to plot wavelet decompositions and wavelet
coefficients.

Wavelet functions

--

advance - circular time-advance (left-shift) of a vector

casc - cascade algorithm for φ and ψ wavelet functions

circonv - circular convolution

cmf - conjugate mirror of a filter

convat - convolution à trous

convmat - sparse convolution matrix

daub - Daubechies scaling filters (daublets, symmlets, coiflets)

dn2 - downsample by a factor of 2

dwtcell - create cell array of sparse discrete wavelet transform matrices

dwtdec - DWT decomposition into orthogonal multiresolution components

dwtmat - discrete wavelet transform matrices - sparse

dwtmat2 - discrete wavelet transform matrices - nonsparse

dwtwrap - wrap a DWT matrix into a lower DWT matrix

flip - flip a column, a row, or both

fwt - fast wavelet transform using convolution and downsampling

fwtm - fast wavelet transform in matrix form

fwtmat - overall DWT orthogonal matrix

ifwt - inverse fast wavelet transform - convolutional form

ifwtm - inverse fast wavelet transform - matrix form

iuwt - inverse undecimated wavelet transform - convolutional form

iuwtm - inverse undecimated wavelet transform - matrix form

modwrap - wrap matrix column-wise mod-N

phinit - eigenvector initialization of scaling function φ

plotdec - plot DWT/UWT decomposition or DWT/UWT coefficients

up2 - upsample a vector by factor of 2

upr - upsample a vector by factor of 2^r

uwt - undecimated wavelet transform - convolutional form

uwtdec - UWT multiresolution decomposition

uwtm - undecimated wavelet transform - matrix form

uwtmat - undecimated wavelet transform matrices - sparse

uwtmat2 - undecimated wavelet transform matrices - nonsparse

w2V - wavelet vector to wavelet matrix

wcoeff - extract wavelet coefficients from DWT at given level

wdenoise - Donoho & Johnstone’s VisuShrink denoising procedure

wduwt - wavelet denoising with undecimated wavelet transform

wthr - soft/hard level-dependent wavelet thresholding

--

The function plotdec allows a compact display of a DWT or UWT decomposition,
or the display of the DWT/UWT wavelet smooth and detail coefficients:

plotdec(X,type,lin,Jmax); % plot DWT/UWT decomposition or DWT/UWT coefficients

10.10. Problems 473

with inputs:

X = N×(J−J0+1) matrix of DWT/UWT decomposition signals or DWT/UWT coefficients, N = 2J

type = ’xs’,’xd’,’ws’,’wd’ (x=decomposition, w=wavelet coeffs, s=include smooth, d=details only)

Jmax = highest resolution level to plot, Jmax ≤ J − 1, minimum is determined from J0 = J + 1− size(X,2)
lin = ’l’,’s’ for line or stem plot

See the help for this function for several usage examples. Fig. 10.9.1 shows an alter-
native plot of the UWT decomposition of Fig. 10.8.5, showing only the detail components,
including a plot of the UWT wavelet coefficients. The MATLAB code used to generate
the four graphs was as follows:

h=daub(8,2); J0=5;
Y = loadfile(’newhouse.dat’); % load housing data - file in OSP toolbox

y = Y(349:end,1); % selects Jan.88 - Apr.09 = 256 months

Xdwt = dwtdec(y,h,J0); % DWT decomposition

[w,V] = fwt(y,h,J0); % DWT coefficients

Xuwt = uwtdec(y,h,J0); % UWT decomposition

U = uwt(y,h,J0); % UWT coefficients

figure; plotdec(Xdwt,’xd’); figure; plotdec(V,’wd’); % upper graphs

figure; plotdec(Xuwt,’xd’); figure; plotdec(U,’wd’); % lower graphs

10.10 Problems

10.1 An alternative way of determining the Daubechies D2 scaling filter is to assume that its
transfer function has the form (with K = 2 zeros at Nyquist):

H(z)= h0(1+ z−1)2(1− z1z−1)

Show that z1 must the be a solution of the quadratic equation z2 − 4z + 1 = 0. Pick that
solution that has |z1| < 1 and verify that the resulting filter H(z) meets all the design
constraints (10.3.10).

10.2 To determining the DaubechiesD3 scaling filter assume that its its transfer function has the
following form with K = 3 zeros at Nyquist:

H(z)= h0(1+ z−1)3
(
1− (a+ jb)z−1

)(
1− (a− jb)z−1

)
including a complex zero z1 = a+ jb, constrained such that |z1| < 1. Show that the design
constraints (10.3.12) imply that b is given by

b =
√
a+ a3 − 3a2

3− a
and that a is obtained as the following solution of the quartic equation:

12a4 − 72a3 + 152a2 − 132a+ 27 = 0 ⇒ a = 3

2
− 1

6

√
15+ 12

√
10

Verify that the zero z1 = a + jb coincides with that in Eq. (10.3.18). By expanding H(z),
express the filter coefficients hn in terms of a,b, and normalize them to add up to

√
2.

474 10. Wavelets

0 0.25 0.5 0.75 1

5

6

7

le
ve

ls

time

DWT decomposition

0 64 128 192 256

5

6

7

le
ve

ls

DWT index

DWT detail coefficients

0 0.25 0.5 0.75 1

5

6

7

le
ve

ls

time

UWT decomposition

0 64 128 192 256

5

6

7

le
ve

ls

UWT index

UWT detail coefficients

Fig. 10.9.1 UWT/DWT decompositions and wavelet coefficients of housing data.

10.3 Prove the downsampling replication property (10.4.11) by working backwards, that is, start
from the Fourier transform expression and show that

1

L

L−1∑
m=0

X(f −mfdown
s)=

∑
k
s(k)x(k)e−2πjfk/fs =

∑
n
x(nL)e−2πjfnL/fs = Ydown(f)

where s(k) is the periodic “sampling function” with the following representations:

s(k)= 1

L

L−1∑
m=0

e−2πjkm/L = 1

L
1− e−2πjk

1− e−2πjk/L =
∑
n
δ(k− nL)

Moreover, show that the above representations are nothing but the inverse L-point DFT of
the DFT of one period of the periodic pulse train:

s(k)= [. . . ,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

, . . .]=
∑
n
δ(k− nL)

10.4 Show that the solution to the optimization problem (10.7.7) is the soft-thresholding rule of
Eq. (10.7.8).

10.5 Study the “Tikhonov regularizer” wavelet thresholding function:

dthr = f(d,λ, a)= d |d|a
|d|a + λa , a > 0, λ > 0

11
Wiener Filtering

The problem of estimating one signal from another is one of the most important in
signal processing. In many applications, the desired signal is not available or observable
directly. Instead, the observable signal is a degraded or distorted version of the original
signal. The signal estimation problem is to recover, in the best way possible, the desired
signal from its degraded replica.

We mention some typical examples: (1) The desired signal may be corrupted by
strong additive noise, such as weak evoked brain potentials measured against the strong
background of ongoing EEGs; or weak radar returns from a target in the presence of
strong clutter. (2) An antenna array designed to be sensitive towards a particular “look”
direction may be vulnerable to strong jammers from other directions due to sidelobe
leakage; the signal processing task here is to null the jammers while at the same time
maintaining the sensitivity of the array towards the desired look direction. (3) A signal
transmitted over a communications channel can suffer phase and amplitude distortions
and can be subject to additive channel noise; the problem is to recover the transmitted
signal from the distorted received signal. (4) A Doppler radar processor tracking a
moving target must take into account dynamical noise—such as small purely random
accelerations—affecting the dynamics of the target, as well as measurement errors. (5)
An image recorded by an imaging system is subject to distortions such as blurring due to
motion or to the finite aperture of the system, or other geometric distortions; the prob-
lem here is to undo the distortions introduced by the imaging system and restore the
original image. A related problem, of interest in medical image processing, is that of re-
constructing an image from its projections. (6) In remote sensing and inverse scattering
applications, the basic problem is, again, to infer one signal from another; for example,
to infer the temperature profile of the atmosphere from measurements of the spectral
distribution of infrared energy; or to deduce the structure of a dielectric medium, such
as the ionosphere, by studying its response to electromagnetic wave scattering; or, in
oil exploration to infer the layered structure of the earth by measuring its response to
an impulsive input near its surface.

In this chapter, we pose the signal estimation problem and discuss some of the
criteria used in the design of signal estimation algorithms.

We do not present a complete discussion of all methods of signal recovery and es-
timation that have been invented for applications as diverse as those mentioned above.

476 11. Wiener Filtering

Our emphasis is on traditional linear least-squares estimation methods, not only be-
cause they are widely used, but also because they have served as the motivating force
for the development of other estimation techniques and as the yardstick for evaluating
them.

We develop the theoretical solution of the Wiener filter both in the stationary and
nonstationary cases, and discuss its connection to the orthogonal projection, Gram-
Schmidt constructions, and correlation canceling ideas of Chap. 1. By means of an ex-
ample, we introduce Kalman filtering concepts and discuss their connection to Wiener
filtering and to signal modeling. Practical implementations of the Wiener filter are dis-
cussed in Chapters 12 and 16. Other signal recovery methods for deconvolution applica-
tions that are based on alternative design criteria are briefly discussed in Chap. 12, where
we also discuss some interesting connections between Wiener filtering/linear prediction
methods and inverse scattering methods.

11.1 Linear and Nonlinear Estimation of Signals

The signal estimation problem can be stated as follows: We wish to estimate a random
signal xn on the basis of available observations of a related signal yn. The available
signal yn is to be processed by an optimal processor that produces the best possible
estimate of xn:

The resulting estimate x̂n will be a function of the observations yn. If the optimal
processor is linear, such as a linear filter, then the estimate x̂n will be a linear function
of the observations. We are going to concentrate mainly on linear processors. However,
we would like to point out that, depending on the estimation criterion, there are cases
where the estimate x̂n may turn out to be a nonlinear function of the yns.

We discuss briefly four major estimation criteria for designing such optimal proces-
sors. They are:

(1) The maximum a posteriori (MAP) criterion.
(2) The maximum likelihood (ML) criterion.
(3) The mean square (MS) criterion.
(4) The linear mean-square (LMS) criterion.

The LMS criterion is a special case of the MS criterion. It requires, a priori, that the
estimate x̂n be a linear function of the yns.† The main advantage of the LMS processor
is that it requires only knowledge of second order statistics for its design, whereas the
other, nonlinear, processors require more detailed knowledge of probability densities.

To explain the various estimation criteria, let us assume that the desired signal xn
is to be estimated over a finite time interval na ≤ n ≤ nb Without loss of generality, we
may assume that the observed signal yn is also available over the same interval. Define

†Note that the acronym LMS is also used in the context of adaptive filtering, for least mean-square.

11.1. Linear and Nonlinear Estimation of Signals 477

the vectors

x =

⎡⎢⎢⎢⎢⎢⎣
xna
xna+1

...
xnb

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
yna
yna+1

...
ynb

⎤⎥⎥⎥⎥⎥⎦
For each value of n, we seek the functional dependence

x̂n = x̂n(y)

of x̂n on the given observation vector y that provides the best estimate of xn.

1. The criterion for the MAP estimate is to maximize the a posteriori conditional
density of xn given that y already occurred; namely,

p(xn|y)= maximum (11.1.1)

in other words, the optimal estimate x̂n is that xn that maximizes this quantity
for the given vector y; x̂n is therefore the most probable choice resulting from the
given observations y.

2. The ML criterion, on the other hand, selects x̂n to maximize the conditional density
of y given xn, that is,

p(y|xn)= maximum (11.1.2)

This criterion selects x̂n as though the already collected observations y were the
most likely to occur.

3. The MS criterion minimizes the mean-square estimation error

E = E[e2
n]= min, where en = xn − x̂n (11.1.3)

that is, the best choice of the functional dependence x̂n = x̂n(y) is sought that
minimizes this expression. We know from our results of Sec. 1.4 that the required
solution is the corresponding conditional mean

x̂n = E[xn|y]= MS estimate (11.1.4)

computed with respect to the conditional density p(xn|y).
4. Finally, the LMS criterion requires the estimate to be a linear function of the ob-

servations

x̂n =
nb∑
i=na

h(n, i)yi (11.1.5)

For each n, the weights h(n, i), na ≤ i ≤ nb are selected to minimize the mean-
square estimation error

E = E[e2
n]= E

[
(xn − x̂n)2] = minimum (11.1.6)

478 11. Wiener Filtering

With the exception of the LMS estimate, all other estimates x̂n(y) are, in general,
nonlinear functions of y.

Example 11.1.1: If both xn and y are zero-mean and jointly gaussian, then Examples 1.4.1 and
1.4.2 imply that the MS and LMS estimates of xn are the same. Furthermore, since p(xn|y)
is gaussian it will be symmetric about its maximum, which occurs at its mean, that is, at
E[xn|y]. Therefore, the MAP estimate of xn is equal to the MS estimate. In conclusion, for
zero-mean jointly gaussian xn and y, the three estimates MAP, MS, and LMS coincide. ��

Example 11.1.2: To see the nonlinear character and the differences among the various esti-
mates, consider the following example: A discrete-amplitude, constant-in-time signal x
can take on the three values

x = −1, x = 0, x = 1

each with probability of 1/3. This signal is placed on a known carrier waveform cn and
transmitted over a noisy channel. The received samples are of the form

yn = cnx+ vn , n = 1,2, . . . ,M

where vn are zero-mean white gaussian noise samples of variance σ2
v , assumed to be inde-

pendent of x. The above set of measurements can be written in an obvious vector notation

y = cx+ v

(a) Determine the conditional densities p(y|x) and p(x|y).
(b) Determine and compare the four alternative estimates MAP, ML, MS, and LMS.

Solution: To compute p(y|x), note that if x is given, then the only randomness left in y arises
from the noise term v. Since vn are uncorrelated and gaussian, they will be independent;
therefore,

p(y|x) = p(v)=
M∏
n=1

p(vn)=
(
2πσ2

v
)−M/2

exp

⎡⎣− 1

2σ2
v

M∑
n=1

v2
n

⎤⎦
= (

2πσ2
v
)−M/2

exp
[
− 1

2σ2
v

v2
]
= (

2πσ2
v
)−M/2

exp
[
− 1

2σ2
v
(y− cx)2

]

Using Bayes’ rule we find p(x|y)= p(y|x)p(x)/p(y). Since

p(x)= 1

3

[
δ(x− 1)+δ(x)+δ(x+ 1)

]
we find

p(x|y)= 1

A
[
p(y|1)δ(x− 1)+p(y|0)δ(x)+p(y| − 1)δ(x+ 1)

]
where the constant A is

A = 3p(y)= 3

∫
p(y|x)p(x)dx = p(y|1)+p(y|0)+p(y| − 1)

To find the MAP estimate of x, the quantity p(x|y) must be maximized with respect to x.
Since the expression for p(x|y) forces x to be one of the three values +1,0,−1, it follows

11.1. Linear and Nonlinear Estimation of Signals 479

that the maximum among the three coefficients p(y|1), p(y|0), p(y| − 1) will determine
the value of x. Thus, for a given y we select that x that

p(y|x)= maximum of
{
p(y|1), p(y|0), p(y| − 1)}

Using the gaussian nature of p(y|x), we find equivalently

(y− cx)2= minimum of
{
(y− c)2, y2, (y+ c)2}

Subtracting y2 from both sides, dividing by cTc, and denoting

ȳ = cTy

cTc

we find the equivalent equation

x2 − 2xȳ = min{1− 2ȳ, 0, 1+ 2ȳ}

and in particular, applying these for +1,0,−1, we find

x̂MAP =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if ȳ >

1

2

0, if − 1

2
< ȳ <

1

2

−1, if ȳ < −1

2

To determine the ML estimate, we must maximize p(y|x) with respect to x. The ML esti-
mate does not require knowledge of the a priori probability density p(x) of x. Therefore,
differentiating p(y|x) with respect to x and setting the derivative to zero gives

∂
∂x
p(y|x)= 0 or

∂
∂x

lnp(y|x)= 0 or
∂
∂x
(y− cx)2= 0

which gives

x̂ML = cTy

cTc
= ȳ

The MS estimate is obtained by computing the conditional mean

E[x|y] =
∫
xp(x|y)dx =

∫
x

1

A
[
p(y|1)δ(x− 1)+p(y|0)δ(x)+p(y| − 1)δ(x+ 1)

]
dx

= 1

A
[
p(y|1)−p(y| − 1)

]
, or,

x̂MS = p(y|1)−p(y| − 1)
p(y|1)+p(y|0)+p(y| − 1)

Canceling some common factors from the numerator and denominator, we find the simpler
expression

480 11. Wiener Filtering

x̂MS = 2 sinh(2aȳ)
ea + 2 cosh(2aȳ)

, where a = cTc

2σ2
v

Finally, the LMS estimate can be computed as in Example 1.4.3. We find

x̂LMS = cTy

σ2
v

σ2
x
+ cTc

= cTc

σ2
v

σ2
x
+ cTc

ȳ

All four estimates have been expressed in terms of ȳ. Note that the ML estimate is linear
but has a different slope than the LMS estimate. The nonlinearity of the various estimates
is best seen in the following figure:

11.2 Orthogonality and Normal Equations

From now on, we will concentrate on the optimal linear estimate defined by Eqs. (11.1.5)
and (11.1.6). For each time instant n at which an estimate x̂n is sought, the optimal
weights h(n, i), na ≤ i ≤ nb must be determined that minimize the error criterion
(11.1.6). In general, a new set of optimal weights must be computed for each time instant
n. In the special case when the processes xn and yn are stationary and the observations
are available for a long time, that is, na = −∞, the weights become time-invariant in
the sense that h(n, i)= h(n − i), and the linear processor becomes an ordinary time-
invariant linear filter. We will discuss the solution for h(n, i) both for the time-invariant
and the more general cases.

The problem of determining the optimal weights h(n, i) according to the mean-
square error minimization criterion (11.1.6) is in general referred to as the Wiener fil-
tering problem [849–866]. An interesting historical account of the development of this
problem and its ramifications is given in the review article by Kailath [866]. Wiener
filtering problems are conventionally divided into three types:

1. The optimal smoothing problem,
2. The optimal filtering problem, and
3. The optimal prediction problem.

In all cases, the optimal estimate of xn at a given time instant n is given by an
expression of the form (11.1.5), as a linear combination of the available observations

11.2. Orthogonality and Normal Equations 481

yn in the interval na ≤ n ≤ nb. The division into three types of problems depends on
which of the available observations in that interval are taken into account in making up
the linear combination (11.1.5).

In the smoothing problem, all the observations in the interval [na, nb] are taken
into account. The shaded part in the following figure denotes the range of observations
that are used in the summation of Eq. (11.1.5):

x̂n =
nb∑
i=na

h(n, i)yi

Since some of the observations are to the future of xn, the linear operation is not
causal. This does not present a problem if the sequence yn is already available and
stored in memory.

The optimal filtering problem, on the other hand, requires the linear operation
(11.1.5) to be causal, that is, only those observations that are in the present and past of
the current sample xn must be used in making up the estimate x̂n. This requires that
the matrix of optimal weights h(n, i) be lower triangular, that is,

h(n, i)= 0, for n < i

Thus, in reference to the figure below, only the shaded portion of the observation
interval is used at the current time instant:

x̂n =
n∑
i=na

h(n, i)yi

The estimate x̂n depends on the present and all the past observations, from the fixed
starting point na to the current time instant n. As n increases, more and more observa-
tions are taken into account in making up the estimate, and the actual computation of
x̂n becomes less and less efficient. It is desirable, then, to be able to recast the expres-
sion for x̂n a time-recursive form. This is what is done in Kalman filtering. But, there is
another way to make the Wiener filter computationally manageable. Instead of allowing
a growing number of observations, only the current and the past M observations yi,
i = n,n− 1, . . . , n−M are taken into account. In this case, only (M + 1) filter weights
are to be computed at each time instant n. This is depicted below:

x̂n =
n∑

i=n−M
h(n, i)yi =

M∑
m=0

h(n,n−m)yn−m

This is referred to as the finite impulse response (FIR) Wiener filter. Because of its
simple implementation, the FIR Wiener filter has enjoyed widespread popularity. De-
pending on the particular application, the practical implementation of the filter may
vary. In Sec. 11.3 we present the theoretical formulation that applies to the stationary
case; in Chap. 12 we reconsider it as a waveshaping and spiking filter and discuss a
number of deconvolution applications. In Chap. 16, we consider its adaptive implemen-
tation using the Widrow-Hoff LMS algorithm and discuss a number of applications such

482 11. Wiener Filtering

as channel equalization and echo cancellation; we also discuss two alternative adaptive
implementations—the so-called “gradient lattice,” and the “recursive least-squares.”

Finally, the linear prediction problem is a special case of the optimal filtering problem
with the additional stipulation that observations only up to time instant n−D must be
used in obtaining the current estimate x̂n; this is equivalent to the problem of predicting
D units of time into the future. The range of observations used in this case is shown
below:

x̂n =
n−D∑
i=na

h(n, i)yi

Of special interest to us will be the case of one-step prediction, corresponding to the
choice D = 1. This is depicted below:

x̂n =
n−1∑
i=na

h(n, i)yi

If we demand that the prediction be based only on the past M samples (from the
current sample), we obtain the FIR version of the prediction problem, referred to as
linear prediction based on the pastM samples, which is depicted below:

x̂n =
n−1∑
i=n−M

h(n, i)yi =
M∑
m=1

h(n,n−m)yn−m

Next, we set up the orthogonality and normal equations for the optimal weights. We
begin with the smoothing problem. The estimation error is in this case

en = xn − x̂n = xn −
nb∑
i=na

h(n, i)yi (11.2.1)

Differentiating the mean-square estimation error (11.1.6) with respect to each weight
h(n, i), na ≤ i ≤ nb, and setting the derivative to zero, we obtain the orthogonality
equations that are enough to determine the weights:

∂E
∂h(n, i)

= 2E
[
en

∂en
∂h(n, i)

]
= −2E[enyi]= 0 , for na ≤ i ≤ nb , or,

Rey(n, i)= E[enyi]= 0 (orthogonality equations) (11.2.2)

for na ≤ i ≤ nb. Thus, the estimation error en is orthogonal (uncorrelated) to each
observation yi used in making up the estimate x̂n. The orthogonality equations provide
exactly as many equations as there are unknown weights.

Inserting Eq. (11.2.1) for en, the orthogonality equations may be written in an equiv-
alent form, known as the normal equations

E
[(
xn −

nb∑
k=na

h(n, k)yk
)
yi

] = 0 , or,

E[xnyi]=
nb∑
k=na

h(n, k)E[ykyi] (normal equations) (11.2.3)

11.2. Orthogonality and Normal Equations 483

These determine the optimal weights at the current time instant n. In the vector
notation of Sec. 11.1, we write Eq. (11.2.3) as

E[xyT]= HE[yyT]

where H is the matrix of weights h(n, i). The optimal H and the estimate are then

x̂ = Hy = E[xyT]E[yyT]−1y

This is identical to the correlation canceler of Sec. 1.4. The orthogonality equations
(11.2.2) are precisely the correlation cancellation conditions. Extracting the nth row of
this matrix equation, we find an explicit expression for the nth estimate x̂n

x̂n = E[xnyT]E[yyT]−1y

which is recognized as the projection of the random variable xn onto the subspace
spanned by the available observations; namely, Y = {yna, yna+1, . . . , ynb}. This is a
general result: The minimum mean-square linear estimate x̂n is the projection of xn onto
the subspace spanned by all the observations that are used to make up that estimate.
This result is a direct consequence of the quadratic minimization criterion (11.1.6) and
the orthogonal projection theorem discussed in Sec. 1.6.

Using the methods of Sec. 1.4, the minimized estimation error at time instant n is
easily computed by

En = E[enen]= E[enxn]= E
[(
xn −

nb∑
i=na

h(n, i)yi
)
xn

]

= E[x2
n]−

nb∑
i=na

h(n, i)E[yixn]= E[x2
n]−E[xnyT]E[yyT]−1E[yxn]

which corresponds to the diagonal entries of the covariance matrix of the estimation
error e :

Ree = E[eeT]= E[xxT]−E[xyT]E[yyT]−1E[yxT]

The optimum filtering problem is somewhat more complicated because of the causal-
ity condition. In this case, the estimate at time n is given by

x̂n =
n∑
i=na

h(n, i)yi (11.2.4)

Inserting this into the minimization criterion (11.1.6) and differentiating with respect
to h(n, i) for na ≤ i ≤ n, we find again the orthogonality conditions

Rey(n, i)= E[enyi]= 0 for na ≤ i ≤ n (11.2.5)

where the most important difference from Eq. (11.2.2) is the restriction on the range
of i, that is, en is decorrelated only from the present and past values of yi. Again, the
estimation error en is orthogonal to each observation yi that is being used to make up

484 11. Wiener Filtering

the estimate. The orthogonality equations can be converted into the normal equations
as follows:

E[enyi]= E
[(
xn −

n∑
k=na

h(n, k)yk
)
yi

] = 0 , or,

E[xnyi]=
n∑

k=na
h(n, k)E[ykyi] for na ≤ i ≤ n , or, (11.2.6)

Rxy(n, i)=
n∑

k=na
h(n, k)Ryy(k, i) for na ≤ i ≤ n (11.2.7)

Such equations are generally known as Wiener-Hopf equations. Introducing the vec-
tor of observations up to the current time n, namely,

yn = [yna , yna+1, . . . , yn]T

we may write Eq. (11.2.6) in vector form as

E[xnyTn]=
[
h(n,na), h(n,na + 1), . . . , h(n,n)

]
E[ynyTn]

which can be solved for the vector of weights[
h(n,na), h(n,na + 1), . . . , h(n,n)

] = E[xnyTn]E[ynyTn]−1

and for the estimate x̂n:
x̂n = E[xnyTn]E[ynyTn]−1yn (11.2.8)

Again, x̂n is recognized as the projection of xn onto the space spanned by the ob-
servations that are used in making up the estimate; namely, Yn = {yna, yna+1, . . . , yn}.
This solution of Eqs. (11.2.5) and (11.2.7) will be discussed in more detail in Sec. 11.8,
using covariance factorization methods.

11.3 Stationary Wiener Filter

In this section, we make two assumptions that simplify the structure of Eqs. (11.2.6) and
(11.2.7). The first is to assume stationarity for all signals so that the cross-correlation
and autocorrelation appearing in Eq. (11.2.7) become functions of the differences of their
arguments. The second assumption is to take the initial time na to be the infinite past,
na = −∞, that is, the observation interval is Yn = {yi, −∞ < i ≤ n}.

The assumption of stationarity can be used as follows: Suppose we have the solution
of h(n, i) of Eq. (11.2.7) for the best weights to estimate xn, and wish to determine the
best weights h(n + d, i), na ≤ i ≤ n + d for estimating the sample xn+d at the future
time n + d. Then, the new weights will satisfy the same equations as (11.2.7) with the
changes

Rxy(n+ d, i)=
n+d∑
k=na

h(n+ d, k)Ryy(k, i), for na ≤ i ≤ n+ d (11.3.1)

11.3. Stationary Wiener Filter 485

Making a change of variables i→ i+ d and k→ k+ d, we rewrite Eq. (11.3.1) as

Rxy(n+d, i+d)=
n∑

k=na−d
h(n+d, k+d)Ryy(k+d, i+d), for na−d ≤ i ≤ n (11.3.2)

Now, if we assume stationarity, Eqs. (11.2.7) and (11.3.2) become

Rxy(n− i) =
n∑

k=na
h(n, k)Ryy(k− i) , for na ≤ i ≤ n

Rxy(n− i) =
n∑

k=na−d
h(n+ d, k+ d)Ryy(k− i) , for na − d ≤ i ≤ n

(11.3.3)

If it were not for the differences in the ranges of i and k, these two equations would
be the same. But this is exactly what happens when we make the second assumption
that na = −∞. Therefore, by uniqueness of the solution, we find in this case

h(n+ d, k+ d)= h(n, k)
and since d is arbitrary, it follows that h(n, k) must be a function of the difference of
its arguments, that is,

h(n, k)= h(n− k) (11.3.4)

Thus, the optimal linear processor becomes a shift-invariant causal linear filter and
the estimate is given by

x̂n =
n∑

i=−∞
h(n− i)yi =

∞∑
i=0

h(i)yn−i (11.3.5)

and Eq. (11.3.3) becomes in this case

Rxy(n− i)=
n∑

k=−∞
h(n, k)Ryy(k− i) , for −∞ < i ≤ n

With the change of variables n− i→ n and n− k→ k, we find

Rxy(n)=
∞∑
k=0

Ryy(n− k)h(k) , for n ≥ 0 (11.3.6)

and written in matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) Ryy(3) · · ·
Ryy(1) Ryy(0) Ryy(1) Ryy(2) · · ·
Ryy(2) Ryy(1) Ryy(0) Ryy(1) · · ·
Ryy(3) Ryy(2) Ryy(1) Ryy(0) · · ·

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1)
h(2)
h(3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rxy(0)
Rxy(1)
Rxy(2)
Rxy(3)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (11.3.7)

These are the discrete-time Wiener-Hopf equations. Were it not for the restriction
n ≥ 0 (which reflects the requirement of causality), they could be solved easily by z-
transform methods. As written above, they require methods of spectral factorization
for their solution.

486 11. Wiener Filtering

Before we discuss such methods, we mention in passing the continuous-time version
of the Wiener-Hopf equation:

Rxy(t)=
∫∞

0
Ryy(t − t′)h(t′)dt′ , t ≥ 0

We also consider the FIR Wiener filtering problem in the stationary case. The obser-
vation interval in this case is Yn = {yi, n −M ≤ i ≤ n}. Using the same arguments as
above we have h(n, i)= h(n − i), and the estimate x̂n is obtained by an ordinary FIR
linear filter

x̂n =
n∑

i=n−M
h(n− i)yi = h(0)yn + h(1)yn−1 + · · · + h(M)yn−M (11.3.8)

where the (M+1) filter weightsh(0), h(1), . . . , h(M) are obtained by the (M+1)×(M+
1) matrix version of the Wiener-Hopf normal equations:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) · · · Ryy(M)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(M − 1)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(M − 2)
...

...
...

...
Ryy(M) Ryy(M − 1) Ryy(M − 2) · · · Ryy(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h(0)
h(1)
h(2)

...
h(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rxy(0)
Rxy(1)
Rxy(2)

...
Rxy(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11.3.9)

Exploiting the Toeplitz property of the matrix Ryy, the above matrix equation can
be solved efficiently using Levinson’s algorithm. This will be discussed in Chap. 12.
In Chap. 16, we will consider adaptive implementations of the FIR Wiener filter which
produce the optimal filter weights adaptively without requiring prior knowledge of the
autocorrelation and cross-correlation matrices Ryy and Rxy and without requiring any
matrix inversion.

Fig. 11.3.1 Time-Invariant Wiener Filter.

We summarize our results on the stationary Wiener filter in Fig. 11.3.1. The optimal
filter weights h(n), n = 0,1,2, . . . are computed from Eq. (11.3.7) or Eq. (11.3.9). The
action of the filter is precisely that of the correlation canceler: The filter processes the
observation signal yn causally to produce the best possible estimate x̂n of xn, and then
it proceeds to cancel it from the output en. As a result, the output en is no longer
correlated with any of the present and past values of yn, that is, E[enyn−i]= 0, for
i = 0,1,2, As we remarked in Sec. 1.4, it is better to think of x̂n as the optimal
estimate of that part of the primary signal xn which happens to be correlated with the
secondary signal yn. This follows from the property that if xn = x1(n)+x2(n) with

11.4. Construction of the Wiener Filter by Prewhitening 487

Rx2y = 0, then Rxy = Rx1y. Therefore, the solution of Eq. (11.3.7) for the best weights to
estimate xn is also the solution for the best weights to estimate x1(n). The filter may
also be thought of as the optimal signal separator of the two signal components x1(n)
and x2(n).

11.4 Construction of the Wiener Filter by Prewhitening

The normal equations (11.3.6) would have a trivial solution if the sequence yn were a
white-noise sequence with delta-function autocorrelation. Thus, the solution procedure
is first to whiten the sequence yn and then solve the normal equations. To this end, let
yn have a signal model, as guaranteed by the spectral factorization theorem

Syy(z)= σ2
εB(z)B(z−1) (11.4.1)

where εn is the driving white noise, and B(z) a minimal-phase filter. The problem
of estimating xn in terms of the sequence yn becomes equivalent to the problem of
estimating xn in terms of the white-noise sequence εn :

If we could determine the combined filter

F(z)= B(z)H(z)

we would then solve for the desired Wiener filter H(z)

H(z)= F(z)
B(z)

(11.4.2)

Since B(z) is minimum-phase, the indicated inverse 1/B(z) is guaranteed to be
stable and causal. Let fn be the causal impulse response of F(z). Then, it satisfies the
normal equations of the type of Eq. (11.3.6):

Rxε(n)=
∞∑
i=0

fiRεε(n− i) , n ≥ 0 (11.4.3)

Since Rεε(n− i)= σ2
εδ(n− i), Eq. (11.4.3) collapses to

Rxε(n)= σ2
ε fn , n ≥ 0 , or,

fn = Rxε(n)σ2
ε

, for n ≥ 0 (11.4.4)

Next, we compute the corresponding z-transform F(z)

F(z)=
∞∑
n=0

fnz−n = 1

σ2
ε

∞∑
n=0

Rxε(n)z−n = 1

σ2
ε

[
Sxε(z)

]
+ (11.4.5)

488 11. Wiener Filtering

where
[
Sxε(z)

]
+ denotes the causal part of the double-sided z-transform Sxε(z). Gen-

erally, the causal part of a z-transform

G(z)=
∞∑

n=−∞
gnz−n =

−1∑
n=−∞

gnz−n +
∞∑
n=0

gnz−n

is defined as [
G(z)

]
+ =

∞∑
n=0

gnz−n

The causal instruction in Eq. (11.4.5) was necessary since the above solution for fn
was valid only for n ≥ 0. Since yn is the output of the filter B(z) driven by εn, it follows
that

Sxy(z)= Sxε(z)B(z−1) or Sxε(z)= Sxy(z)B(z−1)
Combining Eqs. (11.4.2) and (11.4.5), we finally find

H(z)= 1

σ2
εB(z)

[Sxy(z)
B(z−1)

]
+

(Wiener filter) (11.4.6)

Thus, the construction of the optimal filter first requires the spectral factorization of
Syy(z) to obtain B(z), and then use of the above formula. This is the optimal realizable
Wiener filter based on the infinite past. If the causal instruction is ignored, one obtains
the optimal unrealizable Wiener filter

Hunreal(z)= Sxy(z)
σ2
εB(z)B(z−1)

= Sxy(z)
Syy(z)

(11.4.7)

The minimum value of the mean-square estimation error can be conveniently ex-
pressed by a contour integral, as follows

E = E[e2
n]= E

[
en(xn − x̂n)

] = E[enxn]−E[enx̂n]= E[enxn]= Rex(0)
=

∮
u.c.
Sex(z)

dz
2πjz

=
∮

u.c.

[
Sxx(z)−Sx̂x(z)

] dz
2πjz

, or,

E =
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

(11.4.8)

11.5 Wiener Filter Example

This example, in addition to illustrating the above ideas, will also serve as a short intro-
duction to Kalman filtering. It is desired to estimate the signal xn on the basis of noisy
observations

yn = xn + vn
where vn is white noise of unit variance, σ2

v = 1, uncorrelated with xn. The signal xn is
a first order Markov process, having a signal model

xn+1 = 0.6xn +wn

11.5. Wiener Filter Example 489

where wn is white noise of variance σ2
w = 0.82. Enough information is given above to

determine the required power spectral densities Sxy(z) and Syy(z). First, we note that
the signal generator transfer function for xn is

M(z)= 1

z− 0.6

so that

Sxx(z)= σ2
wM(z)M(z−1)= 0.82

(z− 0.6)(z−1 − 0.6)
= 0.82

(1− 0.6z−1)(1− 0.6z)

Then, we find

Sxy(z) = Sx(x+v)(z)= Sxx(z)+Sxv(z)= Sxx(z)= 0.82

(1− 0.6z−1)(1− 0.6z)

Syy(z) = S(x+v)(x+v)(z)= Sxx(z)+Sxv(z)+Svx(z)+Svv(z)= Sxx(z)+Svv(z)

= 0.82

(1− 0.6z−1)(1− 0.6z)
+ 1 = 0.82+ (1− 0.6z−1)(1− 0.6z)

(1− 0.6z−1)(1− 0.6z)

= 2(1− 0.3z−1)(1− 0.3z)
(1− 0.6z−1)(1− 0.6z)

= 2 · 1− 0.3z−1

1− 0.6z−1
· 1− 0.3z

1− 0.6z

= σ2
εB(z)B(z−1)

Then according to Eq. (11.4.6), we must compute the causal part of

G(z)= Sxy(z)
B(z−1)

=
0.82

(1− 0.6z−1)(1− 0.6z)
1− 0.3z
1− 0.6z

= 0.82

(1− 0.6z−1)(1− 0.3z)

This may be done by partial fraction expansion, but the fastest way is to use the
contour inversion formula to compute gk for k ≥ 0, and then resum the z-transform:

gk =
∮

u.c.
G(z)zk

dz
2πjz

=
∮

u.c.

0.82zk

(1− 0.3z)(z− 0.6)
dz

2πj

= (residue at z = 0.6) = 0.82(0.6)k

1− (0.3)(0.6) = (0.6)
k , k ≥ 0

Resumming, we find the causal part

[
G(z)

]
+ =

∞∑
k=0

gkz−k = 1

1− 0.6z−1

Finally, the optimum Wiener estimation filter is

H(z)= 1

σ2
εB(z)

[Sxy(z)
B(z−1)

]
+
=

[
G(z)

]
+

σ2
εB(z)

= 0.5
1− 0.3z−1

(11.5.1)

490 11. Wiener Filtering

which can be realized as the difference equation

x̂n = 0.3x̂n−1 + 0.5yn (11.5.2)

The estimation error is also easily computed using the contour formula of Eq. (11.4.8):

E = E[e2
n]= σ2

e =
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

= 0.5

To appreciate the improvement afforded by filtering, this error must be compared
with the error in case no processing is made and yn is itself taken to represent a noisy
estimate of xn. The estimation error in the latter case is yn − xn = vn, so that σ2

v = 1.
Thus, the gain afforded by processing is

σ2
e

σ2
v
= 0.5 or 3 dB

11.6 Wiener Filter as Kalman Filter

We would like to cast this example in a Kalman filter form. The difference equation
Eq. (11.5.2) for the Wiener filter seems to have the “wrong” state transition matrix;
namely, 0.3 instead of 0.6, which is the state matrix for the state model of xn. How-
ever, it is not accidental that the Wiener filter difference equation may be rewritten in
the alternative form

x̂n = 0.6x̂n−1 + 0.5(yn − 0.6x̂n−1)

The quantity x̂n is the best estimate of xn, at time n, based on all the observations
up to that time, that is, Yn = {yi, −∞ < i ≤ n}. To simplify the subsequent notation,
we denote it by x̂n/n. It is the projection of xn on the space Yn. Similarly, x̂n−1 denotes
the best estimate of xn−1, based on the observations up to time n − 1, that is, Yn−1 =
{yi, −∞ < i ≤ n− 1}. The above filtering equation is written in this notation as

x̂n/n = 0.6x̂n−1/n−1 + 0.5(yn − 0.6x̂n−1/n−1) (11.6.1)

It allows the computation of the current best estimate x̂n/n, in terms of the previous
best estimate x̂n−1/n−1 and the new observation yn that becomes available at the current
time instant n.

The various terms of Eq. (11.6.1) have nice interpretations: Suppose that the best
estimate x̂n−1/n−1 of the previous sample xn−1 is available. Even before the next obser-
vation yn comes in, we may use this estimate to make a reasonable prediction as to what
the next best estimate ought to be. Since we know the system dynamics of xn, we may
try to “boost” x̂n−1/n−1 to the next time instant n according to the system dynamics,
that is, we take

x̂n/n−1 = 0.6x̂n−1/n−1 = prediction of xn on the basis of Yn−1 (11.6.2)

Since yn = xn + vn, we may use this prediction of xn to make a prediction of the
next measurement yn, that is, we take

ŷn/n−1 = x̂n/n−1 = prediction of yn on the basis of Yn−1 (11.6.3)

11.6. Wiener Filter as Kalman Filter 491

If this prediction were perfect, and if the next observation yn were noise free, then
this would be the value that we would observe. Since we actually observe yn, the obser-
vation or innovations residual will be

αn = yn − ŷn/n−1 (11.6.4)

This quantity represents that part of yn that cannot be predicted on the basis of
the previous observations Yn−1. It represents the truly new information contained in
the observation yn. Actually, if we are making the best prediction possible, then the
most we can expect of our prediction is to make the innovations residual a white-noise
(uncorrelated) signal, that is, what remains after we make the best possible prediction
should be unpredictable. According to the general discussion of the relationship be-
tween signal models and linear prediction given in Sec. 1.17, it follows that if ŷn/n−1 is
the best predictor of yn then αn must be the whitening sequence that drives the signal
model of yn. We shall verify this fact shortly. This establishes an intimate connection
between the Wiener/Kalman filtering problem and the signal modeling problem. If we
overestimate the observation yn the innovation residual will be negative; and if we un-
derestimate it, the residual will be positive. In either case, we would like to correct our
tentative estimate in the right direction. This may be accomplished by

x̂n/n = x̂n/n−1 +G(yn − ŷn/n−1)= 0.6x̂n−1/n−1 +G(yn − 0.6x̂n−1/n−1) (11.6.5)

where the gain G, known as the Kalman gain, should be a positive quantity. The pre-
diction/correction procedure defined by Eqs. (11.6.2) through (11.6.5) is known as the
Kalman filter. It should be clear that any value for the gain G will provide an estimate,
even if suboptimal, of xn. Our solution for the Wiener filter has precisely the above
structure with a gain G = 0.5. This value is optimal for the given example. It is a very
instructive exercise to show this in two ways: First, withG arbitrary, the estimation filter
of Eq. (11.6.5) has transfer function

H(z)= G
1− 0.6(1−G)z−1

Insert this expression into the mean-square estimation error E = E[e2
n], where en =

xn − x̂n/n, and minimize it with respect to the parameter G. This should give G = 0.5.
Alternatively, G should be such that to render the innovations residual (11.6.4) a

white noise signal. In requiring this, it is useful to use the spectral factorization model
for yn, that is, the fact that yn is the output of B(z) when driven by the white noise
signal εn. Working with z-transforms, we have:

α(z) = Y(z)−0.6z−1X̂(z)= Y(z)−0.6z−1H(z)Y(z)

=
[

1− 0.6z−1 G
1− 0.6(1−G)z−1

]
Y(z)=

[
1− 0.6z−1

1− 0.6(1−G)z−1

]
Y(z)

=
[

1− 0.6z−1

1− 0.6(1−G)z−1

][
1− 0.3z−1

1− 0.6z−1

]
ε(z)=

[
1− 0.3z−1

1− 0.6(1−G)z−1

]
ε(z)

Since εn is white, it follows that the transfer function relationship between αn and
εn must be trivial; otherwise, there will be sequential correlations present in αn. Thus,

492 11. Wiener Filtering

we must have 0.6(1−G)= 0.3, or G = 0.5; and in this case, αn = εn. It is also possible
to set 0.6(1−G)= 1/0.3, but this would correspond to an unstable filter.

We have obtained a most interesting result; namely, that when the Wiener filtering
problem is recast into its Kalman filter form given by Eq. (11.6.1), then the innovations
residual αn, which is computable on line with the estimate x̂n/n, is identical to the
whitening sequence εn of the signal model of yn. In other words, the Kalman filter can
be thought of as the whitening filter for the observation signal yn.

To appreciate further the connection between Wiener and Kalman filters and between
Kalman filters and the whitening filters of signal models, we consider a generalized
version of the above example and cast it in standard Kalman filter notation.

It is desired to estimate xn from yn. The signal model for xn is taken to be the
first-order autoregressive model

xn+1 = axn +wn (state model) (11.6.6)

with |a| < 1. The observation signal yn is related to xn by

yn = cxn + vn (measurement model) (11.6.7)

It is further assumed that the state and measurement noises, wn and vn, are zero-
mean, mutually uncorrelated, white noises of variances Q and R, respectively, that is,

E[wnwi]= Qδni , E[vnvi]= Rδni , E[wnvi]= 0 (11.6.8)

We also assume that vn is uncorrelated with the initial value of xn so that vn and xn
will be uncorrelated for all n. The parameters a, c,Q,R are assumed to be known. Let
x1(n) be the time-advanced version of xn :

x1(n)= xn+1

and consider the two related Wiener filtering problems of estimating xn and x1(n) on
the basis of Yn = {yi, −∞ < i ≤ n}, depicted below

The problem of estimating x1(n)= xn+1 is equivalent to the problem of one-step
prediction into the future on the basis of the past and present. Therefore, we will denote
this estimate by x̂1(n)= x̂n+1/n. The state equation (11.6.6) determines the spectral
density of xn :

Sxx(z)= 1

(z− a)(z−1 − a) Sww(z)=
Q

(1− az−1)(1− az)
The observation equation (11.6.7) determines the cross-densities

Sxy(z) = cSxx(z)+Sxv(z)= cSxx(z)
Sx1y(z) = zSxy(z)= zcSxx(z)

11.6. Wiener Filter as Kalman Filter 493

where we used the filtering equation X1(z)= zX(z). The spectral density of yn can be
factored as follows:

Syy(z) = c2Sxx(z)+Svv(z)= c2Q
(1− az−1)(1− az) +R

= c
2Q +R(1− az−1)(1− az)
(1− az−1)(1− az) ≡ σ2

ε

(
1− fz−1

1− az−1

)(
1− fz
1− az

)

where f and σ2
ε satisfy the equations

fσ2
ε = aR (11.6.9)

(1+ f2)σ2
ε = c2Q + (1+ a2)R (11.6.10)

and f has magnitude less than one. Thus, the corresponding signal model for yn is

B(z)= 1− fz−1

1− az−1
(11.6.11)

Next, we compute the causal parts as required by Eq. (11.4.6):[Sxy(z)
B(z−1)

]
+
=

[
cQ

(1− az−1)(1− fz)

]
+
= cQ

1− fa
1

1− az−1

[Sx1y(z)
B(z−1)

]
+
=

[
cQz

(1− az−1)(1− fz)

]
+
= cQa

1− fa
1

1− az−1

Using Eq. (11.4.6), we determine the Wiener filters H(z) and H1(z) as follows:

H(z)= 1

σ2
εB(z)

[Sxy(z)
B(z−1)

]
+
=

cQ/(1− fa)
(1− az−1)

σ2
ε

(
1− fz−1

1− az−1

) =

(
cQ

σ2
ε(1− fa)

)
1− fz−1

or, defining the gain G by

G = cQ
σ2
ε(1− fa) (11.6.12)

we finally find

H(z)= G
1− fz−1

(11.6.13)

H1(z)= aH(z)= K
1− fz−1

(11.6.14)

where in Eq. (11.6.14) we defined a related gain, also called the Kalman gain, as follows:

K = aG = cQa
σ2
ε(1− fa) (11.6.15)

Eq. (11.6.14) immediately implies that

x̂n+1/n = ax̂n/n (11.6.16)

494 11. Wiener Filtering

which is the precise justification of Eq. (11.6.2). The difference equations of the two
filters are

x̂n+1/n = f x̂n/n−1 +Kyn
x̂n/n = f x̂n−1/n−1 +Gyn

(11.6.17)

Using the results of Problem 1.50, we may express all the quantities f , σ2
ε , K, and G

in terms of a single positive quantity P which satisfies the algebraic Riccati equation:

Q = P− PRa2

R+ c2P
(11.6.18)

Then, we find the interrelationships

K = aG = acP
R+ c2P

, σ2
ε = R+ c2P , f = a− cK = Ra

R+ c2P
(11.6.19)

It is left as an exercise to show that the minimized mean-square estimation errors
are given in terms of P by

E[e2
n/n−1]= P , E[e2

n/n]=
RP

R+ c2P

where

en/n−1 = xn − x̂n/n−1 , en/n = xn − x̂n/n
are the corresponding estimation errors for the optimally predicted and filtered esti-
mates, respectively. Using Eq. (11.6.19)), we may rewrite the filtering equation (11.6.17)
in the following forms:

x̂n+1/n = (a− cK)x̂n/n−1 +Kyn , or,

x̂n+1/n = ax̂n/n−1 +K(yn − cx̂n/n−1) , or,

x̂n+1/n = ax̂n/n−1 +K(yn − ŷn/n−1)

(11.6.20)

where we set
ŷn/n−1 = cx̂n/n−1 (11.6.21)

A realization of the estimation filter based on (11.6.20) is shown below:

Replacing K = aG and using Eq. (11.6.16) in (11.6.20), we also find

x̂n/n = x̂n/n−1 +G(yn − ŷn/n−1) (11.6.22)

The quantity ŷn/n−1 defined in Eq. (11.6.21) is the best estimate of yn based on its
past Yn−1. This can be seen in two ways: First, using the results of Problem 1.7 on the
linearity of the estimates, we find

ŷn/n−1 = 'cxn + vn = cx̂n/n−1 + v̂n/n−1 = cx̂n/n−1

11.7. Construction of the Wiener Filter by the Gapped Function 495

where the term v̂n/n−1 was dropped. This term represents the estimate of vn on the
basis of the past ys; that is, Yn−1. Since vn is white and also uncorrelated with xn, it
follows that it will be uncorrelated with all past ys; therefore, v̂n/n−1 = 0. The second
way to show that ŷn/n−1 is the best prediction of yn is to show that the innovations
residual

αn = yn − ŷn/n−1 = yn − cx̂n/n−1 (11.6.23)

is a white-noise sequence and coincides with the whitening sequence εn of yn. Indeed,
working in the z-domain and using Eq. (11.6.17) and the signal model of yn we find

α(z) = Y(z)−cz−1X̂1(z)= Y(z)−cz−1H1(z)Y(z)

=
[

1− cz−1 K
1− fz−1

]
Y(z)=

[
1− (f + cK)z−1

1− fz−1

]
Y(z)

=
[

1− az−1

1− fz−1

]
Y(z)= 1

B(z)
Y(z)= ε(z)

which implies that
αn = εn

Finally, we note that the recursive updating of the estimate of xn given by Eq. (11.6.22)
is identical to the result of Problem 1.11.

Our purpose in presenting this example was to tie together a number of ideas from
Chapter 1 (correlation canceling, estimation, Gram-Schmidt orthogonalization, linear
prediction, and signal modeling) to ideas from this chapter on Wiener filtering and its
recursive reformulation as a Kalman filter.

We conclude this section by presenting a simulation of this example defined by the
following choice of parameters:

a = 0.95 , c = 1 , Q = 1− a2 , R = 1

The above choice for Q normalizes the variance of xn to unity. Solving the Riccati
equation (11.6.18) and using Eq. (11.6.19), we find

P = 0.3122 , K = 0.2261 , G = 0.2380 , f = a− cK = 0.7239

Fig. 11.6.1 shows 100 samples of the observed signal yn together with the desired
signal xn. The signal yn processed through the Wiener filter H(z) defined by the above
parameters is shown in Fig. 11.6.2 together with xn. The tracking properties of the filter
are evident from the graph. It should be emphasized that this is the best one can do by
means of ordinary causal linear filtering.

11.7 Construction of the Wiener Filter by the Gapped Function

Next, we would like to give an alternative construction of the optimal Wiener filter based
on the concept of the gapped function. This approach is especially useful in linear pre-
diction. The gapped function is defined as the cross-correlation between the estimation
error en and the observation sequence yn, as follows:

g(k)= Rey(k)= E[enyn−k] , for −∞ < k <∞ (11.7.1)

496 11. Wiener Filtering

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

n (time samples)

 yn

 xn

Fig. 11.6.1 Desired signal and its noisy observation.

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

n (time samples)

 x̂n/n

 xn

Fig. 11.6.2 Best estimate of desired signal.

This definition is motivated by the orthogonality equations which state that the
prediction error en must be orthogonal to all of the available observations; namely,
Yn = {yi , −∞ < i ≤ n} = {yn−k , k ≥ 0}. That is, for the optimal set of filter weights
we must have

g(k)= Rey(k)= E[enyn−k]= 0 , for k ≥ 0 (11.7.2)

and g(k) develops a right-hand side gap. On the other hand, g(k) may be written in

11.8. Construction of the Wiener Filter by Covariance Factorization 497

the alternative form

g(k)= E[enyn−k]= E
[(
xn −

∞∑
i=0

hiyn−i
)
yn−k

] = Rxy(k)− ∞∑
i=0

hiRyy(k− i) , or,

g(k)= Rey(k)= Rxy(k)−
∞∑
i=0

hiRyy(k− i) (11.7.3)

Taking z-transforms of both sides we find

G(z)= Sey(z)= Sxy(z)−H(z)Syy(z)

Because of the gap conditions, the left-hand side contains only positive powers of
z, whereas the right-hand side contains both positive and negative powers of z. Thus,
the non-positive powers of z must drop out of the right side. This condition precisely
determines H(z). Introducing the spectral factorization of Syy(z) and dividing both
sides by B(z−1) we find

G(z) = Sxy(z)−H(z)Syy(z)= Sxy(z)−H(z)σ2
εB(z)B(z−1)

G(z)
B(z−1)

= Sxy(z)
B(z−1)

−σ2
εH(z)B(z)

The z-transform B(z−1) is anticausal and, because of the gap conditions, so is the
ratio G(z)/B(z−1). Therefore, taking causal parts of both sides and noting that the
product H(z)B(z) is already causal, we find

0 =
[Sxy(z)
B(z−1)

]
+
−σ2

εH(z)B(z)

which may be solved for H(z) to give Eq. (11.4.6).

11.8 Construction of the Wiener Filter by Covariance Factor-

ization

In this section, we present a generalization of the gapped-function method to the more
general non-stationary and/or finite-past Wiener filter. This is defined by the Wiener-
Hopf equations (11.2.7), which are equivalent to the orthogonality equations (11.2.5).
The latter are the non-stationary versions of the gapped function of the previous section.
The best way to proceed is to cast Eqs. (11.2.5) in matrix form as follows: Without loss
of generality we may take the starting point na = 0. The final point nb is left arbitrary.
Introduce the vectors

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xnb

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
y0

y1

...
ynb

⎤⎥⎥⎥⎥⎥⎦

498 11. Wiener Filtering

and the corresponding correlation matrices

Rxy = E[xyT] , Ryy = E[yyT]

The filtering equation (11.2.4) may be written in vector form as

x̂ = Hy (11.8.1)

where H is the matrix of optimal weights {h(n, i)}. The causality of the filtering oper-
ation (11.8.1), requires H to be lower-triangular. The minimization problem becomes
equivalent to the problem of minimizing the mean-square estimation error subject to
the constraint that H be lower-triangular. The minimization conditions are the normal
equations (11.2.5) which, in this matrix notation, state that the matrix Rey has no lower-
triangular (causal) part; or, equivalently, that Rey is strictly upper-triangular (i.e., even
the main diagonal of Rey is zero), therefore

Rey = strictly upper triangular (11.8.2)

Inserting Eq. (11.8.1) into Rey we find

Rey = E[eyT]= E[
(x−Hy)yT

]
, or,

Rey = Rxy −HRyy (11.8.3)

The minimization conditions (11.8.2) require H to be that lower-triangular matrix
which renders the combination (11.8.3) upper-triangular. In other words, H should
be such that the lower triangular part of the right-hand side must vanish. To solve
Eqs. (11.8.2) and (11.8.3), we introduce the LU Cholesky factorization of the covariance
matrix Ryy given by

Ryy = BRεεBT (11.8.4)

where B is unit lower-triangular, and Rεε is diagonal. This was discussed in Sec. 1.6.
Inserting this into Eq. (11.8.3) we find

Rey = Rxy −HRyy = Rxy −HBRεεBT (11.8.5)

Multiplying by the inverse transpose of B we obtain

ReyB−T = RxyB−T −HBRεε (11.8.6)

Now, the matrix B−T is unit upper-triangular, but Rey is strictly upper, therefore,
the product RxyB−T will be strictly upper. This can be verified easily for any two such
matrices. Extracting the lower-triangular parts of both sides of Eq. (11.8.6) we find

0 = [
RxyB−T

]
+ −HBRεε

where we used the fact that the left-hand side was strictly upper and that the term
HBRεε was already lower-triangular. The notation []+ denotes the lower triangular
part of a matrix including the diagonal. We find finally

H = [
RxyB−T

]
+R

−1
εε B−1 (11.8.7)

11.8. Construction of the Wiener Filter by Covariance Factorization 499

This is the most general solution of the Wiener filtering problem [18, 19]. It includes
the results of the stationary case, as a special case. Indeed, if all the signals are station-
ary, then the matricesRxy, B, andBT become Toeplitz and have a z-transform associated
with them as discussed in Problem 1.51. Using the results of that problem, it is easily
seen that Eq. (11.8.7) is the time-domain equivalent of Eq. (11.4.6).

The prewhitening approach of Sec. 11.4 can also be understood in the present matrix
framework. Making the change of variables

y = Bεεε

we find that Rxy = E[xyT]= E[xεεεT]BT = RxεBT, and therefore, RxyB−T = Rxε and the
filter H becomes H = [Rxε]+R−1

εε B−1. The corresponding estimate is then

x̂ = Hy = HBεεε = Fεεε , where F = HB = [Rxε]+R−1
εε (11.8.8)

This is the matrix equivalent of Eq. (11.4.5). The matrix F is lower-triangular by
construction. Therefore, to extract the nth component x̂n of Eq. (11.8.8), it is enough to
consider the n×n submatrices as shown below:

The nth row of F is f(n)T= E[xnεεεTn]E[εεεnεεεTn]−1. Therefore, the nth estimate be-
comes

x̂n = f(n)Tεεεn = E[xnεεεTn]E[εεεnεεεTn]−1εεεn

which may also be written in the recursive form

x̂n/n =
n∑
i=0

E[xnεi]E[εiεi]−1εi =
n−1∑
i=0

E[xnεi]E[εiεi]−1εi +Gnεn , or,

x̂n/n = x̂n/n−1 +Gnεn (11.8.9)

where we made an obvious change in notation, and Gn = E[xnεn]E[εnεn]−1. This is
identical to Eq. (11.6.22); in the stationary case, Gn is a constant, independent of n.
We can also recast the nth estimate in “batch” form, expressed directly in terms of the
observation vector yn = [y0, y1, . . . , yn]T. By considering the n×n subblock part of the
Gram-Schmidt construction, we may write yn = Bnεεεn, where Bn is unit lower-triangular.
Then, x̂n can be expressed as

x̂n = E[xnεεεTn]E[εεεnεεεTn]−1εεεn = E[xnyTn]E[ynyTn]−1yn

which is identical to Eq. (11.2.8).

500 11. Wiener Filtering

11.9 The Kalman Filter

The Kalman filter discussion of Sec. 11.6 and its equivalence to the Wiener filter was
based on the asymptotic Kalman filter for which the observations were available from
the infinite past to the present, namely, {yi , −∞ < i ≤ n}. In Sec. 11.7, we solved the
most general Wiener filtering problem based on the finite past for which the observation
space was

Yn = {y0, y1, . . . , yn} (11.9.1)

Here, we recast these results in a time-recursive form and obtain the time-varying
Kalman filter for estimating xn based on the finite observation subspace Yn. We also
discuss its asymptotic properties for large n and show that it converges to the steady-
state Kalman filter of Sec. 11.6.

Our discussion is based on Eq. (11.8.9), which is essentially the starting point in
Kalman’s original derivation [852]. To make Eq. (11.8.9) truly recursive, we must have a
means of recursively computing the required gain Gn from one time instant to the next.
As in Sec. 11.8, we denote by x̂n/n and x̂n/n−1 the optimal estimates of xn based on the
observation subspaces Yn and Yn−1, defined in Eq. (11.9.1), with the initial condition
x̂0/−1 = 0. Iterating the state and measurement models (11.6.6) and (11.6.7) starting at
n = 0, we obtain the following two results, previously derived for the steady-state case

x̂n+1/n = ax̂n/n , ŷn/n−1 = cx̂n/n−1 (11.9.2)

The proof of both is based on the linearity property of estimates; for example,

x̂n+1/n = 'axn +wn = ax̂n/n + ŵn/n = ax̂n/n
where ŵn/n was set to zero because wn does not depend on any of the observations
Yn. This is seen as follows. The iteration of the state equation (11.6.6) leads to the
expression xn = anx0 + an−1w0 + an−2w1 + · · · + awn−2 +wn−1. It follows from this
and Eq. (11.6.7) that the observation subspace Yn will depend only on

{x0,w0,w1, . . . ,wn−1, v0, v1, . . . , vn}
Making the additional assumption that x0 is uncorrelated with wn it follows that

wn will be uncorrelated with all random variables in the above set, and thus, with Yn.
The second part of Eq. (11.9.2) is shown by similar arguments. Next, we develop the
recursions for the gain Gn. Using Eq. (11.8.9), the estimation and prediction errors may
be related as follows

en/n = xn − x̂n/n = xn − x̂n/n−1 −Gnεn = en/n−1 −Gnεn
Taking the correlation of both sides with xn we find

E[en/nxn]= E[en/n−1xn]−GnE[εnxn] (11.9.3)

Using the orthogonality properties E[en/nx̂n/n]= 0 and E[en/n−1x̂n/n−1]= 0, which
follow from the optimality of the two estimates x̂n/n and x̂n/n−1, we can write the mean-
square estimation and prediction errors as

Pn/n = E[e2
n/n]= E[en/nxn] , Pn/n−1 = E[e2

n/n−1]= E[en/n−1xn] (11.9.4)

11.9. The Kalman Filter 501

We find also

εn = yn − ŷn/n−1 = (cxn + vn)−cx̂n/n−1 = cen/n−1 + vn
Using the fact that en/n−1 depends only on xn andYn−1, it follows that the two terms

in the right-hand side are uncorrelated with each other. Thus,

E[ε2
n]= c2E[e2

n/n−1]+E[v2
n]= c2Pn/n−1 +R (11.9.5)

also
E[εnxn]= cE[en/n−1xn]+E[vnxn]= cPn/n−1 (11.9.6)

Therefore, the gain Gn is computable by

Gn = E[εnxn]E[ε2
n]

= cPn/n−1

R+ c2Pn/n−1
(11.9.7)

Using Eqs. (11.9.4), (11.9.6), and (11.9.7) into Eq. (11.9.3), we obtain

Pn/n = Pn/n−1 −GncPn/n−1 = Pn/n−1 − c2Pn/n−1

R+ c2Pn/n−1
= RPn/n−1

R+ c2Pn/n−1
(11.9.8)

The subtracted term in (11.9.8) represents the improvement in estimating xn using
x̂n/n over using x̂n/n−1. Equations (11.9.3), (11.9.7), and (11.9.8) admit a nice geometrical
interpretation [867]. The two right-hand side terms in εn = cen/n−1+vn are orthogonal
and can be represented by the orthogonal triangle

where the prediction error en/n−1 has been scaled up by the factor c. Thus, Eq. (11.9.5)
is the statement of the Pythagorean theorem for this triangle. Next, write the equation
en/n = en/n−1 −Gnεn as

en/n−1 = en/n +Gnεn
Because en/n is orthogonal to all the observations inYn and εn is a linear combination

of the same observations, it follows that the two terms in the right-hand side will be
orthogonal. Thus, en/n−1 may be resolved in two orthogonal parts, one being in the
direction of εn. This is represented by the smaller orthogonal triangle in the previous
diagram. Clearly, the length of the side en/n is minimized at right angles at point A. It
follows from the similarity of the two orthogonal triangles that

Gn
√
E[ε2

n]√
E[e2

n/n−1]
= c

√
E[e2

n/n−1]√
E[ε2

n]

which is equivalent to Eq. (11.9.7). Finally, the Pythagorean theorem applied to the
smaller triangle impliesE[e2

n/n−1]= E[e2
n/n]+G2

nE[ε2
n], which is equivalent to Eq. (11.9.8).

502 11. Wiener Filtering

To obtain a truly recursive scheme, we need next to find a relationship between
Pn/n and the next prediction error Pn+1/n. It is found as follows. From the state model
(11.6.6) and (11.9.2), we have

en+1/n = xn+1 − x̂n+1/n = (axn +wn)−ax̂n/n = aen/n +wn
Because en/n depends only on xn and Yn, it follows that the two terms in the right-

hand side will be uncorrelated. Therefore, E[e2
n+1/n]= a2E[e2

n/n]+E[w2
n], or,

Pn+1/n = a2Pn/n +Q (11.9.9)

The first term corresponds to the propagation of the estimate x̂n/n forward in time
according to the system dynamics; the second term represents the worsening of the
estimate due to the presence of the dynamical noise wn. The Kalman filter algorithm is
now complete. It is summarized below:

0. Initialize by x̂0/−1 = 0 and P0/−1 = E[x2
0].

1. At time n, x̂n/n−1, Pn/n−1, and the new measurement yn are available.

2. Compute ŷn/n−1 = cx̂n/n−1, εn = yn − ŷn/n−1, and the gain Gn using Eq. (11.9.7).

3. Correct the predicted estimate x̂n/n = x̂n/n−1+Gnεn and compute its mean-square
error Pn/n, using Eq. (11.9.8).

4. Predict the next estimate x̂n+1/n = ax̂n/n, and compute the mean-square predic-
tion error Pn+1/n, using Eq. (11.9.9).

5. Go to the next time instant, n→ n+ 1.

The optimal predictor x̂n/n−1 satisfies the Kalman filtering equation

x̂n+1/n = ax̂n/n = a(x̂n/n−1 +Gnεn)= ax̂n/n−1 + aGn(yn − cx̂n/n−1) , or,

x̂n+1/n = fnx̂n/n−1 +Knyn (11.9.10)

where we defined
Kn = aGn , fn = a− cKn (11.9.11)

These are the time-varying analogs of Eqs. (11.6.17) and (11.6.19). Equations (11.9.8)
and (11.9.9) may be combined into one updating equation for Pn/n−1, known as the
discrete Riccati difference equation

Pn+1/n = a2RPn/n−1

R+ c2Pn/n−1
+Q (11.9.12)

It is the time-varying version of Eq. (11.6.18). We note that in deriving all of the
above results, we did not need to assume that the model parameters {a, c,Q,R} were
constants, independent of time. They can just as well be replaced by time-varying model
parameters:

{an, cn,Qn,Rn}
The asymptotic properties of the Kalman filter depend, of course, on the particular

time variations in the model parameters. In the time-invariant case, with {a, c,Q,R}

11.9. The Kalman Filter 503

constant, we expect the solution of the Riccati equation (11.9.12) to converge, for large
n, to some steady-state value Pn/n−1 → P. In this limit, the Riccati difference equation
(11.9.12) tends to the steady-state algebraic Riccati equation (11.6.18), which determines
the limiting value P. The Kalman filter parameters will converge to the limiting values
fn → f , Kn → K, and Gn → G given by Eq. (11.6.19).

It is possible to solve Eq. (11.9.12) in closed form and explicitly demonstrate these
convergence properties. Using the techniques of [871,872], we obtain

Pn/n−1 = P+ f2nE0

1+ SnE0
, for n = 0,1,2, . . . , (11.9.13)

where E0 = P0/−1 − P and

Sn = B 1− f2n

1− f2
, B = c2

R+ c2P

We have already mentioned (see Problem 1.50) that the stability of the signal model
and the positivity of the asymptotic solution P imply the minimum phase condition
|f| < 1. Thus, the second term of Eq. (11.9.13) converges to zero exponentially with a
time constant determined by f .

Example 11.9.1: Determine the closed form solutions of the time-varying Kalman filter for the
state and measurement models:

xn+1 = xn +wn , yn = xn + vn

with Q = 0.5 and R = 1. Thus, a = 1 and c = 1. The Riccati equations are

Pn+1/n = Pn/n−1

1+ Pn/n−1
+ 0.5 , P = P

1+ P + 0.5

The solution of the algebraic Riccati equation is P = 1. This implies that f = aR/(R +
c2P)= 0.5. To illustrate the solution (11.9.13), we take the initial condition to be zero
P0/−1 = 0. We find B = c2/(R+ c2P)= 0.5 and

Sn = 2

3

[
1− (0.5)2n]

Thus,

Pn/n−1 = 1− (0.5)2n

1− 2

3

[
1− (0.5)2n] = 1− (0.5)2n

1+ 2(0.5)2n

The first few values calculated from this formula are

P1/0 = 1

2
, P2/1 = 5

6
, P3/2 = 21

22
, . . .

and quickly converge to P = 1. They may also be obtained by iterating Eq. (11.9.12). ��

504 11. Wiener Filtering

11.10 Problems

11.1 Let x = [xna , . . . , xnb]T and y = [yna , . . . , ynb]T be the desired and available signal vectors.
The relationship between x and y is assumed to be linear of the form

y = Cx+ v

whereC represents a linear degradation and v is a vector of zero-mean independent gaussian
samples with a common variance σ2

v . Show that the maximum likelihood (ME) estimation
criterion is in this case equivalent to the following least-squares criterion, based on the
quadratic vector norm:

E = ‖y−Cx‖2 = minimum with respect to x

Show that the resulting estimate is given by

x̂ = (CTC)−1CTy

11.2 Let x̂ = Hy be the optimal linear smoothing estimate of x given by Eq. (11.1.5). It is obtained
by minimizing the mean-square estimation error En = E[e2

n] for each n in the interval
[na, nb].

(a) Show that the solution for H also minimizes the error covariance matrix

Ree = E[eeT]

where e is the vector of estimation errors e = [ena , . . . , enb]T .

(b) Show thatH also minimizes every quadratic index of the form, for any positive semi-
definite matrix Q:

E[eTQe]= min

(c) Explain how the minimization of each E[e2
n] can be understood in terms of part (b).

11.3 Consider the smoothing problem of estimating the signal vector x from the signal vector y.
Assume that x and y are linearly related by

y = Cx+ v

and that v and x are uncorrelated from each other, and that the covariance matrices of x
and v, Rxx and Rvv, are known. Show that the smoothing estimate of x is in this case

x̂ = RxxCT[CRxxCT +Rvv]−1y

11.4 A stationary random signal has autocorrelation function Rxx(k)= σ2
xa|k|, for all k. The

observation signal is yn = xn + vn , where vn is a zero-mean, white noise sequence of
variance σ2

v , uncorrelated from xn.

(a) Determine the optimal FIR Wiener filter of orderM = 1 for estimating xn from yn.

(b) Repeat for the optimal linear predictor of orderM = 2 for predicting xn on the basis
of the past two samples yn−1 and yn−2.

11.5 A stationary random signal x(n) has autocorrelation function Rxx(k)= σ2
xa|k|, for all k.

Consider a time interval [na, nb]. The random signal x(n) is known only at the end-points
of that interval; that is, the only available observations are

y(na)= x(na), y(nb)= x(nb)

11.10. Problems 505

Determine the optimal estimate of x(n) based on just these two samples in the form

x̂(n)= h(n,na)y(na)+h(n,nb)y(nb)

for the following values of n: (a) na ≤ n ≤ nb, (b) n ≤ na, (c) n ≥ nb.
11.6 A stationary random signal xn is to be estimated on the basis of the noisy observations

yn = xn + vn
It is given that

Sxx(z)= 1

(1− 0.5z−1)(1− 0.5z)
, Svv(z)= 5, Sxv(z)= 0

(a) Determine the optimal realizable Wiener filter for estimating the signal xn on the
basis of the observations Yn = {yi , i ≤ n}. Write the difference equation of this filter.
Compute the mean-square estimation error.

(b) Determine the optimal realizable Wiener filter for predicting one step into the future;
that is, estimate xn+1 on the basis of Yn.

(c) Cast the results of (a) and (b) in a predictor/corrector Kalman filter form, and show
explicitly that the innovations residual of the observation signal yn is identical to the corre-
sponding whitening sequence εn driving the signal model of yn.

11.7 Repeat the previous problem for the following choice of state and measurement models

xn+1 = xn +wn , yn = xn + vn
where wn and vn have variances Q = 0.5 and R = 1, respectively.

11.8 Consider the state and measurement equations

xn+1 = axn +wn , yn = cxn + vn
as discussed in Sec. 11.6. For any value of the Kalman gain K, consider the Kalman predic-
tor/corrector algorithm defined by the equation

x̂n+1/n = ax̂n/n−1 +K(yn − cx̂n/n−1)= f x̂n/n−1 +Kyn (P.1)

where f = a− cK. The stability requirement of this estimation filter requires further that K
be such that |f| < 1.

(a) Let en/n−1 = xn − x̂n/n−1 be the corresponding estimation error. Assuming that all
signals are stationary, and working with z-transforms, show that the power spectral density
of en/n−1 is given by

See(z)= Q +K2R
(1− fz−1)(1− fz)

(b) Integrating See(z) around the unit circle, show that the mean-square value of the
estimation error is given by

E = E[e2
n/n−1]=

Q +K2R
1− f2

= Q +K2R
1− (a− cK)2

(P.2)

(c) To select the optimal value of the Kalman gain K, differentiate E with respect to K
and set the derivative to zero. Show that the resulting equation for K can be expressed in
the form

K = caP
R+ c2P

506 11. Wiener Filtering

where P stands for the minimized value of E; that is, P = Emin.

(d) Inserting this expression for K back into the expression (P.2) for E, show that the
quantity P must satisfy the algebraic Riccati equation

Q = P− a2RP
R+ c2P

Thus, the resulting estimator filter is identical to the optimal one-step prediction filter dis-
cussed in Sec. 11.6.

11.9 Show that Eq. (P.2) of Problem 11.8 can be derived without using z-transforms, by using only
stationarity, as suggested below: Using the state and measurement model equations and
Eq. (P. l), show that the estimation error en/n−1 satisfies the difference equation

en+1/n = fen/n−1 +wn −Kvn

Then, invoking stationarity, derive Eq. (P.2). Using similar methods, show that the mean-
square estimation error is given by

E[e2
n/n]=

RP
R+ c2P

where en/n = xn − x̂n/n is the estimation error of the optimal filter (11.6.13).

11.10 Consider the general example of Sec. 11.6. It was shown there that the innovations residual
was the same as the whitening sequence εn driving the signal model of yn

εn = yn − ŷn/n−1 = yn − cx̂n/n−1

Show that it can be written as
εn = cen/n−1 + vn

where en/n−1 = xn − x̂n/n−1 is the prediction error. Then, show that

σ2
ε = E[ε2

n]= R+ c2P

11.11 Computer Experiment. Consider the signal and measurement model defined by Eqs. (11.6.6)
through (11.6.8), with the choices a = 0.9, c = 1, Q = 1 − a2, and R = 1. Generate 1500
samples of the random noises wn and vn. Generate the corresponding signals xn and yn
according to the state and measurement equations. Determine the optimal Wiener filter of
the form (11.6.13) for estimating xn on the basis of yn. Filter the sequence yn through the
Wiener filter to generate the sequence x̂n/n.

(a) On the same graph, plot the desired signal xn and the available noisy version yn for
n ranging over the last 100 values (i.e., n = 1400–1500.)

(b) On the same graph, plot the recovered signal x̂n/n together with the original signal
xn for n ranging over the last 100 values.

(c) Repeat (a) and (b) using a different realization of wn and vn.

(d) Repeat (a), (b), and (c) for the choice a = −0.9.

11.12 Consider the optimal Wiener filtering problem in its matrix formulation of Sec. 11.8. Let
e = x − x̂ = x − Hy be the estimation error corresponding to a particular choice of the
lower-triangular matrix H. Minimize the error covariance matrix Ree = E[eeT] with respect
to H subject to the constraint that H be lower-triangular. These constraints are Hni = 0

11.10. Problems 507

for n < i. To do this, introduce a set of Lagrange multipliers Λni for n < i, one for each
constraint equation, and incorporate them into an effective performance index

J = E[eeT]+ΛHT +HΛT = min

where the matrix Λ is strictly upper-triangular. Show that this formulation of the minimiza-
tion problem yields exactly the same solution as Eq. (11.8.7).

11.13 Exponential Moving Average as Wiener Filter. The single EMA filter for estimating the local
level of a signal that we discussed in Chap. 6 admits a nice Wiener-Kalman filtering interpre-
tation. Consider the noisy random walk signal model,

xn+1 = xn +wn
yn = xn + vn

(11.10.1)

wherewn, vn are mutually uncorrelated, zero-mean, white noise signals of variancesQ = σ2
w

and R = σ2
v . Based on the material in Section 12.6, show that the optimum Wiener/Kalman

filter for predicting xn from yn is equivalent to the exponential smoother, that is, show that
it is given by,

x̂n+1/n = f x̂n/n−1 + (1− f)yn (11.10.2)

so that the forgetting-factor parameter λ of EMA is identified as the closed-loop parameter
f of the Kalman filter, and show further that f is given in terms of Q,R as follows,

1− f =
√
Q2 + 4QR−Q

2R

Show also the x̂n+1/n = x̂n/n.

a. For the following values σw = 0.1 and σv = 1, generate N = 300 samples of xn, yn
from Eq. (11.10.1) and run yn through the equivalent Kalman filter of Eq. (11.10.2)
to compute x̂n/n−1. On the same graph, plot all three signals yn, xn, x̂n/n−1 versus
0 ≤ n ≤ N − 1. An example graph is shown at the end.

b. A possible way to determine λ or f from the data yn is as follows. Assume a tentative
value for λ, compute x̂n/n−1, then the error en/n−1 = xn− x̂n/n−1, and the mean-square
error:

MSE(λ)=
∑
n
e2
n/n−1

Repeat the calculation of MSE(λ) over a range of λs, for example, 0.80 ≤ λ ≤ 0.95,
chosen such that the interval [0.80,0.95] contain the true λ. Then find that λ that
minimizes MSE(λ), which should be close to the true value.

Because the estimated λ depends on the particular realization of the model (11.10.1),
generate 20 different realizations of the pair xn, yn with the same Q,R, and for each
realization carry out the estimate of λ as described above, and finally form the average
of the 20 estimated λs. Discuss if this method generates an acceptable estimate of λ
or f .

c. Repeat part (b), by replacing the MSE by the mean-absolute-error:

MAE(λ)=
∑
n
|en/n−1|

508 11. Wiener Filtering

0 50 100 150 200 250 300
−4

−2

0

2

4

6

8

time samples, n

noisy random walk

 observations y

n

 signal x
n

 prediction x
n/n−1

12
Linear Prediction

12.1 Pure Prediction and Signal Modeling

In Sec. 1.17, we discussed the connection between linear prediction and signal modeling.
Here, we rederive the same results by considering the linear prediction problem as a
special case of the Wiener filtering problem, given by Eq. (11.4.6). Our aim is to cast
the results in a form that will suggest a practical way to solve the prediction problem
and hence also the modeling problem. Consider a stationary signal yn having a signal
model

Syy(z)= σ2
εB(z)B(z−1) (12.1.1)

as guaranteed by the spectral factorization theorem. Let Ryy(k) denote the autocorre-
lation of yn :

Ryy(k)= E[yn+kyn]
The linear prediction problem is to predict the current value yn on the basis of all the

past values Yn−1 = {yi , −∞ < i ≤ n− 1}. If we define the delayed signal y1(n)= yn−1,
then the linear prediction problem is equivalent to the optimal Wiener filtering problem
of estimating yn from the related signal y1(n). The optimal estimation filter H(z) is
given by Eq. (11.4.6), where we must identify xn and yn with yn and y1(n) of the present
notation. Using the filtering equation Y1(z)= z−1Y(z), we find that yn and y1(n) have
the same spectral factor B(z)

Sy1y1(z)= (z−1)(z)Syy(z)= Syy(z)= σ2
εB(z)B(z−1)

and also that
Syy1(z)= Syy(z)z = zσ2

εB(z)B(z−1)

Inserting these into Eq. (11.4.6), we find for the optimal filter H(z)

H(z)= 1

σ2
εB(z)

[Syy1(z)
B(z−1)

]
+
= 1

σ2
εB(z)

[
zσ2

εB(z)B(z−1)
B(z−1)

]
+
, or,

H(z)= 1

B(z)
[
zB(z)

]
+ (12.1.2)

510 12. Linear Prediction

The causal instruction can be removed as follows: Noting that B(z) is a causal and
stable filter, we may expand it in the power series

B(z)= 1+ b1z−1 + b2z−2 + b3z−3 + · · ·
The causal part of zB(z) is then[

zB(z)
]
+ = [z+ b1 + b2z−1 + b3z−2 + · · ·]+= b1 + b2z−1 + b3z−2 + · · ·
= z(b1z−1 + b2z−2 + b3z−3 + · · ·) = z(B(z)−1

)
The prediction filter H(z) then becomes

H(z)= 1

B(z)
z
(
B(z)−1

) = z[
1− 1

B(z)

]
(12.1.3)

The input to this filter is y1(n) and the output is the prediction ŷn/n−1.

Example 12.1.1: Suppose that yn is generated by driving the all-pole filter

yn = 0.9yn−1 − 0.2yn−2 + εn

by zero-mean white noise εn. Find the best predictor ŷn/n−1. The signal model in this case
is B(z)= 1/(1− 0.9z−1 + 0.2z−2) and Eq. (12.1.3) gives

z−1H(z)= 1− 1

B(z)
= 1− (1− 0.9z−1 + 0.2z−2)= 0.9z−1 − 0.2z−2

The I/O equation for the prediction filter is obtained by

Ŷ(z)= H(z)Y1(z)= z−1H(z)Y(z)= [
0.9z−1 − 0.2z−2

]
Y(z)

and in the time domain
ŷn/n−1 = 0.9yn−1 − 0.2yn−2

Example 12.1.2: Suppose that

Syy(z)= (1− 0.25z−2)(1− 0.25z2)
(1− 0.8z−1)(1− 0.8z)

Determine the best predictor ŷn/n−1. Here, the minimum phase factor is

B(z)= 1− 0.25z−2

1− 0.8z−1

and therefore the prediction filter is

z−1H(z)= 1− 1

B(z)
= 1− 1− 0.8z−1

1− 0.25z−2
= 0.8z−1 − 0.25z−2

1− .25z−2

The I/O equation of this filter is conveniently given recursively by the difference equation

ŷn/n−1 = 0.25ŷn−2/n−3 + 0.8yn−1 − 0.25yn−2 ��

12.1. Pure Prediction and Signal Modeling 511

The prediction error
en/n−1 = yn − ŷn/n−1

is identical to the whitening sequence εn driving the signal model (12.1.1) of yn, indeed,

E(z) = Y(z)−Ŷ(z)= Y(z)−H(z)Y1(z)= Y(z)−H(z)z−1Y(z)

= [
1− z−1H(z)

]
Y(z)= 1

B(z)
Y(z)= ε(z)

Thus, in accordance with the results of Sec. 1.13 and Sec. 1.17

en/n−1 = yn − ŷn/n−1 = εn (12.1.4)

Fig. 12.1.1 Linear Predictor.

An overall realization of the linear predictor is shown in Fig. 12.1.1. The indicated
dividing line separates the linear predictor into the Wiener filtering part and the input
part which provides the proper input signals to the Wiener part. The transfer function
from yn to en/n−1 is the whitening inverse filter

A(z)= 1

B(z)
= 1− z−1H(z)

which is stable and causal by the minimum-phase property of the spectral factorization
(12.1.1). In the z-domain we have

E(z)= ε(z)= A(z)Y(z)

and in the time domain

en/n−1 = εn =
∞∑
m=0

amyn−m = yn + a1yn−1 + a2yn−2 + · · ·

The predicted estimate ŷn/n−1 = yn − en/n−1 is

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · ·

]
These results are identical to Eqs. (1.17.2) and (1.17.3). The relationship noted above

between linear prediction and signal modeling can also be understood in terms of the

512 12. Linear Prediction

gapped-function approach of Sec. 11.7. Rewriting Eq. (12.1.1) in terms of the prediction-
error filter A(z) we have

Syy(z)= σ2
ε

A(z)A(z−1)
(12.1.5)

from which we obtain

A(z)Syy(z)= σ2
ε

A(z−1)
(12.1.6)

Since we have the filtering equation ε(z)= A(z)Y(z), it follows that

Sεy(z)= A(z)Syy(z)
and in the time domain

Rey(k)= E[εnyn−k]=
∞∑
i=0

aiRyy(k− i) (12.1.7)

which is recognized as the gapped function (11.7.1). By construction, εn is the orthog-
onal complement of yn with respect to the entire past subspace Yn−1 = {yn−k, k =
1,2, . . . }, therefore, εn will be orthogonal to each yn−k for k = 1,2, These are pre-
cisely the gap conditions. Because the prediction is based on the entire past, the gapped
function develops an infinite right-hand side gap. Thus, Eq. (12.1.7) implies

Rey(k)= E[εnyn−k]=
∞∑
i=0

aiRyy(k− i)= 0 , for all k = 1,2, . . . (12.1.8)

The same result, of course, also follows from the z-domain equation (12.1.6). Both
sides of the equation are stable, but since A(z) is minimum-phase, A(z−1) will be
maximum phase, and therefore it will have a stable but anticausal inverse 1/A(z−1).
Thus, the right-hand side of Eq. (12.1.6) has no strictly causal part. Equating to zero all
the coefficients of positive powers of z−1 results in Eq. (12.1.8).

The value of the gapped function at k = 0 is equal to σ2
ε . Indeed, using the gap

conditions (12.1.8) we find

σ2
ε = E[ε2

n]= E
[
εn(yn + a1yn−1 + a2yn−2 + · · ·)

]
= Rεy(0)+a1Rεy(1)+a2Rεy(2)+· · · = Rεy(0)= E[εnyn]

Using Eq. (12.1.7) with k = 0 and the symmetry property Ryy(i)= Ryy(−i), we find

σ2
ε = E[ε2

n]= E[εnyn]= Ryy(0)+a1Ryy(1)+a2Ryy(2)+· · · (12.1.9)

Equations (12.1.8) and (12.1.9) may be combined into one:

∞∑
i=0

aiRyy(k− i)= σ2
εδ(k) , for all k ≥ 0 (12.1.10)

which can be cast in the matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) Ryy(3) · · ·
Ryy(1) Ryy(0) Ryy(1) Ryy(2) · · ·
Ryy(2) Ryy(1) Ryy(0) Ryy(1) · · ·
Ryy(3) Ryy(2) Ryy(1) Ryy(0) · · ·

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

a3

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

0
0
0
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12.1.11)

12.2. Autoregressive Models 513

These equations are known as the normal equations of linear prediction [915–928].
They provide the solution to both the signal modeling and the linear prediction prob-
lems. They determine the model parameters {a1, a2, . . . ;σ2

ε} of the signal yn directly in
terms of the experimentally accessible quantities Ryy(k). To render them computation-
ally manageable, the infinite matrix equation (12.1.11) must be reduced to a finite one,
and furthermore, the quantities Ryy(k)must be estimated from actual data samples of
yn. We discuss these matters next.

12.2 Autoregressive Models

In general, the number of prediction coefficients {a1, a2, . . . } is infinite since the pre-
dictor is based on the infinite past. However, there is an important exception to this;
namely, when the process yn is autoregressive. In this case, the signal model B(z) is an
all-pole filter of the type

B(z)= 1

A(z)
= 1

1+ a1z−1 + a2z−2 + · · · + apz−p (12.2.1)

which implies that the prediction filter is a polynomial

A(z)= 1+ a1z−1 + a2z−2 + · · · + apz−p (12.2.2)

The signal generator for yn is the following difference equation, driven by the un-
correlated sequence εn :

yn + a1yn−1 + a2yn−2 + · · · + apyn−p = εn (12.2.3)

and the optimal prediction of yn is simply given by:

ŷn/n−1 = −
[
a1yn−1 + a2yn−2 + · · · + apyn−p

]
(12.2.4)

In this case, the best prediction of yn depends only on the past p samples {yn−1,
yn−2, . . . , yn−p}. The infinite set of equations (12.1.10) or (12.1.11) are still satisfied even
though only the first p+ 1 coefficients {1, a1, a2, . . . , ap} are nonzero.

The (p+ 1)×(p+ 1) portion of Eq. (12.1.11) is sufficient to determine the (p+ 1)
model parameters {a1, a2, . . . , ap;σ2

ε} :⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ryy(0) Ryy(1) Ryy(2) · · · Ryy(p)
Ryy(1) Ryy(0) Ryy(1) · · · Ryy(p− 1)
Ryy(2) Ryy(1) Ryy(0) · · · Ryy(p− 2)

...
...

...
. . .

...
Ryy(p) Ryy(p− 1) Ryy(p− 2) · · · Ryy(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

...
ap

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12.2.5)

Such equations may be solved efficiently by Levinson’s algorithm, which requires
O(p2) operations and O(p) storage locations to obtain the ais instead of O(p3) and
O(p2), respectively, that would be required if the inverse of the autocorrelation matrix

514 12. Linear Prediction

Ryy were to be computed. The finite set of model parameters {a1, a2, . . . , ap;σ2
ε} de-

termines the signal model of yn completely. Setting z = ejω into Eq. (12.1.5)) we find a
simple parametric representation of the power spectrum of the AR signal yn

Syy(ω)= σ2
ε∣∣A(ω)∣∣2 =

σ2
ε∣∣1+ a1e−jω + a2e−2jω + · · · + ape−jωp

∣∣2 (12.2.6)

In practice, the normal equations (12.2.5) provide a means of determining approx-
imate estimates for the model parameters {a1, a2, . . . , ap;σ2

ε} . Typically, a block of
length N of recorded data is available

y0, y1, y2, . . . , yN−1

There are many different methods of extracting reasonable estimates of the model
parameters using this block of data. We mention: (1) the autocorrelation or Yule-Walker
method, (2) the covariance method, and (3) Burg’s method. There are also some varia-
tions of these methods. The first method, the Yule-Walker method, is perhaps the most
obvious and straightforward one. In the normal equations (12.2.5), one simply replaces
the ensemble autocorrelations Ryy(k) by the corresponding sample autocorrelations
computed from the given block of data; that is,

R̂yy(k)= 1

N

N−1−k∑
n=0

yn+kyn , for 0 ≤ k ≤ p (12.2.7)

where only the first p + 1 lags are needed in Eq. (12.2.5). We must have, of course,
p ≤ N − 1. As discussed in Sec. 1.13, the resulting estimates of the model parameters
{â1, â2, . . . , âp; σ̂2

ε} may be used now in a number of ways; examples include obtaining
an estimate of the power spectrum of the sequence yn

Ŝyy(ω)= σ̂2
ε∣∣Â(ω)∣∣2 =

σ̂2
ε∣∣1+ â1e−jω + â2e−2jω + · · · + âpe−jωp

∣∣2

or, representing the block ofN samples yn in terms of a few (i.e., p+1) filter parameters.
To synthesize the original samples one would generate white noise εn of variance σ̂2

ε
and send it through the generator filter whose coefficients are the estimated values; that
is, the filter

B̂(z)= 1

Â(z)
= 1

1+ â1z−1 + â2z−2 + · · · + âpz−p
The Yule-Walker analysis procedure, also referred to as the autocorrelation method

of linear prediction [917], is summarized in Fig. 12.2.1.

12.3 Linear Prediction and the Levinson Recursion

In the last section, we saw that if the signal being predicted is autoregressive of order
p, then the optimal linear predictor collapses to a pth order predictor. The infinite di-
mensional Wiener filtering problem collapses to a finite dimensional one. A geometrical
way to understand this property is to say that the projection of yn on the subspace

12.3. Linear Prediction and the Levinson Recursion 515

Fig. 12.2.1 Yule-Walker Analysis Algorithm.

spanned by the entire past {yn−i , 1 ≤ i < ∞} is the same as the projection of yn onto
the subspace spanned only by the past p samples; namely, {yn−i , 1 ≤ i ≤ p}. This is a
consequence of the difference equation (12.2.3) generating yn.

If the process yn is not autoregressive, these two projections will be different. For
any given p, the projection of yn onto the past p samples will still provide the best linear
prediction of yn that can be made on the basis of these p samples. As p increases, more
and more past information is taken into account, and we expect the prediction of yn
to become better and better in the sense of yielding a smaller mean-square prediction
error.

In this section, we consider the finite-past prediction problem and discuss its effi-
cient solution via the Levinson recursion [915–928]. For sufficiently large values of p, it
may be considered to be an adequate approximation to the full prediction problem and
hence also to the modeling problem.

Consider a stationary time series yn with autocorrelation functionR(k)= E[yn+kyn].
For any given p, we seek the best linear predictor of the form

ŷn = −
[
a1yn−1 + a2yn−2 + · · · + apyn−p

]
(12.3.1)

The p prediction coefficients {a1, a2, . . . , ap} are chosen to minimize the mean-
square prediction error

E = E[e2
n] (12.3.2)

where en is the prediction error

en = yn − ŷn = yn + a1yn−1 + a2yn−2 + · · · + apyn−p (12.3.3)

Differentiating Eq. (12.3.2) with respect to each coefficient ai, i = 1,2, . . . , p, yields
the orthogonality equations

E[enyn−i]= 0 , for i = 1,2, . . . , p (12.3.4)

which express the fact that the optimal predictor ŷn is the projection onto the span of
the past p samples; that is, {yn−i , i = 1,2, . . . , p}. Inserting the expression (12.3.3) for
en into Eq. (12.3.4), we obtain p linear equations for the coefficients

p∑
j=0

ajE[yn−jyn−i]=
p∑
j=0

R(i− j)aj = 0 , for i = 1,2, . . . , p (12.3.5)

516 12. Linear Prediction

Using the conditions (12.3.4) we also find for the minimized value of

σ2
e = E = E[e2

n]= E[enyn]=
p∑
j=0

R(j)aj (12.3.6)

Equations (12.3.5) and (12.3.6) can be combined into the (p+1)×(p+1)matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎣

R(0) R(1) R(2) · · · R(p)
R(1) R(0) R(1) · · · R(p− 1)
R(2) R(1) R(0) · · · R(p− 2)

...
...

...
. . .

...
R(p) R(p− 1) R(p− 2) · · · R(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

...
ap

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
e

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12.3.7)

which is identical to Eq. (12.2.5) for the autoregressive case. It is also the truncated
version of the infinite matrix equation (12.1.11) for the full prediction problem.

Instead of solving the normal equations (12.3.7) directly, we would like to embed
this problem into a whole class of similar problems; namely, those of determining the
best linear predictors of orders p = 1, p = 2, p = 3, . . . , and so on. This approach will
lead to Levinson’s algorithm and to the so-called lattice realizations of linear prediction
filters. Pictorially this class of problems is illustrated below

where [1, a11], [1, a21, a22], [1, a31, a32, a33], . . . , represent the best predictors of or-
ders p = 1,2,3, . . . , respectively. It was necessary to attach an extra index indicating the
order of the predictor. Levinson’s algorithm is an iterative procedure that constructs
the next predictor from the previous one. In the process, all optimal predictors of lower
orders are also computed. Consider the predictors of orders p and p+ 1, below

yn−p−1 yn−p · · · yn−2 yn−1 yn
app · · · ap2 ap1 1

ap+1,p+1 ap+1,p · · · ap+1,2 ap+1,1 1

ep(n)= yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p
ep+1(n)= yn + ap+1,1yn−1 + ap+1,2yn−2 + · · · + ap+1,p+1yn−p−1

12.3. Linear Prediction and the Levinson Recursion 517

Our objective is to construct the latter in terms of the former. We will use the ap-
proach of Robinson and Treitel, based on gapped functions [925]. Suppose that the best
predictor of order p, [1, ap1, ap2, . . . , app], has already been constructed. The corre-
sponding gapped function is

gp(k)= E[ep(n)yn−k]= E
⎡⎣⎛⎝ p∑

i=0

apiyn−i

⎞⎠yn−k
⎤⎦ = p∑

i=0

apiR(k− i) (12.3.8)

It has a gap of length p as shown , that is,

gp(k)= 0 , for 1 ≤ k ≤ p

These gap conditions are the same as the orthogonality equations (12.3.4). Using
gp(k) we now construct a new gapped function gp+1(k) of gap p+ 1. To do this, first
we reflect gp(k) about the origin; that is, gp(k)→ gp(−k). The reflected function has
a gap of length p but at negatives times. A delay of (p+ 1) time units will realign this
gap with the original gap. This follows because if 1 ≤ k ≤ p, then 1 ≤ p + 1 − k ≤ p.
The reflected-delayed function will be gp(p+1−k). These operations are shown in the
following figure

Since both gp(k) and gp(p+1−k) have exactly the same gap, it follows that so will
any linear combination of them. Therefore,

gp+1(k)= gp(k)−γp+1gp(p+ 1− k) (12.3.9)

will have a gap of length at least p. We now select the parameter γp+1 so that gp+1(k)
acquires an extra gap point; its gap is now of length p+ 1. The extra gap condition is

gp+1(p+ 1)= gp(p+ 1)−γp+1gp(0)= 0

which may be solved for

γp+1 = gp(p+ 1)
gp(0)

Evaluating Eq. (12.3.8) at k = p+ 1, and using the fact that the value of the gapped
function at k = 0 is the minimized value of the mean-squared error, that is,

Ep = E
[
e2
p(n)

] = E[ep(n)yn]= gp(0) (12.3.10)

518 12. Linear Prediction

we finally find

γp+1 = ΔpEp (12.3.11)

where we set Δp = gp(p+ 1)

Δp =
p∑
i=0

apiR(p+ 1− i)= [
R(p+ 1),R(p),R(p− 1), . . . , R(1)

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
app

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12.3.12)

The coefficients γp+1 are called reflection, PARCOR, or Schur coefficients. This ter-
minology will become clear later. Evaluating Eq. (12.3.9) at k = 0 and using gp(p+ 1)=
γp+1gp(0), we also find a recursion for the quantity Ep+1 = gp+1(0)

Ep+1 = gp+1(0)= gp(0)−γp+1gp(p+ 1)= gp(0)−γp+1 · γp+1gp(0) , or,

Ep+1 = (1− γ2
p+1)Ep (12.3.13)

This represents the minimum value of the mean-square prediction error E
[
e2
p+1(n)

]
for the predictor of order p + 1. Since both Ep and Ep+1 are nonnegative, it follows
that the factor (1 − γ2

p+1) will be nonnegative and less than one. It represents the
improvement in the prediction obtained by using a predictor of order p+1 instead of a
predictor of order p. It also follows that γp+1 has magnitude less than one, |γp+1| ≤ 1.

To find the new prediction coefficients, ap+1,i, we use the fact that the gapped func-
tions are equal to the convolution of the corresponding prediction-error filters with the
autocorrelation function of yn :

gp(k)=
p∑
i=0

apiR(k− i) ⇒ Gp(z)= Ap(z)Syy(z)

gp+1(k)=
p+1∑
i=0

ap+1,iR(k− i) ⇒ Gp+1(z)= Ap+1(z)Syy(z)

where Syy(z) represents the power spectral density of yn. Taking z-transforms of both
sides of Eq. (12.3.9), we find

Gp+1(z)= Gp(z)−γp+1z−(p+1)Gp(z−1) , or,

Ap+1(z)Syy(z)= Ap(z)Syy(z)−γp+1z−(p+1)Ap(z−1)Syy(z−1)

where we used the fact that the reflected gapped function gp(−k) has z-transform
Gp(z−1), and therefore the delayed (by p + 1) as well as reflected gapped function
gp(p+1−k) has z-transform z−(p+1)Gp(z−1). Since Syy(z)= Syy(z−1) because of the
symmetry relations R(k)= R(−k), it follows that Syy(z) is a common factor in all the
terms. Therefore, we obtain a relationship between the new best prediction-error filter
Ap+1(z)and the old one Ap(z)

Ap+1(z)= Ap(z)−γp+1z−(p+1)Ap(z−1) (Levinson recursion) (12.3.14)

12.3. Linear Prediction and the Levinson Recursion 519

Taking inverse z-transforms, we find⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap+1,1
ap+1,2

...
ap+1,p
ap+1,p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
app
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
app
ap,p−1

...
ap1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.3.15)

which can also be written as

ap+1,i = api − γp+1ap,p+1−i , for 1 ≤ i ≤ p
ap+1,p+1 = −γp+1

Introducing the reverse polynomial ARp(z)= z−pAp(z−1), we may write Eq. (12.3.14) as

Ap+1(z)= Ap(z)−γp+1z−1ARp(z) (12.3.16)

Taking the reverse of both sides, we find

Ap+1(z−1)= Ap(z−1)−γp+1zp+1Ap(z)

ARp+1(z)= z−(p+1)Ap+1(z−1)= z−(p+1)Ap(z−1)−γp+1Ap(z) , or,

ARp+1(z)= z−1ARp(z)−γp+1Ap(z) (12.3.17)

Equation (12.3.17) is, in a sense, redundant, but it will prove convenient to think
of the Levinson recursion as a recursion on both the forward, Ap(z), and the reverse,
ARp(z), polynomials. Equations (12.3.16) and Eq. (12.3.17) may be combined into a 2×2
matrix recursion equation, referred to as the forward Levinson recursion:[

Ap+1(z)
ARp+1(z)

]
=

[
1 −γp+1z−1

−γp+1 z−1

][
Ap(z)
ARp(z)

]
(forward recursion) (12.3.18)

The recursion is initialized at p = 0 by setting

A0(z)= AR0 (z)= 1 and E0 = R(0)= E[y2
n] (12.3.19)

which corresponds to no prediction at all. We summarize the computational steps of
the Levinson algorithm:

1. Initialize at p = 0 using Eq. (12.3.19).

2. At stage p, the filter Ap(z) and error Ep are available.

3. Using Eq. (12.3.11), compute γp+1.

4. Using Eq. (12.3.14) or Eq. (12.3.18), determine the new polynomial Ap+1(z).
5. Using Eq. (12.3.13), update the mean-square prediction error to Ep+1.

6. Go to stage p+ 1.

520 12. Linear Prediction

The iteration may be continued until the final desired order is reached. The depen-
dence on the autocorrelation R(k) of the signal yn is entered through Eq. (12.3.11) and
E0 = R(0). To reach stage p, only the p+1 autocorrelation lags {R(0),R(1), . . . , R(p)}
are required. At the pth stage, the iteration already has provided all the prediction fil-
ters of lower order, and all the previous reflection coefficients. Thus, an alternative
parametrization of the pth order predictor is in terms of the sequence of reflection
coefficients {γ1, γ2, . . . , γp} and the prediction error Ep

{Ep, ap1, ap2, . . . , app} � {Ep,γ1, γ2, . . . , γp}

One may pass from one parameter set to another. And both sets are equivalent
to the autocorrelation set {R(0),R(1), . . . , R(p)}. The alternative parametrization of
the autocorrelation function R(k) of a stationary random sequence in terms of the
equivalent set of reflection coefficients is a general result [929,930], and has also been
extended to the multichannel case [931].

If the process yn is autoregressive of order p, then as soon as the Levinson recursion
reaches this order, it will provide the autoregressive coefficients {a1, a2, . . . , ap} which
are also the best prediction coefficients for the full (i.e., based on the infinite past)
prediction problem. Further continuation of the Levinson recursion will produce nothing
new—all prediction coefficients (and all reflection coefficients) of order higher than p
will be zero, so that Aq(z)= Ap(z) for all q > p.

The four functions lev, frwlev, bkwlev, and rlev allow the passage from one pa-
rameter set to another. The function lev is an implementation of the computational
sequence outlined above. The input to the function is the final desired order of the
predictor, sayM, and the vector of autocorrelation lags {R(0),R(1), ..., R(M)}. Its out-
put is the lower-triangular matrix L whose rows are the reverse of all the lower order
prediction-error filters. For example, forM = 4 the matrix L would be

L =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
a11 1 0 0 0
a22 a21 1 0 0
a33 a32 a31 1 0
a44 a43 a42 a41 1

⎤⎥⎥⎥⎥⎥⎥⎦ (12.3.20)

The first column of L contains the negatives of all the reflection coefficients. This fol-
lows from the Levinson recursion (12.3.14) which implies that the negative of the highest
coefficient of the pth prediction-error filter is the pth reflection coefficient; namely,

γp = −app , p = 1,2, . . . ,M (12.3.21)

This choice for L is justified below and in Sec. 12.9. The function lev also produces
the vector of mean-square prediction errors {E0, E1, . . . , EM} according to the recursion
(12.3.13).

The function frwlev is an implementation of the forward Levinson recursion (12.3.18)
or (12.3.15). Its input is the set of reflection coefficients {γ1, γ2, . . . , γM} and its output
is the set of all prediction-error filters up to order M, that is, Ap(z), p = 1,2, . . . ,M.
Again, this output is arranged into the matrix L.

12.3. Linear Prediction and the Levinson Recursion 521

The function bkwlev is the inverse operation to frwlev. Its input is the vector of
prediction-error filter coefficients [1, aM1, aM2, . . . , aMM] of the final order M, and its
output is the matrix L containing all the lower order prediction-error filters. The set of
reflection coefficients are extracted from the first column of L. This function is based
on the inverse of the matrix equation (12.3.18). Shifting p down by one unit, we write
Eq. (12.3.18) as [

Ap(z)
ARp(z)

]
=

[
1 −γpz−1

−γp z−1

][
Ap−1(z)
ARp−1(z)

]
(12.3.22)

Its inverse is[
Ap−1(z)
ARp−1(z)

]
= 1

1− γ2
p

[
1 γp
γpz z

][
Ap(z)
ARp(z)

]
(backward recursion) (12.3.23)

At each stage p, start withAp(z) and extract γp = −app from the highest coefficient
ofAp(z). Then, use Eq. (12.3.23) to obtain the polynomialAp−1(z). The iteration begins
at the given orderM and proceeds downwards to p =M − 1,M − 2, . . . ,1,0.

The function rlev generates the set of autocorrelation lags {R(0),R(1), ..., R(M)}
from the knowledge of the final prediction-error filter AM(z) and final prediction error
EM. It calls bkwlev to generate all the lower order prediction-error filters, and then
it reconstructs the autocorrelation lags using the gapped function condition gp(p)=∑p
i=0 apiR(p− i)= 0, which may be solved for R(p) in terns of R(p− i), i = 1,2, . . . , p,

as follows:

R(p)= −
p∑
i=1

apiR(p− i) , p = 1,2, . . . ,M (12.3.24)

For example, the first few iterations of Eq. (12.3.24) will be:

R(1) = −[
a11R(0)

]
R(2) = −[

a21R(1)+a22R(0)
]

R(3) = −[
a31R(2)+a32R(1)+a33R(0)

]
To get this recursion started, the value of R(0) may be obtained from Eq. (12.3.13).

Using Eq. (12.3.13) repeatedly, and E0 = R(0) we find

EM = (1− γ2
1)(1− γ2

2)· · · (1− γ2
M)R(0) (12.3.25)

Since the reflection coefficients are already known (from the call to bkwlev) and EM
is given, this equation provides the right value for R(0).

The function schur, based on the Schur algorithm and discussed in Sec. 12.10, is an
alternative to lev. The logical interconnection of these functions is shown below.

522 12. Linear Prediction

Example 12.3.1: Given the autocorrelation lags

{R(0),R(1),R(2),R(3),R(4)} = {128,−64,80,−88,89}

Find all the prediction-error filters Ap(z) up to order four, the four reflection coefficients,
and the corresponding mean-square prediction errors. Below, we simply state the results
obtained using the function lev:

A1(z) = 1+ 0.5z−1

A2(z) = 1+ 0.25z−1 − 0.5z−2

A3(z) = 1− 0.375z−2 + 0.5z−3

A4(z) = 1− 0.25z−1 − 0.1875z−2 + 0.5z−3 − 0.5z−4

The reflection coefficients are the negatives of the highest coefficients; thus,

{γ1, γ2, γ3, γ4} = {−0.5, 0.5, −0.5, 0.5}

The vector of mean-squared prediction errors is given by

{E0, E1, E2, E3, E4} = {128, 96, 72, 54, 40.5}

Sending the above vector of reflection coefficients through the function frwlev would gen-
erate the above set of polynomials. Sending the coefficients of A4(z) through bkwlev
would generate the same set of polynomials. Sending the coefficients of A4(z) and E4 =
40.5 through rlev would recover the original autocorrelation lagsR(k), k = 0,1,2,3,4. ��

The Yule-Walker method (see Sec. 12.2) can be used to extract the linear prediction
parameters from a given set of signal samples. From a given length-N block of data

y0, y1, y2, . . . , yN−1

compute the sample autocorrelations {R̂(0), R̂(1), . . . , R̂(M)} using, for example, Eq. (12.2.7),
and send them through the Levinson recursion. The yw implements the Yule-Walker
method. The input to the function is the data vector of samples {y0, y1, . . . , yN−1} and
the desired final orderM of the predictor. Its output is the set of all prediction-error fil-
ters up to orderM, arranged in the matrix L, and the vector of mean-squared prediction
errors up to orderM, that is, {E0, E1, . . . , EM}
Example 12.3.2: Given the signal samples

{y0, y1, y2, y3, y4} = {1,1,1,1,1}

determine all the prediction-error filters up to order four. Using the fourth order predictor,
predict the sixth value in the above sequence, i.e., the value of y5.

The sample autocorrelation of the above signal is easily computed using the methods of
Chapter 1. We find (ignoring the 1/N normalization factor):

{R̂(0), R̂(1), R̂(2), R̂(3), {R̂(4)} = {5,4,3,2,1}

12.3. Linear Prediction and the Levinson Recursion 523

Sending these lags through the function lev we find the prediction-error filters:

A1(z) = 1− 0.8z−1

A2(z) = 1− 0.889z−1 + 0.111z−2

A3(z) = 1− 0.875z−1 + 0.125z−3

A4(z) = 1− 0.857z−1 + 0.143z−4

Therefore, the fourth order prediction of yn given by Eq. (12.3.1) is

ŷn = 0.857yn−1 − 0.143yn−4

which gives ŷ5 = 0.857− 0.143 = 0.714. ��

The results of this section can also be derived from those of Sec. 1.8 by invoking
stationarity and making the proper identification of the various quantities. The data
vector y and the subvectors ȳ and ỹ are identified with y = yp+1(n), ȳ = yp(n), and
ỹ = yp(n− 1), where

yp+1(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

...
yn−p
yn−p−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , yp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ , yp(n− 1)=

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−p−1

⎤⎥⎥⎥⎥⎥⎦ (12.3.26)

It follows from stationarity that the autocorrelation matrices of these vectors are
independent of the absolute time instant n; therefore, we write

Rp = E[yp(n)yp(n)T]= E[yp(n− 1)yp(n− 1)T], Rp+1 = E[yp+1(n)yp+1(n)T]

It is easily verified thatRp is the order-p autocorrelation matrix defined in Eq. (12.3.7)
and that the order-(p+1) autocorrelation matrixRp+1 admits the block decompositions

Rp+1 =

⎡⎢⎢⎢⎢⎢⎣
R(0) R(1) · · · R(p+ 1)
R(1)

... Rp
R(p+ 1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

R(p+ 1)

Rp
...

R(1)
R(p+ 1) · · · R(1) R(0)

⎤⎥⎥⎥⎥⎥⎦
It follows, in the notation of Sec. 1.8, that R̄ = R̃ = Rp and ρa = ρb = R(0), and

ra =

⎡⎢⎢⎣
R(1)

...
R(p+ 1)

⎤⎥⎥⎦ , rb =

⎡⎢⎢⎣
R(p+ 1)

...
R(1)

⎤⎥⎥⎦
Thus, ra and rb are the reverse of each other. It follows that the backward predictors

are the reverse of the forward ones. Therefore, Eq. (12.3.14) is the same as Eq. (1.8.40),
with the identifications

a = ap+1 , b = bp+1 , ā = ã = ap , b̄ = b̃ = bp

524 12. Linear Prediction

where

ap+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ap+1,1

...
ap+1,p
ap+1,p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , bp+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ap+1,p+1

ap+1,p
...

ap+1,1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ap =

⎡⎢⎢⎢⎢⎢⎣
1
ap1

...
app

⎤⎥⎥⎥⎥⎥⎦ , bp =

⎡⎢⎢⎢⎢⎢⎣
app

...
ap1

1

⎤⎥⎥⎥⎥⎥⎦

Symbolically, bp = aRp , bp+1 = aRp+1. We have Ēa = Ẽb = Ep and γa = γb = γp+1.
Thus, Eq. (12.3.15) may be written as

ap+1 =
[

ap
0

]
− γp+1

[
0
bp

]
=

[
ap
0

]
− γp+1

[
0
aRp

]
(12.3.27)

The normal Eqs. (12.3.7) can be written for orders p and p + 1 in the compact form of
Eqs. (1.8.38) and (1.8.12)

Rpap = Epup , Rp+1ap+1 = Ep+1up+1 , up =
[

1
0

]
, up+1 =

[
up
0

]
(12.3.28)

Recognizing that Eq. (12.3.12) can be written as Δp = aTp rb, it follows that the re-
flection coefficient equation (12.3.11) is the same as (1.8.42). The rows of the matrix L
defined by Eq. (12.3.20) are the reverse of the forward predictors; that is, the backward
predictors of successive orders. Thus, L is the same as that defined in Eq. (1.8.13). The
rows of the matrix U defined in Eq. (1.8.30) are the forward predictors, with the first
row being the predictor of highest order. For example,

U =

⎡⎢⎢⎢⎢⎢⎢⎣
1 a41 a42 a43 a44

0 1 a31 a32 a33

0 0 1 a21 a22

0 0 0 1 a11

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Comparing L with U, we note that one is obtained from the other by reversing its

rows and then its columns; formally, U = JLJ, where J is the corresponding reversing
matrix.

12.4 Levinson’s Algorithm in Matrix Form

In this section, we illustrate the mechanics of the Levinson recursion—cast in matrix
form—by explicitly carrying out a few of the recursions given in Eq. (12.3.15). The
objective of such recursions is to solve normal equations of the type⎡⎢⎢⎢⎣

R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E3

0
0
0

⎤⎥⎥⎥⎦

12.4. Levinson’s Algorithm in Matrix Form 525

for the unknowns {E3, a31, a32, a33}. The corresponding prediction-error filter is

A3(z)= 1+ a31z−1 + a32z−2 + a33z−3

and the minimum value of the prediction error is E3. The solution is obtained in an
iterative manner, by solving a family of similar matrix equations of lower dimensionality.
Starting at the upper left corner,

the Rmatrices are successively enlarged until the desired dimension is reached (4×4 in
this example). Therefore, one successively solves the matrix equations

[R0][1]= [E0] ,
[
R0 R1

R1 R0

][
1
a11

]
=

[
E1

0

]
,

⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ E2

0
0

⎤⎥⎦
The solution of each problem is obtained in terms of the solution of the previous

one. In this manner, the final solution is gradually built up. In the process, one also
finds all the lower order prediction-error filters.

The iteration is based on two key properties of the autocorrelation matrix: first,
the autocorrelation matrix of a given size contains as subblocks all the lower order
autocorrelation matrices; and second, the autocorrelation matrix is reflection invariant.
That is, it remains invariant under interchange of its columns and then its rows. This
interchanging operation is equivalent to the similarity transformation by the “reversing”
matrix J having 1’s along its anti-diagonal, e.g.,

J =

⎡⎢⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦ (12.4.1)

The invariance property means that the autocorrelation matrix commutes with the
matrix J

JRJ−1 = R (12.4.2)

This property immediately implies that if the matrix equation is satisfied:⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎥⎦

526 12. Linear Prediction

then the following equation is also satisfied:⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a3

a2

a1

a0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b3

b2

b1

b0

⎤⎥⎥⎥⎦
The steps of the Levinson algorithm are explicitly as follows:

Step 0

Solve R0 ·1 = E0. This defines E0. Then enlarge to the next size by padding a zero, that
is, [

R0 R1

R1 R0

][
1
0

]
=

[
E0

Δ0

]
, this defines Δ0. Then, also

[
R0 R1

R1 R0

][
0
1

]
=

[
Δ0

E0

]
, by reversal invariance

These are the preliminaries to Step 1.

Step 1

We wish to solve [
R0 R1

R1 R0

][
1
a11

]
=

[
E1

0

]
(12.4.3)

Try an expression of the form[
1
a11

]
=

[
1
0

]
− γ1

[
0
1

]

Acting on both sides by

[
R0 R1

R1 R0

]
and using the results of Step 0, we obtain[

R0 R1

R1 R0

][
1
a11

]
=

[
R0 R1

R1 R0

][
1
0

]
− γ1

[
R0 R1

R1 R0

][
0
1

]
, or,[

E1

0

]
=

[
E0

Δ0

]
− γ1

[
Δ0

E0

]
, or,

E1 = E0 − γ1Δ0 , 0 = Δ0 − γ1E0 , or

γ1 = Δ0

E0
, E1 = E0 − γ1Δ0 = (1− γ2

1)E0 , where Δ0 = R1

These define γ1 and E1. As a preliminary to Step 2, enlarge Eq. (12.4.3) to the next
size by padding a zero⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 1
a11

0

⎤⎥⎦ =
⎡⎢⎣ E1

0
Δ1

⎤⎥⎦ , this defines Δ1. Then, also

⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 0
a11

1

⎤⎥⎦ =
⎡⎢⎣Δ1

0
E1

⎤⎥⎦ , by reversal invariance

12.4. Levinson’s Algorithm in Matrix Form 527

Step 2

We wish to solve ⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ E2

0
0

⎤⎥⎦ (12.4.4)

Try an expression of the form:⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ 1
a11

0

⎤⎥⎦− γ2

⎡⎢⎣ 0
a11

1

⎤⎥⎦ , with γ2 to be determined

Acting on both sides by the 3×3 autocorrelation matrix and using Step 1, we find⎡⎢⎣ E2

0
0

⎤⎥⎦ =
⎡⎢⎣ E1

0
Δ1

⎤⎥⎦− γ2

⎡⎢⎣Δ1

0
E1

⎤⎥⎦ , or,

E2 = E1 − γ2Δ1 , 0 = Δ1 − γ2E1 , or

γ2 = Δ1

E1
, E2 = (1− γ2

2)E1 , where Δ1 =
[
R2, R1

][
1
a11

]
These define γ2 and E2. As a preliminary to Step 3, enlarge Eq. (12.4.4) to the next

size by padding a zero⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
a21

a22

0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E2

0
0
Δ2

⎤⎥⎥⎥⎦ , this defines Δ2. Then, also

⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
a22

a21

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
Δ2

0
0
E2

⎤⎥⎥⎥⎦ , by reversal invariance

Step 3

We wish to solve ⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E3

0
0
0

⎤⎥⎥⎥⎦ (12.4.5)

Try an expression of the form:⎡⎢⎢⎢⎣
1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
a21

a22

0

⎤⎥⎥⎥⎦− γ3

⎡⎢⎢⎢⎣
0
a22

a21

1

⎤⎥⎥⎥⎦ , with γ3 to be determined

528 12. Linear Prediction

Acting on both sides by the 4×4 autocorrelation matrix and using Step 2, we obtain⎡⎢⎢⎢⎣
E3

0
0
0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
E2

0
0
Δ2

⎤⎥⎥⎥⎦− γ3

⎡⎢⎢⎢⎣
Δ2

0
0
E2

⎤⎥⎥⎥⎦ , or,

E3 = E2 − γ3Δ2 , 0 = Δ2 − γ3E2 , or

γ3 = Δ2

E2
, E3 = (1− γ2

3)E2 , where Δ2 =
[
R3, R2, R1

]⎡⎢⎣ 1
a21

a22

⎤⎥⎦
Clearly, the procedure can be continued to higher and higher orders, as required

in each problem. Note that at each step, we used the order-updating Eqs. (1.8.40) in
conjunction with Eq. (1.8.47).

12.5 Autocorrelation Sequence Extensions

In this section, we discuss the problem of extending an autocorrelation function and
the related issues of singular autocorrelation matrices. The equivalence between an
autocorrelation function and the set of reflection coefficients provides a convenient and
systematic way to (a) test whether a given finite set of numbers are the autocorrelation
lags of a stationary signal and (b) extend a given finite set of autocorrelation lags to
arbitrary lengths while preserving the autocorrelation property.

For a finite set of numbers {R(0),R(1), . . . , R(p)} to be the lags of an autocorre-
lation function, it is necessary and sufficient that all reflection coefficients, extracted
from this set via the Levinson recursion, have magnitude less than one; that is, |γi| < 1,
for i = 1,2, . . . , p, and also that R(0)> 0. These conditions are equivalent to the pos-
itive definiteness of the autocorrelation matrix Rp. The proof follows from the fact
that the positivity of Rp is equivalent to the conditions on the prediction errors Ei > 0,
for i = 1,2, . . . , p. In turn, these conditions are equivalent to E0 = R(0)> 0 and and,
through Eq. (12.3.13), to the reflection coefficients having magnitude less than one.

The problem of extending a finite set {R(0),R(1), . . . , R(p)} of autocorrelation lags
is to find a numberR(p+1) such that the extended set {R(0),R(1), . . . , R(p),R(p+1)}
is still an autocorrelation sequence. This can be done by parametrizing R(p + 1) in
terms of the next reflection coefficient γp+1. Solving Eq. (12.3.12) for R(p + 1) and
using Eq. (12.3.11), we obtain

R(p+ 1)= γp+1Ep −
[
ap1R(p)+ap2R(p− 1)+· · · + appR(1)

]
(12.5.1)

Any number γp+1 in the range−1 < γp+1 < 1 will give rise to an acceptable value for
R(p+1) . The choiceγp+1 = 0 is special and corresponds to the so-called autoregressive
or maximum entropy extension of the autocorrelation function (see Problem 12.16). If
this choice is repeated to infinity, we will obtain the set of reflection coefficients

{γ1, γ2, . . . , γp,0,0, . . . }

12.5. Autocorrelation Sequence Extensions 529

It follows from the Levinson recursion that all prediction-error filters of order greater
than p will remain equal to the pth filter,Ap(z)= Ap+1(z)= Ap+2(z)= · · · . Therefore,
the corresponding whitening filter will beA(z)= Ap(z), that is, an autoregressive model
of order p. With the exception of the above autoregressive extension that leads to an
all-pole signal model, the extendibility conditions |γp+i| < 1, i ≥ 1, do not necessarily
guarantee that the resulting signal model will be a rational (pole-zero) model.

Example 12.5.1: Consider the three numbers {R(0),R(1),R(2)} = {8,4,−1}. The Levinson
recursion gives {γ1, γ2} = {0.5,−0.5} and {E1, E2} = {6, 4.5}. Thus, the above numbers
qualify to be autocorrelation lags. The corresponding prediction-error filters are

a1 =
[

1
a11

]
=

[
1

−0.5

]
, a2 =

⎡⎢⎣ 1
a21

a22

⎤⎥⎦ =
⎡⎢⎣ 1
−0.75

0.5

⎤⎥⎦
The next lag in this sequence can be chosen according to Eq. (12.5.1)

R(3)= γ3E2 −
[
a21R(2)+a22R(1)

] = 4.5γ3 − 2.75

where γ3 is any number in the interval −1 < γ3 < 1 . The resulting possible values of
R(3) are plotted below versus γ3 . In particular, the autoregressive extension corresponds
to γ3 = 0, which gives R(3)= −2.75. ��

The end-points, γp+1 = ±1, of the allowed interval (−1,1) correspond to the two
possible extreme values of R(p+ 1):

R(p+ 1)= ±Ep −
[
ap1R(p)+ap2R(p− 1)+· · · + appR(1)

]
In this case, the corresponding prediction error vanishes Ep+1 = (1− γ2

p+1)Ep = 0.
This makes the resulting order-(p+ 1) autocorrelation matrix Rp+1 singular. The pre-
diction filter becomes either the symmetric (if γp+1 = −1) or antisymmetric (if γp+1 = 1)
combination

ap+1 =
[

ap
0

]
+

[
0
aRp

]
, Ap+1(z)= Ap(z)+z−1ARp(z) , or,

ap+1 =
[

ap
0

]
−

[
0
aRp

]
, Ap+1(z)= Ap(z)−z−1ARp(z)

In either case, it can be shown that the zeros of the polynomial Ap+1(z) lie on
the unit circle, and that the prediction filter ap+1 becomes an eigenvector of Rp+1 with
zero eigenvalue; namely, Rp+1ap+1 = 0. This follows from the normal Eqs. (12.3.28)
Rp+1ap+1 = Ep+1up+1 and Ep+1 = 0.

530 12. Linear Prediction

Example 12.5.2: Consider the extended autocorrelation sequence of Example 12.5.1 defined
by the singular choice γ3 = −1. Then, R(3)= −4.5 − 2.75 = −7.25. The corresponding
order-3 prediction-error filter is computed using the order-2 predictor and the Levinson
recursion

a3 =

⎡⎢⎢⎢⎣
1
a31

a32

a33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.75

0.5
0

⎤⎥⎥⎥⎦− γ3

⎡⎢⎢⎢⎣
0

0.5
−0.75

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤⎥⎥⎥⎦
It is symmetric about its middle. Its zeros, computed as the solutions of (1 − 0.25z−1 −
0.25z−2 + z−3)= (1+ z−1)(1− 1.25z−1 + z−2)= 0 are

z = −1 , z = 5± j√39

8

and lie on the unit circle. Finally, we verify that a3 is an eigenvector of R3 with zero
eigenvalue:

R3a3 =

⎡⎢⎢⎢⎣
8 4 −1 −7.25
4 8 4 −1
−1 4 8 4
−7.25 −1 4 8

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤⎥⎥⎥⎦ = 0 ��

Singular autocorrelation matrices, and the associated symmetric or antisymmetric
prediction filters with zeros on the unit circle, find application in the method of line
spectrum pairs (LSP) of speech analysis [937]. They are also intimately related to the
eigenvector methods of spectrum estimation, such as Pisarenko’s method of harmonic
retrieval, discussed in Sec. 14.2. This connection arises from the property that singular
autocorrelation matrices (with nonsingular principal minors) admit a representation as
a sum of sinusoidal components [938], the frequencies of which are given precisely by
the zeros, on the unit circle, of the corresponding prediction filter. This sinusoidal
representation is equivalent to the eigen-decomposition of the matrix. The prediction
filter can, alternatively, be computed as the eigenvector belonging to zero eigenvalue.
The proof of these results can be derived as a limiting case; namely, the noise-free case,
of the more general eigenvector methods that deal with sinusoids in noise. A direct
proof is suggested in Problem 14.10.

Example 12.5.3: Consider the autocorrelation matrix R =
⎡⎢⎣ 2 1 −1

1 2 1
−1 1 2

⎤⎥⎦. It is easily verified

that the corresponding autocorrelation lags R(k) admit the sinusoidal representation

R(k)= 2 cos(ω1k)= ejω1k + e−jω1k , for k = 0,1,2

where ω1 = π/3. Sending these lags through the Levinson recursion, we find {γ1, γ2} =
{0.5,−1} and {E1, E2} = {1.5, 0}. Thus, R singular. Its eigenvalues are {0, 3, 3}. The
corresponding prediction filters are a1 = [1,−0.5]T and a2 = [1,−1,1]T . It is easily
verified that a2 is an eigenvector ofRwith zero eigenvalue, i.e.,Ra2 = 0. The corresponding
eigenfilter A2(z)= 1 − z−1 + z−2, is symmetric about its middle and has zeros on the

12.5. Autocorrelation Sequence Extensions 531

unit circle coinciding with the sinusoids present in R, namely, z = e±jω1 . The other two
eigenvectors of R are

c =
⎡⎢⎣ 1

cosω1

cos 2ω1

⎤⎥⎦ =
⎡⎢⎣ 1

0.5
−0.5

⎤⎥⎦ , d =
⎡⎢⎣ 0

sinω1

sin 2ω1

⎤⎥⎦ =
⎡⎢⎣ 0√

3/2√
3/2

⎤⎥⎦
both belonging to eigenvalue λ = 3. Their norm is ‖c‖ = ‖d‖ = √3/2. The three eigen-
vectors a2, c,d are mutually orthogonal. It is easily verified that the matrix R may be rep-
resented in the form R = 2ccT + 2ddT , which, after normalizing c and d to unit norm, is
recognized as the eigendecomposition of R, We can also express R in terms of its complex
sinusoidal components in the form R = ss† + s∗sT , where

s = c+ jd =
⎡⎢⎣ 1
ejω1

e2jω1

⎤⎥⎦ , s† = s∗T = [
1, e−jω1 , e−2jω1

]

Example 12.5.4: Similarly, one can verify that the four autocorrelation lags {8, 4, −1, −7.25}
of the singular matrix of Example 12.5.2 can be represented in the sinusoidal form

R(k)= P1ejω1k + P2ejω2k + P3ejω3k , for k = 0,1,2,3

where P1 = 8/13, P2 = P3 = 96/13, and ωi correspond to the zeros of the prediction
filter a3, namely,

ejω1 = −1 , ejω2 = 5+ j√39

8
, ejω3 = 5− j√39

8
, so that,ω3 = −ω2

The matrix itself has the sinusoidal representation

R = P1s1s†1 + P2s2s†2 + P3s3s†3 , where si =

⎡⎢⎢⎢⎣
1
ejωi
e2jωi

e3jωi

⎤⎥⎥⎥⎦
Had we chosen the value γ3 = 1 in Example 12.5.2, we would have found the extended lag
R(3)= 1.75 and the antisymmetric order-3 prediction-error filter a3 = [1,−1.25,1.25,−1]T ,
whose zeros are on the unit circle:

ejω1 = 1 , ejω2 = 1+ j√63

8
, ejω3 = 1− j√63

8

with R(k) admitting the sinusoidal representation

R(k)= P1 + 2P2 cos(ω2k)= [8, 4, −1, 1.75] , for k = 0,1,2,3

where P1 = 24/7 and P2 = 16/7. ��

532 12. Linear Prediction

12.6 Split Levinson Algorithm

The main computational burden of Levinson’s algorithm is 2pmultiplications per stage,
arising from the p multiplications in Eq. (12.3.15) and in the computation of the inner
product (12.3.12). Thus, forM stages, the algorithm requires

2
M∑
p=1

p =M(M + 1)

or,O(M2)multiplications. This represents a factor ofM savings over solving the normal
equations (12.3.7) by direct matrix inversion, requiring O(M3) operations. The savings
can be substantial considering that in speech processing M = 10–15, and in seismic
processing M = 100–200. Progress in VLSI hardware has motivated the development
of efficient parallel implementations of Levinson’s algorithm and its variants [939–958].
With M parallel processors, the complexity of the algorithm is typically reduced by
another factor ofM to O(M) or O(M logM) operations.

An interesting recent development is the realization that Levinson’s algorithm has
some inherent redundancy, which can be exploited to derive more efficient versions
of the algorithm allowing an additional 50% reduction in computational complexity.
These versions were motivated by a new stability test for linear prediction polynomials
by Bistritz [959], and have been termed Split Levinson or Immitance-Domain Levinson
algorithms [960–967]. They are based on efficient three-term recurrence relations for
the symmetrized or antisymmetrized prediction polynomials. Following [960], we define
the order-p symmetric polynomial

Fp(z)= Ap−1(z)+z−1ARp−1(z) , fp =
[

ap−1

0

]
+

[
0

aRp−1

]
(12.6.1)

The coefficient vector fp is symmetric about its middle; that is, fp0 = fpp = 1 and
fpi = ap−1,i + ap−1,p−i = fp,p−i, for i = 1,2, . . . , p − 1. Thus, only half of the vector
fp, is needed to specify it completely. Using the backward recursion (12.3.22) to write
Ap−1(z) in terms of Ap(z), we obtain the alternative expression

Fp = 1

1− γ2
p

[
(Ap + γpARp)+z−1(γpzAp + zARp)

] = 1

1− γp [Ap +A
R
p] , or,

(1− γp)Fp(z)= Ap(z)+ARp(z) , (1− γp)fp = ap + aRp (12.6.2)

The polynomial Ap(z) and its reverse may be recovered from the knowledge of the
symmetric polynomials Fp(z). Writing Eq. (12.6.1) for order p+ 1, we obtain Fp+1(z)=
Ap(z)+z−1ARp(z). This equation, together with Eq. (12.6.2), may be solved for Ap(z)
and ARp(z), yielding

Ap(z)= Fp+1(z)−(1− γp)z−1Fp(z)
1− z−1

, ARp(z)=
(1− γp)Fp(z)−Fp+1(z)

1− z−1
(12.6.3)

Inserting these expressions into the forward Levinson recursion (12.3.16) and can-
celing the common factor 1/(1 − z−1), we obtain a three-term recurrence relation for
Fp(z):

Fp+2 − (1− γp+1)z−1Fp+1 =
[
Fp+1 − (1− γp)z−1Fp

]− γp+1z−1[(1− γp)Fp − Fp+1
]

12.6. Split Levinson Algorithm 533

or,
Fp+2(z)= (1+ z−1)Fp+1(z)−αp+1z−1Fp(z) (12.6.4)

where αp+1 = (1+ γp+1)(1− γp). In block diagram form

Because Fp(z) has order p and is delayed by z−1, the coefficient form of (12.6.4) is

fp+2 =
[

fp+1

0

]
+

[
0

fp+1

]
−αp+1

⎡⎢⎣ 0
fp
0

⎤⎥⎦ (12.6.5)

The recursion is initialized by F0(z)= 2 and F1(z)= 1 + z−1. Because of the sym-
metric nature of the polynomial Fp(z) only half of its coefficients need be updated by
Eqs. (12.6.4) or (12.6.5). To complete the recursion, we need an efficient way to update
the coefficients αp+1. Taking the dot product of both sides of Eq. (12.6.2) with the row
vector

[
R(0),R(1), . . . , R(p)

]
, we obtain[

R(0), . . . , R(p)
]
ap +

[
R(0), . . . , R(p)

]
aRp = (1− γp)

[
R(0), . . . , R(p)

]
fp

The first term is recognized as the gapped function gp(0)= Ep, and the second term
as gp(p)= 0. Dividing by 1− γp and denoting τp = Ep/(1− γp), we obtain

τp =
[
R(0),R(1), . . . , R(p)

]
fp =

p∑
i=0

R(i)fpi (12.6.6)

Because of the symmetric nature of fp the quantity τp can be computed using only
half of the terms in the above inner product. For example, if p is odd, the above sum
may be folded to half its terms

τp =
(p−1)/2∑
i=0

[
R(i)+R(p− i)]fpi

Because Eqs. (12.6.5) and (12.6.6) can be folded in half, the total number of multi-
plications per stage will be 2(p/2)= p, as compared with 2p for the classical Levinson
algorithm. This is how the 50% reduction in computational complexity arises. The re-
cursion is completed by noting that αp+1 can be computed in terms of τp by

αp+1 = τp+1

τp
(12.6.7)

This follows from Eq. (12.3.13),

τp+1

τp
= Ep+1

1− γp+1

1− γp
Ep

= 1− γ2
p+1

1− γp+1
(1− γp)= (1+ γp+1)(1− γp)= αp+1

A summary of the algorithm, which also includes a recursive computation of the
reflection coefficients, is as follows:

534 12. Linear Prediction

1. Initialize with τ0 = E0 = R(0), γ0 = 0, f0 = [2], f1 = [1,1]T.

2. At stage p, the quantities τp,γp, fp, fp+1 are available.

3. Compute τp+1 from Eq. (12.6.6), using only half the terms in the sum.

4. Compute αp+1 from Eq. (12.6.7), and solve for γp+1 = −1+αp+1/(1− γp).
5. Compute fp+2 from Eq. (12.6.5), using half of the coefficients.

6. Go to stage p+ 1.

After the final desired order is reached, the linear prediction polynomial can be
recovered from Eq. (12.6.3), which can be written recursively as

api = ap,i−1 + fp+1.i − (1− γp)fp,i−1 , i = 1,2, . . . , p (12.6.8)

with ap0 = 1, or vectorially,[
ap
0

]
=

[
0
ap

]
+ fp+1 − (1− γp)

[
0
fp

]
(12.6.9)

Using the three-term recurrence (12.6.5), we may replace fp+1 in terms of fp and fp−1,
and rewrite Eq. (12.6.9) as

[
ap
0

]
=

[
0
ap

]
+

[
fp
0

]
+ γp

[
0
fp

]
−αp

⎡⎢⎣ 0
fp−1

0

⎤⎥⎦ (12.6.10)

and in the z-domain

Ap(z)= z−1Ap(z)+(1+ γpz−1)Fp(z)−αpz−1Fp−1(z) (12.6.11)

Example 12.6.1: We rederive the results of Example 12.3.1 using this algorithm, showing ex-
plicitly the computational savings. Initialize with τ0 = R(0)= 128, f0 = [2], f1 = [1,1]T .
Using Eq. (12.6.6), we compute

τ1 =
[
R(0),R(1)

]
f1 =

[
R(0)+R(1)]f10 = 128− 64 = 64

Thus, α1 = τ1/τ0 = 64/128 = 0.5 and γ1 = −1+α1 = −0.5. Using Eq. (12.6.5) we find

f2 =
[

f1

0

]
+

[
0
f1

]
−α1

⎡⎢⎣ 0
f0

0

⎤⎥⎦ =
⎡⎢⎣ 1

1
0

⎤⎥⎦+
⎡⎢⎣ 0

1
1

⎤⎥⎦− 0.5

⎡⎢⎣ 0
2
0

⎤⎥⎦ =
⎡⎢⎣ 1

1
1

⎤⎥⎦
and compute τ2

τ2 =
[
R(0),R(1),R(2)

]
f2 =

[
R(0)+R(2)]f20 +R(1)f21 = 144

Thus, α2 = τ2/τ1 = 144/64 = 2.25 and γ2 = −1 +α2/(1 − γ1)= −1 + 2.25/1.5 = 0.5.
Next, compute f3 and τ3

f3 =
[

f2

0

]
+

[
0
f2

]
−α2

⎡⎢⎣ 0
f1

0

⎤⎥⎦ =
⎡⎢⎢⎢⎣

1
1
1
0

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

0
1
1
1

⎤⎥⎥⎥⎦− 2.25

⎡⎢⎢⎢⎣
0
1
1
0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.25
−0.25

1

⎤⎥⎥⎥⎦

12.7. Analysis and Synthesis Lattice Filters 535

τ3 =
[
R(0),R(1),R(2),R(3)

]
f3 =

[
R(0)+R(3)]f30 +

[
R(1)+R(2)]f31 = 36

which gives α3 = τ3/τ2 = 36/144 = 0.25 and γ3 = −1 +α3/(1 − γ2)= −0.5. Next, we
compute f4 and τ4

f4 =
[

f3

0

]
+

[
0
f3

]
−α3

⎡⎢⎣ 0
f2

0

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1
−0.25
−0.25

1
0

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

0
1

−0.25
−0.25

1

⎤⎥⎥⎥⎥⎥⎥⎦− 0.25

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1
0.5
−0.75

0.5
1

⎤⎥⎥⎥⎥⎥⎥⎦
τ4 =

[
R(0),R(1),R(2),R(3),R(4)

]
f4

= [
R(0)+R(4)]f40 +

[
R(1)+R(3)]f41 +R(2)f42 = 81

which gives α4 = τ4/τ3 = 81/36 = 2.25 and γ4 = −1 + α4/(1 − γ3)= 0.5. The final
prediction filter a4 can be computed using Eq. (12.6.9) or (12.6.10). To avoid computing f5

we use Eq. (12.6.10), which gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a41

a42

a43

a44

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
a41

a42

a43

a44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5
−0.75

0.5
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

0.5
−0.75

0.5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 2.25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−0.25
−0.25

1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with solution a4 = [1, −0.25, −0.1875, 0.5, −0.5]T . ��

12.7 Analysis and Synthesis Lattice Filters

The Levinson recursion, expressed in the 2×2 matrix form of Eq. (12.3.18) forms the ba-
sis of the so-called lattice, or ladder, realizations of the prediction-error filters and their
inverses [917]. Remembering that the prediction-error sequence ep(n) is the convolu-
tion of the prediction-error filter [1, ap1, ap2, . . . , app] with the original data sequence
yn, that is,

e+p (n)= yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p (12.7.1)

we find in the z-domain
E+p (z)= Ap(z)Y(z) (12.7.2)

where we changed the notation slightly and denoted ep(n) by e+p (n). At this point,
it proves convenient to introduce the backward prediction-error sequence, defined in
terms of the reverse of the prediction-error filter, as follows:

E−p (z) = ARp(z)Y(z)
e−p (n) = yn−p + ap1yn−p+1 + ap2yn−p+2 + · · · + appyn

(12.7.3)

where ARp(z) is the reverse of Ap(z), namely,

ARp(z)= z−pAp(z−1)= app + ap,p−1z−1 + ap,p−2z−2 + · · · + ap1z−(p−1) + z−p

536 12. Linear Prediction

The signal sequence e−p (n)may be interpreted as the postdiction error in postdicting
the value of yn−p on the basis of the future p samples {yn−p+1, yn−p+2, . . . , yn−1, yn},
as shown below

Actually, the above choice of postdiction coefficients is the optimal one that mini-
mizes the mean-square postdiction error

E[e−p (n)2]= min (12.7.4)

This is easily shown by inserting Eq. (12.7.3) into (12.7.4) and using stationarity

E[e−p (n)2] = E
⎡⎢⎣
⎛⎝ p∑
m=0

apmyn−p+m

⎞⎠2
⎤⎥⎦ = p∑

m,k=0

apmE[yn−p+myn−p+k]apk

=
p∑

m,k=0

apmR(m− k)apk = E[e+p (n)2]

which shows that the forward and the backward prediction error criteria are the same,
thus, having the same solution for the optimal coefficients. We can write Eqs. (12.7.1)
and (12.7.3) vectorially

e+p (n)= [1, ap1, . . . , app]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ = aTpyp(n) (12.7.5a)

e−p (n)= [app, ap,p−1, . . . ,1]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ = aRTp yp(n)= bTpyp(n) (12.7.5b)

They are recognized as the forward and backward prediction errors ea and eb of
Eq. (1.8.9). Multiplying both sides of the Levinson recursion (12.3.18) by Y(z), we cast it
in the equivalent form in terms of the forward and backward prediction-error sequences:[

E+p+1(z)
E−p+1(z)

]
=

[
1 −γp+1z−1

−γp+1 z−1

][
E+p (z)
E−p (z)

]
(12.7.6)

and in the time domain

e+p+1(n) = e+p (n)−γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(12.7.7)

12.7. Analysis and Synthesis Lattice Filters 537

and in block diagram form

These recursions are initialized at p = 0 by

E±0 (z)= A0(z)Y(z)= Y(z) and e±0 (n)= yn (12.7.8)

Eqs. (12.7.7) are identical to (1.8.50), with the identifications ea → e+p+1(n), ēa →
e+p (n), eb → e−p+1(n), ẽb → e−p (n− 1) the last following from Eq. (12.3.26).

The lattice realization of the prediction-error filter is based on the recursion (12.7.7).
Starting at p = 0, the output of the pth stage of (12.7.7) becomes the input of the
(p+ 1)th stage, up to the final desired order p =M. This is depicted in Fig. 12.7.1.

Fig. 12.7.1 Analysis lattice filter.

At each time instant n the numbers held in the M delay registers of the lattice can
be taken as the internal state of the lattice. The function lattice is an implementation of
Fig. 12.7.1. At each instant n, the function takes two overall inputs e±0 (n), makesM calls
to the function section that implements the single lattice section (12.7.7), produces the
two overall outputs e±M(n), and updates the internal state of the lattice in preparation
for the next call. By allowing the reflection coefficients to change between calls, the
function can also be used in adaptive lattice filters.

Eqs. (12.7.3) imply that the transfer function from the input yn to the output e+M(n)
is the desired prediction-error filter AM(z), whereas the transfer function from yn to
e−M(n) is the reversed filter ARM(z). The lattice realization is therefore equivalent to the
direct-form realization

e+M(n)= yn + aM1yn−1 + aM2yn−2 + · · ·aMMyn−M

538 12. Linear Prediction

realized directly in terms of the prediction coefficients. It is depicted below

The synthesis filter 1/AM(z) can also be realized in a lattice form. The input to
the synthesis filter is the prediction error sequence e+M(n) and its output is the original
sequence yn :

Its direct-form realization is:

For the lattice realization, since yn corresponds to e+0 (n), we must write Eq. (12.7.7)
in an order-decreasing form, starting at e+M(n) and ending with e+0 (n)= yn. Rearranging
the terms of the first of Eq. (12.7.7), we have

e+p (n) = e+p+1(n)+γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(12.7.9)

which can be realized as shown below:

Note the difference in signs in the upper and lower adders. Putting together the
stages from p =M to p = 0, we obtain the synthesis lattice filter shown in Fig. 12.7.2.

12.8. Alternative Proof of the Minimum-Phase Property 539

Fig. 12.7.2 Synthesis lattice filter.

Lattice structures based on the split Levinson algorithm can also be developed [960,961].
They are obtained by cascading the block diagram realizations of Eq. (12.6.4) for differ-
ent values of αp. The output signals from each section are defined by

ep(n)=
p∑
i=0

fpiyn−i , Ep(z)= Fp(z)Y(z)

Multiplying both sides of Eq. (12.6.1) by Y(z) we obtain the time-domain expression

ep(n)= e+p−1(n)+e−p−1(n− 1)

Similarly, multiplying both sides of Eq. (12.6.4) by Y(z) we obtain the recursions

ep+2(n)= ep+1(n)+ep+1(n− 1)−αpep(n− 1)

They are initialized by e0(n)= 2yn and e1(n)= yn + yn−1. Putting together the
various sections we obtain the lattice-type realization

The forward prediction error may be recovered from Eq. (12.6.3) or Eq. (12.6.11) by
multiplying both sides with Y(z); for example, using Eq. (12.6.11) we find

e+p (n)= e+p−1(n)+ep(n)+γpep(n)−αpep−1(n− 1)

12.8 Alternative Proof of the Minimum-Phase Property

The synthesis filter 1/AM(z) must be stable and causal, which requires all theM zeros
of the prediction-error filter AM(z) to lie inside the unit circle on the complex z-plane.
We have already presented a proof of this fact which was based on the property that
the coefficients of AM(z) minimized the mean-squared prediction error E[e+M(n)2].
Here, we present an alternative proof based on the Levinson recursion and the fact that

540 12. Linear Prediction

all reflection coefficients γp have magnitude less than one [920]. From the definition
(12.7.3), it follows that

e−p (n− 1)= yn−p−1 + ap1yn−p + ap2yn−p+1 + · · · + appyn−1 (12.8.1)

This quantity represents the estimation error of postdicting yn−p−1 on the basis of the
p future samples {yn−p, yn−p+1, . . . , yn−1}. Another way to say this is that the linear
combination of these p samples is the projection of yn−p−1 onto the subspace of random
variables spanned by {yn−p, yn−p+1, . . . , yn−1}; that is,

e−p (n− 1)= yn−p−1 − (projection of yn−p−1 onto {yn−p, yn−p+1, . . . , yn−1}) (12.8.2)

On the other hand, e+p (n) given in Eq. (12.7.1) is the estimation error of yn based on
the same set of samples. Therefore,

e+p (n)= yn − (projection of yn onto {yn−p, yn−p+1, . . . , yn−1}) (12.8.3)

The samples {yn−p, yn−p+1, . . . , yn−1} are the intermediate set of samples between yn−p−1

and yn as shown below:

Therefore, according to the discussion in Sec. 1.7, the PARCOR coefficient between
yn−p−1 and yn with the effect of intermediate samples removed is given by

PARCOR = E
[
e+p (n)e−p (n− 1)

]
E
[
e−p (n− 1)2

]
This is precisely the reflection coefficient γp+1 of Eq. (12.3.11). Indeed, using Eq. (12.8.1)
and the gap conditions, gp(k)= 0, k = 1,2, . . . , p, we find

E
[
e+p (n)e−p (n− 1)

] = E[
e+p (n)(yn−p−1 + ap1yn−p + ap2yn−p+1 + · · · + appyn−1)

]
= gp(p+ 1)+ap1gp(p)+ap2gp(p− 1)+· · ·appgp(1)
= gp(p+ 1)

Similarly, invoking stationarity and Eq. (12.7.4),

E
[
e−p (n− 1)2] = E[

e−p (n)2] = E[
e+p (n)2] = gp(0)

Thus, the reflection coefficient γp+1 is really a PARCOR coefficient:

γp+1 =
E
[
e+p (n)e−p (n− 1)

]
E
[
e−p (n− 1)2

] = E
[
e+p (n)e−p (n− 1)

]√
E
[
e−p (n− 1)2

]
E
[
e+p (n)2

] (12.8.4)

Using the Schwarz inequality with respect to the inner product E[uv], that is,∣∣E[uv]∣∣2 ≤ E[u2]E[v2]

12.8. Alternative Proof of the Minimum-Phase Property 541

then Eq. (12.8.4) implies that γp+1 will have magnitude less than one:

|γp+1| ≤ 1 , for each p = 0,1, . . . (12.8.5)

To prove the minimum-phase property of AM(z) we must show that all of its M
zeros are inside the unit circle. We will do this by induction. Let Zp and Np denote the
number of zeros and poles of Ap(z) that lie inside the unit circle. Levinson’s recursion,
Eq. (12.3.13), expresses Ap+1(z) as the sum of Ap(z) and a correction term F(z)=
−γp+1z−1ARp(z), that is,

Ap+1(z)= Ap(z)+F(z)
Using the inequality (12.8.5) and the fact that Ap(z) has the same magnitude spectrum
as ARp(z), we find the inequality∣∣F(z)∣∣ = ∣∣−γp+1z−1ARp(z)

∣∣ = ∣∣γp+1Ap(z)
∣∣ ≤ ∣∣Ap(z)∣∣

for z = ejω on the unit circle. Then, the argument principle and Rouche’s theorem imply
that the addition of the function F(z) will not affect the difference Np − Zp of poles
and zeros contained inside the unit circle. Thus,

Np+1 − Zp+1 = Np − Zp
Since the only pole of Ap(z) is the multiple pole of order p at the origin arising from
the term z−p, it follows that Np = p. Therefore,

(p+ 1)−Zp+1 = p− Zp , or,

Zp+1 = Zp + 1

Starting at p = 0 with A0(z)= 1, we have Z0 = 0. It follows that

Zp = p
which states that all the p zeros of the polynomial Ap(z) lie inside the unit circle.

Another way to state this result is: “A necessary and sufficient condition for a poly-
nomial AM(z) to have all of its M zeros strictly inside the unit circle is that all re-
flection coefficients {γ1, γ2, . . . , γM} resulting from AM(z) via the backward recursion
Eq. (12.3.21) have magnitude strictly less than one.” This is essentially equivalent to the
well-known Schur-Cohn test of stability [968–971]. The function bkwlev can be used
in this regard to obtain the sequence of reflection coefficients. The Bistritz test [959],
mentioned in Sec. 12.6, is an alternative stability test.

Example 12.8.1: Test the minimum phase property of the polynomials

(a) A(z)= 1− 2.60z−1 + 2.55z−2 − 2.80z−3 + 0.50z−4

(b) A(z)= 1− 1.40z−1 + 1.47z−2 − 1.30z−3 + 0.50z−4

Sending the coefficients of each through the function bkwlev, we find the set of reflection
coefficients

(a) {0.4,−0.5,2.0,−0.5}
(b) {0.4,−0.5,0.8,−0.5}

Since among (a) there is one reflection coefficient of magnitude greater than one, case (a)
will not be minimum phase, whereas case (b) is. ��

542 12. Linear Prediction

12.9 Orthogonality of Backward Prediction Errors—Cholesky

Factorization

Another interesting structural property of the lattice realizations is that, in a certain
sense, the backward prediction errors e−p (n) are orthogonal to each other. To see this,
consider the caseM = 3, and form the matrix product⎡⎢⎢⎢⎣

R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

R

⎡⎢⎢⎢⎣
1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

LT

=

⎡⎢⎢⎢⎣
E0 0 0 0
∗ E1 0 0
∗ ∗ E2 0
∗ ∗ ∗ E3

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

L1

Because the normal equations (written upside down) are satisfied by each prediction-
error filter, the right-hand side will be a lower-triangular matrix. The “don’t care” entries
have been denoted by ∗s. Multiply from the left by L to get

LRLT = LL1 =

⎡⎢⎢⎢⎣
E0 0 0 0
∗ E1 0 0
∗ ∗ E2 0
∗ ∗ ∗ E3

⎤⎥⎥⎥⎦
Since L is by definition lower-triangular, the right-hand side will still be lower tri-

angular. But the left-hand side is symmetric. Thus, so is the right-hand side and as a
result it must be diagonal. We have shown that

LRLT = D = diag{E0, E1, E2, E3} (12.9.1)

or, written explicitly⎡⎢⎢⎢⎣
1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
E0 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E3

⎤⎥⎥⎥⎦
This is identical to Eq. (1.8.17). The pqth element of this matrix equation is then

bTpRbq = δpqEp (12.9.2)

where bp and bq denote the pth and qth columns of LT. These are recognized as the
backward prediction-error filters of orders p and q. Eq. (12.9.2) implies then the or-
thogonality of the backward prediction-error filters with respect to an inner product
xTRy.

The backward prediction errors e−p (n) can be expressed in terms of the bps and the
vector of samples y(n)= [yn, yn−1, yn−2, yn−3]T, as follows:

e−0 (n)= [1, 0, 0, 0]y(n)= bT0 y(n)= yn
e−1 (n)= [a11, 1, 0, 0]y(n)= bT1 y(n)= a11yn + yn−1

e−2 (n)= [a22, a21, 1, 0]y(n)= bT2 y(n)= a22yn + a21yn−1 + yn−2

e−3 (n)= [a33, a32, a31,1]y(n)= bT3 y(n)= a33yn + a32yn−1 + a31yn−2 + yn−3

(12.9.3)

12.9. Orthogonality of Backward Prediction Errors—Cholesky Factorization 543

which can be rearranged into the vector form

e−(n)=

⎡⎢⎢⎢⎣
e−0 (n)
e−1 (n)
e−2 (n)
e−3 (n)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
yn
yn−1

yn−2

yn−3

⎤⎥⎥⎥⎦ = Ly(n) (12.9.4)

It is identical to Eq. (1.8.15). Using Eq. (12.9.1), it follows now that the covariance
matrix of e−(n) is diagonal; indeed, since R = E[y(n)y(n)T],

Re−e− = E[e−(n)e−(n)T]= LRLT = D (12.9.5)

which can also be expressed component-wise as the zero-lag cross-correlation

Re−p e−q (0)= E
[
e−p (n)e−q (n)

] = δpqEp (12.9.6)

Thus, at each time instant n, the backward prediction errors e−p (n) are mutually
uncorrelated (orthogonal) with each other. The orthogonality conditions (12.9.6) and the
lower-triangular nature of L render the transformation (12.9.4) equivalent to the Gram-
Schmidt orthogonalization of the data vector y(n)= [yn, yn−1, yn−2, yn−3]T. Equation
(12.9.1), written as

R = L−1DL−T

corresponds to an LU Cholesky factorization of the covariance matrix R.
Since the backward errors e−p (n), p = 0,1,2, . . . ,M, for an Mth order predictor are

generated at the output of each successive lattice segment of Fig. 12.7.1, we may view
the analysis lattice filter as an implementation of the Gram-Schmidt orthogonalization
of the vector y(n)= [yn, yn−1, yn−2, . . . , yn−M]T.

It is interesting to note, in this respect, that this implementation requires only knowl-
edge of the reflection coefficients {γ1, γ2, . . . , γM}.

The data vector y(n) can also be orthogonalized by means of the forward predictors,
using the matrix U. This representation, however, is not as conveniently realized by
the lattice structure because the resulting orthogonalized vector consists of forward
prediction errors that are orthogonal, but not at the same time instant. This can be seen
from the definition of the forward errors

Uy(n)=

⎡⎢⎢⎢⎣
1 a31 a32 a33

0 1 a21 a22

0 0 1 a11

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
yn
yn−1

yn−2

yn−3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
e+3 (n)
e+2 (n− 1)
e+1 (n− 2)
e+0 (n− 3)

⎤⎥⎥⎥⎦
Thus, additional delays must be inserted at the forward outputs of the lattice struc-

ture to achieve orthogonalization. For this reason, the backward outputs, being mutually
orthogonal at the same time instant n, are preferred. The corresponding UL factoriza-
tion of R is in this basis

URUT = diag{E3, E2, E1, E0}
This is the reverse of Eq. (12.9.1)) obtained by acting on both sides by the reversing

matrix J and using the fact that U = JLJ, the invariance of R = JRJ, and J2 = I.

544 12. Linear Prediction

The above orthogonalization may also be understood in the z-domain: since the
backward prediction error e−p (n) is the output of the reversed prediction-error filter
ARp(z) driven by the data sequence yn, we have for the cross-density

Se−p e−q (z)= ARp(z)Syy(z)ARq(z−1)

Integrating this expression over the unit circle and using Eq. (12.9.6), we find∮
u.c.
ARp(z)Syy(z)ARq(z−1)

dz
2πjz

=
∮

u.c.
Se−p e−q (z)

dz
2πjz

= Re−p e−q (0)= E
[
e−p (n)e−q (n)

] = δpqEp (12.9.7)

that is, the reverse polynomialsARp(z) are mutually orthogonal with respect to the above
inner product defined by the (positive-definite) weighting function Syy(z). Equation
(12.9.7) is the z-domain expression of Eq. (12.9.2). This result establishes an intimate
connection between the linear prediction problem and the theory of orthogonal polyno-
mials on the unit circle developed by Szegö [972,973].

The LU factorization of R implies a UL factorization of the inverse of R; that is,
solving Eq. (12.9.1) for R−1 we have:

R−1 = LTD−1L (12.9.8)

Since the Levinson recursion generates all the lower order prediction-error filters, it
essentially generates the inverse of R.

The computation of this inverse may also be done recursively in the order, as follows.
To keep track of the order let us use an extra index

R−1
3 = LT3D−1

3 L3 (12.9.9)

The matrix L3 contains as a submatrix the matrix L2; in fact,

L3 =

⎡⎢⎢⎢⎣
1 0 0 0
a11 1 0 0
a22 a21 1 0
a33 a32 a31 1

⎤⎥⎥⎥⎦ =
[
L2 0

αααRT3 1

]
(12.9.10)

whereαααRT3 denotes the transpose of the reverse of the vector of prediction coefficients;
namely, αααRT3 = [a33, a32, a21]. The diagonal matrix D−1

3 may also be block divided in
the same manner:

D−1
3 =

[
D−1

2 0

0T 1

]
Inserting these block decompositions into Eq. (12.9.9) and using the lower order

result R−1
2 = LT2D−1

2 L2, we find

R−1
3 =

⎡⎢⎢⎣R
−1
2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤⎥⎥⎦ =
[
R−1

2 0

0T 0

]
+ 1

E3
b3bT3 (12.9.11)

12.9. Orthogonality of Backward Prediction Errors—Cholesky Factorization 545

where b3 = aR3 = [αααRT3 ,1]T= [a33, a32, a31,1]T. This is identical to Eq. (1.8.28).
Thus, through Levinson’s algorithm, as the prediction coefficients ααα3 and error E3

are obtained, the inverse of R may be updated to the next higher order. Eq. (12.9.11)
also suggests an efficient way of solving more general normal equations of the type

R3h3 =

⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
h30

h31

h32

h33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
r0

r1

r2

r3

⎤⎥⎥⎥⎦ = r3 (12.9.12)

for a given right-hand vector r3. Such normal equations arise in the design of FIR Wiener
filters; for example, Eq. (11.3.9). The solution for h3 is obtained recursively from the
solution of similar linear equations of lower order. For example, let h2 be the solution
of the previous order

R2h2 =
⎡⎢⎣R0 R1 R2

R1 R0 R1

R2 R1 R0

⎤⎥⎦
⎡⎢⎣ h20

h21

h22

⎤⎥⎦ =
⎡⎢⎣ r0

r1

r2

⎤⎥⎦ = r2

where the right-hand side vector r2 is part of r3. Then, Eq. (12.9.11) implies a recursive
relationship between h3 and h2:

h3 = R−1
3 r3 =

⎡⎢⎢⎣R
−1
2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤⎥⎥⎦
[

r2

r3

]
=

⎡⎢⎢⎣ h2 + 1

E3
αααR3 (r3 +αααRT3 r2)

1

E3
(r3 +αααRT3 r2)

⎤⎥⎥⎦
In terms of the reverse prediction-error filter b3 = aR3 = [a33, a32, a31,1]T= [αααRT3 ,1]T,
we may write

h3 =
[

h2

0

]
+ cb3 , where c = 1

E3
(r3 +αααRT3 r2)= 1

E3
bT3 r3 (12.9.13)

Thus, the recursive updating of the solution h must be done by carrying out the aux-
iliary updating of the prediction-error filters. The method requires O(M2) operations,
compared to O(M3) if the inverse of R were to be computed directly.

This recursive method of solving general normal equations, developed by Robinson
and Treitel, has been reviewed elsewhere [921,922,974–976] Some additional insight into
the properties of these recursions can be gained by using the Toeplitz property of R.
This property together with the symmetric nature of R imply that R commutes with the
reversing matrix:

J3 =

⎡⎢⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦ = J−1
3 , J3R3J3 = R3 (12.9.14)

Therefore, even though the inverse R−1
3 is not Toeplitz, it still commutes with this

reversing matrix; that is,
J3R−1

3 J3 = R−1
3 (12.9.15)

546 12. Linear Prediction

The effect of this symmetry property on the block decomposition Eq. (12.9.11) may
be seen by decomposing J3 also as

J3 =
[

0 J2

1 0T

]
=

[
0T 1
J2 0

]

where J2 is the lower order reversing matrix. Combining Eq. (12.9.15) with Eq. (12.9.11),
we find

R−1
3 = J3R−1

3 J3 =
[

0T 1
J2 0

]⎡⎢⎢⎣R
−1
2 + 1

E3
αααR3ααα

RT
3

1

E3
αααR3

1

E3
αααRT3

1

E3

⎤⎥⎥⎦
[

0 J2

1 0T

]

or, since R2 commutes with J2, and J2αααR3 =ααα3, we have

R−1
3 =

⎡⎢⎢⎣
1

E3

1

E3
αααT3

1

E3
ααα3 R−1

2 + 1

E3
ααα3αααT3

⎤⎥⎥⎦ =
[

0 0T

0 R−1
2

]
+ 1

E3
a3aT3 (12.9.16)

which is the same as Eq. (1.8.35). Both ways of expressing R−1
3 given by Eqs. (12.9.16)

and (12.9.11), are useful. They may be combined as follows: Eq. (12.9.16) gives for the
ijth matrix element:

(R−1
3)ij= (R−1

2 +ααα3αααT3E
1
3)i−1,j−1= (R−1

2)i−1,j−1+α3iα3jE−1
3

which valid for 1 ≤ i, j ≤ 3. On the other hand, from Eq. (12.9.11) we have

(R−1
3)i−1,j−1= (R−1

2)i−1,j−1+αR3iαR3jE−1
3

which is valid also for 1 ≤ i, j ≤ 3. Subtracting the two to cancel the common term
(R−1

2)i−1,j−1, we obtain the Goberg-Semencul-Trench-Zohar recursion [977–981]:

(R−1
3)ij= (R−1

3)i−1,j−1+(ααα3αααT3 −αααR3αααRT3)ijE
−1
3 , 1 ≤ i, j ≤ 3 (12.9.17)

which allows the building-up ofR−1
3 along each diagonal, provided one knows the “bound-

ary” values to get these recursions started. But these are:

(R−1
3)00= E−1

3 , (R−1
3)i0= (R−1

3)0i= a3iE−1
3 , 1 ≤ i, j ≤ 3 (12.9.18)

Thus, from the prediction-error filter a3 and its reverse, the entire inverse of the
autocorrelation matrix may be built up. Computationally, of course, the best procedure
is to use Eq. (12.9.8), where L and D are obtained as byproducts of the Levinson re-
cursion. The function lev of the appendix starts with the M + 1 autocorrelation lags
{R(0),R(1), . . . , R(M)} and generates the required matrices L andD. The main reason
for the existence of fast algorithms for Toeplitz matrices can be traced to the nesting
property that the principal submatrices of a Toeplitz matrix are simply the lower order
Toeplitz submatrices. Similar fast algorithms have been developed for other types of
structured matrices, such as Hankel and Vandermonde matrices [982–984].

12.10. Schur Algorithm 547

12.10 Schur Algorithm

The Schur algorithm has its roots in the original work of Schur on the theory of functions
bounded in the unit disk [985,986]. It is an important signal processing tool in a variety
of contexts, such as linear prediction and signal modeling, fast matrix factorizations,
filter synthesis, inverse scattering, and other applications [987–1007].

In linear prediction, Schur’s algorithm is an efficient alternative to Levinson’s al-
gorithm and can be used to compute the set of reflection coefficients from the auto-
correlation lags and also to compute the conventional LU Cholesky factorization of the
autocorrelation matrix. The Schur algorithm is essentially the gapped function recursion
(12.3.9). It proves convenient to work simultaneously with Eq. (12.3.9) and its reverse.
We define the forward and backward gapped functions of order p

g+p (k)= E[e+p (n)yn−k] , g−p (k)= E[e−p (n)yn−k] (12.10.1)

The forward one is identical to that of Eq. (12.3.8). The backward one is the convo-
lution of the backward filter bp = aRp with the autocorrelation function; that is,

g+p (k)=
p∑
i=0

apiR(k− i) , g−p (k)=
p∑
i=0

bpiR(k− i) (12.10.2)

where bpi = ap,p−i. In the z-domain, we have

G+p (z)= Ap(z)Syy(z) , G−p (z)= ARp(z)Syy(z) (12.10.3)

Using Syy(z)= Syy(z−1), it follows that

G−p (z)= ARp(z)Syy(z)= z−pAp(z−1)Syy(z−1)= z−pG+p (z−1)

and in the time domain:
g−p (k)= g+p (p− k) (12.10.4)

Thus, the backward gapped function is the reflected and delayed version of the
forward one. However, the delay is only p units—one less than required to completely
align the gaps. Therefore, the forward and backward gapped functions have slightly
different gaps of length p; namely,

g+p (k) = 0 , for k = 1,2, . . . , p

g−p (k) = 0 , for k = 0,1, . . . , p− 1
(12.10.5)

By the definition (12.10.1), the gap conditions of the backward function are equiva-
lent to the orthogonality conditions for the backward predictor; namely, that the esti-
mation error e−p (n) be orthogonal to the observations {yn−k, k = 0,1, . . . , p − 1} that
make up the estimate of yn−p. Inserting the lattice recursions (12.7.7) into (12.10.1), or
using the polynomial recursions (12.3.18) into (12.10.3), we obtain the lattice recursions
for the gapped functions, known as the Schur recursions

g+p+1(k) = g+p (k)−γp+1g−p (k− 1)

g−p+1(k) = g−p (k− 1)−γp+1g+p (k)
(12.10.6)

548 12. Linear Prediction

or, in matrix form [
g+p+1(k)
g−p+1(k)

]
=

[
1 −γp+1

−γp+1 1

][
g+p (k)
g−p (k− 1)

]

They are initialized by g±0 (k)= R(k). The first term of Eq. (12.10.6) is identical to
Eq. (12.3.9) and the second term is the reverse of Eq. (12.3.9) obtained by the substitution
k→ p+1−k. The forward gap condition g+p+1(p+1)= 0 can be solved for the reflection
coefficient

γp+1 =
g+p (p+ 1)
g−p (p)

(12.10.7)

Note that Eq. (12.10.4) implies g−p (p)= g+p (0)= Ep, and therefore, Eq. (12.10.7) is
the same as Eq. (12.3.11). For an Mth order predictor, we only need to consider the
values g±p (k), for k = 0,1, . . . ,M. We arrange these values (for the backward function)
into the column vector

g−p =

⎡⎢⎢⎢⎢⎢⎣
g−p (0)
g−p (1)

...
g−p (M)

⎤⎥⎥⎥⎥⎥⎦ (12.10.8)

By virtue of the gap conditions (12.10.5), the first p entries, k = 0,1, . . . , p − 1, of
this vector are zero. Therefore, we may construct the lower-triangular matrix having the
g−p s as columns

G = [g−0 ,g−1 , · · · ,g−M] (12.10.9)

For example, ifM = 3,

G =

⎡⎢⎢⎢⎣
g−0 (0) 0 0 0
g−0 (1) g−1 (1) 0 0
g−0 (2) g−1 (2) g−2 (2) 0
g−0 (3) g−1 (3) g−2 (3) g−3 (3)

⎤⎥⎥⎥⎦
The first column of G consists simply of theM + 1 autocorrelation lags:

g−0 =

⎡⎢⎢⎢⎢⎢⎣
R(0)
R(1)

...
R(M)

⎤⎥⎥⎥⎥⎥⎦ (12.10.10)

The main diagonal consists of the prediction errors of successive orders, namely,
g−p (p)= Ep, for p = 0,1, . . . ,M. Stacking the values of definition (12.10.1) into a vector,
we can write compactly,

g−p = E
[
ep(n)y(n)

]
(12.10.11)

where y(n)= [yn, yn−1, . . . , yn−M]T is the data vector for anMth order predictor. Thus,
the matrix G can be written as in Eq. (1.8.56)

G = E
[

y(n)
[
e−0 (n), e−1 (n), . . . , e−M(n)

]] = E[
y(n)e−(n)T

]
(12.10.12)

12.10. Schur Algorithm 549

where e−(n)= [
e−0 (n), e−1 (n), . . . , e−M(n)

]T
is the decorrelated vector of backward pre-

diction errors. Following Eq. (1.8.57), we multiply (12.10.12) from the left by the lower
triangular matrix L, and using the transformation e−(n)= Ly(n) and Eq. (12.9.5), we
obtain

LG = LE[y(n)e−(n)T]= E[e−(n)e−(n)T]= D
Therefore, G is essentially the inverse of L

G = L−1D (12.10.13)

Using Eq. (12.9.1), we obtain the conventional LU Cholesky factorization of the auto-
correlation matrix R in the form

R = L−1DL−T = (GD−1)D(D−1GT)= GD−1GT (12.10.14)

The backward gapped functions are computed by iterating the Schur recursions
(12.10.6) for 0 ≤ k ≤ M and 0 ≤ p ≤ M. One computational simplification is that,
because of the presence of the gap, the functions g±p (k) need only be computed for
p ≤ k ≤ M (actually, g+p (p)= 0 could also be skipped). This gives rise to the Schur
algorithm:

0. Initialize in order by g±0 (k)= R(k), k = 0,1, . . . ,M.
1. At stage p, we have available g±p (k) for p ≤ k ≤M.

2. Compute γp+1 =
g+p (p+ 1)
g−p (p)

.

3. For p+ 1 ≤ k ≤M, compute

g+p+1(k)= g+p (k)−γp+1g−p (k− 1)

g−p+1(k)= g−p (k− 1)−γp+1g+p (k)

4. Go to stage p+ 1.
5. At the final orderM, set EM = g−M(M).
The function schur is an implementation of this algorithm. The inputs to the func-

tion are the order M and the lags {R(0),R(1), . . . , R(M)}. The outputs are the pa-
rameters {EM,γ1, γ2, . . . , γM}. This function is a simple alternative to lev. It may be
used in conjunction with frwlev, bkwlev, and rlev, to pass from one linear prediction
parameter set to another. The function schur1 is a small modification of schur that, in
addition to the reflection coefficients, outputs the lower triangular Cholesky factor G.
The prediction errors can be read off from the main diagonal ofG, that is, EP = G(p,p),
p = 0,1, . . . ,M.

Example 12.10.1: Sending the five autocorrelation lags, {128,−64,80,−88,89}, of Example
12.3.1 through schur1 gives the set of reflection coefficients {γ1, γ2, γ3, γ4} = {−0.5,0.5,
−0.5,0.5}, and the matrix G

G =

⎡⎢⎢⎢⎢⎢⎢⎣
128 0 0 0 0
−64 96 0 0 0

80 −24 72 0 0
−88 36 0 54 0

89 −43.5 13.5 13.5 40.5

⎤⎥⎥⎥⎥⎥⎥⎦

550 12. Linear Prediction

Recall that the first column should be the autocorrelation lags and the main diagonal should
consist of the mean square prediction errors. It is easily verified that GD−1GT = R. ��

The computational bottleneck of the classical Levinson recursion is the computation
of the inner product (12.3.12). The Schur algorithm avoids this step by computing γp+1

as the ratio of the two gapped function values (12.10.7). Moreover, at each stage p, the
computations indicated in step 3 of the algorithm can be done in parallel. Thus, with
M parallel processors, the overall computation can be reduced to O(M) operations. As
formulated above, the Schur algorithm is essentially equivalent to the Le Roux-Gueguen
fixed-point algorithm [990]. The possibility of a fixed-point implementation arises from
the fact that all gapped functions have a fixed dynamic range, bounded by∣∣g±p (k)∣∣ ≤ R(0) (12.10.15)

This is easily seen by applying the Schwarz inequality to definition (12.10.1) and
using Ep ≤ R(0)∣∣g±p (k)∣∣2 = ∣∣E[e±p (n)yn−k]∣∣2 ≤ E[e±p (n)2]E[y2

n−k]≤ EpR(0)≤ R(0)2

The Schur algorithm admits a nice filtering interpretation in terms of the lattice struc-
ture. By definition, the gapped functions are the convolution of the forward/backward
pth order prediction filters with the autocorrelation sequence R(k). Therefore, g±p (k)
will be the outputs from the pth section of the lattice filter, Fig. 12.7.1, driven by the
input R(k). Moreover, Eq. (12.10.6) states that the (p + 1)st reflection coefficient is
obtainable as the ratio of the two inputs to the (p+ 1)st lattice section, at time instant
p+ 1 (note that g−p (p)= g−p (p+ 1− 1) is outputted at time p from the pth section and
is delayed by one time unit before it is inputted to the (p+ 1)st section at time p+ 1.)
The correct values of the gapped functions g±p (k) are obtained when the input to the
lattice filter is the infinite double-sided sequence R(k). If we send in the finite causal
sequence

x(k)= {R(0),R(1), . . . , R(M),0,0, . . . }
then, because of the initial and final transient behavior of the filter, the outputs of the
pth section will agree with g±p (k) only for p ≤ k ≤M. To see this, let y±p (k) denote the
two outputs. Because of the causality of the input and filter and the finite length of the
input, the convolutional filtering equation will be

y+p (k)=
min{p,k}∑

i=max{0,k−M}
api x(k− i)=

min{p,k}∑
i=max{0,k−M}

api R(k− i)

This agrees with Eq. (12.10.2) only after time p and before timeM, that is,

y±p (k)= g±p (k) , only for p ≤ k ≤M

The column vector y−p =
[
y−p (0), y−p (1), . . . , y−p (M)

]T
, formed by the first M back-

ward output samples of the pth section, will agree with g−p only for the entries p ≤ k ≤
M. Thus, the matrix of backward outputsY− = [y−0 ,y−1 , . . . ,y−M] formed by the columns
y−p will agree with G only in its lower-triangular part. But this is enough to determine
G because its upper part is zero.

12.10. Schur Algorithm 551

Example 12.10.2: Send the autocorrelation lags of Example 12.10.1 into the lattice filter of
Fig. 12.7.1 (with all its delay registers initialized to zero), arrange the forward/backward
outputs from the pth section into the column vectors, y±p , and put these columns together
to form the output matrices Y±. The result is,

Y− =

⎡⎢⎢⎢⎢⎢⎢⎣
128 64 −64 64 −64
−64 96 64 −80 96

80 −24 72 64 −96
−88 36 0 54 64

89 −43.5 13.5 13.5 40.5

⎤⎥⎥⎥⎥⎥⎥⎦ , Y+ =

⎡⎢⎢⎢⎢⎢⎢⎣
128 128 128 128 128
−64 0 −32 −64 −96

80 48 0 32 72
−88 −48 −36 0 −32

89 45 27 27 0

⎤⎥⎥⎥⎥⎥⎥⎦
The lower-triangular part of Y− agrees with G. The forward/backward outputs y±p can be
computed using, for example, the function lattice. They can also be computed directly by
convolving the prediction filters with the input. For example, the backward filter of order
4 given in Example 12.3.1 is aR4 = [−0.5,0.5,−0.1875,−0.25,1]T . Convolving it with the
autocorrelation sequence gives the last column of Y−

[128,−64,80,−88,89]∗[−0.5,0.5,−0.1875,−0.25,1]= [−64,96,−96,64,40.5, . . .]

Convolving the forward filter a4 with the autocorrelation sequence gives the last column
of the matrix Y+

[128,−64,80,−88,89]∗[1,−0.25,−0.1875,0.5,−0.5]= [128,−96,72,−32,0, . . .]

Note that we are interested only in the outputs for 0 ≤ k ≤ M = 4. The last 4 outputs (in
general, the last p outputs for a pth order filter) of these convolutions were not shown.
They correspond to the transient behavior of the filter after the input is turned off. ��

It is also possible to derive a split or immitance-domain version of the Schur al-
gorithm that achieves a further 50% reduction in computational complexity [962,963].
Thus, withM parallel processors, the complexity of the Schur algorithm can be reduced
to O(M/2) operations. We define a symmetrized or split gapped function in terms of
the symmetric polynomial Fp(z) defined in Eq. (12.6.1)

gp(k)=
p∑
i=0

fpi R(k− i) , Gp(z)= Fp(z)Syy(z) (12.10.16)

It can be thought of as the output of the filter Fp(z) driven by the autocorrelation
sequence. Multiplying both sides of Eq. (12.6.1) by Syy(z) and using the definition
(12.10.3), we obtain Gp(z)= G+p−1(z)+z−1G−p−1(z), or, in the time domain

gp(k)= g+p−1(k)+g−p−1(k− 1) (12.10.17)

Similarly, Eq. (12.6.2) gives

(1− γp)gp(k)= g+p (k)+g−p (k) (12.10.18)

It follows from Eqs. (12.10.4) and (12.10.18) or from the symmetry property of Fp(z)
thatgp(k)= gp(p−k), and in particular, gp(0)= gp(p). The split Levinson algorithm of
Sec. 12.6 requires the computation of the coefficients αp+1 = τp+1/τp. Setting k = 0 in

552 12. Linear Prediction

the definition (12.10.16) and using the reflection symmetry R(i)= R(−i), we recognize
that the inner product of Eq. (12.6.6) is τp = gp(0)= gp(p). Therefore, the coefficient
αp+1 can be written as the ratio of the two gapped function values

αp+1 = gp+1(p+ 1)
gp(p)

(12.10.19)

Because the forward and backward gapped functions have overlapping gaps, it fol-
lows that gp(k) will have gap gp(k)= 0, for k = 1,2, . . . , p− 1. Therefore, for an Mth
order predictor, we only need to know the values of gp(k) for p ≤ k ≤ M. These
can be computed by the following three-term recurrence, obtained by multiplying the
recurrence (12.6.4) by Syy(z)

gp+2(k)= gp+1(k)+gp+1(k− 1)−αp+1gp(k− 1) (12.10.20)

Using F0(z)= 2 and F1(z)= 1 + z−1, it follows from the definition that g0(k)=
2R(k) and g1(k)= R(k)+R(k−1). To initialize τ0 correctly, however, we must choose
g0(0)= R(0), so that τ0 = g0(0)= R(0). Thus, we are led to the following split Schur
algorithm:

0. Initialize by g0(k)= 2R(k), g1(k)= R(k)+R(k − 1), for k = 1,2, . . . ,M, and
g0(0)= R(0), γ0 = 0.

1. At stage p, we have available γp, gp(k) for p ≤ k ≤ M, and gp+1(k) for p+ 1 ≤
k ≤M.

2. Compute αp+1 from Eq. (12.10.19) and solve for γp+1 = −1+αp+1/(1− γp).
3. For p+ 2 ≤ k ≤M, compute gp+2(k) using Eq. (12.10.20)

4. Go to stage p+ 1.

Recalling that Ep = τp(1 − γp), we may set at the final order EM = τM(1 − γM)=
gM(M)(1 − γM). Step 3 of the algorithm requires only one multiplication for each k,
whereas step 3 of the ordinary Schur algorithm requires two. This reduces the compu-
tational complexity by 50%. The function schur2 (see Appendix B) is an implemen-
tation of this algorithm. The inputs to the function are the order M and the lags
{R(0),R(1), . . . , R(M)}. The outputs are the parameters {EM,γ1, γ2, . . . , γM}. The
function can be modified easily to include the computation of the backward gapped
functions g−p (k), which are the columns of the Cholesky matrix G. This can be done by
the recursion

g−p (k)= g−p (k− 1)+(1− γp)gp(k)−gp+1(k) (12.10.21)

where p + 1 ≤ k ≤ M, with starting value g−p (p)= Ep = gp(p)(1 − γp). This recur-
sion will generate the lower-triangular part of G. Equation (12.10.21) follows by writing
Eq. (12.10.17) for order (p + 1) and subtracting it from Eq. (12.10.18). Note, also, that
Eq. (12.10.17) and the bound (12.10.15) imply the bound |gp(k)| ≤ 2R(0), which allows
a fixed-point implementation.

We finish this section by discussing the connection of the Schur algorithm to Schur’s
original work. It follows from Eq. (12.10.3) that the ratio of the two gapped functions

12.11. Lattice Realizations of FIR Wiener Filters 553

G±p (z) is an all-pass stable transfer function, otherwise known as a lossless bounded real
function [971]:

Sp(z)=
G−p (z)
G+p (z)

= A
R
p(z)
Ap(z)

= app + ap,p−1z−1 + · · · + z−p
1+ ap1z−1 + · · · + appz−p (12.10.22)

The all-pass property follows from the fact that the reverse polynomial AR(z) has
the same magnitude response asAp(z). The stability property follows from the minimum-
phase property of the polynomials Ap(z), which in turn is equivalent to all reflection
coefficients having magnitude less than one. Such functions satisfy the boundedness
property ∣∣Sp(z)∣∣ ≤ 1 , for |z| ≥ 1 (12.10.23)

with equality attained on the unit circle. Taking the limit z → ∞, it follows from
Eq. (12.10.22) that the reflection coefficient γp is obtainable from Sp(z) by

Sp(∞)= app = −γp (12.10.24)

Using the backward Levinson recursion reqs5.3.23, we obtain a new all-pass function

Sp−1(z)=
G−p−1(z)
G+p−1(z)

= A
R
p−1(z)
Ap−1(z)

= z(γpAp +A
R
p)

Ap + γpARp
or, dividing numerator and denominator by Ap(z)

Sp−1(z)= z Sp(z)+γp
1+ γpSp(z) (12.10.25)

This is Schur’s original recursion [985]. Applying this recursion repeatedly from
some initial value p = M down to p = 0, with S0(z)= 1, will give rise to the set of
reflection or Schur coefficients {γ1, γ2, . . . , γM}. The starting all-pass function SM(z)
will be stable if and only if all reflection coefficients have magnitude less than one. We
note finally that there is an intimate connection between the Schur algorithm and inverse
scattering problems [991,995,1001,1002,1005–1007,1053].

In Sec. 12.13, we will see that the lattice recursions (12.10.6) describe the forward
and backward moving waves incident on a layered structure. The Schur function Sp(z)
will correspond to the overall reflection response of the structure, and the recursion
(12.10.25) will describe the successive removal of the layers. The coefficients γp will
represent the elementary reflection coefficients at the layer interfaces. This justifies the
term reflection coefficients for the γs.

12.11 Lattice Realizations of FIR Wiener Filters

In this section, we combine the results of Sections 11.3 and 12.9 to derive alternative
realizations of Wiener filters that are based on the Gram-Schmidt lattice structures.
Consider the FIR Wiener filtering problem of estimating a desired signal xn, on the basis
of the related signal yn, using anMth order filter. The I/O equation of the optimal filter
is given by Eq. (11.3.8). The vector of optimal weights is determined by solving the set of

554 12. Linear Prediction

normal equations, given by Eq. (11.3.9). The discussion of the previous section suggests
that Eq. (11.3.9) can be solved efficiently using the Levinson recursion. Defining the data
vector

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ (12.11.1)

we rewrite Eq. (11.3.9) in the compact matrix form

Ryyh = rxy (12.11.2)

where Ryy is the (M+1)×(M+1) autocorrelation matrix of y(n), and rxy, the (M+1)-
vector of cross-correlations between xn, and y(n), namely,

Ryy = E
[
y(n)y(n)T

]
, rxy = E[xny(n)]=

⎡⎢⎢⎢⎢⎢⎣
Rxy(0)
Rxy(1)

...
Rxy(M)

⎤⎥⎥⎥⎥⎥⎦ (12.11.3)

and h is the (M + 1)-vector of optimal weights

h =

⎡⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤⎥⎥⎥⎥⎥⎦ (12.11.4)

The I/O equation of the filter, Eq. (12.9.4), is

x̂n = hTy(n)= h0yn + h1yn−1 + · · · + hMyn−M (12.11.5)

Next, consider the Gram-Schmidt transformation of Eq. (12.9.4) from the data vector
y(n) to the decorrelated vector e−(n):

e−(n)= Ly(n) or,

⎡⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−M(n)

⎤⎥⎥⎥⎥⎥⎦ = L
⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ (12.11.6)

Inserting (12.11.6) into (12.11.5), we find

x̂n = hTL−1e−(n)

Defining the (M + 1)-vector
g = L−Th (12.11.7)

we obtain the alternative I/O equation for the Wiener filter:

x̂n = gTe−(n)=
M∑
p=0

gpe−p (n)= g0e−0 (n)+g1e−1 (n)+· · · + gMe−M(n) (12.11.8)

12.11. Lattice Realizations of FIR Wiener Filters 555

This is easily recognized as the projection of xn onto the subspace spanned by{
e−0 (n), e−1 (n), . . . , e−M(n)

}
, which is the same as that spanned by the data vector {yn,

yn−1, . . . , yn−M}. Indeed, it follows from Eqs. (12.11.7) and (12.11.2) that

gT = hTL−1 = E[xny(n)T]E[y(n)y(n)T]−1L−1

= E[xne−(n)T]L−T
(
L−1E[e−(n)e−(n)T]L−T

)−1L−1

= E[xne−(n)T]E[e−(n)e−(n)T]−1

= [
E[xne−0 (n)]/E0, E[xne−1 (n)]/E1, . . . , E[xne−M(n)]/EM

]
so that the estimate of xn can be expressed as

x̂n = E[xne−(n)T]E[e−(n)e−(n)T]−1e−(n)= E[xny(n)T]E[y(n)y(n)T]−1y(n)

The key to the lattice realization of the optimal filtering equation (12.11.8) is the
observation that the analysis lattice filter of Fig. 12.7.1 for the process yn, provides, in
its successive lattice stages, the signals e−p (n) which are required in the sum (12.11.8).
Thus, if the weight vector g is known, an alternative realization of the optimal filter will
be as shown in Fig. 12.11.1. By comparison, the direct form realization using Eq. (12.11.5)
operates directly on the vector y(n), which, at each time instant n, is available at the
tap registers of the filter. This is depicted in Fig. 12.11.2.

Both types of realizations can be formulated adaptively, without requiring prior
knowledge of the filter coefficients or the correlation matrices Ryy and rxy. We will
discuss adaptive implementations in Chap. 16. If Ryy and rxy are known, or can be es-
timated, then the design procedure for both the lattice and the direct form realizations
is implemented by the following three steps:

1. Using Levinson’s algorithm, implemented by the function lev, perform the LU
Cholesky factorization of Ryy, to determine the matrices L and D.

2. The vector of weights g can be computed in terms of the known quantities L,D, rxy
as follows:

g = L−Th = L−TR−1
yy rxy = L−T

(
LTD−1L

)
rxy = D−1Lrxy

3. The vector h can be recovered from g by h = LTg.

The function firw is an implementation of this design procedure. The inputs to
the function are the order M and the correlation lags

{
Ryy(0),Ryy(1), . . . , Ryy(M)

}
and

{
Rxy(0),Rxy(1), . . . , Rxy(M)

}
. The outputs are the quantities L,D,g, and h. The

estimate (12.11.8) may also be written recursively in the order of the filter. If we denote,

x̂p(n)=
p∑
i=0

gie−i (n) (12.11.9)

we obtain the recursion

x̂p(n)= x̂p−1(n)+gpe−p (n) , p = 0,1, . . . ,M (12.11.10)

556 12. Linear Prediction

Fig. 12.11.1 Lattice realization of FIR Wiener filter.

initialized as x̂−1(n)= 0. The quantity x̂p(n) is the projection of xn on the subspace
spanned by

{
e−0 (n), e−1 (n), . . . , e−p (n)

}
, which by virtue of the lower-triangular nature

of the matrix L is the same space as that spanned by {yn, yn−1, . . . , yn−p}. Thus, x̂p(n)
represents the optimal estimate of xn based on a pth order filter. Similarly, x̂p−1(n)
represents the optimal estimate of xn based on the (p− 1)th order filter; that is, based
on the past p− 1 samples {yn, yn−1, . . . , yn−p+1}. These two subspaces differ by yn−p.

The term e−p (n) is by construction the best postdiction error of estimating yn−p from
the samples {yn, yn−1, . . . , yn−p+1}; that is, e−p (n) is the orthogonal complement of yn−p
projected on that subspace. Therefore, the term gpe−p (n) in Eq. (12.11.10) represents
the improvement in the estimate of xn that results by taking into account the additional
past value yn−p; it represents that part of xn that cannot be estimated in terms of the
subspace {yn, yn−1, . . . , yn−p+1}. The estimate x̂p(n) of xn is better than x̂p−1(n) in the
sense that it produces a smaller mean-squared estimation error. To see this, define the
estimation errors in the two cases

ep(n)= xn − x̂p(n) , ep−1(n)= xn − x̂p−1(n)

Using the recursion (12.11.10), we find

ep(n)= ep−1(n)−gpe−p (n) (12.11.11)

12.11. Lattice Realizations of FIR Wiener Filters 557

Fig. 12.11.2 Direct-form realization of FIR Wiener filter.

Using gp = E[xne−p (n)]/Ep, we find for Ep = E[ep(n)2]

Ep = E[x2
n]−

p∑
i=0

giE[xne−i (n)]= Ep−1 − gpE[xne−p (n)]

= Ep−1 −
(
E[xne−p (n)]

)2/Ep = Ep−1 − g2
pEp

Thus, Ep is smaller than Ep−1. This result shows explicitly how the estimate is con-
stantly improved as the length of the filter is increased. The nice feature of the lat-
tice realization is that the filter length can be increased simply by adding more lattice
sections without having to recompute the weights gp of the previous sections. A re-
alization equivalent to Fig. 12.11.1, but which shows explicitly the recursive construc-
tion (12.11.10) of the estimate of xn and of the estimation error (12.11.11), is shown in
Fig. 12.11.3.

The function lwf is an implementation of the lattice Wiener filter of Fig. 12.11.3. The
function dwf implements the direct-form Wiener filter of Fig. 12.11.2. Each call to these
functions transforms a pair of input samples {x, y} into the pair of output samples
{x̂, e} and updates the internal state of the filter. Successive calls over n = 0,1,2, . . . ,
will transform the input sequences {xn, yn} into the output sequences {x̂n, en}. In both
realizations, the internal state of the filter is taken to be the vector of samples stored
in the delays of the filter; that is, wp(n)= e−p−1(n − 1), p = 1,2, . . . ,M for the lattice
case, and wp(n)= yn−p, p = 1,2, . . . ,M for the direct-form case. By allowing the filter
coefficients to change between calls, these functions can be used in adaptive implemen-
tations.

Next, we present a Wiener filter design example for a noise canceling application.
The primary and secondary signals x(n) and y(n) are of the form

x(n)= s(n)+v1(n) , y(n)= v2(n)

558 12. Linear Prediction

Fig. 12.11.3 Lattice realization of FIR Wiener filter.

where s(n) is a desired signal corrupted by noise v1(n). The signal v2(n) is correlated
with v1(n) but not with s(n), and provides a reference noise signal. The noise canceler
is to be implemented as a Wiener filter of order M, realized either in the direct or the
lattice form. It is shown below:

Its basic operation is that of a correlation canceler; that is, the optimally designed
filter H(z) will transform the reference noise v2(n) into the best replica of v1(n), and
then proceed to cancel it from the output, leaving a clean signal s(n). For the purpose
of the simulation, we took s(n) to be a simple sinusoid

s(n)= sin(ω0n) , ω0 = 0.075π [rads/sample]

and v1(n) and v2(n) were generated by the difference equations

v1(n) = −0.5v1(n− 1)+v(n)
v2(n) = 0.8v2(n− 1)+v(n)

driven by a common, zero-mean, unit-variance, uncorrelated sequence v(n). The dif-
ference equations establish a correlation between the two noise components v1 and v2,
which is exploited by the canceler to effect the noise cancellation.

Figs. 12.11.4 and 12.11.5 show 100 samples of the signals x(n), s(n), and y(n)
generated by a particular realization of v(n). For M = 4 and M = 6, the sample auto-
correlation and cross-correlation lags, Ryy(k), Rxy(k), k = 0,1, . . . ,M, were computed
and sent through the function firw to get the filter weights g and h.

The reference signal yn was filtered through H(z) to get the estimate x̂n—which
is really an estimate of v1(n)—and the estimation error e(n)= x(n)−x̂(n), which is

12.11. Lattice Realizations of FIR Wiener Filters 559

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

time samples, n

primary signal x(n)

 x(n) = s(n) + v1(n)
 s(n) = sin(ω0n)

Fig. 12.11.4 Noise corrupted sinusoid.

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

time samples, n

secondary signal y(n)

 y(n) = v2(n)

Fig. 12.11.5 Reference noise.

really an estimate of s(n). This estimate of s(n) is shown in Figs. (12.11.6) and 12.11.7,
for the cases M = 4 and M = 6, respectively. The improvement afforded by a higher
order filter is evident. For the particular realization of x(n) and y(n) that we used, the
sample correlations Ryy(k), Rxy(k), k = 0,1, . . . ,M, were:

Ryy = [2.5116, 1.8909, 1.2914, 0.6509, 0.3696, 0.2412, 0.1363]

Rxy = [0.7791, −0.3813, 0.0880, −0.3582, 0.0902, −0.0684, 0.0046]

and the resulting vector of lattice weights gp, p = 0,1, . . . ,M, reflection coefficients γp,

560 12. Linear Prediction

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

time samples, n

recovered signal e(n)

 e(n)
 s(n)

Fig. 12.11.6 Output of noise canceler (M = 4).

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

time samples, n

recovered signal e(n)

 e(n)
 s(n)

Fig. 12.11.7 Output of noise canceler (M = 6).

p = 1,2, . . . ,M, and direct-form weights hm,m = 0,1, . . . ,M were forM = 6,

g = [0.3102, −0.8894, 0.4706, −0.2534, 0.1571, −0.0826, 0.0398]

γγγ = [0.7528, −0.1214, −0.1957, 0.1444, 0.0354, −0.0937]

h = [0.9713, −1.2213, 0.6418, −0.3691, 0.2245, −0.1163, 0.0398]

To get the g and γγγ of the case M = 4, simply ignore the last two entries in the above.
The corresponding h is in this case:

h = [0.9646, −1.2262, 0.6726, −0.3868, 0.1571]

Using the results of Problems 12.25 and 12.26, we may compute the theoretical filter
weights for this example, and note that they compare fairly well with the estimated ones

12.12. Autocorrelation, Covariance, and Burg’s Methods 561

that were based on the length-100 data blocks. ForM = 6, we have:

g = [0.2571, −0.9286, 0.4643, −0.2321, 0.1161, −0.0580, 0.0290]

γγγ = [0.8, 0, 0, 0, 0, 0]

h = [1, −1.3, 0.65, −0.325, 0.1625, −0.0812, 0.0290]

As we discussed in Sec. 1.8, the lattice realizations based on the backward orthog-
onal basis have three major advantages over the direct-form realizations: (a) the filter
processes non-redundant information only, and hence adaptive implementations would
adapt faster; (b) the design of the optimal filter weights g does not require any matrix
inversion; and (c) the lower-order portions of g are already optimal. Moreover, it appears
that adaptive versions of the lattice realizations have better numerical properties than
the direct-form versions. In array processing problems, because the data vector y(n)
does not have the tapped-delay line form (12.11.1), the Gram-Schmidt orthogonalization
cannot be done by a simple a lattice filter. It requires a more complicated structure that
basically amounts to carrying out the lower-triangular linear transformation (12.11.6).
The benefits, however, are the same. We discuss adaptive versions of Gram-Schmidt
preprocessors for arrays in Chap. 16.

12.12 Autocorrelation, Covariance, and Burg’s Methods

As mentioned in Sec. 12.3, the finite order linear prediction problem may be thought of
as an approximation to the infinite order prediction problem. For large enough order
p of the predictor, the prediction-error filter Ap(z) may be considered to be an ade-
quate approximation to the whitening filter A(z) of the process yn. In this case, the
prediction-error sequence e+p (n) is approximately white, and the inverse synthesis filter
1/Ap(z) is an approximation to the signal model B(z) of yn. Thus, we have obtained
an approximate solution to the signal modeling problem depicted below:

The variance of e+p (n) is Ep. Depending on the realization one uses, the model pa-
rameters are either the set {ap1, ap2, . . . , app;Ep}, or, {γ1, γ2, . . . , γp;Ep}. Because these
can be determined by solving a simple linear system of equations—that is, the normal
equations (12.3.7)—this approach to the modeling problem has become widespread.

In this section, we present three widely used methods of extracting the model pa-
rameters from a given block of measured signal values yn [917,920,926,927,1008–1018].
These methods are:

1. The autocorrelation, or Yule-Walker, method
2. The covariance method.
3. Burg’s method.

We have already discussed the Yule-Walker method, which consists simply of replac-
ing the theoretical autocorrelations Ryy(k) with the corresponding sample autocorre-
lations R̂yy(k) computed from the given frame of data. This method, like the other

562 12. Linear Prediction

two, can be justified on the basis of an appropriate least-squares minimization criterion
obtained by replacing the ensemble averages E[e+p (n)2] by appropriate time averages.

The theoretical minimization criteria for the optimal forward and backward predic-
tors are

E[e+p (n)2]= min , E[e−p (n)2]= min (12.12.1)

where e+p (n) and e−p (n) are the result of filtering yn through the prediction-error fil-
ter a = [1, ap1, . . . , app]T and its reverse aR = [app, ap,p−1, . . . , ap1,1]T, respectively;
namely,

e+p (n) = yn + ap1yn−1 + ap2yn−2 + · · · + appyn−p
e−p (n) = yn−p + ap1yn−p+1 + ap2yn−p+2 + · · · + appyn

(12.12.2)

Note that in both cases the mean-square value of e±p (n) can be expressed in terms
of the (p+ 1)×(p+ 1) autocorrelation matrix

R(i, j)= R(i− j)= E[yn+i−jyn]= E[yn−jyn−i] , 0 ≤ i, j ≤ p
as follows

E[e+p (n)2]= E[e−p (n)2]= aTRa (12.12.3)

Consider a frame of length N of measured values of yn

y0, y1, . . . , yN−1

1. The Yule-Walker, or autocorrelation, method replaces the ensemble average (12.12.1)
by the least-squares time-average criterion

E =
N+p−1∑
n=0

e+p (n)2= min (12.12.4)

where e+p (n) is obtained by convolving the length-(p + 1) prediction-error filter a =
[1, ap1, . . . , app]T with the length-N data sequence yn. The length of the sequence
e+p (n) is, therefore, N + (p + 1)−1 = N + p, which justifies the upper-limit in the
summation of Eq. (12.12.4). This convolution operation is equivalent to assuming that
the block of data yn has been extended both to the left and to the right by padding it
with zeros and running the filter over this extended sequence. The last p output samples
e+p (n), N ≤ n ≤ N + p − 1, correspond to running the filter off the ends of the data
sequence to the right. These terms arise because the prediction-error filter has memory
of p samples. This is depicted below:

Inserting Eq. (12.12.2) into (12.12.4), it is easily shown that E can be expressed in the
equivalent form

E =
N+p−1∑
n=0

e+p (n)2=
p∑
i,j=0

aiR̂(i− j)aj = aTR̂a (12.12.5)

12.12. Autocorrelation, Covariance, and Burg’s Methods 563

where R̂(k) denotes the sample autocorrelation of the length-N data sequence yn:

R̂(k)= R̂(−k)=
N−1−k∑
n=0

yn+kyn , 0 ≤ k ≤ N − 1

where the usual normalization factor 1/N has been ignored. This equation is identical
to Eq. (12.12.3) with R replaced by R̂. Thus, the minimization of the time-average index
(12.12.5) with respect to the prediction coefficients will lead exactly to the same set of
normal equations (12.3.7) with R replaced by R̂. The positive definiteness of the sample
autocorrelation matrix also guarantees that the resulting prediction-error filter will be
minimum phase, and thus also that all reflection coefficients will have magnitude less
than one.

2. The covariance method replaces Eq. (12.12.1) by the time average

E =
N−1∑
n=p
e+p (n)2= min (12.12.6)

where the summation in n is such that the filter does not run off the ends of the data
block, as shown below:

To explain the method and to see its potential problems with stability, consider a
simple example of a length-three sequence and a first-order predictor:

E =
2∑
n=1

e+1 (n)2= e+1 (1)2+e+1 (2)2= (y1 + a11y0)2+(y2 + a11y1)2

Differentiating with respect to a11 and setting the derivative to zero gives

(y1 + a11y0)y0 + (y2 + a11y1)y1 = 0

a11 = −y1y0 + y2y1

y2
0 + y2

1

Note that the denominator does not depend on the variable y2 and therefore it is
possible, if y2 is large enough, for a11 to have magnitude greater than one, making
the prediction-error filter nonminimal phase. Although this potential stability problem
exists, this method has been used with good success in speech processing, with few,
if any, such stability problems. The autocorrelation method is sometimes preferred in

564 12. Linear Prediction

speech processing because the resulting normal equations have a Toeplitz structure and
their solution can be obtained efficiently using Levinson’s algorithm. However, similar
ways of solving the covariance equations have been developed recently that are just as
efficient [1013].

3. Although the autocorrelation method is implemented efficiently, and the resulting
prediction-error filter is guaranteed to be minimum phase, it suffers from the effect of
windowing the data sequence yn, by padding it with zeros to the left and to the right.
This reduces the accuracy of the method somewhat, especially when the data record N
is short. In this case, the effect of windowing is felt more strongly. The proper way
to extend the sequence yn, if it must be extended, is a way compatible with the signal
model generating this sequence. Since we are trying to determine this model, the fairest
way of proceeding is to try to use the available data block in a way which is maximally
noncommittal as to what the sequence is like beyond the ends of the block.

Burg’s method, also known as the maximum entropy method (MEM), arose from the
desire on the one hand not to run off the ends of the data, and, on the other, to always
result in a minimum-phase filter. Burg’s minimization criterion is to minimize the sum-
squared of both the forward and the backward prediction errors:

E =
N−1∑
n=p

[
e+p (n)2+e−p (n)2] = min (12.12.7)

where the summation range is the same as in the covariance method, but with both the
forward and the reversed filters running over the data, as shown:

If the minimization is performed with respect to the coefficients api, it is still possi-
ble for the resulting prediction-error filter not to be minimum phase. Instead, Burg sug-
gests an iterative procedure: Suppose that the prediction-error filter [1, ap−1,1, ap−1,2,
. . . , ap−1,p−1] of order (p − 1) has already been determined. Then, to determine the
prediction-error filter of order p, one needs to know the reflection coefficient γp and to
apply the Levinson recursion:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap1

ap2

...
ap,p−1

app

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap−1,1
ap−1,2

...
ap−1,p−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ap−1,p−1

ap−1,p−2

...
ap−1,1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.12.8)

To guarantee the minimum-phase property, the reflection coefficient γp must have
magnitude less than one. The best choice for γp is that which minimizes the perfor-
mance index (12.12.7). Differentiating with respect to γp and setting the derivative to

12.12. Autocorrelation, Covariance, and Burg’s Methods 565

zero we find
∂E
∂γp

= 2
N−1∑
n=p

[
e+p (n)

∂e+p (n)
∂γp

+ e−p (n)
∂e−p (n)
∂γp

]
= 0

Using the lattice relationships

e+p (n) = e+p−1(n)−γpe−p−1(n− 1)

e−p (n) = e−p−1(n− 1)−γpe+p−1(n)
(12.12.9)

both valid for p ≤ n ≤ N − 1 if the filter is not to run off the ends of the data, we find
the condition

N−1∑
n=p

[
e+p (n)e

−
p−1(n− 1)+e−p (n)e+p−1(n)

] = 0 , or,

N−1∑
n=p

[(
e+p−1(n)−γpe−p−1(n− 1)

)
e−p−1(n− 1)+(

e−p−1(n− 1)−γpe+p−1(n)
)
e+p−1(n)

] = 0

which can be solved for γp to give

γp =
2
N−1∑
n=p
e+p−1(n)e

−
p−1(n− 1)

N−1∑
n=p

[
e+p−1(n)2+e−p−1(n− 1)2] (12.12.10)

This expression for γp is of the form

γp = 2a · b

|a|2 + |b|2

where a and b are vectors. Using the Schwarz inequality, it is easily verified that γp has
magnitude less than one. Equations (12.12.8) through (12.12.10) define Burg’s method.
The computational steps are summarized below:

0. Initialize in order as follows:

e+0 (n)= e−0 (n)= yn , for 0 ≤ n ≤ N − 1 , and A0(z)= 1, E0 = 1

N

N−1∑
n=0

y2
n

1. At stage (p− 1), we have available the quantities:

Ap−1(z), Ep−1, and e±p−1(n), for p− 1 ≤ n ≤ N − 1

2. Using Eq. (12.12.10), compute the reflection coefficient γp.

3. Using (12.12.8), compute Ap(z).
4. Using (12.12.9), compute e±p (n), for p ≤ n ≤ N − 1.

5. Update the mean-square error by Ep = (1− γ2
p)Ep−1.

6. Go to stage p.

566 12. Linear Prediction

The function burg is an implementation of this method. The inputs to the function
are the vector of data samples {y0, y1, . . . , yN−1} and the desired final order M of the
predictor. The outputs are all the prediction-error filters of order up toM, arranged as
usual into the lower triangular matrix L, and the corresponding mean-square prediction
errors {E0, E1, . . . , EM}.

Example 12.12.1: The length-six block of data

yn = [4.684, 7.247, 8.423, 8.650, 8.640, 8.392]

forn = 0,1,2,3,4,5, is known to have been generated by sending zero-mean, unit-variance,
white-noise εn through the difference equation

yn − 1.70yn−1 + 0.72yn−2 = εn

Thus, the theoretical prediction-error filter and mean-square error areA2(z)= 1−1.70z−1+
0.72z−2 and E2 = 1. Using Burg’s method, extract the model parameters for a second-order
model. The reader is urged to go through the algorithm by hand. Sending the above six yn
samples through the function burg, we find the first- and second-order prediction-error
filters and the corresponding errors:

A1(z) = 1− 0.987z−1 , E1 = 1.529

A2(z) = 1− 1.757z−1 + 0.779z−2 , E2 = 0.60

We note that the theoretical first-order filter obtained from A2(z)= 1−1.70z−1+0.72z−2

via the backward Levinson recursion is A1(z)= 1− 0.9884z−1. ��

The resulting set of LPC model parameters, from any of the above analysis methods,
can be used in a number of ways as suggested in Sec. 1.13. One of the most successful
applications has been to the analysis and synthesis of speech [920,1019–1027]. Each
frame of speech, of duration of the order of 20 msec, is subjected to the Yule-Walker
analysis method to extract the corresponding set of model parameters. The order M
of the predictor is typically 10–15. Pitch and voiced/unvoiced information are also
extracted. The resulting set of parameters represents that speech segment.

To synthesize the segment, the set of model parameters are recalled from memory
and used in the synthesizer to drive the synthesis filter. The latter is commonly realized
as a lattice filter. Lattice realizations are preferred because they are much better well-
behaved under quantization of their coefficients (i.e., the reflection coefficients) than
the direct-form realizations [920,1023,1024]. A typical speech analysis and synthesis
system is shown in Fig. 12.12.1.

Linear predictive modeling techniques have also been applied to EEG signal process-
ing in order to model EEG spectra, to classify EEGs automatically, to detect EEG transients
that might have diagnostic significance, and to predict the onset of epileptic seizures
[1028–1035].

LPC methods have been applied successfully to signal classification problems such
as speech recognition [1022,1036–1041] or the automatic classification of EEGs [1032].
Distance measures between two sets of model parameters extracted from two signal
frames can be used as measures of similarity between the frames. Itakura’s LPC distance

12.12. Autocorrelation, Covariance, and Burg’s Methods 567

Fig. 12.12.1 LPC analysis and synthesis of speech.

measure can be introduced as follows: Consider two autoregressive signal sequences,
the test sequence yT(n) to be compared against the reference sequence yR(n). Let
AT(z) and AR(z) be the two whitening filters, both of orderM. The two signal models
are

Now, suppose the sequence to be tested, yT(n), is filtered through the whitening
filter of the reference signal

resulting in the output signal eT(n). The mean output power is easily expressed as

E[eT(n)2] = a†RRTaR =
∫ π
−π
SeTeT(ω)

dω
2π

=
∫ π
−π

∣∣AR(ω)∣∣2SyTyT(ω)
dω
2π

=
∫ π
−π

∣∣AR(ω)∣∣2 σ2
εT∣∣AT(ω)∣∣2

dω
2π

where RT is the autocorrelation matrix of yT(n). On the other hand, if yT(n) is filtered
through its own whitening filter, it will produce εT(n). Thus, in this case

σ2
εT = E[εT(n)2]= a†TRTaT

It follows that
E[eT(n)2]
E[εT(n)2]

= a†RRTaR

a†TRTaT
=

∫ π
−π

∣∣AR(ω)∣∣2∣∣AT(ω)∣∣2

dω
2π

(12.12.11)

The log of this quantity is Itakura’s LPC distance measure

d(aT, aR)= log

(
E[eT(n)2]
E[εT(n)2]

)
= log

(
a†RRTaR

a†TRTaT

)
= log

[∫ π
−π

∣∣AR(ω)∣∣2∣∣AT(ω)∣∣2

dω
2π

]

In practice, the quantities aT, RT, and aR are extracted from a frame of yT(n) and a
frame of yR(n). If the model parameters are equal, the distance is zero. This distance

568 12. Linear Prediction

measure effectively provides a comparison between the two spectra of the processes
yT and yR, but instead of comparing them directly, a prewhitening of yT(n) is carried
out by sending it through the whitening filter of the other signal. If the two spectra
are close, the filtered signal eT(n) will be close to white—that is, with a spectrum close
to being flat; a measure of this flatness is precisely the above integrated spectrum of
Eq. (12.12.11).

12.13 Dynamic Predictive Deconvolution—Waves in Layered

Media

The analysis and synthesis lattice filters, implemented via the Levinson recursion, were
obtained within the context of linear prediction. Here, we would like to point out the re-
markable fact that the same analysis and synthesis lattice structures also occur naturally
in the problem of wave propagation in layered media [920–925,974,976,1010,1019,1042–
1059]. This is perhaps the reason behind the great success of linear prediction methods
in speech and seismic signal processing. In fact, historically many linear prediction
techniques were originally developed within the context of these two application areas.

In speech, the vocal tract is modeled as an acoustic tube of varying cross-sectional
area. It can be approximated by the piece-wise constant area approximation shown
below:

The acoustic impedance of a sound wave varies inversely with the tube area

Z = ρc
A

where ρ, c,A are the air density, speed of sound, and tube area, respectively. Therefore,
as the sound wave propagates from the glottis to the lips, it will suffer reflections every
time it encounters an interface; that is, every time it enters a tube segment of differ-
ent diameter. Multiple reflections will be set up within each segment and the tube will
reverberate in a complicated manner depending on the number of segments and the
diameter of each segment. By measuring the speech wave that eventually comes out of
the lips, it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments or,
equivalently, the reflection coefficients at the interfaces. During speech, the configu-
ration of the vocal tract tube changes continuously. But being a mechanical system, it
does so fairly slowly, and for short periods of time (of the order of 20–30 msec) it may
be assumed to maintain a fixed configuration. From each such short segment of speech,
a set of configuration parameters (e.g., reflection coefficients) may be extracted. This
set may be used to synthesize the speech segment.

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 569

The seismic problem is somewhat different. Here it is not the transmitted wave that
is experimentally accessible, but rather the overall reflected wave:

An impulsive input to the earth, such as a dynamite explosion near the surface,
will set up seismic elastic waves propagating downwards. As the various earth layers
are encountered, reflections will take place. Eventually each layer will be reverberating
and an overall reflected wave will be measured at the surface. On the basis of this
reflected wave, the layered structure (i.e., reflection coefficients, impedances, etc.) must
be extracted by deconvolution techniques. These are essentially identical to the linear
prediction methods.

In addition to geophysical and speech applications, this wave problem and the as-
sociated inverse problem of extracting the structure of the medium from the observed
(reflected or transmitted) response have a number of other applications. Examples in-
clude the probing of dielectric materials by electromagnetic waves, the study of the
optical properties of thin films, the probing of tissues by ultrasound, and the design
of broadband terminations of transmission lines. The mathematical analysis of such
wave propagation problems has been done more or less independently in each of these
application areas, and is well known dating back to the time of Stokes.

In this type of wave propagation problem there are always two associated propa-
gating field quantities, the ratio of which is constant and equal to the corresponding
characteristic impedance of the propagation medium. Examples of these include the
electric and magnetic fields in the case of EM waves, the air pressure and particle vol-
ume velocity for sound waves, the stress and particle displacement for seismic waves,
and the voltage and current waves in the case of TEM transmission lines.

As a concrete example, we have chosen to present in some detail the case of EM
waves propagating in lossless dielectrics. The simplest and most basic scattering prob-
lem arises when there is a single interface separating two semi-infinite dielectrics of
characteristic impedances Z and Z′, as shown

where E+ and E− are the right and left moving electric fields in medium Z, and E ′+ and
E ′− are those in medium Z′. The arrows indicate the directions of propagation, the fields
are perpendicular to these directions. Matching the boundary conditions (i.e., continuity

570 12. Linear Prediction

of the tangential fields at the interface), gives the two equations:

E+ + E− = E ′+ + E ′− (continuity of electric field)

1

Z
(E+ − E−)= 1

Z′
(E′+ − E′−) (continuity of magnetic field)

Introducing the reflection and transmission coefficients,

ρ = Z
′ − Z
Z′ + Z , τ = 1+ ρ , ρ′ = −ρ , τ′ = 1+ ρ′ = 1− ρ (12.13.1)

the above equations can be written in a transmission matrix form[E+
E−

]
= 1

τ

[
1 ρ
ρ 1

][E ′+
E ′−

]
(12.13.2)

The flow of energy carried by these waves is given by the Poynting vector

P = 1

2
Re

[
(E+ + E−)∗ 1

Z
(E+ − E−)

]
= 1

2Z
(E∗+ E+ − E∗− E−) (12.13.3)

One consequence of the above matching conditions is that the total energy flow to
the right is preserved across the interface; that is,

1

2Z
(E∗+ E+ − E∗− E−)= 1

2Z′
(E ′∗+ E ′+ − E ′∗− E ′−) (12.13.4)

It proves convenient to absorb the factors 1/2Z and 1/2Z′ into the definitions for
the fields by renormalizing them as follows:[

E+
E−

]
= 1√

2Z

[E+
E−

]
,

[
E′+
E′−

]
= 1√

2Z′

[E ′+
E ′−

]

Then, Eq. (12.13.4) reads

E∗+E+ − E∗−E− = E′∗+ E′+ − E′∗− E′− (12.13.5)

and the matching equations (12.13.2) can be written in the normalized form[
E+
E−

]
= 1

t

[
1 ρ
ρ 1

][
E′+
E′−

]
, t =

√
1− ρ2 = √ττ′ (12.13.6)

They may also be written in a scattering matrix form that relates the outgoing fields
to the incoming ones, as follows:[

E′+
E−

]
=

[
t ρ′

ρ t

][
E+
E′−

]
= S

[
E+
E′−

]
(12.13.7)

This is the most elementary scattering matrix of all, and ρ and t are the most ele-
mentary reflection and transmission responses. From these, the reflection and trans-
mission response of more complicated structures can be built up. In the more general

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 571

Fig. 12.13.1 Layered structure.

Fig. 12.13.2 Reflection and transmission responses.

case, we have a dielectric structure consisting of M slabs stacked together as shown in
Fig. 12.13.1.

The media to the left and right in the figure are assumed to be semi-infinite. The
reflection and transmission responses (from the left, or from the right) of the structure
are defined as the responses of the structure to an impulse (incident from the left, or
from the right) as shown in Fig. 12.13.2.
The corresponding scattering matrix is defined as

S =
[
T R′

R T′

]

and by linear superposition, the relationship between arbitrary incoming and outgoing
waves is

[
E′+
E−

]
=

[
T R′

R T′

][
E+
E′−

]

The inverse scattering problem that we pose is how to extract the detailed prop-
erties of the layered structure, such as the reflection coefficients ρ0, ρ1, . . . , ρM from
the knowledge of the scattering matrix S; that is, from observations of the reflection
response R or the transmission response T.

Without loss of generality, we may assume the M slabs have equal travel time. We
denote the common one-way travel time by T1 and the two-way travel time by T2 = 2T1.

572 12. Linear Prediction

As an impulse δ(t) is incident from the left on interface M, there will be immediately
a reflected wave and a transmitted wave into mediumM. When the latter reaches inter-
face M − 1, part of it will be transmitted into medium M − 1, and part will be reflected
back towards interface M where it will be partially rereflected towards M − 1 and par-
tially transmitted to the left into medium M + 1, thus contributing towards the overall
reflection response. Since the wave had to travel to interfaceM−1 and back, this latter
contribution will occur at time T2. Similarly, another wave will return back to interface
M due to reflection from the second interfaceM− 2; this wave will return 2T2 seconds
later and will add to the contribution from the zig-zag path within medium M which
is also returning at 2T2, and so on. The timing diagram below shows all the possible
return paths up to time t = 3T2, during which the original impulse can only travel as
far as interfaceM − 3:

When we add the contributions of all the returned waves we see that the reflection
response will be a linear superposition of returned impulses

R(t)=
∞∑
k=0

Rkδ(t − kT2)

It has a Fourier transform expressible more conveniently as the z-transform

R(z)=
∞∑
k=0

Rkz−k , z = ejωT2 , (here,ω is in rads/sec)

We observe that R is periodic in frequencyω with period 2π/T2, which plays a role
analogous to the sampling frequency in a sample-data system. Therefore, it is enough
to specify R within the Nyquist interval [−π/T2,π/T2].

Next, we develop the lattice recursions that facilitate the solution of the direct and
the inverse scattering problems. Consider the mth slab and let E±m be the right/left
moving waves incident on the left side of themth interface. To relate them to the same
quantities E±m−1 incident on the left side of the (m − 1)st interface, first we use the
matching equations to “pass” to the other side of the mth interface and into the mth
slab, and then we propagate these quantities to reach the left side of the (m − 1)st

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 573

interface. This is shown below.

The matching equations are:[
E+m
E−m

]
= 1

tm

[
1 ρm
ρm 1

][
E+′m
E−′m

]
, tm = (1− ρ2

m)1/2 (12.13.8)

Since the left-moving wave E−′m is the delayed replica of E−m−1 by T1 seconds, and
E+′m is the advanced replica of E+m−1 by T1 seconds, it follows that

E+′m = z1/2E+m−1 , E−′m = z−1/2E−m−1

or, in matrix form [
E+′m
E−′m

]
=

[
z1/2 0
0 z−1/2

][
E+m−1

E−m−1

]
(12.13.9)

where the variable z−1 was defined above and represents the two-way travel time delay,
while z−1/2 represents the one-way travel time delay. Combining the matching and prop-
agation equations (12.13.8) and (12.13.9), we obtain the desired relationship between E±m
and E±m−1: [

E+m
E−m

]
= z

1/2

tm

[
1 ρmz−1

ρm z−1

][
E+m−1

E−m−1

]
(12.13.10)

Or, written in a convenient vector notation

Em(z)= ψm(z)Em−1(z) (12.13.11)

where we defined

Em(z)=
[
E+m(z)
E−m(z)

]
, ψm(z)= z

1/2

tm

[
1 ρmz−1

ρm z−1

]
(12.13.12)

The “match-and-propagate” transition matrixψm(z) has two interesting properties;
namely, defining ψ̄m(z)= ψm(z−1)

ψ̄m(z)TJ3ψm(z)= J3 , J3 =
[

1 0
0 −1

]
(12.13.13)

ψ̄m(z)= J1ψm(z)J1 , J1 =
[

0 1
1 0

]
(12.13.14)

574 12. Linear Prediction

where J1, J3 are recognized as two of the three Pauli spin matrices. From Eq. (12.3.13),
we have with Ē±m(z)= E±m(z−1):

Ē+mE+m − Ē−mE−m = ĒTmJ3Em = ĒTm−1ψ̄TmJ3ψmEm−1 = ĒTm−1J3Ēm−1

= Ē+m−1E
+
m−1 − Ē−m−1E

−
m−1

(12.13.15)

which is equivalent to energy conservation, according to Eq. (12.13.5). The second prop-
erty, Eq. (12.13.14), expresses time-reversal invariance and allows the construction of a
second, linearly independent, solution of the recursive equations (12.13.11), Using the
property J2

1 = I, we have

Êm = J1Ēm =
[
Ē−m
Ē+m

]
= J1ψ̄mĒm−1 = J1ψ̄mJ1J1Ēm−1 = ψmÊm−1 (12.13.16)

The recursions (12.13.11) may be iterated now down to m = 0. By an additional
boundary match, we may pass to the right side of interfacem = 0:

Em = ψmψm−1 · · ·ψ1E0 = ψmψm−1 · · ·ψ1ψ0E′0

where we defined ψ0 by

ψ0 = 1

t0

[
1 ρ0

ρ0 1

]
or, more explicitly[

E+m
E−m

]
= zm/2

tmtm−1 · · · t1t0

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

][
E+′0

E−′0

]
(12.13.17)

To deal with this product of matrices, we define[
Am Cm
Bm Dm

]
=

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

]
(12.13.18)

where Am,Cm,Bm,Dm are polynomials of degree m in the variable z−1. The energy
conservation and time-reversal invariance properties of the ψm matrices imply similar
properties for these polynomials. Writing Eq. (12.13.18) in terms of the ψms, we have[

Am Cm
Bm Dm

]
= z−m/2σmψmψm−1 · · ·ψ1ψ0

where we defined the quantity

σm = tmtm−1 · · · t1t0 =
m∏
i=0

(1− ρ2
i)

1/2 (12.13.19)

Property (12.13.13) implies the same for the above product of matrices; that is, with
Ām(z)= Am(z−1), etc.,[

Ām C̄m
B̄m D̄m

][
1 0
0 −1

][
Am Cm
Bm Dm

]
=

[
1 0
0 −1

]
σ2
m

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 575

which implies that the quantity Ām(z)Am(z)−B̄m(z)Bm(z) is independent of z:

Ām(z)Am(z)−B̄m(z)Bm(z)= σ2
m (12.13.20)

Property (12.13.14) implies thatCm andDm are the reverse polynomials BRm andARm,
respectively; indeed[

ARm CRm
BRm DRm

]
= z−m

[
Ām C̄m
B̄m D̄m

]
= z−mzm/2σmψ̄m · · · ψ̄1ψ̄0

= z−m/2σmJ1(ψm · · ·ψ0)J1 = J1

[
Am Cm
Bm Dm

]
J1

=
[

0 1
1 0

][
Am Cm
Bm Dm

][
0 1
1 0

]
=

[
Dm Bm
Cm Am

]
(12.13.21)

from which it follows thatCm(z)= BRm(z) andDm(z)= ARm(z). The definition (12.13.18)
implies also the recursion[

Am BRm
Bm ARm

]
=

[
1 ρmz−1

ρm z−1

][
Am−1 BRm−1

Bm−1 ARm−1

]
Therefore each column of the ABCD matrix satisfies the same recursion. To sum-

marize, we have[
Am(z) BRm(z)
Bm(z) ARm(z)

]
=

[
1 ρmz−1

ρm z−1

]
· · ·

[
1 ρ1z−1

ρ1 z−1

][
1 ρ0

ρ0 1

]
(12.13.22)

with the lattice recursion[
Am(z)
Bm(z)

]
=

[
1 ρmz−1

ρm z−1

][
Am−1(z)
Bm−1(z)

]
(12.13.23)

and the property (12.13.20). The lattice recursion is initialized atm = 0 by:

A0(z)= 1 , B0(z)= ρ0 , or,

[
A0(z) BR0 (z)
B0(z) AR0 (z)

]
=

[
1 ρ0

ρ0 1

]
(12.13.24)

Furthermore, it follows from the lattice recursion (12.13.23) that the reflection co-
efficients ρm always appear in the first and last coefficients of the polynomials Am(z)
and Bm(z), as follows

am(0)= 1 , am(m)= ρ0ρm , bm(0)= ρm , bm(m)= ρ0 (12.13.25)

Eq. (12.13.17) for the field components reads now[
E+m
E−m

]
= z

m/2

σm

[
Am BRm
Bm ARm

][
E+′0

E−′0

]
Settingm =M, we find the relationship between the fields incident on the dielectric

slab structure from the left to those incident from the right:[
E+M
E−M

]
= z

M/2

σM

[
AM BRM
BM ARM

][
E+′0

E−′0

]
(12.13.26)

576 12. Linear Prediction

All the multiple reflections and reverberatory effects of the structure are buried in
the transition matrix [

AM BRM
BM ARM

]
In reference to Fig. 12.13.2, the reflection and transmission responses R,T,R′, T′ of

the structure can be obtained from Eq. (12.13.26) by noting that[
1
R

]
= z

M/2

σM

[
AM BRM
BM ARM

][
T
0

]
,

[
0
T′

]
= z

M/2

σM

[
AM BRM
BM ARM

][
R′

1

]

which may be combined into one equation:[
1 0
R T′

]
= z

M/2

σM

[
AM BRM
BM ARM

][
T R′

0 1

]

that can be written as follows:

zM/2

σM

[
AM BRM
BM ARM

]
=

[
1 0
R T′

][
T R′

0 1

]−1

=
[

1 0
R 1

][
T−1 0

0 T′

][
1 −R′
0 1

]

Solving these for the reflection and transmission responses, we find:

R(z)= BM(z)
AM(z)

, T(z)= σMz
−M/2

AM(z)

R′(z)= −B
R
M(z)
AM(z)

, T′(z)= σMz
−M/2

AM(z)

(12.13.27)

Note that T(z)= T′(z). Since on physical grounds the transmission response T(z)
must be a stable and causal z-transform, it follows that necessarily the polynomial
AM(z)must be a minimum-phase polynomial. The overall delay factor z−M/2 in T(z) is
of no consequence. It just means that before anything can be transmitted through the
structure, it must traverse allM slabs, each with a travel time delay of T1 seconds; that
is, with overall delay ofMT1 seconds.

Let Rm−1(z) and Tm−1(z) be the reflection and transmission responses based on
m − 1 layers. The addition of one more layer will change the responses to Rm(z) and
Tm(z). Using the lattice recursions, we may derive a recursion for these responses:

Rm(z)= Bm(z)Am(z)
= ρmAm−1(z)+z−1Bm−1(z)
Am−1(z)+ρmz−1Bm−1(z)

Dividing numerator and denominator by Am−1(z) we obtain

Rm(z)= ρm + z−1Rm−1(z)
1+ ρmz−1Rm−1(z)

(12.13.28)

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 577

It describes the effect of adding a layer. Expanding it in a power series, we have

Rm(z)= ρm + (1− ρ2
m)

[
z−1Rm−1(z)

]− (1− ρ2
m)ρm

[
z−1Rm−1(z)

]2 + · · ·

It can be verified easily that the various terms in this sum correspond to the multiple
reflections taking place within themth layer, as shown below:

The first term in the expansion is always ρm; that is, ρm = Rm(∞). Thus, from the
knowledge of Rm(z) we may extract ρm. With ρm known, we may invert Eq. (12.13.28)
to get Rm−1(z) from which we can extract ρm−1; and so on, we may extract the series
of reflection coefficients. The inverse of Eq. (12.13.28), which describes the effect of
removing a layer, is

Rm−1(z)= z Rm(z)−ρm
1− ρmRm(z) (12.13.29)

Up to a difference in the sign of ρm, this is recognized as the Schur recursion
(12.10.25). It provides a nice physical interpretation of that recursion; namely, the Schur
functions represent the overall reflection responses at the successive layer interfaces,
which on physical grounds must be stable, causal, and bounded |Rm(z)| ≤ 1 for all z in
their region of convergence that includes, at least, the unit circle and all the points out-
side it. We may also derive a recursion for the transmission responses, which requires
the simultaneous recursion of Rm(z):

Tm(z)= tmz−1/2Tm−1(z)
1+ ρmz−1Rm−1(z)

, Tm−1(z)= z1/2 tmTm(z)
1− ρmRm(z) (12.13.30)

The dynamic predictive deconvolution method is an alternative method of extracting
the sequence of reflection coefficients and is discussed below.

The equations (12.13.27) for the scattering responses R,T,R′, T′ imply the unitarity
of the scattering matrix S given by

S =
[
T R′

R T′

]

that is,
S̄(z)TS(z)= S(z−1)TS(z)= I (12.13.31)

where I is the 2×2 unit matrix. On the unit circle z = ejωT2 the scattering matrix
becomes a unitary matrix: S(ω)†S(ω)= I. Component-wise, Eq. (12.13.31) becomes

T̄T + R̄R = T̄′T′ + R̄′R′ = 1 , T̄R′ + R̄T′ = 0 (12.13.32)

578 12. Linear Prediction

Robinson and Treitel’s dynamic predictive deconvolution method [974] of solving
the inverse scattering problem is based on the above unitarity equation. In the inverse
problem, it is required to extract the set of reflection coefficients from measurements of
either the reflection response R or the transmission response T. In speech processing it
is the transmission response that is available. In geophysical applications, or in studying
the reflectivity properties of thin films, it is the reflection response that is available. The
problem of designing terminations of transmission lines also falls in the latter category.
In this case, an appropriate termination is desired that must have a specified reflection
response R(z); for example, to be reflectionless over a wide band of frequencies about
some operating frequency.

The solution of both types of problems follows the same steps. First, from the
knowledge of the reflection response R(z), or the transmission response T(z), the
spectral function of the structure is defined:

Φ(z)= 1−R(z)R̄(z)= T(z)T̄(z)= σ2
M

AM(z)ĀM(z)
(12.13.33)

This is recognized as the power spectrum of the transmission response, and it is of
the autoregressive type. Thus, linear prediction methods can be used in the solution.

In the time domain, the autocorrelation lags φ(k) of the spectral function are ob-
tained from the sample autocorrelations of the reflection sequence, or the transmission
sequence:

φ(k)= δ(k)−C(k)= D(k) (12.13.34)

whereC(k) andD(k) are the sample autocorrelations of the reflection and transmission
time responses:

C(k)=
∑
n
R(n+ k)R(n) , D(k)=

∑
n
T(n+ k)T(n) (12.13.35)

In practice, only a finite record of the reflection (or transmission) sequence will be
available, say {R(0),R(1), . . . , R(N − 1)}. Then, an approximation to C(k) must be
used, as follows:

C(k)=
N−1−k∑
n=0

R(n+ k)R(n) , k = 0,1, . . . ,M (12.13.36)

The polynomial AM(z) may be recovered from the knowledge of the firstM lags of
the spectral function; that is, {φ(0),φ(1), . . . ,φ(M)}. The determining equations for
the coefficients of AM(z) are precisely the normal equations of linear prediction. In the
present context, they may be derived directly by noting that Φ(z) is a stable spectral
density and is already factored into its minimum-phase factors in Eq. (12.13.33). Thus,
writing

Φ(z)AM(z)= σ2
M

AM(z−1)
it follows that the right-hand side is expandable in positive powers of z; the negative
powers of z in the left-hand side must be set equal to zero. This gives the normal

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 579

equations:⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(0) φ(1) φ(2) · · · φ(M)
φ(1) φ(0) φ(1) · · · φ(M − 1)
φ(2) φ(1) φ(0) · · · φ(M − 2)

...
...

...
...

φ(M) φ(M − 1) φ(M − 2) · · · φ(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
aM(1)
aM(2)

...
aM(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
M
0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(12.13.37)

which can be solved efficiently using Levinson’s algorithm. Having obtained AM(z)
and noting the BM(z)= AM(z)R(z), the coefficients of the polynomial BM(z) may be
recovered by convolution:

bM(n)=
n∑
m=0

aM(n−m)R(m) , n = 0,1, . . . ,M (12.13.38)

Having obtained both AM(z) and BM(z) and noting that ρM = bM(0), the lattice
recursion (12.13.23) may be inverted to recover the polynomials AM−1(z) and BM−1(z)
as well as the next reflection coefficient ρM−1 = bM−1(0), and so on. The inverse of the
lattice recursion matrix is[

1 ρmz−1

ρm z−1

]−1

= 1

1− ρ2
m

[
1 −ρm

−ρmz z

]

Therefore, the backward recursion becomes:

ρm = bm(0) ,
[
Am−1(z)
Bm−1(z)

]
= 1

1− ρ2
m

[
1 −ρm

−ρmz z

][
Am(z)
Bm(z)

]
(12.13.39)

In this manner, all the reflection coefficients {ρ0, ρ1, . . . , ρM} can be extracted. The
computational algorithm is summarized as follows:

1. Measure R(0),R(1), . . . , R(N − 1).
2. Select a reasonable value for the number of slabsM.

3. Compute the M + 1 sample autocorrelation lags C(0),C(1), . . . , C(M) of the re-
flection response R(n), using Eq. (12.13.36).

4. Compute φ(k)= δ(k)−C(k), k = 0,1, . . . ,M.

5. Using Levinson’s algorithm, solve the normal equations (12.13.37) for the coeffi-
cients of AM(z).

6. Convolve AM(z) with R(z) to find BM(z).
7. Compute ρM = bM(0) and iterate the backward recursion (12.13.39) fromm =M

down tom = 0.

The function dpd is an implementation of the dynamic predictive deconvolution pro-
cedure. The inputs to the function areN samples of the reflection response {R(0),R(1), . . . , R(N−
1)} and the number of layers M. The outputs are the lattice polynomials Ai(z) and

580 12. Linear Prediction

Bi(z), for i = 0,1, . . . ,M, arranged in the two lower-triangular matrices A and B whose
rows hold the coefficients of these polynomials; that is, A(i, j)= ai(j), or

Ai(z)=
i∑
j=0

A(i, j)z−j

and similarly for Bi(z). The function invokes the function lev to solve the normal
equations (12.13.34). The forward scattering problem is implemented by the function
scatt, whose inputs are the set of reflection coefficients {ρ0, ρ1, . . . , ρM} and whose
outputs are the lattice polynomials Ai(z) and Bi(z), for i = 0,1, . . . ,M, as well as a
pre-specified number N of reflection response samples {R(0),R(1), . . . , R(N − 1)}. It
utilizes the forward lattice recursion (12.13.23) to obtain the lattice polynomials, and
then computes the reflection response samples by taking the inverse z-transform of
Eq. (12.13.27).

Next, we present a number of deconvolution examples simulated by means of the
functions scatter and dpd. In each case, we specified the five reflection coefficients
of a structure consisting of four layers. Using scatter we generated the exact lattice
polynomials whose coefficients are arranged in the matricesA and B, and also generated
16 samples of the reflection response R(n), n = 0,1, . . . ,15. These 16 samples were
sent through the dpd function to extract the lattice polynomials A and B.

The first figure of each example displays a table of the reflection response samples
and the exact and extracted polynomials. Note that the first column of the matrix B
is the vector of reflection coefficients, according to Eq. (12.13.25). The remaining two
graphs of each example show the reflection response R in the time domain and in the
frequency domain. Note that the frequency response is plotted only over one Nyquist
interval [0,2π/T2], and it is symmetric about the Nyquist frequency π/T2.

Figs. 12.13.3 and 12.13.4 correspond to the case of equal reflection coefficients
{ρ0, ρ1, ρ2, ρ3, ρ4} = {0.5,0.5,0.5,0.5,0.5}.

In Figs. 12.13.5 and 12.13.6 the reflection coefficients have been tapered somewhat
at the ends (windowed) and are {0.3,0.4,0.5,0.4,0.3}. Note the effect of tapering on
the lobes of the reflection frequency response. Figs. 12.13.7 and 12.13.8 correspond
to the set of reflection coefficients {0.1,0.2,0.3,0.2,0.1}. Note the broad band of fre-
quencies about the Nyquist frequency for which there is very little reflection. In con-
trast, the example in Figs. 12.13.9 and 12.13.10 exhibits high reflectivity over a broad
band of frequencies about the Nyquist frequency. Its set of reflection coefficients is
{0.5,−0.5,0.5,−0.5,0.5}.

In this section we have discussed the inverse problem of unraveling the structure
of a medium from the knowledge of its reflection response. The connection of the
dynamic predictive deconvolution method to the conventional inverse scattering meth-
ods based on the Gelfand-Levitan-Marchenko approach [1054] has been discussed in
[1043,1055,1056].‘The lattice recursions characteristic of the wave propagation prob-
lem were derived as a direct consequence of the boundary conditions at the interfaces
between media, whereas the lattice recursions of linear prediction were a direct con-
sequence of the Gram-Schmidt orthogonalization process and the minimization of the
prediction-error performance index. Is there a deeper connection between these two
problems [1005–1007]? One notable result in this direction has been to show that the

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 581

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.2500 0 0 0
1.0000 0.5000 0.2500 0 0
1.0000 0.7500 0.5625 0.2500 0
1.0000 1.0000 0.9375 0.6250 0.2500

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.2509 0 0 0
1.0000 0.5009 0.2510 0 0
1.0000 0.7509 0.5638 0.2508 0
1.0000 1.0009 0.9390 0.6263 0.2504

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5000 0 0 0 0
0.5000 0.5000 0 0 0
0.5000 0.6250 0.5000 0 0
0.5000 0.7500 0.7500 0.5000 0
0.5000 0.8750 1.0313 0.8750 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5010 0 0 0 0
0.5000 0.5010 0 0 0
0.5000 0.6255 0.5010 0 0
0.5000 0.7505 0.7510 0.5010 0
0.5000 0.8755 1.0323 0.8764 0.5010

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.5000
1 0.3750
2 0.1875
3 0.0234
4 −0.0586
5 −0.1743
6 0.1677
7 0.0265
8 −0.0601
9 −0.0259

10 0.0238
11 0.0314
12 −0.0225
13 −0.0153
14 0.0109
15 0.0097

Fig. 12.13.3 Reflection response and lattice polynomials.

0 2 4 6 8 10 12 14
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time k

time response R(k)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency in cycles/sample

frequency response |R(ω)|2

Fig. 12.13.4 Reflection responses in the time and frequency domains.

Cholesky factorization of Toeplitz or near-Toeplitz matrices via the Schur algorithm
can be cast in a wave propagation model and derived as a simple consequence of energy
conservation [1002].

582 12. Linear Prediction

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.1200 0 0 0
1.0000 0.3200 0.1500 0 0
1.0000 0.5200 0.3340 0.1200 0
1.0000 0.6400 0.5224 0.2760 0.0900

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.1200 0 0 0
1.0000 0.3200 0.1500 0 0
1.0000 0.5200 0.3340 0.1200 0
1.0000 0.6400 0.5224 0.2760 0.0900

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.3000 0 0 0 0
0.4000 0.3000 0 0 0
0.5000 0.4600 0.3000 0 0
0.4000 0.6280 0.5200 0.3000 0
0.3000 0.5560 0.7282 0.5560 0.3000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.3000 0 0 0 0
0.4000 0.3000 0 0 0
0.5000 0.4600 0.3000 0 0
0.4000 0.6280 0.5200 0.3000 0
0.3000 0.5560 0.7282 0.5560 0.3000

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.3000
1 0.3640
2 0.3385
3 0.0664
4 −0.0468
5 −0.1309
6 0.0594
7 0.0373
8 −0.0146
9 −0.0148

10 0.0014
11 0.0075
12 −0.0001
13 −0.0029
14 −0.0003
15 0.0010

Fig. 12.13.5 Reflection response and lattice polynomials.

0 2 4 6 8 10 12 14
−0.2

−0.1

0

0.1

0.2

0.3

0.4

time k

time response R(k)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency in cycles/sample

frequency response |R(ω)|2

Fig. 12.13.6 Reflection responses in the time and frequency domains.

12.13. Dynamic Predictive Deconvolution—Waves in Layered Media 583

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.0200 0 0 0
1.0000 0.0800 0.0300 0 0
1.0000 0.1400 0.0712 0.0200 0
1.0000 0.1600 0.1028 0.0412 0.0100

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 0.0200 0 0 0
1.0000 0.0800 0.0300 0 0
1.0000 0.1400 0.0712 0.0200 0
1.0000 0.1600 0.1028 0.0412 0.0100

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1000 0 0 0 0
0.2000 0.1000 0 0 0
0.3000 0.2060 0.1000 0 0
0.2000 0.3160 0.2120 0.1000 0
0.1000 0.2140 0.3231 0.2140 0.1000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1000 0 0 0 0
0.2000 0.1000 0 0 0
0.3000 0.2060 0.1000 0 0
0.2000 0.3160 0.2120 0.1000 0
0.1000 0.2140 0.3231 0.2140 0.1000

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.1000
1 0.1980
2 0.2812
3 0.1445
4 0.0388
5 −0.0346
6 −0.0072
7 0.0017
8 0.0015
9 0.0002

10 −0.0002
11 −0.0001
12 0.0000
13 0.0000
14 0.0000
15 −0.0000

Fig. 12.13.7 Reflection response and lattice polynomials.

0 2 4 6 8 10 12 14
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time k

time response R(k)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency in cycles/sample

frequency response |R(ω)|2

Fig. 12.13.8 Reflection responses in the time and frequency domains.

584 12. Linear Prediction

Aexact =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 −0.2500 0 0 0
1.0000 −0.5000 0.2500 0 0
1.0000 −0.7500 0.5625 −0.2500 0
1.0000 −1.0000 0.9375 −0.6250 0.2500

⎤⎥⎥⎥⎥⎥⎥⎦

Aextract =

⎡⎢⎢⎢⎢⎢⎢⎣
1.0000 0 0 0 0
1.0000 −0.2509 0 0 0
1.0000 −0.5009 0.2510 0 0
1.0000 −0.7509 0.5638 −0.2508 0
1.0000 −1.0009 0.9390 −0.6263 0.2504

⎤⎥⎥⎥⎥⎥⎥⎦

Bexact =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5000 0 0 0 0
−0.5000 0.5000 0 0 0

0.5000 −0.6250 0.5000 0 0
−0.5000 0.7500 −0.7500 0.5000 0

0.5000 −0.8750 1.0313 −0.8750 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

Bextract =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5010 0 0 0 0
−0.5000 0.5010 0 0 0

0.5000 −0.6255 0.5010 0 0
−0.5000 0.7505 −0.7510 0.5010 0

0.5000 −0.8755 1.0323 −0.8764 0.5010

⎤⎥⎥⎥⎥⎥⎥⎦

k R(k)
0 0.5000
1 −0.3750
2 0.1875
3 −0.0234
4 −0.0586
5 0.1743
6 0.1677
7 −0.0265
8 −0.0601
9 0.0259

10 0.0238
11 −0.0314
12 −0.0225
13 0.0153
14 0.0109
15 −0.0097

Fig. 12.13.9 Reflection response and lattice polynomials.

0 2 4 6 8 10 12 14
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time k

time response R(k)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

frequency in cycles/sample

frequency response |R(ω)|2

Fig. 12.13.10 Reflection responses in the time and frequency domains.

12.14. Least-Squares Waveshaping and Spiking Filters 585

12.14 Least-Squares Waveshaping and Spiking Filters

In linear prediction, the three practical methods of estimating the prediction error filter
coefficients were all based on replacing the ensemble mean-square minimization crite-
rion by a least-squares criterion based on time averages. Similarly, the more general
Wiener filtering problem may be recast in terms of such time averages. A practical for-
mulation, which is analogous to the Yule-Walker or autocorrelation method, is as follows
[974,975,1010,1059]. Given a record of available data

y0, y1, . . . , yN

find the best linear FIR filter of orderM

h0, h1, . . . , hM

which reshapes yn into a desired signal xn, specified in terms of the samples:

x0, x1, . . . , xN+M

where for consistency of convolution, we assumed we know N +M + 1 samples of the
desired signal. The actual convolution output of the waveshaping filter will be:

x̂n =
min(n,M)∑

m=max(0,n−N)
hmxn−m , 0 ≤ n ≤ N +M (12.14.1)

and the estimation error:

en = xn − x̂n , 0 ≤ n ≤ N +M (12.14.2)

As the optimality criterion, we choose the least-squares criterion:

E =
N+M∑
n=0

e2
n = min (12.14.3)

The optimal filter weights hm are selected to minimize E. It is convenient to recast
the above in a compact matrix form. Define the (N+M+1)×(M+1) convolution data
matrix Y, the (M+1)×1 vector of filter weights h, the (N+M+1)×1 vector of desired
samples x, (and estimates x̂ and estimation errors e), as follows:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0 · · · 0
y1 y0 0 · · · 0
y2 y1 y0 · · · 0
...

...
...

...
yN yN−1 yN−2 · · · yN−M
0 yN yN−1 · · · yN−M+1

0 0 yN · · · yN−M+2

...
...

...
...

0 0 0 · · · yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h =

⎡⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤⎥⎥⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xN+M

⎤⎥⎥⎥⎥⎥⎦ (12.14.4)

586 12. Linear Prediction

Equations (12.14.1) through (12.14.3) now become

x̂ = Yh , e = x− x̂ , E = eTe (12.14.5)

Minimizing E with respect to the weight vector h results in the orthogonality equations:

YTe = YT(x−Yh)= 0 (12.14.6)

which are equivalent to the normal equations:

YTYh = YTx (12.14.7)

Solving for h, we find
h = (YTY)−1YTx = R−1r (12.14.8)

where the quantities
R = YTY , r = YTx (12.14.9)

may be recognized (see Sec. 1.11) as the (M+1)×(M+1) autocorrelation matrix formed
by the sample autocorrelations R̂yy(0), R̂yy(1), . . . R̂yy(M) of yn, and as the (M+1)×1
vector of sample cross-correlations R̂xy(0), R̂xy(1), . . . R̂xy(M) between the desired and
the available vectors xn and yn. We have already used this expression for the weight
vector h in the example of Sec. 12.11. Here we have justified it in terms of the least-
squares criterion (12.14.3). The function firw may be used to solve for the weights
(12.14.8) and, if so desired, to give the corresponding lattice realization. The actual
filter output x̂ is expressed as

x̂ = Yh = YR−1YTx = Px (12.14.10)

where
P = YR−1YT = Y(YTY)−1YT (12.14.11)

The error vector becomes e = (I − P)x. The “performance” matrix P is a projection
matrix, and thus, so is (I − P). Then, the error square becomes

E = eTe = xT(I − P)2x = xT(I − P)x (12.14.12)

The (N+M+1)×(N+M+1)matrix P has trace equal toM+1, as can be checked
easily. Since its eigenvalues as a projection matrix are either 0 or 1, it follows that in
order for the sum of all the eigenvalues (the trace) to be equal to M + 1, there must
necessarily be M + 1 eigenvalues that are equal to 1, and N eigenvalues equal to 0.
Therefore, the matrix P has rankM+ 1, and if the desired vector x is selected to be any
of theM+1 eigenvectors belonging to eigenvalue 1, the corresponding estimation error
will be zero.

Among all possible waveshapes that may be chosen for the desired vector x, of
particular importance are the spikes, or impulses. In this case, x is a unit impulse, say
at the origin; that is, xn = δn. The convolution x̂n = hn ∗ yn of the corresponding filter
with yn is the best least-squares approximation to the unit impulse. In other words, hn is
the best least-squares inverse filter to yn that attempts to reshape, or compress, yn into
a unit impulse. Such least squares inverse filters are used extensively in deconvolution

12.14. Least-Squares Waveshaping and Spiking Filters 587

applications. More generally. the vector x may be chosen to be any one of the unit
vectors

x = ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← ith slot , i = 0,1, . . . ,N +M (12.14.13)

which corresponds to a unit impulse occurring at the ith time instant instead of at the
origin; that is, xn = δ(n− i). The actual output from the spiking filter is given by

x̂ = Px = Pui = ith column of P (12.14.14)

Thus, the ith column of the matrix P is the output of the ith spiking filter which
attempts to compress yn into a spike with i delays. The corresponding ith filter is
h = R−1YTui. Therefore, the columns of the matrix

H = R−1YT = (YTY)−1YT (12.14.15)

are all the optimal spiking filters. The estimation error of the ith filter is

Ei = uTi (I − P)ui = 1− Pii (12.14.16)

where Pii, is the ith diagonal element of P. Since the delay imay be positioned anywhere
from i = 0 to i = N +M, there are N +M + 1 such spiking filters, each with error Ei.
Among these, there will be one that has the optimal delay i which corresponds to the
smallest of the Eis; or, equivalently, to the maximum of the diagonal elements Pii.

The design procedure for least-squares spiking filters for a given finite signal yn,
n = 0,1, . . . ,N − 1 is summarized as follows:

1. Compute R = YTY.

2. Compute the inverse R−1 (preferably by the Levinson recursion).

3. Compute H = R−1YT = all the spiking filters.

4. Compute P = YH = YR−1YT = all spiking filter outputs.

5. Select that column i of P for which Pii is the largest.

If the Levinson-Cholesky algorithm is used to compute the inverse R−1, this design
procedure becomes fairly efficient. An implementation of the procedure is given by the
function spike. The inputs to the function are the N + 1 samples {y0, y1, . . . , yN}, the
desired order M of the spiking filter, and a so-called “prewhitening” or Backus-Gilbert
parameter ε, which will be explained below. The outputs of the function are the matrices
P and H.

To explain the role of the parameter ε, let us go back to the waveshaping problem.
When the data sequence yn to be reshaped into xn is inaccurately known—if, for example,
it has been contaminated by white noise vn—the least-squares minimization criterion

588 12. Linear Prediction

(12.14.3) can be extended slightly to accomplish the double task of (1) producing the
best estimate of xn and (2) reducing the noise at the output of the filter hn as much as
possible.

The input to the filter is the noisy sequence yn+vn and its output is hn∗yn+hn∗
vn = x̂n + un, where we set un = hn ∗ vn. The term un represents the filtered noise.
The minimization criterion (12.14.3) may be replaced by

E =
∑
n
e2
n + λE[u2

n]= min (12.14.17)

where λ is a positive parameter which can be chosen by the user. Large λ emphasizes
large reduction of the output noise, but this is done at the expense of resolution; that is,
at the expense of obtaining a very good estimate. On the other hand, smallλ emphasizes
higher resolution but with lesser noise reduction. This tradeoff between resolution and
noise reduction is the basic property of this performance index. Assuming that vn is
white with variance σ2

v , we have

E[u2
n]= σ2

v

M∑
n=0

h2
n = σ2

v hTh

Thus, Eq. (12.14.17) may be written as

E = eTe+ λσ2
v hTh = min (12.14.18)

Its minimization with respect to h gives the normal equations:

(YTY + λσ2
v I)h = YTx (12.14.19)

from which it is evident that the diagonal of YTY is shifted by an amount λσ2
v ; that is,

R̂yy(0)−→ R̂yy(0)+λσ2
v ≡ (1+ ε)R̂yy(0) , ε = λσ2

v

R̂yy(0)

In practice, εmay be taken to be a few percent or less. It is evident from Eq. (12.14.19)
that one beneficial effect of the parameter ε is the stabilization of the inverse of the
matrix YTY + λσ2

v I.
The main usage of spiking filters is in deconvolution problems [59,60,95,144–146],

where the desired and the available signals xn and yn are related to each other by the
convolutional relationship

yn = fn ∗ xn =
∑
m
fmxn−m (12.14.20)

where fn is a “blurring” function which is assumed to be approximately known. The ba-
sic deconvolution problem is to recover xn from yn if fn is known. For example, yn may
represent the image of an object xn recorded through an optical system with a point-
spread function fn. Or, yn might represent the recorded seismic trace arising from the
excitation of the layered earth by an impulsive waveform fn (the source wavelet) which
is convolved with the reflection impulse response xn of the earth (in the previous sec-
tion xn was denoted by Rn.) If the effect of the source wavelet fn can be “deconvolved

12.14. Least-Squares Waveshaping and Spiking Filters 589

away,” the resulting reflection sequence xn may be subjected to the dynamic predictive
deconvolution procedure to unravel the earth structure. Or, fn may represent the im-
pulse response of a channel, or a magnetic recording medium, which broadens and blurs
(intersymbol interference) the desired message xn.

The least-squares inverse spiking filters offer a way to solve the deconvolution prob-
lem: Simply design a least-squares spiking filter hn corresponding to the blurring func-
tion fn; that is, hn ∗ fn � δn, in the least-squares sense. Then, filtering yn through hn
will recover the desired signal xn:

x̂n = hn ∗ yn = (hn ∗ fn)∗xn � δn ∗ xn = xn (12.14.21)

If the ith spiking filter is used, which compresses fn into an impulse with i delays,
hn ∗ fn � δ(n− i), then the desired signal xn will be recovered with a delay of i units
of time.

This and all other approaches to deconvolution work well when the data yn are not
noisy. In presence of noise, Eq. (12.14.20) becomes

yn = fn ∗ xn + vn (12.14.22)

where vn may be assumed to be zero-mean white noise of variance σ2
v . Even if the

blurring function fn is known exactly and a good least-squares inverse filter hn can be
designed, the presence of the noise term can distort the deconvolved signal beyond
recognition. This may be explained as follows. Filtering yn through the inverse filter hn
results in

hn ∗ yn = (hn ∗ fn)∗xn + hn ∗ vn � xn + un
where un = hn ∗ vn is the filtered noise. Its variance is

E[u2
n]= σ2

v hTh = σ2
v

M∑
n=0

h2
n

which, depending on the particular shape of hn may be much larger than the original
variance σ2

v . This happens, for example, when fn consists mainly of low frequencies.
For hn to compress fn into a spike with a high frequency content, the impulse response
hn itself must be very spiky, which can result in values for hTh which are greater than
one.

To combat the effects of noise, the least-squares design criterion for h must be
changed by adding to it a term λE[u2

n] as was done in Eq. (12.14.17). The modified
design criterion is then

E =
∑
n
(δn − hn ∗ fn)2+λσ2

v

M∑
n=0

h2
n

which effectively amounts to changing the autocorrelation lag R̂ff (0) into (1+ε)R̂ff (0).
The first term in this performance index tries to produce a good inverse filter; the second
term tries to minimize the output power of the noise after filtering by the deconvolu-
tion filter hn. Note that conceptually this index is somewhat different from that of

590 12. Linear Prediction

Eq. (12.14.17), because now vn represents the noise in the data yn whereas there vn
represented inaccuracies in the knowledge of the wavelet fn.

In this approach to deconvolution we are not attempting to determine the best least-
squares estimate of the desired signal xn, but rather the best least-squares inverse to
the blurring function fn. If the second order statistics of xn were known, we could, of
course, determine the optimal (Wiener) estimate x̂n of xn. This is also done in many
applications.

The performance of the spiking filters and their usage in deconvolution are illus-
trated by the following example: The blurring function fn to be spiked was chosen as

fn =
⎧⎨⎩g(n− 25), n = 0,1, . . . ,65

0, for other n

where g(k) was the “gaussian hat” function:

g(k)= cos(0.15k)exp(−0.004k2)

The signal xn to be recovered was taken to be the series of delayed spikes:

xn =
9∑
i=0

aiδ(n− ni)

where the amplitudes ai and delays ni were chosen as

ai = 1, 0.8, 0.5, 0.95, 0.7, 0.5, 0.3, 0.9, 0.5, 0.85

ni = 25, 50, 60, 70, 80, 90, 100, 120, 140, 160

for i = 0,1,2,3,4,5,6,7,8,9.
Fig. 12.14.1 shows the signal fn to be spiked. Since the gaussian hat is symmetric

about the origin, we chose the spiking delay to be at i = 25. The order of the spiking
filter hn was M = 50. The right graph in Fig. 12.14.1 shows the impulse response hn
versus time. Note the spiky nature of hn which is required here because fn has a fairly
low frequency content. Fig. 12.14.2 shows the results of the convolution hn ∗ fn, which
is the best least-squares approximation to the impulse δ(n− 25).

The “goodness” of the spiking filter is judged by the diagonal entries of the per-
formance matrix P, according to Eq. (12.14.16). For the chosen delay k = 25, we find
P(25,25)= 0.97. To obtain a better picture of the overall performance of the spiking
filters, on the right in Fig. 12.14.2 we have plotted the diagonal elements P(k, k) versus
k. It is seen that the chosen delay k = 25 is nearly optimal. Fig. 12.14.3 shows the
composite signal yn obtained by convolving fn and xn, according to Eq. (12.14.20).

Fig. 12.14.3 shows on the right the deconvolved signal xn according to Eq. (12.14.21).
The recovery of the amplitudes ai and delays ni of xn is very accurate. These results
represent the idealistic case of noise-free data yn and perfect knowledge of the blurring
function fn. To study the sensitivity of the deconvolution technique to inaccuracies in
the knowledge of the signal fn we have added a small high frequency perturbation on
fn as follows:

f ′n = fn + 0.05 sin
(
1.5(n− 25)

)

12.14. Least-Squares Waveshaping and Spiking Filters 591

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

signal to be spiked

0 20 40 60 80 100 120 140 160 180 200
−20

−15

−10

−5

0

5

10

15

20

time samples

impulse response of spiking filter

spiking delay = 25

Fig. 12.14.1 Spiking filter and its inverse.

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

spiked signal, spiking delay = 25

spiked signal
original

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

spiking delay position k

pe
rc

en
t

performance index P (k,k)

Fig. 12.14.2 Deconvolved signal and performance index.

The approximate signal f ′n is shown in Fig. 12.14.4. The spiking filter was designed
on the basis of f ′n rather than fn. The result of filtering the same composite signal yn
through the corresponding inverse filter is shown on the right in Fig. 12.14.4. The delays
and amplitudes ai and ni are not well resolved, but the basic nature of xn can still be
seen. Inspecting Fig. 12.14.1 we note the large spikes that are present in the impulse
response hn of the inverse filter; these can cause the amplification of any additive noise
component. Indeed, the noise reduction ratio of the filter hn is hTh = 612, thus it will
tend to amplify even small amounts of noise.

To study the effect of noise, we have added a noise term vn, as in Eq. (12.14.22), with
variance equal to 10−4 (this corresponds to just 1% of the amplitude a0); the composite
signal yn is shown on the left in Fig. 12.14.5. One can barely see the noise. Yet, after
filtering with the inverse filter hn of Fig. 12.14.1, the noise component is amplified to
a great extent. The result of deconvolving the noisy yn with hn is shown on the right
in Fig. 12.14.5. To reduce the effects of noise, the prewhitening parameter ε must be
chosen to be nonzero. Even a small nonzero value of ε can have a beneficial effect. The

592 12. Linear Prediction

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

composite signal

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

deconvolution of composite signal

deconvolved
composite

Fig. 12.14.3 Composite and deconvolved signal.

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

approximate signal

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

deconvolution based on approximate signal

deconvolved
composite

Fig. 12.14.4 Composite and deconvolved signal.

graphs in Fig. 12.14.6 show the deconvolved signal xn when the filter hn was designed
with the choices ε = 0.0001 and ε = 0.001, respectively. Note the trade-off between the
noise reduction and the loss of resolution in the recovered spikes of xn.

Based on the studies of Robinson and Treitel [974], Oldenburg [1065], and others,
the following summary of the use of the above deconvolution method may be made:

1. If the signal fn to be spiked is a minimum-phase signal, the optimal spiking delay
must be chosen at the origin i = 0. The optimality of this choice is not actually
seen until the filter orderM is sufficiently high. The reason for this choice has to
do with the minimum-delay property of such signals which implies that most of
their energy is concentrated at the beginning, therefore, they may be more easily
compressed to spikes with zero delay.

2. If fn is a mixed-delay signal, as in the above example, then the optimal spiking
delay will have some intermediate value.

3. Even if the shape of fn is not accurately known, the deconvolution procedure
based on the approximate fn might have some partial success in deconvolving the

12.14. Least-Squares Waveshaping and Spiking Filters 593

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

composite signal plus noise

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

deconvolution of noisy data

ε = 0

Fig. 12.14.5 Composite and deconvolved signal.

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

deconvolution of noisy data

ε = 0.0001

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time samples

deconvolution of noisy data

ε = 0.001

Fig. 12.14.6 Deconvolved signals.

replicas of fn.

4. In the presence of noise in the data yn to deconvolved, some improvement may
result by introducing a nonzero value for the prewhitening parameter ε, where
effectively the sample autocorrelation Rff(0) is replaced by (1 + ε)R̂ff (0). The
trade-off is a resulting loss of resolution.

The deconvolution problem of Eq. (12.14.20) and (12.14.22) has been approached by
a wide variety of other methods. Typically, a finite number of samples yn, n = 0,1, . . . ,N
is available. Collecting these into a vector y = [y0, y1, . . . , yN]T, we write Eq. (12.14.22)
in an obvious vectorial form

y = Fx+ v (12.14.23)

Instead of determining an approximate inverse filter for the blurring function F, an
alternative method is to attempt to determine the best—in some sense—vector x which
is compatible with these equations. A popular method is based on the least-squares

594 12. Linear Prediction

criterion [1060].

E =
N∑
n=0

v2
n = vTv = (y− Fx)T(y− Fx)= min (12.14.24)

That is, x is chosen so as to minimize E. Setting the derivative with respect to x to
zero gives the standard least-squares solution

x̂ = (FTF)−1FTy

A prewhitening term can be added to the right of the performance index to stabilize
the indicated inverse

E = vTv+ λxTx

with solution x̂ = (FTF+λI)−1FTy. Another approach that has been used with success
is based on the L1-norm criterion

E =
N∑
n=0

|vn| = min (12.14.25)

This quantity is referred to as the L1 norm of the vector v. The minimization of this
norm with respect to x may be formulated as a linear programming problem [1063–
1073]. It has been observed that this method performs very well in the presence of
noise, and it tends to ignore a few “bad” data points—that is, those for which the noise
value vn might be abnormally high—in favor of the good points, whereas the standard
least-squares method based on the L2-norm (12.14.24) will spend all its efforts trying
to minimize the few large terms in the sum (12.14.24), and might not result in as good
an estimate of x as it would if the few bad data points were to be ignored. We discuss
this approach further in Sec. 15.11

Another class of deconvolution methods are iterative methods, reviewed in [1074].
Such methods, like the linear programming method mentioned above, offer the addi-
tional option of enforcing priori constraints that may be known to be satisfied by x, for
example, positivity, band-limiting, or time-limiting constraints. The imposition of such
constraints can improve the restoration process dramatically.

12.15 Computer Project – ARIMA Modeling

The Box-Jenkins airline data set has served as a benchmark in testing seasonal ARIMA
models. In particular, it has led to the popular “airline model”, which, for monthly data
with yearly periodicity, is defined by the following innovations signal model:

(1− Z−1)(1− Z−12)yn = (1− bZ−1)(1− BZ−12)εn (12.15.1)

where Z−1 denotes the delay operator and b,B are constants such that |b| < 1 and
|B| < 1. In this experiment, we briefly consider this model, but then replace it with the
following ARIMA model,

(1− Z−12)yn = 1

A(Z)
εn , A(z)= 1+ a1z−1 + a2z−2 + · · · + apz−p (12.15.2)

The airline data set can be loaded with the MATLAB commands:

12.15. Computer Project – ARIMA Modeling 595

Y = load(’airline.dat’); % in OSP data file folder
Y = Y’; Y = Y(:); % concatenate rows
y = log(Y); % log data

The data represent monthly airline passengers for the period Jan. 1949 to Dec. 1960.
There are N = 144 data points. In this experiment, we will work with a subset of the
first n0 = 108 points, that is, yn, 0 ≤ n ≤ n0 − 1, and attempt to predict the future 36
months of data (108+ 36 = 144.)

a. Plot Yn and the log-data yn = lnYn versus n and note the yearly periodicity. Note
how the log-transformation tends to equalize the apparent increasing amplitude of
the original data.

b. Compute and plot the normalized sample ACF, ρk = R(k)/R(0), of the zero-mean
log-data for lags 0 ≤ k ≤ 40 and note the peaks at multiples of 12 months.

c. Let xn = (1−Z−1)(1−Z−12)yn in the model of Eq. (12.15.1). The signal xn follows
an MA model with spectral density:

Sxx(z)= σ2
ε(1− bz−1)(1− bz)(1− Bz−12)(1− Bz12)

Multiply the factors out and perform an inverse z-transform to determine the auto-
correlation lags Rxx(k). Show in particular, that

Rxx(1)
Rxx(0)

= − b
1+ b2

,
Rxx(12)
Rxx(0)

= − B
1+ B2

(12.15.3)

Filter the subblock yn,0 ≤ n ≤ n0 − 1 through the filter (1 − z−1)(1 − z−12) to
determine xn. You may discard the first 13 transient outputs of xn. Use the rest
of xn to calculate its sample ACF and apply Eq. (12.15.3) to solve for the model
parameters b,B.

This simple method gives values that are fairly close to the Box/Jenkins values deter-
mined by maximum likelihood methods, namely, b = 0.4 and B = 0.6, see Ref. [22].

d. Consider, next, the model of Eq. (12.15.2) with a second-order AR model i.e., A(z)
filter order of p = 2. Define xn = (1 − Z−12)yn = yn − yn−12 and denote its auto-
correlation function by Rk. Since xn follows an AR(2) model, its model parameters
a1, a2, σ2

ε can be computed from:[
a1

a2

]
= −

[
R0 R1

R1 R0

]−1 [
R1

R2

]
, σ2

ε = R0 + a1R1 + a2R2 (12.15.4)

Using the data subset yn,0 ≤ n ≤ n0 − 1, calculate the signal xn and discard the
first 12 transient samples. Using the rest of xn, compute its sample ACF, R̂k for
0 ≤ k ≤M withM = 40, and use the first 3 computed lags R̂0, R̂1, R̂2 in Eqs. (12.15.4)
to estimate a1, a2, σ2

ε (in computing the ACF, the signal xn need not be replaced by
its zero-mean version).

Because of the assumed autoregressive model, it is possible to calculate all the au-
tocorrelation lags Rk for k ≥ p+ 1 from the first p+ 1 lags. This can accomplished
by the MATLAB “autocorrelation sequence extension” function:

596 12. Linear Prediction

M=40; Rext = acext(R(1:p+1), zeros(1,M-p));

On the same graph, plot the sample and extended ACFs, R̂(k) and Rext(k) versus
0 ≤ k ≤M normalized by their lag-0 values.

e. Let x̂n denote the estimate/prediction of xn based on the data subset {xm,m ≤
n0 − 1}. Clearly, x̂n = xn, if n ≤ n0 − 1. Writing Eq. (12.15.2) recursively, we obtain
for the predicted values into the future beyond n0:

xn = −
(
a1xn−1 + a2xn−2

)+ εn
x̂n = −

(
a1x̂n−1 + a2x̂n−2

)
, for n ≥ n0

(12.15.5)

where we set ε̂n = 0 because all the observations are in the strict past of εn when
n ≥ n0.

Calculate the predicted values 36 steps into the future, x̂n for n0 ≤ n ≤ N−1, using
the fact that x̂n = xn, if n ≤ n0 − 1. Once you have the predicted xn’s, you can
calculate the predicted yn’s by the recursive equation:

ŷn = ŷn−12 + x̂n (12.15.6)

where you must use ŷn = yn, if n ≤ n0 − 1. Compute ŷn for n0 ≤ n ≤ N − 1, and
plot it on the same graph with the original data yn, 0 ≤ n ≤ N−1. Indicate the start
of the prediction horizon with a vertical line at n = n0 (see example graph at end.)

f. Repeat parts (d,e) using an AR(4) model (i.e., p = 4), with signal model equations:

xn = yn − yn−12 , xn = −
(
a1xn−1 + a2xn−2 + a3xn−3 + a4xn−4

)+ εn
and normal equations:

⎡⎢⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

R1

R2

R3

R4

⎤⎥⎥⎥⎦ , σ2
ε = R0+a1R1+a2R2+a3R3+a4R4

with predictions:

x̂n = −
(
a1x̂n−1 + a2x̂n−2 + a3x̂n−3 + a4x̂n−4

)
ŷn = ŷn−12 + x̂n

taking into account the properties that x̂n = xn and ŷn = yn, if n ≤ n0 − 1.

g. Inspecting the log-data, it is evident that there is an almost linear trend as well as
a twelve-month, or even, a six-month periodicity. In this part, we will attempt to fit
the the data using a conventional basis-functions method and then use this model
to predict the last 36 months.

12.15. Computer Project – ARIMA Modeling 597

Consider the following model for the first n0 points of the log data yn that assumes
a quadratic trend and 12-month, 6-month, and 4-month periodicities, i.e., three har-
monics of the fundamental frequency of 1/12 cycle/month, for 0 ≤ n ≤ n0 − 1,

ŷn = c0 + c1n+ c2n2+c3 sin
(

2πn
12

)
+ c4 cos

(
2πn
12

)
+

+c5 sin
(

4πn
12

)
+ c6 cos

(
4πn
12

)
+c7 sin

(
6πn
12

)
+ c8 cos

(
6πn
12

) (12.15.7)

Carry out a least-squares fit to determine the nine coefficients ci, that is, determine
the ci that minimize the quadratic performance index,

J =
n0−1∑
n=0

(
yn − ŷn

)2 = min (12.15.8)

In addition, carry out a fit based on the L1 criterion,

J =
n0−1∑
n=0

∣∣yn − ŷn∣∣ = min (12.15.9)

Show that the coefficients are, for the two criteria,

L2 L1

c0 4.763415 4.764905
c1 0.012010 0.011912
c2 −0.000008 −0.000006
c3 0.036177 0.026981
c4 −0.135907 −0.131071
c5 0.063025 0.067964
c6 0.051890 0.051611
c7 −0.025511 −0.017619
c8 −0.009168 −0.012753

Using the found coefficients for each criterion, evaluate the fitted quantity ŷn of
Eq. (12.15.7) over the entire data record, 0 ≤ n ≤ N − 1, and plot it on the same
graph together with the actual data, and with the AR(4) prediction. It appears that
this approach also works well but over a shorter prediction interval, i.e., 24 months
instead of 36 for the AR(4) method.

Some example graphs for this experiment are included below.

598 12. Linear Prediction

0 12 24 36 48 60 72 84 96 108 120 132 144
100

200

300

400

500

600

700
airline data

months
0 12 24 36 48 60 72 84 96 108 120 132 144

4.5

5

5.5

6

6.5
airline log data

months

0 12 24 36
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lag, k

ACF of log data, R
k
 / R

0

0 12 24 36 48 60 72 84 96 108 120 132 144
4.5

5

5.5

6

6.5
AR(2) model

months

 data
 prediction

0 12 24 36 48 60 72 84 96 108 120 132 144
4.5

5

5.5

6

6.5
AR(4) model

months

 data
 prediction

0 12 24 36
0.4

0.5

0.6

0.7

0.8

0.9

1

ACF of deseasonalized data, R
k
 / R

0

lag, k

 sample ACF
 AR(4) ACF

12.16. Problems 599

0 12 24 36 48 60 72 84 96 108 120 132 144
4.5

5

5.5

6

6.5
AR(4) and fitting models

months

 data
 AR(4)
 fit

12.16 Problems

12.1 (a) Following the methods of Sec. 12.1, show that the optimal filter for predicting D steps
into the future—i.e., estimating y(n+D) on the basis of {y(m); m ≤ n}—is given by

H(z)= 1

B(z)
[
zDB(z)

]
+

(b) Express
[
zDB(z)

]
+ in terms of B(z) itself and the first D− 1 impulse response coef-

ficients bm,m = 1,2, . . . ,D− 1 of B(z).

(c) For the two random signals yn defined in Examples 12.1.1 and 12.1.2, find the optimal
prediction filters for D = 2 and D = 3, and write the corresponding I/O equations.

12.2 Consider the order-p autoregressive sequence yn defined by the difference equation (12.2.3).
Show that a direct consequence of this difference equation is that the projection of yn onto
the subspace spanned by the entire past {yn−i; 1 ≤ i < ∞} is the same as the projection of
yn onto the subspace spanned only by the past p samples {yn−i; 1 ≤ i ≤ p}.

12.3 (a) Show that the performance index (12.3.2) may be written as

E = E[e2
n]= aTRa

where a = [1, a1, . . . , ap]T is the order-p prediction-error filter, and R the autocorre-
lation matrix of yn; that is, Rij = E[yn−iyn−j].

(b) Derive Eq. (12.3.7) by minimizing the index E with respect to the weights a, subject
to the linear constraint that a0 = 1, and incorporating this constraint by means of a
Lagrange multiplier.

12.4 Take the inverse z-transform of Eq. (12.3.17) and compare the resulting equation with Eq. (12.3.15).

12.5 Verify that Eq. (12.3.22) and (12.3.23) are inverses of each other.

12.6 A fourth order all-pole random signal process y(n) is represented by the following set of
signal model parameters (reflection coefficients and input variance):

{γ1, γ2, γ3, γ4, σ2
ε} = {0.5, −0.5, 0.5, −0.5, 40.5}

(a) Using the Levinson recursion, find the prediction error filter A4(z).

600 12. Linear Prediction

(b) Determine σ2
y = Ryy(0). Using intermediate results from part (a), determine the au-

tocorrelation lags Ryy(k), k = 1,2,3,4.

12.7 The first five lags of the autocorrelation function of a fourth-order autoregressive random
sequence y(n) are

{R(0), R(1), R(2), R(3), R(4)} = {256, 128, −32, −16, 22}

Determine the best prediction-error filters and the corresponding mean-square errors of
orders p = 1,2,3,4 by using Levinson’s algorithm in matrix form.

12.8 The fourth-order prediction-error filter and mean-square prediction error of a random signal
have been determined to be

A4(z)= 1− 1.25z−1 + 1.3125z−2 − z−3 + 0.5z−4 , E4 = 0.81

Using the function rlev, determine the autocorrelation lags R(k), 0 ≤ k ≤ 4, the four
reflection coefficients, and all the lower order prediction-error filters.

12.9 Verify the results of Example 12.3.1 using the functions lev, frwlev, bkwlev, and rlev, as
required.

12.10 (a) Given the five signal samples

{y0, y1, y2, y3, y4} = {1, −1, 1, −1, 1}

compute the corresponding sample autocorrelation lags R̂(k), k = 0,1,2,3,4, and
send them through the function lev to determine the fourth-order prediction error
filter A4(z).

(b) Predict the sixth sample in this sequence.

(c) Repeat (a) and (b) for the sequence of samples {1,2,3,4,5}.
12.11 Find the infinite autoregressive or maximum-entropy extension of the two autocorrelation

sequences

(a) {R(0), R(1)} = {1, 0.5}
(b) {R(0), R(1), R(2)} = {4, 0, 1}

In both cases, determine the corresponding power spectrum density Syy(z) and from it
calculate the R(k) for all lags k.

12.12 Write Eq. (12.3.24) for order p + 1. Derive Eq. (12.5.1) from Eq. (12.3.24) by replacing the
filter ap+1 in terms of the filter ap via the Levinson recursion.

12.13 Do Problem 12.7 using the split Levinson algorithm.

12.14 Draw the lattice realization of the analysis and synthesis filtersA4(a) and 1/A4(z) obtained
in Problems 12.6, 12.7, and 12.8.

12.15 Test the minimum-phase property of the two polynomials

A(z) = 1− 1.08z−1 + 0.13z−2 + 0.24z−3 − 0.5z−4

A(z) = 1+ 0.18z−1 − 0.122z−2 − 0.39z−3 − 0.5z−4

12.16 (a) The entropy of anM-dimensional random vector is defined byS = − ∫
p(y)lnp(y)dMy.

Show that the entropy of a zero-mean gaussian y with covariance matrix R is given,
up to an additive constant, by S = 1

2 ln(detR).

12.16. Problems 601

(b) With the help of the LU factorization (12.9.1), show that ratio of the determinants of
an orderM autocorrelation matrix and its order p (p < M) submatrix is

detRM
detRp

=
M∏

i=p+1

Ei

(c) Consider all possible autocorrelation extensions of the set {R(0), R(1), . . . , R(p)}
up to orderM. For gaussian processes, use the results in parts (a) and (b) to show that
the particular extension defined by the choice γi = 0, i = p+ 1, . . . ,M maximizes the
entropy of the order-M process; hence, the name maximum entropy extension.

12.17 Consider the LU factorization LRLT = D of an order-M autocorrelation matrix R. Denote
by bTp , p = 0,1, . . . ,M the rows of L. They are the backward prediction filters with zeros
padded to their ends to make them (M + 1)-dimensional vectors.

(a) Show that the inverse factorization R−1 = LTD−1L can be written as

R−1 =
M∑
p=0

1

Ep
bpb

T
p

(b) Define the “phasing” vectors s(z)= [1, z−1, z−2, . . . , z−M]T . Show that the z-transform
of an order-M filter and its inverse can be expressed compactly as

A(z)= s(z)Ta , a =
∮

u.c
A(z)s(z−1)

dz
2πjz

(c) Define the “kernel” vector k(w)= R−1s(w). The z-transform of this vector is called a
reproducing kernel [972,973,981]. Show that it can be written in the alternative forms

K(z,w)= s(z)Tk(w)= k(z)Ts(w)= k(z)TRk(w)= s(z)TR−1s(w)

(d) Let J denote the (M + 1)×(M + 1) reversing matrix. Show that Js(z)= z−Ms(z−1).
And that K(z,w)= z−Mw−MK(z−1,w−1).

(e) Show that K(z,w) admits the following representations in terms of the backward and
forward prediction polynomials

K(z,w)=
M∑
p=0

1

Ep
Bp(z)Bp(w)=

M∑
p=0

1

Ep
Ap(z)Ap(w)z−(M−p)w−(M−p)

12.18 Let Syy(z) be the power spectral density of the autocorrelation function R(k) from which
we build the matrix R of the previous problem. Show that R and R−1 admit the following
representations in terms of the phasing and kernel vectors:

R =
∮

u.c.
Syy(z)s(z−1)s(z)T

dz
2πjz

, R−1 =
∮

u.c.
Syy(z)k(z−1)k(z)T

dz
2πjz

Then, show the reproducing kernel property

K(z,w)=
∮

u.c.
K(z,u−1)K(w,u)Syy(u)

du
2πju

602 12. Linear Prediction

12.19 (a) Let sp(z)= [1, z−1, z−2, . . . , z−p]T . Using the order-updating formulas for R−1
p show

that the kernel vector kp(w)= R−1
p sp(w) satisfies the following order-recursive equa-

tions

kp(w)=
[

kp−1(w)
0

]
+ 1

Ep
bpBp(w) , kp(w)=

[
0

w−1kp−1(w)

]
+ 1

Ep
apAp(w)

(b) Show that the corresponding reproducing kernels satisfy

Kp(z,w) = Kp−1(z,w)+ 1

Ep
Bp(z)Bp(w)

Kp(z,w) = z−1w−1Kp−1(z,w)+ 1

Ep
Ap(z)Ap(w)

(c) Using part (b), show the Christoffel-Darboux formula [972,973,981]

Kp(z,w)= 1

Ep
Ap(z)Ap(w)−z−1w−1Bp(z)Bp(w)

1− z−1w−1

(d) Let zi be the ith zero of the prediction polynomial Ap(z). Using part (c), evaluate
Kp(zi, z∗i) and thereby show that necessarily |zi| ≤ 1. This is yet another proof of
the minimum-phase property of the prediction-error filters. Show further that if the
prediction filter ap is symmetric; i.e., ap = aRp , then its zeros lie on the unit circle.

(e) Show the Christoffel-Darboux formula [972,973,981]

Kp−1(z,w)= 1

Ep
Ap(z)Ap(w)−Bp(z)Bp(w)

1− z−1w−1

and use this expression to prove the result in (d) that |zi| ≤ 1.

12.20 Do Problem 12.7 using the Schur algorithm, determine the Cholesky factor G, and verify
R = GD−1GT by explicit matrix multiplication.

12.21 For the Example 12.10.2, compute the entries of the output matrices Y± by directly convolv-
ing the forward/backward prediction filters with the input autocorrelation lags.

12.22 Do Problem 12.7 using the split Schur algorithm, and determine the Cholesky factor G by
the recursion (12.10.21).

12.23 (a) Show the identity ∣∣∣∣∣−a∗ + z−1

1− az−1

∣∣∣∣∣
2

= 1−
(
1− |z−1|2)(1− |a|2)

|1− az−1|2

(b) Using part (a), show that the all-pass Schur function Sp(z) defined by Eq. (12.10.22) sat-
isfies the boundedness inequality (12.10.23), with equality attained on the unit circle.
Show that it also satisfies |Sp(z)| > 1 for |z| < 1.

12.24 Define the Schur function

S3(z)= 0.125− 0.875z−2 + z−3

1− 0.875z−1 + 0.125z−3

Carry out the recursions (12.10.24) and (12.10.25) to construct the lower order Schur func-
tions Sp(z), p = 2,1,0, and, in the process, extract the corresponding reflection coefficients.

12.16. Problems 603

12.25 Consider a generalized version of the simulation example discussed in Sec. 12.11, defined
by

x(n)= s(n)+v1(n) , y(n)= v2(n)

where
s(n) = sin(ω0n+φ)
v1(n) = a1v1(n− 1)+v(n)
v2(n) = a2v2(n− 1)+v(n)

where v(n) is zero-mean, unit-variance, white noise, and φ is a random phase independent
of v(n). This ensures that the s(n) component is uncorrelated with v1(n) and v2(n).

(a) Show that

Rxy(k)= ak1
1− a1a2

, Ryy(k)= ak2
1− a2

2
, k ≥ 0

(b) Show that the infinite-order Wiener filter for estimating x(n) on the basis of y(n) has
a (causal) impulse response

h0 = 1 , hk = (a1 − a2)ak−1
1 , k ≥ 1

(c) Next, consider the order-M FIR Wiener filter. Send the theoretical correlations of part
(a) for k = 0,1, . . . ,M through the function firw to obtain the theoretical Mth order
Wiener filter realized both in the direct and the lattice forms. Draw these realizations.
Compare the theoretical values of the weights h, g, and γγγ with the simulated values
presented in Sec. 12.11 that correspond to the choice of parametersM = 4, a1 = −0.5,
and a2 = 0.8. Also compare the answer for h with the first (M + 1) samples of the
infinite-order Wiener filter impulse response of part (b).

(d) Repeat (c) withM = 6.

12.26 A closed form solution of Problem 12.25 can be obtained as follows.

(a) Show that the inverse of the (M + 1)×(M + 1) autocorrelation matrix defined by
the autocorrelation lags Ryy(k), k = 0,1, . . . ,M of Problem 12.25(a) is given by the
tridiagonal matrix:

R−1
yy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a2 0 · · · 0 0
−a2 b −a2 · · · 0 0

0 −a2 b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · b −a2

0 0 0 · · · −a2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where b = 1+ a2

2.

(b) Using this inverse, show that the optimalMth order Wiener filter has impulse response

h0 = 1 , hk = (a1 − a2)ak−1
1 , for 1 ≤ k ≤M − 1 , and hM = a1 − a2

1− a1a2
aM−1

1

(c) Show that the lattice weights g can be obtained from h by the backward substitution

gM = hM , and gm = a2gm+1 + hm , m =M − 1,M − 2, . . . ,1,0

604 12. Linear Prediction

(d) For M = 4, a1 = −0.5, a2 = 0.8, compute the numerical values of h and g using the
above expressions and compare them with those of Problem 12.25(c).

12.27 Computer Experiment. Consider the noise canceling example of Sec. 12.11 and Problem
12.25, defined by the choice of parameters

ω0 = 0.075π [radians/sample] , φ = 0 , a1 = −0.5 , a2 = 0.8 , M = 4

(a) Generate 100 samples of the signals x(n), s(n), and y(n). On the same graph, plot
x(n) and s(n) versus n. Plot y(n) versus n.

(b) Using these samples, compute the sample correlations R̂yy(k), R̂xy(k), for k = 0,1,
. . . ,M, and compare them with the theoretical values obtained in Problem 12.25(a).

(c) Send these lags through the function firw to get the optimal Wiener filter weights h
and g, and the reflection coefficients γγγ. Draw the lattice and direct-form realizations
of the Wiener filter.

(d) Filter y(n) through the Wiener filter realized in the lattice form, and plot the output
e(n)= x(n)−x̂(n) versus n.

(e) Repeat (d) using the direct-form realization of the Wiener filter.

(f) Repeat (d) whenM = 6.

12.28 The following six samples

{y0, y1, y2, y3, y4, y5} = {4.684, 7.247, 8.423, 8.650, 8.640, 8.392}
have been generated by sending zero-mean unit-variance white noise through the difference
equation

yn = a1yn−1 + a2yn−2 + εn
where a1 = 1.70 and a2 = −0.72. Iterating Burg’s method by hand, obtain estimates of the
model parameters a1, a2, and σ2

ε .

12.29 Derive Eq. (12.12.11).

12.30 Computer Experiment. Ten samples from a fourth-order autoregres-
sive process y(n) are given. It is desired to extract the model pa-
rameters {a1, a2, a3, a4, σ2

ε} as well as the equivalent parameter set
{γ1, γ2, γ3, γ4, σ2

ε}.
(a) Determine these parameters using Burg’s method.
(b) Repeat using the Yule-Walker method.

Note: The exact parameter values by which the above simulated sam-
ples were generated are

{a1, a2, a3, a4, σ2
ε} = {−2.2137, 2.9403, −2.2697, 0.9606, 1}

n y(n)
0 4.503
1 −10.841
2 −24.183
3 −25.662
4 −14.390
5 1.453
6 10.980
7 13.679
8 15.517
9 15.037

12.31 Using the continuity equations at an interface, derive the transmission matrix equation
(12.13.2) and the energy conservation equation (12.13.4).

12.32 Show Eq. (12.13.6).

12.33 Fig. 12.13.2 defines the scattering matrix S. Explain how the principle of linear superposition
may be used to show the general relationship[

E′+
E−

]
= S

[
E+
E′−

]
between incoming and outgoing fields.

12.16. Problems 605

12.34 Show the two properties of the matrix ψm(z) stated in Eqs. (12.13.13) and (12.13.14).

12.35 Show Eqs. (12.13.25).

12.36 The reflection response of a stack of four dielectrics has been found to be

R(z)= −0.25+ 0.0313z−1 + 0.2344z−2 − 0.2656z−3 + 0.25z−4

1− 0.125z−1 + 0.0664z−3 − 0.0625z−4

Determine the reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4}.

12.37 Computer Experiment. It is desired to probe
the structure of a stack of dielectrics from
its reflection response. To this end, a unit
impulse is sent incident on the stack and the
reflection response is measured as a func-
tion of time.
It is known in advance (although this is not
necessary) that the stack consists of four
equal travel-time slabs stacked in front of
a semi-infinite medium.
Thirteen samples of the reflection response
are collected as shown here. Determine the
reflection coefficients {ρ0, ρ1, ρ2, ρ3, ρ4} by
means of the dynamic predictive deconvolu-
tion procedure.

k R(k)
0 −0.2500
1 0.0000
2 0.2344
3 −0.2197
4 0.2069
5 0.0103
6 0.0305
7 −0.0237
8 0.0093
9 −0.0002

10 0.0035
11 −0.0017
12 0.0004

12.38 Computer Experiment. Generate the results of Figures 5.16–5.17 and 5.25–5.26.

12.39 Computer Experiment. This problem illustrates the use of the dynamic predictive deconvolu-
tion method in the design of broadband terminations of transmission lines. The termination
is constructed by the cascade of M equal travel-time segments of transmission lines such
that the overall reflection response of the structure approximates the desired reflection re-
sponse. The characteristic impedances of the various segments are obtainable from the
reflection coefficients {ρ0, ρ1, . . . , ρM}. The reflection response R(ω) of the structure is a
periodic function ofω with periodωs = 2π/T2, where T2 is the two-way travel time delay
of each segment. The design procedure is illustrated by the following example: The desired
frequency response R(ω) is defined over one Nyquist period, as shown in Fig. 5.39:

R(ω)=
⎧⎨⎩0, for 0.25ω2 ≤ω ≤ 0.75ωs

0.9, for 0 ≤ω < 0.25ωs and 0.75ωs < ω ≤ωs

Fig. 12.16.1 Desired reflection frequency response.

(a) Using the Fourier series method of designing digital filters, design an N = 21-tap
filter with impulse response R(k), k = 0,1, . . . ,N − 1, whose frequency response

606 12. Linear Prediction

approximates the desired response defined above. Window the designed reflection
impulse responseR(k) by a length-NHamming window. Plot the magnitude frequency
response of the windowed reflection series over one Nyquist interval 0 ≤ω ≤ωs.

(b) ForM = 6, send theN samples of the windowed reflection series through the dynamic
predictive deconvolution function dpd to obtain the polynomials AM(z) and BM(z)
and the reflection coefficients {ρ0, ρ1, . . . , ρM}. Plot the magnitude response of the
structure; that is, plot

|R(ω)| =
∣∣∣∣ BM(z)AM(z)

∣∣∣∣ , z = exp(jωT2)= exp
(

2πj
ω
ωs

)
and compare it with the windowed response of part (a). To facilitate the comparison,
plot both responses of parts (a) and (b) on the same graph.

(c) Repeat part (b) forM = 2,M = 3, andM = 10.

(d) Repeat parts (a) through (c) for N = 31 reflection series samples.

(e) Repeat parts (a) through (c) for N = 51.

12.40 Show that the performance matrix P defined by Eq. (12.14.11) has trace equal toM + 1.

12.41 Computer Experiment. Reproduce the results of Figs. 12.14.1 through 12.14.6.

12.42 Computer Experiment – ARIMA Models. The file GNPC96.dat contains the data for the U.S.
Real Gross National Product (in billions of chained 2005 dollars, measured quarterly and
seasonally adjusted.) In this experiment, you will test whether an ARIMA(p,1,0) model is
appropriate for these data.

Extract the data from 1980 onwards and take their log. This results inN = 119 observations,
yn = ln(GNPn), n = 0,1, . . . ,N − 1. Because of the upward trend of the data, define the
length-(N−1) differenced signal zn = yn − yn−1, for n = 1,2, . . . ,N − 1. Then, subtract its
sample mean, say μ, to get the signal xn = zn − μ, for n = 1,2, . . . ,N − 1.

a. Calculate and plot the first M = 24 sample autocorrelation lags R(k), 0 ≤ k ≤ M,
of the signal xn. Send these into the Levinson algorithm to determine and plot the
corresponding reflection coefficients γp, for p = 1,2 . . . ,M. Add on that graph the
95% confidence bands, that is, the horizontal lines at ±1.96/

√
N. Based on this plot,

determine a reasonable value for the order p of an autoregressive model of fitting the
xn data.

b. Check the chosen value of p against also the FPE, AIC, and MDL criteria, that is, by
plotting them versus p = 1,2, . . . ,M, and identifying their minimum:

FPEp = Ep N + p+ 1

N − p− 1
, AICp = N lnEp + 2(p+ 1) , MDLp = N lnEp + (p+ 1)lnN

c. For the chosen value of p, use the Yule-Walker method to determine the linear pre-
diction error filter ap of order p, then, calculate the one-step-ahead prediction x̂n/n−1,
add the mean μ to get the prediction ẑn/n−1, and undo the differencing operation to
compute the prediction ŷn/n−1 of yn. There is a small subtlety here that has to do with
the initial value of yn. On the same graph plot yn and its prediction.

d. Repeat part (c) for a couple of other values of p, say p = 1 and p = 10.

e. Calculate the DTFT |X(ω)|2 of the data xn over 0 ≤ ω ≤ π. For the chosen order
p, calculate the corresponding AR power spectrum but this time use the Burg method
to determine the order-p prediction filter. Plot the DTFT and AR spectra on the same
graph, but for convenience in comparing them, normalize both spectra to their max-
imum values. Investigate if higher values of p can model these spectra better, for
example, try the orders p = 10 and p = 15. Some example graphs are included below.

12.16. Problems 607

0 2 4 6 8 10 12 14 16 18 20 22 24
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

reflection coefficients, γ
p

p
1980 1985 1990 1995 2000 2005 2010

8.6

8.8

9

9.2

9.4

9.6

year

lo
g(

G
N

P
)

Quarterly GNP and its prediction

 data
 prediction (p=10)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

DTFT and Burg spectra

 DTFT
 AR(10)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

DTFT and Burg spectra

 DTFT
 AR(15)

12.43 Computer Experiment – Wiener Filter Design. It is desired to design a Wiener filter to enhance
a sinusoidal signal buried in noise. The noisy sinusoidal signal is given by

xn = sn + vn , where sn = sin(ω0n)

withω0 = 0.075π. The noise component vn is related to the secondary signal yn by

vn = yn + yn−1 + yn−2 + yn−3 + yn−4 + yn−5 + yn−6

a. Generate N = 200 samples of the signal yn by assuming that it is an AR(4) process
with reflection coefficients:

{γ1, γ2, γ3, γ4} = {0.5,−0.5,0.5,−0.5}

The variance σ2
ε of the driving white noise of the model must be chosen in such a way

as to make the variance σ2
v of the noise component vn approximately σ2

v = 0.5, such
that the two terms sn and vn of xn have approximately equal strengths, that is, 0 dB
signal-to-noise ratio.

(This can be done by writing vn = cTy(n) and therefore, σ2
v = cTRc, where c is a

7-dimensional column vector of ones, and R is the order-6 autocorrelation matrix,
you can then write σ2

v = σ2
yc
TRnormc, where Rnorm has all its entries normalized by

608 12. Linear Prediction

R(0)= σ2
y . You can easily determine Rnorm by doing a maximum entropy extension to

order six, starting with the four reflection coefficients and setting γ5 = γ6 = 0.)

In generating yn make sure that the transients introduced by the filter have died out.
Then, generate the corresponding N samples of the signal xn. On the same graph,
plot xn together with the desired signal sn. On a separate graph (but using the same
vertical scales as the previous one) plot the reference signal yn versus n.

b. For M = 4, design a Wiener filter of order-M based on the generated signal blocks
{xn, yn}, n = 0,1, . . . ,N − 1, and realize it in both the direct and lattice forms.

c. Using the lattice form, filter the signals xn, yn through the designed filter and generate
the outputs x̂n, en. Explain why en should be an estimate of the desired signal sn. On
the same graph, plot en and sn using the same vertical scales as in part (a).

d. Repeat parts (b) and (c) for filter ordersM = 5,6,7,8. Discuss the improvement ob-
tained with increasing order. What is the smallestM that would, at least theoretically,
result in en = sn? Some example graphs are included below.

0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4

time samples, n

Wiener filter inputs

 y(n)
 x(n)

0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4

time samples, n

Wiener filter − error output, M=6

 e(n)
 s(n)

13
Kalman Filtering

13.1 State-Space Models

The Kalman filter is based on a state/measurement model of the form:

xn+1 = Anxn +wn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.1)

where xn is ap-dimensional state vector and yn, an r-dimensional vector of observations.
The p×p state-transition matrix An and r×p measurement matrix Cn may depend on
time n. The signals wn,vn are assumed to be mutually-independent, zero-mean, white-
noise signals with known covariance matrices Qn and Rn:

E[wnwTi] = Qnδni
E[vnvTi] = Rnδni
E[wnvTi] = 0

(13.1.2)

The model is iterated starting at n = 0. The initial state vector x0 is assumed to be
random and independent of wn,vn, but with a known mean x̄0 = E[x0] and covariance
matrix Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]. We will assume, for now, that x0,wn,vn are nor-
mally distributed, and therefore, their statistical description is completely determined
by their means and covariances. A non-zero cross-covariance E[wnvTi]= Snδni may
also be assumed. A scalar version of the model was discussed in Chap. 11.

The covariance matrices Qn,Rn have dimensions p×p and r×r, but they need not
have full rank (which would mean that some of the components of xn or yn would, in
an appropriate basis, be noise-free.) For example, to allow the possibility of fewer state
noise components, the model (13.1.1) is often written in the form:

xn+1 = Anxn +Gnwn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.3)

609

610 13. Kalman Filtering

where the new wn is lower-dimensional with (full-rank) covariance Qn. In this model,
the covariances of the noise components will be E[(Gnwn)(Gnwn)T]= GnQnGTn , In
addition, external deterministic inputs may be present, for example,

xn+1 = Anxn + Bnun +Gnwn

yn = Cnxn + vn

(state model)

(measurement model)
(13.1.4)

where un is the deterministic input. Such modifications do not affect much the essential
form of the Kalman filter and, therefore, we will use the simpler model (13.1.1).

The iterated solution of the state equation (13.1.1) may be obtained with the help of
the corresponding p×p state-transition matrix Φn,k defined as follows:

Φn,k = An−1 · · ·Ak , for n > k

Φn,n = I
Φn,k = Φ−1

k,n , for n < k

(13.1.5)

where I is the p×p identity matrix and the third equation is valid only if the inverse
exists. In particular, we have Φn,0 = An−1 · · ·A0 for n > 0, and Φ0,0 = I. If the state
matrix An is independent of n, then the above definitions imply that Φn,k = An−k. We
note also the properties:

Φn,n−1 = An , n ≥ 1

Φn+1,k = AnΦn,k , n ≥ k
Φn,k = Φn,iΦi,k , n ≥ i ≥ k

(13.1.6)

It is easily verified that the solution of Eq. (13.1.1) is given by:

xn = Φn,0 x0 +
n∑
k=1

Φn,kwk−1 , n ≥ 1 (13.1.7)

so that xn depends only on {x0,w0,w1, . . . ,wn−1}, for example,

x1 = Φ1,0 x0 +Φ1,1w0

x2 = Φ2,0 x0 +Φ2,1w0 +Φ2,2w1

x3 = Φ3,0 x0 +Φ3,1w0 +Φ3,2w1 +Φ3,3w2

...
xn = Φn,0 x0 +Φn,1w0 +Φn,2w1 + · · · +Φn,nwn−1

and more generally, starting at time n = i,

xn = Φn,i xi +
n∑

k=i+1

Φn,kwk−1 , n > i (13.1.8)

Let x̄n = E[xn] and Σn = E[(xn − x̄n)(xn − x̄n)T] be the mean and covariance
matrix of the state vector xn. Then, it follows from Eqs. (13.1.2) and (13.1.7) and the

13.1. State-Space Models 611

independence of x0 and wn that,

x̄n = Φn,0x̄0

Σn = Φn,0Σ0ΦTn,0 +
n∑
k=1

Φn,kQk−1ΦTn,k , n ≥ 1
(13.1.9)

It is straightforward to show from (13.1.9) or (13.1.1) that x̄n and Σn satisfy the recur-
sions:

x̄n+1 = Anx̄n
Σn+1 = AnΣnATn +Qn , n ≥ 1

(13.1.10)

Indeed, subtracting (13.1.1) and (13.1.10) and using the independence of xn and wn,
we find:

xn+1 − x̄n+1 = An(xn − x̄n)+wn

Σn+1 = E[(xn+1 − x̄n+1)(xn+1 − x̄n+1)T]= E[(An(xn − x̄n)+wn)(An(xn − x̄n)+wn)T]

= AnE[(xn − x̄n)(xn − x̄n)T]ATn + E[wnwTn]= AnΣnATn +Qn
In a similar fashion, we can obtain the statistical properties of the observations yn

from those of xn and vn:

ȳn = Cnx̄n

yn − ȳn = Cn(xn − x̄n)+vn

Σynyn = E[(yn − ȳn)(yn − ȳn)T]= CnΣnCTn +Rn , n ≥ 0

(13.1.11)

Example 13.1.1: Local Level Model. The local-level model discussed in Chap. 6 is already in
state-space form:

xn+1 = xn +wn
yn = xn + vn

and represents a random-walk process xn observed in noise. The noise variances are de-
fined as Q = σ2

w and R = σ2
v . ��

Example 13.1.2: Local Trend Model. The local-trend model was discussed in Sec. 6.13. Let
an, bn be the local level and local slope. The model is defined by,

an+1 = an + bn +wn
bn+1 = bn + un
yn = an + vn

with mutually uncorrelated noise components wn,un, vn. The model can be written in
state-space form as follows:[

an+1

bn+1

]
=

[
1 1
0 1

][
an
bn

]
+

[
wn
un

]
, yn = [1,0]

[
an
bn

]
+ vn

The noise covariances are:

wn =
[
wn
un

]
, Q = E[wnwTn]=

[
σ2
w 0

0 σ2
u

]
, R = σ2

v

612 13. Kalman Filtering

As we mentioned in Sec. 6.13, the steady-state version of the Kalman filter for this model
is equivalent to Holt’s exponential smoothing method. We demonstrate this later. ��

Example 13.1.3: Kinematic Models for Radar Tracking. Consider the one-dimensional motion
of an object moving with constant acceleration, ẍ(t)= a. By integrating this equation, the
object’s position x(t) and velocity ẋ(t) are,

x(t)= x(t0)+(t − t0)ẋ(t0)+1

2
(t − t0)2 a

ẋ(t)= ẋ(t0)+(t − t0)a
(13.1.12)

Suppose the motion is sampled at time intervals T, i.e., at the time instants tn = nT, and
let us assume that the acceleration is not necessarily constant for all t, but is constant
within each interval T, that is, a(t)= a(tn), for tn ≤ t < tn+1. Then, applying Eq. (13.1.12)
at t = tn+1 and t0 = tn, and denoting x(tn)= xn, ẋ(tn)= ẋn, and a(tn)= an, we obtain,

xn+1 = xn +Tẋn + 1

2
T2an

ẋn+1 = ẋn +Tan
(13.1.13)

To describe an object that is trying to move at constant speed but is subject to random
accelerations, we may assume that an is a zero-mean random variable with variance σ2

a. If
the object’s position xn is observed in noise vn, we obtain the model:

xn+1 = xn +Tẋn + 1

2
T2an

ẋn+1 = ẋn +Tan
yn = xn + vn

(13.1.14)

which may be written in state-space form:[
xn+1

ẋn+1

]
=

[
1 T
0 1

][
xn
ẋn

]
+

[
T2/2
T

]
an

yn = [1,0]
[
xn
ẋn

]
+ vn

(13.1.15)

with measurement noise variance R = σ2
v , and state noise vector and covariance matrix:

wn =
[
T2/2
T

]
an ⇒ Q = E[wnwTn]=

[
T4/4 T3/2
T3/2 T2

]
σ2
a (13.1.16)

This model is, of course, very similar to the local-trend model of the previous example if
we set T = 1, except now the state noise arises from a single acceleration noise an affect-
ing both components of the state vector, whereas in the local-trend model, we assumed
independent noises for the local level and local slope.

We will see later that the steady-state Kalman filter for the model defined by Eqs. (13.1.15)
and (13.1.16) is equivalent to an optimum version of the popular α–β radar tracking filter
[868,869]. An alternative model, which leads to a somewhat different α–β tracking model
[870,874], has state noise added only to the velocity component:[

xn+1

ẋn+1

]
=

[
1 T
0 1

][
xn
ẋn

]
+

[
0
wn

]

yn = [1,0]
[
xn
ẋn

]
+ vn

(13.1.17)

13.1. State-Space Models 613

with R = σ2
v and

wn =
[

0
wn

]
, Q = E[wnwTn]=

[
0 0
0 σ2

w

]

The models (13.1.15) and (13.1.17) are appropriate for uniformly moving objects subject
to random accelerations. In order to describe a maneuvering, accelerating, object, we may
start with the model (13.1.15) and make the acceleration an part of the state vector and
assume that it deviates from a constant acceleration by an additive white noise term, i.e.,
replace an by an +wn. Denoting an by ẍn, we obtain the model [874,875]:

xn+1 = xn +Tẋn + 1

2
T2(ẍn +wn)

ẋn+1 = ẋn +T(ẍn +wn)
ẍn+1 = ẍn +wn
yn = xn + vn

(13.1.18)

which may be written in the matrix form:⎡⎢⎣ xn+1

ẋn+1

ẍn+1

⎤⎥⎦ =
⎡⎢⎣ 1 T T2/2

0 1 T
0 0 1

⎤⎥⎦
⎡⎢⎣ xnẋn
ẍn

⎤⎥⎦+
⎡⎢⎣ T2/2
T
1

⎤⎥⎦wn

yn = [1,0,0]
⎡⎢⎣ xnẋn
ẍn

⎤⎥⎦+ vn
(13.1.19)

This leads to the so-called α–β–γ tracking filter. An alternative model may be derived by
starting with a linearly increasing acceleration ẍ(t)= a(t)= a(t0)+(t − t0)ȧ(t0), whose
integration gives:

x(t)= x(t0)+(t − t0)u(t0)+1

2
(t − t0)2a(t0)+1

6
(t − t0)3ȧ(t0)

ẋ(t)= ẋ(t0)+(t − t0)a(t0)+1

2
(t − t0)2ȧ(t0)

a(t)= a(t0)+(t − t0)ȧ(t0)

(13.1.20)

Its sampled version is obtained by treating the acceleration rate ȧn as a zero-mean white-
noise term with variance σ2

ȧ, resulting in the state model [876]:⎡⎢⎣ xn+1

ẋn+1

ẍn+1

⎤⎥⎦ =
⎡⎢⎣ 1 T T2/2

0 1 T
0 0 1

⎤⎥⎦
⎡⎢⎣ xnẋn
ẍn

⎤⎥⎦+
⎡⎢⎣ T3/3
T2/2
T

⎤⎥⎦ ȧn

yn = [1,0,0]
⎡⎢⎣ xnẋn
ẍn

⎤⎥⎦+ vn
(13.1.21)

Later on we will look at the Kalman filters for such kinematic models and discuss their
connection to the α–β and α–β–γ tracking filters. ��

614 13. Kalman Filtering

13.2 Kalman Filter

The Kalman filter is a time-recursive procedure for estimating the state vector xn from
the observations signal yn. Let Yn = {y0,y1, . . . ,yn} be the linear span of the observa-
tions up to the current time instant n. The Kalman filter estimate of xn is defined as
the optimum linear combination of these observations that minimizes the mean-square
estimation error, and as we already know, it is given by the projection of xn onto the
observation subspace Yn. For the gaussian case, this projection happens to be the con-
ditional mean x̂n/n = E[xn|Yn]. Let us define also the predicted estimate x̂n/n−1 based
on the observations Yn−1 = {y0,y1, . . . ,yn−1}. Again, for the gaussian case we have
x̂n/n−1 = E[xn|Yn−1]. To cover both the gaussian and nongaussian, but linear, cases,
we will use the following notation for the estimates, estimation errors, and mean-square
error covariances:

x̂n/n−1 = Proj[xn|Yn−1]

en/n−1 = xn − x̂n/n−1

Pn/n−1 = E[en/n−1eTn/n−1]

and

x̂n/n = Proj[xn|Yn]
en/n = xn − x̂n/n

Pn/n = E[en/neTn/n]

(13.2.1)

We will first state the estimation algorithm, and then prove it. The Kalman filtering
algorithm for the model (13.1.1)–(13.1.2) is as follows:

Initialize in time by: x̂0/−1 = x̄0, P0/−1 = Σ0

At time n, x̂n/n−1, Pn/n−1, yn are available,

Dn = CnPn/n−1CTn +Rn innovations covariance

Gn = Pn/n−1CTnD−1
n Kalman gain for filtering

Kn = AnGn = AnPn/n−1CTnD−1
n Kalman gain for prediction

ŷn/n−1 = Cnx̂n/n−1 predicted measurement

εεεn = yn − ŷn/n−1 = yn −Cnx̂n/n−1 innovations sequence

Measurement update / correction:

x̂n/n = x̂n/n−1 +Gnεεεn filtered estimate

Pn/n = Pn/n−1 −GnDnGTn estimation error

Time update / prediction:

x̂n+1/n = Anx̂n/n = Anx̂n/n−1 +Knεεεn predicted estimate

Pn+1/n = AnPn/nATn +Qn prediction error

Go to time n+ 1

(13.2.2)
The quantityDn represents the innovations covariance matrix, that is,Dn = E[εεεnεεεTn].

The innovations sequence {εεε0,εεε1, . . . ,εεεn}, constructed recursively by the algorithm, rep-
resents the Gram-Schmidt orthogonalization of the observations {y0,y1, . . . ,yn} in the
sense that the innovations form an orthogonal basis for the observation subspace Yn,
that is, Yn is the linear span of either set:

Yn = {y0,y1, . . . ,yn} = {εεε0,εεε1, . . . ,εεεn}
The orthogonality property of εεεn is expressed by:

13.2. Kalman Filter 615

E[εεεnεεεTi]= Dnδni (13.2.3)

There are some alternative ways of writing the above equations. For example, the
equation for Pn/n may be written in the equivalent ways:

1. Pn/n = Pn/n−1 −GnDnGTn = (I −GnCn)Pn/n−1

2. Pn/n = Pn/n−1 − Pn/n−1CTnD−1
n CnPn/n−1 = standard form

3. Pn/n = (I −GnCn)Pn/n−1(I −GnCn)T+GnRnGTn = Joseph form

4. Pn/n =
[
P−1
n/n−1 +CTnR−1

n Cn
]−1 = information form

(13.2.4)

with Dn = CnPn/n−1CTn + Rn and Gn = Pn/n−1CTnD−1
n . Similarly, we can write the

Kalman gain Gn in its information form:

Gn = Pn/n−1CTnD−1
n = Pn/nCTnR−1

n (13.2.5)

It follows from the information forms that the filtered estimate may be re-expressed as:

x̂n/n = x̂n/n−1 +Gnεεεn = x̂n/n−1 + Pn/nCTnR−1
n (yn −Cnx̂n/n−1)

= Pn/n
[
P−1
n/n −CTnR−1

n Cn
]
x̂n/n−1 + Pn/nCTnR−1

n yn

= Pn/nP−1
n/n−1x̂n/n−1 + Pn/nCTnR−1

n yn

from which we obtain the information form of the updating equation:

P−1
n/n x̂n/n = P−1

n/n−1x̂n/n−1 +CTnR−1
n yn (13.2.6)

In the relations that involve R−1
n , one must assume that Rn has full rank. The differ-

ence equation for the predicted estimate may be written directly in terms of the current
observation yn and the closed-loop state matrix Fn = An −KnCn, as follows:

x̂n+1/n = Anx̂n/n−1 +Knεεεn = Anx̂n/n−1 +Kn(yn −Cnx̂n/n−1)

= (An −KnCn)x̂n/n−1 +Knyn

that is,

x̂n+1/n = (An −KnCn)x̂n/n−1 +Knyn (13.2.7)

A block diagram realization is depicted in Fig. 13.2.1. The error covariance update
equations,

Pn/n = Pn/n−1 − Pn/n−1CTnD−1
n CnPn/n−1

Pn+1/n = AnPn/nATn +Qn

616 13. Kalman Filtering

Fig. 13.2.1 Kalman filter realization.

may be combined into a single equation known as the discrete-time Riccati difference
equation, to be initialized at P0/−1 = Σ0 :

Pn+1/n = An
[
Pn/n−1 − Pn/n−1CTn(CnPn/n−1CTn +Rn)−1CnPn/n−1

]
ATn +Qn (13.2.8)

which can also be written in the “information” forms (if R−1
n exists):

Pn+1/n = An
[
P−1
n/n−1 +CTnR−1

n Cn)
]−1ATn +Qn

Pn+1/n = An
[
I + Pn/n−1CTnR−1

n Cn)
]−1Pn/n−1ATn +Qn

(13.2.9)

and in the Joseph-like forms:

Pn+1/n = AnPn/n−1ATn +Qn −KnDnKTn , Kn = AnPn/n−1CTnD−1
n

Pn+1/n =
(
An −KnCn

)
Pn/n−1

(
An −KnCn

)T +KnRnKTn +Qn (13.2.10)

Similarly, the closed-loop transition matrix can be written as,

Fn = An −KnCn = An
[
I + Pn/n−1CTnR−1

n Cn
]−1

(13.2.11)

We note also that since, x̂n+1/n = An x̂n/n and x̂n/n−1 = An−1 x̂n−1/n−1, the difference
equations for the predicted and filtered estimates would read as follows in terms of the
Kalman gains Kn and Gn, respectively,

ŷn/n−1 = Cn x̂n/n−1 = CnAn−1 x̂n−1/n−1 predicted measurement

εεεn = yn − ŷn/n−1 innovations sequence

x̂n+1/n = Anx̂n/n−1 +Knεεεn predicted estimate

x̂n/n = An−1x̂n−1/n−1 +Gnεεεn filtered estimate

(13.2.12)

13.3 Derivation

To derive Eq. (13.2.2), we recall from Chap. 1 that the optimum linear estimate of a zero-
mean random vector x based on a zero-mean random vector y, and the corresponding

13.3. Derivation 617

orthogonality condition and error covariance, are given by:

x̂ = RxyR−1
yyy = E[xyT]E[yyT]−1y

e = x− x̂ , Rey = E[eyT]= 0

Ree = E[eeT]= Rxx −RxyR−1
yyRyx

(13.3.1)

When the vectors have non-zero means, say x̄, ȳ, the same results apply with the
replacement x → x − x̄, y → y − ȳ, and x̂ → x̂ − x̄ in (13.3.1). Under this replacement,
the correlation matrices are replaced by the corresponding covariances, e.g.,

Rxy = E[xyT]→ E[(x− x̄)(y− ȳ)T]= Σxy , etc.

Hence, the optimum estimate is now:

x̂ = x̄+ ΣxyΣ−1
yy (y− ȳ)

e = x− x̂ , Rey = Σey = E[eyT]= 0

Σee = Σxx − ΣxyΣ−1
yy Σyx

(13.3.2)

We note that the estimate is unbiased, that is, E[x̂]= x̄, and therefore, the estimation
error has zero mean, E[e]= 0, its covariance matrix will be Σee = Ree = E[eeT], and
the orthogonality condition may be written as E[e(y− ȳ)T]= E[eyT]= 0.

Let us apply now this result to the state model (13.1.1) at n = 0. This will also clarify
the manner in which the algorithm is to be initialized. As part of the model, we assume
that the initial state x0 has a known mean x̄0 and covariance matrix Σ0. According to
(13.3.2), the optimum estimate x̂0/0 of x0 based on the observation y0 will be given by:

x̂0/0 = x̄0 + Σx0y0Σ
−1
y0y0
(y0 − ȳ0)

e0/0 = x0 − x̂0/0 , E[e0/0(y0 − ȳ0)T]= 0

Σe0e0 = E[e0/0eT0/0]= Σx0x0 − Σx0y0Σ
−1
y0y0
Σy0x0

(13.3.3)

with E[x̂0/0]= x̄0 and E[e0/0]= 0. Let us define εεε0 = y0− ȳ0 andG0 = Σx0y0Σ−1
y0y0

. From
the measurement model y0 = C0x0 + v0, we have ȳ0 = C0x̄0, which gives:

εεε0 = y0 − ȳ0 = C0(x0 − x̄0)+v0

Clearly, E[εεε0]= 0. Since v0 is uncorrelated with x0, we will have:

E[εεε0εεεT0]= C0E[(x0 − x̄0)(x0 − x̄0)T]CT0 + E[v0vT0] , or,

D0 = E[εεε0εεεT0]= Σy0y0 = C0Σ0CT0 +R0

where Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]= Σx0x0 . Similarly, we find:

Σx0y0 = E[(x0 − x̄0)εεεT0]= E[(x0 − x̄0)(x0 − x̄0)T]CT0 = Σ0CT0

618 13. Kalman Filtering

Thus, the Kalman gain becomes,

G0 = Σx0y0Σ
−1
y0y0

= Σ0CT0D
−1
0

With the definitions x̂0/−1 = x̄0 and P0/−1 = Σ0, we may rewrite (13.3.3) as,

x̂0/0 = x̂0/−1 +G0εεε0 , G0 = P0/−1CT0D
−1
0 (13.3.4)

The corresponding error covariance matrix will be given by (13.3.3):

Σe0e0 = Σx0x0 − Σx0y0Σ
−1
y0y0
Σy0x0 = Σ0 − Σ0CT0D

−1
0 C0Σ0 , or,

P0/0 = P0/−1 − P0/−1CT0D
−1
0 C0P0/−1 = P0/−1 −G0D0GT0 (13.3.5)

Because e0/0 has zero mean, we may write the orthogonality condition in Eq. (13.3.3) as,

E[e0/0yT0]= E[e0/0(y0 − ȳ0)T]= E[e0/0εεεT0]= 0

which states that the estimation error is orthogonal to the observation y0, or equiva-
lently, to the innovations vector εεε0. To complete the n = 0 step of the algorithm, we
must now determine the prediction of x1 based on y0 or εεε0. We may apply (13.3.2) again,

x̂1/0 = x̄1 + Σx1y0Σ
−1
y0y0
(y0 − ȳ0)= x̄1 + E[x1εεε0]E[εεε0εεεT0]−1εεε0

e1/0 = x1 − x̂1/0 , E[e1/0(y0 − ȳ0)T]= E[e1/0εεεT0]= 0

Σe1e1 = E[e1/0eT1/0]= Σx1x1 − Σx1y0Σ
−1
y0y0
Σy0x1

(13.3.6)

From the state equation x1 = A0x0 +w0 and the independence of w0 and y0, we find,

Σx1y0 = Σ(A0x0+w0)y0 = A0Σx0y0

K0 ≡ Σx1y0Σ
−1
y0y0

= A0Σx0y0Σ
−1
y0y0

= A0G0

Σx1x1 = Σ(A0x0+w0)(A0x0+w0) = A0Σx0x0A
T
0 +Q0

P1/0 = Σe1e1 = Σx1x1 − Σx1y0Σ
−1
y0y0
Σy0x1

= A0Σx0x0A
T
0 +Q0 −A0Σx0y0Σ

−1
y0y0
Σy0x0A

T
0

= A0
[
Σx0x0 − Σx0y0Σ

−1
y0y0
Σy0x0

]
AT0 +Q0 = A0P0/0AT0 +Q0

Since, x̄1 = A0x̄0 = A0x̂0/−1, we may rewrite the predicted estimate and its error as,

x̂1/0 = A0x̂0/−1 +K0εεε0 = A0
[
x̂0/−1 +G0εεε0]= A0x̂0/0

P1/0 = A0P0/0AT0 +Q0

(13.3.7)

This completes all the steps at n = 0. We collect the results together:

13.3. Derivation 619

x̂0/−1 = x̄0 , P0/−1 = Σ0

D0 = C0P0/−1CT0 +R0

G0 = P0/−1CT0D
−1
0

K0 = A0G0 = A0P0/−1CT0D
−1
0

ŷ0/−1 = C0x̂0/−1

εεε0 = y0 − ŷ0/−1 = y0 −C0x̂0/−1

x̂0/0 = x̂0/−1 +G0εεε0

P0/0 = P0/−1 −G0D0GT0
x̂1/0 = A0x̂0/0 = A0x̂0/−1 +K0εεε0

P1/0 = A0P0/0AT0 +Q0

Moving on to n = 1, we construct the next innovations vector εεε1 by:

εεε1 = y1 − ŷ1/0 = y1 −C1x̂1/0 (13.3.8)

Since y1 = C1x1 + v1, it follows that,

εεε1 = C1(x1 − x̂1/0)+v1 = C1e1/0 + v1 (13.3.9)

Because εεε0 is orthogonal to e1/0 and v1 is independent of y0, we have:

E[εεε1εεεT0]= 0 (13.3.10)

We also have E[εεε1]= 0 and the covariance matrix:

D1 = E[εεε1εεεT1]= C1P1/0CT1 +R1 (13.3.11)

Thus, the zero-mean vectors {εεε0,εεε1} form an orthogonal basis for the subspace
Y1 = {y0,y1}. The optimum estimate of x1 based on Y1 is obtained by Eq. (13.3.2), but

with y replaced by the extended basis vector

[
εεε0

εεε1

]
whose covariance matrix is diagonal.

It follows that,

x̂1/1 = Proj[x1|Y1]= Proj[x1|εεε0,εεε1]= x̄1 + E
[
x1[εεεT0 ,εεε

T
1]

][
E[εεε0εεεT0] 0

0 E[εεε1εεεT1]

]−1 [
εεε0

εεε1

]

= x̄1 + E[x1εεε0]E[εεε0εεεT0]−1εεε0 + E[x1εεε1]E[εεε1εεεT1]−1εεε1

(13.3.12)
The first two terms are recognized from Eq. (13.3.6) to be the predicted estimate

x̂1/0. Therefore, we have,

x̂1/1 = x̂1/0 + E[x1εεε1]E[εεε1εεεT1]−1εεε1 = x̂1/0 +G1εεε1 (13.3.13)

Since εεε1 ⊥ εεε0, we have E[x̂1/0εεεT1]= 0, and using (13.3.9) we may write:

E[x1εεε1]= E[(x1 − x̂1/0)εεεT1]= E[e1/0εεεT1]= E[e1/0(eT1/0C
T
1 + vT1)]= P1/0CT1

620 13. Kalman Filtering

Thus, the Kalman gain for the filtered estimate is:

G1 = E[x1εεε1]E[εεε1εεεT1]−1= P1/0CT1D
−1
1

The corresponding error covariance matrix can be obtained from Eq. (13.3.2), but
perhaps a faster way is to argue as follows. Using Eq. (13.3.13), we have

e1/1 = x1 − x̂1/1 = x1 − x̂1/0 −G1εεε1 = e1/0 −G1εεε1 , or,

e1/0 = e1/1 +G1εεε1 (13.3.14)

The orthogonality conditions for the estimate x̂1/1 are E[e1/1εεεT0]= E[e1/1εεεT1]= 0.
Thus, the two terms on the right-hand-side of (13.3.14) are orthogonal and we obtain
the covariances:

E[e1/0eT1/0]= E[e1/1eT1/1]+G1E[εεε1εεεT1]G
T
1 , or,

P1/0 = P1/1 +G1D1GT1 , or,

P1/1 = P1/0 −G1D1GT1 = P1/0 − P1/0CT1D
−1
1 C1P1/0 (13.3.15)

To complete the n = 1 steps, we must predict x2 from Y1 = {y0,y1} = {εεε0,εεε1}.
From the state equation x2 = A1x1 +w1, we have:

x̂2/1 = Proj[x2|Y1]= Proj[A1x1 +w1|Y1]= A1x̂1/1 = A1(x̂1/0 +G1εεε1)= A1x̂1/0 +K1εεε1

e2/1 = x2 − x̂2/1 = A1(x1 − x̂1/1)+w1 = A1e1/1 +w1

P2/1 = E[e2/1eT2/1]= A1E[e1/1eT1/1]A
T
1 +Q1 = A1P1/1AT1 +Q1

where we defined K1 = A1G1 and used the fact that w1 is independent of x1 and x̂1/1,
since the latter depends only on x̄0,y0,y1. We collect the results for n = 1 together:

D1 = C1P1/0CT1 +R1

G1 = P1/0CT1D
−1
1

K1 = A1G1 = A1P1/0CT1D
−1
1

ŷ1/0 = C1x̂1/0

εεε1 = y1 − ŷ1/0 = y1 −C1x̂1/0

x̂1/1 = x̂1/0 +G1εεε1

P1/1 = P1/0 −G1D1GT1
x̂2/1 = A1x̂1/1 = A1x̂1/0 +K1εεε1

P2/1 = A1P1/1AT1 +Q1

At the nth time instant, we assume that we have already constructed the orthogo-
nalized basis of zero-mean innovations up to time n− 1, i.e.,

Yn−1 = {y0,y1, . . . ,yn−1} = {εεε0,εεε1, . . . ,εεεn−1}
E[εεεiεεεTj]= Diδij , 0 ≤ i, j ≤ n− 1

13.3. Derivation 621

Then, the optimal prediction of xn based on Yn−1 will be:

x̂n/n−1 = Proj[xn|Yn−1]= x̄n +
n−1∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi (13.3.16)

Defining εεεn = yn − ŷn/n−1 = yn −Cnx̂n/n−1, we obtain,

εεεn = yn −Cnx̂n/n−1 = Cn(xn − x̂n/n−1)+vn = Cnen/n−1 + vn (13.3.17)

Therefore, E[εεεn]= 0, and since vn ⊥ en/n−1 (because en/n−1 depends only on x0, . . . ,xn
and y0, . . . ,yn−1), we have:

Dn = E[εεεnεεεTn]= CnPn/n−1CTn +Rn (13.3.18)

From the optimality of x̂n/n−1, we have the orthogonality property en/n−1 ⊥ εεεi, or,
E[en/n−1εεεTi]= 0, for i = 0,1, . . . , n − 1, and since also vn ⊥ εεεi, we conclude that the
constructed εεεn will be orthogonal to all the previous εεεi, i.e.,

E[εεεnεεεTi]= 0 , i = 0,1, . . . , n− 1

Thus, we may enlarge the orthogonalized basis of the observation subspace to time n:

Yn = {y0,y1, . . . ,yn−1,yn} = {εεε0,εεε1, . . . ,εεεn−1,εεεn}
E[εεεiεεεTj]= Diδij , 0 ≤ i, j ≤ n

We note also that the definition ŷn/n−1 = Cnx̂n/n−1 is equivalent to the conventional
Gram-Schmidt construction process defined in Chap. 1, that is, starting with,

ŷn/n−1 = Proj[yn|Yn−1]= ȳn +
n−1∑
i=0

E[ynεεεTi]E[εεεiεεε
T
i]
−1εεεi

εεεn = yn − ŷn/n−1

then, we may justify the relationship, ŷn/n−1 = Cnx̂n/n−1. Indeed, since, yn = Cnxn+vn,
we have, ȳn = Cnx̄n, and using Eq. (13.3.16), we obtain:

ŷn/n−1 = ȳn +
n−1∑
i=0

E[ynεεεTi]E[εεεiεεε
T
i]
−1εεεi

= Cnx̄n +
n−1∑
i=0

E[(Cnxn + vn)εεεTi]E[εεεiεεε
T
i]
−1εεεi

= Cn
⎡⎣x̄n +

n−1∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi

⎤⎦ = Cnx̂n/n−1

Next, we consider the updated estimate of xn based on Yn and given in terms of the
innovations sequence:

x̂n/n = Proj[xn|Yn]= x̄n +
n∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi (13.3.19)

622 13. Kalman Filtering

It follows that, for n ≥ 1,

x̂n/n = x̂n/n−1 + E[xnεεεTn]E[εεεnεεεTn]−1εεεn = x̂n/n−1 +Gnεεεn (13.3.20)

Because εεεn ⊥ εεεi, i = 0,1, . . . , n− 1, we have E[x̂n/n−1εεεTn]= 0, which implies,

E[xnεεεTn] = E[(xn − x̂n/n−1)εεεTn]= E[en/n−1εεεTn]= E[en/n−1(Cnen/n−1 + vn)T]

= E[en/n−1eTn/n−1]C
T
n = Pn/n−1CTn

Thus, the Kalman gain will be:

Gn = E[xnεεεTn]E[εεεnεεεTn]−1= Pn/n−1CTnD−1
n = Pn/n−1CTn

[
CnPn/n−1CTn +Rn

]−1
(13.3.21)

The estimation errors en/n and en/n−1 are related by,

en/n = xn − x̂n/n = xn − x̂n/n−1 −Gnεεεn = en/n−1 −Gnεεεn , or,

en/n−1 = en/n +Gnεεεn (13.3.22)

and since one of the orthogonality conditions for x̂n/n is E[en/nεεεTn]= 0, the two terms
in the right-hand side will be orthogonal, which leads to the covariance relation:

Pn/n−1 = Pn/n +GnDnGTn , or,

Pn/n = Pn/n−1 −GnDnGTn = Pn/n−1 − Pn/n−1CTnD−1
n CnPn/n−1 (13.3.23)

A nice geometrical interpretation of Eqs. (13.3.17) and (13.3.22) was given by Kron-
hamn [867] and is depicted below (see also Chap. 11):

The similarity of the two orthogonal triangles leads to Eq. (13.3.21). Indeed, for
the scalar case, the lengths of the triangle sides are given by the square roots of the

covariances, e.g.,
√
E[ε2

n] =
√
Dn. Then, the Pythagorean theorem and the similarity of

the triangles give,

E[ε2
n]= C2

nE[e
2
n/n−1]+E[v2

n] ⇒ Dn = CnPn/n−1Cn +Rn
E[e2

n/n−1]= E[e2
n/n]+G2

nE[ε2
n] ⇒ Pn/n−1 = Pn/n +GnDnGn

cosθ = Gn
√
Dn√

Pn/n−1
= Cn

√
Pn/n−1√
Dn

⇒ Gn = Pn/n−1Cn
Dn

sinθ =
√
Pn/n√
Pn/n−1

=
√
Rn√
Dn

⇒ Pn/n−1D−1
n = Pn/nR−1

n ⇒ Eq. (13.2.5)

13.3. Derivation 623

Finally, we determine the next predicted estimate, which may be obtained by using
the state equation xn+1 = Anxn+wn, and noting that E[xn+1εεεTi]= E[(Anxn+wn)εεεTi]=
AnE[xnεεεTi], for 0 ≤ i ≤ n. Then, using x̄n+1 = Anx̄n, we find,

x̂n+1/n = x̄n+1 +
n∑
i=0

E[xn+1εεεTi]E[εεεiεεε
T
i]
−1εεεi

= An
⎡⎣x̄n +

n∑
i=0

E[xnεεεTi]E[εεεiεεε
T
i]
−1εεεi

⎤⎦ = Anx̂n/n = An
[
x̂n/n−1 +Gnεεεn

]
= Anx̂n/n−1 +Knεεεn = (An −KnCn)x̂n/n−1 +Knyn

where we defined Kn = AnGn. The error covariance is obtained by noting that,

en+1/n = xn+1 − x̂n+1/n = Anen/n +wn

and because wn is orthogonal to en/n, this leads to

Pn+1/n = E[en+1/neTn+1/n]= AnE[en/neTn/n]A
T
n + E[wnwTn]= AnPn/nATn +Qn

This completes the operations at the nth time step. The various equivalent expressions
in Eqs. (13.2.4) and (13.2.5) are straightforward to derive. The Joseph form is useful
because it guarantees the numerical positive-definiteness of the error covariance matrix.
The information form is a consequence of the matrix inversion lemma. It can be shown
directly as follows. To simplify the notation, we write the covariance update as,

P̂ = P−GDGT = P− PCTD−1CP , D = R+CPCT

Multiply from the right by P−1 and from the left by P̂−1 to get:

P−1 = P̂−1 − P̂−1PCTD−1C (13.3.24)

Next, multiply from the right by PCT to get:

CT = P̂−1PCT − P̂−1PCTD−1CPCT = P̂−1PCT(I −D−1CPCT)

= P̂−1PCTD−1(D−CPCT)= P̂−1PCTD−1R

which gives (assuming that R−1 exists):

CTR−1 = P̂−1PCTD−1

Inserting this result into Eq. (13.3.24), we obtain

P−1 = P̂−1 − P̂−1PCTD−1C = P̂−1 −CTR−1C ⇒ P̂−1 = P−1 +CTR−1C

and also obtain,
P̂CTR−1 = PCTD−1 = G

624 13. Kalman Filtering

Since the information form works with the inverse covariances, to complete the op-
erations at each time step, we need to develop a recursion for the inverse P−1

n+1/n in terms
of P−1

n/n. Denoting Pn+1/n by Pnext, we have

Pnext = AP̂AT +Q

If we assume that A−1 and Q−1 exist, then the application of the matrix inversion
lemma to this equation allows us to rewrite it in terms of the matrix inverses:

P−1
next = A−TP̂−1A−1 −A−TP̂−1A−1[Q−1 +A−TP̂−1A−1]−1A−TP̂−1A−1

To summarize, the information form of the Kalman filter is as follows:

P−1
n/n = P−1

n/n−1 +CTnR−1
n Cn

P−1
n/n x̂n/n = P−1

n/n−1x̂n/n−1 +CTnR−1
n yn

P−1
n+1/n = A−Tn P−1

n/nA
−1
n −A−Tn P−1

n/nA
−1
n

[
Q−1
n +A−Tn P−1

n/nA
−1
n

]−1A−Tn P
−1
n/nA

−1
n

(13.3.25)

13.4 Forecasting and Missing Observations

The problem of forecasting ahead from the current time sample n and the problem of
missing observations are similar. Suppose one has at hand the estimate x̂n/n based
on Yn = {y0,y1, . . . ,yn}. Then the last part of the Kalman filtering algorithm (13.2.2)
produces the prediction of xn+1 based on Yn,

x̂n+1/n = Anx̂n/n

This prediction can be continued to future times. For example, since xn+2 = An+1xn+1+
wn+1 and wn+1 is independent of Yn, we have:

x̂n+2/n = Proj
[
xn+2|Yn

]
= Proj

[
An+1xn+1 +wn+1|Yn

]
= An+1x̂n+1/n = An+1Anx̂n/n = Φn+2,nx̂n/n

and so on. Thus, the prediction of xn+p based on Yn is for p ≥ 1,

x̂n+p/n = Φn+p,nx̂n/n (13.4.1)

The corresponding error covariance is found by applying (13.1.8), that is,

xn+p = Φn+p,n xn +
n+p∑
k=n+1

Φn+p,kwk−1 , p ≥ 1 (13.4.2)

which in conjunction with (13.4.1), gives for the forecast error en+p/n = xn − x̂n+p/n,

en+p/n = Φn+p,n en/n +
n+p∑
k=n+1

Φn+p,kwk−1 (13.4.3)

13.5. Kalman Filter with Deterministic Inputs 625

which implies for its covariance:

Pn+p/n = Φn+p,nPn/nΦTn+p,n +
n+p∑
k=n+1

Φn+p,kQk−1ΦTn+p,k (13.4.4)

Eqs. (13.4.1) and (13.4.4) apply also in the case when a group of observations, say,
{yn+1,yn+2, . . . ,yn+p−1}, are missing. In such case, one simply predicts ahead from
time n using the observation set Yn. Once the observation yn+p becomes available, one
may resume the usual algorithm using the initial values x̂n+p/n and Pn+p/n.

This procedure is equivalent to setting, in the algorithm (13.2.2), Gn+i = 0 and
εεεn+i = 0 over the period of the missing observations, i = 1,2, . . . , p−1, that is, ignoring
the measurement updates, but not the time updates.

In some presentations of the Kalman filtering algorithm, it is assumed that the ob-
servations are available from n ≥ 1, i.e., Yn = {y1,y2, . . . ,yn} = {εεε1,εεε2, . . . ,εεεn}, and
the algorithm is initialized at x̂0/0 = x̄0 with P0/0 = Σ0. We may view this as a case of
a missing observation y0, and therefore, from the above rule, we may set εεε0 = 0 and
G0 = 0, which leads to x̂0/0 = x̂0/−1 = x̄0 and P0/0 = P0/−1 = Σ0. The algorithm may be
stated then somewhat differently, but equivalently, to Eq. (13.2.2):

Initialize at n = 0 by: x̂0/0 = x̄0, P0/0 = Σ0

At time n ≥ 1, x̂n−1/n−1, Pn−1/n−1, yn are available,

x̂n/n−1 = An−1x̂n−1/n−1 predicted estimate

Pn/n−1 = An−1Pn−1/n−1ATn−1 +Qn−1 prediction error

Dn = CnPn/n−1CTn +Rn innovations covariance

Gn = Pn/n−1CTnD−1
n Kalman gain for filtering

ŷn/n−1 = Cnx̂n/n−1 predicted measurement

εεεn = yn − ŷn/n−1 = yn −Cnx̂n/n−1 innovations sequence

x̂n/n = x̂n/n−1 +Gnεεεn filtered estimate

Pn/n = Pn/n−1 −GnDnGTn mean-square error

Go to time n+ 1

13.5 Kalman Filter with Deterministic Inputs

A state/measurement model that has a deterministic input un in addition the noise input
wn can be formulated by,

xn+1 = Anxn + Bnun +wn

yn = Cnxn + vn

(state model)

(measurement model)
(13.5.1)

As we mentioned earlier, this requires a minor modification of the algorithm (13.2.2),
namely, replacing the time-update equation by that in Eq. (13.5.3) below. Using linear
superposition, we may think of this model as two models, one driven by the white noise

626 13. Kalman Filtering

inputs, and the other by the deterministic input, that is,

x(1)n+1 = Anx(1)n +wn

y(1)n = Cnx(1)n + vn
and

x(2)n+1 = Anx(2)n + Bnun

y(2)n = Cnx(2)n

(13.5.2)

If we adjust the initial conditions of the two systems to match that of (13.5.1), that
is, x0 = x(1)0 + x(2)0 , then the solution of the system (13.5.1) will be the sum:

xn = x(1)n + x(2)n , yn = y(1)n + y(2)n

System (2) is purely deterministic, and therefore, we have the estimates,

x̂(2)n/n = Proj
[
x(2)n |Yn

] = x(2)n

x̂(2)n/n−1 = Proj
[
x(2)n |Yn−1

] = x(2)n

and similarly, ŷ(2)n/n−1 = y(2)n . For system (1), we may apply the Kalman filtering algorithm
of Eq. (13.2.2). We note that

εεεn = yn − ŷn/n−1 = y(1)n + y(2)n − ŷ(1)n/n−1 − ŷ(2)n/n−1 = y(1)n − ŷ(1)n/n−1

so that Dn = D(1)n . Similarly, we find,

en/n−1 = xn − x̂n/n−1 = x(1)n − x̂(1)n/n−1 ⇒ Pn/n−1 = P(1)n/n−1

en/n = xn − x̂n/n = x(1)n − x̂(1)n/n ⇒ Pn/n = P(1)n/n
and similarly, Gn = G(1)n and Kn = K(1)n . The measurement update equation remains
the same, that is,

x̂n/n = x̂(1)n/n + x(2)n = x̂(1)n/n−1 +Gnεεεn + x(2)n = x̂n/n−1 +Gnεεεn
The only step of the algorithm (13.2.2) that changes is the time update equation:

x̂n+1/n = x̂(1)n+1/n + x̂(2)n+1/n = x̂(1)n+1/n + x(2)n+1

= [
Anx̂(1)n/n−1 +Knεεεn

]+ [
Anx(2)n + Bnun

]
= An

(
x̂(1)n/n−1 + x(2)n

)+ Bnun +Knεεεn
= Anx̂n/n−1 + Bnun +Knεεεn = Anx̂n/n + Bnun , or,

x̂n+1/n = Anx̂n/n−1 + Bnun +Knεεεn = Anx̂n/n + Bnun (13.5.3)

13.6 Time-Invariant Models

In many applications, the model parameters {An,Cn,Qn,Rn} are constants in time, that
is, {A,C,Q,R}, and the model takes the form:

xn+1 = Axn +wn

yn = Cxn + vn

(state model)

(measurement model)
(13.6.1)

13.6. Time-Invariant Models 627

The signals wn,vn are again assumed to be mutually-independent, zero-mean, white-
noise signals with known covariance matrices:

E[wnwTi] = Qδni
E[vnvTi] = Rδni
E[wnvTi] = 0

(13.6.2)

The model is iterated starting at n = 0. The initial state vector x0 is assumed to be
random and independent of wn,vn, but with a known mean x̄0 = E[x0] and covariance
matrix Σ0 = E[(x0− x̄0)(x0− x̄0)T]. The Kalman filtering algorithm (13.2.2) then takes
the form:

Initialize in time by: x̂0/−1 = x̄0, P0/−1 = Σ0

At time n, x̂n/n−1, Pn/n−1, yn are available,

Dn = CPn/n−1CT +R innovations covariance

Gn = Pn/n−1CTD−1
n Kalman gain for filtering

Kn = AGn = APn/n−1CTD−1
n Kalman gain for prediction

ŷn/n−1 = C x̂n/n−1 predicted measurement

εεεn = yn − ŷn/n−1 = yn −C x̂n/n−1 innovations sequence

Measurement update / correction:

x̂n/n = x̂n/n−1 +Gnεεεn filtered estimate

Pn/n = Pn/n−1 −GnDnGTn estimaton error

Time update / prediction:

x̂n+1/n = A x̂n/n = A x̂n/n−1 +Knεεεn predicted estimate

Pn+1/n = APn/nAT +Q prediction error

Go to time n+ 1

(13.6.3)
Note also that Eqs. (13.2.12) become now,

ŷn/n−1 = C x̂n/n−1 = CA x̂n−1/n−1 predicted measurement

εεεn = yn − ŷn/n−1 innovations sequence

x̂n+1/n = A x̂n/n−1 +Kεεεn predicted estimate

x̂n/n = A x̂n−1/n−1 +Gεεεn filtered estimate

(13.6.4)

The MATLAB function, kfilt.m, implements the Kalman filtering algorithm of Eq. (13.6.3).
It has usage:

[L,X,P,Xf,Pf] = kfilt(A,C,Q,R,Y,x0,S0); % Kalman filtering

628 13. Kalman Filtering

Its inputs are the state-space model parameters {A,C,Q,R}, the initial values x̄0,
Σ0, and the observations yn, 0 ≤ n ≤ N, arranged into an r×(N + 1) matrix:

Y = [
y0,y1, . . . ,yn, . . . ,yN

]
The outputs are the predicted and filtered estimates arranged into p×(N+1)matrices:

X = [
x̂0/−1, x̂1/0, . . . , x̂n/n−1, . . . , x̂N/N−1

]
Xf =

[
x̂0/0, x̂1/1, . . . , x̂n/n, . . . , x̂N/N

]
whose error covariance matrices are arranged into the p×p×(N+1) three-dimensional
arrays P,Pf , such that (in MATLAB notation):

P(:,:,n+1) = Pn/n−1 , Pf(:,:,n+1) = Pn/n , 0 ≤ n ≤ N
The outputL is the value of the negative-log-likelihood function calculated from Eq. (13.12.2).

Under certain conditions of stabilizability and detectability, the Kalman filter pa-
rameters {Dn,Pn/n−1, Gn,Kn} converge to steady-state values {D,P,G,K} such that P
is unique and positive-semidefinite symmetric and the converged closed-loop state ma-
trix F = A − KC is stable, i.e., its eigenvalues are strictly inside the unit circle. The
steady-state values are all given in terms of P, as follows:

D = CPCT +R
G = PCTD−1 = [I + PCTR−1C]−1PCTR−1

K = AG = A[I + PCTR−1C]−1PCTR−1

F = A−KC = A[I + PCTR−1C]−1

(13.6.5)

and P is determined as the unique positive-semidefinite symmetric solution of the so-
called discrete algebraic Riccati equation (DARE), written in two alternative ways:

P = APAT −APCT(CPCT +R)−1CPAT +Q
P = A[I + PCTR−1C]−1PAT +Q

(DARE) (13.6.6)

The required conditions are that the pair [C,A] be completely detectable and the
pair [A,Q1/2], completely stabilizable,† where Q1/2 denotes a square root of the posi-
tive semidefinite matrix Q. Refs. [863,865] include a literature overview of various con-
ditions for this and related weaker results. The convergence speed of the time-varying
quantities to their steady-state values is determined essentially by the magnitude square
of largest eigenvalue of the closed-loop matrix F = A−KC (see for example [871,872]).
If we define the eigenvalue radius ρ = maxi |λi|, where λi are the eigenvalues of F, then
a measure of the effective time constant is:

neff = ln ε
lnρ2

(13.6.7)

†For definitions of complete stabilizability and detectability see [863], which is available online.

13.6. Time-Invariant Models 629

where ε is a small user-defined quantity, such as ε = 10−2 for the 40-dB time constant,
or ε = 10−3 for the 60-dB time constant.

The MATLAB function, dare(), in the control systems toolbox allows the calculation
of the solution P and Kalman gain K, with usage:

[P,L,KT] = dare(A’, C’, Q, R);

where the output P is the required solution, KT is the transposed of the gain K, and L
is the vector of eigenvalues of the closed-loop matrix F = A−KC. The syntax requires
that the input matrices A,C be entered in transposed form.

Example 13.6.1: Benchmark Example. Solution methods of the DARE are reviewed in [877].
The following two-dimensional model is a benchmark example from the collection [878]:

A =
[

4 −4.5
3 −3.5

]
, C = [1, −1] , Q =

[
9 6
6 4

]
=

[
3
2

]
[3, 2] , R = 1

The MATLAB call,

[P,L,K_tr] = dare(A’, C’, Q, R);

returns the values:

P =
[

14.5623 9.7082
9.7082 6.4721

]
, K = KTtr =

[
1.8541
1.2361

]
, L =

[
0.3820

−0.5000

]

These agree with the exact solutions:

P = 1+√5

2

[
9 6
6 4

]
, K =

√
5− 1

2

[
3
2

]
, L =

[
(3−√5)/2
−0.5

]

This example does satisfy the stabilizability and detectability requirements for conver-
gence, even though the model itself is uncontrollable and unobservable. Indeed, using the
square root factor q = [3,2]T for Q where Q = qqT , we see that the controllability and
observability matrices are rank defective:

[q , Aq]=
[

3 3
2 2

]
,

[
C
CA

]
=

[
1 −1
1 −1

]

The largest eigenvalue of the matrix F is λ1 = −0.5, which leads to an estimated 40-dB
time constant of neff = log(0.01)/ log

(
(0.5)2

) = 3.3. The time-varying prediction-error
matrix Pn/n−1 can be given in closed form. Using the methods of [871,872], we find:

Pn/n−1 = P+ FnMnFTn , n ≥ 0 (13.6.8)

where, Fn is the nth power of F and can be expressed in terms of its eigenvalues, as follows,

Fn =
[

3λn2 − 2λn1 3λn1 − 3λn2
2λn2 − 2λn1 3λn1 − 2λn2

]
, λ1 = −0.5 , λ2 = 3−√5

2

630 13. Kalman Filtering

This is obtained from the eigenvalue decomposition:

F = VΛV−1 =
[

1 1.5
1 1

][
λ1 0
0 λ2

][
−2 3

2 −2

]
⇒ Fn = VΛnV−1

The matrixMn is given by:

Mn = 1

ad− bc+ (a+ b+ c+ d)cn

[
cn + d cn − b
cn − c cn + a

]
, cn = 1√

5
(1− λ2n

2)

and the numbers a,b, c, d are related to an arbitrary initial value P0/−1 via the definition:[
a b
c d

]
= (P0/−1 − P)−1 ⇒ P0/−1 − P = 1

ad− bc

[
d −b
−c a

]

provided that the indicated matrix inverse exists. We note that atn = 0,M0 = P0/−1−P and
the above solution for Pn/n−1 correctly accounts for the initial condition. It can be verified
that Eq. (13.6.8) is the solution to the difference equation with the prescribed initial value:

Pn+1/n = A
[
Pn/n−1 − Pn/n−1CT(CPn/n−1CT +R)−1CPn/n−1

]
AT +Q , or,

Pn+1/n = A
[
I + Pn/n−1CTR−1C

]−1Pn/n−1AT +Q

Since |λ2| < |λ1|, it is evident from the above solution that the convergence time-constant
is determined by |λ1|2. As Pn/n−1 → P, so does the Kalman gain:

Kn = APn/n−1CT(CPn/n−1CT +R)−1−→ K = APCT(CPCT +R)−1

The figure below plots the two components of the gain vectorKn = [k1(n), k2(n)]T versus
time n, for the two choices of initial conditions:

P0/−1 =
[

100 0
0 100

]
, P0/−1 =

[
1/100 0

0 1/100

]

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

time samples, n

Kalman Gains

 k
1
(n)

 k
2
(n)

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

time samples, n

Kalman Gains

 k
1
(n)

 k
2
(n)

We note that we did not initialize to P0/−1 = 0 because P is rank defective and the initial
matrixM0 = −P would not be invertible. ��

13.7. Steady-State Kalman Filters 631

Example 13.6.2: Local Level Model. Consider the local-level model of Example 13.1.1 (see also
Problem 11.13),

xn+1 = xn +wn
yn = xn + vn

with Q = σ2
w and R = σ2

v . The Kalman filtering algorithm (13.6.3) has the parameters
A = 1, C = 1, and satisfies the Riccati difference and algebraic equations:

Pn+1/n = Pn/n−1R
Pn/n−1 +R +Q ⇒ P = PR

P+R +Q ⇒ P2

P+R = Q

and has time-varying and steady gains:

Kn = Gn = Pn/n−1

Pn/n−1 +R ⇒ K = G = P
P+R

and closed-loop transition matrix:

Fn = 1−Kn = R
Pn/n−1 +R ⇒ F = 1−K = R

P+R

The positive solution of the algebraic Riccati equation is:

P = Q
2
+

√
QR+ Q

2

4

The convergence properties to the steady values depend on the closed-loop matrix (here
scalar) F. Again, using the methods of [871,872], we find the exact solutions:

Pn/n−1 = P+ (P0 − P)F2n

1+ (P0 − P)S(1− F2n)
, n ≥ 0 , S = P+R

P(P+ 2R)

where P0 is an arbitrary positive initial value for P0/−1. Since Pn/n−1 → P as n → ∞, it
follows that also Fn → F and Kn → K, so that the Kalman filtering equations read,

x̂n+1/n = x̂n/n = x̂n/n−1 +Kn(yn − x̂n/n)= Fnx̂n/n−1 + (1− Fn)yn
x̂n+1/n = x̂n/n = x̂n/n−1 +K(yn − x̂n/n)= Fx̂n/n−1 + (1− F)yn

where the second one is the steady-state version, which is recognized as the exponential
smoother with parameter λ = F. We note that because P > 0, we have 0 < F < 1. ��

13.7 Steady-State Kalman Filters

As soon as the Kalman filter gains have converged to their asymptotic values, the Kalman
filter can be operated as a time-invariant filter with the following input/output equations
for the predicted estimate:

x̂n+1/n = Ax̂n/n−1 +K(yn −Cx̂n/n−1)

x̂n+1/n = (A−KC)x̂n/n−1 +Kyn
(steady-state Kalman filter) (13.7.1)

632 13. Kalman Filtering

or, in its prediction-correction form, where K = AG,

x̂n/n = x̂n/n−1 +G(yn −Cx̂n/n−1)

x̂n+1/n = Ax̂n/n
(steady-state Kalman filter) (13.7.2)

or, in its filtered form, using Eq. (13.6.4),

x̂n/n = Ax̂n−1/n−1 +G(yn −CA x̂n−1/n−1)

x̂n/n = (A−GCA)x̂n−1/n−1 +Gyn
(steady-state Kalman filter) (13.7.3)

Since these depend only on the gains K,G, they may be viewed as state-estimators,
or observers, independently of the Kalman filter context.

In cases when one does not know the state-model noise parameters Q,R, non-
optimal values for the gainsK,Gmay be used (as long as the closed-loop state-transition
matrices F = A−KC and A−GCA are stable). Such non-optimal examples include the
single and double exponential moving average filters and Holt’s exponential smoothing
discussed in Chap. 6, as well the general α–β and α–β–γ filters.

The corresponding transfer function matrices from the input yn to the prediction
x̂n/n−1 and to the filtered estimate x̂n/n are found by taking z-transforms of Eqs. (13.7.1)
and (13.7.2). Denoting the identity matrix by I, we have:

Hp(z) = (zI −A+KC)−1K

Hf(z) = z(zI −A+GCA)−1G
(13.7.4)

Example 13.7.1: α–β Tracking Filters. The kinematic state-space models considered in Exam-
ple 13.1.3 for a moving object subject to random accelerations were of the form:[

xn+1

ẋn+1

]
=

[
1 T
0 1

][
xn
ẋn

]
+wn

yn = [1,0]
[
xn
ẋn

]
+ vn

(13.7.5)

with measurement noise variance R = σ2
v and two possible choices for the noise term wn,

wn =
[

0
wn

]
, wn =

[
T2/2
T

]
an

where wn represents a random velocity and an a random acceleration. The corresponding
covariance matrices Q = E[wnwTn] are,

Q =
[

0 0
0 σ2

w

]
, Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a

An α–β tracking filter is an observer for the model (13.7.5) written in its prediction-
correction form of Eq. (13.7.2) with a gain vector defined in terms of the α,β parameters:

G =
[
α
β/T

]

13.7. Steady-State Kalman Filters 633

Eqs. (13.7.2) then read:[
x̂n/n
ˆ̇xn/n

]
=

[
x̂n/n−1
ˆ̇xn/n−1

]
+

[
α
β/T

]
(yn − x̂n/n−1)

[
x̂n+1/n
ˆ̇xn+1/n

]
=

[
1 T
0 1

][
x̂n/n
ˆ̇xn/n

] (13.7.6)

where we used ŷn/n−1 = C x̂n/n−1 = [1,0]
[
x̂n/n−1
ˆ̇xn/n−1

]
= x̂n/n−1. Explicitly, we write,

x̂n/n = x̂n/n−1 +α(yn − x̂n/n−1)

ˆ̇xn/n = ˆ̇xn/n−1 + βT(yn − x̂n/n−1)

x̂n+1/n = x̂n/n +Tˆ̇xn/n

ˆ̇xn+1/n = ˆ̇xn/n

(α–β tracking filter)

These are essentially equivalent to Holt’s exponential smoothing method discussed in
Sec. 6.12. The corresponding prediction and filtering transfer functions of Eq. (13.7.4)
are easily found to be:

Hp(z) = 1

z2 + (α+ β− 2)z+ 1−α

[
(α+ β)z−α
β(z− 1)/T

]

Hf(z) = 1

z2 + (α+ β− 2)z+ 1−α

[
z(β−α+αz)
βz(z− 1)/T

] (13.7.7)

The particular choices α = 1 − λ2 and β = (1 − λ)2 result in the double-exponential
smoothing transfer functions for the local level and local slope of Eq. (6.8.5):

Hf(z)= 1

(1− λz−1)2

[
(1− λ)(1+ λ− 2λz−1)
(1− λ)2(1− z−1)/T

]
(13.7.8)

The noise-reduction ratios for the position and velocity components of H f (z) are easily
found to be [870,874]:

Rx = 2α2 + 2β− 3αβ
α(4− 2α− β , Rẋ = 2β2/T2

α(4− 2α− β

Example 13.7.2: α–β Tracking Filters as Kalman Filters. Optimum values of the α,β param-
eters can be obtained if one thinks of the α–β tracking filter as the steady-state Kalman
filter of the model (13.7.5). We start with the case defined by the parameters,

A =
[

1 T
0 1

]
, C = [1,0] , wn =

[
0
wn

]
, Q =

[
0 0
0 σ2

w

]
, R = σ2

v

Let P denote the solution of the DARE, P = A(P−GDGT)AT +Q, where the gain G is:

P =
[
P11 P12

P12 P22

]
, D = CPCT +R = P11 +R , G = PCTD−1 = 1

P11 +R

[
P11

P12

]

634 13. Kalman Filtering

and we set P21 = P12. If G is to be identified with the gain of the α–β tracking filter, we
must have:

G = 1

P11 +R

[
P11

P12

]
=

[
α
β/T

]
⇒ P11

P11 +R = α,
P12

P11 +R =
β
T

which may be solved for P11, P12:

P11 = R α
1−α , P12 = RT

β
1−α , D = R

1−α (13.7.9)

The three parametersα,β,P22 fix the matrix P completely. The DARE provides three equa-
tions from which these three parameters can be determined in terms of the model statistics
σ2
w,σ2

v . To this end, let us define the so-called tracking index [869], as the dimensionless
ratio (note that σw has units of velocity, and σv, units of length):

λ2 = σ
2
wT2

σ2
v

(tracking index) (13.7.10)

Using Eqs. (13.7.9), we obtain

P−GDGT =
⎡⎢⎣ Rα Rβ/T

Rβ/T P22 − β
2/T2

1−α

⎤⎥⎦
Then, the DARE, P = A(P−GDGT)AT +Q, reads explicitly,

[
P11 P12

P12 P22

]
=

[
1 T
0 1

]⎡⎣ Rα Rβ/T

Rβ/T P22 − β
2/T2

1−α

⎤⎦[
1 0
T 1

]
+

[
0 0
0 σ2

w

]
(13.7.11)

Forming the difference of the two sides, we obtain:

A(P−GDGT)AT +Q − P =

⎡⎢⎢⎢⎢⎣
P22T2 − R

(
(α+ β)2−2β

)
1− a P22T − Rβ(α+ β)T(1−α)

P22T − Rβ(α+ β)T(1−α) σ2
w −

Rβ2

T2(1−α)

⎤⎥⎥⎥⎥⎦
Equating the off-diagonal matrix elements to zero provides an expression for P22:

P22 = Rβ(α+ β)T2(1−α)

Then, setting the diagonal elements to zero, gives the two equations for α,β:

β = α2

2−α ,
β2

1−α = σ
2
wT2

σ2
v

= λ2 (13.7.12)

The first of these was arrived at by [870] using different methods. The system (13.7.12)
can be solved explicitly in terms of λ2 as follows [873]:

r =
√√√√1

2
+

√
1

4
+ 4

λ2
, α = 2

r + 1
, β = 2

r(r + 1)
(13.7.13)

13.7. Steady-State Kalman Filters 635

Next, consider the alternative kinematic model defined by the parameters [868,869]:

A =
[

1 T
0 1

]
, C = [1,0] , Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a , R = σ2

v

A similar calculation leads to the DARE solution for the covariance matrix:

P11 = R α
1−α , P12 = RT

β
1−α , P22 = R

2T2

β(2α+ β)
1−α , D = P11 +R = R

1−α

with α,β satisfying the conditions:

2β−αβ−α2

1−α = λ
2

4
,

β2

1−α = λ2 (13.7.14)

where now the tracking index is defined as the dimensionless ratio:

λ2 = σ
2
aT4

σ2
v

(13.7.15)

The solution of the system (13.7.14) is found to be [868]:

r =
√

1+ 8

λ
, α = 4r

(r + 1)2
, β = 8

(r + 1)2
(13.7.16)

It is easily verified that these satisfy the Kalata relationship [869]:

β = 2(2−α)−4
√

1−α (13.7.17)

For both models, the optimum solutions for α,β given in Eqs. (13.7.13) and (13.7.16) lead
to a stable closed-loop matrix F = A − KC, that is, its eigenvalues lie inside the unit
circle. These eigenvalues are the two roots of the denominator polynomial of the transfer
functions (13.7.7), that is, the roots of z2 + (α+ β− 2)z+ 1−α = 0. The graphs below
show a simulation.

0 50 100 150 200 250 300

20

40

60

80

noisy position measurements

t (sec)

636 13. Kalman Filtering

0 50 100 150 200 250 300

20

40

60

80

true position and its estimate

t (sec)
0 50 100 150 200 250 300

−0.5

0

0.5

1
true velocity and its estimate

t (sec)

The following parameter values were chosen σa = 0.02, σv = 2, T = 1, which lead to
a tracking index (13.7.15) of λ = 0.01, and the value of the parameter r = 28.3019 in
Eq. (13.7.16), which gives the αβ-parameters α = 0.1319 and β = 0.0093. The algorithm
(13.7.6) was iterated with an initial value x̂0/−1 = [y0,0]T .

The following MATLAB code segment shows the generation of the input signal yn, the
computation of α,β, and the filtering operation:

t0 = 0; t1 = 75; t2 = 225; t3 = 300; % turning times
b0 = 0.8; b1 = -0.3; b2 = 0.4; % segment slopes

m0 = 20;
m1 = m0 + b0 * (t1-t0); % segment turning points
m2 = m1 + b1 * (t2-t1);

t = (t0:t3); T=1;

s = (m0+b0*t).*upulse(t,t1) + (m1+b1*(t-t1)).*upulse(t-t1,t2-t1) +...
(m2+b2*(t-t2)).*upulse(t-t2,t3-t2+1);

sdot = b0*upulse(t,t1) + b1*upulse(t-t1,t2-t1) + b2*upulse(t-t2,t3-t2+1);

seed = 1000; randn(’state’,seed);
sv = 2; v = sv * randn(1,length(t));

y = s + v; % noisy position measurements

sa = 0.02; lambda = sa*T^2/sv; r = sqrt(1+8/lambda);

a = 4*r/(r+1)^2; b = 8/(r+1)^2; % alpha-beta parameters

A = [1, T; 0, 1]; C=[1,0]; G = [a; b/T];

xp = [y(1); 0]; % initial prediction

for n=1:length(t),
x(:,n) = xp + G*(y(n) - C*xp);
xp = A*x(:,n);

end

figure; plot(t,y,’b-’); % noisy positions
figure; plot(t,s,’r--’, t,x(1,:),’b-’); % true & estimated position
figure; plot(t,sdot,’r--’, t,x(2,:),’b-’); % true & estimated velocity

13.7. Steady-State Kalman Filters 637

Example 13.7.3: Transients of α–β Tracking Kalman Filters. Here, we look at a simulation of
the random-acceleration model of Eq. (13.1.15) and of the time-varying Kalman filter as it
converges to steady-state. The model is defined by[

xn+1

ẋn+1

]
=

[
1 T
0 1

][
xn
ẋn

]
+

[
T2/2
T

]
an , yn = [1,0]

[
xn
ẋn

]
+ vn

with model matrices:

A =
[

1 T
0 1

]
, C = [1,0] , Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a , R = σ2

v

The corresponding Kalman filter is defined by Eq. (13.6.3). If we denote the elements of
the time-varying Kalman gain Gn by

Gn =
[
αn
βn/T

]

then, we expect αn,βn to eventually converge to the steady-state values given in (13.7.16).
The Kalman filtering algorithm reads explicitly,[

x̂n/n
ˆ̇xn/n

]
=

[
x̂n/n−1
ˆ̇xn/n−1

]
+

[
αn
βn/T

]
(yn − x̂n/n−1) ,

[
x̂n+1/n
ˆ̇xn+1/n

]
=

[
1 T
0 1

][
x̂n/n
ˆ̇xn/n

]

where
Dn = CPn/n−1CT +R , Gn = Pn/n−1CT/Dn

Pn/n = Pn/n−1 −GnDnGTn , Pn+1/n = APn/nAT +Q
The figures below show a simulation with the same parameter values as in the previous
example, σa = 0.02, σv = 2, and T = 1.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
noisy position measurements

t (sec)

 position
 measurement

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
position and its estimate

t (sec)

 position
 estimate

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5
velocity and its estimate

t (sec)

 velocity
 estimate

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
α −β parameters

t (sec)

 α
 β

638 13. Kalman Filtering

The upper-left graph shows the noisy measurement yn plotted together with the position
xn to be estimated. The upper-right graph plots the estimate x̂n/n together with xn. The
lower-left graph shows the velocity and its estimate, ẋn and ˆ̇xn/n. The lower-right graph
shows αn,βn as they converge to their steady values α = 0.1319, β = 0.0093, which were
calculated from (13.7.16):

λ = σaT
2

σv
= 0.01 , r =

√
1+ 8

λ
= 28.3019 , α = 4r

(r + 1)2
, β = 8

(r + 1)2

The model was simulated by generating two independent, zero-mean, gaussian, length-300
acceleration and measurement noise signals an, vn. The initial state vector was chosen at
zero position, but with a finite velocity,

x0 =
[
x0

ẋ0

]
=

[
0

0.1

]

The Kalman filter was initialized to the following predicted state vector and covariance:

x̂0/−1 =
[
x̂0/−1
ˆ̇x0/−1

]
=

[
y0

0

]
, P0/−1 =

[
0.01 0

0 0.01

]

The following MATLAB code illustrates the generation of the graphs:

N = 301; T = 1; Tmax = (N-1)*T; t = 0:T:Tmax;

seed = 1000; randn(’state’,seed);

sv = 2; sa = 0.02; lambda = sa*T^2/sv; r = sqrt(1+8/lambda);
a = 4*r/(r+1)^2; b = 8/(r+1)^2;

v = sv * randn(1,length(t)); % measurement noise
w = [T^2/2; T] * sa * randn(1,length(t)); % state noise

R = sv^2; Q = [T^4/4, T^3/2; T^3/2, T^2]*sa^2;

A = [1,T; 0,1]; C = [1,0];

x0 = [0; 0.1]; x(:,1) = x0; % initial state

for n=1:N-1 % generate states and measurements
x(:,n+1) = A*x(:,n) + w(n);
y(n) = C*x(:,n) + v(n);

end
y(N) = C*x(:,N) + v(N);

xp = [y(1);0]; P0 = diag([1,1]/100); P = P0; % initialize Kalman filter

for n=1:length(t), % run Kalman filter
D = C*P*C’+R;
G(:,n) = P*C’/D; % G = Kalman gain
X(:,n) = xp + G(:,n)*(y(n) - C*xp); % X(:,n) = filtered state
Pf = P - G(:,n)*D*G(:,n)’; % error covariance of X
xp = A*X(:,n); % xp = predicted state
P = A*Pf*A’ + Q; % error covariance of xp

end

13.7. Steady-State Kalman Filters 639

figure; plot(t,x(1,:),’r--’, t,y,’b-’);
figure; plot(t,x(1,:),’r--’, t,X(1,:),’b-’);
figure; plot(t,x(2,:),’r--’, t,X(2,:),’b-’);
figure; plot(t,G(1,:),’b-’, t,G(2,:),’r--’);

The eigenvalues of the asymptotic closed-loop state matrix F = A − KC, which are the
roots of the polynomial, z2 + (α+ β2)z+ (1−α), can be expressed directly in terms of
the parameter r as follows:

λ1 = r
2 − 3− 2j

√
r2 − 2

(r + 1)2
, λ2 = r

2 − 3+ 2j
√
r2 − 2

(r + 1)2

The eigenvalues are complex conjugates whenever r2 > 2, or equivalently, when the track-
ing index is λ < 8, which is usually the case in practice. For λ ≥ 8, or 1 < r2 ≤ 2, they are
real-valued. For the complex case, the eigenvalues have magnitude:

|λ1| = |λ2| = r − 1

r + 1

One can then determine an estimate of the convergence time-constant of the Kalman filter,

neff = ln ε

2 ln
(
r − 1

r + 1

)

For the present example, we find neff = 49 samples for the 60-dB time constant (ε = 10−3),
which is evident from the above plot of αn,βn. Using the methods of [871,872] one may
also construct closed-form solutions for the time-varying covariance Pn/n−1 and gain Gn.
First, we determine the eigenvector decomposition of F:

F = A−KC = 1

(r + 1)2

[
r2 − 2r − 7 T(r + 1)2

−8T (r + 1)2

]
= VΛV−1

V =
[
v1 v2

1 1

]
, Λ =

[
λ1 0
0 λ2

]
, V−1 = 1

v1 − v2

[
1 −v2

−1 v1

]

v1 = T
4

[
r + 2− j

√
r2 − 2

]
, v2 = T

4

[
r + 2+ j

√
r2 − 2

]
Then, the nth power of F is given by:

F = VΛV−1 = 1

v1 − v2

[
v1λ1 − v2λ2 v1v2(λ2 − λ1)
λ1 − λ2 v1λ2 − v2λ1

]

Fn = VΛnV−1 = 1

v1 − v2

[
v1λn1 − v2λn2 v1v2(λn2 − λn1)
λn1 − λn2 v1λn2 − v2λn1

]

The converged steady-state value of Pn/n−1, which is the solution of the DARE, may also
be expressed in terms of the parameter r, as follows:

P = 4rR
(r + 1)2

⎡⎢⎢⎢⎣
1

2

Tr

2

Tr
8

T2r(r + 1)

⎤⎥⎥⎥⎦

640 13. Kalman Filtering

Given an initial 2×2 matrix P0/−1, we construct the matrix E0 = P0/−1−P. Then, the exact
solution of the Riccati difference equation is given by:

Pn/n−1 = P+ FnE0
[
I + SnE0

]−1FTn

where I is the 2×2 identity matrix and Sn is defined as follows, for n ≥ 0,

Sn = S− FTnSFn , S = r
2 − 1

8rR

[
1 −T/2

−T/2 T2(r2 + 1)/8

]

These expressions demonstrate why the convergence time-constant depends on the square
of the maximum eigenvalue of F. ��

Example 13.7.4: Local Trend Model. Holt’s exponential smoothing model is an effective way of
tracking the local level an and local slope bn of a signal and represents a generalization of
the double exponential moving average (DEMA) model. Its state-space form was considered
briefly in Sec. 6.13. The following time-invariant linear trend state-space model has steady-
state Kalman filtering equations that are equivalent to Holt’s method,[

an+1

bn+1

]
=

[
1 1
0 1

][
an
bn

]
+

[
wn
un

]
, yn = [1,0]

[
an
bn

]
+ vn (13.7.18)

so that its state-model matrices are,

A =
[

1 1
0 1

]
, C = [1,0]

where an, bn represent the local level and local slope, andwn,un, vn are zero-mean, mutu-
ally uncorrelated, white-noise signals with variances Qa = σ2

w, Qb = σ2
u, R = σ2

v . Denote
the state vector and its filtered and predicted estimates by,

xn =
[
an
bn

]
, x̂n/n =

[
ân/n
b̂n/n

]
, x̂n+1/n =

[
ân+1/n

b̂n+1/n

]
=

[
1 1
0 1

][
ân/n
b̂n/n

]

so that,
ân+1/n = ân/n + b̂n/n , b̂n+1/n = b̂n/n

Then, the predicted measurement can be expressed in two ways as follows,

ŷn/n−1 = C x̂n/n−1 = [1,0]
[
ân/n−1

b̂n/n−1

]
= ân/n−1 = ân−1/n−1 + b̂n−1/n−1

Denote the two-dimensional steady-state Kalman gains G and K = AG by,

G =
[
α
β

]
, K = AG =

[
1 1
0 1

][
α
β

]
=

[
α+ β
β

]

Then, the steady-state Kalman filtering equations Eq. (13.7.1) and (13.7.3) take the form,

x̂n/n = Ax̂n−1/n−1 +G(yn − ŷn/n−1)

x̂n+1/n = Ax̂n/n−1 +K(yn − ŷn/n−1)

13.8. Continuous-Time Kalman Filter 641

which are precisely Holt’s exponential smoothing formulas,[
ân/n
b̂n/n

]
=

[
1 1
0 1

][
ân−1/n−1

b̂n−1/n−1

]
+

[
α
β

](
yn − ân−1/n−1 − b̂n−1/n−1

)
[
ân+1/n

b̂n+1/n

]
=

[
1 1
0 1

][
ân/n−1

b̂n/n−1

]
+

[
α+ β
β

](
yn − ân/n−1

)
The corresponding model parameters Qa,Qb and the error covariance matrix P can be
reconstructed in terms of R and the gains α,β, as follows,

Q =
[
Qa 0
0 Qb

]
= R

1−α

[
α2 +αβ− 2β 0

0 β2

]
, P = R

1−α

[
α β
β β(α+ β)

]

One can easily verify, according to Eq. (13.6.5), that,

D = CPCT +R = R
1−α , G = PCTD−1 =

[
α
β

]

and that P satisfies the algebraic Riccati equation (13.6.6), that is,

P = APAT −APCT(CPCT +R)−1CPAT +Q

Assuming thatα,β are positive and thatα < 1, the positivity ofQa requires the condition,
α2 +αβ > 2β, which also implies that P is positive definite since its determinant is,

detP = R2 (α2 +αβ− β)β
(1−α)2

= R2 (α2 +αβ− 2β+ β)β
(1−α)2

> 0

Thus, Holt’s method admits a Kalman filtering interpretation. ��

13.8 Continuous-Time Kalman Filter

The continuous-time Kalman filter, known as the Kalman-Bucy filter [853], is based on
the state-space model:

ẋ(t) = A(t)x(t)+w(t)

y(t) = C(t)x(t)+v(t)
(13.8.1)

where w(t),v(t) are mutually uncorrelated white-noise signals with covariances:

E[w(t)w(τ)T] = Q(t)δ(t − τ)
E[v(t)v(τ)T] = R(t)δ(t − τ)
E[w(t)v(τ)T] = 0

(13.8.2)

We assume also that w(t),v(t) are uncorrelated with the initial state vector x(0).
More precisely, one should write the stochastic differential equation for the state in the

642 13. Kalman Filtering

form: dx(t)= A(t)x(t)dt+w(t)dt and view the quantity db(t)= w(t)dt as a vector-
valued Brownian motion, with covariance E[db(t)db(t)T]= Q(t)dt. However, for the
above linear model, the formal manipulations using w(t) lead to equivalent results.

The continuous-time Kalman filter can be obtained from the discrete one in the limit
as the sampling interval T tends to zero. One of the issues that arises is how to define
the white-noise sequences wn,vn of the discrete-time model of Eq. (13.1.1) in terms of
the sampled values of the continuous-time signals w(t),v(t). The covariance matrix at
a single time instant is not well-defined for white noise signals. Indeed, setting t = τ =
tn = nT in Eq. (13.8.2) would give an infinite value for the covariance E[w(tn)w(tn)T].

Since the delta function δ(t) can be thought of as the limit as T → 0 of a square
pulse function pT(t) of width T and height 1/T shown below, we may replace δ(t−τ)
by pT(t − τ) in the right-hand-side of Eq. (13.8.2).

This leads to the approximate but finite values:

E[w(tn)w(tn)T]= Q(tn)T , E[v(tn)v(tn)T]= R(tn)T (13.8.3)

The same conclusion can be reached from the Brownian motion point of view, which
would give formally,

E[w(t)w(t)T]= E
[
db(t)
dt

db(t)T

dt

]
= E[db(t)db(t)T]

dt2
= Q(t)dt

dt2
= Q(t)

dt

and identifying dt by the sampling timeT. We may apply now Eq. (13.8.3) to the sampled
version of the measurement equation:

y(tn)= C(tn)x(tn)+v(tn)

Thus, the discrete-time measurement noise signal vn is identified as v(tn), with
covariance matrix:

E[vnvTn]= Rn =
R(tn)
T

(13.8.4)

To identify wn, we consider the discretized version of the state equation:

ẋ(tn)≈ x(tn+1)−x(tn)
T

= A(tn)x(tn)+w(tn)

which gives,
x(tn+1)=

[
I +TA(tn)

]
x(tn)+Tw(tn)

and we may identify the discrete-time model quantities:

An = I +TA(tn) , wn = Tw(tn)

13.8. Continuous-Time Kalman Filter 643

with noise covariance matrix E[wnwTn]= T2E[w(tn)w(tn)T], or using (13.8.3),

E[wnwTn]= T2 · Q(tn)
T

= TQ(tn)≡ Qn (13.8.5)

To summarize, for smallT, the discrete-time and continuous-time signals and model
parameters are related by

xn = x(tn) , wn = Tw(tn) , yn = y(tn) , vn = v(tn)

An = I +TA(tn) , Cn = C(tn) , Qn = TQ(tn) , Rn = R(tn)T
(13.8.6)

Next, consider the limit of the discrete-time Kalman filter. Since T → 0, there will be
no distinction between Pn/n and Pn/n−1, and we may set P(tn)≈ Pn/n ≈ Pn/n−1. Using
(13.8.6), the innovations covariance and the Kalman gains become approximately (to
lowest order in T):

Dn = CnPn/n−1CTn +Rn = C(tn)P(tn)C(tn)+
R(tn)
T

≈ R(tn)
T

Gn = Pn/n−1CTnD−1
n = P(tn)C(tn)TR(tn)−1T ≡ K(tn)T

Kn = AnPn/n−1CTnD−1
n = [

I +TA(tn)
]
P(tn)C(tn)TR(tn)−1T ≈ K(tn)T

where we set K(tn)= P(tn)C(tn)TR(tn)−1. Setting x̂(tn)= x̂n/n−1 and hence x̂(tn+1)=
x̂n+1/n, the Kalman filtering equation x̂n+1/n = Anx̂n/n−1 +Knεεεn becomes:

x̂(tn+1)=
[
I +TA(tn)

]
x̂(tn)+TK(tn)εεε(tn) , or,

x̂(tn+1)−x̂(tn)
T

= A(tn)x̂(tn)+K(tn)εεε(tn)= A(tn)x̂(tn)+K(tn)
[
y(tn)−C(tn)x̂(tn)

]
which becomes the differential equation in the limit T → 0:

˙̂x(t)= A(t)x̂(t)+K(t)εεε(t)= A(t)x̂(t)+K(t)[y(t)−C(t)x̂(t)]
with a realization depicted below.

Finally, we consider the limiting form of the Riccati difference equation:

Pn+1/n = An
[
Pn/n−1 −GnDnGTn

]
ATn +Qn

Using Eqs. (13.8.6) and noting that Pn+1/n = P(tn+1), we obtain:

P(tn+1)=
[
I +TA(tn)

][
P(tn)−K(tn)TR(tn)T−1TK(tn)T

][
I +TA(tn)T

]+TQ(tn)

644 13. Kalman Filtering

which may be written to order T as follows:

P(tn+1)−P(tn)
T

= A(tn)P(tn)+P(tn)A(tn)T−K(tn)R(tn)K(tn)T+Q(tn)

which becomes the differential equation in the limit T → 0,

Ṗ(t)= A(t)P(t)+P(t)A(t)T−K(t)R(t)K(t)T+Q(t)

Substituting K(t)= P(t)C(t)TR(t)−1, we obtain the Riccati differential equation:

Ṗ(t)= A(t)P(t)+P(t)A(t)T−P(t)C(t)TR(t)−1C(t)P(t)+Q(t)

To summarize, the continuous-time Kalman filter for the model (13.8.1) is given by:

K(t) = P(t)C(t)TR(t)−1

˙̂x(t) = A(t)x̂(t)+K(t)[y(t)−C(t)x̂(t)]
Ṗ(t) = A(t)P(t)+P(t)A(t)T−P(t)C(t)TR(t)−1C(t)P(t)+Q(t)

(13.8.7)

whereP(t) represents the covarianceE[e(t)e(t)T] of the estimation error e(t)= x(t)−x̂(t),
and the initial conditions are taken to be:

x̂(0)= E[x(0)] , P(0)= E[
(x(0)−x̂(0))(x(0)−x̂(0))T

]
For time-invariant models, i.e. with time-independent model parameters {A,C,Q,R},

and under the same type of complete stabilizability and detectability assumptions as in
the discrete-time case, the Riccati solutionP(t) tends to the unique positive-semidefinite
symmetric solution P of the continuous-time algebraic Riccati equation (CARE):

AP+ PAT − PCTR−1CP+Q = 0 (CARE) (13.8.8)

and the Kalman gain tends to the corresponding steady gain K(t)→ K ≡ PCTR−1,
resulting in a strictly stable closed-loop state matrix F = A−KC, i.e., with eigenvalues
in the left-hand s-plane.

Example 13.8.1: Local Level Model. The continuous-time version of the local-level model of
Example 13.6.2 is defined by the one-dimensional model:

ẋ(t)= w(t) , E[w(t)w(τ)]= Qδ(t − τ)
y(t)= x(t)+v(t) , E[v(t)v(τ)]= Rδ(t − τ)

It represents a Wiener (Brownian) process x(t) observed in noise. The Kalman filtering
algorithm (13.8.7) has parameters A = 0, C = 1, and satisfies the Riccati differential and
algebraic equations:

Ṗ(t)= Q − P
2(t)
R

, Q − P
2

R
= 0 ⇒ P =

√
QR

13.9. Equivalence of Kalman and Wiener Filtering 645

and has time-varying and steady gains:

K(t)= P(t)
R

⇒ K = P
R
=

√
Q
R

and closed-loop transition matrices:

F(t)= −K(t) ⇒ F = −K = −
√
Q
R

and time-varying and steady Kalman filtering equations:

ˆ̇x(t) = −K(t)x̂(t)+K(t)y(t)
ˆ̇x(t) = −Kx̂(t)+Ky(t)

with the latter representing a continuous-time version of the exponential smoother. The
convergence properties to the steady values depend on F. Using the methods of [871,872],
we find the exact solution for P(t), and hence K(t)= P(t)/R:

P(t)= P+ 2P(P0 − P)e2Ft

P0 + P− (P0 − P)e2Ft , t ≥ 0

where P0 is an arbitrary positive initial value for P(0), and e2Ft = e−2Kt, which decays
to zero exponentially with a time constant determined by 2F, a result analogous to the
discrete-time case. ��

13.9 Equivalence of Kalman and Wiener Filtering

We saw in Chap. 11 that for the case of a simple scalar state-space model the steady-state
Kalman filter was equivalent to the corresponding Wiener filter, and that the innovations
signal model of the observation signal was embedded in the Kalman filter. Similar results
can be derived in the multichannel case.

Consider the problem of estimating a p-dimensional vector-valued signal xn from an
r-dimensional signal of observations yn. In the stationary case, the solution of this prob-
lem depends on the following p×r cross-correlation and r×r autocorrelation functions
and corresponding z-transform spectral densities:

Rxy(k)= E[xnyTn−k] , Sxy(z)=
∞∑

k=−∞
Rxy(k)z−k

Ryy(k)= E[ynyTn−k] , Syy(z)=
∞∑

k=−∞
Ryy(k)z−k

(13.9.1)

The desired causal estimate of xn is given by the convolutional equation:

x̂n =
∞∑
k=0

hkyn−k , H(z)=
∞∑
k=0

hkz−k (13.9.2)

646 13. Kalman Filtering

where hk is the optimum p×r causal impulse response matrix to be determined. The
optimality conditions are equivalent to the orthogonality between the estimation error
en = xn − x̂n and the observations yn−k, k ≥ 0, that make up the estimate:

Rey(k)= E[enyTn−k]= 0 , k ≥ 0 (13.9.3)

These are equivalent to the matrix-valued Wiener-Hopf equations for hk:

∞∑
m=0

hmRyy(k−m)= Rxy(k) , k ≥ 0 (13.9.4)

The solution can be constructed in the z-domain with the help of a causal and
causally invertible signal modelB(z) for the observations yn, driven by an r-dimensional
white-noise sequence εεεn of (time-independent) covariance E[εεεnεεεTn−k]= Dδ(k), that is,

yn =
∞∑
k=0

bkεεεn−k , B(z)=
∞∑
k=0

bkz−k (13.9.5)

where bk is the causal r×r impulse response matrix of the model. The model implies
the spectral factorization of observations spectral density Syy(z):

Syy(z)= B(z)DBT(z−1) (13.9.6)

We will construct the optimal filter H(z) using the gapped-function technique of
Chap. 11. To this end, we note that for any k,

Rey(k) = E[enyTn−k]= E[(xn − x̂n)yTn−k]= E
⎡⎣⎛⎝xn −

∞∑
m=0

hmyn−m

⎞⎠ yTn−k

⎤⎦
= Rxy(k)−

∞∑
m=0

hmRyy(k−m)

and in the z-domain:

Sey(z)= Sxy(z)−H(z)Syy(z)= Sxy(z)−H(z)B(z)DBT(z−1)

The orthogonality conditions (13.9.3) require that Sey(z) be a strictly left-sided, or an-
ticausal z-transform, and so will be the z-transform obtained by multiplying both sides
by the matrix inverse of BT(z−1) because we assumed the B(z) and B−1(z) are causal,
the therefore, B(z−1) and B−1(z−1) will be anticausal. Thus,

Sey(z)B−T(z−1)= Sxy(z)B−T(z−1)−H(z)B(z)D = strictly anticausal

and therefore, its causal part will be zero:[
Sxy(z)B(z−1)−T−H(z)B(z)D

]
+ =

[
Sxy(z)B−T(z−1)

]
+ − [H(z)B(z)D]+ = 0

13.9. Equivalence of Kalman and Wiener Filtering 647

Removing the causal instruction from the second term because it is already causal,
we may solve for the optimum Wiener filter for estimating xn from yn:

H(z)=
[
Sxy(z)B−T(z−1)

]
+D

−1B−1(z) (multichannel Wiener filter) (13.9.7)

This generalizes the results of Chap. 11 to vector-valued signals. Similarly, we may
obtain for the minimized value of the estimation error covariance:

E[eneTn]= Ree(0)=
∮

u.c.

[
Sxx(z)−H(z)Syx(z)

] dz
2πjz

(13.9.8)

The results may be applied to the one-step-ahead prediction problem by replacing
the signal xn by the signal x1(n)= xn+1. Noting that X1(z)= zX(z), we have:

H1(z)=
[
Sx1y(z)B

−T(z−1)
]
+D

−1B−1(z)

and since Sx1y(z)= zSxy(z), we find:

H1(z)=
[
zSxy(z)B−T(z−1)

]
+D

−1B−1(z) (prediction filter) (13.9.9)

and for the covariance of the error en+1/n = xn − x̂1(n)= xn − x̂n+1/n ,

E[en+1/neTn+1/n]=
∮ [
Sxx(z)−H1(z)Syx(z)z−1

] dz
2πjz

(13.9.10)

where in the first term we used Sx1x1(z)= zSxx(z)z−1 = Sxx(z), and in the second term,
Syx1(z)= Syx(z)z−1.

Next, we show that Eqs. (13.9.9) and (13.9.10) agree with the results obtained from the
steady-state Kalman filter. In particular, we expect the contour integral in Eq. (13.9.10)
to be equal to the steady-state solution P of the DARE. We recall from Sec. 13.6 that the
steady-state Kalman filter parameters are, where D = CPCT +R:

K = APCTD−1 = FPCTR−1 , F = A−KC = A−APCTD−1C (13.9.11)

where P is the unique positive-semidefinite symmetric solution of the DARE:

P = APAT −APCT(CPCT +R)−1CPAT +Q (13.9.12)

which can also be written as
Q = P− FPAT (13.9.13)

The state-space model for the Kalman filter can be written in the z-domain as follows:

xn+1 = Axn +wn

yn = Cxn + vn
⇒

X(z) = (zI −A)−1W(z)

Y(z) = C(zI −A)−1W(z)+V(z)

from which we obtain the spectral densities:

Sxx(z) = (zI −A)−1Q(z−1I −AT)−1

Sxy(z) = Sxx(z)CT = (zI −A)−1Q(z−1I −AT)−1CT

Syy(z) = CSxx(z)CT +R = C(zI −A)−1Q(z−1I −AT)−1CT +R
(13.9.14)

648 13. Kalman Filtering

The steady-state Kalman prediction filter is given by

x̂n+1/n = Ax̂n/n−1 +Kεεεn = Ax̂n/n−1 +K(yn −Cx̂n/n−1)= Fx̂n/n−1 +Kyn

which may be rewritten in terms of x̂1(n)= x̂n+1/n, or, x̂1(n− 1)= x̂n/n−1,

x̂1(n)= Ax̂1(n− 1)+Kεεεn = Fx̂1(n− 1)+Kyn (13.9.15)

and in the z-domain, noting that ŷn/n−1 = Cx̂n/n−1 = Cx̂1(n− 1),

X̂1(z) = (I − z−1A)−1KEEE(z)= (I − z−1F)−1KY(z)

Ŷ(z) = z−1CX̂1(z)= C(zI −A)−1KEEE(z)= C(zI − F)−1KY(z)
(13.9.16)

From the first of these, we obtain the prediction filter transfer functionH1(z) relat-
ing the observations yn to the prediction x̂1(n)= x̂n+1/n, i.e., X̂1(z)= H1(z)Y(z):

H1(z)= (I − z−1F)−1K (13.9.17)

Since εεεn = yn − ŷn/n−1, or, EEE(z)= Y(z)−Ŷ(z), the second of Eqs. (13.9.16) allows
us to determine the signal model transfer function matrix B(z), i.e., Y(z)= B(z)EEE(z):

Y(z) = EEE(z)+Ŷ(z)=
[
I +C(zI −A)−1K

]
EEE(z)

EEE(z) = Y(z)−Ŷ(z)=
[
I −C(zI − F)−1K

]
Y(z)

from which we obtain B(z) and its inverse B−1(z):

B(z) = I +C(zI −A)−1K

B−1(z) = I −C(zI − F)−1K
(13.9.18)

It can easily be verified that
[
I + C(zI −A)−1K

][
I − C(zI − F)−1K

] = I by direct
multiplication, using the fact that F = A − KC. Next, we must verify the spectral
factorization of Syy(z) and show that Eq. (13.9.17) agrees with (13.9.9). We will make
use of the following relationships:

(zI − F)−1KB(z)= (zI −A)−1K

B(z)C(zI − F)−1= C(zI −A)−1

(z−1I − FT)−1CTBT(z−1)= (z−1I −AT)−1CT
(13.9.19)

where the third is obtained by transposing the second and replacing z by z−1. These
can be shown in a straightforward way, for example,

B(z)C(zI − F)−1 = [
I +C(zI −A)−1K

]
C(zI − F)−1

= [
C+C(zI −A)−1KC

]
(zI − F)−1

= C(zI −A)−1(zI −A+KC)(zI − F)−1

= C(zI −A)−1(zI − F)(zI − F)−1= C(zI −A)−1

13.9. Equivalence of Kalman and Wiener Filtering 649

We will also need the following relationship and its transposed/reflected version:

(zI − F)−1Q(z−1I −AT)−1= (I − z−1F)−1P+ PAT(z−1I −AT)−1

(zI −A)−1Q(z−1I − FT)−1= P(I − zFT)−1+(zI −A)−1AP
(13.9.20)

These are a consequence of the DARE written in the form of Eq. (13.9.13). Indeed,

(I − z−1F)−1P+ PAT(z−1I −AT)−1=
= (I − z−1F)−1[P(z−1I −AT)+(I − z−1F)PAT

]
(z−1I −AT)−1

= (I − z−1F)−1[z−1P− PAT + PAT − z−1FPAT
]
(z−1I −AT)−1

= (I − z−1F)−1z−1(P− FPAT)(z−1I −AT)−1= (zI − F)−1Q(z−1I −AT)−1

Next, we verify the spectral factorization (13.9.6). Using (13.9.19) we have:

Syy(z) = C(zI −A)−1Q(z−1I −AT)−1CT +R
= B(z)C(zI − F)−1Q(z−1I −AT)−1+R

Multiplying from the left by B−1(z) and using (13.9.18) and (13.9.20), we obtain:

B−1(z)Syy(z)= C(zI − F)−1Q(z−1I −AT)−1+B−1(z)R

= C[
(I − z−1F)−1P+ PAT(z−1I −AT)−1]CT + [

I −C(z− F)−1K
]
R

= C[
(I − z−1F)−1P+ PAT(z−1I −AT)−1]CT +R−Cz−1(I − z−1F)−1KR

= C[
(I − z−1F)−1P+ PAT(z−1I −AT)−1]CT +R−Cz−1(I − z−1F)−1FPCT

= C(I − z−1F)−1(I − z−1F)PCT +CPAT(z−1I −AT)−1CT +R
= CPCT +CPAT(z−1I −AT)−1CT +R
= CPAT(z−1I −AT)−1CT +D = DKT(z−1I −AT)−1CT +D
= D[

I +KT(z−1I −AT)−1CT
] = DBT(z−1)

where we replaced KR = FPCT and CPAT = DKT from Eq. (13.9.11). This verifies
Eq. (13.9.6). Next, we obtain the prediction filter using the Wiener filter solution (13.9.9).
Using (13.9.19), we have:

Sxy(z)= (zI −A)−1Q(z−1I −AT)−1CT = (zI −A)−1Q(z−1I − FT)−1CTBT(z−1)

Multiplying by the inverse of BT(z) from the right and using (13.9.20), we obtain:

zSxy(z)B−T(z−1) = z(zI −A)−1Q(z−1I − FT)−1CT

= zP(I − zFT)−1CT + z(zI −A)−1APCT

= zP(I − zFT)−1CT + (I − z−1A)−1KD

650 13. Kalman Filtering

where we replaced APCT = KD. The first term is anti-causal (if it is to have a stable
inverse z-transform), while the second term is causal (assuming here that A is strictly
stable). Thus, we find the causal part:[

zSxy(z)B−T(z−1)
]
+ = (I − z

−1A)−1KD = (I − z−1F)−1KB(z)D (13.9.21)

where we used the first of Eqs. (13.9.19). It follows that the Wiener prediction filter is:

H1(z)=
[
zSxy(z)B−T(z−1)

]
+D

−1B−1(z)= (I − z−1F)−1K (13.9.22)

and agrees with (13.9.17). Finally, we consider the prediction error covariance given by
(13.9.10). Noting that Syx(z)= CSxx(z), the integrand of (13.9.10) becomes:

Sxx(z)−H1(z)Syx(z)z−1 = [
I − z−1H1(z)C

]
Sxx(z)=

[
I − (zI − F)−1KC

]
Sxx(z)

= (zI − F)−1(zI − F −KC)Sxx(z)= (zI − F)−1(zI −A)Sxx(z)
= (zI − F)−1(zI −A)(zI −A)−1Q(z−1I −AT)−1= (zI − F)−1Q(z−1I −AT)−1

= (I − z−1F)−1P+ PAT(z−1I −AT)−1= z(zI − F)−1P+ zPAT(I − zAT)−1

and the contour integral (13.9.10) becomes:∮
u.c.

[
Sxx(z)−H1(z)Syx(z)z−1

] dz
2πjz

=
∮

u.c.

[
(zI − F)−1P+ PAT(I − zAT)−1

] dz
2πj

The poles of the second term lie outside the unit circle and do not contribute to the
integral. The poles of the first term are the eigenvalues of the matrix F, which all lie
inside the unit circle. It is not hard to see (e.g., using the eigenvalue decomposition of
F) that the first term integrates into:∮

u.c.

[
(zI − F)−1P

] dz
2πj

= P

Thus, as expected the Wiener and Kalman expressions for E[en+1/neTn+1/n] agree
with each other.

13.10 Fixed-Interval Smoothing

The Kalman filtering algorithm proceeds recursively in time using an ever increasing
observations subspace:

Yn = {y0,y1, . . . ,yn} = {εεε0,εεε1, . . . ,εεεn} , n = 0,1,2, . . .

with the current estimate x̂n/n based on Yn. In the fixed-interval Kalman smoothing
problem, the observations yn are available over a fixed time interval 0 ≤ n ≤ N, so that
the observation subspace is:

YN = {y0,y1, . . . ,yN} = {εεε0,εεε1, . . . ,εεεN}

13.10. Fixed-Interval Smoothing 651

and the estimate of xn, for 0 ≤ n ≤ N, is based on the entire subspace YN. The two
cases are depicted below:

At each n, the subspace YN can be decomposed in the direct sums:

YN = {εεε0,εεε1, . . . ,εεεn} ⊕ {εεεn+1, . . . ,εεεN} = Yn ⊕ {εεεn+1, . . . ,εεεN}
YN = {εεε0,εεε1, . . . ,εεεn−1} ⊕ {εεεn, . . . ,εεεN} = Yn−1 ⊕ {εεεn, . . . ,εεεN}

(13.10.1)

and therefore, we expect the estimate of xn based on YN to be equal to the sum of the
filtered estimate x̂n/n, or the predicted estimate x̂n/n−1, plus a correction coming from
the rest of the subspace. We will work with the latter decomposition. We will find that
once the ordinary Kalman filter has been run forward from n = 0 to n = N, and we
have constructed the innovations basis for YN and the estimates x̂n/n−1, the required
correction can be constructed recursively, but running backwards from N down to n.

We begin by noting that at each n within 0 ≤ n ≤ N, the state vector xn can be
written in its unique orthogonal decomposition relative to the subspace Yn−1:

xn = x̂n/n−1 + en/n−1 (13.10.2)

where x̂n/n−1 is the ordinary predicted estimate of xn as defined in the forward Kalman
algorithm (13.2.2), and en/n−1 is the prediction error whose covariance matrix is Pn/n−1.
We observe that x̂n/n−1 can be expressed in terms of the innovations basis of Yn−1, as
in Eq. (13.3.16):

x̂n/n−1 = x̄n +
n−1∑
m=0

E[xnεεεTm]D−1
m εεεm (13.10.3)

where Dm = E[εεεmεεεTm]. The smoothed estimate of xn based on the full subspace YN is
the projection of xn onto YN. Denoting this estimate by x̂n/N, it is given in the innova-
tions basis for YN = {εεε0,εεε1, . . . ,εεεN}:

x̂n/N = Proj
[
xn|YN

] = x̄n +
N∑
m=0

E[xnεεεTm]D−1
m εεεm (13.10.4)

The summation may be split into two terms:

x̂n/N = x̄n +
n−1∑
m=0

E[xnεεεTm]D−1
m εεεm +

N∑
m=n

E[xnεεεTm]D−1
m εεεm

= x̂n/n−1 +
N∑
m=n

E[xnεεεTm]D−1
m εεεm

652 13. Kalman Filtering

The second term is recognized as the estimate of en/n−1 based on YN, that is,

ên/n−1 =
N∑
m=0

E[en/n−1εεεTm]D−1
m εεεm

=
n−1∑
m=0

E[en/n−1εεεTm]D−1
m εεεm +

N∑
m=n

E[en/n−1εεεTm]D−1
m εεεm

=
N∑
m=n

E[(xn − x̂n/n−1)εεεTm]D−1
m εεεm =

N∑
m=n

E[xnεεεTm]D−1
m εεεm

where we dropped the terms E[en/n−1εεεTm]= 0 for 0 ≤m ≤ n−1, because of the orthog-
onality conditions for the estimate x̂n/n−1 (i.e., the estimation error must be orthogonal
to the observations that make up the estimate), and then we dropped E[x̂n/n−1εεεTm]= 0
for n ≤m ≤ N because these εεεms are orthogonal to the εεεms making up x̂n/n−1, as seen
from the direct sum (13.10.1). Thus, we have:

x̂n/N = x̂n/n−1 + ên/n−1 (13.10.5)

ên/n−1 =
N∑
m=n

E[en/n−1εεεTm]D−1
m εεεm (13.10.6)

In other words, the term ên/n−1 is the correction to the predicted estimate x̂n/n−1 and
represents the estimate of the prediction error en/n−1 based on the subspace {εεεn, . . . ,εεεN}
that lies in the future of x̂n/n−1. The same result can be obtained by taking the projec-
tions of both sides of Eq. (13.10.2) onto YN and noting that the projection of x̂n/n−1 is
itself becauseYn−1 is a subspace ofYN. The estimation error for the smoothed estimate
is equal to the estimation error for en/n−1, indeed,

en/N = xn − x̂n/N = xn − x̂n/n−1 − ên/n−1 , or,

en/N = en/n−1 − ên/n−1 (13.10.7)

The error covariance matrices can be obtained by writing en/n−1 = en/N+ ên/n−1 and
noting that the two terms on the right-hand-side are orthogonal because ên/n−1 is com-
posed of observations that appear in the x̂n/N and therefore, they must be orthogonal
to the corresponding estimation error en/N. Let,

Pn/N = E[en/NeTn/N] , P̂n/n−1 = E[ên/n−1êTn/n−1] (13.10.8)

then, the above orthogonality property implies:

E[en/n−1eTn/n−1]= E[en/NeTn/N]+E[ên/n−1êTn/n−1] , or,

Pn/N = Pn/n−1 − P̂n/n−1 (13.10.9)

The term P̂n/n−1 quantifies the improvement in the estimate of xn afforded by using
all the data YN instead of only Yn−1.

Next, we develop the backward recursions satisfied by ên/n−1 and P̂n/n−1, which will
allow the calculation of x̂n/N and Pn/N. We recall that εεεm = ym−Cmx̂m/m−1 = Cmxm+

13.10. Fixed-Interval Smoothing 653

vm −Cmx̂m/m−1 = Cmem/m−1 + vm. This implies E[en/n−1εεεTm]= E[en/n−1eTm/m−1]CTm.
And it is straightforward to show that form ≥ n:

E[en/n−1eTm/m−1]= Pn/n−1Ψn,m , Ψn,m =
⎧⎨⎩FTnFTn+1 · · ·FTm−1 , m > n
I , m = n (13.10.10)

where Fn = An −KnCn is the closed-loop transition matrix. For example, consider the
casem = n+ 1. Then, en+1/n = xn+1 − x̂n+1/n = Anxn +wn −Anx̂n/n−1 −Knεεεn, or,

en+1/n = Anen/n−1 +wn −Knεεεn = Anen/n−1 +wn −Kn(Cnen/n−1 + vn)

= (An −KnCn)en/n−1 +wn −Knvn = Fnen/n−1 +wn −Knvn

and because en/n−1 depends on {x0,w0, . . . ,wn−1,v0, . . . ,vn−1}, it will be orthogonal to
wn,vn, and we find:

E[en/n−1eTn+1/n]= E[en/n−1eTn/n−1]F
T
n = Pn/n−1FTn (13.10.11)

Form = n+ 2, we have similarly, en+2/n+1 = Fn+1en+1/n +wn+1 −Kn+1vn+1, and,

E[en/n−1eTn+2/n+1]= E[en/n−1eTn+1/n]F
T
n+1 = Pn/n−1FTnF

T
n+1

and so on form > n. Thus, we can write ên/n−1 in the form:

ên/n−1 = Pn/n−1

N∑
m=n

Ψn,mCTmD−1
m εεεm (13.10.12)

Separating out the first term and recalling the Kalman gainGn = Pn/n−1CTnD−1
n , we have:

ên/n−1 = Gnεεεn + Pn/n−1

N∑
m=n+1

Ψn,mCTmD−1
m εεεm (13.10.13)

On the other hand, we have:

ên+1/n = Pn+1/n

N∑
m=n+1

Ψn+1,mCTmD−1
m εεεm ⇒

N∑
m=n+1

Ψn+1,mCTmD−1
m εεεm = P−1

n+1/n ên+1/n

Noting that Ψn,m = FTnΨn+1,m, form ≥ n+ 1, we obtain:

N∑
m=n+1

Ψn,mCTmD−1
m εεεm = FTn

N∑
m=n+1

Ψn+1,mCTmD−1
m εεεm = FTnP−1

n+1/n ên+1/n

and using this into Eq. (13.10.13), we find:

ên/n−1 = Gnεεεn + Pn/n−1FTnP
−1
n+1/n ên+1/n (13.10.14)

Thus, the required backward recursion for ên/n−1 may be written as:

Ln = Pn/n−1FTnP
−1
n+1/n

ên/n−1 = Gnεεεn + Ln ên+1/n
(13.10.15)

654 13. Kalman Filtering

for n = N,N − 1, . . . ,0. At n = N, Eq. (13.10.12) gives:

êN/N−1 = PN/N−1

N∑
m=N

ΨN,mCTmD−1
m εεεm = PN/N−1ΨN,NCTND

−1
N εεεN = GNεεεN

Therefore, the initialization of the recursion (13.10.15) at n = N is:

êN+1/N = 0

The covariance P̂n/n−1 satisfies a similar recursion. Since εεεn is orthogonal to all the
terms of ên+1/n, which depend on εεεm, m ≥ n + 1, it follows by taking covariances of
both sides of (13.10.15) that:

P̂n/n−1 = GnDnGTn + LnP̂n+1/nLTn , n = N,N − 1, . . . ,0 (13.10.16)

and initialized with P̂N+1/N = 0.
To summarize, the smoothed estimate x̂n/N is computed by first running the ordi-

nary Kalman filtering algorithm (13.2.2) forward in time for n = 0,1, . . . ,N, saving the
quantities x̂n/n−1,εεεn, along with Pn/n−1, Gn,Dn, Fn = An − KnCn, and then, carrying
out the following backward recursions from n = N down to n = 0,

Initialize: êN+1/N = 0, P̂N+1/N = 0

for n = N,N − 1, . . . ,0, do:

Ln = Pn/n−1FTnP
−1
n+1/n

ên/n−1 = Gnεεεn + Ln ên+1/n

P̂n/n−1 = GnDnGTn + LnP̂n+1/nLTn
x̂n/N = x̂n/n−1 + ên/n−1

Pn/N = Pn/n−1 − P̂n/n−1

(13.10.17)

We note also that Ln may be written in the form:

Ln = Pn/nATnP−1
n+1/n (13.10.18)

Indeed,

Ln = Pn/n−1FTnP
−1
n+1/n = Pn/n−1(An −KnCn)TP−1

n+1/n

= Pn/n−1
(
ATn −CTnD−1

n CnPn/n−1ATn
)
P−1
n+1/n

= (
Pn/n−1 − Pn/n−1CTnD−1

n CnPn/n−1
)
ATnP

−1
n+1/n = Pn/nATnP−1

n+1/n

There exist a number of alternative re-formulations of the smoothing problem that
can be derived from algorithm (13.10.17). The so-called Rauch-Tung-Striebel (RTS) ver-
sion [883,884] is obtained by eliminating the variable ên/n−1 in favor of x̂n/N. Applying
the equations for the estimate and estimation error at time n+ 1, we have:

x̂n+1/N = x̂n+1/n + ên+1/n

Pn+1/N = Pn+1/n − P̂n+1/n
⇒

ên+1/n = x̂n+1/N − x̂n+1/n

P̂n+1/n = Pn+1/n − Pn+1/N

13.10. Fixed-Interval Smoothing 655

and substituting these into the recursions in (13.10.17), we obtain:

ên/n−1 = Gnεεεn + Ln(x̂n+1/N − x̂n+1/n)

P̂n/n−1 = GnDnGTn + Ln(Pn+1/n − Pn+1/N)LTn

x̂n/N = x̂n/n−1 + ên/n−1 = x̂n/n−1 +Gnεεεn + Ln(x̂n+1/N − x̂n+1/n)

Pn/N = Pn/n−1 − P̂n/n−1 = Pn/n−1 −GnDnGTn + Ln(Pn+1/N − Pn+1/n)LTn

but from the ordinary Kalman filter, we have the filtered estimate and its covariance:

x̂n/n = x̂n/n−1 +Gnεεεn
Pn/n = Pn/n−1 −GnDnGTn

Hence, the above smoothed estimates can be written in the RTS form:

Ln = Pn/nATnP−1
n+1/n

x̂n/N = x̂n/n + Ln(x̂n+1/N − x̂n+1/n)

Pn/N = Pn/n + Ln(Pn+1/N − Pn+1/n)LTn

(RTS smoothing) (13.10.19)

This is to be iterated from n = N down to n = 0, where the differences in the second
terms are initialized to zero, e.g., at n = N, we have LN(x̂N+1/N − x̂N+1/N)= 0.

A disadvantage of the algorithm (13.10.17) and of the RTS form is that the computa-
tion of Ln requires an additional matrix inversion of the quantity Pn+1/n. Such inversion
is avoided in the so-called Bryson-Frazier (BF) smoothing formulation [881,882]. To de-
rive it, we use Eq. (13.10.12) to define the quantity:

gn = P−1
n/n−1ên/n−1 =

N∑
m=n

Ψn,mCTmD−1
m εεεm (13.10.20)

It follows from Eq. (13.10.14) and Gn = Pn/n−1CTnD−1
n , and gn+1 = P−1

n+1/n ên+1/n, that

gn = P−1
n/n−1ên/n−1 = P−1

n/n−1

(
Gnεεεn + Pn/n−1FTnP

−1
n+1/n ên+1/n

)
, or,

gn = CTnD−1
n εεεn + FTn gn+1 (13.10.21)

with initial value gN+1 = 0, which follows from ên+1/N = 0. From Eq. (13.10.20) we note
that the two terms εεεn and gn+1 in the right-hand-side are orthogonal, and therefore, we
obtain the following recursion for the covariance Γn = E[gngTn]:

Γn = CTnD−1
n Cn + FTnΓn+1Fn (13.10.22)

where we used CTnD−1
n E[εεεnεεεTn]D−1

n Cn = CTnD−1
n DnD−1

n Cn = CTnD−1
n Cn. The recursion

is to be initialized at ΓN+1 = 0. Noting that,

P̂n/n−1 = E[ên/n−1êTn/n−1]= Pn/n−1E[gngTn]Pn/n−1 = Pn/n−1ΓnPn/n−1

656 13. Kalman Filtering

we obtain the Bryson-Frasier smoothing algorithm:

Initialize: gN+1 = 0, ΓN+1 = 0

for n = N,N − 1, . . . ,0, do:

gn = CTnD−1
n εεεn + FTn gn+1

Γn = CTnD−1
n Cn + FTnΓn+1Fn

x̂n/N = x̂n/n−1 + Pn/n−1 gn
Pn/N = Pn/n−1 − Pn/n−1ΓnPn/n−1

(BF smoothing) (13.10.23)

The algorithm requires no new inversions—the quantity D−1
n Cn was computed as

part of the forward Kalman algorithm. The RTS and BF algorithms have also been studied
within the statistical time-series analysis literature [885,886,903,904]. Further details on
smoothing algorithms may be found in [865].

The MATLAB function, ksmooth.m, implements the Kalman smoothing algorithm of
Eq. (13.10.23). It has usage:

[L,Xs,Ps,V] = ksmooth(A,C,Q,R,Y,x0,S0); % Bryson-Frazier smoothing

Its inputs are the state-space model parameters {A,C,Q,R}, the initial values x̄0,
Σ0, and the observations yn, 0 ≤ n ≤ N, arranged into a r×(N + 1) matrix:

Y = [
y0,y1, . . . ,yn, . . . ,yN

]
The outputs are the smoothed estimates arranged into the p×(N + 1) matrix:

Xs =
[
x̂0/N, x̂1/N, . . . , x̂n/N, . . . , x̂N/N

]
with corresponding error covariance matrices arranged into the p×p×(N + 1) three-
dimensional array Ps, such that (in MATLAB notation):

Ps(:,:,n+1) = Pn/N , 0 ≤ n ≤ N
The output L is the value of the negative-log-likelihood function calculated from

Eq. (13.12.2). The quantity V is an optional output that stores the matrix Vn+1,n =
E[en+1/N eTn/N] into a p×p×(N + 1) array. This quantity is used in Sec. 13.13 in the
maximum likelihood estimation of the state-space model parameters using the EM algo-
rithm. A convenient expression for it can be derived as follows. We rewrite Eq. (13.10.7)
in its orthogonal decomposition forms:

en/n−1 = en/N + ên/n−1

en+1/n = en+1/N + ên+1/n
(13.10.24)

whereE[en+1/N êTn/n−1]= E[en/N êTn+1/n]= 0, which follow from the fact that en/N, en+1/N
are estimation errors and must be orthogonal to all the observations Y, and therefore,
must also be orthogonal to ên/n−1, ên+1/n because the latter are made up from a subset
of Y. Then, we find for the cross-covariance:

E[en+1/neTn/n−1] = E[en+1/N eTn/N]+E[ên+1/nêTn/n−1] , or,

Vn+1,n = E[en+1/N eTn/N] = E[en+1/neTn/n−1]−E[ên+1/nêTn/n−1]

13.11. Square-Root Algorithms 657

From Eq. (13.10.11) we have, E[en+1/neTn/n−1]= FnPn/n−1, and from Eq. (13.10.20) we
may replace ên+1/n = Pn/n−1gn , to obtain:

Vn+1,n = E[en+1/N eTn/N]= FnPn/n−1 − Pn+1/nE[gn+1gTn]Pn/n−1

From the recursion (13.10.21), gn = CTnD−1
n εεεn + FTn gn+1, and E[gn+1εεεTn]= 0, we find:

E[gn+1gTn]= E[gn+1(CTnD−1
n εεεn + FTn gn+1)T]= E[gn+1gTn+1]Fn = Γn+1Fn

It follows then that:

Vn+1,n = E[en+1/N eTn/N] = FnPn/n−1 − Pn+1/nΓn+1FnPn/n−1

= [
I − Pn+1/nΓn+1

]
FnPn/n−1

(13.10.25)

13.11 Square-Root Algorithms

In its most basic form the Kalman filtering algorithm reads:

D = CPCT +R
G = PCTD−1, K = AG
Pf = P− PCTD−1CP , x̂f = x̂+G(y−Cx̂)= (I −GC)x̂+Gy

Pnew = APfAT +Q , x̂new = Ax̂f = (A−KC)x̂+Ky

(13.11.1)

where x̂, x̂f , x̂new denote the current prediction, filtered estimate, and next prediction,
x̂n/n−1, x̂n/n, x̂n+1/n, and P,Pf , Pnew denote the corresponding mean-square error co-
variance matrices Pn/n−1, Pn/n, Pn+1/n, and we dropped the time indices to simplify the
notation. The matrices P,Pf , Pnew must remain positive semi-definite during the itera-
tion of the algorithm. Because of the subtraction required to calculate Pf , it is possible
that rounding errors may destroy its positivity. The “square-root” formulations operate
on the square-root factors of the covariance matrices, and thus, guarantee the positivity
at each iteration step.

A positive semi-definite symmetric matrix P can always be written as the product of
a lower triangular square-root factor S and its transpose ST:

P = SST (13.11.2)

For example in MATLAB, one may use the built-in Cholesky factorization function
chol, if P is strictly positive definite, with S constructed as:

S = chol(P)’; % S = lower triangular such that P = S*S’

If P is semi-definite with some positive and some zero eigenvalues, then one can
apply the QR factorization to the square root of P obtained from its eigenvalue or SVD
decomposition, with the following MATLAB construction:

[v,s] = eig(P); % v = eigenvector matrix, s = eigenvalues

P_sqrt = v*real(sqrt(s))*v’; % eigenvalues s are non-negative

[q,r] = qr(P_sqrt); % QR-factorization, P_sqrt = q*r

S = r’; % S = lower triangular such that P = S*S’

658 13. Kalman Filtering

Example 13.11.1: For the following positive-definite case, we find:

P =
⎡⎢⎣ 6 5 4

5 6 4
4 4 3

⎤⎥⎦ =
⎡⎢⎣ 2.4495 0 0

2.0412 1.3540 0
1.6330 0.4924 0.3015

⎤⎥⎦
⎡⎢⎣ 2.4495 0 0

2.0412 1.3540 0
1.6330 0.4924 0.3015

⎤⎥⎦
T

This P has full rank as the product of two rank-3 matrices:

P =
⎡⎢⎣ 6 5 4

5 6 4
4 4 3

⎤⎥⎦ =
⎡⎢⎣ 2 −1 1

1 −2 1
1 −1 1

⎤⎥⎦
⎡⎢⎣ 2 −1 1

1 −2 1
1 −1 1

⎤⎥⎦
T

Similarly, for the following semi-definite P, we have:

P =
⎡⎢⎣ 5 4 3

4 5 3
3 3 2

⎤⎥⎦ =
⎡⎢⎣ 2.2361 0 0

1.7889 1.3416 0
1.3416 0.4472 0

⎤⎥⎦
⎡⎢⎣ 2.2361 0 0

1.7889 1.3416 0
1.3416 0.4472 0

⎤⎥⎦
T

This P has rank two as the product of the rank-2 matrices:

P =
⎡⎢⎣ 5 4 3

4 5 3
3 3 2

⎤⎥⎦ =
⎡⎢⎣ 2 1

1 2
1 1

⎤⎥⎦[
2 1 1
1 2 1

]

and has eigenvalues {0,1,11}. ��

The Joseph forms of the covariance updating equations promote the numerical sta-
bility of the algorithm because they consist of the sum of positive semidefinite terms
(provided of course that P is already positive semidefinite), but require twice as many
operations as the conventional forms:

Pf = (I −GC)P(I −GC)T+GRGT

Pnew = APfAT +Q = (A−KC)P(A−KC)T+KRKT +Q
(13.11.3)

Let R̄, Q̄ be lower-triangular square root factors for R,Q, so that R = R̄R̄T and
Q = Q̄Q̄T, and substitute the factorizations P = SST and Pf = SfSTf in Eq. (13.11.3):

SfSTf = (I −GC)SST(I −GC)T+GR̄R̄TG =
[
(I −GC)S,GR̄][

ST(I −GC)T
R̄TGT

]

Then, Sf can be obtained from the upper-triangular factor resulting by applying the
QR-factorization to the (p+ r)×p matrix:[

ST(I −GC)T
R̄TGT

]
= U

[
STf
0

]
, STf = upper-triangular

where U is a (p + r)×(p + r) orthogonal matrix. The lower-triangular version of this
relationship reads: [

(I −GC)S, GR̄] = [Sf ,0]UT (13.11.4)

13.11. Square-Root Algorithms 659

where the Sf is lower-triangular and the dimensions of the matrices are:[
(I −GC)S︸ ︷︷ ︸

p×p
, GR̄︸︷︷︸
p×r

] = [Sf︸︷︷︸
p×p
, 0︸︷︷︸
p×r
]UT

Since UTU = I, we verify:

[
(I −GC)S,GR̄][

ST(I −GC)T
R̄TGT

]
= [Sf ,0]UTU

[
STf
0

]
= SfSTf

For the time-update step, we note that,

Pnew = SnewSTnew = APfAT +Q = ASfSTf + Q̄Q̄T =
[
ASf , Q̄

][
STf A

T

Q̄T

]
so that we may obtain Snew from the lower-triangular version of the QR-algorithm applied
to the p×(2p) matrix: [

ASf , Q̄
] = [Snew, 0]UT (13.11.5)

with another (2p)×(2p) orthogonal matrix U. Combining Eqs. (13.11.4) and (13.11.5),
we summarize the measurement and time updating algorithm that propagates the square-
root lower-triangular factors S, Sf , Snew:

P = SST , D = CPCT +R , G = PCTD−1

[
(I −GC)S, GR̄] = [Sf ,0]UT[
ASf , Q̄

] = [Snew, 0]UT

The intermediate step of computingSf can be avoided by applying the lower-triangular
version of the QR-algorithm to the larger p×(2p+ r) matrix:[

(A−KC)S, KR̄, Q̄] = [Snew, 0, 0]UT , Snew = lower-triangular (13.11.6)

which is equivalent to the second Joseph form in Eq. (13.11.3):

(A−KC)SST(A−KC)T+KR̄R̄TKT + Q̄Q̄T = [
(A−KC)S, KR̄, Q̄]⎡⎢⎣ ST(A−KC)TR̄TKT

Q̄T

⎤⎥⎦

= [Snew, 0, 0]UTU

⎡⎢⎣ STnew

0
0

⎤⎥⎦ = SnewSTnew

Restoring the time-indices, we obtain the following square-root algorithms based on
the Joseph forms. Given Sn/n−1, calculate:

Pn/n−1 = Sn/n−1STn/n−1

Dn = CnPn/n−1CTn +Rn , Gn = Pn/n−1CTnD−1
n[

(I −GnCn)Sn/n−1, GnR̄n
] = [Sn/n ,0]UT[

AnSn/n, Q̄n
] = [Sn+1/n, 0]UT

(13.11.7)

660 13. Kalman Filtering

or, going directly to Sn+1/n:

[
(An −KnCn)Sn/n−1, KnR̄n, Q̄n

] = [Sn+1/n, 0, 0]UT (13.11.8)

Example 13.11.2: Consider a system with constant model parameters:

A =
[

0.5 0.1
0.2 0.4

]
, C =

[
1 1
0 1

]
, Q =

[
1 2
2 5

]
, R =

[
9 6
6 8

]

and lower-triangular square-root factors Q̄, R̄ such that Q = Q̄Q̄T and R = R̄R̄T :

Q̄ =
[

1 0
2 1

]
, R̄ =

[
3 0
2 2

]

and initial square-root factor S and covariance matrix P:

S =
[

1.3184 0
1.8820 1.4731

]
, P = SST =

[
1.7383 2.4813
2.4813 5.7118

]

Then, we calculate D and G:

D = CPCT +R =
[

21.4126 14.1931
14.1931 13.7118

]
, G = PCTD−1 =

[
0.2457 −0.0733
0.3393 0.0653

]

and the covariance matrices Pf , Pnew from the conventional algorithm:

Pf = P−GDGT =
[

0.8836 0.8874
0.8874 2.5585

]
, Pnew = APfAT +Q =

[
1.3352 2.3859
2.3859 5.5867

]

Next, we form the matrix X ≡ [
(I−GC)S, GR̄]

and apply the QR-algorithm to its transpose
to get the factorization:

X = [
(I −GC)S, GR̄] = [

0.6702 −0.2539 0.5903 −0.1467
0.6730 0.8770 1.1486 0.1306

]

=
[

0.9400 0 0 0
0.9440 1.2913 0 0

]
UT = [Sf , 0]UT ≡ LUT

U =

⎡⎢⎢⎢⎣
0.7130 −0.0000 −0.3139 −0.6270

−0.2701 0.8766 0.1350 −0.3747
0.6280 0.4304 0.1856 0.6212

−0.1560 0.2152 −0.9213 0.2839

⎤⎥⎥⎥⎦
This was obtained from the MATLAB code:

[U,r] = qr(X’); L = r’;

Thus, we determine Sf , and verify that Pf = SfSTf is the same as above:

Sf =
[

0.9400 0
0.9440 1.2913

]
, Pf = SfSTf =

[
0.8836 0.8874
0.8874 2.5585

]

13.11. Square-Root Algorithms 661

Next, with this Sf , we calculate the matrix X = [ASf , Q̄] and apply the QR-factorization
to its transpose to get:

X = [ASf , Q̄] =
[

0.5644 0.1291 1 0
0.5656 0.5165 2 1

]

=
[

1.1555 0 0 0
2.0648 1.1503 0 0

]
UT = [Snew, 0]≡ LUT

U =

⎡⎢⎢⎢⎣
0.4884 −0.3851 0.5883 0.5168
0.1117 0.2484 −0.5947 0.7564
0.8654 0.1852 −0.2552 −0.3894
0.0000 0.8693 0.4849 0.0957

⎤⎥⎥⎥⎦
with L,U obtained from the same MATLAB code as above. Thus, we identify,

Snew =
[

1.1555 0
2.0648 1.1503

]
⇒ Pnew = SnewSTnew =

[
1.3352 2.3859
2.3859 5.5867

]

For the direct method of Eq. (13.11.8), we calculate the gain K = AG,

K =
[

0.1568 −0.0301
0.1849 0.0115

]

and the matrix:

[(A−KC)S, KR̄, Q̄] =
[

0.4024 −0.0392 0.4100 −0.0603 1 0
0.4033 0.3000 0.5775 0.0229 2 1

]

=
[

1.1555 0 0 0 0 0
2.0648 1.1503 0 0 0 0

]
UT = [Snew, 0,0]UT

which generates the same Snew as the two-step procedure. ��

Using the Joseph forms in conjunction with the square root factorizations provides,
in effect, double protection at the expense of increased computation. There exist a vari-
ety of other square-root algorithms [863,865,888–896], including some for the smooth-
ing problem. One of the standard ones [889] employs the triangularization:[

R̄ CS
0 S

]
=

[
D̄ 0

PCTD̄−T Sf

]
UT (13.11.9)

where D̄ is a lower-triangular square root factor of D = CPCT +R = D̄D̄T. Its correct-
ness can be verified by noting that Pf = P− PCTD−1CP and by forming the products:[

R̄ CS
0 S

][
R̄ CS
0 S

]T
=

[
D CP
PCT P

]
[

D̄ 0
PCTD̄−T Sf

]
UTU

[
D̄ 0

PCTD̄−T Sf

]T
=

[
D CP
PCT Pf + PCTD−1CP

]

The triangularization operation produces D̄, Sf , and PCTD̄−T, the latter being part
of the required Kalman gain G = PCTD−1 = [

PCTD̄−T
]
D̄−1, where the division by the

662 13. Kalman Filtering

lower-triangular matrix D̄ is an efficient operation. Therefore, the computation of the
filtered estimate can also be done efficiently:

x̂f = x̂+G(y−Cx̂)= x̂+ [
PCTD̄−T

]
D̄−1(y−Cx̂)

A direct-updating version [891] is possible in this case too by the triangularization
of the following matrix:[

R̄ CS 0
0 AS Q̄

]
=

[
D̄ 0 0

APCTD̄−T Snew 0

]
UT

Its correctness follows from Pnew = SnewSTnew = APAT −APCTD−1CPAT +Q and
by comparing the products:

[
R̄ CS 0
0 AS Q̄

]⎡⎢⎣ R̄T 0
STCT STAT

0 Q̄T

⎤⎥⎦ = [
D CPAT

APCT APAT +Q
]

[
D̄ 0 0

APCTD̄−T Snew 0

]
UTU

⎡⎢⎣ D̄T D̄−1CPAT

0 STnew

0 0

⎤⎥⎦ = [
D CPAT

APCT Pnew +APCTD−1CPAT

]

This factorization allows also the efficient computation of the predicted estimate:

x̂new = Ax̂+ [
APCTD̄−T

]
D̄−1(y−Cx̂)

Restoring the time indices, we summarize the two-step algorithm for the computa-
tion of the square-root factors of the covariances and the estimates:

[
R̄n CnSn/n−1

0 Sn/n−1

]
=

[
D̄n 0

Pn/n−1CTnD̄−Tn Sn/n

]
UT

x̂n/n = x̂n/n−1 +
[
Pn/n−1CTnD̄−Tn

]
D̄−1
n (yn −Cnx̂n/n−1)[

AnSn/n, Q̄n
] = [Sn+1/n, 0]UT

x̂n+1/n = An x̂n/n

(13.11.10)

and for the direct method:

[
R̄n CnSn/n−1 0
0 AnSn Q̄n

]
=

[
D̄n 0 0

AnPn/n−1CTnD̄−Tn Sn+1/n 0

]
UT

x̂n+1/n = Anx̂n/n−1 +
[
AnPn/n−1CTnD̄−Tn

]
D̄−1
n (yn −Cnx̂n/n−1)

(13.11.11)

13.12. Maximum Likelihood Parameter Estimation 663

Example 13.11.3: For the model defined in Example 13.11.2 and the given starting S, we carry
out the triangularization of the following matrix using the QR-factorization:

[
R̄ CS
0 S

]
=

⎡⎢⎢⎢⎣
3 0 3.2004 1.4731
2 2 1.8820 1.4731

0 0 1.3184 0
0 0 1.8820 1.4731

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
4.6274 0 0 0
3.0672 2.0746 0 0

0.9119 −0.1521 0.9400 0
1.7706 0.1355 0.9440 1.2913

⎤⎥⎥⎥⎦UT =
[

D̄ 0
PCTD̄−T Sf

]
UT

from which we extract:

D̄ =
[

4.6274 0
3.0672 2.0746

]
, PCTD̄−T =

[
0.9119 −0.1521
1.7706 0.1355

]
, Sf =

[
0.9400 0
0.9440 1.2913

]

Using the quantities D,P computed in Example 13.11.2, we verify the factorization:

D =
[

21.4126 14.1931
14.1931 13.7118

]
=

[
4.6274 0
3.0672 2.0746

][
4.6274 0
3.0672 2.0746

]T
= D̄D̄T

Similarly, we may verify the correctness of PCTD̄−T and Sf . Next, we illustrate the direct
method. We form the following matrix and triangularize it by applying the QR-factorization
to its transpose:

[
R̄ CS 0
0 AS Q̄

]
=

⎡⎢⎢⎢⎣
3 0 3.2004 1.4731 0 0
2 2 1.8820 1.4731 0 0

0 0 0.8474 0.1473 1 0
0 0 1.0165 0.5892 2 1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
4.6274 0 0 0 0 0
3.0672 2.0746 0 0 0 0

0.6330 −0.0625 1.1555 0 0 0
0.8906 0.0238 2.0648 1.1503 0 0

⎤⎥⎥⎥⎦UT =
[

D̄ 0 0
APCTD̄−T Snew 0

]
UT

and we extract the same D̄ as above and the same Snew as in Example 13.11.2. ��

13.12 Maximum Likelihood Parameter Estimation

One issue in applying the Kalman filter is the determination of the state-space model
parameters {A,C,Q,R} and the initial values {x̄0, Σ0}. If the dynamics is known, as for
example in α−β radar tracking, then {A,C} are known, but not necessarily the noise
covariances {Q,R} or the initial values. If the dynamics is not known, as for example
in the so-called unobserved components models for microeconomic applications, then
all the parameters must be estimated.

Maximum likelihood (ML) is a commonly used method for estimating the model pa-
rameters. Assuming a time-invariant model, then given a set of N + 1 observations,
Y = {y0,y1, . . . ,yN}, one determines the parameters {A,C,Q,R, x̄0, Σ0} that maximize

664 13. Kalman Filtering

the joint probability density p(y0,y1, . . . ,yN) or p(Y) for short. Equivalently, one may
minimize the negative of the log-likelihood function:

L(Y)= − logp(Y)= min (13.12.1)

This problem becomes tractable under the gaussian assumption for the state-space
model. The Kalman filtering algorithm generates the equivalent orthogonalized obser-
vation basis of innovations Y = {y0,y1, . . . ,yN} = {εεε0,εεε1, . . . ,εεεN}, which are mutually
uncorrelated and gaussian, and hence, mutually independent. Therefore, the joint den-
sity factors into the marginal densities:

p(y0,y1, . . . ,yN)= p(εεε0,εεε1, . . . ,εεεN)=
N∏
n=0

p(εεεn)=
N∏
n=0

exp
(−εεεTnD−1

n εεεn/2
)

(2π)r/2(detDn)1/2

where r = dim(yn) and Dn is the covariance of εεεn generated by the Kalman filtering
algorithm. Thus, the log-likelihood function can be expressed up to a constant by [897]:

L(Y)= − logp(Y)= 1

2

N∑
n=0

[
log(detDn)+εεεTnD−1

n εεεn
]
+ const. (13.12.2)

Let θ denote all or a subset of the model parameters {A,C,Q,R, x̄0, Σ0} that one
wishes to estimate. The dependence of L(Y) on θ will be indicated explicitly by Lθ(Y).

There exist several methods [897–911] of minimizing Lθ(Y), some requiring only
the evaluation of the function Lθ(Y) for various values θ, some requiring also the first,
and some the second, derivatives of Lθ(Y) with respect to θ. The EM algorithm is an
alternative, iterative, minimization method and we discuss it in the next section.

The MATLAB function kfilt can evaluate Lθ(Y) at any θ, and thus, it can be used,
in conjunction with the built-in function fminsearch of MATLAB’s optimization toolbox
to perform the minimization. This function uses the Nelder-Mead simplex direct search
method in which the derivatives of Lθ are not required. We illustrate the approach with
two examples.

Example 13.12.1: The Nile River data set has been used as a benchmark in a variety of statistical
methods [912]. It represents the annual volume of the Nile River (discharged at Aswan, in
units of 108 m3) from 1871 to 1970. It is depicted in the left figure below (dotted line of
observations).

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14
filtered and smoothed estimates

n, time samples

y(
n

)
/ 1

00

 filtered
 smoothed
 observations

0 10 20 30 40 50 60 70 80 90 100
0

3

6

9

12

15
filtered and smoothed mean−square errors

n, time samples

P
 /

10
00

 P(n/n)
 P(n/N)

13.12. Maximum Likelihood Parameter Estimation 665

Following [903], we model it as a local-level (random walk in noise) model:

xn+1 = xn +wn
yn = xn + vn

with noise variances Q = σ2
w and R = σ2

v to be estimated, so that the parameter vector is
θ = [σ2

w,σ2
v]T . The MATLAB code below defines the function Lθ with the help of kfilt,

with the Kalman filter initialized to the arbitrary values x̄0 = 0 and Σ0 = 107. It then calls
fminsearch with the arbitrary initial values of the parameters θ0 = [1,1]T , and returns
the “optimum” values:

θ =
[
σ2
w
σ2
v

]
=

[
1468.5

15099.7

]

y = [1120 1160 963 1210 1160 1160 813 1230 1370 1140 ...
995 935 1110 994 1020 960 1180 799 958 1140 ...
1100 1210 1150 1250 1260 1220 1030 1100 774 840 ...
874 694 940 833 701 916 692 1020 1050 969 ...
831 726 456 824 702 1120 1100 832 764 821 ...
768 845 864 862 698 845 744 796 1040 759 ...
781 865 845 944 984 897 822 1010 771 676 ...
649 846 812 742 801 1040 860 874 848 890 ...
744 749 838 1050 918 986 797 923 975 815 ...
1020 906 901 1170 912 746 919 718 714 740];

A = 1; C = 1; x0 = 0; S0 = 1e7; % fixed model parameters

L = @(th) kfilt(A, C, th(1), th(2), y, x0, S0); % likelihood function

th0 = [1; 1]; % initialize search
th = fminsearch(L, th0); % Nelder-Mead search

Q = th(1); R = th(2); % estimated Q,R

[Lmin,x,P,xf,Pf] = kfilt(A,C,Q,R,y,x0,S0); % run Kalman filter
[Lmin,xs,Ps] = ksmooth(A,C,Q,R,y,x0,S0); % run Kalman smoother

t = 0:length(y)-1;
figure; plot(t,xf/100,’--’,t,xs/100,’-’ ,t,y/100,’k:’);
figure; plot(t,Pf(:)/1e3,’--’,t,Ps(:)/1e3,’-’);

The Kalman filter and smoother are then run with the optimum parameter values forQ,R,
and the resulting filtered and smoothed estimates, x̂n/n and x̂n/N are plotted on the left
figure. The right figure plots the corresponding mean-square errors, Pn/n and Pn/N . We
note that Pn/N is smaller than Pn/n since it uses all the observations. It rises up at the end
to agree with the filtered error, that is, Pn/n = Pn/N , when n = N. ��

Example 13.12.2: Consider the α–β tracking model discussed in Example 13.7.3 and defined
by the state-space model:[

xn+1

ẋn+1

]
=

[
1 T
0 1

][
xn
ẋn

]
+

[
T2/2
T

]
an , yn = [1,0]

[
xn
ẋn

]
+ vn

with model matrices:

666 13. Kalman Filtering

A =
[

1 T
0 1

]
, C = [1,0] , Q =

[
T4/4 T3/2
T3/2 T2

]
σ2
a ≡ QTσ2

a , R = σ2
v

The model is simulated with the following values of the parameters T = 1, σa = 0.02,
σv = 2, and generating N + 1 noisy position measurements, yn, 0 ≤ n ≤ N, where
N = 300, starting with the initial state-vector x̄0 = [0, 0.1]T . The generated observations
yn are then used to estimate the model parameters θ = [σa,σv]T starting from the initial
values θ0 = [0,0]T . The likelihood function is defined as in the previous example, with
the Kalman filter run with the initial values:

x̄0 =
[

0
0.1

]
, Σ0 =

[
0.1 0
0 0.1

]

The resulting estimated parameters returned from mfinsearch, and the corresponding
estimated covariance matrices Q,R, are:

θ =
[
σa
σv

]
=

[
−0.0199

2.0237

]
⇒ Q = QTσ2

a , R = σ2
v

The absolute value |σa| is close to the true value of 0.02. The sign does not matter since
Q,R depend on the squares of σa,σv.

The Kalman filter and smoother are then run with the estimated Q,R and the resulting
filtered and smoothed estimates are shown in the figure below.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
filtered position estimate

n, time samples

 observations
 estimate

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
smoothed position estimate

n, time samples

 observations
 estimate

The MATLAB code used to generate these graphs is as follows:

N = 301; T = 1; Tmax = (N-1)*T; t = 0:T:Tmax;

sa = 0.02; sv = 2;
A = [1, T; 0, 1]; C = [1, 0]; % model parameters
QT = [T^4/4, T^3/2; T^3/2, T^2];
Q = QT*sa^2; R = sv^2;

seed = 100; randn(’state’,seed); % generate noise inputs
v = sv * randn(1,length(t));
w = [T^2/2; T] * sa * randn(1,length(t));

13.13. Parameter Estimation with the EM Algorithm 667

x0 = [0; 0.1]; S0 = 0.1 * eye(2);

x(:,1) = x0;
for n=1:N-1 % generate model signals

x(:,n+1) = A*x(:,n) + w(n);
y(n) = C*x(:,n) + v(n);

end
y(N) = C*x(:,N) + v(N);

L = @(th) kfilt(A,C, QT * th(1)^2, th(2)^2, y,x0,S0); % likelihood

th0 = [0, 0]’; % initialize search
th = fminsearch(L, th0); % Nelder-Mead search

Q = QT * th(1)^2; R = th(2)^2; % estimated Q,R

[Lmin,X,P,Xf,Pf] = kfilt(A, C, Q, R, y, x0, S0); % run Kalman filter
[Lmin,Xs,Ps] = ksmooth(A, C, Q, R, y, x0, S0); % run Kalman smoother

figure; plot(t,y,’:’, t,Xf(1,:),’-’); % plot position only
figure; plot(t,y,’:’, t,Xs(1,:),’-’);

13.13 Parameter Estimation with the EM Algorithm

The application of the Expectation-Maximization (EM) algorithm [905,906] to the esti-
mation of the state-space model parameters has been discussed in [909–911].

We begin by developing a solution for the model parameters {A,C,Q,R, x̄0, Σ0}
in terms of the signals xn,yn of the state-space model, then convert that into a com-
putable iterative algorithm, and then show that it is equivalent to the EM algorithm. The
approach allows us to handle also the case of a noise covariance matrix Q of less than
full rank. We start with a standard time-invariant state-space model iterated over the
time interval 0 ≤ n ≤ N:

xn+1 = Axn +wn
yn = Cxn + vn

(13.13.1)

with start-up value x0 with mean and covariance x̄0, Σ0. The noise covariances are:

E[wnwTi]= Qδni , E[vnvTi]= Rδni , E[wnvTi]= 0

E[wnxT0]= 0 , E[vnxT0]= 0
(13.13.2)

These assumptions imply that E[vnxTn]= 0, which leads to

E[vnxTn]= E
[
(yn −Cxn)xTn

] = 0 ⇒ E[ynxTn]= CE[xnxTn]

and using this result, we obtain:

R = E[vnvTn]= E
[
(yn −Cxn)(yn −Cxn)T

] =
= E[ynyTn]−CE[xnyTn]−E[ynxTn]CT +CE[xnxTn]CT = E[ynyTn]−CE[xnyTn]

Similarly, using E[wnxTn]= 0, we find:

668 13. Kalman Filtering

E[wnxTn]= E
[
(xn+1 −Axn)xTn

] = 0 ⇒ E[xn+1xTn]= AE[xnxTn]

Q = E[wnwTn]= E
[
(xn+1 −Axn)(xn+1 −Axn)T

] =
= E[xn+1xTn+1]−AE[xnxTn+1]−E[xn+1xTn]AT +AE[xnxTn]AT

= E[xn+1xTn+1]−AE[xnxTn+1]

We collect the above together,

E[ynxTn]= CE[xnxTn]

R = E[ynyTn]−CE[xnyTn]−E[ynxTn]CT +CE[xnxTn]CT =
= E[ynyTn]−CE[xnyTn]

E[xn+1xTn]= AE[xnxTn]

Q = E[xn+1xTn+1]−AE[xnxTn+1]−E[xn+1xTn]AT +AE[xnxTn]AT =
= E[xn+1xTn+1]−AE[xnxTn+1]

(13.13.3)

Since these are valid for each n in the interval 0 ≤ n ≤ N, they will also be valid if
we form the average sums over the same interval, for example,

N∑
n=0

E[ynxTn]= C
N∑
n=0

E[xnxTn] and
N−1∑
n=0

E[xn+1xTn]= A
N−1∑
n=0

E[xnxTn]

This leads us to define the average quantities:

Uxx = 1

N + 1

N∑
n=0

E[xnxTn]

Uyx = 1

N + 1

N∑
n=0

E[ynxTn]

Uyy = 1

N + 1

N∑
n=0

E[ynyTn]

Vxx = 1

N

N−1∑
n=0

E[xnxTn]

Vx1x =
1

N

N−1∑
n=0

E[xn+1xTn]

Vx1x1 =
1

N

N−1∑
n=0

E[xn+1xTn+1]

(13.13.4)

with Uxy = UTyx and Vxx1 = VTx1x. Then, the summed form of Eqs. (13.13.3) read:

Uyx = CUxx
R = Uyy −CUxy −UyxCT +CUxxCT = Uyy −CUxy
Vx1x = AVxx
Q = Vx1x1 −AVxx1 −Vx1xA

T +AVxxAT = Vx1x1 −AVxx1

which may be solved for the model parameters:

13.13. Parameter Estimation with the EM Algorithm 669

C = UyxU−1
xx

R = Uyy −CUxy
A = Vx1xV

−1
xx

Q = Vx1x1 −AVxx1

(13.13.5)

If A,C are known, then one can compute R,Q from the alternative quadratic expres-
sions, which guarantee the (semi) positive-definiteness property of R,Q:

R = Uyy −CUxy −UyxCT +CUxxCT

Q = Vx1x1 −AVxx1 −Vx1xA
T +AVxxAT

(13.13.6)

The above can be turned into an iterative estimation algorithm as follows. We start
with the set of observations, Y = {y0,y1, . . . ,yN}, and an initial choice for the model
parameters, say,

θold = {
Aold, Cold,Qold, Rold, x̄old

0 , Σold
0

}
The Kalman smoother is run on the data Y using this set of model parameters, and the
estimated smoothed state vectors x̂n/N and corresponding mean-square error covari-
ances are computed. The expectation values in Eq. (13.13.4) are then replaced by the
conditional ones based on Y and θold, that is,

Ûxx = 1

N + 1

N∑
n=0

E[xnxTn |Y]

Ûyx = 1

N + 1

N∑
n=0

E[ynxTn |Y]

Ûyy = 1

N + 1

N∑
n=0

E[ynyTn |Y]

V̂xx = 1

N

N−1∑
n=0

E[xnxTn |Y]

V̂x1x =
1

N

N−1∑
n=0

E[xn+1xTn |Y]

V̂x1x1 =
1

N

N−1∑
n=0

E[xn+1xTn+1 |Y]

(13.13.7)

Using the orthogonal decomposition for the smoothed states, we have:

xn = x̂n/N + en/N , E[x̂n/NeTn/N]= 0

xn+1 = x̂n+1/N + en+1/N , E[x̂n+1/NeTn+1/N]= 0 , E[x̂n/NeTn+1/N]= 0

which give:
E[xnxTn]= E[x̂n/N x̂Tn/N]+E[en/N eTn/N]

E[xn+1xTn]= E[x̂n+1/N x̂Tn/N]+E[en+1/N eTn/N]

E[xn+1xTn+1]= E[x̂n+1/N x̂Tn+1/N]+E[en+1/N eTn+1/N]

Replacing these by the conditional expectations, we obtain:

670 13. Kalman Filtering

E[xnxTn |Y]= E[x̂n/N x̂Tn/N |Y]+E[en/N eTn/N |Y]= x̂n/N x̂Tn/N + Pn/N
E[xn+1xTn |Y]= E[x̂n+1/N x̂Tn/N |Y]+E[en+1/N eTn/N |Y]= x̂n+1/N x̂Tn/N +Vn+1,n

E[xn+1xTn+1 |Y]= E[x̂n+1/N x̂Tn+1/N |Y]+E[en+1/N eTn+1/N |Y]= x̂n+1/N x̂Tn+1/N + Pn+1/N

where we set Vn+1,n = E[en+1/N eTn/N |Y], given by Eq. (13.10.25). Similarly, we have:

E[ynxTn |Y]= ynx̂n/N

E[ynyTn |Y]= ynyTn

Thus, we may replace Eqs. (13.13.4) by their estimated versions based on Y and θold:

Ûxx = 1

N + 1

N∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

]

Ûyx = 1

N + 1

N∑
n=0

ynx̂Tn/N

Ûyy = 1

N + 1

N∑
n=0

ynyTn

V̂xx = 1

N

N−1∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

]

V̂x1x =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn/N +Vn+1,n

]

V̂x1x1 =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn+1/N + Pn+1/N

]
(13.13.8)

Eqs. (13.13.5) can be used now to compute a new set of model parameters:

Cnew = ÛyxÛ−1
xx

Rnew = Ûyy −Cnew Ûxy

Anew = V̂x1xV̂
−1
xx

Qnew = V̂x1x1 −Anew V̂xx1

(13.13.9)

or, if A,C are known, only Q,R are updated:

Rnew = Ûyy −CÛxy − ÛyxCT +CÛxxCT

Qnew = V̂x1x1 −AV̂xx1 − V̂x1xA
T +AV̂xxAT

(13.13.10)

The initial values x̄0, Σ0 are also estimated in the same way:

x̄0 = E[x0]

Σ0 = E[(x0 − x̄0)(x0 − x̄0)T]
⇒

x̄new
0 = E[x0 |Y]= x̂0/N

Σ̂new
0 = E[(x0 − x̄0)(x0 − x̄0)T |Y]= P0/N , or,

x̄new
0 = x̂0/N , Σ̂new

0 = P0/N (13.13.11)

13.13. Parameter Estimation with the EM Algorithm 671

Thus, Eqs. (13.13.9)–(13.13.11) define a new set of model parameters:

θnew = {
Anew, Cnew,Qnew, Rnew, x̄new

0 , Σnew
0

}
and the iteration can be repeated until convergence by monitoring the value of the like-
lihood function Lθ(Y). Of course, all or any subset of the model parameters θ may be
iterated through this algorithm.

The outputs Xs, Ps, V of the MATLAB function ksmooth and can be used to efficiently
calculate the quantities of Eq. (13.13.8). For example, we have in MATLAB notation:

Ûxx = 1

N + 1

N∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

] = 1

N + 1

(
Xs ∗X′s + sum(Ps,3)

)

Ûyx = 1

N + 1

N∑
n=0

ynx̂Tn/N =
1

N + 1

(
Y ∗X′s

)

Ûyy = 1

N + 1

N∑
n=0

ynyTn =
1

N + 1

(
Y ∗Y′)

V̂xx = 1

N

N−1∑
n=0

[
x̂n/N x̂Tn/N + Pn/N

] = 1

N
(
Xs0 ∗X′s0 + sum(Ps0,3)

)

V̂x1x =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn/N +Vn+1,n

] = 1

N
(
Xs1 ∗X′s0 + sum(V0,3)

)

V̂x1x1 =
1

N

N−1∑
n=0

[
x̂n+1/N x̂Tn+1/N + Pn+1/N

] = 1

N
(
Xs1 ∗X′s1 + sum(Ps1,3)

)
where we used the definitions:

Y = [
y0,y1, . . . ,yN

]
Xs =

[
x̂0/N, x̂1/N, . . . , x̂N−1/N, x̂N/N

] = [
Xs0, x̂N/N

] = [
x̂0/N, Xs1

]
Xs0 =

[
x̂0/N, x̂1/N, . . . , x̂N−1/N

]
Xs1 =

[
x̂1/N, . . . , x̂N−1/N, x̂N/N

]
(13.13.12)

and Ps0, Ps1, V0 are sub-arrays of Ps and V matching the indexing of (13.13.12).

Example 13.13.1: We apply the estimation algorithm to the Nile River data of Example 13.12.1
by keeping A,C fixed, and only estimating Q,R, x̄0, Σ0. We allow 300 iterations, with
starting values chosen to be the same as those of Example 13.12.1. The following MATLAB
code illustrates the implementation of the algorithm:

K = 300; N = length(y)-1; % use same y as in Example 15.12.1

x0 = 0; S0 = 1e7; Q = 1; R = 1; % initial values for the EM iteration

672 13. Kalman Filtering

for i=1:K, % EM iteration
[L(i),Xs,Ps,V] = ksmooth(A,C,Q,R,y,x0,S0); % E-step of the algorithm

Uxx = (Xs*Xs’ + sum(Ps,3))/(N+1); % construct U,V matrices
Uyx = (y*Xs’)/(N+1);
Uyy = (y*y’)/(N+1);
Vxx = (Xs(:,1:end-1)*Xs(:,1:end-1)’ + sum(Ps(:,:,1:end-1),3))/N;
V1x = (Xs(:,2:end)*Xs(:,1:end-1)’ + sum(V(:,:,1:end-1),3))/N;
V11 = (Xs(:,2:end)*Xs(:,2:end)’ + sum(Ps(:,:,2:end),3))/N;

R = Uyy - C*Uyx’ - Uyx*C’ + C*Uxx*C’; % M-step of the algorithm
Q = V11 - A*V1x’ - V1x*A’ + A*Vxx*A’;

% x0 = Xs(:,1); % uncomment to also estimate x0,S0
% S0 = Ps(:,:,1);

end

k = 0:K-1; figure; plot(k,L); % plot likelihood function

0 50 100 150 200 250 300
540

545

550

555

560

iterations

likelihood function

0 50 100 150 200 250 300
540

545

550

555

560

iterations

likelihood function

The left graph shows the negative-log-likelihood function of Eq. (13.12.2) plotted versus
iteration number for the case when only Q,R are being estimated, with A,C, x̄0, Σ0 held
fixed. The right graphs shows the case when Q,R, x̄0, Σ0 are estimated. The estimated
quantities at the last iteration are:

Q = 1468.5 , R = 15099.0

Q = 1294.7 , R = 15252.4 , x̄0 = 1118.4 , Σ0 = 0.6

The results for the first case are to be compared with those of Example 13.12.1, that is,
Q = 1468.5, R = 15099.7. The second case is different because four model parameters
are being iterated, which lead to a smaller value of the likelihood function.

We note that in both cases, the likelihood function converges very fast initially, and then
reaches a slowly-decreasing plateau. One could perhaps stop the iteration as soon the
plateau is reached and use the slightly suboptimal estimates. ��

13.13. Parameter Estimation with the EM Algorithm 673

The above estimation method can be extended to handle the case of a rank-defective
noise covariance matrix Q. This arises for the following type of state-space model:

xn+1 = Axn + Bwn
yn = Cxn + vn

(13.13.13)

where xn is p-dimensional and B is a p×qmatrix with q < p, assumed to have full rank
(i.e., q), and wn is a q-dimensional white-noise signal with non-singular q×q covariance
matrix Qw. The corresponding Q that appears in the Kalman filtering algorithm is then
Q = BQwBT, and has rank q.

Assuming a known B, the iterative algorithm can be modified to estimateQw. Given
an initial Qold

w , we calculate Qold = BQold
w BT, and then carry out the usual iteration step

to determine Qnew from Eq. (13.13.9) or (13.13.10). To find Qnew
w , we solve the equation

BQnew
w BT = Qnew using the pseudoinverse of B, that is, B+ = (BTB)−1BT,

Qnew
w = B+QnewB+T (13.13.14)

Example 13.13.2: Consider the α–β tracking model discussed in Example 13.12.2 and defined
by the state-space model:[

xn+1

ẋn+1

]
=

[
1 T
0 1

][
xn
ẋn

]
+

[
T2/2
T

]
an , yn = [1,0]

[
xn
ẋn

]
+ vn

with model matrices:

A =
[

1 T
0 1

]
, C = [1,0] , B =

[
T2/2
T

]
, Qw = σ2

a , Q = BQwBT , R = σ2
v

The following figure shows the likelihood as a function of iteration number for the two
cases of estimating only Qw,R (left graph), or, Qw,R, x̄0, Σ0 (right graph), using 300 it-
erations. The data yn are generated by exactly the same code (not repeated here) as in
Example 13.12.2. We note again the rapid initial decrease, followed by a plateau.

0 50 100 150 200 250 300
350

370

390

410

430

450

iterations

likelihood function

0 50 100 150 200 250 300
350

370

390

410

430

450

iterations

likelihood function

The MATLAB code used to generate the right graph is shown below.

674 13. Kalman Filtering

K = 300; N = length(y)-1; t =0:N; % data y generated as in Ex. 15.12.2

B = [T^2/2; T]; Binv = pinv(B);

Qw = 0.1; R = 1; % initial values for the iteration
x0 = [0; 0.1]; S0 = 0.1 * eye(2);

for i=1:K,
Q = B*Qw*B’; % construct Q_old
[L(i),Xs,Ps,V] = ksmooth(A,C,Q,R,y,x0,S0);

Uxx = (Xs*Xs’ + sum(Ps,3))/(N+1); % compute U,V matrices
Uyx = (y*Xs’)/(N+1);
Uyy = (y*y’)/(N+1);
Vxx = (Xs(:,1:end-1)*Xs(:,1:end-1)’ + sum(Ps(:,:,1:end-1),3))/N;
V1x = (Xs(:,2:end)*Xs(:,1:end-1)’ + sum(V(:,:,1:end-1),3))/N;
V11 = (Xs(:,2:end)*Xs(:,2:end)’ + sum(Ps(:,:,2:end),3))/N;

R = Uyy - C*Uyx’ - Uyx*C’ + C*Uxx*C’; % construct R_new
Q = V11 - A*V1x’ - V1x*A’ + A*Vxx*A’; % construct Q_new
Qw = Binv * Q * Binv’; % construct Q_w_new

x0 = Xs(:,1); % comment out to skip estimation
S0 = Ps(:,:,1);

end

k = 0:K-1; figure; plot(k,L);

[Lmin,X,P,Xf,Pf] = kfilt(A,C,Q,R,y,x0,S0); % use estimated Q,R,x0,S0
[Lmin,Xs,Ps] = ksmooth(A,C,Q,R,y,x0,S0);

figure; plot(t,y,’:’, t,Xf(1,:),’-’);
figure; plot(t,y,’:’, t,Xs(1,:),’-’);

Once the parametersQw,R, x̄0, Σ0 have been estimated, the Kalman filter and smoother are
run to determine the filtered and smoothed state estimates, x̂n/n and x̂n/N . Their position
components are shown in the figure below.

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
filtered position estimate

n, time samples

 observations
 estimate

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
smoothed position estimate

n, time samples

 observations
 estimate

The estimated parameters in Example 13.12.2 were Qw = (0.0199)2 and R = (2.0237)2,

13.13. Parameter Estimation with the EM Algorithm 675

compared with the theoretical values that were simulated Qw = (0.02)2 and R = (2.0)2.
By comparison, the present method gives the estimates: Qw = (0.0201)2 andR = (2.0235)2

if onlyQw,R are estimated, andQw = (0.0193)2 andR = (2.0221)2, if all four parameters
Qw,R, x̄0, Σ0 are estimated. In the latter case, the estimated initial values were:

x̄0 =
[
−0.4468

0.0791

]
, Σ0 =

[
0.00199 −0.00015
−0.00015 0.00003

]

Connection to the EM Algorithm

Consider a realization of the states and observations of the state-space model (13.13.1),

X = [
x0,x1, . . . ,xN

]
, Y = [

y0,y1, . . . ,yN
]

(13.13.15)

Ideally, the maximum likelihood method would maximize the joint probability den-
sity pθ(X,Y), or equivalently the log density, lnpθ(X,Y), with respect to the model
parameters θ. However, in practice only the observations Y are available and not the
states X, and one chooses to maximize instead the marginal density pθ(Y):

pθ(Y)=
∫
pθ(X,Y)dX (13.13.16)

The EM algorithm for maximizing (13.13.16) is based on the following inequality:∫
p(X|Y,θold) ln

[
pθ(X,Y)
p(X|Y,θold)

]
dX ≤ lnpθ(Y) (13.13.17)

where p(X|Y,θold) is the conditional density of X given Y and the parameter set θold.
Eq. (13.13.17) is a consequence of Jensen’s inequality, which implies:∫

p(X|Y,θold) ln

[
pθ(X,Y)
p(X|Y,θold)

]
dX ≤ ln

[∫
p(X|Y,θold)

pθ(X,Y)
p(X|Y,θold)

dX
]

= ln
[∫
pθ(X,Y)dX

]
= lnpθ(Y)

It follows from Bayes’s rule, pθ(X,Y)= pθ(X|Y)pθ(Y), that (13.13.17) becomes an
equality at θ = θold. Eq. (13.13.17) can now be re-written in the form:

Q(θ,θold)+I(θold)≤ lnpθ(Y) (13.13.18)

where we defined the following conditional expectation and entropy with respect to the
conditional density p(X|Y,θold):

Q(θ,θold) =
∫
p(X|Y,θold) lnpθ(X,Y)dX ≡ E

[
lnpθ(X,Y)| Y,θold]

I(θold) = −
∫
p(X|Y,θold) lnp(X|Y,θold)dX

(13.13.19)

We note that I(θold) is a positive quantity. The EM algorithm chooses that θ that
maximizes the left bound in (13.13.17). More precisely, the EM algorithm consists of the
repetition the the following two steps:

676 13. Kalman Filtering

a. The expectation step (E-step), in which the conditional expectation Q(θ,θold) is
calculated.

b. The maximization step (M-step), in which Q(θ,θold) is maximized resulting into
a new θ:

θnew = arg max
θ

Q(θ,θold)

The convergence properties of the EM algorithm have been discussed in the literature
[905,906], and its application to state-space models, in [909–911] and others.

The advantage of the EM algorithm is that, although pθ(Y) is hard to calculate and
maximize, the joint density pθ(X,Y) is straightforward to calculate before the E-step
is carried out. Indeed, successively applying Bayes’s rule we have:

pθ(X,Y)= p(x0)
N−1∏
n=0

p(xn+1|xn)
N∏
n=0

p(yn|xn)

Assuming Gaussian statistics and full-rank covariance matricesQ,R,Σ0, we find for the
negative-log-likelihood function up to a constant:

− lnpθ(X,Y) = 1

2

[
ln detΣ0 + (x0 − x̄0)TΣ−1

0 (x0 − x̄0)
]

+ 1

2

N−1∑
n=0

[
ln detQ + (xn+1 −Axn)TQ−1(xn+1 −Axn)

]

+ 1

2

N∑
n=0

[
ln detR+ (yn −Cxn)TR−1(yn −Cxn)

]
(13.13.20)

and using the identity, ln detQ = tr lnQ, we obtain:

− lnpθ(X,Y) = 1

2
tr

[
lnΣ0 + Σ−1

0 (x0 − x̄0)(x0 − x̄0)T
]

+ 1

2
tr

[
lnQ +Q−1 1

N

N−1∑
n=0

(xn+1 −Axn)(xn+1 −Axn)T
]

+ 1

2
tr

[
lnR+R−1 1

N + 1

N∑
n=0

(yn −Cxn)(yn −Cxn)T
]

(13.13.21)

Taking conditional expectations with respect to p(X|Y,θold), we have:

−Q(θ,θold) = 1

2
tr

[
lnΣ0 + Σ−1

0 E
[
(x0 − x̄0)(x0 − x̄0)T |Y,θold]]

+ 1

2
tr

[
lnQ +Q−1 1

N

N−1∑
n=0

E
[
(xn+1 −Axn)(xn+1 −Axn)T |Y,θold]]

+ 1

2
tr

[
lnR+R−1 1

N + 1

N∑
n=0

E
[
(yn −Cxn)(yn −Cxn)T |Y,θold]]

13.13. Parameter Estimation with the EM Algorithm 677

which can be written in terms of the definitions (13.13.8),

−Q(θ,θold) = 1

2
tr

[
lnΣ0 + Σ−1

0

[
(x̄0 − x̂0/N)(x̄0 − x̂0/N)T+P0/N

]]
+ 1

2
tr

[
lnQ +Q−1[V̂x1x1 −AV̂xx1 − V̂x1xA

T +AV̂xxAT
]]

+ 1

2
tr

[
lnR+R−1[Ûyy −CÛxy − ÛyxCT +CÛxxCT]]

(13.13.22)

This represents the E-step of the algorithm. The M-step leads to the same equations
as (13.13.9)–(13.13.11). Indeed, the minimization of−Q(θ,θold)with respect to x̄0 gives
x̄0 = x̂0/N. Similarly, the first-order differentials with respect to A and C are:

−dQ = 1

2
tr

[
Q−1[(AV̂xx − V̂x1x)dA

T + dA(V̂xxAT − V̂xx1)
]]

−dQ = 1

2
tr

[
R−1[(CÛxx − Ûyx)dCT + dC(Ûxx − Ûxy)]]

Since the variations dA,dC are arbitrary, the vanishing of their coefficients leads to
the solutions given in Eq. (13.13.9). The minimizations of −Q(θ,θold) with respect to
Q,R,Σ0 are similar and have the generic form of finding R that minimizes:

F = tr
[
lnR+R−1U

]
If all entries of R are treated as independent variables, then the vanishing of the

first-order differential of F gives:

dF = tr
[
R−1dR−R−1dRR−1U

] = 0 ⇒ R = U

where we used d(R−1)= −R−1dRR−1. In our case,Q,R,Σ0 are symmetric matrices and
only their lower (or upper) triangular parts may be regarded as independent variables.
However, the answer turns out to be the same as if all matrix elements were treated as
independent. Thus, the minimization of −Q(θ,θold) gives the same answers as those
of Eqs. (13.13.9)–(13.13.11).

14
Spectrum Estimation and Array

Processing

14.1 Spectrum Estimation by Autoregressive Modeling

When a block of signal samples is available, it may be too short to provide enough
frequency resolution in the periodogram spectrum. Often, it may not even be correct
to extend the length by collecting more samples, since this might come into conflict
with the stationarity of the segment. In cases such as these, parametric representation
of the spectra by means of autoregressive models can provide much better frequency
resolution than the classical periodogram method [926]. This approach was discussed
briefly in Sec. 1.13.

The spectrum estimation procedure is as follows: First, the given data segment
{y0, y1, . . . , yN−1} is subjected to one of the analysis methods discussed in Sec. 12.12
to extract estimates of the LPC model parameters {a1, a2, . . . , aM;EM}. The choice of
the order M is an important consideration. There are a number of criteria for model
order selection [926], but there is no single one that works well under all circumstances.
In fact, selecting the right order M is more often an art than science. As an example,
we mention Akaike’s final prediction error (FPE) criterion which selects theM that min-
imizes the quantity

EM · N +M + 1

N −M − 1
= min

where EM is the estimate of the mean-square prediction error for theMth order predic-
tor, and N is the length of the sequence yn. As M increases, the factor EM decreases
and the second factor increases, thus, there is a minimum value. Then, the spectrum
estimate is given by

SAR(ω)= EM∣∣AM(ω)∣∣2 =
EM∣∣1+ a1e−jω + a2e−2jω + · · · + aMe−Mjω

∣∣2 (14.1.1)

Note that this would be the exact spectrum if yn were autoregressive with the above
set of model parameters. Generally, spectra that have a few dominant spectral peaks
can be modeled quite successfully by such all-pole autoregressive models. One can also
fit the given block of data to more general ARMA models. The decision to model a spec-
trum by ARMA, AR, or MA models should ultimately depend on some prior information

14.1. Spectrum Estimation by Autoregressive Modeling 679

regarding the physics of the process yn. The reader is referred to the exhaustive review
article of Kay and Marple [926], and to [1076–1080]

Next, we compare by means of a simulation example the classical periodogram
method, the Yule-Walker method, and Burg’s method of computing spectrum estimates.
Generally, the rule of thumb to follow is that Burg’s method should work better than the
other methods on short records of data, and that all three methods tend to improve as
the data record becomes longer. For our simulation example, we chose a fourth order
autoregressive model characterized by two very sharp peaks in its spectrum. The signal
generator for the sequence yn was

yn + a1yn−1 + a2yn−2 + a3yn−3 + a4yn−4 = εn
where εn was zero-mean, unit-variance, white noise. The prediction-error filter A(z)
was defined in terms of its four zeros:

A(z) = 1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

= (1− z1z−1)(1− z∗1 z−1)(1− z2z−1)(1− z∗2 z−1)

where the zeros were chosen as

z1 = 0.99 exp(0.2πj) , z2 = 0.99 exp(0.4πj)

This gives for the filter coefficients

a1 = −2.2137 , a2 = 2.9403 , a3 = −2.1697 , a4 = 0.9606

The exact spectrum is given by Eq. (14.1.1) with E4 = σ2
ε = 1. Since the two zeros

z1 and z2, are near the unit circle, the spectrum will have two very sharp peaks at the
normalized frequencies

ω1 = 0.2π, ω2 = 0.4π [radians/sample]

Using the above difference equation and a realization of εn, a sequence of length 20
of yn samples was generated (the filter was run for a while until its transients died out
and stationarity of yn was reached). The same set of 20 samples was used to compute the
ordinary periodogram spectrum and the autoregressive spectra using the Yule-Walker
and Burg methods of extracting the model parameters. Then, the length of the data
sequence yn was increased to 100 and the periodogram, Yule-Walker, and Burg spectra
were computed again. Fig. 14.1.1 shows the periodogram spectra for the two signal
lengths of 20 and 100 samples. Fig. 14.1.2 show the Yule-Walker spectra, and Fig. 14.1.3,
the Burg spectra.

The lack of sufficient resolution of both the periodogram and the Yule-Walker spec-
trum estimates for the shorter data record can be attributed to the windowing of the
signal yn. But as the length increases the effects of windowing become less pronounced
and both methods improve. Burg’s method is remarkable in that it works very well
even on the basis of very short data records. The Burg spectral estimate is sometimes
called the “maximum entropy” spectral estimate. The connection to entropy concepts
is discussed in the above references.

680 14. Spectrum Estimation and Array Processing

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

digital frequency ω in units of π

dB

4th order / 20 samples

exact AR
periodogram

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

digital frequency ω in units of π

dB

4th order / 100 samples

exact AR
periodogram

Fig. 14.1.1 Periodogram spectra based on 20 and 100 samples.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

digital frequency ω in units of π

dB

4th order / 20 samples

exact AR
Yule−Walker

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

digital frequency ω in units of π

dB

4th order / 100 samples

exact AR
Yule−Walker

Fig. 14.1.2 Yule-Walker spectra based on 20 and 100 samples.

14.2 Spectral Analysis of Sinusoids in Noise

One of the most important signal processing problems is the estimation of the frequen-
cies and amplitudes of sinusoidal signals buried in additive noise. In addition to its
practical importance, this problem has served as the testing ground for all spectrum
estimation techniques, new or old. In this section we discuss four approaches to this
problem: (1) the classical method, based on the Fourier transform of the windowed
autocorrelation; (2) the maximum entropy method, based on the autoregressive model-
ing of the spectrum; (3) the maximum likelihood, or minimum energy, method; and (4)
Pisarenko’s method of harmonic retrieval which offers the highest resolution.

Consider a signal consisting of L complex sinusoids with random phases in additive
noise:

yn = vn +
L∑
i=1

Aiejωin+jφi (14.2.1)

14.2. Spectral Analysis of Sinusoids in Noise 681

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

digital frequency ω in units of π

dB

4th order / 20 samples

exact AR
Burg

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

digital frequency ω in units of π

dB

4th order / 100 samples

exact AR
Burg

Fig. 14.1.3 Burg spectra based on 20 and 100 samples.

where the phases φi are uniformly distributed and independent of each other, and vn
is zero-mean white noise of variance σ2

v , assumed to be independent of the phases φi:

E[v∗nvm]= σ2
vδnm , E[φivn]= 0 (14.2.2)

Under these assumptions, the autocorrelation of yn is easily found to be

R(k)= E[yn+ky∗n]= σ2
vδ(k)+

L∑
i=1

Piejωik (14.2.3)

where Pi denotes the power of the ith sinusoid; that is, Pi = |Ai|2. The basic problem
is to extract the set of frequencies {ω1,ω2, . . . ,ωL} and powers {P1, P2, . . . , PL} by
appropriate processing a segment of signal samples yn. The theoretical power spectrum
is a line spectrum superimposed on a flat white-noise background:

S(ω)= σ2
v +

L∑
i=1

Pi 2πδ(ω−ωi) (14.2.4)

which is obtained by Fourier transforming Eq. (14.2.3):

S(ω)=
∞∑

k=−∞
R(k)e−jωk (14.2.5)

Given a finite set of autocorrelation lags {R(0), R(1), . . . , R(M)}, the classical spec-
trum analysis method consists of windowing these lags by an appropriate window and
then computing the sum (14.2.5), truncated to −M ≤ k ≤M. We will use the triangular
or Bartlett window which corresponds to the mean value of the ordinary periodogram
spectrum [12]. This window is defined by

wB(k)=

⎧⎪⎪⎨⎪⎪⎩
M + 1− |k|
M + 1

, if −M ≤ k ≤M

0 , otherwise

682 14. Spectrum Estimation and Array Processing

Replacing R(k) by wB(k)R(k) in Eq. (14.2.5), we obtain the classical Bartlett spec-
trum estimate:

ŜB(ω)=
M∑

k=−M
wB(k)R(k)e−jωk (14.2.6)

We chose the Bartlett window because this expression can be written in a compact
matrix form by introducing the (M + 1)-dimensional phase vector

sω =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ejω

e2jω

...
eMjω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the (M + 1)×(M + 1) autocorrelation matrix R, defined as

Rkm = R(k−m)= σ2
vδ(k−m)+

L∑
i=1

Piejωi(k−m) , 0 ≤ k,m ≤M

Ignoring the 1/(M+1) scale factor arising from the definition of the Bartlett window,
we may write Eq. (14.2.6) as

ŜB(ω)= s†ωRsω (classical Bartlett spectrum) (14.2.7)

The autocorrelation matrix R of the sinusoids can also be written in terms of the
phasing vectors as

R = σ2
vI +

L∑
i=1

Pi sωis
†
ωi (14.2.8)

where I is the (M+1)×(M+1) identity matrix. It can be written even more compactly
by introducing the L×L diagonal power matrix, and the (M + 1)×L sinusoid matrix

P = diag{P1, P2, . . . , PL} , S = [sω1 , sω2 , . . . , sωL]

Then, Eq. (14.2.8) becomes
R = σ2

vI + SPS† (14.2.9)

Inserting Eq. (14.2.8) into (14.2.7) we find

ŜB(ω)= σ2
v s†ωsω +

L∑
i=1

Pi s†ωsωis
†
ωisω

Defining the function

W(ω)=
M∑
m=0

e−jωm = 1− e−jω(M+1)

1− e−jω =
sin

(
ω(M + 1)

2

)
sin

(
ω
2

) e−jωM/2 (14.2.10)

14.2. Spectral Analysis of Sinusoids in Noise 683

we note that
s†ωsωi =W(ω−ωi) and s†ωsω =W(0)=M + 1

Then, in this notation, the Bartlett spectrum (14.2.7) becomes

ŜB(ω)= σ2
v(M + 1)+

L∑
i=1

Pi
∣∣W(ω−ωi)∣∣2

(14.2.11)

The effect of W(ω − ωi) is to smear each spectral line δ(ω − ωi) of the true
spectrum. If the frequencies ωi are too close to each other the smeared peaks will
tend to overlap with a resulting loss of resolution. The function W(ω) is the Fourier
transform of the rectangular window and is depicted below:

It has an effective resolution width of Δω = 2π/(M + 1). For fairly large Ms,
the first side lobe is about 13 dB down from the main lobe. As M increases, the main
lobe becomes higher and thinner, resembling more and more a delta function, which
improves the frequency resolution capability of this estimate.

Next, we derive a closed form expression [1085] for the AR, or maximum entropy,
spectral estimate. It is given by Eq. (14.1.1) and is obtained by fitting an order-M au-
toregressive model to the autocorrelation lags {R(0), R(1), . . . , R(M)}. This can be
done for any desired value of M. Autoregressive spectrum estimates generally work
well in modeling “peaked” or resonant spectra; therefore, it is expected that they will
work in this case, too. However, it should be kept in mind that AR models are not re-
ally appropriate for such sinusoidal signals. Indeed, AR models are characterized by
all-pole stable filters that always result in autocorrelation functions R(k) which decay
exponentially with the lag k; whereas Eq. (14.2.3) is persistent in k and never decays.

As a rule, AR modeling of sinusoidal spectra works very well as long as the signal to
noise ratios (SNRs) are fairly high. Pisarenko’s method, to be discussed later, provides
unbiased frequency estimates regardless of the SNRs. The LPC model parameters for the
AR spectrum estimate (14.1.1) are obtained by minimizing the mean-square prediction
error:

E = E[e∗nen]= a†Ra = min , en =
M∑
m=0

amyn−m (14.2.12)

where a = [1, a1, a2, . . . , aM]T is the prediction-error filter and R, the autocorrelation
matrix (14.2.9). The minimization of E must be subject to the linear constraint that the
first entry of a be unity. This constraint can be expressed in vector form

a0 = u†0a = 1 (14.2.13)

684 14. Spectrum Estimation and Array Processing

where u0 = [1,0,0, . . . ,0]T is the unit vector consisting of 1 followed byM zeros. Incor-
porating this constraint with a Lagrange multiplier, we solve the minimization problem:

E = a†Ra+ μ(1− u†0a)= min

Differentiating with respect to a we obtain the normal equations:

Ra = μu0

To fix the Lagrange multiplier, multiply from the left by a† and use Eq. (14.2.13) to
get a†Ra = μa†u0, or, E = μ. Thus, μ is the minimized value of E, which we denote by
E. In summary, we have

Ra = Eu0 ⇒ a = ER−1u0 (14.2.14)

Multiplying from the left by u†0, we also find 1 = E(u†0R−1u0), or

E−1 = u†0R−1u0 = (R−1)00 (14.2.15)

which is, of course, the same as Eq. (12.9.18). The special structure of R allows the
computation of a and the AR spectrum in closed form. Applying the matrix inversion
lemma to Eq. (14.2.9), we find the inverse of R:

R−1 = 1

σ2
v
(I + SDS†) (14.2.16)

where D is an L×L matrix given by

D = −[
σ2
vP−1 + S†S]−1

(14.2.17)

Equation (14.2.16) can also be derived directly by assuming such an expression for
R−1 and then fixing D. The quantity σ2

vP−1 in D is a matrix of noise to signal ratios.
Inserting Eq. (14.2.16) into (14.2.14), we find for a :

a = ER−1u0 = E
σ2
v
[u0 + SDS†u0]= E

σ2
v
[u0 + Sd]

where we used the fact that s†ωiu0 = 1, which implies that

S†u0 =

⎡⎢⎢⎢⎢⎢⎣
s†ω1

s†ω2

...

s†ωL

⎤⎥⎥⎥⎥⎥⎦ u0 =

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦ ≡ v (i.e., a column of L ones)

and defined

d =

⎡⎢⎢⎢⎢⎢⎣
d1

d2

...
dL

⎤⎥⎥⎥⎥⎥⎦ = Dv , or, di =
L∑
j=1

Dij

14.2. Spectral Analysis of Sinusoids in Noise 685

Using Eq. (14.2.15), we have also

E−1 = u†0R−1u0 = 1

σ2
v

u†0[I + SDS†]=
1

σ2
v
[1+ vTDv]

= 1

σ2
v
[1+ vTd]= 1

σ2
v

[
1+

L∑
i=1

di
]

and, therefore,

E = σ2
v

[
1+

L∑
i=1

di
]−1

(14.2.18)

We finally find for the prediction-error filter

a = u0 + Sd

1+ vTd
=
u0 +

L∑
i=1

disωi

1+
L∑
i=1

di

(14.2.19)

The frequency response A(ω) of the prediction-error filter is obtained by dotting
the phasing vector sω into a :

A(ω)=
M∑
m=0

ame−jωm = s†ωa =
1+

L∑
i=1

dis†ωsωi

1+
L∑
i=1

di

using the result that s†ωsωi =W(ω−ωi), we finally find:

A(ω)=
1+

L∑
i=1

diW(ω−ωi)

1+
L∑
i=1

di

(14.2.20)

and for the AR, or maximum entropy, spectrum estimate:

ŜAR(ω)= E
|A(ω)|2 = σ

2
v

∣∣∣∣1+
L∑
i=1

di
∣∣∣∣∣∣∣∣∣∣1+

L∑
i=1

diW(ω−ωi)
∣∣∣∣∣∣

2 (14.2.21)

The frequency dependence is shown explicitly. Note, that the matrix S†S appearing
in the definition ofD, can also be expressed in terms ofW(ω). Indeed, the ijth element
of S†S is, for 0 ≤ i, j ≤ L:

(S†S)ij= s†ωisωj =W(ωi −ωj)

686 14. Spectrum Estimation and Array Processing

One interesting consequence of Eq. (14.2.21) is that in the limit of very weak noise
σ2
v → 0, it vanishes. In this limit the mean-square prediction error (14.2.18) vanishes.

This is to be expected, since in this case the noise term vn is absent from the sum
(14.2.1), rendering yn a deterministic signal; that is, one that can be predicted from a
few past values with zero prediction error. To avoid such behavior when σ2

v is small,
the factor E is sometimes dropped altogether from the spectral estimate resulting in the
“pseudo-spectrum”

ŜAR(ω)= 1

|A(ω)|2 (14.2.22)

This expression will exhibit fairly sharp peaks at the sinusoid frequencies, but the
magnitude of these peaks will no longer be representative of the power levels Pi. This ex-
pression can only be used to extract the frequenciesωi. Up to a scale factor, Eq. (14.2.22)
can also be written in the form

ŜAR(ω)= 1∣∣s†ωR−1u0
∣∣2

Example 14.2.1: To see the effect of the SNR on the sharpness of the peaks in the AR spectrum,
consider the caseM = L = 1. Then,

S†S = s†ω1
sω1 =

[
1, e−jω1

][
1
ejω1

]
=M + 1 = 2

D = −[σ2
vP−1

1 + 2]−1

a = u0 + d1sω1

1+ d1
=

⎡⎢⎣ 1
d1

1+ d1
ejω1

⎤⎥⎦
Using d1 = D, we find

a =
⎡⎢⎣ 1

− P1

P1 +σ2
v
ejω1

⎤⎥⎦ , A(z)= 1+ a1z−1

The prediction-error filter has a zero at

z1 = −a1 = P1

P1 +σ2
v
ejω1

The zero z1 is inside the unit circle, as it should. The lower the SNR = P1/σ2
v , the more

inside it lies, resulting in a more smeared peak about ω1. As the SNR increases, the zero
moves closer to the unit circle at the right frequencyω1, resulting in a very sharp peak in
the spectrum (14.2.22). ��

Example 14.2.2: For the case of a single sinusoid and arbitrary order M, compute the 3-dB
width of the spectral peak of AR spectrum and compare it with the width of the Bartlett
spectrum. Using Eq. (14.2.20), we have

A(ω)= 1+ d1W(ω−ω1)
1+ d1

, d1 = −[SNR−1 +M + 1]−1

14.2. Spectral Analysis of Sinusoids in Noise 687

where we set SNR = P1/σ2
v . The value of A(ω) at the sinusoid frequency is

A(ω1)= 1+ d1W(0)
1+ d1

= 1

1+ SNR ·M

It is small in the limit of high SNR resulting in a high peak in the spectrum. The half-width
at half-maximum of the AR spectrum is defined by the condition

S(ω1 +Δω)
S(ω1)

= 1

2
, or, equivalently,

|A(ω1 +Δω)|2
|A(ω1)|2 = 2

To first order in Δω, we have

W(Δω)=
M∑
m=0

e−jmΔω =
M∑
m=0

(1− jmΔω)= (M + 1)−1

2
jM(M + 1)Δω

where we used
∑M
m=0m =M(M + 1)/2. Then, we find

A(ω1 +Δω)
A(ω1)

= 1+ d1W(Δω)
1+ d1W(0)

= 1− 1

2
SNR · jM(M + 1)Δω

The condition for half-maximum requires that the above imaginary part be unity, which
gives for the 3-dB width [1083]

(Δω)3dB= 2Δω = 4

SNR ·M(M + 1)

Thus, the peak becomes narrower both with increasing SNR and with order M. Note that
it depends onM like O(1/M2), which is a factor ofM smaller than the Bartlett width that
behaves like O(1/M). ��

More generally, in the case of multiple sinusoids, if the SNRs are high the spectrum
(14.2.22) will exhibit sharp peaks at the desired sinusoid frequencies. The mechanism
by which this happens can be seen qualitatively from Eq. (14.2.20) as follows: The matrix
S†S inD introduces cross-coupling among the various frequenciesωi. However, if these
frequencies are well separated from each other (by more than 2π/(M+1),) then the off-
diagonal elements of S†S, namelyW(ωi−ωj) will be small, and for the purpose of this
argument may be taken to be zero. This makes the matrix S†S approximately diagonal.
Since W(0)= M + 1 it follows that S†S = (M + 1)I, and D will become diagonal with
diagonal elements

di = Dii = −[σ2
vP

−1
i +M + 1]−1= − Pi

σ2
v + (M + 1)Pi

Evaluating A(ω) at ωi and keeping only the ith contribution in the sum we find,
approximately,

A(ωi)� 1+ diW(0)

1+
L∑
j=0

dj

= 1

1+
L∑
j=0

dj

1

1+ (M + 1)
(
Pi
σ2
v

)

688 14. Spectrum Estimation and Array Processing

which shows that if the SNRs Pi/σ2
v are high,A(ωi) will be very small, resulting in large

spectral peaks in Eq. (14.2.22). The resolvability properties of the AR estimate improve
both when the SNRs increase and when the order M increases. The mutual interaction
of the various sinusoid components cannot be ignored altogether. One effect of this
interaction is biasing in the estimates of the frequencies; that is, even if two nearby
peaks are clearly separated, the peaks may not occur exactly at the desired sinusoid
frequencies, but may be slightly shifted. The degree of bias depends on the relative
separation of the peaks and on the SNRs. With the above qualifications in mind, we can
state that the LPC approach to this problem is one of the most successful ones.

Capon’s maximum likelihood (ML), or minimum energy, spectral estimator is given
by the expression [1081]

ŜML(ω)= 1

s†ωR−1sω
(14.2.23)

It can be justified by envisioning a bank of narrowband filters, each designed to allow
a sinewave through at the filter’s center frequency and to attenuate all other frequency
components. Thus, the narrowband filter with center frequencyω is required to let this
frequency go through unchanged, that is,

A(ω)= s†ωa = 1

while at the same time it is required to minimize the output power

a†Ra = min

The solution of this minimization problem subject to the above constraint is readily
found to be

a = R−1sω

s†ωR−1sω

which gives for the minimized output power at this frequency

a†Ra = 1

s†ωR−1sω

Using Eq. (14.2.16), we find

s†ωR−1sω = 1

σ2
v

[
s†ωsω +

L∑
i,j=1

Dijs†ωsωis
†
ωjsω

]

= 1

σ2
v

[
(M + 1)+

L∑
i,j=1

DijW(ω−ωi)W∗(ω−ωj)
]

and the theoretical ML spectrum becomes in this case:

ŜML(ω)= σ2
v[

(M + 1)+
L∑
i,j=1

DijW(ω−ωi)W∗(ω−ωj)
] (14.2.24)

14.2. Spectral Analysis of Sinusoids in Noise 689

Example 14.2.3: Determine the matrix D and vector d for the case of L = 2 and arbitrary M.
The matrix S†S is in this case

S†S =
[

W(0) W(ω1 −ω2)
W(ω2 −ω1) W(0)

]
=

[
M + 1 W12

W∗
12 M + 1

]

whereW12 =W(ω1 −ω2). Then, D becomes

D = −
[
σ2
vP

−1
1 +M + 1 W12

W∗
12 σ2

vP
−1
2 +M + 1

]−1

, or,

D = 1

|W12|2 − (σ2
vP−1

1 +M + 1)(σ2
vP−1

2 +M + 1)

[
σ2
vP

−1
2 +M + 1 −W12

−W∗
12 σ2

vP
−1
1 +M + 1

]

and, hence

d = D
[

1
1

]
= 1

|W12|2 − (σ2
vP−1

1 +M + 1)(σ2
vP−1

2 +M + 1)

[
σ2
vP

−1
2 +M + 1−W12

σ2
vP

−1
1 +M + 1−W∗

12

]

Using the results of Example 14.2.3, we have carried out a computation illustrating
the three spectral estimates. Fig. 14.2.1 shows the theoretical autoregressive, Bartlett,
and maximum likelihood spectral estimates given by Eqs. (14.2.11), (14.2.22), and (14.2.24),
respectively, for two sinusoids of frequencies

ω1 = 0.4π, ω2 = 0.6π

and equal powers SNR = 10 log10(P1/σ2
v)= 6 dB, and M = 6. To facilitate the com-

parison, all three spectra have been normalized to 0 dB at the frequencyω1 of the first
sinusoid. It is seen that the lengthM = 6 is too short for the Bartlett spectrum to resolve
the two peaks. The AR spectrum is the best (however, close inspection of the graph will
reveal a small bias in the frequency of the peaks, arising from the mutual interaction of
the two sinewaves). The effect of increasing the SNR is shown on the right in Fig. 14.2.1,
where the SNR has been changed to 12 dB. It is seen that the AR spectral peaks become
narrower, thus increasing their resolvability.

To show the effect of increasingM, we kept SNR = 6 dB, and increased the order to
M = 12 and M = 18. The resulting spectra are shown in Fig. 14.2.2. It is seen that all
spectra tend to become better. The interplay between resolution, order, SNR, and bias
has been studied in [1083,1085,1088].

The main motivation behind the definition (14.2.22) for the pseudospectrum was to
obtain an expression that exhibits very sharp spectral peaks at the sinusoid frequencies
ωi. Infinite resolution can, in principle, be achieved if we can find a polynomial A(z)
that has zeros on the unit circle at the desired frequency angles; namely, at

zi = ejωi , i = 1,2, . . . , L (14.2.25)

Pisarenko’s method determines such a polynomial on the basis of the autocorrelation
matrix R. The desired conditions on the polynomial are

A(zi)= A(ωi)= 0 , i = 1,2, . . . , L (14.2.26)

690 14. Spectrum Estimation and Array Processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

digital frequency ω in units of π

dB

M = 6, SNR = 6 dB

AR
Bartlett
ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

digital frequency ω in units of π

dB

M = 6, SNR = 12 dB

AR
Bartlett
ML

Fig. 14.2.1 AR, Bartlett, and ML spectrum estimates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

digital frequency ω in units of π

dB

M = 12, SNR = 6 dB

AR
Bartlett
ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

digital frequency ω in units of π

dB

M = 18, SNR = 6 dB

AR
Bartlett
ML

Fig. 14.2.2 AR, Bartlett, and ML spectrum estimates.

where we slightly abuse the notation and write A(ejω)= A(ω). To satisfy these con-
ditions, the degree M of the polynomial A(z) must necessarily be M ≥ L; then, the
remainingM−L zeros of A(z) could be arbitrary. Let a be the vector of coefficients of
A(z), so that

a =

⎡⎢⎢⎢⎢⎢⎣
a0

a1

...
aM

⎤⎥⎥⎥⎥⎥⎦ , A(z)= a0 + a1z−1 + · · · + aMz−M

Noting that A(ω)= s†ωa, Eqs. (14.2.26) may be combined into one vectorial equation

S†a =

⎡⎢⎢⎢⎢⎢⎣
s†ω1

s†ω2

...

s†ωL

⎤⎥⎥⎥⎥⎥⎦ a =

⎡⎢⎢⎢⎢⎢⎣
A(ω1)
A(ω2)

...
A(ωL)

⎤⎥⎥⎥⎥⎥⎦ = 0 (14.2.27)

14.2. Spectral Analysis of Sinusoids in Noise 691

But then, Eq. (14.2.9) implies that

Ra = σ2
va+ SPS†a = σ2

va

or, that σ2
v must be an eigenvalue of R with a the corresponding eigenvector:

Ra = σ2
va (14.2.28)

The quantity σ2
v is actually the smallest eigenvalue of R. To see this, consider any

other eigenvector a of R, and normalize it to unit norm

Ra = λa , with a†a = 1 (14.2.29)

Then, (14.2.9) implies that

λ = λa†a = a†Ra = σ2
va
†a+ aSPS†a

= σ2
v +

[
A(ω1)∗, A(ω2)∗, . . . , A(ωL)∗

]
⎡⎢⎢⎢⎢⎢⎣
P1

P2

. . .

PL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
A(ω1)
A(ω2)

...
A(ωL)

⎤⎥⎥⎥⎥⎥⎦
= σ2

v +
L∑
i=1

Pi|A(ωi)|2

which shows that λ is equal to σ2
v shifted by a non-negative amount. If the eigenvector

satisfies the conditions (14.2.26), then the shift in λ vanishes. Thus, the desired polyno-
mial A(z) can be found by solving the eigenvalue problem (14.2.29) and selecting the
eigenvector belonging to the minimum eigenvalue. This is Pisarenko’s method [1084].
As a byproduct of the procedure, the noise power level σ2

v is also determined, which in
turn allows the determination of the power matrix P, as follows. Writing Eq. (14.2.9) as

R−σ2
vI = SPS†

and acting by S† and S from the left and right, we obtain

P = U†(R−σ2
vI)U , where U = S(S†S)−1 (14.2.30)

Since there is freedom in selecting the remaining M − L zeros of the polynomial
A(z), it follows that there are (M − L)+1 eigenvectors all belonging to the minimum
eigenvalueσ2

v . Thus, the (M+1)-dimensional eigenvalue problem (14.2.29) has two sets
of eigenvalues: (a) M + 1 − L degenerate eigenvalues equal to σ2

v , and (b) L additional
eigenvalues which are strictly greater than σ2

v .
The (M+ 1−L)-dimensional subspace spanned by the degenerate eigenvectors be-

longing to σ2
v is called the noise subspace. The L-dimensional subspace spanned by

the eigenvectors belonging to the remaining L eigenvalues is called the signal subspace.
Since the signal subspace is orthogonal to the noise subspace. and the L linearly inde-
pendent signal vectors sωi , i = 1,2, . . . , L are also orthogonal to the noise subspace, it
follows that the signal subspace is spanned by the sωis.

In the special case when L =M (corresponding to the Pisarenko’s method), there is
no degeneracy in the minimum eigenvalue, and there is a unique minimum eigenvector.
In this case, allM = L zeros of A(z) lie on the unit circle at the desired anglesωi.

692 14. Spectrum Estimation and Array Processing

Example 14.2.4: Consider the case L =M = 2. The matrix R is written explicitly as:

R = σ2
vI + P1sω1 s†ω1

+ P2sω2 s†ω2
, or,

R =
⎡⎢⎣ σ2

v + P1 + P2 P1e−jω1 + P2e−jω2 P1e−2jω1 + P2e−2jω2

P1ejω1 + P2ejω2 σ2
v + P1 + P2 P1e−jω1 + P2e−jω2

P1e2jω1 + P2e2jω2 P1ejω1 + P2ejω2 σ2
v + P1 + P2

⎤⎥⎦
It is easily verified that the (unnormalized) vector

a =
⎡⎢⎣ a0

a1

a2

⎤⎥⎦ =
⎡⎢⎣ 1
−(ejω1 + ejω2)
ejω1ejω2

⎤⎥⎦
is an eigenvector of R belonging to λ = σ2

v . In this case, the polynomial A(z) is

A(z) = a0 + a1z−1 + a2z−2 = 1− (ejω1 + ejω2)z−1 + ejω1ejω2z−2

= (1− ejω1z−1)(1− ejω2z−1)

exhibiting the two desired zeros at the sinusoid frequencies. ��

Example 14.2.5: Consider the caseM = 2, L = 1. The matrix R is

R = σ2
vI + P1sω1 s†ω1

=
⎡⎢⎣ σ2

v + P1 P1e−jω1 P1e−2jω1

P1ejω1 σ2
v + P1 P1e−jω1

P1e2jω1 P1ejω1 σ2
v + P1

⎤⎥⎦
It is easily verified that the three eigenvectors of R are

e0 =
⎡⎢⎣ 1
−ejω1

0

⎤⎥⎦ , e1 =
⎡⎢⎣ 0

1
−ejω1

⎤⎥⎦ , e2 =
⎡⎢⎣ 1
ejω1

e2jω1

⎤⎥⎦
belonging to the eigenvalues

λ = σ2
v , λ = σ2

v , λ = σ2
v + 3P1

The first two eigenvectors span the noise subspace and the third, the signal subspace. Any
linear combination of the noise eigenvectors also belongs to λ = σ2

v . For example, if we
take

a =
⎡⎢⎣ a0

a1

a2

⎤⎥⎦ =
⎡⎢⎣ 1
−ejω1

0

⎤⎥⎦− ρ
⎡⎢⎣ 0

1
−ejω1

⎤⎥⎦ =
⎡⎢⎣ 1
−(ρ+ ejω1)
ρejω1

⎤⎥⎦
the corresponding polynomial is

A(z)= 1− (ρ+ ejω1)z−1 + ρejω1z−2 = (1− ejω1z−1)(1− ρz−1)

showing one desired zero at z1 = ejω1 and a spurious zero. ��

14.2. Spectral Analysis of Sinusoids in Noise 693

The Pisarenko method can also be understood in terms of a minimization criterion
of the type (14.2.12), as follows. For any set of coefficients a, define the output signal

en =
M∑
m=0

amyn−m = a0yn + a1yn−1 + · · · + aMyn−M

Then, the mean output power is expressed as

E = E[e∗nen]= a†Ra = σ2
v a†a+

L∑
i=1

Pi|A(ωi)|2

Imposing the quadratic constraint
a†a = 1 (14.2.31)

we obtain

E = E[e∗nen]= a†Ra = σ2
v +

L∑
i=1

Pi|A(ωi)|2 (14.2.32)

It is evident that the minimum of this expression is obtained when conditions (14.2.26)
are satisfied. Thus, an equivalent formulation of the Pisarenko method is to minimize
the performance index (14.2.32) subject to the quadratic constraint (14.2.31). The AR
and the Pisarenko spectrum estimation techniques differ only in the type of constraint
imposed on the filter weights a.

We observed earlier that the AR spectral peaks become sharper as the SNR increases.
One way to explain this is to note that in the high-SNR limit or, equivalently, in the
noiseless limit σ2

v → 0, the linear prediction filter tends to the Pisarenko filter, which
has infinite resolution. This can be seen as follows. In the limit σ2

v → 0, the matrix D
defined in Eq. (14.2.17) tends to

D→ −(S†S)−1

and therefore, R−1 given by Eq. (14.2.16) becomes singular, converging to

R−1 → 1

σ2
v

[
I − S(S†S)−1S†

]
Thus, up to a scale factor the linear prediction solution, R−1u0 will converge to

a = [I − S(S†S)−1S†
]
u0 (14.2.33)

The matrix [I − S(S†S)−1S†
]

is the projection matrix onto the noise subspace, and
therefore, a will lie in that subspace, that is, S†a = 0. In the limit σ2

v → 0, the noise
subspace of R consists of all the eigenvectors with zero eigenvalue, Ra = 0. We note
that the particular noise subspace eigenvector given in Eq. (14.2.33) corresponds to the
so-called minimum-norm eigenvector, discussed in Sec. 14.6.

In his original method, Pisarenko considered the special case when the number of
sinusoids was equal to the filter order, L = M. This implies that the noise subspace is
one-dimensional,M+1−L = 1, consisting of a single eigenvector with zero eigenvalue,
such that Ra = 0. In this case, the (M + 1)×(M + 1) singular matrix R has rank M
and all its principal submatrices are nonsingular. As we mentioned in Sec. 12.5, such

694 14. Spectrum Estimation and Array Processing

singular Toeplitz matrices admit a general sinusoidal representation. It is obtained by
setting σ2

v = 0 and L =M in Eq. (14.2.8):

R =
L∑
i=1

Pisωis
†
ωi , or, R(k)=

L∑
i=1

Piejωik

In summary, we have discussed the theoretical aspects of four methods of estimating
the frequencies of sinusoids in noise. In practice, an estimate of the correlation matrix
R can be obtained in terms of the sample autocorrelations from a block of data values:

R̂(k)= 1

N

N−1−k∑
n=0

yn+ky∗n , k = 0,1, . . . ,M

The quality of the resulting estimates of the eigenvectors will be discussed in Sec-
tion 14.11. The AR and Pisarenko methods can also be implemented adaptively. The
adaptive approach is based on the minimization criteria (14.2.12) and (14.2.32) and will
be discussed in Chap. 16, where also some simulations will be presented.

14.3 Superresolution Array Processing

One of the main signal processing functions of sonar, radar, or seismic arrays of sen-
sors is to detect the presence of one or more radiating point-sources. This is a problem
of spectral analysis, and it is the spatial frequency analog of the problem of extracting
sinusoids in noise discussed in the previous section. The same spectral analysis tech-
niques can be applied to this problem. All methods aim at producing a high-resolution
estimate of the spatial frequency power spectrum of the signal field incident on the ar-
ray of sensors. The directions of point-source emitters can be extracted by identifying
the sharpest peaks in this spectrum.

In this section, we discuss conventional (Bartlett) beamforming, as well as the maxi-
mum likelihood, linear prediction, and eigenvector based methods. We also discuss some
aspects of optimum beamforming for interference nulling [1093–1095,1352,1167–1170].

Consider a linear array ofM + 1 sensors equally spaced at distances d, and a plane
wave incident on the array at an angle θ1 with respect to the array normal, as shown
below.

14.3. Superresolution Array Processing 695

The conventional beamformer introduces appropriate delays at the outputs of each
sensor to compensate for the propagation delays of the wavefront reaching the array.
The output of the beamformer (the “beam”) is the sum

e(t)=
M∑
m=0

ym(t − τm) (14.3.1)

where ym(t), m = 0,1, . . . ,M is the signal at the mth sensor. To reach sensor 1, the
wavefront must travel an extra distance d sinθ1, to reach sensor 2 it must travel dis-
tance 2d sinθ1, and so on. Thus, it reaches these sensors with a propagation delay of
d sinθ1/c, 2d sinθ1/c, and so on. The last sensor is reached with a delay ofMd sinθ1/c
seconds. Thus, to time-align the first and the last sensor, the output of the first sensor
must be delayed by τ0 =Md sinθ1/c, and similarly, themth sensor is time-aligned with
the last one, with a delay of

τm = 1

c
(M −m)d sinθ1 (14.3.2)

In this case, all terms in the sum (14.3.1) are equal to the value measured at the
last sensor, that is, ym(t − τm)= yM(t), and the output of the beamformer is e(t)=
(M + 1)yM(t), thus enhancing the received signal by a factor of M + 1 and hence its
power by a factor (M + 1)2. The concept of beamforming is the same as that of signal
averaging. If there is additive noise present, it will contribute incoherently to the output
power, that is, by a factor of (M+1), whereas the signal power is enhanced by (M+1)2.
Thus, the gain in the signal to noise ratio at the output of the array (the array gain) is a
factor ofM + 1.

In the frequency domain, the above delay-and-sum operation becomes equivalent to
linear weighting. Fourier transforming Eq. (14.3.1) we have

e(ω)=
M∑
m=0

ym(ω)e−jωτm

which can be written compactly as:
e = aTy (14.3.3)

where a and y are the (M + 1)-vectors of weights and sensor outputs:

a =

⎡⎢⎢⎢⎢⎢⎣
e−jωτ0

e−jωτ1

...
e−jωτM

⎤⎥⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎢⎣
y0(ω)
y1(ω)

...
yM(ω)

⎤⎥⎥⎥⎥⎥⎦
From now on, we will concentrate on narrow-band arrays operating at a given fre-

quencyω and the dependence onω will not be shown explicitly. This assumes that the
signals from all the sensors have been subjected to narrow-band prefiltering that leaves
only the narrow operating frequency band. The beamformer now acts as a linear com-
biner, as shown in Fig. 14.3.1. A plane wave at the operating frequencyω, of amplitude

696 14. Spectrum Estimation and Array Processing

Fig. 14.3.1 Beamforming

A1, and incident at the above angle θ1, will have a value at the space-time point (t, r)
given by

A1ejωt−jk·r

Dropping the sinusoidal t-dependence and evaluating this expression on the x-axis,
we have

A1e−jkxx

where kx is the x-components of the wave vector k

kx = ωc sinθ1

The value of this field at themth sensor, xm =md, is then

A1e−jmk1

where k1 denotes the normalized wavenumber

k1 = kxd = ωdc sinθ1 = 2πd
λ

sinθ1 , λ = wavelength (14.3.4)

This is the spatial analog of the digital frequency. To avoid aliasing effects arising
from the spatial sampling process, the spatial sampling frequency 1/d must be greater
than or equal to twice the spatial frequency 1/λ of the wave. Thus, we must have
d−1 ≥ 2λ−1, or d ≤ λ/2. Since sinθ1 has magnitude less than one, the sampling
condition forces k1 to lie within the Nyquist interval

−π ≤ k1 ≤ π

In this case the correspondence between k1 and θ1, is unique. For any angle θ and
corresponding normalized wavenumber k, we introduce the phasing, or steering vector

sk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ejk

e2jk

...
eMjk

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , k = 2πd
λ

sinθ (14.3.5)

14.3. Superresolution Array Processing 697

In this notation, the plane wave measured at the sensors is represented by the vector

y = A1s∗k1
= A1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
e−jk1

e−2jk1

...
e−Mjk1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The steering vector of array weights a, steered towards an arbitrary direction θ, is

also expressed in terms of the phasing vector sk; we have

am = e−jωτm = e−jω(M−m)(d sinθ/c) = e−jMkejmk

or, ignoring the overall common phase e−jMk, we have

a = sk (steering vector towards k = 2πd
λ

sinθ) (14.3.6)

The output of the beamformer, steered towards θ, is

e = aTy = sTky = A1 sTk s∗k1
= A1 s†k1

sk = A1W(k− k1)∗

whereW(·)was defined in Sec. 14.2. The mean output power of the beamformer steered
towards k is

S(k)= E[e∗e]= a†E[y∗yT]a = a†Ra = s†kRsk

Using y = A1s∗k1
, we find R = E[y∗yT]= P1sk1s†k1

, where P1 = E[|A1|2], and

S(k) = s†kRsk = P1s†ksk1s†k1
sk

= P1|W(k− k1)|2

If the beam is steered on target, that is, ifθ = θ1, or, k = k1, then S(k1)= P1(M+1)2

and the output power is enhanced. The response pattern of the array has the same shape
as the function W(k), and therefore its resolution capability is limited to the width
Δk = 2π/(M + 1) of the main lobe of W(k). Setting Δk = (2πd/λ)Δθ, we find the
basic angular resolution to be Δθ = λ/((M+1)d

)
, or, Δθ = λ/D, whereD = (M+1)d

is the effective aperture of the array. This is the classical Rayleigh limit on the resolving
power of an optical system with aperture D [1092].

Next, we consider the problem of resolving the directions of arrival of multiple plane
waves incident on an array in the presence of background noise. We assume L planes
waves incident on an array ofM+1 sensors from angles θi, i = 1,2, . . . , L. The incident
field is sampled at the sensors giving rise to a series of “snapshots.” At the nth snapshot
time instant, the field received at themth sensor has the form [1394]

ym(n)= vm(n)+
L∑
i=1

Ai(n)e−jmki , m = 0,1, . . . ,M (14.3.7)

698 14. Spectrum Estimation and Array Processing

where Ai(n) is the amplitude of the ith wave (it would be a constant independent of
time if we had exact sinusoidal dependence at the operating frequency), and ki are the
normalized wavenumbers related to the angles of arrival by

ki = 2πd
λ

sinθi , i = 1,2, . . . , L (14.3.8)

and vm(n) is the background noise, which is assumed to be spatially incoherent, and
also uncorrelated with the signal amplitudes Ai(n); that is,

E[vm(n)∗vk(n)]= σ2
vδmk , E[vm(n)∗Ai(n)]= 0 (14.3.9)

Eq. (14.3.7) can be written in vector form as follows

y(n)= v(n)+
L∑
i=1

Ai(n)s∗ki (14.3.10)

The autocorrelation matrix of the signal field sensed by the array is

R = E[y(n)∗y(n)T]= σ2
vI +

L∑
i,j=1

skiPijs
†
kj (14.3.11)

where I is the (M+1)×(M+1) unit matrix, and Pij is the amplitude correlation matrix

Pij = E[Ai(n)∗Aj(n)] , 1 ≤ i, j ≤ L (14.3.12)

If the sources are uncorrelated with respect to each other, the power matrix Pij is
diagonal. Introducing the (M + 1)×L signal matrix

S = [sk1 , sk2 , . . . , skL]

we may write Eq. (14.3.11) as
R = σ2

vI + SPS† (14.3.13)

which is the same as Eq. (14.2.9) of the previous section. Therefore, the analytical ex-
pressions of the various spectral estimators can be transferred to this problem as well.
We summarize the various spectrum estimators below:

ŜB(k)= s†kRsk (conventional Bartlett beamformer)

ŜLP(k)= 1∣∣s†kR−1u0
∣∣2 (LP spectrum estimate)

ŜML(k)= 1

s†kR−1sk
(ML spectrum estimate)

For example, for uncorrelated sources Pij = Piδij, the Bartlett spatial spectrum will be

ŜB(k)= s†kRsk = σ2
v(M + 1)+

L∑
i=1

Pi|W(k− ki)|2

14.3. Superresolution Array Processing 699

which gives rise to peaks at the desired wavenumbers ki from which the angles θi can
be extracted. When the beam is steered towards the ith plane wave, the measured power
at the output of the beamformer will be

ŜB(ki)= σ2
v(M + 1)+Pi(M + 1)2+

∑
j 	=i
Pj|W(ki − kj)|2

Ignoring the third term for the moment, we observe the basic improvement in the
SNR offered by beamforming:

Pi(M + 1)2

σ2
v(M + 1)

= Pi
σ2
v
(M + 1)

If the sources are too close to each other [closer than the beamwidth of W(k)], the
resolution ability of the beamformer worsens. In such cases, the alternative spectral
estimates offer better resolution, with the LP estimate typically having a better perfor-
mance. The resolution capability of both the ML and the LP estimates improves with
higher SNR, whereas that of the conventional beamformer does not.

The Pisarenko method can also be applied here. As discussed in the previous section,
the (M+ 1)-dimensional eigenvalue problem Ra = λa has an L-dimensional signal sub-
space with eigenvalues greater than σ2

v , and an (M+1−L)-dimensional noise subspace
spanned by the degenerate eigenvectors belonging to the minimum eigenvalue of σ2

v .
Any vector a in the noise subspace will have at least L zeros at the desired wavenumber
frequencies ki, that is, the polynomial

A(z)= a0 + a1z−1 + a2z−2 + · · · + aMz−M

will have L zeros at
zi = ejki , i = 1,2, . . . , L

and (M − L) other spurious zeros. This can be seen as follows: If Ra = σ2
va, then

Eq. (14.3.13) implies that

(σ2
vI + SPS†)a = σ2

va ⇒ SPS†a = 0

Dotting with a†, we find that a†SPS†a = 0, and since P is assumed to be strictly
positive definite, it follows that S†a = 0, or

S†a =

⎡⎢⎢⎢⎢⎢⎣
A(k1)
A(k2)

...
A(kL)

⎤⎥⎥⎥⎥⎥⎦ = 0

The L largest eigenvalues of R correspond to the signal subspace eigenvectors and
can be determined by reducing the original (M + 1)×(M + 1) eigenvalue problem for
R into a smaller L×L eigenvalue problem.

Let e be any eigenvector in the signal subspace, that is, Re = λe, with λ > σ2
v . It

follows that SPS†e = (λ−σ2
v)e. Multiplying both sides by S† we obtain (S†SP)(S†e)=

(λ−σ2
v)(S†e), which states that the L-dimensional vector S†e is an eigenvector of the

700 14. Spectrum Estimation and Array Processing

L×Lmatrix S†SP. We can turn this into a hermitian eigenvalue problem by factoring the
power matrix P into its square root factors, P = GG†, and multiplying both sides of the
reduced eigenvalue problem by G†. This gives (G†S†SG)(G†S†e)= (λ−σ2

v)(G†S†e).
Thus, we obtain the L×L hermitian eigenvalue problem

F f = (λ−σ2
v)f , where F = G†S†SG , f = G†S†e (14.3.14)

The L signal subspace eigenvalues are obtained from the solution of this reduced
eigenproblem. From each L-dimensional eigenvector f, one can also construct the cor-
responding (M+ 1)-dimensional eigenvector e. Because e lies in the signal subspace, it
can be expressed as a linear combination of the plane waves

e =
L∑
i=1

ciski = [sk1 , sk2 , . . . , skL]

⎡⎢⎢⎢⎢⎢⎣
c1

c2

...
cL

⎤⎥⎥⎥⎥⎥⎦ = Sc

It, then, follows from Eq. (14.3.14) that

f = G†S†e = G†S†Sc ⇒ c = (S†S)−1G−†f

and therefore,
e = Sc = S(S†S)−1G−†f (14.3.15)

Example 14.3.1: Using the above reduction method, determine the signal subspace eigenvec-
tors and eigenvalues for the case of two equal-power uncorrelated plane waves and arbi-
trary M. The 2×2 matrix P becomes proportional to the identity matrix P = P1I. The
reduced matrix F is then

F = P1S†S = P1

[
s†1s1 s†1s2

s†2s1 s†2s2

]
= P1

[
M + 1 W12

W∗
12 M + 1

]

where s1 = sk1 , s2 = sk2 , and W12 = W(k1 − k2). In the equal-power case, F is always
proportional to S†S, and therefore, f is an eigenvector of that. It follows that (S†S)−1f will
be a scalar multiple of f and that Eq. (14.3.15) can be simplified (up to a scalar factor) to
e = Sf. The two eigenvalues and eigenvectors of F are easily found to be

λ−σ2
v = P1

(
M + 1± |W12|

)
, f =

[
1

±e−jθ12

]

where θ12 is the phase of W12. Using e = Sf, it follows that the two signal subspace
eigenvectors will be

e = s1 ± e−jθ12 s2

The eigenvalue spread of R is in this case

λmax

λmin
= σ

2
v +

(
M + 1+ |W12|

)
P1

σ2
v

= 1+ SNR · (
M + 1+ |W12|

)
where SNR = P1/σ2

v . It can be written in the form

λmax

λmin
= 1+ SNReff ·

(
1+ | cosφ12|

)
where SNReff = SNR · (M + 1) is the effective SNR of the array, or the array gain, and φ12

is the angle between the two signal vectors, that is, cosφ12 = s†1s2/
(‖s1‖ · ‖s2‖

)
. ��

14.3. Superresolution Array Processing 701

In practice, estimates of the covariance matrix R are used. For example, if the sensor
outputs are recorded over N snapshots, that is, y(n), n = 0,1, . . . ,N − 1, then, the
covariance matrixRmay be estimated by replacing the ensemble average of Eq. (14.3.11)
with the time-average:

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T (empirical R)

Since the empirical R will not be of the exact theoretical form of Eq. (14.3.11) the
degeneracy of the noise subspace will be lifted somewhat. The degree to which this
happens depends on how much the empirical R differs from the theoretical R. One
can still use the minimum eigenvector a to define the polynomial A(z) and from it an
approximate Pisarenko spectral estimator

ŜP(k)= 1

|A(z)|2 , where z = ejk

which will have sharp and possibly biased peaks at the desired wavenumber frequencies.

Example 14.3.2: Consider the case L = M = 1, defined by the theoretical autocorrelation
matrix

R = σ2
vI + P1sk1 s†k1

=
[
σ2
v + P1 P1e−jk1

P1ejk1 σ2
v + P1

]

Its eigenvectors are:

e0 =
[

1
−ejk1

]
, e1 = sk1 =

[
1
ejk1

]

belonging to the eigenvalues λ0 = σ2
v and λ1 = σ2

v + 2P1, respectively. Selecting as the
array vector

a = e0 =
[

1
−ejk1

]

we obtain a polynomial with a zero at the desired location:

A(z)= a0 + a1z−1 = 1− ejk1z−1

Now, suppose that the analysis is based on an empirical autocorrelation matrix R which
differs from the theoretical one by a small amount:

R̂ = R+ΔR

Using standard first-order perturbation theory, we find the correction to the minimum
eigenvalue λ0 and eigenvector e0

λ̂0 = λ0 +Δλ0 , ê0 = e0 +Δc e1

where the first-order correction terms are

Δλ0 = e†0(ΔR)e0

e†0e0

, Δc = e†1(ΔR)e0

(λ0 − λ1)e
†
1e1

702 14. Spectrum Estimation and Array Processing

The change induced in the zero of the eigenpolynomial is found as follows

â = ê0 =
[

1
−ejk1

]
+Δc

[
1
ejk1

]
=

[
1+Δc

−(1−Δc)ejk1

]

so that
Â(z)= (1+Δc)−(1−Δc)ejk1z−1

and the zero is now at

z1 = 1−Δc
1+Δc e

jk1 � (1− 2Δc)ejk1

to first-order in Δc. Since Δc is generally complex, the factor (1− 2Δc) will cause both a
change (bias) in the phase of the zero ejk1 , and will move it off the unit circle reducing the
resolution. Another way to see this is to compute the value of the polynomial steered on
target; that is,

Â(k1)= s†k1
a = s†k1

(e0 +Δc e1)= Δc s†k1
e1 = 2Δc

which is small but not zero. ��

The high resolution properties of the Pisarenko and other eigenvector methods de-
pend directly on the assumption that the background noise field is spatially incoherent,
resulting in the special structure of the autocorrelation matrix R. When the noise is
spatially coherent, a different eigenanalysis must be carried out. Suppose that the co-
variance matrix of the noise field v is

E[v∗vT]= σ2
vQ

where Q reflects the spatial coherence of v. Then the covariance matrix of Eq. (14.3.13)
is replaced by

R = σ2
vQ + SPS† (14.3.16)

The relevant eigenvalue problem is now the generalized eigenvalue problem

Ra = λQa (14.3.17)

Consider any such generalized eigenvector a, and assume it is normalized such that

a†Qa = 1 (14.3.18)

Then, the corresponding eigenvalue is expressed as

λ = λa†Qa = a†Ra = σ2
va
†Qa+ a†SPS†a = σ2

v + a†SPS†a

which shows that the minimum eigenvalue is σ2
v and is attained whenever a†SPS†a = 0,

or equivalently (assuming that P has full rank), S†a = 0, or, A(ki)= 0, i = 1,2, . . . , L.
Therefore, the eigenpolynomial A(z) can be used to determine the wavenumbers ki.

Thus, the procedure is to solve the generalized eigenvalue problem and select the
minimum eigenvector. This eigenvalue problem is also equivalent to the minimization
problem

E = a†Ra = min , subject to a†Qa = 1 (14.3.19)

14.3. Superresolution Array Processing 703

This criterion, and its solution as the minimum eigenvector, is equivalent to the
unconstrained minimization of the Rayleigh quotient, that is,

a†Ra

a†Qa
= min � Ra = λminQa (14.3.20)

The practical implementation of the method requires knowledge of the noise covari-
ance matrix Q, which is not always possible to obtain. Covariance difference methods
[1135–1138] can be used in the case of unknown Q. Such methods work with mea-
surements from two different arrays, translated or rotated with respect to each other.
Assuming that the background noise is invariant under translation or rotation, the co-
variance matrices of the two arrays will be R1 = S1P1S

†
1+σ2

vQ and R2 = S2P2S
†
2+σ2

vQ.
The eigenstructure of the covariance difference R1−R2 = S1P1S

†
1−S2P2S

†
2 can be used

to extract the signal information.
The two spectral analysis problems discussed in this and the previous section—

direction finding and harmonic retrieval—are dual to each other; one dealing with spatial
frequencies and the other with time frequencies. The optimum processing part is the
same in both cases. The optimum processor does not care how its inputs are supplied, it
only “sees” the correlations among the inputs and its function is to “break down” these
correlations thereby extracting the sinusoidal components. The two cases differ only in
the way the inputs to the optimum processor are supplied. This conceptual separation
between the input part and the optimum processing part is shown in Fig. 14.3.2. In the
time series case, the correlations among the inputs are sequential correlations in time,
whereas in the array case they are spatial correlations, such as those that exist along a
coherent wavefront.

A problem related, but not identical, to direction finding is that of optimum beam-
forming for interference nulling [1093–1095,1352,1167–1170]. In this case, one of the
plane waves, say, sk1 , is assumed to be a desired plane wave with known direction of
arrival θ1, or wavenumber k1. The other plane waves are considered as interferers or
jammers to be nulled. Assuming for simplicity uncorrelated sources, the covariance
matrix (14.3.11) may be decomposed into a part due to the desired signal and a part due
to the noise plus interference:

R = σ2
vI +

L∑
i=1

Pi sis
†
i = P1s1s†1 +

[
σ2
vI +

L∑
i=2

Pi sis
†
i

]
= P1s1s†1 +Rn

where we denoted si = ski . The output power of the array with weights a will be

E = a†Ra = P1|s†1a|2 + a†Rna (14.3.21)

The first term is the output power due to the desired signal; the second term is
due to the presence of noise plus interference. This expression suggests two possible
optimization criteria for a. First, choose a to maximize the relative signal to noise plus
interference ratio (SNIR):

SNIR = P1|s†1a|2
a†Rna

= max (14.3.22)

704 14. Spectrum Estimation and Array Processing

Fig. 14.3.2 Duality between time series and array problems.

The second criterion is to keep the output of the array toward the look direction s1

fixed, while minimizing the output power:

s†1a = 1 and E = a†Ra = P1 + a†Rna = min (14.3.23)

This is equivalent to minimizing the noise plus interference term a†Rna. These
two criteria are essentially equivalent. This is seen as follows. Equation (14.3.22) is
equivalent to minimizing the inverse function SNIR−1. Adding one to it, we obtain the
equivalent criterion

1+ SNIR−1 = 1+ a†Rna

P1|s†1a|2 =
a†Ra

P1|s†1a|2 = min

This is identical to the Rayleigh quotient (14.3.20) with the choice Q = P1s1s†1. It is
equivalent to the minimum eigenvector solution of

Ra = λQa = λP1s1s†1a = μs1 ⇒ a = μR−1s1

where we put all the scalar factors into μ. Similarly, the constraint s†1a = 1 implies
that a†Q1a = 1 with Q1 = s1s†1. It follows from Eq. (14.3.19), applied with Q1, that the
solution of Eq. (14.3.23) is again the generalized eigenvector

Ra = λ1Q1a = λ1s1s†1a = μ1s1 ⇒ a = μ1R−1s1

Thus, up to a scale factor, the optimum solution for both criteria is

a = R−1s1 (14.3.24)

14.3. Superresolution Array Processing 705

This solution admits, yet, a third interpretation as the Wiener solution of an ordinary
mean-square estimation problem. The term y1(n)= A1(n)s∗1 of Eq. (14.3.10) is the
desired signal. A reference signal x(n) could be chosen to correlate highly with this term
and not at all with the other terms in Eq. (14.3.10). For example, x(n)= f(n)A1(n). The
array weights can be designed by demanding that the scalar output of the array, aTy(n),
be the best mean-square estimate of x(n). This gives the criterion

E
[|x(n)−aTy(n)|2] = E[|x(n)|2]− a†r− r†a+ a†Ra

where we set r = E[x(n)y(n)∗]. Minimizing with respect to a (and a∗) gives the Wiener
solution a = R−1r. Now, because x(n) is correlated only with y1(n), it follows that r
will be proportional to s1:

r = E[x(n)y(n)∗]= E[x(n)y1(n)∗]= E[x(n)A1(n)∗] s1

Thus, again up to a scale, we obtain the solution (14.3.24). Using the matrix inversion
lemma (see Problem 14.6), we can write the inverse of R = P1s1s†1 +Rn, in the form

R−1 = R−1
n − cR−1

n s1s†1R−1
n , c = (P−1

1 + s†1R−1
n s1)−1

Acting by both sides on s1, we find

R−1s1 = c1R−1
n s1 , c1 = cP−1

1

Therefore, the optimal solution can also be written (up to another scale factor) in
terms of the noise plus interference covariance matrix Rn:

a = R−1
n s1 (14.3.25)

These solutions, known as steered solutions, are sometimes modified to include arbi-
trary tapering weights for the array—replacing the steering vector s1 with a generalized
steering vector

s =

⎡⎢⎢⎢⎢⎢⎣
b0

b1ejk1

...
bMejk1M

⎤⎥⎥⎥⎥⎥⎦ = B s1 , B = diag{b0, b1, . . . , bM} (14.3.26)

The weightsbm can be chosen to attain a prescribed shape for the quiescent response
of the array in absence of interference. Typical choices are (with k1 = 0)

s =

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ , s =

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦
To appreciate the properties of the optimum solution, we consider the case of one

jammer, so that
R = P1s1s†1 +Rn , Rn = σ2

vI + P2s2s†2

706 14. Spectrum Estimation and Array Processing

Using the matrix inversion lemma on R−1
n , we obtain

R−1
n = 1

σ2
v

[
I − 1

σ2
vP−1

2 + s†2s2

s2s†2

]

Therefore, the optimum solution given by Eq. (14.3.25) becomes

a = R−1
n s1 = 1

σ2
v

[
s1 − P2W(k2 − k1)

σ2
v + P2(M + 1)

s2

]

where we used s†2s2 = M + 1 and s†2s1 = W(k2 − k1). Dropping the overall factor of
1/σ2

v , we find for the array pattern as a function of wavenumber k or angle θ

A(k)= s†ka =W(k− k1)− P2W(k2 − k1)
σ2
v + P2(M + 1)

W(k− k2) (14.3.27)

In the absence of the jammer, P2 = 0, we obtain the usual quiescent Bartlett response,
W(k− k1). The presence of the second term, called a retrodirective beam, will partially
distort the quiescent pattern but it will suppress the jammer. Indeed, the array response
steered toward the jammer at k = k2, becomes

A(k2)=W(k2 − k1)− P2W(k2 − k1)
σ2
v + P2(M + 1)

W(0)= W(k2 − k1)
σ2
v + P2(M + 1)

The ratio A(k2)/W(k2 − k1) is the array response, in the direction of the jammer,
relative to the quiescent response. Thus, if the signal to noise ratio SNR2 = P2/σ2

v is
large, the jammer will be suppressed. Only in the limit of infinite SNR is the jammer
completely nulled.

The reason for the incomplete nulling can be traced, as in the case of linear pre-
diction, to the linear constraint on the weights (14.3.23). To get exact nulling of the
jammers, we must force the zeros of the polynomial a to lie on the unit circle at the jam-
mer positions. As suggested in Problem 14.13, this can be accomplished by imposing
a quadratic constraint a†Qa = const., where Q must be chosen as Q = σ2

vI + P1s1s†1
instead ofQ = P1s1s†1. The optimum weight is the minimum eigenvector solution of the
generalized eigenproblem Ra = λQa and will have exact zeros at the jammer positions.
As in the linear prediction case, the linearly constrained optimum beamformer solution
tends to this eigenvector solution in the limit σ2

v → 0.

14.4 Eigenvector Methods

The single most important property of eigenvector methods is that, at least in principle,
they produce unbiased frequency estimates with infinite resolution, regardless of the
signal to noise ratios. This property is not shared by the older methods. For example,
the resolution of the Bartlett method is limited by the array aperture, and the resolution
of the linear prediction and maximum likelihood methods degenerates with decreasing
SNRs. Because of this property, eigenvector methods have received considerable atten-
tion in signal processing and have been applied to several problems, such as harmonic
retrieval, direction finding, echo resolution, and pole identification [1084,1109–1163].

14.4. Eigenvector Methods 707

In the remainder of this chapter, we discuss the theoretical aspects of eigenvector
methods in further detail, and present several versions of such methods, such as MUSIC,
Minimum-Norm, and ESPRIT.

We have seen that the eigenspace of the covariance matrixR consists of two mutually
orthogonal parts: the (M+1−L)-dimensional noise subspace spanned by the eigenvec-
tors belonging to the minimum eigenvalue σ2

v , and the L-dimensional signal subspace
spanned by the remaining L eigenvectors having eigenvalues strictly greater than σ2

v .
Let ei, i = 0,1, . . . ,M, denote the orthonormal eigenvectors of R in order of increasing
eigenvalue, and let K = M + 1 − L denote the dimension of the noise subspace. Then,
the first K eigenvectors, ei, i = 0,1, . . . , K − 1, form an orthonormal basis for the noise
subspace, and the last L eigenvectors, ei, i = K,K+1, . . . ,M, form a basis for the signal
subspace. We arrange these basis vectors into the eigenvector matrices:

EN = [e0, e1, . . . , eK−1], ES = [eK, eK+1, . . . , eM] (14.4.1)

Their dimensions are (M + 1)×K and (M + 1)×L. The full eigenvector matrix of R is:

E = [EN, ES]= [e0, e1, . . . , eK−1, eK, eK+1, . . . , eM] (14.4.2)

The orthonormality of the eigenvectors is expressed by the unitarity property E†E =
I, where I is the (M+1)-dimensional unit matrix. The unitarity can be written in terms
of the submatrices (14.4.1):

E†NEN = IK , E†NES = 0 , E†SES = IL (14.4.3)

where IK and IL are the K×K and L×L unit matrices. The completeness of the eigenvec-
tors is expressed also by the unitarity of E, i.e., EE† = I. In terms of the submatrices, it
reads:

ENE
†
N + ESE†S = I (14.4.4)

These two terms are the projection matrices onto the noise and signal subspaces.
We have seen that the L signal direction vectors ski belong to the signal subspace, and
therefore, are expressible as linear combinations of ES. It follows that the signal matrix
S = [sk1 , . . . , skL] is a non-orthogonal basis of the signal subspace and must be related
to ES by S = ESC, where C is an L×L invertible matrix. Using the orthonormality of ES,
it follows that S†S = C†E†SESC = C†C. Thus, the projector onto the signal subspace
may be written as

PS = ESE†S = (SC−1)(C−†S†)= S(C†C)−1S† = S(S†S)−1S† (14.4.5)

We may also obtain a non-orthogonal, but useful, basis for the noise subspace. We
have seen that an (M+1)-dimensional vector e lies in the noise subspace—equivalently,
it is an eigenvector belonging to the minimum eigenvalue σ2

v—if and only if the corre-
sponding order-M eigenfilter E(z) has L zeros on the unit circle at the desired signal
zeros, zi = ejki , i = 1,2, . . . , L, and has M − L = K − 1 other spurious zeros. Such a
polynomial will factor into the product:

E(z)= A(z)F(z)= A(z)[f0 + f1z−1 + · · · + fK−1z−(K−1)] (14.4.6)

708 14. Spectrum Estimation and Array Processing

where the zeros of F(z) are the spurious zeros, and A(z) is the reduced-order polyno-
mial of order L whose zeros are the desired zeros; that is,

A(z)=
L∏
i=1

(1− ejkiz−1)= 1+ a1z−1 + · · · + aLz−L (14.4.7)

Introducing the K delayed polynomials:

Bi(z)= z−iA(z) , i = 0,1, . . . , K − 1 (14.4.8)

we may write Eq. (14.4.6) in the form

E(z)= f0B0(z)+f1B1(z)+· · · + fK−1BK−1(z)=
K−1∑
i=0

fiBi(z) (14.4.9)

and in coefficient form

e =
K−1∑
i=0

fi bi = [b0, b1, . . . , bK−1]

⎡⎢⎢⎢⎢⎢⎣
f0
f1
...
fK−1

⎤⎥⎥⎥⎥⎥⎦ ≡ B f (14.4.10)

Because each of the polynomials Bi(z) has L desired zeros, it follows that the cor-
responding vectors bi will lie in the noise subspace. Thus, the matrix B defined in
Eq. (14.4.10) will be a non-orthogonal basis of the noise subspace. It is a useful ba-
sis because the expansion coefficients f of any noise subspace vector e are the coef-
ficients of the spurious polynomial F(z) in the factorization (14.4.6). Put differently,
Eq. (14.4.10) parametrizes explicitly the spurious degrees of freedom arising from the
K-fold degeneracy of the minimum eigenvalue. The basis vectors bi, considered as
(M + 1)-dimensional vectors, are simply the delayed versions of the vector of coeffi-
cients, a = [1, a1, . . . , aL]T, of the polynomial A(z), that is,

bi =
[
0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, a1, . . . , aL, 0, . . . , 0︸ ︷︷ ︸
K−1−i zeros

]T
(14.4.11)

For example, in the case L = 2 andM = 5, we have K =M + 1− L = 4 and B is:

B = [b0, b1, b2, b3]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
a1 1 0 0
a2 a1 1 0
0 a2 a1 1
0 0 a2 a1

0 0 0 a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
It follows that the basis B must be linearly related to the orthonormal basis EN by

B = ENC, where C is a K×K invertible matrix. Then, B†B = C†C and the projector onto
the noise subspace becomes:

PN = ENE†N = (BC−1)(C−†B†)= B(C†C)−1B† = B(B†B)−1B† (14.4.12)

14.5. MUSIC method 709

Combining Eqs. (14.4.12) and (14.4.5), we may write the completeness relation (14.4.4)
in terms of the non-orthogonal bases B and S:

B(B†B)−1B† + S(S†S)−1S† = I (14.4.13)

The objective of all eigenvector methods is to estimate the signal zeros zi = ejki ,
i = 1,2, . . . , L. All methods begin with an eigenanalysis of R, such that EN and ES are
available. In practice, the eigenanalysis is based on the sample covariance matrix R̂
defined on the basis of a finite number of snapshots, say N:

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T (14.4.14)

Sometimes, a symmetrized version is preferred, obtained from R̂ by

R̂s = 1

2
(R̂+ JR̂∗J) (14.4.15)

where J the (M+1)-dimensional reversing matrix. The matrix R̂s is invariant under re-
versal, that is, JR̂sJ = R̂∗s . This version is appropriate when the theoreticalR is Toeplitz.
This case arises if and only if the L×L power matrix P is diagonal; that is, when the L
sources are mutually uncorrelated. As the number of snapshots increases, the eigen-
structure of R̂ or R̂s becomes a better and better approximation of the eigenstructure
of R. Such asymptotic statistical properties will be discussed in Sec. 14.11. Next, we
discuss several practical approaches.

14.5 MUSIC method

Let Ei(z) denote the eigenfilters of the noise subspace eigenvectors ei, i = 0,1, . . . , K−1.
According to Eq. (14.4.5), we can write Ei(z)= A(z)Fi(z), which shows that Ei(z) have
a common set of L zeros at the desired signal locations, but each may have a different
set of K − 1 spurious zeros. It is possible for these spurious zeros to lie very close
to or on the unit circle. Therefore, if only one eigenfilter is used, there may be an
ambiguity in distinguishing the desired zeros from the spurious ones. The multiple
signal classification (MUSIC) method [1110] attempts to average out the effect of the
spurious zeros by forming the sum of the magnitude responses of the K noise subspace
eigenfilters, that is, setting z = ejk,

1

K

K−1∑
i=0

|Ei(k)|2 = |A(k)|2 1

K

K−1∑
i=0

|Fi(k)|2

Because the polynomials Fi(z) are all different, the averaging operation will tend to
smear out any spurious zero of any individual term in the sum. Thus, the above expres-
sion will effectively vanish only at the L desired zeros of the common factor|A(k)|2.
The MUSIC pseudospectrum is defined as the inverse

SMUS(k)= 1

1

K

K−1∑
i=0

|Ei(k)|2
(14.5.1)

710 14. Spectrum Estimation and Array Processing

It will exhibit peaks at the L desired wavenumbers ki, i = 0,1, . . . , L. The sum
may also be replaced by a weighted sum [1118]. The sum may be written compactly
in terms of the projection matrices onto the noise or signal subspaces. Noting that
|Ei(k)|2 = s†k(eie

†
i)sk, we find

K−1∑
i=0

|Ei(k)|2 = s†k

⎡⎣K−1∑
i=0

eie
†
i

⎤⎦ sk = s†kENE
†
Nsk = s†k(I − ESE†S)sk

where we used Eq. (14.4.4). The practical version of the MUSIC method is summarized
below:

1. Based on a finite number of snapshots, compute the sample covariance matrix
R̂, solve its eigenproblem, and obtain the estimated eigenvector matrix E with
eigenvalues arranged in increasing order.

2. Estimate the dimension K of the noise subspace as the number of the smallest,
approximately equal, eigenvalues. This can be done systematically using the AIC
or MDL criteria discussed later. The estimated number of plane waves will be
L =M + 1−K. Divide E into its noise and signal subspace parts, EN and ES.

3. Compute the spectrum (14.5.1) and extract the desired wavenumbers ki from the
L peaks in this spectrum.

The Akaike (AIC) and minimum description length (MDL) information-theoretic cri-
teria have been suggested to determine the number of plane waves that are present, or
equivalently, the dimension of the noise subspace [1125]. They are defined by

AIC(k) = −2NkL(k)+2(M + 1− k)(M + 1+ k)

MDL(k) = −NkL(k)+1

2
(M + 1− k)(M + 1+ k)log(N)

(14.5.2)

for k = 1,2, . . . ,M + 1, where N is the number of snapshots and L(k) is a likelihood
function defined as the log of the ratio of the harmonic and arithmetic means of the
first k estimated eigenvalues {λ̂0, λ̂1, . . . , λ̂k−1} of R̂; namely,

L(k)= ln

⎡⎢⎢⎣ (λ̂0λ̂1 · · · λ̂k−1)1/k

1

k
(λ̂0 + λ̂1 + · · · + λ̂k−1)

⎤⎥⎥⎦
The dimension K of the noise subspace is chosen to be that k that minimizes the

functions AIC(k) or MDL(k). The above definition is equivalent to that of [1125], but
produces the value of K instead of L. The function aicmdl takes as inputs the M + 1
estimated eigenvalues in increasing order and the number N, and computes the values
of the AIC and MDL functions. OnceK is known, an estimate of the minimum eigenvalue
can be obtained by

σ̂2
v = λ̂min = 1

K
(λ̂0 + λ̂1 + · · · + λ̂K−1) (14.5.3)

Next, we present some simulation examples. First, we compare the MUSIC method
against the linear prediction method. We considered two uncorrelated equal-power

14.5. MUSIC method 711

plane waves incident on an array of 8 sensors (M = 7). The SNR of the waves, de-
fined by SNRi = 10 log10(Pi/σ2

v), was −5 dB and their wavenumbers k1 = 0.2π and
k2 = 0.4π. For half-wavelength array spacing (d = λ/2), these correspond, through
(14.3.8), to the angles of arrival θ1 = 11.54o and θ2 = 23.58o.

The number of snapshots was N = 500. The snapshots were simulated using
Eq. (14.3.10). Each v(n) was generated as a complex vector of M + 1 zero-mean in-
dependent gaussian components of variance σ2

v = 1.
Note that to generate a zero-mean complex random variable v of variance σ2

v , one
must generate two zero-mean independent real random variables v1 and v2, each with
variance σ2

v/2 and set v = v1 + jv2; then, E[v∗v]= E[v2
1]+E[v2

2]= 2(σ2
v/2)= σ2

v .
The amplitudes Ai(n) were assumed to have only random phases; that is, Ai(n)=
(Pi)1/2ejφin , whereφin, were independent angles uniformly distributed in [0,2π]. The
function snap takes as input an integer seed, generates a snapshot vector y, and up-
dates the seed. Successive calls to snap, in conjunction with the (complex version) of
the function sampcov, can be used to generate the sample covariance matrix R̂. In this
particular example, we used the symmetrized version R̂s, because the two sources were
uncorrelated.

Fig. 14.5.1 shows the MUSIC spectrum computed using Eq. (14.5.1) together with the
LP spectrum SLP(k)= 1/|s†ka|2, where a = R̂−1

s u0. Because each term in the sum (14.5.1)
arises from a unit-norm eigenvector, we have normalized the LP vector a also to unit
norm for the purpose of plotting the two spectra on the same graph. Increasing the
number of snapshots will improve the MUSIC spectrum because the covariance matrix
R̂s will become a better estimate of R, but it will not improve the LP spectrum because
the theoretical LP spectrum does not perform well at low SNRs.

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

wavenumber k in units of π

dB

MUSIC and LP spectra

MUSIC
LP

Fig. 14.5.1 MUSIC and LP spectra.

To facilitate the computation and manipulation of spectra, we have included the
following small functions. The built-in function norm converts a vector a to a unit-norm
vector and the function freqz computes the magnitude response squared, |A(k)|2 =
|s†ka|2, of anMth order filter a at a specified number of equally-spaced frequency points
within the right-half of the Nyquist interval, 0 ≤ k ≤ π. It can be modified easily to
include the entire Nyquist interval or any subinterval. The function invresp inverts a

712 14. Spectrum Estimation and Array Processing

given spectrum, S(k)→ 1/S(k). The functions abs2db and db2abs convert a spectrum
from absolute units to decibels and back, S(k)= 10 log10 S(k). The function select picks
out any eigenvector from theM+1 ones of the eigenvector matrix E. The function music
computes Eq. (14.5.1) over a specified number of frequency points. It is built out of the
functions select, freqz, and invresp.

In the second simulation example, we increased the SNR of the two plane waves to
10 dB and reduced the number of snapshots to N = 100. The theoretical and empirical
eigenvalues of R and R̂s, were found to be

i 0 1 2 3 4 5 6 7

λi 1 1 1 1 1 1 61.98 100.02

λ̂i 0.70 0.76 0.83 0.87 1.05 1.28 64.08 101.89

The values of the AIC and MDL functions were

k 1 2 3 4 5 6 7 8

AIC(k) 126.0 120.3 111.4 98.7 87.2 81.1 2544.2 3278.2
MDL(k) 145.1 138.3 127.4 111.9 94.4 77.0 1291.6 1639.1

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

50

60

70

80

wavenumber k in units of π

dB

Noise eigenvector spectra

e0

e1

e2

Fig. 14.5.2 Spectra of the first three noise subspace eigenvectors.

Both functions achieve their minimum value at K = 6 and therefore, L = M +
1 − K = 2. The estimated value of σ2

v , computed by Eq. (14.5.3), was σ̂2
v = 0.915.

Fig. 14.5.2 shows the spectra of the first three noise subspace eigenvectors; namely,
Si(k)= 1/|Ei(k)|2 = 1/|s†kei|2, for i = 0,1,2. We note the presence of a common set
of peaks at the two desired wavenumbers and several spurious peaks. The spurious
peaks are different, however, in each spectrum and therefore, the averaging operation
will tend to eliminate them. The averaged MUSIC spectrum, based on all K = 6 noise
subspace eigenvectors, is plotted in Fig. 14.6.1 using the same scale as in Fig. 14.5.2.

The averaging operation has had two effects. First, the removal of all spurious peaks
and second, the broadening and reduction in sharpness of the two desired peaks. This
broadening is the result of statistical sampling; that is, using R̂ instead ofR, causes small
biases in the peaks of individual eigenvectors about their true locations. These biases

14.6. Minimum-Norm Method 713

are not inherent in the theoretical method, as they are in the linear prediction case;
they are statistical in nature and disappear in the limit of large number of snapshots.
Fig. 14.6.1 also shows the performance of the minimum-norm method, which we discuss
next. It appears to produce somewhat sharper peaks than MUSIC, but it can sometimes
exhibit higher levels of spurious peaks.

14.6 Minimum-Norm Method

The minimum-norm method [1117] attempts to eliminate the effect of spurious zeros
by pushing them inside the unit circle, leaving the L desired zeros on the circle. This
is accomplished by finding a noise subspace vector d = [d0, d1, . . . , dM]T such that
the corresponding eigenfilterD(z) will have all its spurious zeros within the unit circle.
This means that in the factorization (14.4.6),D(z)= A(z)F(z), the spurious polynomial
F(z) must be chosen to have all its zeros strictly inside the unit circle, equivalently,
F(z) must be a minimum-phase polynomial. If F(z) were the prediction-error filter of
a linear prediction problem, then it would necessarily be a minimum-phase filter. Thus,
the design strategy for d is to make F(z) a linear prediction filter. This can be done by
requiring that d have minimum norm subject to the constraint that its first coefficient
be unity; that is,

d†d = min , subject to u†0d = d0 = 1 (14.6.1)

The minimization is carried over the noise subspace vectors. In the B basis (14.4.10),
the vector d is expressed by d = B f, where f are the coefficients of F(z), and the
constraint equation becomes u†0B f = 1. With the exception of b0, all basis vectors bi
start with zero; therefore, u†0B = [u†0b0,u

†
0b1, . . . ,u

†
0bK−1]= [1,0, . . . ,0]≡ u†, that is, a

K-dimensional unit vector. Therefore, in the B basis Eq. (14.6.1) becomes

d†d = f†Raa f = min , subject to u†f = 1 (14.6.2)

where we set Raa = B†B. This is recognized as the Toeplitz matrix of autocorrelations
of the filter a, as defined in Eq. (1.19.5) of Sec. 1.19. For the 6×4 example above, we
verify,

Raa = B†B =

⎡⎢⎢⎢⎣
Raa(0) Raa(1)∗ Raa(2)∗ 0
Raa(1) Raa(0) Raa(1)∗ Raa(2)∗

Raa(2) Raa(1) Raa(0) Raa(1)∗

0 Raa(2) Raa(1) Raa(0)

⎤⎥⎥⎥⎦
where Raa(0)= |a0|2 + |a1|2 + |a2|2, Raa(1)= a1a∗0 + a2a∗1 , Raa(2)= a2a∗0 , and
Raa(3)= 0. Note that the autocorrelation function of an order-M filter a vanishes for
lags greater thanM+1. It follows that Eq. (14.6.2) represents an ordinary linear predic-
tion problem and its solution f will be a minimum-phase filter with all its zeros inside
the unit circle. Up to a scale factor, we may write this solution as f = R−1

aau = (B†B)−1u.
Writing u = B†u0, we have f = (B†B)−1B†u0, and the solution for d becomes

d = B f = B(B†B)−1B†u0 = ENE†Nu0 (14.6.3)

714 14. Spectrum Estimation and Array Processing

This is the solution of criterion (14.6.1) up to a scale. Interestingly, the locations
of the spurious zeros do not depend on the signal to noise ratios, but depend only on
the desired zeros on the unit circle. This follows from the fact that the solution for
f depends only on B. Using Eq. (14.4.13), we may also write d in terms of the signal
subspace basis

d = [
I − ESE†S

]
u0 =

[
I − S(S†S)−1S†

]
u0

Recall from Sec. 14.2 that this is the large-SNR limit of the LP solution. Noting that
E†Nu0, is the complex conjugate of the top row of the eigenvector matrix EN, we write
Eq. (14.6.3) explicitly as a linear combination of noise subspace eigenvectors

d =
K−1∑
i=0

E∗0iei (14.6.4)

whereE∗0i the conjugate of the 0i-th matrix element ofE. The function minorm computes
d using Eq. (14.6.4). The corresponding pseudospectrum estimate is defined as the
inverse magnitude response of the filter d

SMIN(k)= 1

|D(k)|2 =
1

|s†kd|2
(14.6.5)

The practical implementation of this method requires the same two initial steps as
MUSIC; namely, eigenanalysis of R̂ and estimation of K. In Fig. 14.6.1, the minimum-
norm spectrum was computed by calling the functions minorm. The vector d was nor-
malized to unit norm to make a fair comparison with the MUSIC spectrum. Looking at
the spectra is not the best way to evaluate this method because the spurious zeros—even
though inside the unit circle—interact with the desired zeros to modify the shape of the
spectrum. The minimum-norm method is better judged by comparing the theoretical
and empirical zeros of the polynomial D(z), computed from R and R̂. They are shown
in the following table. The first two zeros are the desired ones.

zeros of D(z)
theoretical empirical

|zi| arg(zi)/π |zi| arg(zi)/π
1.0000 0.2000 0.9989 0.2020
1.0000 0.4000 1.0059 0.4026
0.8162 −0.1465 0.8193 −0.1441
0.7810 −0.4251 0.7820 −0.4227
0.7713 −0.7000 0.7759 −0.6984
0.8162 0.7465 0.8188 0.7481
0.7810 −0.9749 0.7832 −0.9729

The main idea of the minimum-norm method was to separate the desired zeros from
the spurious ones by pushing the latter inside the unit circle. In some applications of
eigenvector methods, such as pole identification, the desired zeros lie themselves inside
the unit circle (being the poles of a stable and causal system) and therefore, cannot be
separated from the spurious ones. To separate them, we need a modification of the
method that places all the spurious zeros to the outside of the unit circle. This can be

14.7. Reduced-Order Method 715

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

50

60

70

80

wavenumber k in units of π

dB

MUSIC and min− norm spectra

min− norm
music

Fig. 14.6.1 MUSIC and min-norm spectra.

done by replacing the vector f by its reverse fR = J f∗, where J is the K×K reversing
matrix. The resulting polynomial will be the reverse of F(z), with all its zeros reflected
to the outside of the unit circle. The reverse vector fR is the backward prediction filter
obtained by minimizing (14.6.2) subject to the constraint that its last element be unity.
Using the reversal invariance of Raa, namely, JRaaJ = R∗aa, we find

fR = J f∗ = J(R−1
aa)∗u = R−1

aaJu = R−1
aav

where v = Ju = [0, . . . ,0,1]T is the reverse of u. With the exception of bK−1, the last
element of all basis vectors bi is zero. Denoting by v0, the reverse of u0, it follows that
v†0B = [0,0, . . . ,0, aL]= aLv†. Thus, up to a scale factor, v can be replaced by B†v0,
and hence, The vector d becomes

d = B fR = B(B†B)−1B†v0 = ENE†Nv0 (14.6.6)

Up to a scale, this is the minimum-norm vector subject to the constraint that its
last element be unity; that is, v†0d = dM = 1. In terms of the matrix elements of the
eigenvector matrix E it reads

d =
K−1∑
i=0

E∗Miei (14.6.7)

where E∗Mi is the conjugate of the last row of E. The spurious zeros of this vector will
lie outside the unit circle. We may refer to this method as the modified minimum-norm
method.

14.7 Reduced-Order Method

The basis B of the noise subspace has very special structure, being constructed in terms
of the delayed replicas of the same reduced-order vector a. It is evident from Eq. (14.4.11)
that a can be extracted from any column bi or B by advancing it by i units. The B basis
is linearly related to the orthonormal eigenvector basis by B = ENC with some K×K

716 14. Spectrum Estimation and Array Processing

invertible matrix C. Thus, the vector bi is expressible as a linear combination of the
noise subspace eigenvectors

bi =
K−1∑
j=0

ejCji , i = 0,1, . . . , K − 1

This vector has a total of K−1 vanishing coefficients, namely, the first i and the last
K−1− i coefficients. Component-wise, we may write bim = 0, for 0 ≤m ≤ i−1 and for
i+ L+ 1 ≤ m ≤ M. This vector may be specified up to an overall scale factor because
we are interested only in the zeros of the reduced-order vector a. Therefore, we may
arbitrarily fix one of the coefficients Cji to unity. For example, we may single out the
0th eigenvector:

bi = e0 +
K−1∑
j=1

ejCji (14.7.1)

If e0 happens to be absent from the sum, we may single out e1 and so on. The
coefficient bii will no longer be unity, but may be normalized so later. TheK−1 unknown
coefficients Cji, j = 1,2, . . . , K − 1 can be determined by the K − 1 conditions that the
first i and lastK−1−i coefficients of bi be zero. Written in terms of the matrix elements
of the eigenvector matrix E, these conditions read for each i = 0,1, . . . , K − 1:

Em0 +
K−1∑
j=1

EmjCji = 0 , for 0 ≤m ≤ i− 1 and i+ L+ 1 ≤m ≤M (14.7.2)

Thus, solving the linear Eqs. (14.7.2) for the coefficients Cji and substituting in Eq.
(14.7.1), we obtain bi and, advancing it by i units, the reduced-order vector a. Because
Bi(z)= z−iA(z), the polynomial Bi(z) has no spurious zeros. In effect, forming the
linear combination Eq. (14.7.1) of noise subspace eigenvectors removes the spurious
zeros completely by placing them at the origin of the z-plane. In a sense, this procedure
carries the philosophy of the minimum-norm method further.

When the theoretical R is replaced by the empirical R̂ and the corresponding EN is
replaced by the estimated ÊN, it is no longer possible to linearly transform the basis
ÊN to a B basis constructed from a single reduced-order vector a. It is still possible,
however, to form linear combinations of the estimated eigenvectors.

b̂i =
K−1∑
j=0

êjCji , i = 0,1, . . . , K − 1 (14.7.3)

such that the resulting vectors b̂i will have vanishing first i and lastK−1−i coefficients;
that is, of the form

b̂i =
[
0, . . . , 0︸ ︷︷ ︸
i zeros

, 1, ai1, . . . , aiL, 0, . . . , 0︸ ︷︷ ︸
K−1−i zeros

]T
(14.7.4)

This can be done by solving Eq. (14.7.2) with E replaced by its estimate, Ê, obtained
from R̂. The resultingK reduced-order vectors ai = [1, ai1, . . . , aiL]T, i = 0,1, . . . , K−1,
will not be the same necessarily. But, each can be considered to be an approximate

14.7. Reduced-Order Method 717

estimate of the true reduced-order vector a, and its L zeros will be estimates of the true
desired zeros.

It turns out that individually none of the ai is a particularly good estimate of a. They
may be combined, however, to produce a better estimate. This is analogous to MUSIC,
where individual spectra of noise eigenvectors are not good, but combining them by
averaging produces a better spectrum. To see how we may best combine the ai, we
form a new basis of the estimated noise subspace in terms of the vectors b̂i, namely,
B̂ = [b̂0, b̂1, . . . , b̂K−1]. For our 6×4 example, we have

B̂ = [b̂0, b̂1, b̂2, b̂3]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
a01 1 0 0
a02 a11 1 0
0 a12 a21 1
0 0 a22 a31

0 0 0 a32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The linear transformations (14.7.3) may be written compactly as B̂ = ÊNC. Note that

B̂†B̂ is no longer Toeplitz and therefore, the LP solution f of (14.6.2) will not necessarily
have minimum phase. Thus, the empirical minimum-norm solution can have spurious
zeros outside or near the unit circle. Because the basis B̂ is an estimate of the true B,
we may try to fit B̂ to a matrix of the type B having the special structure (14.4.11) by
minimizing the distance between the two matrices according to some matrix norm. For
example, we may minimize the Frobenius matrix distance [1166]:

‖B̂− B‖2 = tr
[
(B̂− B)†(B̂− B)] = K−1∑

i=0

‖b̂i − bi‖2 = min

Because b̂i and bi are the delayed versions of the reduced-order vectors ai and a , it
follows that ‖b̂i − b̂i‖2 = ‖ai − a‖2. Therefore,

‖B̂− B‖2 = tr
[
(B̂− B)†(B̂− B)] = K−1∑

i=0

‖ai − a‖2 = min (14.7.5)

Minimizing with respect to a gives the result:

â = 1

K

K−1∑
i=0

ai , Â(z)= 1

K

K−1∑
i=0

Ai(z) (14.7.6)

that is, the average of the K filters. Thus, we obtain the following reduced-order or,
reduced-MUSIC algorithm [1139]:

1. Solve the eigenproblem for the estimated covariance matrix R̂.

2. Using the estimated noise subspace eigenvectors, solve (14.7.2) for the coefficients
Cji and using Eq. (14.7.3) obtain the basis vectors b̂i and hence the reduced-order
vectors ai, i = 0,1, . . . , K − 1.

718 14. Spectrum Estimation and Array Processing

3. Use the average (14.7.6) to get an estimate Â(z) of the reduced-order polynomial
A(z). Obtain estimates of the desired zeros by a root-finding procedure on Â(z),
or, by finding the peaks in the pseudospectrum

Ŝ(k)= 1

|Â(k)|2 =
1

|s†kâ|2
(14.7.7)

The MATLAB function rmusic implements this algorithm. Fig. 14.7.1 shows a com-
parison between the reduced-order algorithm and MUSIC for the same example con-
sidered in Fig. 14.6.1, where, again, for the purposes of comparison the vector â was
normalized to unit norm. As in the case of MUSIC, the spectrum of any individual
reduced-order vector ai is not good, but the spectrum based on the average â is better.
This can be appreciated by comparing the two zeros (L = 2) of the six (K = 6) indi-
vidual filters Âi(z), i = 0,1, . . . ,5 with the two zeros of the averaged polynomial Â(z)
and with the theoretical zeros. They are shown in the table below.

zeros Â0 Â1 Â2 Â3 Â4 Â5 Â A
|z1| 0.976 1.032 0.964 1.038 0.969 1.025 0.999 1.000
arg(z1)/π 0.197 0.203 0.199 0.199 0.203 0.197 0.201 0.200

|z2| 1.056 0.944 1.115 0.896 1.059 0.947 1.002 1.000
arg(z2)/π 0.393 0.407 0.402 0.402 0.407 0.393 0.399 0.400

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

50

60

70

80

wavenumber k in units of π

dB

MUSIC and reduced− order spectra

reduced− order
music

Fig. 14.7.1 MUSIC and reduced-order method.

An alternative method of combining the K estimates is as follows [1163]. Form the
(L+ 1)×K matrix A = [a0, a1, . . . , aK−1] and note that if the ai were computed on the
basis of the theoretical covariance matrix R, then A would have rank one because each
ai would be exactly equal to a. But if the empirical matrix R̂ is used, then the matrix A
will only approximately have rank one, in the sense of its singular value decomposition
(SVD). Thus, we may replace A by its rank-one SVD approximant, namely, the rank-
one matrix closest to A with respect to the Frobenius or Euclidean matrix norms. This
amounts to finding the largest eigenvalue of the (L+ 1)×(L+ 1) matrix

AA† =
K−1∑
i=0

aia
†
i (14.7.8)

14.8. Maximum Likelihood Method 719

and choosing the corresponding eigenvector to be the estimate of a. This eigenvector is
expressible as a weighted sum of the ai but with different weights than Eq. (14.7.6). To
see this, letσ and â be the largest eigenvalue and eigenvector ofAA†. UsingAA†â = σâ,
and defining w = σ−1A†â, we find

â = Aw =
K−1∑
i=0

wiai (14.7.9)

where wi are the components of w = [w0,w1, . . . ,wK−1]T. The constraint that â and
ai, have first coefficients of unity implies the normalization condition

∑K−1
i=0 wi = 1.

Even though this method is computationally more complex than Eq. (14.7.6), it allows
one to judge the quality of the resulting estimate. This may be done by inspecting the
relative magnitudes of the singular values of A, equivalently, the L + 1 eigenvalues
of AA†. Theoretically, all but the maximum eigenvalue must be zero. Applying this
method to the above simulation example, we find the estimated zeros:

z1 = 0.9985ej0.2011π , z2 = 1.0037ej0.3990π

and the theoretical and empirical SVD values of the matrix A:

theoretical 5.8059 0 0
empirical 5.8139 0.1045 0.0187

14.8 Maximum Likelihood Method

The maximum likelihood method is not, strictly speaking, an eigenvector method; how-
ever, some of the ideas we have been discussing apply to it. The method determines the
plane wave frequencies and amplitudes by fitting them directly to the measured snap-
shot data using a criterion, such as maximum likelihood or least-squares. Each snapshot
is modeled according to Eq. (14.3.10), which can be written compactly as

y(n)= [
s∗k1
, . . . , s∗kL

]⎡⎢⎢⎣
A1(n)

...
AL(n)

⎤⎥⎥⎦+ v(n)= S∗A(n)+v(n) (14.8.1)

The unknown amplitudes A(n) and wavenumbers ki, i = 1,2, . . . , L are treated as
deterministic parameters to be fitted to the snapshot data Y = {y(n), 0 ≤ n ≤ N − 1}.
The maximum likelihood estimates of these parameters are obtained by maximizing the
joint density of the snapshots, p(Y)= max. If the wave parameters are deterministic,
then the randomness in y(n) arises only from v(n). Assuming that v(n) are complex
gaussian (see Problem 14.16) and independent, the joint density of Y is the product of
marginal densities:

p(Y) =
N−1∏
n=0

p
(
v(n)

) = 1

(πσ2
v)N(M+1) exp

⎡⎣− 1

σ2
v

N−1∑
n=0

‖v(n)‖2

⎤⎦
= 1

(πσ2
v)N(M+1) exp

⎡⎣− 1

σ2
v

N−1∑
n=0

‖y(n)−S∗A(n)‖2

⎤⎦

720 14. Spectrum Estimation and Array Processing

Thus, under gaussian statistics, the maximum likelihood criterion is equivalent to
the least-squares minimization criterion:

J =
N−1∑
n=0

‖y(n)−S∗A(n)‖2 = min (14.8.2)

According to the general discussion of [1165], the simultaneous minimization of J
with respect to ki and A(n) can be done in two steps. First, minimize with respect to
the amplitudes A(n) and then, minimize with respect to the wavenumbers ki. Setting
the gradients with respect to A(n) to zero, we obtain

∂J
∂A(n)

= −S†[y(n)∗−SA∗(n)
] = 0 ⇒ A(n)∗= (S†S)−1S†y(n)∗

Inserting this solution into Eq. (14.8.2), we obtain

J =
N−1∑
n=0

‖y(n∗)−SA(n)∗‖2 =
N−1∑
n=0

∥∥[I − S(S†S)−1S†]y(n)∗
∥∥2

Using Eq. (14.4.13), we may rewrite it in terms of the projector onto the noise sub-
space, namely, PN = B(B†B)−1B† = I − S(S†S)−1S†

J =
N−1∑
n=0

∥∥B(B†B)−1B†y(n)∗
∥∥2 =

N−1∑
n=0

∥∥PNy(n)∗
∥∥2

Using the projection property P†NPN = PN, and the definition (14.4.14) of the sample
covariance matrix, we find

J =
N−1∑
n=0

y(n)TPNy(n)∗= tr

⎡⎣N−1∑
n=0

PNy(n)Ty(n)∗
⎤⎦ = N tr[PNR̂]

The minimization of J with respect to the coefficients of the reduced-order vector
a is a highly nonlinear problem. It may be solved, however, iteratively by the solution
of a succession of simpler problems, by the following procedure [1141–1143,1159,1161].
Write y(n)TB = [y(n)Tb0,y(n)Tb1, . . . ,y(n)TbK−1] and note that y(n)Tbi = aTyi(n),
where yi(n) is the (L + 1)-dimensional portion of y(n) starting at the ith position,
namely,

yi(n)=
[
yi(n), yi+1(n), . . . , yi+L(n)

]T , i = 0,1, . . . , K − 1

Then, y(n)TB = aT[y0(n),y1(n), . . . ,yK−1(n)]≡ aTY(n). And, J can be written as

J =
N−1∑
n=0

y(n)TB(B†B)−1B†y(n)∗= aT

⎡⎣N−1∑
n=0

Y(n)(B†B)−1Y(n)†
⎤⎦ a∗

The minimization of J is obtained by solving the succession of problems, for i = 1,2, . . . ,

Ji = aTi

⎡⎣N−1∑
n=0

Y(n)(B†i−1Bi−1)−1Y(n)†
⎤⎦ a∗i = min (14.8.3)

14.9. ESPRIT Method 721

where B†i−1Bi−1 is constructed from the solution ai−1 of the previous iteration. The
iteration is initialized by a0 = [1,0, . . . ,0]T, which gives B†0B0 = IK. At each iteration,
Eq. (14.8.3) is subject to an appropriate constraint on ai such as that its first coefficient
be unity, or, that its zeros lie on the unit circle. Note that B†B is Toeplitz and therefore,
its inverse can be computed efficiently by the Levinson recursion.

14.9 ESPRIT Method

There exist a number of eigenvector methods that employ two or more sets of snapshot
measurements obtained from two or more arrays related to each other either by trans-
lation or by rotation. Examples are the estimation of signal parameters via rotational
invariance techniques (ESPRIT) method [1145], the covariance difference method [1135–
1138], and the spatial smoothing method for dealing with coherent signals [1119,1126].

Consider two arrays related to each other by an overall translation by distance Δ
along the x-axis. The effect of translation shows up as an overall phase change in each
direction vector. For example, the value of a wave on the x-axis with respect to the
original and the translated x-axes will be:

A1e−jkxx → A1e−jkx(x+Δ) = A1e−jkxxe−jkxΔ

Setting xm = md and letting δ = Δ/d be the displacement in units of d, we obtain
at the original and translatedmth array elements

A1e−jk1m → A1e−jk1me−jk1δ

or, in terms of the direction vectors

A1s∗1 → A1s∗1 e−jk1δ

It follows that the matrix S = [sk1 , . . . , skL] transforms under translation as

S → SDδ , Dd = diag
{
ejk1δ, ejk2δ, . . . , ejkLδ

}
(14.9.1)

Therefore, the snapshot measurements at the original and translated arrays are

y(n) = S∗A(n)+v(n)

yδ(n) = S∗D∗δA(n)+vδ(n)
(14.9.2)

The covariance and cross-covariance matrices are

Ryy = E[y(n)∗y(n)T]= SPS† +σ2
vI

Ryδyδ = E[yδ(n)∗yδ(n)T]= SDδPD†δS† +σ2
vI

(14.9.3)

Ryyδ = E[y(n)∗yδ(n)T]= SPD†δS† (14.9.4)

where we used E[vδ(n)∗vδ(n)T]= E[v(n)∗v(n)T]= σ2
vI and E[v(n)∗vδ(n)T]= 0.

722 14. Spectrum Estimation and Array Processing

The ESPRIT method works with the matrix pencil, C(λ)= C − λCδ, defined by the
pair of matrices

C = Ryy −σ2
vI = SPS† , Cδ = Ryyδ = SPD†δS† (14.9.5)

The generalized eigenvalues of this matrix pencil are, by definition [102], the so-
lutions of det(C − λCδ)= 0, and the corresponding generalized eigenvectors satisfy
Ce = λCδe. The ESPRIT method is based on the observation that the nonzero general-
ized eigenvalues of C(λ) are simply

λi = ejkiδ , i = 1,2, . . . , L (14.9.6)

and therefore, the desired wavenumbers ki can be extracted from the knowledge of the
λi. Note that λ = 0 is a generalized eigenvalue because det(C)= det(SPS†)= 0. This
follows from the fact that SPS† is an (M + 1)×(M + 1) matrix of rank L < M + 1.
The generalized eigenvectors corresponding to λ = 0 are the vectors in the null space
of SPS†; namely, they satisfy SPS†e = 0, or, equivalently, S†e = 0. These are the
noise subspace eigenvectors of Ryy. Next, we show that the only nonzero generalized
eigenvalues are those in Eq. (14.9.6). The corresponding generalized eigenvector e must
satisfy

SPS†e = λSPD†δS†e

Multiplying both sides by S† and removing the common matrix factor (S†S)P, we
obtain S†e = λD†δS†e. Using the fact that D†δ = D−1

δ , and defining the L-dimensional
vector f = S†e, we obtain

Dδf = λf

Clearly, if e is not in the noise subspace, then f = S†e 	= 0; therefore, λ must be an
eigenvalue of Dδ, which is already diagonal. This proves Eq. (14.9.6). The eigenvectors
of Dδ will be the L-dimensional unit vectors; that is, the columns of the L×L unit ma-
trix, fi = ui, i = 1,2, . . . , L. The generalized eigenvectors will be ei = S(S†S)−1ui. These
are obtained by an argument similar to Eq. (14.3.15). Thus, the L columns of the ma-
trix S(S†S)−1 are simply the generalized eigenvectors corresponding to the generalized
eigenvalues (14.9.6).

In the practical implementation of the method, we assume we have two sets of snap-
shots, y(n) and yδ(n), for n = 0,1, . . . ,N− 1, measured at the original and translated
arrays. The covariance matrix Ryy is estimated by Eq. (14.4.14) and the cross-covariance
matrix by

Ĉδ = R̂yyδ =
1

N

N−1∑
n=0

y(n)∗yδ(n)T

From the eigenproblem of R̂yy, we obtain an estimate of σ̂2
v , either as the mini-

mum eigenvalue or, as the average of the eigenvalues of the noise subspace. Then, set
Ĉ = R̂yy − σ̂2

vI and solve the generalized eigenproblem for the pair {Ĉ, Ĉδ}. The L
generalized eigenvalues closest to the unit circle are used to extract estimates of the
desired wavenumbers ki by Eq. (14.9.6).

Unlike the minimum-norm and reduced-order methods that require equally spaced
linear arrays, the MUSIC and ESPRIT methods can be applied to arrays of arbitrary ge-
ometry.

14.10. Spatial Smoothing 723

14.10 Spatial Smoothing

Eigenvector methods rely on the property that the noise subspace eigenvectors have at
least L zeros on the unit circle at the desired frequency locations. As we saw in Sec. 14.3,
this property requires that the L×L power matrix P have full rank equal to L. To repeat
the argument, the condition Ra = σ2

va implies that SPS†a = 0, but what we want is
S†a = 0. Multiplying by a†, we obtain (S†a)†P(S†a)= 0, but this does not necessarily
imply that S†a = 0 unless P has full rank.

The case of diagonal P corresponds to mutually uncorrelated sources for the L plane
waves. The case of a nondiagonal P of full rank implies that the sources are partially
correlated. The case of a non-diagonal P with less than full rank implies that some or
all of the sources are coherent with each other. This case commonly arises in multipath
situations, as shown in the following diagram

To see how eigenvector methods fail if P does not have full rank, consider the worst
case when all the sources are coherent, which means that the wave amplitudes Ai(n)
are all proportional to each other, say, Ai(n)= ciA1(n), i = 1,2, . . . , L, where the ci 	= 0
(with c1 = 1) are attenuation factors corresponding to the different paths. Compactly,
we may write A(n)= A1(n)c. Then, the power matrix becomes

P = E[
A(n)∗A(n)T

] = E[|A1(n)|2
]
c∗cT = P1c∗cT (14.10.1)

It has rank one. The corresponding covariance matrix is

R = SPS† +σ2
vI = P1Sc∗cTS† +σ2

vI = P1ss† +σ2
vI (14.10.2)

where s = Sc∗. Similarly,

y(n)= A1(n)S∗c+ v(n)= A1(n)s∗ + v(n)

Because R is a rank-one modification of the identity matrix, it will have a one-
dimensional signal subspace spanned by s and a noise subspace of dimension K =
M + 1− 1 = M spanned by the eigenvectors belonging to the minimum eigenvalue σ2

v .
Thus, although we have L different signals, the solution of the eigenproblem will result
in a one-dimensional signal subspace. Moreover, the noise eigenvectors, will not neces-
sarily have zeros at the L desired locations. This can be seen as follows. If Ra = σ2

va,
then P1ss†a = 0, or, s†a = cTS†a = 0, which gives

cTS†a = [c1, . . . , cL]

⎡⎢⎢⎣
A(k1)

...
A(kL)

⎤⎥⎥⎦ = L∑
i=1

ciA(ki)= 0

724 14. Spectrum Estimation and Array Processing

This does not imply that the individual terms in the sum are zero. One solution to
this problem is the method of spatial smoothing [1119,1126], which restores P to full
rank, so that the eigenstructure methods can be applied as usual. The method is as
follows. The given array of M + 1 sensors is subdivided into J subarrays each having
M̄+1 sensors. The first subarray consists of the first M̄+1 elements of the given array.
Each subsequent subarray is obtained by shifting ahead one array element at a time, as
shown in the following diagram

Formally, we define the J subarrays by

ȳi(n)= [yi(n), yi+1(n), . . . , yi+M̄(n)]T , i = 0,1, . . . , J − 1 (14.10.3)

where the bar indicates that the size of the subarray is M̄ + 1. That is the (M̄ + 1)-
dimensional portion of y(n) starting at the ith array element. Using Eq. (14.9.2), we
may write compactly

ȳi(n)= S̄∗D∗i A(n)+v̄i(n)

where S̄ is the same as S but of dimension M̄+ 1. The matrix Di is given by Eq. (14.9.1)
with δ = i, corresponding to translation by i units. The covariance matrix of the ith
subarray will be

R̄i = E[ȳi(n)∗ȳi(n)T]= S̄DiPD†i S̄† +σ2
vĪ

where Ī is the (M̄+1)-dimensional identity matrix. The average of the subarray covari-
ances is

R̄ = 1

J

J−1∑
i=0

R̄i = S̄P̄S̄† +σ2
vĪ (14.10.4)

where

P̄ = 1

J

J−1∑
i=0

DiPD
†
i (14.10.5)

To be able to resolve L sources by the (M̄+ 1)-dimensional eigenproblem (14.10.4),
we must have M̄ ≥ L, and the rank of P̄ must be L. It has been shown [1126] that if
the number of subarrays J is greater than the number of signals, J ≥ L, then, P̄ has full
rank. If the J subarrays are to fit within the original array of lengthM+1, then we must
have M + 1 ≥ (M̄ + 1)+(J − 1), that is, the length of the first subarray plus the J − 1
subsequent shifts. Thus, M + 1 ≥ M̄ + J. If both J and M̄ are greater than L, then we
must haveM + 1 ≥ 2L. Therefore, the price for restoring the rank of P is that we must
use twice as long an array as in the ordinary full-rank case with L sources. A somewhat
stronger result is that J ≥ L + 1 − ρ, where ρ is the rank of P [1150]; equivalently, we
have J ≥ ν + 1, where ν = L − ρ is the nullity of P. This would give for the minimum
number of array elements,M+ 1 ≥ 2L+ 1− ρ, [1127,1143,1150]. Following [1126], we

14.10. Spatial Smoothing 725

derive the condition J ≥ L for the worst case, when all the signals are coherent. In that
case, P has rank one (ρ = 1) and is given by Eq. (14.10.1); P̄ becomes

P̄ = P1

J

J−1∑
i=0

Dic∗cTD†i =
P1

J

J−1∑
i=0

did
†
i , di = Dic∗

Writing
∑J−1
i=0 did

†
i = DD†, where D = [d0,d1, . . . ,dJ−1], it follows that the rank of

P̄ is the same as the rank of D. The matrix element Dli is the lth component of the ith
column; that is, Dli = (di)l= c∗l ejkli. Thus, D can be written as the product, D = C∗V,
of the diagonal matrix C∗ = diag{c∗1 , . . . , c∗L } and the L×J Vandermonde matrix V with
matrix elements Vli = ejkli; for example, if L = 3 and J = 4,

V =
⎡⎢⎣ 1 ejk1 e2jk1 e3jk1

1 ejk2 e2jk2 e3jk2

1 ejk3 e2jk3 e3jk3

⎤⎥⎦
The rank of Vandermonde matrices is always full; that is, it is the minimum of the col-

umn and row dimensions, min(L, J). It follows that the rank of P̄ is equal to min(L, J),
therefore, it is equal to L only if J ≥ L.

To appreciate the mechanism by which the rank is restored, let us consider an ex-
ample with two (L = 2) fully coherent sources. The minimum number of subarrays
needed to decohere the sources is J = L = 2. This implies M̄ =M+ 1− J =M− 1. The
covariance matrix of the full array is

R = P1[s1, s2]
[
c∗1
c∗2

]
[c1, c2]

[
s†1
s†2

]
+σ2

vI

The covariance matrices of the two subarrays are

R̄0 = P1[s̄1, s̄2]
[
c∗1
c∗2

]
[c1, c2]

[
s̄†1
s̄†2

]
+σ2

vĪ

R̄1 = P1[s̄1, s̄2]
[
ejk1c∗1
ejk2c∗2

]
[e−jk1c1, e−jk2c2]

[
s̄†1
s̄†2

]
+σ2

vĪ

Their average becomes

R̄ = 1

2
(R̄0 + R̄1)= [s̄1, s̄2]P̄

[
s̄†1
s̄†2

]
+σ2

vĪ

where

P̄ = P1

2

[
c∗1
c∗2

]
[c1, c2]+P1

2

[
ejk1c∗1
ejk2c∗2

]
[e−jk1c1, e−jk2c2]

= P1

[
c∗1 c1 c∗1 c2

(
1+ ej(k1−k2)

)
/2

c1c∗2
(
1+ ej(k2−k1)

)
/2 c∗2 c2

]
Clearly, P̄ is non-singular. The presence of the translation phases makes the two

column vectors [c∗1 , c∗2]T and [ejk1c∗1 , ejk2c∗2]T linearly independent. The determinant
of P̄ is easily found to be

det P̄ = |c1c2|2 sin2
(
k1 − k2

2

)

726 14. Spectrum Estimation and Array Processing

Perhaps, an even simpler example is to consider the two quadratic forms

Q0 = (f1 + f2)2= fT
[

1
1

]
[1,1]f , f =

[
f1
f2

]

Q1 = f2
1 = fT

[
1
0

]
[1,0]f

Separately, they have rank one, but their sum has full rank

Q = Q0 +Q1 = (f1 + f2)2+f2
1 = 2f2

1 + 2f1f2 + f2
2 = fT

[
2 1
1 1

]
f

where the 2×2 coefficient matrix has rank two, being the sum of two rank-one matrices
defined by two linearly independent two-dimensional vectors[

2 1
1 1

]
=

[
1
1

]
[1,1]+

[
1
0

]
[1,0]

Such quadratic forms can be formed, for example, by a†SPS†a = f†Pf, where f = S†a.
In the practical implementation of the method, the subarray covariances are computed
by sample averages over N snapshots; that is,

R̄i = 1

N

N−1∑
n=0

ȳi(n)∗ȳi(n)T

and then forming the average

R̄ = 1

J

J−1∑
i=0

R̄i

In addition to spatial smoothing, there exist other methods for dealing with the
problem of coherent signal sources [1147,1148,1151,1152].

14.11 Asymptotic Properties

Statistically, the sample covariance matrix R̂ approximates the theoretical R, and there-
fore, the linear predictor based on R̂ will approximate the one based on R. Similarly, the
eigenstructure of R̂ will approximate that of R. In this section, we derive the asymptotic
statistical properties that justify such approximations [1179–1205].

The basic technique for deriving asymptotic results is to perform a linearization of
the empirical solution about the theoretical one and then use the asymptotic statistical
properties of R̂. In Sec. 1.6, we obtained the asymptotic covariance of R̂ for a large
number of snapshots N:

E[ΔRijΔRkl]= 1

N
(RikRjl +RilRjk) (14.11.1)

14.11. Asymptotic Properties 727

where ΔR = R̂−R is the deviation of R̂ from its mean. This was valid in the real-valued
case; the complex-valued version will be considered shortly. The normal equations of
linear prediction based on R̂ and R are

R̂â = Êu0 , â =
[

1
α̂αα

]
and Ra = Eu0 , a =

[
1
ααα

]

where Ê and E are the minimized values of the mean-square prediction errors given by
Ê = âTR̂â and E = aTRa. Setting â = a+Δa and Ê = E +ΔE, we obtain

(R+ΔR)(a+Δa)= (E +ΔE)u0 ⇒ R(Δa)+(ΔR)a = (ΔE)u0 (14.11.2)

where we kept only the first-order terms. Because â and a have first coefficient of unity,
Δa = â− a will have zero first coefficient, that is, uT0 (Δa)= 0. Multiplying both sides of
Eq. (14.11.2) by aT, we obtain aTR(Δa)+aT(ΔR)a = ΔE. Using the normal equations
for a, we have aTR(Δa)= EuT0 (Δa)= 0. Thus, ΔE = aT(ΔR)a. Solving Eq. (14.11.2) for
Δa and using R−1u0 = E−1a, we find

Δa = E−1(ΔE)a−R−1(ΔR)a , ΔE = aT(ΔR)a (14.11.3)

For the purpose of computing the asymptotic covariances of Δa and ΔE, it proves
convenient to express Eq. (14.11.3) in terms of the vector δa ≡ (ΔR)a. Then,

Δa = E−1(ΔE)a−R−1(δa) , ΔE = aT(δa) (14.11.4)

Using Eq. (14.11.1), we find for the covariance of δa

E[δaiδak] = E
[∑
j
ΔRijaj

∑
l
ΔRklal

] =∑
jl
E[ΔRijΔRkl]ajal

= 1

N

∑
jl
(RikRjl +RjkRil)ajal = 1

N
[
Rik(aTRa)+(Ra)i(aTR)k

]
or,

E[δaδaT]= 1

N
[ER+Ra aTR] (14.11.5)

Writing ΔE = δaTa, we find

E[δaΔE]= E[δaδaT]a = 1

N
[ER+Ra aTR]a = 1

N
[
ERa+Ra(aTRa)

] = 2E
N
Ra

Using this result, we find for the asymptotic variance of Ê:

E
[
(ΔE)2] = aTE[δaΔE]= 2E

N
aTRa = 2E2

N
(14.11.6)

This generalizes Eq. (1.16.4). Similarly, we find for the cross-covariance between Ê
and â:

E[ΔaΔE]= E[
(E−1ΔEa−R−1δa)ΔE

] = E−1E
[
(ΔE)2]a−R−1E[δaΔE] , or,

728 14. Spectrum Estimation and Array Processing

E[ΔaΔE]= E−1 2E2

N
a−R−1(2E

N
Ra

) = 0 (14.11.7)

Finally, we find for the covariance of the predictor â

E[ΔaΔaT]= E[
Δa(E−1ΔEaT − δaR−1)

] = −E[ΔaδaT]R−1

= −E[
(E−1aΔE −R−1δa)δaT

]
R−1 = −[

E−1a
2E
N

aTR−R−1 1

N
(ER+Ra aTR)

]
R−1

= E
N
(R−1 − E−1a aT)= E

N

[
0 0T

0 R̃−1

]

where we used Eq. (12.9.16) or (1.8.35), and R̃ is the lower-order portion of R. Such

result was expected because Δa is of the form Δa =
[

0
Δααα

]
. Thus,

E[ΔαααΔαααT]= E
N
R̃−1 (14.11.8)

This is a well-known result, and although we obtained it for sample covariance ma-
trices of the type (1.6.21), where the snapshots y(n) were assumed to be independent,
it can be proved in the case of autoregressive models where R̂ is built out of the sample
autocorrelation function [1171,1181–1191].

It can also be shown that asymptotically Ê and α̂αα are the maximum likelihood esti-
mates of the LP parameters E and ααα, having all the good properties of such estimates,
namely, asymptotic unbiasedness, consistency, efficiency, and gaussian distribution
about the theoretical values with covariances given by Eqs. (14.11.6)–(14.11.8), which
are none other than the Cramér-Rao bounds of these parameters. It is instructive to
use the general formula (1.18.17) to derive these bounds, where the parameter vector is
defined as λλλ = [E,αααT]T. We must determine the dependence of R on these parameters
and then compute the derivatives ∂R/∂E and ∂R/∂ααα. We write the UL factorization of
R in the form of Eq. (1.8.33):

R =
[
ρa rTa
ra R̃

]
= U−1DaU−T =

[
1 αααT

0 Ũ

]−1 [
E 0T

0 D̃

][
1 0T

ααα ŨT

]

The parametrization ofR on the parameters E andααα is shown explicitly. It is evident
that the entries ρa and ra depend on E andααα, whereas R̃ does not. We have

ra = −R̃ααα , ρa = E −αααTra = E +αααTR̃ααα
Working with differentials, we find dra = −R̃dααα and dρa = dE + 2αααTR̃dααα. Differ-

entiating R entry-by-entry and using Eq. (1.8.35) for R−1, we find

R−1dR = E−1

[
dE +αααTR̃dααα −dαααTR̃

(dE +αααTR̃dααα)ααα− Edααα −αααdαααTR̃
]

(14.11.9)

Writing a similar expression for a second differential R−1δR, multiplying the two,
and taking the trace, we find

tr(R−1dRR−1δR)= E−2dEδE + 2E−1dαααTR̃δααα (14.11.10)

14.11. Asymptotic Properties 729

This gives for the matrix elements of the Fisher information matrix

JEE = 1

2
N tr

[
R−1∂R

∂E
R−1∂R

∂E

]
= N

2E2

JαE = 1

2
N tr

[
R−1 ∂R

∂ααα
R−1∂R

∂E

]
= 0

Jαα = 1

2
N tr

[
R−1 ∂R

∂ααα
R−1 ∂R

∂αααT

]
= N
E
R̃

As we know, the inverse of the information matrix is the Cramér-Rao bound for
unbiased estimates. This inverse agrees with Eqs. (14.11.6)–(14.11.8).

Following the discussion of [1186,1192], we may also derive the asymptotic covari-
ances of the reflection coefficients. The forward and backward Levinson recursion es-
tablishes a one-to-one correspondence between the prediction coefficients ααα and the
vector of reflection coefficients γγγ. Therefore, we have the differential correspondence
Δγγγ = ΓΔααα, where Γ is the matrix of partial derivatives Γij = ∂γi/∂αj. It follows that
the asymptotic covariance of γγγ will be

E[ΔγγγΔγγγT]= ΓE[ΔαααΔαααT]ΓT = E
N
ΓR̃−1ΓT (14.11.11)

Example 14.11.1: For the first-order case, we have R̃ = [R(0)] and E1 = (1−γ2
1)R(0), where

γ1 = −a11. Thus, we obtain Eq. (1.16.4) as a special case

E
[
(Δa11)2

] = E[
(Δγ1)2

] = 1− γ2
1

N

For the second-order case, Δααα = [Δa12, Δa22]T , and we have E2 = R(0)(1−γ2
1)(1−γ2

2)
and R̃ is the order-one autocorrelation matrix. Thus, we find

E[ΔαααΔαααT] = E2

N
R̃−1 = E2

N

[
R(0) R(1)
R(1) R(0)

]−1

= (1− γ
2
1)(1− γ2

2)
N(1− γ2

1)

[
1 −γ1

−γ1 1

]
= 1− γ2

2

N

[
1 −γ1

−γ1 1

]

From the Levinson recursion, we find for the second-order predictor a22 = −γ1(1 − γ2)
and a22 = −γ2. Differentiating, we have

dααα =
[
da12

da22

]
=

[
−(1− γ2) γ1

0 −1

][
dγ1

dγ2

]

Inverting, we find

dγγγ =
[
dγ1

dγ2

]
= 1

1− γ2

[
−1 −γ1

0 −(1− γ2)

]
dααα = Γdααα

Forming the product ΓR̃−1ΓT , we finally find

E[ΔγγγΔγγγT]= 1

N
1− γ2

2

(1− γ2)2

[
1− γ2

1 0
0 (1− γ2)2

]

730 14. Spectrum Estimation and Array Processing

which gives component-wise

E
[
(Δγ1)2

] = 1

N
(1+ γ2)(1− γ2

1)
1− γ2

, E[Δγ1Δγ2]= 0 , E
[
(Δγ2)2

] = 1− γ2
2

N

Setting γ2 = 0, the variance of γ1 becomes equal to that of the first-order case and
E
[
(Δγ2)2

] = 1/N. More generally, for an autoregressive process of orderM, all reflection
coefficients of order greater than M vanish, but their asymptotic variances are equal to
1/N, that is, E

[
(Δγp)2

] = 1/N, for p > M, [1186,1192]. ��

Next, we consider the asymptotic properties of the eigenstructure of R̂ [1197–1205].
In the complex-valued case R̂ is given by Eq. (14.4.14), and Eq. (14.11.1) is replaced by

E[ΔRij ΔRkl]= 1

N
RilRkj (14.11.12)

where again ΔR = R̂ − R. This can be shown in the same way as Eq. (1.6.23) using the
following expression for the expectation value of the product of four complex gaussian
random variables arising from the (independent) snapshots y(n) and y(m):

E
[
yi(n)∗yj(n)yk(m)∗yl(m)

] = RijRkl + δnmRilRkj
Equation (14.11.12) may be written more conveniently in the form

E
[
(a†ΔRb)(c†ΔRd)

] = 1

N
(a†Rd)(c†Rb) (14.11.13)

for any four (M+1)-dimensional vectors a,b, c,d. In particular, we may apply it to four
eigenvectors of R. Let ei denote the orthonormal eigenvectors of R, Rei = λiei, with
eigenvalues arranged in increasing order. Then,

E
[
(e†i ΔRej)(e

†
kΔRel)

] = 1

N
(e†i Rel)(e

†
kRej)= 1

N
λiλjδilδkj

where we used (e†i R)el = λie†i el = λiδil. Arranging the eigenvectors into the eigenvec-
tor matrix E = [e0, e1, . . . , eM], we recognize that the quantities eiΔRej, are the matrix
elements of ΔR in the E basis; that is, the elements of the matrix ΔV = E†ΔRE. Thus,
we obtain the diagonalized version of Eq. (14.11.12)

E[ΔVij ΔVkl]= 1

N
λiλjδilδkj (14.11.14)

The asymptotic properties of the eigenstructure of R̂ are obtained by using Eq. (14.11.14)
and standard first-order perturbation theory. The eigenproblems for R and R̂ are,

RE = EΛ and R̂Ê = ÊΛ̂ (14.11.15)

where Ê, E are the eigenvector matrices and Λ̂,Λ the diagonal matrices of the eigenval-
ues. Because the eigenvectors E form a complete set, it follows that the eigenvectors
Ê can be expanded as linear combinations of the former; that is, Ê = EF. The or-
thonormality and completeness of Ê and E require that F be a unitary matrix, satisfying
F†F = FF† = I. This is easily shown; for example, I = Ê†Ê = F†E†EF = F†IF = F†F.

14.11. Asymptotic Properties 731

In carrying out the first-order perturbation analysis, we shall assume initially that
all the eigenvalues of R are distinct. This corresponds to the Pisarenko case, where the
noise subspace is one-dimensional and thus, L =M.

The assumption of distinct eigenvalues means that, under a perturbation, R̂ = R+
ΔR, each eigenvector changes by a small correction of the form Ê = E + ΔE. By the
completeness of the basis E we may write ΔE = EΔC so that Ê = E(I + ΔC)= EF.
The unitarity of the matrix F = I + ΔC requires that ΔC be anti-hermitian; that is,
ΔC+ΔC† = 0. This follows from the first-order approximation F†F = I +ΔC+ΔC†.
The perturbation changes the eigenvalues by λ̂i = λi + Δλi, or, Λ̂ = Λ + ΔΛ. To
determine the first-order corrections we use Eq. (14.11.15)

(R+ΔR)(E +ΔE)= (E +ΔE)(Λ+ΔΛ) ⇒ (ΔR)E +R(ΔE)= (ΔE)Λ+ E(ΔΛ)

where we kept only the first-order terms. Multiplying both sides by E† and using E†RE =
Λ and the definition ΔV = E†(ΔR)E, we obtain

ΔV +Λ(ΔC)= (ΔC)Λ+ΔΛ ⇒ ΔΛ+ (ΔC)Λ−Λ(ΔC)= ΔV

or, component-wise
Δλiδij + (λj − λi)ΔCij = ΔVij

Setting i = j and then i 	= j, we find

Δλi = ΔVii , ΔCij = − ΔVij
λi − λj , for i 	= j (14.11.16)

Using Eq. (14.11.14), we obtain the asymptotic variances of the eigenvalues

E
[
(Δλi)2] = E[ΔVii ΔVii]= λ2

i
N

(14.11.17)

For the eigenvectors, we write

Δei = êi − ei =
∑
j 	=i

ejΔCji

and their covariances are

E[ΔeiΔe†i]=
∑
j 	=i

∑
k	=i

eje
†
kE[ΔCjiΔC

∗
ki]

Using the anti-hermiticity of ΔC and Eq. (14.11.14), we find

E[ΔCjiΔC∗ki]= −
E[ΔVjiΔVik]

(λj − λi)(λi − λk) =
1

N
λiλj

(λi − λj)2
δjk

which gives

E[ΔeiΔe†i]=
1

N

∑
j 	=i

λiλj
(λi − λj)2

eje
†
j (14.11.18)

732 14. Spectrum Estimation and Array Processing

Separating out the minimum eigenvalue λ0 and eigenvector e0, and denoting the
remaining signal subspace eigenvectors and eigenvalues by ES = [e1, . . . , eM] and ΛS =
diag{λ1, . . . , λM}, we may write Eq. (14.11.18) compactly

E[Δe0Δe†0]=
λ0

N
ESΛS(ΛS − λ0IM)−2E†S (14.11.19)

where IM is theM-dimensional unit matrix. The zeros of the polynomial e0 contain the
desired frequency information. The asymptotic variances for the zeros can be obtained
by writing

Δzi =
(
∂zi
∂e0

)T
Δe0

which gives

E
[|Δzi|2] = (

∂zi
∂e0

)T
E[Δe0Δe†0]

(
∂zi
∂e0

)∗
(14.11.20)

Example 14.11.2: In the L =M = 1 Example 14.3.1, we have for the eigenvalues and orthonor-
mal eigenvectors of R

λ0 = σ2
v , λ1 = σ2

v + 2P1 , e0 = 1√
2

[
1

−ejk1

]
, e1 = 1√

2

[
1
ejk1

]

It follows from Eq. (14.11.19) that

E[Δe0Δe†0]=
1

N
e1e†1

λ1λ0

(λ1 − λ0)2

Using the general formula for the sensitivities of zeros with respect to the coefficients of
a polynomial [12].

∂zi
∂am

= − 1

a0

zM−mi∏
j 	=i(zi − zj)

we find for the zero z1 = ejk1 of e0

∂z1

∂e0
= −√2

[
z1

1

]

Using this into Eq. (14.11.20), we find

E
[|Δzi|2] = 1

N
4λ1λ0

(λ1 − λ0)2
= 1

N
1+ 2SNR

SNR2 , SNR = P1

σ2
v

This implies that the quality of the estimated zero improves either by increasing the num-
ber of snapshots N or the signal to noise ratio. For low SNR, the denominator (λ1 − λ0)2

becomes small and the variance of z1 increases, resulting in degradation of performance.
For a given level of quality there is a tradeoff between the number of snapshots and SNR.
In general, the signal subspace eigenvalues ΛS will be separated from λ0 = σ2

v by a term
that depends on the signal powers, say, ΛS = λ0IM + PS. Then,

λ0ΛS(ΛS − λ0IM)−2= (IM + PS/σ2
v)(PS/σ2

v)−2

and Eq. (14.11.19) implies that the estimate of e0 becomes better for higher SNRs. ��

14.11. Asymptotic Properties 733

When the noise subspace has dimension K =M+1−L and the minimum eigenvalue
λ0 hasK-fold degeneracy, the first-order perturbation analysis becomes somewhat more
complicated. The eigenproblem for R is divided into its noise and signal subspace parts

REN = λ0EN , RES = ESΛS
where EN consists of the K degenerate eigenvectors belonging to the minimum eigen-
value λ0 = σ2

v and ES consists of the remaining L signal subspace eigenvectors. Under
a perturbation R̂ = R + ΔR, the degeneracy of EN is lifted and the noise subspace
eigenvalues become unequal λ̂i = λ0 +Δλi, i = 0,1, . . . , K − 1, or, Λ̂N = λ0IK +ΔΛN.
Similarly, the signal subspace eigenvalues change to Λ̂S = ΛS +ΔΛS.

The signal subspace eigenvectors, belonging to distinct eigenvalues, change in the
usual way; namely, each eigenvector changes by receiving small contributions from all
other eigenvectors. The noise subspace eigenvectors, however, being degenerate, are
mixed up by the perturbation into linear combinations of themselves, and in addition,
they receive small corrections from the signal subspace eigenvectors. Thus, the eigen-
problem for the perturbed matrix R̂ is

R̂ÊN = ÊNΛ̂N , R̂ÊS = ÊSΛ̂S (14.11.21)

where the corrections of the eigenvectors are of the form

ÊN = ENC+ ESΔC , ÊS = ES + ESΔB+ ENΔD (14.11.22)

In absence of the perturbation ΔR, the choice of the degenerate basis EN is arbitrary
and can be replaced by any linear combination ENC. The presence of the perturbation
fixes this particular linear combination by the requirement that the change in the eigen-
vectors be small. Combining the two equations into the full eigenvector matrices, we
have

Ê = [ÊN, ÊS]= [EN, ES]
[
C ΔD
ΔC IL +ΔB

]
= EF

The orthonormality and completeness requirements for Ê imply that F†F = FF† = I.
To first order, these conditions are equivalent to

C†C = IK , ΔC+ΔD†C = 0 , ΔB+ΔB† = 0 (14.11.23)

Thus, Cmust be unitary. Inserting Eq. (14.11.22) into the first term of (14.11.21) and
using (14.11.23), we find

(R+ΔR)(ENC− ESΔD†C)= (ENC− ESΔD†C)(λ0IK +ΔΛN)

and equating first-order terms,

ΔRENC− ESΛSΔD†C = ENCΔΛN − ESΔD†Cλ0

Multiplying both sides first by E†N and then by E†S and using the orthonormality
properties (14.4.3), we obtain

ΔVNNC = CΔΛN (14.11.24)

734 14. Spectrum Estimation and Array Processing

where ΔVNN = E†NΔREN, and

ΔVSNC−ΛSΔD†C = −ΔD†Cλ0

where ΔVSN = E†SΔREN, and solving for ΔD†

ΔD† = (ΛS − λ0IL)−1ΔVSN (14.11.25)

Similarly, from the second term of Eq. (14.11.21), we find for ΔB

ΔΛS +ΔBΛs −ΛsΔB = ΔVSS , ΔVSS = E†SΔRES (14.11.26)

which can be solved as in Eq. (14.11.16). To summarize, the corrections to the noise
subspace eigenvalues ΔΛN and the unitary matrix C are obtained from the solution of
theK×K eigenproblem (14.11.24),ΔD constructed by (14.11.25), thenΔC is constructed
by (14.11.23), and ΔB by (14.11.26).

Because the corrections to the signal subspace eigenvectors are obtained from the
non-degenerate part of the perturbation analysis, it follows that (14.11.18) is still valid
for the signal eigenvectors. More specifically, because we index the noise subspace
eigenvectors for 0 ≤ i ≤ K − 1 and the signal subspace eigenvectors for K ≤ i ≤M, we
may split the sum over the noise and signal subspace parts

E[ΔeiΔe†i]=
1

N
λ0λi

(λ0 − λi)2

K−1∑
j=0

eje
†
j +

1

N

M∑
j 	=i
j=K

λiλj
(λi − λj)2

eje
†
j

where we used the fact that all noise subspace eigenvalues are equal to λ0. The first
term is recognized as the projector onto the noise subspace. Thus, for K ≤ i ≤M,

E[ΔeiΔe†i]=
1

N
λ0λi

(λ0 − λi)2
ENE

†
N +

1

N

M∑
j 	=i
j=K

λiλj
(λi − λj)2

eje
†
j (14.11.27)

Because most eigenvector methods can also be formulated in terms of the signal
subspace eigenvectors, it is enough to consider only the asymptotic covariances of
these eigenvectors. For example, in the reduced-order method of Sec. 14.7, the reduced-
order polynomials ai may alternatively be computed by requiring that the correspond-
ing shifted vectors bi be orthogonal to the signal subspace [1139]; namely, E†Sbi = 0,

i = 0,1, . . . , K − 1, and similarly, for the empirical quantities Ê†S b̂i = 0. If we denote by
Gi the part of ES consisting of L+1 rows starting with the ith row, then, these conditions
become G†i ai = 0. Because the first coefficient of ai is unity, these give rise to L linear
equations for the L last coefficients ai. It follows that ai can be constructed as a function
of the signal eigenvectors, and thus, one can obtain the corresponding covariance of ai
using Eq. (14.11.27). An example will illustrate this remark.

Example 14.11.3: Consider the case of one plane wave (L = 1) and arbitraryM. The covariance
matrix R = σ2

vI + P1sk1 s†k1
has a one-dimensional signal subspace so that ES = [eM], Its

14.12. Computer Project – LCMV Beamforming and GSC 735

eigenvalue is λM = σ2
v + (M+1)P1. The matrix Gi is formed by row i to row i+L = i+1,

that is,

Gi =
[
eM,i
eM,i+1

]
= 1√

M + 1

[
ejk1i

ejk1(i+1)

]

The equation G†i ai = 0 becomes for the first-order filters ai,

G†i ai =
1√
M + 1

[
e−jk1i, e−jk1(i+1)][

1
ai1

]
= 0 ⇒ ai1 = −ejk1

and hence, all the reduced-order polynomials are equal to the theoretical one, Ai(z)=
1 − ejk1z−1. Now, if the empirical êM is used , then a similar calculation gives ai1 =
−e∗M,i/e∗M,i+1, and therefore, the estimated zero will be ẑ1 = e∗M,i/e∗M,i+1. Differentiating,
we obtain dẑ1 = de∗M,i/e∗M,i+1 − e∗M,ide∗M,i+1/e

∗2
M,i+1; therefore, its covariance will be

E
[|Δz1|2

] = 1

|eM,i+1|2 E
[|ΔeM,i|2]+ |eM,i|2

|eM,i+1|4 E
[|ΔeM,i+1|2

]
− 2 Re

[
e∗M,i

eM,i+1e∗2
M,i+1

E
[
ΔeM,iΔe∗M,i+1

]]

This simplifies to

E
[|Δz1|2

] = (M + 1)
[
E
[|ΔeM,i|2]+ E[|ΔeM,i+1|2

]− 2 Re
(
ejk1E

[
ΔeM,iΔe∗M,i+1

])]

Because the signal subspace is one-dimensional, the second term in Eq. (14.11.27) is absent.
The noise-subspace projector can be expressed in terms of the signal-subspace projector
ENE

†
N = I − ESE†S . Thus, Eq. (14.11.27) gives

E[Δe0Δe†0]=
1

N
λMλ0

(λM − λ0)2

(
I − 1

M + 1
sk1 s†k1

)

Extracting the ith and (i+ 1)st components, we get for the variance of the estimated zero

E
[|Δz1|2

] = 1

N
2(M + 1)λMλ0

(λM − λ0)2
= 1

N
2
[
1+ (M + 1)SNR

]
(M + 1)SNR2

where SNR = P1/σ2
v . SettingM = 1, we recover the result of Example 14.11.2. ��

14.12 Computer Project – LCMV Beamforming and GSC

This computer project, divided into separate parts, deals with the theory of linearly-
constrained minimum-variance (LCMV) beamforming and its equivalence to the gen-
eralized sidelobe canceler [1209–1221]. The problem also has application in linearly-
constrained time-series Wiener filtering, and other applications, such as optimum minimum-
variance Markowitz portfolios in finance (those are discussed in the following project).
The following topics are included,

• Linearly-constrained Wiener filtering problem.

• Linearly-constrained minimum-variance beamforming.

736 14. Spectrum Estimation and Array Processing

• Retrodirective beams towards multiple interferers.

• Quiescent pattern control with linear constraints.

• Equivalence of LCMV and the generalized sidelobe canceler.

1. Linearly-constrained Wiener filtering problem. LetR be a givenM×M positive-definite
Hermitian matrix and r be a given M×1 complex-valued vector. It is desired to find
the weight vector a that minimizes:

E = a†Ra− r†a− a†r = min (14.12.1)

subject to the K linear constraints:

C†a = g (14.12.2)

where K < M, and C is a M×K matrix with linearly independent columns, and g
is a given K×1 vector of “gains”. Component-wise, Eq. (14.12.2) reads c†i a = gi,
i = 1,2, . . . , K, where ci is the ith column of C, and gi the ith component of g.

(a) Show that the unconstrained minimization of Eq. (14.12.1) gives the solution:

au = R−1r (14.12.3)

(b) Introduce a K-dimensional complex-valued vector of Lagrange multipliers λλλ and
minimize the modified performance index:

J = a†Ra− r†a− a†r+λλλ†(g−C†a)+(g† − a†C)λλλ = min

Show that the solution the solution of this problem is the solution of the con-
strained problem of Eqs. (14.12.1) and (14.12.2) can be expressed in terms of au
as follows:

a = au +R−1C(C†R−1C)−1(g−C†au
)

(14.12.4)

Many of the subsequent questions are special cases of this result.

2. LCMV Beamforming. Consider an array ofM antennas equally-spaced at distance d
(in units of the wavelength λ) along the x-axis. The array response is to be designed
to achieve K prescribed gain values gi at the directions θi corresponding to the
steering vectors:

si = ski , ki = 2πd sinθi , i = 1,2, . . . , K (14.12.5)

where

sk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ejk

e2jk

...
e(M−1)jk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

14.12. Computer Project – LCMV Beamforming and GSC 737

Thus, the constraint matrix C and gain vector are:

C = [s1, s2, . . . , sK] , g =

⎡⎢⎢⎢⎢⎢⎣
g1

g2

...
gK

⎤⎥⎥⎥⎥⎥⎦
We assume that L plane waves are incident on the array from L directions which may
or may not coincide with the above constraint angles. Let S be the M×L steering
matrix of the incident plane waves and let P be their L×L power matrix, assumed to
have full rank. TheM×M autocorrelation matrix of the array output in the presence
of uncorrelated noise is:

R = σ2
vI + SPS† (14.12.6)

(a) Using the results of the previous question, show that the optimum array weights
that minimize the output power subject to the K constraints:

E = a†Ra = min , subject to C†a = g (14.12.7)

are given by:

a = R−1C(C†R−1C)−1g (LCMV) (14.12.8)

This is known as the linearly-constrained minimum variance (LCMV) beamformer.
See Frost [1209] for its LMS adaptive implementation. The corresponding array
response towards an angle θ is defined as follows in absolute units and in dB

A(θ)= |s†ka| , AdB(θ)= 20 log10A(θ) , k = 2πd sinθ (14.12.9)

(b) With R given by Eq. (14.12.6), show that if C = S, then, Eq. (14.12.8) reduces to

a = S(S†S)−1g (14.12.10)

which is recognized as the minimum-norm solution of the equation S†a = g.
Being the minimum-norm solution implies that it minimizes a†a. How is this
reconciled with the fact that a minimizes Eq. (14.12.7)?

(c) Retrodirective Beamforming towards Multiple Interferers. An example of retrodi-
rective beamforming was given in Eq. (14.3.27). In the present notation, this
corresponds to the case C = [s1], g = [1], and S = [s1, s2] with s1 being the
desired look-direction and s2 representing a jammer.

Suppose that the incident signals are divided into two groups, the desired signals
S1 and the interferers S2, so that S = [S1, S2], where S1 and S2 have L1 and
L2 columns, respectively, such that L1 + L2 = L, and let us assume that the
corresponding power matrices are P1 and P2 and that the S1 and S2 are spatially
uncorrelated so that the full power matrix is block-diagonal so thatR is expressed
in the form:

R = σ2
vI + S2P2S

†
2 + S1P1S

†
1 ≡ Rn + S1P1S

†
1

738 14. Spectrum Estimation and Array Processing

whereRn = σ2
vI+S2P2S

†
2 is the noise-plus-interference covariance matrix. Using

the matrix inversion lemma, show the identity:

R−1S1(S
†
1R−1S1)−1= R−1

n S1(S
†
1R−1
n S1)−1

Thus, if we choose C = S1 and g being an arbitrary vector of responses towards
the desired look directions, the optimum weights will be given by:

a = R−1C(C†R−1C)−1g = R−1
n S1(S

†
1R−1
n S1)−1g

Using the matrix inversion lemma on Rn, show the following results:

R−1
n S1 = 1

σ2
v

[
S1 − S2(σ2

vP
−1
2 + S†2S2)−1S†2S1

]
S†2R−1

n S1 = P−1
2 (σ2

vP
−1
2 + S†2S2)−1S†2S1

Thus, the array gain steered towards the interferers, S†2a, becomes smaller with
increasing interferer power P2.

(d) Consider an array of 10 antennas equally-spaced at half-wavelength spacings
(d = 0.5). The array is designed to receive two desired signals from angles
θ1 = 20o and θ2 = 40o and reject five interferers coming in from the directions:

{θ3, θ4, θ5, θ6, θ7} = {−40o, −30o, −20o, 60o, 70o}
The response towards θ1 is to be double that towards θ2, while the responses
towards the interferers must be zero. Thus, the constraint matrix and gain vector
must be chosen as:

C = [s1, s2, s3, s4, s5, s6, s7] , g = [2,1,0,0,0,0,0]T

Assume that all plane waves have 10-dB power levels (and P is diagonal). De-
sign the optimum weight vector and calculate and plot the array response of
Eq. (14.12.9) in absolute units over the angle range −90o ≤ θ ≤ 90o. Indicate on
the graph the values of the gain vector g. Plot it also in dB with a vertical scales
ranging from [−70,10] dB.

−80 −60 −40 −20 0 20 40 60 80
0

0.5

1

1.5

2

θ

ar
ra

y
re

sp
on

se

all constrained

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10

θ

dB

all constrained

14.12. Computer Project – LCMV Beamforming and GSC 739

(e) To see the retrodirective action of the optimum beamformer, redesign the opti-
mum weights based only on the desired signal constraints:

C = [s1, s2] , g = [2,1]T

and plot the array response in dB using the same vertical dB scales as before.
Note the nulls at the interferer directions.

Repeat when the interferer powers are increased to 20 dB. In this case, you should
expect the interferer nulls to be deeper.

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10

θ

dB

only s
1
, s

2
 constrained, 10−dB interferers

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10

θ

dB

only s
1
, s

2
 constrained, 20−dB interferers

(f) Repeat when the interferer at θ4 is to be nulled exactly and the other interferers
nulled approximately by the retrodirective action of the beamformer, that is,
choose

C = [s1, s2, s4] , g = [2,1,0]T

Plot the array gain in dB using the same vertical scales as before. Assume 10-dB
power levels for all signals.

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10

θ

dB

only s
1
, s

2
 and s

4
 constrained

740 14. Spectrum Estimation and Array Processing

(g) Repeat the design and the gain plot for the following two cases. When interferes
3,4,5 are to be nulled exactly, and when 6,7 are to be nulled, that is, for the two
cases defined by:

C = [s1, s2, s3, s4, s5] , g = [2,1,0,0,0]T
C = [s1, s2, s6, s7] , g = [2,1,0,0]T

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10

θ

dB

only s
1
, s

2
 and s

3
, s

4
, s

5
 constrained

−80 −60 −40 −20 0 20 40 60 80
−70

−60

−50

−40

−30

−20

−10

0

10

θ

dB

only s
1
, s

2
 and s

6
, s

7
 constrained

Note that the construction of the steering matrix S and constraint matrix C can
be done with the help of the MATLAB function steermat, and the array gain can
be calculated with the help of the dtft function, both of which may be found in
the collection osp-toolbox. For example, in the very last case, we may define,

Pdb = [10 10 10 10 10 10 10]; P = diag(10.^(Pdb/10));
S = steermat(M-1, exp(j*[k1, k2, k3, k4, k5, k6, k7]));
C = steermat(M-1, exp(j*[k1, k2, k6, k7]));
R = eye(M) + S*P*S’; % assume unit-variance noise

where ki = 2πd sinθi. For the gain computation, you may use:

th = linspace(-90,90,1001); thr = pi*th/180; d=0.5;
k = 2*pi*d*sin(thr);
A = abs(dtft(a,k)); % array response, |A(theta)|
plot(th,A);

3. Quiescent Pattern Control. Next, we consider the proper design of the quiescent
response of an array that achieves a desired shape and respects the beam constraints.
The method is discussed by Griffiths and Buckley [1213].

Consider an antenna array defined by Eqs. (14.12.6)–(14.12.9). The quiescent weights
aq correspond to the case when the incident signals are absent and only noise is
present, that is, whenR = σ2

vI. In this case, show that the optimum weights (14.12.8)
are given by

aq = C(C†C)−1g (14.12.11)

They correspond to the minimum-norm solution of the constraints, C†a = g.

14.12. Computer Project – LCMV Beamforming and GSC 741

(a) Suppose that the array is to be steered towards a desired look-direction θ1 cor-
responding to a steering vector s1. If we choose C = s1 for the constraint matrix
and g = [1], that is, s†1a = 1 for the constraint, then show that the quiescent
weights are:

aq = 1

M
s1 (14.12.12)

and that the array response becomes

A(θ)= |s†kaq| =
1

M
∣∣W(k− k1)

∣∣ (14.12.13)

where k = 2πd sinθ , k1 = 2πd sinθ1, and W(k) is the response of the rect-
angular window of lengthM.

(b) IfC = s1 as above, but only the desired signal is present, that is,R = σ2
vI+P1s1s†1,

then show that the optimum weights are again given by Eq. (14.12.12).

(c) Consider an array of 21 antennas spaced at half-wavelength intervals. The de-
sired signal comes from the direction θ1 = 30o and has 0-dB signal to noise
ratio.

Plot the quiescent response (14.12.13) versus angle using dB scales with a vertical
range of [−80,5] dB. Notice the usual 13-dB level of the highest sidelobes. This
corresponds to a steered uniform array.

(d) It is anticipated that one or more interferers may come on in the angular range
of −50o ≤ θ ≤ −30o. To mitigate their effect, we try to force the array gain to
be −60 dB at the following angles:

{θ2, θ3, θ4, θ5, θ6} = {−50o ,−45o ,−40o ,−35o ,−30o}
Thus, we may choose the constraint matrix and gain vector to be:

C = [s1, s2, s3, s4, s5, s6] , g = [1, g, g, g, g, g]T (14.12.14)

where g = 10−60/20 = 10−3. Compute the corresponding quiescent weights
using Eq. (14.12.11) and plot the corresponding array angular pattern in dB as
above. Place the points θi on the graph.

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

uniform / quiescent

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

constrained / quiescent

742 14. Spectrum Estimation and Array Processing

(e) The quiescent responses of the uniform array considered above are not very good
because of their substantial sidelobe level. As an example of a better response,
consider the design of a 21-element Dolph-Chebyshev array that is steered to-
wards the angle θ1 = 30o and has a sidelobe level of −40 dB. Such an array can
be designed with the MATLAB function dolph. The MATLAB code is as follows:

d = 0.5; th1 = 30; k1 = 2*pi*d*sin(pi*th1/180);
s1 = steermat(M-1, exp(j*k1));
a = dolph(d, 90-th1, M, 40)’;
ad = a/(s1’*a);

where the calling convention of dolph, and the conjugation implied by the prime
operation, have to do with the conventions used in that toolbox. The last line
normalizes the designed array vector ad so that s†1ad = 1 and have unity gain
towards s1.

Plot the array response of the desired weights ad using the same scales as the
above two graphs. Note the −40 dB sidelobe level and the gains at the five con-
straint points θ2–θ6, with the constraints yet to be enforced.

(f) The main idea of Ref. [1213] is to find that weight vector ā that satisfies the
constraints C†ā = g and is closest to the desired weight ad with respect to the
Euclidean norm, that is, find ā that is the solution of the minimization problem:

J = (ā− ad)†(ā− ad)= min , subject to C†ā = g (14.12.15)

Using the results of Eq. (14.12.4), show that the optimum solution is

ā = ad +C(C†C)−1(g−C†ad
)

(14.12.16)

which can be written in the form:

ā = [
I −C(C†C)−1C†

]
ad +C(C†C)−1g ≡ a⊥ + aq (14.12.17)

Note that C†a⊥ = 0 and that aq and a⊥ are orthogonal, a†qa⊥ = 0. Show that ā
can also be written in the form:

ā = a⊥ +C(C†C)−1g = [C, a⊥]
[
(C†C)−1 0

0 (a†⊥a⊥)−1

][
g

a†⊥a⊥

]

Using the orthogonality property C†a⊥ = 0, show that the above expression can
be written in the form:

ā = C̄(C̄†C̄)−1ḡ , C̄ = [C, a⊥] , ḡ =
[

g

a†⊥a⊥

]
(14.12.18)

Therefore, the modified weights ā may be thought of as the quiescent weights
with respect to the constraints C̄†ā = ḡ, which involve one more constraint equa-
tion appended to the old ones.

14.12. Computer Project – LCMV Beamforming and GSC 743

(g) Using the constraints defined by Eq. (14.12.14) and the conventional Chebyshev
weights ad computed in part (e), construct the new quiescent “constrained Cheby-
shev” weights according to Eq. (14.12.16) and plot the corresponding array pat-
tern using the same scales as before. Place the constrained points on the graph.

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

conventional Chebyshev

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

constrained Chebyshev

(h) The previous question dealt with the quiescent pattern. Here, assume that there
are actually four incident plane waves, one from the desired look-directionθ1 and
three interferers from the directions θ2, θ3, θ4 as defined in part (d). Thus, the
steering matrix used to construct the covariance matrixRwill beS = [s1, s2, s3, s4].
All four SNRs are assumed to be 20 dB.

However in this part, we wish to clamp down the three interferers at the −70
dB level. The constraint matrix C remains the same as in Eq. (14.12.14), but the
gain vector g needs to be modified appropriately so that its entries 2–4 reflect
the −70 dB requirement.

Construct the extended constraint set C̄, ḡ as in Eq. (14.12.18) and then construct
the corresponding optimum weights using Eq. (14.12.8) (with C̄, ḡ in place ofC,g).
Plot the corresponding angular pattern using the same scales as before, and place
the constraint points on the graph.

(i) In this part, in addition to the four plane waves of the part (h), there are also
incident the following interferers:

{θ7, θ8, θ9, θ10, θ11} = {−15o ,−10o ,−5o ,0o ,+60o}

Again, all SNRs are 20 dB. We wish to meet the following requirements: (1) s1

is the desired incident signal with unity gain, (2) s2, s3, s4 are incident waves to
be clamped down at −70 dB, (3) s5, s6 whose angles were defined in part (d) are
constraint directions clamped at −60 dB but they do not correspond to incident
waves, (4) s7, s8, s9, s10 are incident and will be nulled by the retrodirective action
of the array, and (5) s11 is incident and also to be clamped at −70 dB.

Construct the covariance matrix R and the new constraints C,g. Then, con-
struct the extended constraint set C̄, ḡ, calculate the optimum weights from

744 14. Spectrum Estimation and Array Processing

Eq. (14.12.8), and plot the corresponding array pattern using the same scales as
before. Indicate the constraint points on the graph. Label the four retrodirective
beam points at the bottom of the graph, that is, at the −80 dB level.

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

Jammers constrained at −70 dB

jammers at −50o,−45o,−350

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ

dB

constrained and retrodirective

constrained at −50o,−45o,−350,+60o

retrodirective at 0o,−5o,−10o,−15o

4. Equivalence of LCMV and the Generalized Sidelobe Canceler. Finally, we look at the
equivalence of the LCMV beamformer and the generalized sidelobe canceler (GSC).
Consider the LCMV problem defined by Eq. (14.12.7) and its solution, Eq. (14.12.8).
The constraints C†a = g can be regarded as a full-rank under-determined system of
equations.

(a) Show that the pseudoinverse of the constraint matrix C† is:

(C†)+= C(C†C)−1

(b) Show that the most general solution of C†a = g can be expressed in the form:

a = aq − Bc (14.12.19)

where aq = (C†)+g = C(C†C)−1g is the minimum-norm solution and B is an
M×(M−K) matrix that forms a basis for the (M−K)-dimensional null space of
C†, that is, the space N(C†), and c is an arbitrary (M−K)-dimensional vector
of coefficients. Thus, B must satisfy

C†B = 0 (14.12.20)

For example, B may be constructed from the full SVD, C = UΣV†, where the
M×M unitary matrix U can be decomposed into itsM×K andM×(M−K) parts,
U = [U1, U2]. One can choose then B = U2, or more generally, B = U2F, where
F is any (M−K)×(M−K) invertible matrix.

(c) Because a = aq−Bc already satisfies the constraints, the LCMV problem (14.12.7)
can be replaced by the following unconstrained minimization problem for the
determination of the coefficients c:

J = a†Ra = (aq − Bc)†R(aq − Bc)= min (14.12.21)

14.12. Computer Project – LCMV Beamforming and GSC 745

Show that the optimum c is given by

c = (B†RB)−1B†Raq (14.12.22)

and hence the optimum a can be written in the form:

a = aq − Bc = [
I − B(B†RB)−1B†R

]
aq (14.12.23)

The solution (14.12.23) must be the same as that of Eq. (14.12.8).

(d) Show that the orthogonality condition (14.12.20) and the fact that the two ma-
trices C,B together form a basis for CM, imply that B and C must satisfy the
following relationships:

C(C†C)−1C† + B(B†B)−1B† = I (14.12.24)

and
R−1C(C†R−1C)−1C† + B(B†RB)−1B†R = I (14.12.25)

Hints: For the first one, use the full SVD of C and the fact that B = U2F. For the
second one, work with the matrices C̄ = R−1/2C and B̄ = R1/2B, where R1/2 is
a hermitian positive square root of R, and then apply the same argument as for
the first part.

(e) Using Eq. (14.12.25) show the equivalence of Eqs. (14.12.8) and (14.12.23).

(f) The above results lead to the following block diagram realization of the LCMV,
known as the generalized sidelobe canceler:

where y is the overall input vector at theM antennas, and the other variables are
defined as follows:

x = aTqy

ỹ = BTy

x̂ = cTỹ

e = x− x̂ = aTqy− cTBTy = (aq − Bc)Ty = aTy

(14.12.26)

The portion of the block diagram to the right of the vertical dividing line may
be thought of as an ordinary Wiener filtering problem of estimating the signal x
from the vector ỹ. This follows by noting that the output power minimization of
e is equivalent to the estimation problem:

J = aTRa = E[|e|2]= E[|x− x̂|2] = min

746 14. Spectrum Estimation and Array Processing

where R = E[y∗yT]. Let R̃ = E[ỹ∗ỹT] and r̃ = E[x ỹ∗]. Then, show that the
optimum c of Eq. (14.12.22) is indeed the Wiener solution:

c = R̃−1r̃ (14.12.27)

The great advantage of the GSC is that this unconstrained Wiener filtering part
can be implemented adaptively using any adaptive method such as LMS or RLS,
applied to the signals x(n), ỹ(n). For example, the complete LMS algorithm
would be as follows. At each time n, the input y(n) and weights c(n) are avail-
able, then,

x(n)= aTqy(n)

ỹ(n)= BTy(n)

x̂(n)= cT(n)ỹ(n)

e(n)= x(n)−x̂(n)
c(n+ 1)= c(n)+μe(n)ỹ∗(n)

(adaptive GSC)

with the vector a(n)= aq−Bc(n) converging to the desired optimum constrained
solution of Eq. (14.12.8).

14.13 Computer Project – Markowitz Portfolio Theory

This project, divided into separate questions, deals with Markowitz’s optimum mean-
variance portfolio theory. [1222–1233]. It can be considered to be a special case of
the linearly-constrained quadratic optimization problem of the previous project. The
project develops the following topics from financial engineering:

• optimum mean-variance Markowitz portfolios

• efficient frontier between risk and return

• quantifying risk aversion

• two mutual fund theorem

• inequality-constrained portfolios without short selling

• risk-free assets and tangency portfolio

• capital asset line and the Sharp ratio

• market portfolios and capital market line

• stock’s beta, security market line, risk premium

• capital asset pricing model (CAPM)

• minimum-variance with multiple constraints

1. Mean-Variance Portfolio Theory. The following constrained optimization problem
finds application in investment analysis and optimum portfolio selection in which
one tries to balance return versus risk.†

†Harry Markowitz received the Nobel prize in economics for this work.

14.13. Computer Project – Markowitz Portfolio Theory 747

Suppose one has identified M stocks or assets y = [y1, y2, . . . , yM]T into which
to invest. From historical data, the expected returns of the individual stocks are
assumed to be known, E[y]= m = [m1,m2, . . . ,mM]T, as are the cross-correlations
between the assets, Rij = E

[
(yi −mi)(yj −mj)

]
, or, R = E[

(y − m)(y − m)T
]
,

assumed to have full rank. The variance σ2
i = Rii is a measure of the volatility, or

risk, of the ith asset.

A portfolio is selected by choosing the percentage ai to invest in the ith asset yi.
The portfolio is defined by the random variable:

y =
M∑
i=1

aiyi = [a1, a2, . . . , aM]

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤⎥⎥⎥⎥⎥⎦ = aTy

where the weights ai must add up to unity (negative weights are allowed, describing
so-called “short sells”):

M∑
i=1

ai = [a1, a2, . . . , aM]

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦ = aTu = 1

The expected return of the portfolio and its variance or risk are given by:

μ = E[y]= E[aTy]= aTm

σ2 = E[
(y − μ)2] = aTRa

An optimum portfolio may be defined by finding the weights that minimize the risk
σ2 for a given value of the return μ, that is,

σ2 = aTRa = min , subject to aTm = μ , aTu = 1 (14.13.1)

(a) Incorporate the constraints by means of two Lagrange multipliers, λ1, λ2, and
minimize the modified performance index:

J = 1

2
aTRa+ λ1(μ− aTm)+λ2(1− aTu)= min

Show that the quantities {a, λ1, λ2} can be obtained from the solution of the
(M + 2)×(M + 2) linear system of equations:⎡⎢⎣R −m −u

mT 0 0
uT 0 0

⎤⎥⎦
⎡⎢⎣ a
λ1

λ2

⎤⎥⎦ =
⎡⎢⎣ 0
μ
1

⎤⎥⎦
where the invertibility of this matrix requires that the vectors m and u be not
collinear.

748 14. Spectrum Estimation and Array Processing

(b) Show that the solution of this system for a takes the form:

a = λ1R−1m+ λ2R−1u (14.13.2)

and that λ1, λ2 can be obtained from the reduced 2×2 linear system:

[
A B
B C

][
λ1

λ2

]
=

[
μ
1

]
⇒

λ1 = μC− BD

λ2 = A− μBD

where A,B,C,D are defined in terms of m, R by

A = mTR−1m

B = mTR−1u

C = uTR−1u

and D = AC− B2

(c) Show that the quantities A,C,D are non-negative.

(d) Show that the minimized value of the risk σ2 = aTRa can be written in the form:

σ2 = μλ1 + λ2 = Cμ
2 − 2Bμ+A
D

(14.13.3)

Thus, the dependence of the variance σ2 on the return μ has a parabolic shape,
referred to as the efficient frontier.

(e) The apex of this parabola is obtained by minimizing Eq. (14.13.3) with respect
to μ. Setting ∂σ2/∂μ = 0, show that the absolute minimum is reached for the
following values of the return, risk, and weights:

μ0 = BC , σ2
0 =

1

C
, a0 = R−1u

uTR−1u
(14.13.4)

(f) Show that Eq. (14.13.3) can be re-expressed as

σ2 = σ2
0 +

C
D
(μ− μ0)2 (14.13.5)

which can be solved for μ in terms of σ2, as is common in practice:

μ = μ0 ±
√
D
C

√
σ2 −σ2

0 (14.13.6)

Of course, only the upper sign corresponds to the efficient frontier because it
yields higher return for the same risk. (See some example graphs below.)

(g) Show that the optimum portfolio of Eq. (14.13.2) can be written in the form:

a = a0 + CD(μ− μ0)R−1(m− μ0 u) (14.13.7)

where a0 was defined in Eq. (14.13.4). Thus, as expected, a = a0, if μ = μ0.

14.13. Computer Project – Markowitz Portfolio Theory 749

(h) Show that the optimum portfolio of Eq. (14.13.2) can be written in the form

a = μg+ h

where g,h depend only on the asset statistics m, R and are independent of μ.
Moreover, show that mTg = 1 and mTh = 0, and that uTg = 0 and uTh = 1. In
particular, show that g,h are given by,

g = C
D
R−1m− B

D
R−1u

h = A
D
R−1u− B

D
R−1m

(i) Consider two optimal portfolios a1 and a2 having return-risk values that lie on
the efficient frontier, μ1, σ1 and μ2, σ2, satisfying Eq. (14.13.5), and assume that
μ1 < μ2. Using the results of the previous question, show that any other opti-
mum portfolio with return-risk pair μ,σ, such that μ1 < μ < μ2, can be con-
structed as a linear combination of a1, a2 as follows, with positive weights p1, p2,
such that, p1 + p2 = 1,

a = p1a1 + p2a2 , p1 = μ2 − μ
μ2 − μ1

, p2 = μ− μ1

μ2 − μ1

Thus, the investor need only invest in the two standard portfolios a1 and a2 in
the proportions p1 and p2, respectively. This is known as the two mutual fund
theorem. The restriction μ1 < μ < μ2 can be relaxed if short selling of the funds
is allowed.

(j) Consider a portfolio of four assets having return (given as annual rate) and co-
variance matrix:

m =

⎡⎢⎢⎢⎣
0.02
0.03
0.01
0.05

⎤⎥⎥⎥⎦ , R =

⎡⎢⎢⎢⎣
0.10 −0.02 0.04 −0.01

−0.02 0.20 0.05 0.02
0.04 0.05 0.30 0.03

−0.01 0.02 0.03 0.40

⎤⎥⎥⎥⎦
Make a plot of the efficient frontier of μ versus σ according to Eq. (14.13.6).
To do so, choose 51 equally-spaced μs in the interval

[
min(m), max(m)

]
and

calculate the corresponding σs.

Compute the risk σ and weight vector a that would achieve a return of μ = 0.04
and indicate that point on the efficient frontier. Why wouldn’t an investor want
to put all his/her money in stock y4 since it has a higher return ofm4 = 0.05?

(k) Generate 100 weight vectors a randomly (but such that aTu = 1), compute the
values of the quantities μ = aTm and σ2 = aTRa and make a scatterplot of the
points (μ,σ) to see that they lie on or below the efficient frontier.

750 14. Spectrum Estimation and Array Processing

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
efficient frontier

risk, σ

re
tu

rn
,

μ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
efficient frontier

risk, σ

re
tu

rn
,

μ
2. Risk aversion. A somewhat different minimization criterion is often chosen for the

portfolio selection problem, that is,

J = 1

2
aTRa− γaTm = min , subject to uTa = 1 (14.13.8)

where γ is a positive parameter that quantifies the investor’s aversion for risk versus
return—small γ emphasizes low risk, larger γ, high return.

For various values of γ, the optimum weights a are determined and then the corre-
sponding return μ = aTm and risk σ2 = aTΣa are calculated. The resulting plot of
the pairs (μ,σ) is the efficient frontier in this case.

Given the parameters γ,m, R, incorporate the constraint, aTu = 1, with a Lagrange
multiplier and work with the modified performance index:

J = 1

2
aTRa− γaTm+ λ2(1− uTa)= min

Show that one obtains exactly the same solution for a as in the previous problem
and that the correspondence between the assumed γ and the realized return μ is
given by

μ = μ0 + DC γ

3. Portfolio with inequality constraints. If short sales are not allowed, the portfolio
weights ai must be restricted to be in the interval 0 ≤ ai ≤ 1. In this case, the
following optimization problem must be solved:

σ2 = aTRa = min , subject to

⎧⎪⎪⎨⎪⎪⎩
aTm = μ
aTu = 1

0 ≤ ai ≤ 1 , i = 1,2, . . . ,M
(14.13.9)

This is a convex optimization problem that can be solved conveniently using the
CVX package.† For example, given a desired value for μ, the following CVX code will
solve for a:

†http://cvxr.com/cvx

14.13. Computer Project – Markowitz Portfolio Theory 751

% define M, m, R, mu
cvx_begin

variable a(M)
minimize(a’*R*a);
subject to

a’*u == 1;
a’*m == mu;
a <= ones(M,1);
-a <= zeros(M,1);

cvx_end

(a) For the numerical example of Question (1.j), choose 51 equally-spaced μs in the
interval

[
min(m), max(m)

]
and calculate the corresponding a and σs, and plot

the efficient frontier, that is the pairs (μ,σ). Superimpose on this graph the
efficient frontier of the unconstrained case from Question 1.

(b) Compute the risk σ and weight vector a that would achieve a return of μ = 0.04
and indicate that point on the efficient frontier of part (a). Place on the graph
also the unconstrained solution for the same μ, and explain why the inequality-
constrained case is slightly worse.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
efficient frontier

risk, σ

re
tu

rn
,

μ

 unconstrained
 constrained

4. Capital Asset Line. A variation of the mean-variance portfolio theory was considered
by W. F. Sharpe, who in addition to the collection of risky assets, allowed the presence
of a risk-free asset, such as a Treasury T-bill, that has a fixed guaranteed return, say
μ = μf , and no risk, σf = 0.

Let us assume again that we also have M risky assets y = [y1, y2, . . . , yM]T with
expected returns E[y]= m = [m1,m2, . . . ,mM]T, and known covariance matrix
R = E[

(y −m)(y −m)T
]
. Clearly, we must assume that μf < mi, i = 1,2, . . . ,M,

otherwise, we would put all our money into the risk-free asset. We form an optimum
portfolio of risky assets y = aTy by choosing a point on the efficient frontier, for
example, the indicated point b on the figure below.

752 14. Spectrum Estimation and Array Processing

Then, we join with a straight line the point b to the risk-free point μf (the dashed
line on the figure), and we allocate a fraction wf of our total funds to the risk-free
asset and hence a fraction (1−wf) to the portfolio y, that is, the combined portfolio
will be:

ytot = wfμf + (1−wf)y = wfμf + (1−wf)aTy

with mean and variance:

μ = E[ytot]= wfμf + (1−wf)aTm

σ2 = E[
(ytot − μ)2] = (1−wf)2 aTRa

(14.13.10)

The lowest location for b is at the apex of the frontier, for which we have a = a0.
It should be evident from the figure that if we move the point b upwards along the
efficient frontier, increasing the slope of the straight line, we would obtain a better
portfolio having larger μ.

We may increase the slope until the line becomes tangent to the efficient frontier,
say at the point a, which would correspond to an optimum portfolio a with mean
and variance μa,σa.

This portfolio is referred to as the tangency portfolio and the tangent line (red line)
is referred to as the capital asset line and its maximum slope, say β, as the Sharpe
ratio. Eqs. (14.13.10) become now:

μ = wfμf + (1−wf)μa
σ = (1−wf)σa

(14.13.11)

where μa = aTm and σ2
a = aTRa. Solving the second of Eq. (14.13.11) for wf , we

find 1 − wf = σ/σa, and substituting in the first, we obtain the equation for the
straight line on the (μ,σ) plane:

μ = μf + βσ , β = μa − μf
σa

= slope (14.13.12)

This line is the efficient frontier for the combined portfolio. Next we impose the
condition that the point a be a tangency point on the efficient frontier. This will
fix μa,σa. We saw that the frontier is characterized by the parabolic curve of

14.13. Computer Project – Markowitz Portfolio Theory 753

Eq. (14.13.5) with the optimum weight vector given by (14.13.7). Applying these
to the pair (μa,σa), we have:

σ2
a = σ2

0 +
C
D
(μa − μ0)2

a = a0 + CD(μa − μ0)R−1(m− μ0 u)
(14.13.13)

The slope of the tangent at the point a is given by the derivative dμa/dσa, and it
must agree with the slope β of the line (14.13.12):

dμa
dσa

= β = μa − μf
σa

(14.13.14)

(a) Using condition (14.13.14) and Eq. (14.13.13), show the following relationships:

C
D
(μa − μ0)(μ0 − μf)= 1

C

σ2
a =

C
D
(μa − μ0)(μa − μf)

β = σaC(μ0 − μf)

(14.13.15)

The first can be solved for μa, and show that it can be expressed as:

μa = A− μfB
C(μ0 − μf) (14.13.16)

(b) Using Eqs. (14.13.13) and (14.13.15), show that the optimum weights are given
by

a = 1

C(μ0 − μf) R
−1(m− μfu) (14.13.17)

and verify that they satisfy the constraints aTm = μa and aTu = 1.

(c) Show that the slope β can also be expressed by:

β2 =
(μa − μf

σa

)2

= (m− μfu)TR−1(m− μfu) (14.13.18)

(d) Define w = (1−wf)a to be the effective weight for the total portfolio:

ytot = wfμf + (1−wf)aTy = wfμf +wTy (14.13.19)

Show that w is given in terms of the return μ = wfμf + (1−wf)μa as follows:

w = (1−wf)a = μ− μfβ2
R−1(m− μfu) (14.13.20)

754 14. Spectrum Estimation and Array Processing

(e) The optimality of the capital asset line and the tangency portfolio can also be
derived directly by considering the following optimization problem. Let wf and
w be the weights to be assigned to the risk-free asset μf and the risky assets y.
Then the total portfolio, its mean μ, and variance σ2 are given by:

ytot = wfμf +wTy

μ = wfμf +wTm

σ2 = wTRw

(14.13.21)

where the weights must add up to unity: wf + wTu = 1. Given μ, we wish to
determine the weights wf ,w to minimize σ2. Incorporating the constraints by
two Lagrange multipliers, we obtain the performance index:

J = 1

2
wTRw+ λ1(μ−wfμf −wTm)+λ2(1−wf −wTu)= min

Show that the minimization of J with respect to wf ,w results in:

w = λ1R−1(m− μfu) , λ2 = −λ1μf

(f) Imposing the constraints show that,

wT(m− μfu)= μ− μf , λ1 = μ− μfβ2

where β2 is given as in Eq. (14.13.18),

β2 = (m− μfu)TR−1(m− μfu)

and hence, show that w is given by Eq. (14.13.20)

w = μ− μf
β2

R−1(m− μfu)

(g) Show that σ2 = wTRw is given by,

σ2 =
(
μ− μf
β

)2

which corresponds to the straight-line frontier on the μ,σ plane:

μ = μf + βσ

(h) For the numerical example of Question (1.j) and for a fixed-asset return of μf =
0.005, connect the points (μa,σa) and (μf ,0) by a straight line and plot it to-
gether with the parabolic efficient frontier of the risky assets, and verify the
tangency of the line.

14.13. Computer Project – Markowitz Portfolio Theory 755

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
Capital Asset Line

risk, σ

re
tu

rn
,

μ

5. Security market line and CAPM. When the collection of risky stocks of the previous
problem are taken to be representative of the market, such as for example, the stocks
in the S&P 500 index, the tangency portfolio at point a is referred to as the market
portfolio, and the capital asset line, as the capital market line.

Let ya = aTy be the linear combination of stocks for the market portfolio, and
consider another stock yi with return and risk μi,σi. The stock yi is arbitrary and
not necessarily belonging to those that make up the representative market. Define
the beta for the stock as the ratio of the following covariances relative to the market
portfolio:

βi = RiaRaa
where Ria = E

[
(yi − μi)(ya − μa)

]
and Raa = σ2

a = E
[
(ya − μa)2

]
.

Let us now make a portfolio y consisting of a percentage w of the stock yi and a
percentage (1 − w) of the market ya. Then, y and its mean and variance will be
given as follows, where Rii = σ2

i .

y = wyi + (1−w)ya
μ = wμi + (1−w)μa
σ2 = w2Rii + 2w(1−w)Ria + (1−w)2Raa

(14.13.22)

As w varies, the pair (μ,σ) varies over its own parabolic efficient frontier.

The capital asset pricing model (CAPM) asserts that the tangent line at the market
point y = ya on this frontier obtained whenw = 0, coincides with the capital market
line between the risk-free asset μf and the market portfolio. This establishes the
following relationship to be proved below:

μi − μf = βi(μa − μf) (14.13.23)

so that the excess return above μf , called the risk premium, is proportional to the
stock’s beta. The straight line of μi vs. βi is referred to as the security market line.

756 14. Spectrum Estimation and Array Processing

(a) Using the differentiation rule,

dσ
dμ

= dσ
dw

· dw
dμ

show that the slope at the market point, i.e., at w = 0, is given by

dμ
dσ

∣∣∣∣
w=0

= μi − μa
(βi − 1)σa

(14.13.24)

(b) Then, derive Eq. (14.13.23) by equating (14.13.24) to the slope (14.13.12).

6. Minimum-variance with multiple constraints. A generalization of the portfolio con-
strained minimization problem involves more that two constraints:

J = 1

2
aTRa− bTa = min

subject to K linear constraints:

cTi a = μi , i = 1,2, . . . , K

where R is an M×M positive definite symmetric matrix, b is a given M×1 vector,
and we assume that K < M and that the M×1 vectors ci are linearly independent.
Defining theM×Kmatrix of constraintsC and theK-dimensional vector of “returns”
μμμ,

C = [c1, c2, . . . , cK] , μμμ =

⎡⎢⎢⎢⎢⎢⎣
μ1

μ2

...
μK

⎤⎥⎥⎥⎥⎥⎦
the above minimization problem can be cast compactly in the form:

J = 1

2
aTRa− bTa = min , subject to CTa = μμμ

(a) Introduce a K-dimensional vector of Lagrange multipliers λλλ and replace the per-
formance index by:

J = 1

2
aTRa− bTa+λλλT(μμμ−CTa)= min

Show that the quantities a,λλλmay be obtained as the solution of the (M+K)×(M+
K) linear system of equations:[

R −C
CT 0

][
a
λλλ

]
=

[
b
μμμ

]

14.14. Problems 757

(b) Show that the above matrix has the following inverse:[
R−1 −R−1C(CTR−1C)−1CTR−1 R−1C(CTR−1C)−1

−(CTR−1C)−1CTR−1 (CTR−1C)−1

]

and explain why the assumed full rank ofC guarantees the existence of the matrix
inverse (CTR−1C)−1.

(c) Show that the solution for a and λλλ can be obtained by:

λλλ = (CTR−1C)−1[μμμ−CTR−1b
]

a = R−1[b+Cλλλ]

(d) Show that the “variance”σ2 = aTRa is parabolic in the “returns”, like Eq. (14.13.3),
thus defining a generalized “efficient frontier”:

σ2 = σ2
0 +μμμT(CTR−1C)−1μμμ

where the constant σ2
0 is defined by:

σ2
0 = bT

[
R−1 −R−1C(CTR−1C)−1CTR−1]b

Note that if additional inequality constraints are included, such as for exampleai > 0
for the weights, then this becomes a much harder problem that must be solved
with quadratic programming techniques. The CVX package or MATLAB’s function
quadprog from the optimization toolbox solves such problems. The antenna or
sensor array version of this problem is LCMV beamforming.

14.14 Problems

14.1 Computer Experiment. A fourth-order autoregressive process is defined by the difference
equation

yn + a1yn−1 + a2yn−2 + a3yn−3 + a4yn−4 = εn
where εn is zero-mean, unit-variance, white gaussian noise. The filter parameters {a1, a2,
a3, a4} are chosen such that the prediction error filter

A(z)= 1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

has zeros at the locations

0.99 exp(±0.2πj) and 0.99 exp(±0.4πj)

(a) Determine {a1, a2, a3, a4}.
(b) Using a random number generator for εn, generate a realization of yn consisting of 50

samples. To avoid transient effects, be sure to let the filter run for a while. For instance,
discard the first 500 or 1000 outputs and keep the last 50.

(c) Compute the sample autocorrelation of yn based on the above block of data.

758 14. Spectrum Estimation and Array Processing

(d) Solve the normal equations by means of Levinson’s algorithm to determine the Yule-
Walker estimates of the model parameters {a1, a2, a3, a4;σ2

ε} and compare them with
the exact values.

(e) Compute the corresponding Yule-Walker spectrum and plot it together with the exact
autoregressive spectrum versus frequency. Be sure to allow for a sufficiently dense grid
of frequencies to be able to resolve the narrow peaks of this example. Plot all spectra in
decibels.

(f) Using the same finite block of yn data, determine estimates of the model parameters
{a1, a2, a3, a4;σ2

ε} using Burg’s method, and compare them with the Yule-Walker esti-
mates and with the exact values.

(g) Compute the corresponding Burg spectrum and plot it together with the exact spectrum
versus frequency.

(h) Using the same block of yn data, compute the ordinary periodogram spectrum and plot
it together with the exact spectrum.

(i) Window the yn data with a Hamming window and then compute the corresponding pe-
riodogram spectrum and plot it together with the exact spectrum.

(j) Repeat parts (b) through (i) using a longer realization of length 100.

(k) Repeat parts (b) through (i) using a length-200 realization of yn.

(l) Evaluate the various results of this experiment.

14.2 Show that the classical Bartlett spectrum of Eq. (14.2.6) can be written in the compact matrix
form of Eq. (14.2.7).

14.3 Show that in the limit of large M, the first sidelobe of the smearing function Wω) of
Eq. (14.2.10) is approximately 13 dB down from the main lobe.

14.4 Computer Experiment. (a) Reproduce the spectra shown in Figs. 14.2.1 and 14.2.2.

(b) For the AR case, let M = 6, and take the SNRs of both sinusoids to be 6 dB, but change
the sinusoid frequencies to

ω1 = 0.5+Δω, ω2 = 0.5−Δω

where Δω is variable. Study the dependence of bias of the spectral peaks on the fre-
quency separation Δω by computing and plotting the spectra for various values of Δω.
(Normalize all spectra to 0 dB at the sinusoid frequencyω1).

14.5 Derive Equation (14.2.30).

14.6 Let

R = σ2
vI +

L∑
i=1

Pisωis
†
ωi

be the autocorrelation matrix of Eq. (14.2.8). Show that the inverse R−1 can be computed
recursively as follows:

R−1
k = R−1

k−1 −
R−1
k−1sωks

†
ωkR

−1
k−1

s†ωkR
−1
k−1sωk + P−1

k

for k = 1,2, . . . , L, initialized by R0 = σ2
vI.

14.7 Consider the case of one sinusoid (L = 1) in noise and arbitrary filter order M > 2, so that
the (M + 1)×(M + 1) autocorrelation matrix is

R = σ2
vI + P1sω1 s†ω1

14.14. Problems 759

(a) Show that the (L = 1)-dimensional signal subspace is spanned by the eigenvector

eM = sω1

and determine the corresponding eigenvalue.

(b) Show that theM+ 1− L =M dimensional noise subspace is spanned by theM linearly
independent eigenvectors, all belonging to the minimum eigenvalue σ2

v :

e0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−ejω1

0
0
...
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−ejω1

0
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

−ejω1

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . , eM−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
1

−ejω1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c) Show that the eigenpolynomial A(z) corresponding to an arbitrary linear combination

of theM noise eigenvectors

a = e0 + c1e1 + c2e2 + · · · + cM−1eM−1

can be factored in the form

A(z)= (1− ejω1z−1)(1+ c1z−1 + c2z−2 + · · · + cM−1z−(M−1))

exhibiting one zero at the desired sinusoid frequency ejω1 on the unit circle, andM− 1
additional spurious zeros with arbitrary locations that depend on the particular choice
of the coefficients ci.

14.8 The constraint (14.2.31) can be incorporated into the performance index (14.2.32) by means
of a Lagrange multiplier

E = a†Ra+ λ(1− a†a)

Show that the minimization ofE is equivalent to the Pisarenko eigenvalue problem of Eq. (14.2.29),
with the multiplier λ playing the role of the eigenvalue. Show that the minimum of E is the
minimum eigenvalue.

14.9 Show Eq. (14.3.11).

14.10 Consider a singular (M+1)×(M+1) autocorrelation matrixR having non-singular principal
submatrices, and let a be the symmetric or antisymmetric order-M prediction filter satisfying
Ra = 0, as discussed in Sec. 12.5. First, argue that the M zeros of this filter lie on the unit
circle zi = ejωi , i = 1,2, . . . ,M. Then, consider the eigenvalue decomposition of this matrix
in the form R = EΛE†, where Λ is the diagonal matrix of the M nonzero eigenvalues of R
and E is the (M + 1)×M matrix whose columns are the M corresponding eigenvectors. Let
S = [sω1 , sω2 , . . . , sωM] be the matrix of phasing vectors defined by the zeros of a. Argue
that E is linearly related to S and that R can be written in the form R = SPS†, where P is an
M×M positive-definite matrix. Finally, show that the requirement that R be Toeplitz implies
that P must be diagonal, and therefore, R admits the sinusoidal representation

R =
M∑
i=1

Pisωis
†
ωi , with Pi > 0

760 14. Spectrum Estimation and Array Processing

14.11 Computer Experiment. To simulate Eq. (14.3.7), the amplitudes Ai(n) may be generated by

Ai(n)= Aiejφin

where φin are independent random phases distributed uniformly over the interval [0,2π],
and Ai are deterministic amplitudes related to the assumed signal to noise ratios (SNR) in
units of decibels by

SNRi = 10 log10

[
|Ai|2
σ2
v

]

(a) Consider one plane wave incident on an array of seven sensors from an angle θ1 = 30o.
The sensors are equally spaced at half-wavelength spacings; i.e., d = λ/2. For each of
the following values of the SNR of the wave

SNR = 0 dB, 10 dB, 20 dB

generate N = 1000 snapshots of Eq. (14.3.7) and compute the empirical spatial correla-
tion matrix across the array by

R̂ = 1

N

N−1∑
n=0

y(n)∗y(n)T

Compute and plot on the same graph the three spatial spectra: Bartlett, autoregressive
(AR), and maximum likelihood (ML), versus wavenumber k.

(b) Repeat for two plane waves incident from angles θ1 = 25o and θ2 = 35o, and with equal
powers of 30 dB.

(c) Repeat part (b) for angles θ1 = 28o and θ2 = 32o.

(d) Repeat part (c) by gradually decreasing the (common) SNR of the two plane waves to the
values of 20 dB, 10 dB, and 0 dB.

(e) For parts (a) through (d), also plot all the theoretical spectra.

14.12 Consider L plane waves incident on a linear array ofM+1 sensors (L ≤M) in the presence
of spatially coherent noise. As discussed in Sec. 14.3, the corresponding covariance matrix
is given by

R = σ2
vQ +

L∑
i=1

Piskis
†
ki

where the waves are assumed to be mutually uncorrelated.

(a) Show that the generalized eigenvalue problem

Ra = λQa

has (1) an (M + 1 − L)-dimensional noise subspace spanned by M + 1 − L linearly
independent degenerate eigenvectors, all belonging to the eigenvalue λ = σ2

v , and (2) an
L-dimensional signal subspace with L eigenvalues greater than σ2

v .

(b) Show that any two eigenvectors a1 and a2 belonging to distinct eigenvalues λ1 and λ2

are orthogonal to each other with respect to the inner product defined by the matrix Q,
that is, show that a†1Qa2 = 0.

(c) Show that the L-dimensional signal subspace is spanned by the L vectors

Q−1ski , i = 1,2, . . . , L

14.14. Problems 761

(d) Show that any vector a in the noise subspace corresponds to a polynomialA(z) that has
L of itsM zeros on the unit circle at locations

zi = ejki , i = 1,2, . . . , L

The remainingM − L zeros can have arbitrary locations.

14.13 The previous problem suggests the following approach to the problem of “selectively nulling”
some of the sources and not nulling others. Suppose L1 of the sources are not to be nulled
and have known SNRs and directions of arrival, and L2 of the sources are to be nulled. The
total number of sources is then L = L1 + L2, and assuming incoherent background noise,
the incident field will have covariance matrix

R = σ2
vI +

L1∑
i=1

Piskis
†
ki +

L1+L2∑
i=L1+1

Piskis
†
ki

Define Q by

σ2
vQ = σ2

vI +
L1∑
i=1

Piskis
†
ki

so that we may write R as follows

R = σ2
vQ +

L1+L2∑
i=L1+1

Piskis
†
ki

Then, the nulling of the L2 sources at wavenumbers ki, i = L1+1, . . . , L1+L2, can be effected
by the (M + 1− L2)-dimensional noise subspace of the generalized eigenvalue problem

Ra = λQa

having minimum eigenvalue equal to σ2
v .

(a) As an example, consider the caseM = 2, L1 = L2 = 1. Then,

R = σ2
vQ + P2sk2 s†k2

, σ2
vQ = σ2

vI + P1sk1 s†k1

Show that the (M + 1 − L2 = 2)-dimensional noise subspace is spanned by the two
eigenvectors

e1 =
⎡⎢⎣ 1
−ejk2

0

⎤⎥⎦ , e2 =
⎡⎢⎣ 0

1
−ejk2

⎤⎥⎦
(b) Show that an arbitrary linear combination

a = e1 + ρe2

corresponds to a filter A(z) having one zero at the desired location z2 = ejk2 , and a
spurious zero with arbitrary location.

(c) Show that the (L2 = 1)-dimensional signal subspace is spanned by the vector

e3 = Q−1sk2

and that the corresponding generalized eigenvalue is

λ = σ2
v + P2s†k2

Q−1sk2

762 14. Spectrum Estimation and Array Processing

(d) Verify the orthogonality properties e†i Qe3 = 0, i = 1,2, for the three eigenvectors
e1, e2, e3 defined in parts (a) and (c).

(e) As another example, consider the caseM = 3 and L1 = L2 = 1. Show that the (M+ 1−
L2 = 3)-dimensional noise subspace is spanned by the three eigenvectors

e1 =

⎡⎢⎢⎢⎣
1

−ejk2

0
0

⎤⎥⎥⎥⎦ , e2 =

⎡⎢⎢⎢⎣
0
1

−ejk2

0

⎤⎥⎥⎥⎦ , e3 =

⎡⎢⎢⎢⎣
0
0
1

−ejk2

⎤⎥⎥⎥⎦
and the signal eigenvector is e4 = Q−1sk2 . Generalize this part and part (a), to the case
of arbitraryM and L1 = L2 = 1.

(f) As a final example that corresponds to a unique noise eigenvector, consider the case
M = 2, L1 = 1, and L2 = 2, so that

R = σ2
vQ + P2sk2 s†k2

+ P3sk3 s†k3
, σ2

vQ = σ2
vI + P1sk1 s†k1

with k2 and k3 to be nulled. Show that the (M+1−L2 = 1)-dimensional noise subspace
is spanned by

a = e1 =
⎡⎢⎣ 1
−(ejk2 + ejk3)
ejk2ejk3

⎤⎥⎦
and that the corresponding polynomial A(z) factors into the two desired zeros

A(z)= (1− ejk2z−1)(1− ejk3z−1)

14.14 Computer Experiment. Consider a nine-element (M = 8) linear array with half-wavelength
spacing and two mutually uncorrelated incident plane waves with wavenumbers k1 = 0.3π,
k2 = 0.5π and equal powers of 20 dB. The background noise is incoherent with variance
σ2
v = 1.

(a) Construct the theoretical matrix R of Eq. (14.3.13) and solve its eigenproblem determin-
ing the nine eigenvectors and eigenvalues. Using a root finder (see e.g., [1206]), compute
the eight zeros of each of the seven noise subspace eigenvectors and verify that the
desired zeros lie on the unit circle.

(b) GenerateN = 100 snapshots, construct the sample covariance matrix R of Eq. (14.4.14),
solve its eigenproblem, use the AIC and MDL criteria to check the dimension of the noise
subspace, but regardless of these criteria take that dimension to be seven. Compare
the empirical eigenvalues with the theoretical ones found above. Compute the zeros of
the noise subspace eigenvectors and decide if the desired zeros are among them and if
any spurious ones lie close to the unit circle. Also, compute the zeros of the Min-Norm
vector d.

(c) On the same graph, plot in dB the pseudospectra of a few of the noise subspace eigen-
vectors, say, the first three. On a separate graph, but using the same vertical scales as
the previous one, plot the MUSIC and Min-Norm spectra.

(d) Using the same set of snapshots, repeat parts (b,c) for the symmetrized sample covari-
ance matrix of Eq. (14.4.15).

(e) For fixed SNR, repeat parts (b,c,d) for the following choices of number of snapshots:
N = 20, 50, 150, 200, 500.

14.14. Problems 763

(f) With the number of snapshots fixed at N = 100, repeat parts (a,b,c,d) for the following
values of the signal to noise ratio: SNR = −10, −5, 0, 5, 10, 30 dB.

(g) Repeat parts (a–f) for three 20-dB plane waves with k1 = 0.3π, k2 = 0.4π, k3 = 0.5π.

14.15 Show Eqs. (14.11.9) and (14.11.10).

14.16 Consider an M-dimensional complex random vector y with real and imaginary parts ξξξ and
ηηη, so that y = ξξξ + jηηη. With the complex vector y we associate a (2M)-dimensional real

random vector ȳ =
[
ξξξ
ηηη

]
. The corresponding covariance matrices are defined by

R = E[y∗yT] , R̄ = E[ȳȳT]

(a) Show that the conditions E[ξξξξξξT]= E[ηηηηηηT] and E[ξξξηηηT]= −E[ηηηξξξT] are equivalent to
the condition E[yyT]= 0, and that in this case the covariance matrices can be written
as follows:

R = 2(A+ jB) , R̄ =
[
A B
−B A

]
, A = E[ξξξξξξT] , B = E[ξξξηηηT]

The matrix A is symmetric and B antisymmetric. Show the equality of the quadratic
forms

yTR−1y∗ = 1

2
ȳTR̄−1ȳ

Also, show the relationship between the determinants detR = 2M(det R̄)1/2.
Hint: Apply a correlation canceling transformation on R̄ and use the matrix identity
A+ BA−1B = (A+ jB)A−1(A− jB).

(b) A complex gaussian random vector y is defined by the requirement that the corre-
sponding real vector ȳ be gaussian [1207,1208]. Equating the elemental probabilities
p(y)d2My = p(ȳ)d2Mȳ and using the results of part (a), show that if p(ȳ) is an ordi-
nary (zero-mean) gaussian with covariance R̄, then the density of y is

p(ȳ)= 1

(2π)M(det R̄)1/2 exp
(−1

2
ȳTR̄−1ȳ

) ⇒ p(y)= 1

πM detR
exp(−yTR−1y∗)

(c) Using this density show for any four components of y

E[y∗i yjy
∗
k yl]= RijRkl +RilRkj

(d) Use this result to prove Eq. (14.11.12)

14.17 Show that the log-likelihood function based onN independent complex gaussian snapshots
is given by (up to a constant)

lnp = −N tr
[
lnR+R−1R̂

]
where R̂ is given byEq. (14.4.14). Note that it differs by a factor of two from the real-valued
case. From the discussion of Sec. 1.18, it follows that R̂ is the maximum likelihood estimate
of R. Moreover, the trace formula for the Fisher information matrix also differs by a factor
of two, namely,

Jij = N tr

[
R−1 ∂R

∂λi
R−1 ∂R

∂λj

]

764 14. Spectrum Estimation and Array Processing

14.18 Using Eq. (14.11.12), show that the covariances of the LP parameters E and a are in the
complex-valued case:

E
[
(ΔE)2

] = E2

N
, E

[
ΔaΔE

] = 0 , E
[
ΔaΔa†

] = E
N

(
R−1 − E−1a a†

)
14.19 Let S(k)= s†kRsk be the Bartlett spectrum. Using Eq. (14.11.13), show that its variance is

E
[(
ΔS(k)

)2] = 1

N
S(k)2

Show that the variance of the ML spectrum S(k)= 1/s†kR−1sk is also given by a similar
formula.

14.20 (a) Let A(k)= s†ka be the frequency response of the LP polynomial in the complex-valued
case. Using the results of Problem 14.18, show that its variance is

E
[|ΔA(k)|2] = E

N
[
s†kR

−1sk − E−1|A(k)|2]
Use the kernel representation of Problem 12.17 to argue that the right-hand side is positive.
Alternatively, show that it is positive by writing A(k)= E(s†kR−1u0) and E = (u†0R−1u0)−1,
and using the Schwarz inequality.

(b) In the complex case, show that E[ΔaΔaT]= 0. Then, show that the variance of the AR
spectrum S(k)= E/|A(k)|2 is given by

E
[(
ΔS(k)

)2] = 1

N
S(k)2

[
2S(k)(s†kR

−1sk)−1
]

and show again that the right-hand side is positive.

15
SVD and Signal Processing

15.1 Vector and Matrix Norms

The three most widely used vector norms [1234,1235] are the L2 or Euclidean norm, the
L1 and the L∞ norms, defined for a vector x ∈ RN by:

‖x‖2 =
√
|x1|2 + |x2|2 + · · · + |xN|2 =

√
xTx

‖x‖1 = |x1| + |x2| + · · · + |xN|
‖x‖∞ = max

(|x1|, |x2|, . . . , |xN|
) where x =

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎥⎥⎦ (15.1.1)

All vector norms satisfy the triangle inequality :

‖x+ y‖ ≤ ‖x‖ + ‖y‖ , for x,y ∈ RN (15.1.2)

Unless otherwise specified, from now on the notation ‖x‖ will denote the Euclidean
norm. The Cauchy-Schwarz inequality for the Euclidean norm reads:∣∣xTy

∣∣ ≤ ‖x‖‖y‖ (15.1.3)

where equality is achieved when y is any scalar multiple of x, that is, y = cx. The “angle”
between the two vectors x,y is defined through:

cosθ = xTy

‖x‖‖y‖ (15.1.4)

An N×M matrix A is a linear mapping from RM to RN, that is, for each x ∈ RM, the
vector y = Ax is in RN. For each vector norm, one can define a corresponding matrix
norm through the definition:

‖A‖ = sup
‖x‖	=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ (15.1.5)

We will see later that the Euclidean matrix norm ‖A‖2 is equal to the largest singular
value of the SVD decomposition of A, or equivalently, the square-root of the largest

765

766 15. SVD and Signal Processing

eigenvalue of the matrix ATA or the matrix AAT. The L1 and L∞ matrix norms can be
expressed directly in terms of the matrix elements Aij of A:

‖A‖1 = max
j

∑
i
|Aij| = maximum of column-wise sums

‖A‖∞ = max
i

∑
j
|Aij| = maximum of row-wise sums

(15.1.6)

Another useful matrix norm—not derivable from a vector norm—is the Frobenius
norm defined to be the sum of the squares of all the matrix elements:

‖A‖F =
√∑
i, j
|Aij|2 =

√
tr

(
ATA)

)
(Frobenius norm) (15.1.7)

The L2, L1, L∞, and the Frobenius matrix norms satisfy the matrix versions of the
triangle and Cauchy-Schwarz inequalities:

‖A+ B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ≤ ‖A‖‖B‖

(15.1.8)

The distance between two vectors, or between two matrices, may be defined with
respect to any norm:

d(x,y)= ‖x− y‖ , d(A,B)= ‖A− B‖ (15.1.9)

15.2 Subspaces, Bases, and Projections

A subset Y ⊆ RN is a linear subspace if every linear combination of vectors from Y
also lies in Y. The dimension of the subspace Y is the maximum number of linearly
independent vectors in Y.

If the dimension of Y is M, then, any set of M linearly independent vectors, say
{b1,b2, . . . ,bM}, forms a basis for Y. Each basis vector bi is an N-dimensional vector,
that is, it lies in RN. Because Y is a subset of RN, we must necessarily haveM ≤ N. Any
vector in Y can be expanded uniquely as a linear combination of the basis vectors, that
is, for b ∈ Y:

b =
M∑
i=1

cibi = c1b1 + c2b2 + · · · cMbM = [b1,b2, . . . ,bM]

⎡⎢⎢⎢⎢⎢⎣
c1

c2

...
cM

⎤⎥⎥⎥⎥⎥⎦ = Bc (15.2.1)

where we defined the N×M basis matrix B = [b1,b2, . . . ,bM] and the M×1 vector of
expansion coefficients c = [c1, c2 . . . , cM]T.

Because the columns of B are linearly independent, B will have full rank equal to
M. It follows that the M×M matrix BTB will also have full rank† and, therefore, it will

†Indeed, BTBc = 0 ⇒ cTBTBc = ‖Bc‖2 = 0 ⇒ Bc = 0 ⇒ c = 0, because B has full rank.

15.2. Subspaces, Bases, and Projections 767

be invertible. This allows us to compute the expansion coefficients c. Multiplying both
sides of (15.2.1) by BT, we may solve for c :

BTb = BTBc ⇒ c = (BTB)−1BTb = B+b , B+ ≡ (BTB)−1BT (15.2.2)

The space spanned by the linear combinations of the columns of the matrix B is
called the column space or range space of B and is denoted by R(B). Because B is a
basis for Y, we will have Y = R(B). The matrix equation Bc = b given in (15.2.1) is an
overdetermined system of N equations in M unknowns that has a solution because we
assumed that b lies in the range space of B.

The quantity B+ = (BTB)−1BT is a special case of the Moore-Penrose pseudoinverse
(for the case of a full rank matrix B with N ≥ M.) In MATLAB notation, the solution
(15.2.2) is obtained via the backslash or the pseudoinverse operators (which produce the
same answer in the full-rank case):

c = B\b = pinv(B)∗b = B+b (15.2.3)

The matrix BTB ∈ RM×M is called the Grammian. Its matrix elements are the mutual
dot products of the basis vectors (BTB)ij= bTi bj, i, j = 1,2, . . . ,M.

The quantity P = BB+ = B(BTB)−1BT is the projection matrix onto the subspace
Y. As a projection matrix, it is idempotent and symmetric, that is, P2 = P andPT = P.
The matrix Q = IN − P is also a projection matrix, projecting onto the orthogonal
complement of Y, that is, the space Y⊥ of vectors in RN that are orthogonal to each
vector in Y. Thus, we have:

P = BB+ = B(BTB)−1BT = projector onto Y

Q = IN − BB+ = IN − B(BTB)−1BT = projector onto Y⊥
(15.2.4)

They satisfy the properties BTQ = 0, PQ = QP = 0, and P+Q = IN. These imply
that the full space RN is the direct sum of Y and Y⊥. Moreover, the subspace Y⊥ is the
same as the null space N(BT) of BT. This follows from the property that b⊥ ∈ Y⊥ if
and only if BTb⊥ = 0. Thus, we have the decomposition:

Y ⊕Y⊥ = R(B)⊕N(BT)= RN (15.2.5)

The orthogonal decomposition theorem follows from (15.2.5). It states that a given
vector in RN can be decomposed uniquely with respect to a subspace Y into the sum of
a vector that lies in Y and a vector that lies in Y⊥, that is, for b ∈ RN:

b = b‖ + b⊥ , where b‖ ∈ Y , b⊥ ∈ Y⊥ (15.2.6)

so that bT⊥b‖ = 0. The proof is trivial; defining b‖ = Pb and b⊥ = Qb, we have:

b = INb = (P+Q)b = Pb+Qb = b‖ + b⊥

The uniqueness is argued as follows: setting b‖ + b⊥ = b′‖ + b′⊥ for a different pair
b′‖ ∈ Y, b′⊥ ∈ Y⊥, we have b‖ −b′‖ = b′⊥ −b⊥, which implies that both difference vectors
lie in Y ∩Y⊥ = {0}, and therefore, they must be the zero vector.

768 15. SVD and Signal Processing

Fig. 15.2.1 Projection of b onto the subspace Y = R(B) spanned by B = [b1,b2].

Fig. 15.2.1 illustrates this theorem. An alternative proof is to expand b‖ in the B-
basis, that is, b‖ = Bc, and require that b⊥ = b − b‖ be perpendicular to Y, that is,
BTb⊥ = 0. Thus, we get the conditions:

b = Bc+ b⊥ ⇒ BTb = BTBc+ BTb⊥ = BTBc , or,

c = (BTB)−1BT b , b‖ = Bc = B(BTB)−1BT b = Pb (15.2.7)

A variation of the orthogonal decomposition theorem is the orthogonal projection
theorem, which states that the projection b‖ is that vector in Y that lies closest to b with
respect to the Euclidean distance, that is, as the vector y ∈ Y varies over Y, the distance
‖b− y‖ is minimized when y = b‖.

Fig. 15.2.2 illustrates the theorem. The proof is straightforward. We have b − y =
b‖ + b⊥ − y = (b‖ − y)+b⊥, but since both b‖ and y lie in Y, so does (b‖ − y) and
therefore, (b‖ − y)⊥ b⊥. It follows from the Pythagorean theorem that:

‖b− y‖2 = ‖(b‖ − y)+b⊥‖2 = ‖b‖ − y‖2 + ‖b⊥‖2

which is minimized when y = b‖. The minimized value of the distance is ‖b − b‖‖ =
‖b⊥‖. The orthogonal projection theorem provides an intuitive interpretation of linear
estimation problems and of least-squares solutions of linear equations.

Fig. 15.2.2 The projection b‖ minimizes the distance ‖b− y‖ to the subspace Y.

The basisB for the subspaceY is not unique. Any other set ofM linearly independent
vectors in Y would do. The projector P remains invariant under a change of basis.
Indeed, suppose that another basis is defined by the basis matrix U = [u1,u2, . . . ,uM]
whose M columns ui are assumed to be linearly independent. Then, each bj can be
expanded as a linear combination of the new basis vectors ui:

bj =
M∑
i=1

uicij , j = 1,2, . . . ,M (15.2.8)

15.2. Subspaces, Bases, and Projections 769

These relationships may be expressed compactly in the matrix form:

B = UC (base change) (15.2.9)

where C is the M×M matrix of expansion coefficients cij. Because U and B have full
rank, the matrix C will be invertible (the ui’s can just as well be expressed in terms of
the bj’s.) It follows that BTB = CT(UTU)C and:

P = B(BTB)−1BT = UC(
CT(UTU)C

)−1CTUT

= UC(
C−1(UTU)−1C−T

)
CTUT = U(UTU)−1UT

where C−T denotes the inverse of the transposed matrix CT. Among the possible bases
for Y, a convenient one is to choose theM vectors ui to have unit norm and be mutually
orthogonal, that is, uTi uj = δij, for i, j = 1,2, . . . ,M. Compactly, we may express this
condition in terms of the basis matrix U = [u1,u2, . . . ,uM]:

UTU = IM (orthonormal basis) (15.2.10)

When U is orthonormal, the projection matrix P can be expressed simply as:

P = B(BTB)−1BT = U(UTU)−1UT = UUT (15.2.11)

There are many ways to construct the orthonormal basis U starting with B. One
is through the SVD implemented into the function orth. Another is through the QR-
factorization, which is equivalent to the Gram-Schmidt orthogonalization process. The
two alternatives are:

U = orth(B); % SVD-based

U = qr(B,0); % QR-factorization

Example 15.2.1: A three-dimensional subspace Y of R4 is spanned by the basis matrix B:

B =

⎡⎢⎢⎢⎣
1.52 2.11 4.30

−1.60 −2.05 −4.30
2.08 2.69 3.70
−2.00 −2.75 −3.70

⎤⎥⎥⎥⎦
The matrix B has rank 3, but non-orthogonal columns. The two orthogonal bases obtained
via the SVD and via the QR factorization are as follows:

B =

⎡⎢⎢⎢⎣
−0.5 0.5 0.5

0.5 −0.5 0.5
−0.5 −0.5 −0.5

0.5 0.5 −0.5

⎤⎥⎥⎥⎦
⎡⎢⎣ −3.60 −4.80 −8.00
−0.48 −0.64 0.60
−0.08 0.06 0.00

⎤⎥⎦ = U1C1

B =

⎡⎢⎢⎢⎣
−0.4184 −0.5093 0.5617

0.4404 −0.4904 −0.5617
−0.5726 0.4875 −0.4295

0.5505 0.5122 0.4295

⎤⎥⎥⎥⎦
⎡⎢⎣ −3.6327 −4.8400 −7.8486

0.0000 −0.1666 −0.1729
0.0000 0.0000 1.6520

⎤⎥⎦ = U2C2

The bases were constructed by the MATLAB commands:

770 15. SVD and Signal Processing

[U1,S1,V1] = svd(B,0); C1 = S1*V1’; % alternatively, U1 = orth(B);

[U2,C2] = qr(B,0);

The orthogonal bases satisfy UT1U1 = UT2U2 = I3, and C2 is upper triangular. The projec-
tion matrices onto Y and Y⊥ are:

P = U1UT1 =
1

4

⎡⎢⎢⎢⎣
3 −1 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤⎥⎥⎥⎦ , Q = I4 −P = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎦
The ranks of P,Q are the dimensions of the subspaces Y,Y⊥, that is, 3 and 1. ��

15.3 The Fundamental Theorem of Linear Algebra

AnN×M matrix A ∈ RN×M of rank r ≤ min{M,N} is characterized by four fundamen-
tal subspaces: the two range subspaces R(A) and R(AT) and the two null subspaces
N(A) andN(AT). These subspaces play a fundamental role in the SVD of A and in the
least-squares solution of the equation Ax = b.

The fundamental theorem of linear algebra [1234,1254] states that their dimensions
and orthogonality properties are as follows:

R(A), subspace of RN, dim = r, R(A)⊥= N(AT)
N(AT), subspace of RN, dim = N − r, N(AT)⊥= R(A)
R(AT), subspace of RM, dim = r, R(AT)⊥= N(A)
N(A), subspace of RM, dim =M − r, N(A)⊥= R(AT)

(15.3.1)

The dimensions of the two range subspaces are equal to the rank of A. The dimen-
sions of the null subspaces are called the nullity of A and AT. It follows that the spaces
RM and RN are the direct sums:

RN = R(A)⊕N(AT)= R(A)⊕R(A)⊥
RM = R(AT)⊕N(A)= R(AT)⊕R(AT)⊥ (15.3.2)

Their intersections are: R(A)∩N(AT)= {0} and R(AT)∩N(A)= {0}, that is, the
zero vector. Fig. 15.3.1 depicts these subspaces and the action of the matrices A and
AT. The fundamental theorem of linear algebra, moreover, states that the singular value
decomposition of A provides orthonormal bases for these four subspaces and that A
and AT become diagonal with respect to these bases.

15.4 Solving Linear Equations

Given an N×M matrix A ∈ RN×M of rank r ≤ min(N,M) and a vector b ∈ RN, the
linear system Ax = b may or may not have a solution x ∈ RM. A solution exists only if
the vector b lies in the range space R(A) of the matrix A.

However, there is always a solution in the least-squares sense. That solution may
not be unique. The properties of the four fundamental subspaces of A determine the
nature of the least-squares solutions [1234].

15.4. Solving Linear Equations 771

Fig. 15.3.1 The four fundamental subspaces associated with an N×M matrix A.

Defining the error vector e = b − Ax, a least-squares solution is a vector x ∈ RM

that minimizes the Euclidean norm ‖e‖, that is,

J = ‖e‖2 = eTe = ‖b−Ax‖2 = (b−Ax)T(b−Ax)= min (15.4.1)

The solution is obtained by setting the gradient of the performance index to zero:

∂J
∂x

= −2ATe = −2AT(b−Ax)= 0

Thus, we obtain the orthogonality and normal equations:

ATe = 0 (orthogonality equations)

ATAx = ATb (normal equations)
(15.4.2)

If the M×M matrix ATA has full rank, then it is invertible and the solution of the
normal equations is unique and is given by

x = (ATA)−1ATb (full-rank overdetermined case) (15.4.3)

This happens, for example, if N ≥ M and r = M. In the special case of a square
full-rank matrix A (that is, r = N =M), this solution reduces to x = A−1b.

For the rank-defective case,ATA is not invertible, but Eq. (15.4.2) does have solutions.
They can be characterized with the help of the four fundamental subspaces of A, as
shown in Fig. 15.4.1.

Fig. 15.4.1 Role of the fundamental subspaces in the least-squares solution of Ax = b.

Using the direct-sum decompositions (15.3.2), we resolve both b and x into their
unique orthogonal components:

b = b‖ + b⊥, b‖ ∈ R(A), b⊥ ∈ N(AT), b ∈ RN
x = x‖ + x⊥, x‖ ∈ R(AT), x⊥ ∈ N(A), x ∈ RM (15.4.4)

772 15. SVD and Signal Processing

Because x⊥ lies in the null space of A, we have Ax⊥ = 0, and therefore, Ax =
A(x‖ + x⊥)= Ax‖. Then, the error vector becomes:

e = b−Ax = (
b‖ −Ax‖

)+ b⊥ ≡ e‖ + e⊥ (15.4.5)

Because both b‖ and Ax‖ lie in R(A), so does e‖ = b‖ −Ax‖, and therefore, it will
be orthogonal to e⊥ = b⊥. Thus, Eq. (15.4.5) represents the orthogonal decomposition
of the error vector e. But from the orthogonality equations (15.4.2), we have ATe = 0,
which means that e ∈ N(AT), and therefore, e = e⊥. This requires that e‖ = 0, or,
Ax‖ = b‖. Because b‖ lies in R(A), this system will have a solution x‖.

Moreover, because x‖ ∈ R(AT), this solution will be unique. Indeed, if b‖ = Ax‖ =
Ax′‖, for another vector x′‖ ∈ R(AT), then A(x‖ − x′‖)= 0, or, x‖ − x′‖ would lie in
N(A) in addition to lying in R(AT), and hence it must be the zero vector because
R(AT)∩N(A)= {0}. In fact, this unique x‖ may be constructed by the pseudoinverse
of A:

Ax‖ = b‖ ⇒ x‖ = A+b‖ = A+b (minimum-norm solution) (15.4.6)

An explicit expression for the pseudoinverse A+ will be given in Sec. 15.6 with the
help of the SVD ofA. We will also show there thatA+b‖ = A+b. In conclusion, the most
general solution of the least-squares problem (15.4.1) is given by:

x = A+b+ x⊥ (15.4.7)

where x⊥ is an arbitrary vector in N(A). The arbitrariness of x⊥ parametrizes the
non-uniqueness of the solution x.

The pseudoinverse solution x‖ is also recognized to be that particular solution of
the least-squares problem that has minimum norm. This follows from (15.4.4):

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2 = ‖A+b‖2 + ‖x⊥‖2 (15.4.8)

which shows that the norm ‖x‖ is minimum when x⊥ = 0, or, when x = x‖. Fig. 15.4.1
illustrates this property.

The minimum-norm solution is computed by MATLAB’s built-in function pinv, x‖ =
pinv(A)∗b. The solution obtained by MATLAB’s backslash operator, x = A\b, does
not, in general, coincide with x‖. It has a term x⊥ chosen such that the resulting vector
x has at most r non-zero (andM − r zero) entries, where r is the rank of A.

We obtained the general least-squares solution by purely geometric means using
the orthogonality equation (15.4.2) and the orthogonal decompositions of x and b. An
alternative approach is to substitute (15.4.5) directly into the performance index and
use the fact that e‖ and e⊥ are orthogonal:

J = ‖e‖2 = ‖e‖‖2 + ‖e⊥‖2 = ‖b‖ −Ax‖‖2 + ‖b⊥‖2 (15.4.9)

This expression is minimized when Ax‖ = b‖, leading to the same general solution
(15.4.7). The minimized value of the mean-square error is ‖b⊥‖2.

15.4. Solving Linear Equations 773

The full-rank case deserves special mention. There are three possibilities depending
on whether the system Ax = b is over-determined, under-determined, or square. Then,
one or both of the null subspaces consist only of the zero vector:

1. N > M, r =M, N(A)= {0}, R(AT)= RM, (over-determined)
2. M > N, r = N, N(AT)= {0}, R(A)= RN, (under-determined)
3. N =M, r = N, N(A)= {0}, N(AT)= {0}, (square, invertible)

The three cases are depicted in Fig. 15.4.2. In the over-determined case,N(A)= {0}
and therefore, the least-squares solution is unique x = x‖ and, as we saw earlier, it is
given by x = (ATA)−1ATb. Comparing with (15.4.6), it follows that the pseudoinverse
is in this case A+ = (ATA)−1AT.

Fig. 15.4.2 Subspaces in the full-rank least-squares solutions of Ax = b.

In the under-determined case, we have b = b‖, that is, b is in the range of A, and
therefore, Ax = b does have a solution. There are more unknowns than equations, and
therefore, there is an infinity of solutions x = x‖ +x⊥. The minimum norm solution can
be constructed as follows.

Because x‖ ∈ R(AT), there is a coefficient vector c ∈ RN such that x‖ = ATc. Then,
the system reads b = Ax = Ax‖ = AATc. TheN×NmatrixAAT is invertible because it
has full rank r = N. Thus, we find c = (AAT)−1b and hence, x‖ = ATc = AT(AAT)−1b.
It follows that A+ = AT(AAT)−1.

774 15. SVD and Signal Processing

Finally, in the square invertible case, we have x = A−1b. The three full-rank cases
may be summarized as follows:

1. N > M = r, x = A+b, A+ = (ATA)−1AT

2. M > N = r, x = A+b+ x⊥, A+ = AT(AAT)−1

3. N =M = r, x = A−1b, A+ = A−1

(15.4.10)

In the last two cases, the equation Ax = b is satisfied exactly. In the first case, it is
satisfied only in the least-squares sense.

Example 15.4.1: Solve the two systems of equations:{
x = 1
x = 2

and

{
2x = 2
x = 2

Solution: The least-squares minimization problems and their solutions are in the two cases:

J = (x− 1)2+(x− 2)2= min ⇒ ∂J
∂x

= 2(x− 1)+2(x− 2)= 0 ⇒ x = 1.5

J = (2x− 2)2+(x− 2)2= min ⇒ ∂J
∂x

= 4(2x− 2)+2(x− 2)= 0 ⇒ x = 1.2

It may be surprising that the solutions are different since the first equations of the two
systems are the same, differing only by an overall scale factor. The presence of the scale
factor introduces an effective weighting of the performance index which alters the relative
importance of the squared terms. Indeed, the second performance index may be rewritten
as:

J = 4(x− 1)2+(x− 2)2

which assigns the weights 4:1 to the two terms, as opposed to the original 1:1. Generalizing
this example, we may express the systems in the form Ax = b:

a1x = b1

a2x = b2
⇒

[
a1

a2

]
x =

[
b1

b2

]
, A =

[
a1

a2

]
, b =

[
b1

b2

]
(15.4.11)

This is recognized as an overdetermined full-rank case, which can be solved by the pseu-
doinverse A+ = (ATA)−1AT . Noting that ATA = a2

1 + a2
2, we have:[

a1

a2

]+
= [a1, a2]
a2

1 + a2
2

⇒ x = A+b = 1

a2
1 + a2

2
[a1, a2]

[
b1

b2

]
= a1b1 + a2b2

a2
1 + a2

2

The first system has [a1, a2]= [1,1] and [b1, b2]= [1,2], and the second system, [a1, a2]=
[2,1] and [b1, b2]= [2,2]. If we multiply both sides of Eq. (15.4.11) by the weightsw1,w2,
we get the system and solution:[

w1a1

w2a2

]
x =

[
w1b1

w2b2

]
⇒ x = w

2
1a1b1 +w2

2a2b2

w2
1a2

1 +w2
2a2

2
(15.4.12)

The differences between (15.4.11) and (15.4.12) can be explained by inspecting the corre-
sponding performance indices that are being minimized:

J = (a1x− b1)2+(a2x− b2)2 , J = w2
1(a1x− b1)2+w2

2(a2x− b2)2

The scale factors w1,w2 alter the relative weighting of the terms in J. ��

15.4. Solving Linear Equations 775

Example 15.4.2: Find the minimum norm solution, as well as the most general least-squares
solution of the system:

x1 + x2 = 2 � [1,1]
[
x1

x2

]
= [2] , A = [1,1], x =

[
x1

x2

]
, b = [2]

Solution: This is an under-determined full-rank case. The minimum norm solution is computed
using the pseudoinverse A+ = AT(AAT)−1. We have, AAT = 2, therefore,

A+ = 1

2

[
1
1

]
=

[
0.5
0.5

]
⇒ x‖ = A+b =

[
0.5
0.5

]
[2]=

[
1
1

]

The most general vector in the one-dimensional null space of A has the form:

x⊥ =
[
z
−z

]
� [1,1]

[
z
−z

]
= 0 � Ax⊥ = 0

Therefore, the most general least-squares solution will have the form:

x = x‖ + x⊥ =
[

1
1

]
+

[
z
−z

]
=

[
1+ z
1− z

]

It is evident that the norm-square ‖x‖2 = (z + 1)2+(z − 1)2= 2 + 2z2 is minimized

when z = 0. MATLAB’s backslash solution x = A\b =
[

2
0

]
is obtained when z = 1

and corresponds to the point of intersection of the line x1 + x2 = 2 with the x1 axis. A
geometrical picture of the general solution is shown in Fig. 15.4.3.

Fig. 15.4.3 The minimum norm solution is perpendicular to the straight line x1 + x2 = 2.

The equation x1 + x2 = 2 is represented by a straight line on the x1x2 plane. Any point on
the line is a solution. In particular, the minimum-norm solution x‖ is obtained by drawing
the perpendicular from the origin to the line.

The direction of x‖ defines the 1-dimensional range spaceR(AT). The orthogonal direction
to R(AT), which is parallel to the line, is the direction of the 1-dimensional null subspace
N(A). In the more general case, we may replace the given equation by:

a1x1 + a2x2 = b1 � [a1, a2]
[
x1

x2

]
= [b1], A = [a1, a2], b = [b1]

The pseudoinverse of A and the min-norm solution are:

776 15. SVD and Signal Processing

A+ = AT(AAT)−1= 1

a2
1 + a2

2

[
a1

a2

]
, x‖ = A+b = 1

a2
1 + a2

2

[
a1b1

a2b1

]

Vectors in N(A) and the most general least-squares solution are given by:

x⊥ = 1

a2
1 + a2

2

[
a2z
−a1z

]
, x = x‖ + x⊥ = 1

a2
1 + a2

2

[
a1b1 + a2z
a2b1 − a1z

]

It is easily verified that Ax⊥ = 0 and that ‖x‖2 is minimized when z = 0. ��

Example 15.4.3: The pseudoinverses of N-dimensional column and row vectors are:

a =

⎡⎢⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤⎥⎥⎥⎥⎥⎦ ⇒ a+ = aT

‖a‖2
and aT = [a1, a2, . . . , aN] ⇒ (aT)+= a

‖a‖2

where ‖a‖2 = aTa = a2
1 + a2

2 + · · · + a2
N . Thus, we obtain the minimum-norm solutions:⎡⎢⎢⎢⎢⎢⎣

a1

a2

...
aN

⎤⎥⎥⎥⎥⎥⎦x =
⎡⎢⎢⎢⎢⎢⎣
b1

b2

...
bN

⎤⎥⎥⎥⎥⎥⎦ ⇒ x = a+b = aTb

aTa
= a1b1 + a2b2 + · · · + aNbN

a2
1 + a2

2 + · · · + a2
N

a1x1 + a2x2 + · · · + aNxN = b ⇒

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎥⎥⎦ =
1

a2
1 + a2

2 + · · · + a2
N

⎡⎢⎢⎢⎢⎢⎣
a1

a2

...
aN

⎤⎥⎥⎥⎥⎥⎦b

15.5 The Singular Value Decomposition

Given an N×M matrix A∈RN×M of rank r ≤ min(N,M), the singular value decom-
position theorem [1234] states that there exist orthogonal matrices U ∈ RN×N and
V ∈ RM×M such that A is factored in the form:

A = UΣVT (SVD) (15.5.1)

where Σ ∈ RN×M is an N×M diagonal matrix, partitioned in the form:

Σ =
[
Σr 0
0 0

]
(15.5.2)

with Σr a square diagonal matrix in Rr×r :

Σr = diag(σ1, σ2, . . . , σr) (15.5.3)

15.5. The Singular Value Decomposition 777

with positive diagonal entries called the singular values ofA and arranged in decreasing
order:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (15.5.4)

The orthogonal matricesU,V are not unique, but the singular values σi are. To clar-
ify the structure ofΣ and the blocks of zeros borderingΣr , we give below the expressions
for Σ for the case of a 6×4 matrix A of rank r = 1,2,3,4:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The orthogonality of U,V may be expressed by UTU = UUT = IN and VTV =

VVT = IM. These just mean the U has N orthonormal columns that form a complete
basis for RN, and V hasM orthonormal columns that form a basis for RM.

Denoting the columns of U by ui, i = 1,2, . . . ,N, and the columns of V by vi, i =
1,2, . . . ,M, we may partition U,V in a compatible way as in Eq. (15.5.2):

U = [u1,u2, . . . ,ur︸ ︷︷ ︸
Ur

,ur+1, . . . ,uN︸ ︷︷ ︸
Ũr

]= [Ur | Ũr]

V = [v1,v2, . . . ,vr︸ ︷︷ ︸
Vr

,vr+1, . . . ,vM︸ ︷︷ ︸
Ṽr

]= [Vr | Ṽr]
(15.5.5)

Then, Eq. (15.5.1) can be written in the form:

A = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr (15.5.6)

or, as a sum of r rank-1 matrices:

A =
r∑
i=1

σiuivTi = σ1u1vT2 +σ2u2vT2 + · · · +σrurvTr (15.5.7)

The submatrices have dimensionsUr ∈ RN×r , Ũr ∈ RN×(N−r),Vr ∈ RM×r , and Ṽr ∈
RM×(M−r). The orthogonality and completeness properties of U,V may be expressed
equivalently in terms of these submatrices:

UTr Ur = Ir , ŨTr Ũr = IN−r , UTr Ũr = 0 , UrUTr + ŨrŨTr = IN
VTr Vr = Ir , ṼTr Ṽr = IM−r , VTr Ṽr = 0 , VrVTr + ṼrṼTr = IM

(15.5.8)

For example, we have:

UTU =
[
UTr Ur UTr Ũr
ŨTr Ur ŨTr Ũr

]
=

[
Ir 0
0 IN−r

]
= IN , UrUTr + ŨrŨTr = UUT = IN

778 15. SVD and Signal Processing

The SVD of A provides also the SVD of AT, that is, AT = VΣTUT. The singular
values of AT coincide with those of A. The matrix ΣT has dimension M×N, but since
ΣTr = Σr , we have:

AT = VΣTUT = [Vr | Ṽr]
[
Σr 0
0 0

][
UTr
ŨTr

]
= VrΣrUTr (15.5.9)

Although A and AT can be constructed only from Ur,Σr,Vr , the other submatrices
Ũr, Ṽr are needed in order to characterize the four fundamental subspaces of A, and
are needed also in the least-squares solutions.

Multiplying (15.5.6) from the right by Vr and Ṽr and multiplying (15.5.9) by Ur and
Ũr and using (15.5.8), we obtain:

AVr = UrΣrVTr Vr = UrΣr , AṼr = UrΣrVTr Ṽr = 0

ATUr = VrΣrUTr Ur = VrΣr , ATŨr = VrΣrUTr Ũr = 0

or, explicitly in terms of the basis vectors ui,vi:

AVr = UrΣr
AṼr = 0

ATUr = VrΣr
ATŨr = 0

�

Avi = σiui , i = 1,2, . . . , r
Avi = 0 , i = r + 1, . . . ,M
ATui = σivi , i = 1,2, . . . , r
ATui = 0 , i = r + 1, . . . ,N

(15.5.10)

These equations show that ui and vi, i = 1,2, . . . , r, lie in the range spaces R(A)
and R(AT), respectively. Moreover, they provide orthonormal bases for these two sub-
spaces. Similarly, vi, i = r + 1, . . . ,M, and ui, i = r + 1, . . . ,N, are bases for the null
subspaces N(A) and N(AT), respectively.

Thus, a second part of the fundamental theorem of linear algebra is that the matrices
Ur, Ũr,Vr, Ṽr provide orthonormal bases for the four fundamental subspaces ofA, and
with respect to these bases, A has a diagonal form (the Σ). The subspaces, their bases,
and the corresponding projectors onto them are:

R(A)= span{Ur} , dim = r , UTr Ur = Ir , PR(A) = UrUTr
N(AT)= span{Ũr} , dim = N − r , ŨTr Ũr = IN−r , PN(AT) = ŨrŨTr
R(AT)= span{Vr} , dim = r , VTr Vr = Ir , PR(AT) = VrVTr
N(A)= span{Ṽr} , dim =M − r , ṼTr Vr = IM−r , PN(A) = ṼrṼTr

(15.5.11)

The vectors ui and vi are referred to as the left and right singular vectors of A and
are the eigenvectors of the matricesAAT andATA, respectively. Indeed, it follows from
the orthogonality of U and V that:

ATA = VΣTUTUΣVT = V(ΣTΣ)VT , ΣTΣ =
[
Σ2
r 0

0 0

]
∈ RM×M

AAT = UΣVTVΣTUT = U(ΣΣT)UT , ΣΣT =
[
Σ2
r 0

0 0

]
∈ RN×N

(15.5.12)

15.5. The Singular Value Decomposition 779

It is evident from these that V and U are the matrices of eigenvectors of ATA and
AAT and that the corresponding non-zero eigenvalues are λi = σ2

i , i = 1,2, . . . , r. The
ranks of ATA and AAT are equal to the rank r of A.

The SVD factors V,U could, in principle, be obtained by solving the eigenvalue prob-
lems of ATA and AAT. However, in practice, loss of accuracy can occur in squaring the
matrix A. Methods of computing the SVD directly from A are available.

A simplified proof of the SVD is as follows. We assume that N ≥ M and that A has
full rank r = M (the proof can easily be modified for the general case.) First, we solve
the eigenvalue problem of the matrix ATA:

ATA = VΛVT , Λ = diag(λ1, λ2, . . . , λM)∈ RM×M

Because ATA has full rank, it will be strictly positive definite, its eigenvalues will be
positive, and the corresponding eigenvectors may be chosen to be orthonormal, that is,
VTV = VVT = IM. Arranging the eigenvalues in decreasing order, we define σi =

√
λi,

i = 1,2, . . . ,M, and Σ1 = Λ1/2 = diag(σ1, . . . , σM)∈ RM×M. Then, we define U1 =
AVΣ−1

1 , which is an N×M matrix with orthonormal columns:

UT1U1 = Σ−1
1 VT(ATA)VΣ

−1
1 = Σ−1

1 VT(VΣ
2
1VT)VΣ

−1
1 = IM

Next, we solve for A. We have U1Σ1 = AV, and U1Σ1VT = AVVT = A, or

A = U1Σ1VT (economy SVD) (15.5.13)

The N×M matrix U1 may be enlarged into an N×N orthogonal matrix by adjoining
to it (N −M) orthonormal columns U2 such that UT2U1 = 0, and similarly, the M×M
diagonal matrix Σ1 may be enlarged into an N×M matrix Σ. Then, Eq. (15.5.13) may be
rewritten in the standard full SVD form:

A = U1Σ1VT = [U1 | U2]
[
Σ1

0

]
VT = UΣVT (15.5.14)

Eq. (15.5.13) is called the economy or thin SVD because the U1 matrix has the same
size as A but has orthonormal columns, and Σ1 has sizeM×M. For many applications,
such as SVD signal enhancement, the economy SVD is sufficient. In MATLAB, the full
and the economy SVDs are obtained with the calls:

[U,S,V] = svd(A); % full SVD

[U1,S1,V] = svd(A,0); % economy SVD

Example 15.5.1: To illustrate the loss of accuracy in forming ATA, consider the 4×3 matrix:

A =

⎡⎢⎢⎢⎣
1 1 1
ε 0 0
0 ε 0
0 0 ε

⎤⎥⎥⎥⎦ ⇒ ATA =
⎡⎢⎣ 1+ ε2 1 1

1 1+ ε2 1
1 1 1+ ε2

⎤⎥⎦

The matrix A remains full rank to order O(ε), but ATA requires that we work to order
O(ε2). The singular values of A are obtained from the eigenvalues of ATA:

λ1 = 3+ ε2, λ2 = λ3 = ε2 ⇒ σ1 =
√

3+ ε2, σ2 = σ2 = ε

780 15. SVD and Signal Processing

The full SVD of A can be constructed along the lines described above. Starting with the
eigenproblem of ATA, we find:

A = UΣVT =

⎡⎢⎢⎢⎣
3α 0 0 −δε
αε β γ δ
αε −β γ δ
αε 0 −2γ δ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
σ1 0 0
0 σ2 0
0 0 σ3

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎣ a b c
a −b c
a 0 −2c

⎤⎥⎦
T

where a = 1√
3

, β = b = 1√
2

, γ = c = 1√
6

, α = 1√
3(3+ ε2)

, and δ = 1√
(3+ ε2)

. ��

Example 15.5.2: Consider the full SVD of the 4×2 matrix A:

A =

⎡⎢⎢⎢⎣
0.5 1.0
1.1 0.2
1.1 0.2
0.5 1.0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0.5 0.5 −0.1 −0.7
0.5 −0.5 −0.7 0.1
0.5 −0.5 0.7 −0.1
0.5 0.5 0.1 0.7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

2 0
0 1
0 0
0 0

⎤⎥⎥⎥⎦
[

0.8 −0.6
0.6 0.8

]T
= UΣVT

Its economy SVD is:

A =

⎡⎢⎢⎢⎣
0.5 1.0
1.1 0.2
1.1 0.2
0.5 1.0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0.5 0.5
0.5 −0.5
0.5 −0.5
0.5 0.5

⎤⎥⎥⎥⎦
[

2 0
0 1

][
0.8 −0.6
0.6 0.8

]T

The choice of the last two columns of U is not unique. They can be transformed by any
2×2 orthogonal matrix without affecting the SVD. For example, v5.3 of MATLAB produces
the U matrix:

U =

⎡⎢⎢⎢⎣
0.5 0.5 −0.1544 −0.6901
0.5 −0.5 −0.6901 0.1544
0.5 −0.5 0.6901 −0.1544
0.5 0.5 0.1544 0.6901

⎤⎥⎥⎥⎦
The last two columns of the two Us are related by the 2×2 orthogonal matrix C:⎡⎢⎢⎢⎣

−0.1544 −0.6901
−0.6901 0.1544

0.6901 −0.1544
0.1544 0.6901

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−0.1 −0.7
−0.7 0.1

0.7 −0.1
0.1 0.7

⎤⎥⎥⎥⎦C , C =
[

0.9969 −0.0781
0.0781 0.9969

]

where CTC = I2. ��

Complex-Valued Case

The SVD of a complex-valued matrix A ∈ CN×M takes the form:

A = UΣV† (15.5.15)

where † denotes the Hermitian-conjugate, or conjugate-transpose, V† = V∗T. The
matrix Σ is exactly as in the real case, and U,V are unitary matrices U ∈ CN×N and
V ∈ CM×M, that is,

UU† = U†U = IN, VV† = V†V = IM (15.5.16)

15.6. Moore-Penrose Pseudoinverse 781

Maximization Criterion for the SVD

The singular values and singular vectors of a matrix A of rank r can be characterized
by the following maximization criterion [1321].

First, the maximum singular value σ1 and singular vectors u1,v1 are the solutions
of the maximization criterion:†

σ1 = max
‖u‖=1

max
‖v‖=1

u†Av = u†1Av1 (15.5.17)

Then, the remaining singular values and vectors are the solutions of the criteria:

σi = max
‖u‖=1

max
‖v‖=1

u†Av = u†i Avi , i = 2, . . . , r

subject to the constraints: u†uj = v†vj = 0 , j = 1,2, . . . , i− 1
(15.5.18)

The proof is straightforward. Using the Cauchy-Schwarz inequality and the con-
straints ‖u‖ = ‖v‖ = 1, and that the Euclidean norm of A is σ1, we have:

|u†Av| ≤ ‖u‖‖A‖‖v‖ = ‖A‖ = σ1

with the equality being realized when u = u1 and v = v1.
For the next singular value σ2, we must maximize u†Av over all vectors u,v that are

orthogonal to u1,v1, that is, u†u1 = v†v1 = 0. Using the SVD of A, we may separate the
contribution of u1,v1:

A = σ1u1v†1 +
r∑
i=2

σ1uiv
†
i ≡ σ1u1v†1 +A2

Then, the constraints imply that u†Av = u†(σ1u1v†1 + A2)v = u†A2v. But from
the previous result, the maximum of this quantity is the maximum singular value of A2,
that is, σ2, and this maximum is realized when u = u2 and v = v2. Then we repeat this
argument by separating out the remaining singular terms σiuiv

†
i one at a time, till we

exhaust all the singular values.
This theorem is useful in canonical correlation analysis and in characterizing the

angles between subspaces.

15.6 Moore-Penrose Pseudoinverse

For a full-rank N×N matrix with SVD A = UΣVT, the ordinary inverse is obtained by
inverting the SVD factors and writing them in reverse order:

A−1 = V−TΣ−1U−1 = VΣ−1UT (15.6.1)

where we used the orthogonality properties to write V−T = V and U−1 = UT. For an
N×M rectangular matrix with defective rank r, Σ−1 cannot be defined even if it were

†The quantity u†Av could just as well be replaced by its absolute value |u†Av| in (15.5.17) and (15.5.18).

782 15. SVD and Signal Processing

square because some of its singular values are zero. For a scalar x, we may define its
pseudoinverse by:

x+ =
⎧⎨⎩x−1, if x ≠ 0

0, if x = 0
(15.6.2)

For a square M×M diagonal matrix, we define its pseudoinverse to be the diagonal
matrix of the pseudoinverses:

Σ = diag(σ1, σ2, . . . , σM) ⇒ Σ+ = diag(σ+1 , σ+2 , . . . , σ+M) (15.6.3)

And, for an N×M rectangular diagonal matrix of r non-zero singular values Σ ∈
RN×M, we define its pseudoinverse to be theM×N diagonal matrix Σ+ ∈ RM×N:

Σ =
[
Σr 0
0 0

]
∈ RN×M ⇒ Σ+ =

[
Σ−1
r 0
0 0

]
∈ RM×N (15.6.4)

The pseudoinverse of an N×M matrix A is defined by replacing Σ−1 in Eq. (15.6.1)
by Σ+, that is, if A = UΣVT ∈ RN×M, then A+ ∈ RM×N:

A+ = VΣ+UT (Moore-Penrose pseudoinverse) (15.6.5)

Equivalently, using the block-matrix form (15.5.6), we have:

A = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr

A+ = [Vr | Ṽr]
[
Σ−1
r 0
0 0

][
UTr
ŨTr

]
= VrΣ−1

r UTr

(15.6.6)

Eqs. (15.6.6) can be written as sums of r rank-1 matrices:

A =
r∑
i=1

σiuivTi = σ1u1vT1 +σ2u2vT2 + · · · +σrurvTr

A+ =
r∑
i=1

1

σi
viu

T
i =

1

σ1
v1uT1 +

1

σ2
v2uT2 + · · · +

1

σr
vru

T
r

(15.6.7)

The matrix A+ satisfies (and is uniquely determined by) the four standard Penrose
conditions [1234]:

AA+A = A, (AA+)T= AA+
A+AA+ = A+ , (A+A)T= A+A (15.6.8)

These conditions are equivalent to the fact that AA+ and A+A are the projectors
onto the range spaces R(A) and R(AT), respectively. Indeed, using the definition
(15.6.6) and Eq. (15.5.11), we have:

PR(A) = UrUTr = AA+ , PR(AT) = VrVTr = A+A (15.6.9)

It is straightforward also to verify the three expressions forA+ given by Eq. (15.4.10)
for the full-rank cases. For example, if N > M = r, the matrix Vr is square and orthog-
onal, so that ATA = VrΣ2

rVTr is invertible, (ATA)−1= VrΣ−2
r VTr . Thus,

(ATA)−1AT = (
VrΣ−2

r VTr
)(
VrΣrUTr

) = VrΣ−1
r UTr = A+

15.7. Least-Squares Problems and the SVD 783

15.7 Least-Squares Problems and the SVD

Having defined the pseudoinverse and convenient bases for the four fundamental sub-
spaces of A, we may revisit the least-squares solution of the system Ax = b.

First, we show that the solution of Ax‖ = b‖ is, indeed, given by the pseudoinverse
A+ acting directly on b. By definition, we have b‖ = PR(A)b. Using the SVD of A and
the projectors (15.6.9), we have:

Ax‖ = b‖ ⇒ UrΣrVTr x‖ = UrUTr b ⇒ VTr x‖ = Σ−1
r UTr b

where we multiplied both sides of the second equation by UTr and divided by Σr to get
the third. Multiplying from the left by Vr and using (15.6.6), we find:

VrVTr x‖ = VrΣ−1
r UTr b = A+b

but we have x‖ = VrVTr x‖, which follows from (VrVTr)2= VrVTr , that is, x‖ = VrVTr x =
VrVTr (VrVTr x)= VrVTr x‖. Thus, we find x‖ = A+b. Using (15.6.8) and (15.6.9), we also
have A+b = (A+AA+)b = A+(AA+b)= A+b‖. Thus, we have shown:

x‖ = A+b‖ = A+b (minimum-norm solution) (15.7.1)

or, explicitly in terms of the non-zero singular values:

x‖ = A+b = VrΣ−1
r UTr b =

r∑
i=1

1

σi
vi u

T
i b (15.7.2)

We recall that the most general least-squares solution of Ax = b is given by x =
x‖ + x⊥, where x⊥ ∈ N(A). We can give an explicit construction of x⊥ by noting that
Ṽr is an orthonormal basis for N(A). Therefore, we may write x⊥ = Ṽrz, where z is an
(M − r)-dimensional column vector of expansion coefficients, that is,

x⊥ =
M∑

i=r+1

zivi = [vr+1,vr+2, . . . ,vM]

⎡⎢⎢⎢⎢⎢⎣
zr+1

zr+2

...
zM

⎤⎥⎥⎥⎥⎥⎦ = Ṽrz

Because x⊥ is arbitrary, so is z. Thus, the most general solution of the least-squares
problem can be written in the form [1234]:

x = x‖ + x⊥ = A+b+ Ṽrz , for arbitrary z ∈ RM−r (15.7.3)

The error vector is:

e = e⊥ = b⊥ = PN(AT)b = ŨrŨTr b = (IN −UrUTr)b = (IN −AA+)b

and the minimized value of the least-squares performance index:

Jmin = ‖e‖2 = bT(IN −AA+)b (15.7.4)

784 15. SVD and Signal Processing

where we used the property (IN − AA+)T(IN − AA+)= (IN − AA+), which can be
proved directly using (15.6.8). Indeed,

(IN −AA+)T(IN −AA+)= IN − 2AA+ +AA+AA+ = IN − 2AA+ +AA+ = IN −AA+

Example 15.7.1: Here, we revisit Example 15.4.2 from the point of view of Eq. (15.7.3). The full
and economy SVD of A = [a1, a2] are:

A = [a1, a2]= [1][σ1,0]
[
a1/σ1 −a2/σ1

a2/σ1 a1/σ1

]T
= [1][σ1]

[
a1/σ1

a2/σ1

]T

with the singular value σ1 =
√
a2

1 + a2
2. Thus, the pseudoinverse of A and the basis Ṽr of

N(A) will be:

A+ = [a1, a2]+=
[
a1/σ1

a2/σ1

]
[σ−1

1][1]T=
1

σ2
1

[
a1

a2

]
, Ṽr = 1

σ1

[
−a2

a1

]

It follows from (15.7.3) that the most general solution of a1x1 + a2x2 = b1 will be:[
x1

x2

]
= A+[b1]+ 1

σ1

[
−a2

a1

]
z = 1

σ2
1

[
a1

a2

]
b1 + 1

σ1

[
−a2

a1

]
z

which is equivalent to that given in Example 15.4.2 up to a redefinition of z. ��

Example 15.7.2: Find the most general solution of the following linear system, and in particu-
lar, find the minimum-norm and MATLAB’s backslash solutions:

Ax =

⎡⎢⎢⎢⎣
1.8 2.4 4.0

−1.8 −2.4 −4.0
1.8 2.4 4.0
−1.8 −2.4 −4.0

⎤⎥⎥⎥⎦
⎡⎢⎣ x1

x2

x3

⎤⎥⎦ =
⎡⎢⎢⎢⎣

10
20
30
40

⎤⎥⎥⎥⎦ = b

A possible SVD of A is as follows:

A = UΣVT =

⎡⎢⎢⎢⎣
0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

10 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎣ 0.36 −0.48 0.8

0.48 −0.64 −0.6
0.80 0.60 0.0

⎤⎥⎦
T

The matrix A has rank one, so that the last three columns of U and the last two columns
of V are not uniquely defined. The pseudoinverse of A will be:

A =

⎡⎢⎢⎢⎣
0.5

−0.5
0.5
−0.5

⎤⎥⎥⎥⎦ [10][0.36,0.48,0.80] , A+ =
⎡⎢⎣ 0.36

0.48
0.80

⎤⎥⎦ [10−1][0.5,−0.5,0.5,−0.5]

Therefore, the minimum-norm solution is:

x‖ = A+b =
⎡⎢⎣ 0.36

0.48
0.80

⎤⎥⎦ [10−1][0.5,−0.5,0.5,−0.5]

⎡⎢⎢⎢⎣
10
20
30
40

⎤⎥⎥⎥⎦ =
⎡⎢⎣ −0.36
−0.48
−0.80

⎤⎥⎦

15.8. Condition Number 785

The term Ṽrz of Eq. (15.7.3) depends on the two last columns of V, where z is an arbitrary
two-dimensional vector. Thus, the most general least-squares solution is:

x =
⎡⎢⎣ −0.36
−0.48
−0.80

⎤⎥⎦+
⎡⎢⎣ −0.48 0.80
−0.64 −0.60

0.60 0.00

⎤⎥⎦[
z1

z2

]
=

⎡⎢⎣ −0.36− 0.48z1 + 0.80z2

−0.48− 0.64z1 − 0.60z2

−0.80+ 0.60z1

⎤⎥⎦
MATLAB’s backslash solution is obtained by fixing z1, z2 such that x will have at most one
nonzero entry. For example, demanding that the top two entries be zero, we get:

−0.36− 0.48z1 + 0.80z2 = 0
−0.48− 0.64z1 − 0.60z2 = 0

⇒ z1 = −0.75 , z2 = 0

which gives −0.8 + 0.6z1 = −1.25, and therefore, x = [0,0,−1.25]T . This is indeed
MATLAB’s output of the operation A\b. ��

15.8 Condition Number

The condition number of a full-rank N×N matrix A is given by:

κ(A)= ‖A‖2‖A−1‖2 = σmax

σmin
(15.8.1)

where σmax, σmin are the largest and smallest singular values of A, that is, σ1, σN. The
last equation of (15.8.1) follows from ‖A‖2 = σ1 and ‖A−1‖2 = σ−1

N .
The condition number characterizes the sensitivity of the solution of a linear system

Ax = b to small changes in A and b. Taking differentials of both sides of the equation
Ax = b, we find:

Adx+ (dA)x = db ⇒ dx = A−1[db− (dA)x]
Taking (the Euclidean) norms of both sides, we have:

‖dx‖ ≤ ‖A−1‖‖db− (dA)x‖ ≤ ‖A−1‖[‖db‖ + ‖dA‖‖x‖]
Using the inequality ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖, we get:

‖dx‖
‖x‖ ≤ κ(A)

[‖dA‖
‖A‖ + ‖db‖

‖b‖
]

(15.8.2)

Large condition numbers result in a highly sensitive system, that is, small changes
in A and b may result in very large changes in the solution x. Large condition numbers,
κ(A)� 1, imply that σ1 � σN, or that A is nearly singular.

Example 15.8.1: Consider the matrix A, which is very close to the singular matrix A0:

A =
[

10.0002 19.9999
4.9996 10.0002

]
, A0 =

[
10 20

5 10

]

786 15. SVD and Signal Processing

Its SVD is:

A =
[√

0.8 −√0.2√
0.2

√
0.8

][
25.0000 0.0000
0.0000 0.0005

][√
0.2 −√0.8√
0.8

√
0.2

]T
= UΣVT

Its condition number is κ(A)= σ1/σ2 = 25/0.0005 = 50000. Computing the solutions of
Ax = b for three slightly different b’s, we find:

b1 =
[

10.00
5.00

]
⇒ x1 = A\b1 =

[
0.2
0.4

]

b2 =
[

10.00
5.01

]
⇒ x2 = A\b2 =

[
−15.79992

8.40016

]

b3 =
[

10.01
5.00

]
⇒ x3 = A\b3 =

[
8.20016
−3.59968

]

The solutions are exact in the decimal digits shown. Even though the b’s differ only slightly,
there are very large differences in the x’s. ��

15.9 Reduced-Rank Approximation

The Euclidean and Frobenius matrix norms of an N×M matrix A of rank r can be ex-
pressed conveniently in terms of the singular values of A:

‖A‖2 = σ1 = maximum singular value

‖A‖F = (σ2
1 +σ2

2 + · · · +σ2
r)1/2

(15.9.1)

Associated with the SVD expansion (15.5.7), we define a family of reduced-rank ma-
trices Ak obtained by keeping only the first k terms in the expansion:

Ak =
k∑
i=1

σiuivTi = σ1u1vT1 +σ2u2vT2 + · · ·σkukvTk , k = 1,2, . . . , r (15.9.2)

Clearly, Ak has rank k, and when k = r, we have Ar = A. In terms of the original
full SVD of A, we can write:

Ak = U
[
Σk 0
0 0

]
VT , Σk = diag(σ1, σ2, . . . , σk, 0, . . . ,0︸ ︷︷ ︸

r−k zeros

)∈ Rr×r (15.9.3)

Thus, A and Ak agree in their highest k singular values, but the last r − k singular
values of A, that is, σk+1, . . . , σr , have been replaced by zeros in Ak. The matrices Ak
play a special role in constructing reduced-rank matrices that approximate the original
matrix A.

The reduced-rank approximation theorem [1234] states that within the set of N×M
matrices of rank k (we assume k < r), the matrix B that most closely approximates A
in the Euclidean (or the Frobenius) matrix norm is the matrix Ak, that is, the distance

15.9. Reduced-Rank Approximation 787

‖A − B‖ is minimized over the rank-k N×M matrices when B = Ak. The minimized
matrix distance is:

‖A−Ak‖2 = σk+1

‖A−Ak‖F = (σ2
k+1 + · · · +σ2

r)1/2 (15.9.4)

This theorem is an essential tool in signal processing, data compression, statistics,
principal component analysis, and other applications, such as chaotic dynamics, mete-
orology, and oceanography.

In remarkably many applications the matrix A has full rank but its singular values
tend to cluster into two groups, those that are large and those that are small , that is,
assuming N ≥M, we group theM singular values into:

σ1 ≥ σ2 ≥ · · · ≥ σr︸ ︷︷ ︸
large group

� σr+1 ≥ · · · ≥ σM︸ ︷︷ ︸
small group

(15.9.5)

Fig. 15.9.1 illustrates the typical pattern. A similar pattern arises in the practical
determination of the rank of a matrix. To infinite arithmetic precision, a matrix A may
have rank r, but to finite precision, the matrix might acquire full rank. However, its
lowestM − r singular values are expected to be small.

Fig. 15.9.1 Signal subspace vs. noise subspace singular values.

The presence of a significant gap between the large and small singular values allows
us to define an effective or numerical rank for the matrix A.

In least-squares solutions, the presence of small non-zero singular values may cause
inaccuracies in the computation of the pseudoinverse. If the last (M−r) small singular
values in (15.9.5) are kept, then A+ would be given by (15.6.7):

A+ =
r∑
i=1

1

σi
viu

T
i +

M∑
i=r+1

1

σi
viu

T
i

and the last (M − r) terms would tend to dominate the expression. For this reason,
the rank and the pseudoinverse can be determined with respect to a threshold level or
tolerance, say, δ such that if σi ≤ δ, for i = r+1, . . . ,M, then these singular values may
be set to zero and the effective rank will be r. MATLAB’s functions rank and pinv allow
the user to specify any desired level of tolerance.

788 15. SVD and Signal Processing

Example 15.9.1: Consider the matrices:

A =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , Â =

⎡⎢⎢⎢⎣
0.9990 −0.0019 −0.0008 −0.0004
0.0037 0.9999 0.0009 −0.0005
0.0008 −0.0016 0.0010 −0.0002
−0.0007 0.0004 0.0004 −0.0006

⎤⎥⎥⎥⎦
where the second was obtained by adding small random numbers to the elements of the
first using the MATLAB commands:

A = zeros(4); A(1,1)=1; A(2,2)=1; % define the matrix A
Ahat = A + 0.001 * randn(size(A));

The singular values of the two matrices are:

σi = [1.0000, 1.0000, 0.0000, 0.0000]
σ̂i = [1.0004, 0.9984, 0.0012, 0.0005]

Although A and Â are very close to each other, and so are the two sets of singular values,
the corresponding pseudoinverses differ substantially:

A+ =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , Â+ =

⎡⎢⎢⎢⎣
0.9994 0.0043 1.1867 −1.0750
−0.0035 0.9992 −0.6850 −0.5451
−1.1793 2.0602 1165.3515 −406.8197
−1.8426 1.8990 701.5460 −1795.6280

⎤⎥⎥⎥⎦
This would result in completely inaccurate least-squares solutions. For example,

b =

⎡⎢⎢⎢⎣
1
2
3
4

⎤⎥⎥⎥⎦ ⇒ x = A+b =

⎡⎢⎢⎢⎣
1
2
0
0

⎤⎥⎥⎥⎦ , x̂ = Â+b =

⎡⎢⎢⎢⎣
0.2683

−2.2403
1871.7169
−5075.9187

⎤⎥⎥⎥⎦
On the other hand, if we define Â+ = pinv(A,δ) with a tolerance of δ = 10−2, which
amounts to setting σ̂3 = σ̂4 = 0, we get acceptable results:

Â+ =

⎡⎢⎢⎢⎣
1.0010 0.0020 0.0008 −0.0007

−0.0037 1.0001 −0.0016 0.0004
−0.0008 0.0009 −0.0000 0.0000
−0.0004 −0.0005 0.0000 0.0000

⎤⎥⎥⎥⎦ ⇒ x̂ = Â+b =

⎡⎢⎢⎢⎣
1.0043
1.9934
0.0010
−0.0014

⎤⎥⎥⎥⎦
To avoid such potential pitfalls in solving least squares problems, one may calculate first
the singular values of A and then make a decision as to the rank of A. ��

In the previous example, we saw that a small change in A caused a small change in
the singular values. The following theorem [1236] establishes this property formally. If
A and Â are N×M matrices with N ≥M, then their singular values differ by:

max
1≤i≤M

|σ̂i −σi| ≤ ‖Â−A‖2

M∑
i=1

|σ̂i −σi|2 ≤ ‖Â−A‖2
F

(15.9.6)

15.9. Reduced-Rank Approximation 789

In signal processing applications, we think of the large group of singular values as
arising from a desired signal or dynamics, and the small group as arising from noise.
Often, the choice of the r that separates the large from the small group is unambiguous.
Sometimes, it is ambiguous and we may need to choose it by trial and error. Replacing
the original matrix A by its rank-r approximation tends to reduce the effects of noise
and enhance the desired signal.

The construction procedure for the rank-r approximation is as follows. Assuming
N ≥ M and starting with the economy SVD of A, we may partition the singular values
according to (15.9.5):

A = [Ur | Ũr]
[
Σr 0

0 Σ̃r

][
VTr
ṼTr

]
= UrΣrVTr + ŨrΣ̃rṼTr = Ar + Ãr (15.9.7)

where Σr = diag(σ1, . . . , σr) and Σ̃r = diag(σr+1, . . . , σM), and we set

Ar = [Ur | Ũr]
[
Σr 0
0 0

][
VTr
ṼTr

]
= UrΣrVTr

Ãr = [Ur | Ũr]
[

0 0

0 Σ̃r

][
VTr
ṼTr

]
= ŨrΣ̃rṼTr

(15.9.8)

where Ur ∈ RN×r , Ũr ∈ RN×(M−r), Vr ∈ RM×r , Ṽr ∈ RM×(M−r).
We will refer to Ar as the “signal subspace” part of A and to Ãr as the “noise sub-

space” part. The two parts are mutually orthogonal, that is, ATr Ãr = 0. Similarly, Σr
and Σ̃r are called the signal subspace and noise subspace singular values.

Example 15.9.2: Consider the following 4×3 matrix:

A =

⎡⎢⎢⎢⎣
−0.16 −0.13 6.40

0.08 0.19 −6.40
3.76 4.93 1.60
−3.68 −4.99 −1.60

⎤⎥⎥⎥⎦
Its full SVD is:

UΣVT =

⎡⎢⎢⎢⎣
0.5 0.5 −0.5 0.5
−0.5 −0.5 −0.5 0.5

0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0.1
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤⎥⎦
T

The economy SVD is:

A =

⎡⎢⎢⎢⎣
0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤⎥⎥⎥⎦
⎡⎢⎣ 10 0 0

0 8 0
0 0 0.1

⎤⎥⎦
⎡⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤⎥⎦
T

The singular values are {σ1, σ2, σ3} = {10, 8, 0.1}. The first two are “large” and we
attribute them to the signal part, whereas the third is “small” and we assume that it is

790 15. SVD and Signal Processing

due to noise. The matrix A may be replaced by its rank-2 version by setting σ3 = 0. The
resulting signal subspace part of A is:

Ar =

⎡⎢⎢⎢⎣
0.5 0.5 −0.5
−0.5 −0.5 −0.5

0.5 −0.5 0.5
−0.5 0.5 0.5

⎤⎥⎥⎥⎦
⎡⎢⎣ 10 0 0

0 8 0
0 0 0

⎤⎥⎦
⎡⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤⎥⎦
T

which gives:

Ar =

⎡⎢⎢⎢⎣
−0.12 −0.16 6.40

0.12 0.16 −6.40
3.72 4.96 1.60
−3.72 −4.96 −1.60

⎤⎥⎥⎥⎦
The full SVD of Ar , and the one generated by MATLAB are:

Ar =

⎡⎢⎢⎢⎣
0.5 0.5 −0.5 0.5

−0.5 −0.5 −0.5 0.5
0.5 −0.5 0.5 0.5
−0.5 0.5 0.5 0.5

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤⎥⎦
T

Ar =

⎡⎢⎢⎢⎣
0.5 0.5 −0.6325 −0.3162

−0.5 −0.5 −0.6325 −0.3162
0.5 −0.5 −0.3162 0.6325
−0.5 0.5 −0.3162 0.6325

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

10 0 0
0 8 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎣ 0.36 −0.48 0.80

0.48 −0.64 −0.60
0.80 0.60 0.00

⎤⎥⎦
T

As usual, the last two columns of the U’s are related by a 2×2 orthogonal matrix. ��
The OSP MATLAB function sigsub constructs both the signal and noise subspace

parts of a matrix. It has usage:

[As,An] = sigsub(A,r); % signal + noise susbpaces, r = rank

Signal processing methods based on rank reduction are collectively referred to as
“SVD signal enhancement methods,” or “reduced-rank signal processing methods,” or
simply, “subspace methods.” A number of applications are presented in Refs. [1259–
1297]. We will discuss several of these later on.

One of the earliest applications of such methods was in image compression [1296,1297],
essentially via the Karhunen-Loève transform. A typical black and white image is repre-
sented by a square N×N matrix, where N depends on the resolution, but typical values
are N = 256,512,1024. A color image is represented by three such matrices, one for
each primary color (red, green, blue.)

The N singular values of an image matrix drop rapidly to zero. Keeping only the r
largest singular values leads to the approximation:

Ar = σ1u1vT1 +σ2u2vT2 + · · · +σrurvTr
Data compression arises because each term in the expansion requires the storage

of 2N coefficients, that is, N coefficients for each of the vectors σiui and vi. Thus, the
total number of coefficients to be stored is 2Nr. Compression takes place as long as
this is less than N2, the total number of matrix elements of the original image. Thus,
we require 2Nr < N2 or r < N/2. In practice, typical values of r that work well are of
the order of N/6 to N/5.

15.9. Reduced-Rank Approximation 791

Example 15.9.3: Fig. 15.9.2 shows the singular values of a 512×512 image. They were com-
puted by first removing the column means of the image and then performing a full SVD.
The singular values become small after the first 100.

1 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

σ i
 /

σ 1

Singular Values

1 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

σ i
 /

σ 1

Singular Values

Fig. 15.9.2 Singular values of 512×512 image, with expanded view of first 100 values.

Fig. 15.9.3 shows the original image and the image reconstructed on the basis of the first
100 singular values. The typical MATLAB code was as follows:

Fig. 15.9.3 Original (left) and compressed images, keeping r = 100 components.

A = imread(’stream.tiff’, ’tiff’); % read image file, size 512×512

[B,M] = zmean(double(A)); % remove and save mean

[U,S,V] = svd(B); % perform svd

r = 100;
Ar = M + U(:,1:r) * S(1:r,1:r) * V(:,1:r)’; % image from first r components

Ar = uint8(round(Ar)); % convert to unsigned 8-bit int

figure; image(A); colormap(’gray(256)’); % display image

figure; image(Ar); colormap(’gray(256)’);

792 15. SVD and Signal Processing

The image was obtained from the USC image database [1298]. The function zmean removes
the mean of each column and saves it. After rank-reduction, the matrix of the means is
added back to the image. ��

15.10 Regularization of Ill-Conditioned Problems

We saw in the previous section that the presence of small, but nonzero, singular values
can cause the least squares solution x = A+b to be highly inaccurate.

Thresholding of the singular values is one of many possible ways to regularize the
problem and produce an accurate solution. In all such methods, the true pseudo inverse
of A = UΣVT is replaced by a “filtered” or “regularized” version:

A+ = VΣ+UT =
r∑
i=1

1

σi
vi u

T
i (true)

A+f = f(A)A+ = Vf(Σ)Σ+UT =
r∑
i=1

f(σi)
σi

vi u
T
i (regularized)

(15.10.1)

The regularized least-squares solution becomes xf = A+f b. The function f(σ) is
chosen so that it is nearly unity for large σ, and f(σ)/σ is nearly zero for small σ (they
may be thought of as highpass filters). Some examples are:

f(σ)= u(σ − δ) (thresholding)

f(σ)= σ2

σ2 + λ (Tikhonov)
(15.10.2)

where u(t) is the unit-step and δ > 0, λ > 0 are positive selectable parameters. The
unit-step keeps only those singular values that are above the threshold, σi > δ. The
Tikhonov regularization is explicitly:

xf = A+f b =
r∑
i=1

σi
σ2
i + λ

vi u
T
i b (15.10.3)

Tikhonov regularization can also be obtained from the following modified least-
squares criterion, also known as ridge regression,

J = ‖b−Ax‖2 + λ‖x‖2 = min (15.10.4)

Indeed, setting the gradient of J to zero, we find:

∂J
∂x

= 2AT(Ax− b)+2λx = 0 ⇒ (ATA+ λI)x = ATb

where I is the identity matrix. The solution can be expressed in the form of Eq. (15.10.1).
Assuming that A is ill-conditioned but has full rank, then, A+ = (ATA)−1AT (for the
case N ≥M), so that:

x = (ATA+ λI)−1ATb = [
(ATA)(ATA+ λI)−1](ATA)−1ATb = f(A)A+b

15.11. Sparse Regularization 793

Regularization is used in many practical inverse problems, such as the deblurring
of images or tomography. The second term in the performance index (15.10.4) guards
both against ill-conditioning and against noise in the data. If the parameter λ is chosen
to be too large, it is possible that noise is removed too much at the expense of getting an
accurate inverse. In large-scale inverse problems (e.g., a 512×512 image is represented
by a vector x of dimension 5122 = 2.6×105), performing the SVD required in (15.10.1)
is not practical and the solution is obtained iteratively, for example, using conjugate-
gradients. Regularization can be incorporated into such iterative methods, for example,
see Ref. [1236].

Often, the second term in (15.10.4) is replaced by the more general term ‖Dx‖2 =
xTDTDx, where D is an appropriate matrix. For example, in an image restoration ap-
plication, D could be chosen to be a differentiation matrix so that the performance
index would attempt to preserve the sharpness of the image. The more general ridge
regression performance index and its solution are:

J = ‖b−Ax‖2 + λ‖Dx‖2 = min ⇒ x = (
ATA+ λDTD)−1ATb (15.10.5)

For example, the Whittaker-Henderson case of Sec. 8.1 corresponds to A = I and D
the s-differencing matrix. Another variation of regularization is to assume a decompo-
sition into multiple components of the form, b = A1x1 + A2x2, and impose different
regularization constraints on each part, for example, with positive λ1, λ2,

J = ‖b−A1x1 −A2x2‖2 + λ1‖D1x1‖2 + λ2‖D1x2‖2 = min (15.10.6)

whose minimization with respect to x1,x2, leads to the solution,[
x1

x2

]
=

[
AT1A1 + λ1DT1D1 AT1A2

AT2A1 AT2A+ λ2DT2D2

]−1 [
AT1 b

AT2 b

]
(15.10.7)

An example of such decomposition was the seasonal Whittaker-Henderson case dis-
cussed in Sec. 9.9 in which x1 represented the seasonal component, and x2, the trend. In
addition to the Whittaker-Henderson smoothing methods and their L2, L1, and seasonal
versions, we previously discussed regularization in the context of Kernel machines in
Sec. 8.6, and also in Sec. 12.14 with regard to inverse filtering and deconvolution. Next,
we consider sparse regularization.

15.11 Sparse Regularization

Replacing the �2-norm in the regularization term of Eq. (15.10.5) by the �p norm leads
to the alternative minimization criterion, referred to as �p-regularized least-squares,

J = ‖b−Ax‖2
2 + λ‖Dx‖pp = min (15.11.1)

where the first term in (15.11.1) is still the �2 norm of the modeling error, b−Ax, and
‖x‖p denotes the �p norm of the vector x = [x1, x2, · · · , xM]T,

‖x‖p =
⎡⎣ M∑
n=1

|xn|p
⎤⎦ 1
p

⇒ ∥∥x
∥∥p
p =

M∑
n=1

|xn|p

794 15. SVD and Signal Processing

Such criteria have been studied very extensively in inverse problems, with renewed
interest in the past 15 years in sparse modeling, statistical learning, and compressive
sensing applications. Even though ‖x‖p is a proper norm only for p ≥ 1, the cases
0 ≤ p ≤ 1 have also been considered widely because they promote the sparsity of
the resulting solution vector x, or rather, the sparsity of the vector Dx in (15.11.1). In
particular, the case p = 1 is unique for the following reasons: (a) it corresponds to
the smallest possible proper norm, (b) it typically results in a sparse solution, which
under many circumstances is close to, or coincides with, the sparsest solution, and (c)
the minimization problem (15.11.1) is a convex optimization problem for which there
are efficient numerical methods.

We concentrate below on the three cases p = 0,1,2, and also set D = I for now, and
consider the following three optimization criteria for solving the linear system Ax = b,
with A ∈ RN×M, b ∈ RN, and, x ∈ RM,

(L0): J = ‖b−Ax‖2
2 + λ‖x‖0 = min

(L1): J = ‖b−Ax‖2
2 + λ‖x‖1 = min

(L2): J = ‖b−Ax‖2
2 + λ‖x‖2

2 = min

(15.11.2)

where the �0 norm, ‖x‖0, is the cardinality of the vector x, that is, the number of its
non-zero entries. The criteria try to minimize the corresponding norm of x while being
consistent with the given linear system. Criterion (L0) results in the sparsest solution
but is essentially intractable. Criterion (L1) is used as an alternative to (L0) and results
also in a sparse solution. It is known as the lasso† [531], or as basis pursuit denoising
[534], or as �1-regularized least squares.

There is a vast literature on the properties, applications, and numerical methods of
the above criteria. A small and incomplete set of references is [479–589]. A comprehen-
sive review is [557]. Several MATLAB-based packages are also available [590].

Below we discuss two examples that illustrate the sparsity of the resulting solutions:
(i) an overdetermined sparse spike deconvolution problem, and (ii) an underdetermined
sparse signal recovery example. In these examples, the (L0) problem is solved with an
iteratively re-weighted least-squares (IRLS) method, and the (L1) problem, with the CVX
package‡ as well as with the IRLS method for comparison.

We introduced the IRLS method in the context of sparse Whittaker-Henderson smooth-
ing, or, �1-trend filtering, in Sec. 8.7. There are several variants of this method, [520–
528,532,553,557,560,565,566], but the basic idea is to replace the �p norm with a weighted
�2 norm, which can be solved iteratively. We recall from Sec. 8.7 that given a real number
0 ≤ p ≤ 2, set q = 2− p, and write for any real number x 	= 0,

|x|p = |x|2
|x|q ≈

|x|2
|x|q + ε

†Least Absolute Shrinkage and Selection Operator
‡http://cvxr.com/cvx/

15.11. Sparse Regularization 795

where ε is a sufficiently small positive number needed to also allow the case x = 0.
Similarly, we can write for the �p-norm of a vector x ∈ RM,

‖x‖pp =
M∑
i=1

|xi|p ≈
M∑
i=1

|xi|2
|xi|q + ε = xTW(x)x

W(x) = diag
[

1

|x|q + ε
]
= diag

[
1

|x1|q + ε ,
1

|x2|q + ε , . . . ,
1

|xM|q + ε
] (15.11.3)

Alternatively, one can define W(x) as the pseudo-inverse of the diagonal matrix of
the powers |xi|q, i = 1,2, . . . ,M, that is, in MATLAB language,†

W(x)= pinv
(

diag
[|x1|q , |x2|q , . . . , |xM|q

])
(15.11.4)

Then, the �p-regularized least-squares problem can be written in the form,

J = ‖b−Ax‖2
2 + λ‖x‖pp = ‖b−Ax‖2

2 + λxTW(x)x = min (15.11.5)

This approximation leads to the following iterative solution in which the diagonal
weighting matrixW to be used in the the next iteration is replaced by its value from the
previous iteration,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
x(k−1))

x(k) = arg min
x

∥∥b−Ax
∥∥2

2 + λxTWk−1x

(IRLS) (15.11.6)

with the algorithm initialized to the ordinary least-squares solution of criterion (L2):

x(0) = (
λI +ATA)−1ATb

The solution of the optimization problem in (15.11.6) at the kth step is:

x(k) = (
λWk−1 +ATA

)−1ATb

Thus, the choices p = 0 and p = 1 should resemble the solutions of the �0 and �1

regularized problems. The IRLS algorithm (15.11.6) works well for moderate-sized prob-
lems (N,M < 1000). For large-scale problems (N,M > 106), the successive least-squares
problems could be solved with more efficient methods, such as conjugate gradients.

The general case of (15.11.1) that includes the smoothness-constraining matrix D
can also be handled in the same way. Following the discussion of Sec. 8.7, we can write,

J = ∥∥b−Ax
∥∥2

2 + λ
∥∥Dx

∥∥p
p =

∥∥b−Ax
∥∥2

2 + λxTDTW(Dx)Dx = min (15.11.7)

which leads to to the following iterative algorithm,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
Dx(k−1))

x(k) = arg min
x

∥∥b−Ax
∥∥2

2 + λxTDTWk−1Dx

(IRLS) (15.11.8)

†e.g., pinv(diag([2, 0, 4])) produces the diagonal matrix, diag([0.50, 0, 0.25]).

796 15. SVD and Signal Processing

with the algorithm initialized to the ordinary least-squares solution:

x(0) = (
ATA+ λDTD)−1ATb

The solution of the optimization problem at the kth step is:

x(k) = (
ATA+ λDTWk−1D

)−1ATb

Sparse Spike Deconvolution Example

Consider a deconvolution problem in which the observed signal yn is the noisy convolu-
tion, yn = hn∗sn+vn, where vn is zero-mean white noise of variance σ2

v . The objective
is to recover the signal sn assuming knowledge of the filter hn. For an FIR filter of order
M and input of length L, the output will have length N = L +M, and we may cast the
above convolutional filtering equation in the matrix form:

y = Hs+ v

where y,v ∈ RN, s ∈ RL, and H is the N×L convolution matrix corresponding to the
filter. It can be constructed as a sparse matrix by the function:

H = convmat(h,L); % H = convmtx(h,N) = non-sparse version

The filter is taken to be:

hn = cos
(
0.15(n− n0)

)
exp

(−0.004(n− n0)2) , n = 0,1, . . . ,M

whereM = 53 and n0 = 25. The input is a sparse spike train consisting of S spikes:

sn =
S∑
i=1

aiδ(n− ni) , n = 0,1, . . . , L− 1 (15.11.9)

where S = 8 and the spike locations and amplitudes are given as follows:

ni = [20, 40, 60, 70, 80, 100, 120, 140] , ai = [10, 8, 4, −4, 5, 6, −2, 4]

The input signal length is defined from the last spike location to be L = n8 + 1 =
141. The noise standard deviation is chosen to be σv = 0.1, which corresponds to
approximately 38 dB signal-to-noise ratio, that is, SNR = 20 log10

(
max |Hs|/σv

) = 38.
The input signal sn and the convolved noisy signal yn are shown below. Also shown

are the impulse responsehn and the corresponding magnitude response |H(ω)| plotted
in dB versus 0 ≤ω ≤ π rads/sample.

15.11. Sparse Regularization 797

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

exact input, s(n)

n
0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

noisy observations, y(n)

n

SNR = 38 dB

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
impulse response, h(n)

n
0 0.2 0.4 0.6 0.8 1

−40

−30

−20

−10

0

10

20

30

40
magnitude response in dB, |H(ω)|

dB

ω / π

We note that H(ω) occupies a low frequency band, thus, we expect the effective
deconvolution inverse filtering operation by 1/H(ω) to be very sensitive to even small
amounts of noise in yn, even though the noise is barely visible in yn itself. The three
criteria of Eq. (15.11.2) to be implemented are,

J = ‖y−Hx‖2
2 + λ‖x‖0 = min

J = ‖y−Hx‖2
2 + λ‖x‖1 = min

J = ‖y−Hx‖2
2 + λ‖x‖2

2 = min

(15.11.10)

The �2 case with λ = 0 corresponds to the ordinary (full-rank overdetermined) least-
squares solution of the linear system, Hx = y, that is, xord = (HTH)−1HTy, or, xord =
H\y, in MATLAB.

Similarly, the �2-regularized solution with non-zero λ is, x2 = (λI +HTH)−1HTy.
These two solutions are depicted below, displaying also the percent error of recovering
the desired signal s, defined in terms of the �2 norms by, Perror = 100·‖x− s‖2/‖s‖2.

798 15. SVD and Signal Processing

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

ordinary least−squares solution, x(n), λ = 0

n

percent error = 139.28

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
2
 − regularized solution, x(n), λ = 0.01

n

percent error = 77.65

 s(n)
 x(n)

The MATLAB code for generating the above six graphs was as follows:

g = @(x) cos(0.15*x).*exp(-0.004*x.^2); % filter function
delta = @(x) (x==0);

M = 53; n0 = 25; k = (0:M)’; h = g(k-n0); % filter h(n)

ni = [20 40 60 70 80 100 120 140]; % spike locations & amplitudes
ai = [10 8 4 -4 5 6 -2 4];

L = ni(end)+1; N = M+L; % L = 141, N = 194
n = (0:L-1)’; t = (0:N-1)’; % time indices for s(n) and y(n)

s = 0;
for i=1:length(ni), % exact input s(n)
s = s + ai(i) * delta(n-ni(i));

end

H = convmat(h,L); % NxL=194x141 convolution matrix

sigma = 0.1;
seed = 2017; randn(’state’,seed); % initialize generator

y = H*s + sigma * randn(N,1); % noisy observations y(n)

w = linspace(0,1,1001)*pi; % frequencies in rads/sample
Hmag = 20*log10(abs(dtft(h,w))); % can also use freqz(h,1,w)

xord = H\y; % ordinary least-squares
Perr = 100 * norm(s-xord)/norm(s);

la = 0.01;
x2 = (la * eye(L) + H’*H) \ (H’*y); % L2-regularized
Perr = 100 * norm(s-x2)/norm(s);

figure; plot(n,s); figure; plot(t,y); % plot s(n) and y(n)
figure; plot(k,h); figure; plot(w/pi,Hmag); % plot h(n) and H(w)
figure; plot(n,xord); figure; plot(n,x2); % plot xord(n) and x2(n)

As expected from the lowpass nature of H(ω), the ordinary least-squares solution
is too noisy to be useful, while the regularized one is only slightly better. The effect

15.11. Sparse Regularization 799

of increasing λ is to smooth the noise further, but at the expense of flattening and
broadening the true spikes (for example, try the value, λ = 0.1).

To understand this behavior from the frequency point of view, let us pretend that
the signals yn, xn are infinitely long. Following the approach of Sec. 8.2, we may replace
the (L2) criterion in Eq. (15.11.10) by the following,

J =
∞∑

n=−∞

∣∣yn − hn ∗ xn∣∣2 + λ
∞∑

n=−∞

∣∣xn∣∣2 =

=
∫ π
−π

∣∣Y(ω)−H(ω)X(ω)∣∣2 dω
2π

+ λ
∫ π
−π

∣∣X(ω)∣∣2 dω
2π

= min

(15.11.11)

where we used Parseval’s identity. The vanishing of the functional derivative of J with
respect to X∗(ω), then leads to the following regularized inverse filtering solution,

δJ
δX∗(ω)

= ∣∣H(ω)∣∣2X(ω)−H∗(ω)Y(ω)+λX(ω)= 0 , or, (15.11.12)

X(ω)= H∗(ω)
λ+ ∣∣H(ω)∣∣2 Y(ω) (regularized inverse filter) (15.11.13)

If we express Y(ω) in terms of the spectrum S(ω) of the desired signal and the
spectrum V(ω) of the added noise, then, Eq. (15.11.13) leads to,

Y(ω)= H(ω)S(ω)+V(ω) ⇒ X(ω)=
∣∣H(ω)∣∣2

λ+ ∣∣H(ω)∣∣2 S(ω)+
H∗(ω)

λ+ ∣∣H(ω)∣∣2 V(ω)

For λ = 0, this becomes the ordinary inverse filter,

X(ω)= 1

H(ω)
Y(ω)= S(ω)+ 1

H(ω)
V(ω)

which, although it recovers the S(ω) term, it greatly amplifies the portions of the white-
noise spectrum that lie in the stopband of the filter, that is where, H(ω)≈ 0. For
λ 	= 0 on the other hand, the regularization filter acts as a lowpass filter, becoming
vanishingly small over the stopband, and hence removing some of the noise, but also
smoothing and broadening the spikes for the same reason, that is, removing some of
the high-frequencies in S(ω).

By contrast, the �0 and �1 regularized criteria of Eq. (15.11.10) behave dramatically
differently and are capable of accurately extracting the input spikes, as seen in the
graphs of Fig. 15.11.1.

The �1 case was computed with the CVX package, as well as with the IRLS algorithm
of Eq. (15.11.6), with the parameter values, λ = 0.1, p = 1, q = 1, ε = 10−5, and K = 100
iterations.

The �0 case was computed with the IRLS algorithm using parameters, λ = 0.1, p = 0,
q = 2, ε = 10−5, and K = 100 iterations—however, it actually converges within about
10 iterations as seen in the bottom-right graph that plots the iteration percentage error
defined at the kth iteration by, P(k)= 100·‖x(k) − x(k−1)‖2/‖x(k−1)‖2.

800 15. SVD and Signal Processing

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
1
 − CVX solution, x(n), λ = 0.1

n

percent error = 26.64

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
1
 − IRLS solution, x(n), λ = 0.1

n

percent error = 25.57

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
0
 − IRLS solution, x(n), λ = 0.1

n

percent error = 0.52

0 4 8 12 16 20

0

10

20

30

40

50

60

iterations, k

pe
rc

en
t

L
0
 − IRLS iteration error, P(k)

Fig. 15.11.1 Deconvolved signals based on the �1 and �0 criteria.

The recovered signal in the �0 case is slightly sparser than that of the �1 case, as is
seen in the figures, or by evaluating the reconstruction error, Perror = 100·‖x−s‖2/‖s‖2,
but both versions fairly accurately extract the spike amplitudes and locations. The
MATLAB code used to produce these four graphs was as follows.

la = 0.1;

cvx_begin % L1 case - CVX solution
variable x(L)
minimize(sum_square(H*x-y) + la * norm(x,1))

cvx_end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L1 - CVX version

% ---

p=1; q=2-p; epsilon=1e-5; K=100; % L1 case - IRLS solution
W = speye(L);

15.11. Sparse Regularization 801

x0 = (la * W + H’*H) \ (H’*y);

for k=1:K,
W = diag(1./(abs(x0).^q + epsilon));
x = (la * W + H’*H) \ (H’*y);
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L1 - IRLS version

% ---

p=0; q=2-p; epsilon=1e-5; K=100; % L0 case - IRLS solution
W = speye(L);

x0 = (la * W + H’*H) \ (H’*y); % initialize iteration

for k=1:K, % IRLS iteration
W = diag(1./(abs(x0).^q + epsilon));
x = (la * W + H’*H) \ (H’*y);
P(k) = 100*norm(x-x0)/norm(x0); % iteration error
x0 = x;

end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L0 - IRLS version
k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % plot iteration error P(k)

Sparse Signal Recovery Example

In this example, based on [544], we consider the underdetermined noisy linear system:

y = As+ v

where A ∈ R1000×2000, s ∈ R2000, and y,v ∈ R1000. The matrix A has full rank and
consists of zero-mean, unit-variance, gaussian, independent random entries, and the
2000-long input signal s is sparse with only L = 100 non-zero entries taken to be ran-
domly positioned within its length, and constructed to have amplitudes±1 with random
signs and then weighted by a triangular window in order to get a variety of values.

The noise v is zero-mean gaussian white noise with standard deviation σv = 0.1.
The recovery criteria are as in Eq. (15.11.2),

J = ‖y−Ax‖2
2 + λ‖x‖0 = min

J = ‖y−Ax‖2
2 + λ‖x‖1 = min

J = ‖y−Ax‖2
2 + λ‖x‖2

2 = min

(15.11.14)

Fig. 15.11.2 shows the signal s(n) and the observations y(n), as well as the recovered
signals x(n) based on the above criteria. The �1 solution was computed with the CVX

802 15. SVD and Signal Processing

package and the IRLS algorithm, and the �0 solution, with the IRLS algorithm. The
parameter λ was chosen to be λ = 0.1 in the �1 and �0 cases, and λ = 0 for the �2 case,
which corresponds to the usual minimum-norm solution of the underdetermined linear
system Ax = y, that is, x = A+y = AT(AAT)−1y, in terms of the pseudo-inverse of A.
Note that using λ = 0.1 in the �2 case is virtually indistinguishable from the λ = 0 case.

The �2 criterion does not produce an acceptable solution. But both the �1 and the �0

criteria accurately recover the sparse signal s(n), with the �0 solution being somewhat
sparser and resulting in smaller recovery error, Perror = 100·‖x− s‖2/‖s‖2.

The IRLS algorithms were run with parameters λ = 0.1, ε = 10−6, and K = 20 itera-
tions. The successive iteration percentage errors, P(k)= 100·‖x(k)−x(k−1)‖2/‖x(k−1)‖2,
are plotted versus k in Fig. 15.11.3 for the �1 and �0 cases. The MATLAB code used to
produce the solutions and graphs is given below.

N = 1000; M = 2000; L = 100; % L-sparse

seed = 1000; % initialize generators
randn(’state’,seed);
rand(’state’,seed);

A = randn(N,M); % random NxM matrix
s = zeros(M,1);

I = randperm(M); I = I(1:L); % L random indices in 1:M
s(I) = sign(randn(L,1)); % L random signs at locations I

t = (0:N-1)’; n = (0:M-1)’;
w = 1 - abs(2*n-M+1)/(M-1); % triangular window
s = s .* w; % L-sparse windowed input

sigma = 0.1;
v = sigma * randn(N,1);
y = A*s + v; % noisy observations

SNR = 20*log10(norm(A*s,Inf)/sigma); % SNR = 45 dB

figure; stem(n,s); figure; stem(t,y); % plot s(n) and y(n)

% -----------------------------------

rank(A); % verify full rank = 1000

x = pinv(A)*y; % L2 - minimum-norm solution

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 71.21 %

figure; stem(n,x,’r-’);

% -----------------------------------

la = 0.1;

cvx_begin % L1 - CVX solution
variable x(M)
minimize(sum_square(A*x-y) + la * norm(x,1))

cvx_end

15.11. Sparse Regularization 803

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

 sparse input, s(n)

0 500 1000 1500 2000
−20

−10

0

10

20

n

 observations, y(n)

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
2
, minimum−norm solution, x(n)

error = 71.21 %

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
1
, CVX solution, x(n)

error = 2.54 %

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
1
, IRLS solution, x(n)

error = 2.54 %

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
0
, IRLS solution, x(n)

error = 0.63 %

Fig. 15.11.2 Recovered signals based on the �2, �1, and �0 criteria.

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 2.54 %

figure; stem(n,x,’r-’);

804 15. SVD and Signal Processing

0 4 8 12 16 20

0

30

60

90

iterations, k

pe
rc

en
t

L
1
 − IRLS iteration error

0 4 8 12 16 20

0

30

60

90

iterations, k

pe
rc

en
t

L
0
 − IRLS iteration error

Fig. 15.11.3 IRLS iteration error based on the �1, and �0 criteria.

% -----------------------------------

p = 1; q = 2-p; epsilon = 1e-6; K = 20;
W = speye(M);

ATA = A’*A;
ATy = A’*y;

x0 = (la*W + ATA) \ ATy;

for k=1:K, % L1 - IRLS solution
W = diag(1./(abs(x0).^q + epsilon));
x = (la*W + ATA) \ ATy;
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 2.54 %

figure; stem(n,x,’r-’);

k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % iteration error

% -----------------------------------

p = 0; q = 2-p; epsilon = 1e-6; K = 20;
W = speye(M);

x0 = (la*W + ATA) \ ATy;

for k=1:K, % L0 - IRLS solution
W = diag(1./(abs(x0).^q + epsilon));
x = (la*W + ATA) \ ATy;
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

15.12. SVD and Signal Processing 805

end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 0.63 %

figure; stem(n,x,’r-’);

k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % iteration error

15.12 SVD and Signal Processing

In many signal processing applications, such as Wiener filtering and linear prediction,
the SVD appears naturally in the context of solving the normal equations.

The optimum order-M Wiener filter for estimating a signal x(n) on the basis of the
signals {y0(n), y1(n), . . . , yM(n)} satisfies the normal equations:

Rh = r , where R = E[y∗(n)yT(n)], r = E[x(n)y∗(n)] (15.12.1)

where we assumed stationarity and complex-valued signals. The optimum estimate of
x(n) is given by the linear combination:

x̂(n)= hTy(n)= [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤⎥⎥⎥⎥⎥⎦ =
M∑
m=0

hmym(n) (15.12.2)

The observation signals ym(n) are typically (but not necessarily) either the outputs
of a tapped delay line whose input is a single time signal yn, so that ym(n)= yn−m, or,
alternatively, they are the outputs of an antenna (or other spatial sensor) array. The two
cases are shown in Fig. 15.12.1.

Fig. 15.12.1 Time-series processing versus spatial processing

The vector y(n) is defined as:

806 15. SVD and Signal Processing

y(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−M

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , or, y(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0(n)
y1(n)
y2(n)

...
yM(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (15.12.3)

In the array case, y(n) is called a snapshot vector because it represents the mea-
surement of the wave field across the array at the nth time instant. The autocor-
relation matrix R measures spatial correlations among the antenna elements, that is,
Rij = E[y∗i (n)yj(n)], i, j,= 0,1, . . . ,M.

In the time-series case, R measures temporal correlations between successive sam-
ples of yn, that is, Rij = E[y∗n−i yn−j]= E[yn+i−j y∗n]= R(i − j), where we used the
stationarity assumption to shift the time indices and defined the autocorrelation func-
tion of yn by:

R(k)= E[yn+k y∗n] (15.12.4)

The normal equations are derived from the requirement that the optimum weights
h = [h0, h1, . . . , hM]T minimize the mean-square estimation error:

E = E[|e(n)|2]= E[|x(n)−x̂(n)|2]= E[|x(n)−hTy(n)|2]= min (15.12.5)

The minimization condition is equivalent to the orthogonality equations, which are
equivalent to the normal equations:

E[e(n)y∗(n)]= 0 � E[y∗(n)yT(n)]h = E[x(n)y∗(n)] (15.12.6)

Setting R = E[y∗(n)yT(n)] and r = E[x(n)y∗(n)], we find for the optimum
weights and the optimum estimate of x(n):

h = E[y∗(n)yT(n)]−1E[x(n)y∗(n)]= R−1r

x̂(n)= hTy(n)= E[x(n)y†(n)]E[y(n)y†(n)]−1y(n)
(15.12.7)

In practice, we may replace the above statistical expectation values by time-averages
based on a finite, but stationary, set of time samples of the signals x(n) and y(n),
n = 0,1, . . . ,N − 1, where typically N > M. Thus, we make the replacements:

R = E[y∗(n)yT(n)] ⇒ R̂ = 1

N

N−1∑
n=0

y∗(n)yT(n)

r = E[y∗(n)x(n)] ⇒ r̂ = 1

N

N−1∑
n=0

y∗(n)x(n)

E[y∗(n)e(n)]= 0 ⇒ 1

N

N−1∑
n=0

y∗(n)e(n)= 0

(15.12.8)

To simplify the expressions, we will drop the common factor 1/N in the above time-
averages. Next, we define theN×(M+1) data matrix Y whose rows are theN snapshots

15.12. SVD and Signal Processing 807

yT(n),

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
yT(1)

...
yT(n)

...
yT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0(0) y1(0) · · · yM(0)
y0(1) y1(1) · · · yM(1)

...
...

...
y0(n) y1(n) · · · yM(n)

...
...

...
y0(N − 1) y1(N − 1) · · · yM(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15.12.9)

The ni-th matrix element of the data matrix isYni = yi(n), 0 ≤ n ≤ N−1, 0 ≤ i ≤M.
In particular, in the time series case, we have Yni = yn−i. We defined Y in terms of its
rows. It can also be defined column-wise, where the ith column is an N-dimensional
time signal yi = [yi(0), . . . , yi(n), . . . , yi(N − 1)]T. Therefore,

Y = [y0,y1, . . . ,yM]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15.12.10)

The N×1 column vectors of the x(n), e(n), and the estimates x̂(n) are:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)
x(1)

...
x(n)

...
x(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(0)
e(1)

...
e(n)

...
e(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(0)
x̂(1)

...
x̂(n)

...
x̂(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15.12.11)

Noting that Y† = Y∗T = [y∗(0),y∗(1), . . . ,y∗(N − 1)], we can write Eqs. (15.12.8)
in the following compact forms (without the 1/N factor):

R̂ = Y†Y , r̂ = Y†x , Y†e = 0 (15.12.12)

Indeed, we have:

R̂ =
N−1∑
n=0

y∗(n)yT(n)= [y∗(0),y∗(1), . . . ,y∗(N − 1)]

⎡⎢⎢⎢⎢⎢⎣
yT(0)
yT(1)

...
yT(N − 1)

⎤⎥⎥⎥⎥⎥⎦ = Y†Y

r̂ =
N−1∑
n=0

y∗(n)x(n)= [y∗(0),y∗(1), . . . ,y∗(N − 1)]

⎡⎢⎢⎢⎢⎢⎣
x(0)
x(1)

...
x(N − 1)

⎤⎥⎥⎥⎥⎥⎦ = Y†x

808 15. SVD and Signal Processing

Similarly, replacing x̂(n)= yT(n)h in (15.12.11), we obtain:

x̂ = Yh , e = x− x̂ = x−Yh (15.12.13)

The performance index is replaced by the least-squares index:

E = E[|e(n)|2]= min ⇒ Ê =
N−1∑
n=0

|e(n)|2 = e†e = ‖x−Yh‖2 = min (15.12.14)

The minimization of the least-squares index with respect to h gives rise to the or-
thogonality and normal equations, as in Eq. (15.4.2):

Y†e = 0 , Y†Yh = Y†x ⇒ R̂h = r̂ (15.12.15)

Thus, we recognize that replacing the theoretical normal equations Rh = r by their
time-averaged versions R̂h = r̂ is equivalent to solving—in the least-squares sense—the
overdetermined N×(M + 1) linear system:

Yh = x (15.12.16)

The SVD of the data matrix, Y = UΣV†, can used to characterize the nature of the
solutions of these equations. The min-norm and backslash solutions are in MATLAB’s
notation:

h = pinv(Y)∗x , h = Y\x (15.12.17)

Since N > M+ 1, these will be the same if Y has full rank, that is, r =M+ 1. In this
case, the solution is unique and is given by:

h = (Y†Y)−1Y†x = R̂−1r̂ (full rank Y) (15.12.18)

In the time-series case, some further clarification of the definition of the data matrix
Y is necessary. Since ym(n)= yn−m, the estimate x̂(n) is obtained by convolving the
order-M filter h with the sequence yn:

x̂(n)=
M∑
m=0

hmym(n)=
M∑
m=0

hmyn−m

For a length-N input signal yn, n = 0,1, . . . ,N−1, the output sequence x̂(n)will have
lengthN+M, with the firstM output samples corresponding to the input-on transients,
the lastM outputs being the input-off transients, and the middleN−M samples, x̂(n),
n =M, . . . ,N − 1, being the steady-state outputs.

There are several possible choices in defining the range of summation over n in the
least-squares index:

Ê =
∑
n
|e(n)|2,

One can consider: (a) the full range, 0 ≤ n ≤ N − 1 +M, leading to the so-called
autocorrelation method, (b) the steady-state range, M ≤ n ≤ N − 1, leading to the
covariance method, (c) the pre-windowed range, 0 ≤ n ≤ N−1, or (d) the post-windowed

15.12. SVD and Signal Processing 809

range, M ≤ n ≤ N − 1 +M. The autocorrelation and covariance choices are the most
widely used:

Êaut =
N−1+M∑
n=0

|e(n)|2 , Êcov =
N−1∑
n=M

|e(n)|2 (15.12.19)

The minimization of these indices leads to the least-squares equationsYh = x, where
Y is defined as follows. First, we define the input-on and input-off parts of Y in terms
of the firstM and lastM data vectors:

Yon =

⎡⎢⎢⎣
yT(0)

...
yT(M − 1)

⎤⎥⎥⎦ , Yoff =

⎡⎢⎢⎣
yT(N)

...
yT(N − 1+M)

⎤⎥⎥⎦
Then, we define Y for the autocorrelation and covariance cases:

Yaut =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(M − 1)
yT(M)

...
yT(N − 1)

yT(N)
...

yT(N − 1+M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎣
Yon

Ycov

Yoff

⎤⎥⎥⎦ , Ycov =

⎡⎢⎢⎣
yT(M)

...
yT(N − 1)

⎤⎥⎥⎦ (15.12.20)

To clarify these expressions, consider an example where N = 6 and M = 2. The
observation sequence is yn, n = 0,1, . . . ,5. Noting that yn is causal and that it is zero
for n ≥ 6, we have:

Yaut =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0
y1 y0 0

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

0 y5 y4

0 0 y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ycov =

⎡⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

⎤⎥⎥⎥⎦

These follow from the definition yT(n)= [yn, yn−1, yn−2], which gives, yT(0)= [y0, y−1, y−2]=
[y0,0,0], and so on until the last time sample at n = N − 1+M = 6− 1+ 2 = 7, that
is, yT(7)= [y7, y6, y5]= [0,0, y5]. The middle portion of Yaut is the covariance version
Ycov.

The autocorrelation version Yaut is recognized as the ordinary Toeplitz convolution
matrix for a length-6 input signal and an order-2 filter. It can be constructed easily by
invoking MATLAB’s built-in function convmtx:

810 15. SVD and Signal Processing

Y = convmtx(y,M+1); % y is a column vector of time samples

The least-squares linear system Yh = x for determining the optimum weights h =
[h0, h1, h2]T reads as follows in the two cases:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0
y1 y0 0
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

0 y5 y4

0 0 y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ h0

h1

h2

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

⎤⎥⎥⎥⎦
⎡⎢⎣ h0

h1

h2

⎤⎥⎦ =
⎡⎢⎢⎢⎣
x2

x3

x4

x5

⎤⎥⎥⎥⎦

where we assumed that the signal x(n) was available for 0 ≤ n ≤ N − 1+M = 7.
There is yet a third type of a data matrix that is used in linear prediction applica-

tions. It corresponds to the modified covariance method, also known as the forward-
backward method. The data matrix is obtained by appending its row-reversed and
complex-conjugated version. For our example, this gives:

Yfb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y∗0 y∗1 y∗2
y∗1 y∗2 y∗3
y∗2 y∗3 y∗4
y∗3 y∗4 y∗5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Ycov

Y∗covJ

]
(15.12.21)

where J is the usual reversing matrix consisting of ones along its antidiagonal. While
Yaut and Ycov are Toeplitz matrices, only the upper half of Yfb is Toeplitz whereas its
lower half is a Hankel matrix, that is, it has the same entries along each antidiagonal.

Given one of the three types of a data matrix Y, one can extract the signal yn that
generated that Y. The MATLAB function datamat (in the OSP toolbox) constructs a data
matrix from the signal yn, whereas the function datasig extracts the signal yn from Y.
The functions have usage:

Y = datamat(y,M,type); % type =0,1,2, for autocorrelation,

y = datasig(Y,type); % covariance, or F/B methods

15.13 Least-Squares Linear Prediction

Next, we discuss briefly how linear prediction problems can be solved in a least-squares
sense. For an order-M predictor, we define the forward and backward prediction errors
in terms of the forward and an reversed-conjugated filters:

15.13. Least-Squares Linear Prediction 811

e+(n)= [yn, yn−1, . . . , yn−M]

⎡⎢⎢⎢⎢⎢⎣
1
a1

...
aM

⎤⎥⎥⎥⎥⎥⎦ = yT(n)a (15.13.1)

e−(n)= [yn, yn−1, . . . , yn−M]

⎡⎢⎢⎢⎢⎢⎣
a∗M

...
a∗1
1

⎤⎥⎥⎥⎥⎥⎦ = yT(n)aR∗ (15.13.2)

The prediction coefficients a are found by minimizing one of the three least-square
performance indices, corresponding to the autocorrelation, covariance, and forward/backward
methods:

Êaut =
N−1+M∑
n=0

|e+(n)|2 = min

Êcov =
N−1∑
n=M

|e+(n)|2 = min

Êfb =
N−1∑
n=M

[|e+(n)|2 + |e−(n)|2] = min

(15.13.3)

Stacking the samples e±(n) into a column vector, we may express the error vectors
in terms of the corresponding autocorrelation or covariance data matrices:

e+ = Ya

e− = YaR∗
where e+ =

⎡⎢⎢⎢⎣
...

e+(n)
...

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

...
yT(n)

...

⎤⎥⎥⎥⎦ a = Ya (15.13.4)

and similarly for e−. Noting that aR = Ja, we have for the covariance case:

e− = YcovJa∗ ⇒ e∗− = (Y∗covJ)a

Then, we may define the extended error vector consisting of both the forward and
backward errors:

e =
[

e+
e∗−

]
=

[
Ycov

Y∗covJ

]
a = Yfb a (15.13.5)

Noting that e†e = e†+e+ +e†−e−, we may express the indices (15.13.3) in the compact
forms:

Êaut = e†+e+ = ‖e+‖2 = ‖Yaut a‖2

Êcov = e†+e+ = ‖e+‖2 = ‖Ycov a‖2

Êfb = e†+e+ + e†−e− = ‖e+‖2 + ‖e−‖2 = ‖e‖2 = ‖Yfb a‖2

(15.13.6)

812 15. SVD and Signal Processing

Thus, in all three cases, the problem reduces to the least-squares solution of the
linear equation Ya = 0, that is,

Ya = 0 � Ê = ‖e‖2 = ‖Ya‖2 = min (15.13.7)

subject to the constraint a0 = 1. The solution is obtained by separating the first column
of the matrix Y in order to take the constraint into account. Setting Y = [y0, Y1] and
aT = [1,αααT], we find the equivalent linear system:

Ya = [y0, Y1]
[

1
ααα

]
= y0 +Y1ααα = 0 ⇒ Y1ααα = −y0 (15.13.8)

The minimum-norm least-squares solution is obtained by the pseudoinverse:

ααα = −pinv(Y1)∗y0 = −Y+1 y0 ⇒ a =
[

1
ααα

]
=

[
1

−Y+1 y0

]
(15.13.9)

The OSP function lpls implements this procedure. It has usage:

[a,E] = lpls(Y); % least-squares linear prediction filter

where E is the minimized prediction error E = ‖e‖2/L, where L is the column dimension
ofY. Combined with the function datamat, one can obtain the prediction filter according
to the three criteria:

[a,E] = lpls(datamat(y,M,0)) % autocorrelation or Yule-Walker method

[a,E] = lpls(datamat(y,M,1)) % covariance method

[a,E] = lpls(datamat(y,M,2)) % modified covariance or f/b method

The autocorrelation method can be computed by the alternative call to the Yule-
Walker function yw :

a = lpf(yw(y,M)); % autocorrelation or Yule-Walker method

Further improvements of these methods result, especially in the case of extracting
sinusoids in noise, when the least-squares solution (15.13.9) is used in conjunction with
the SVD enhancement iteration procedure discussed in Sec. 15.17.

15.14 MA and ARMA modeling

There are many methods for fitting MA and ARMA models to a given data sequence yn,
n = 0,1, . . . ,N − 1. Some methods are nonlinear and involve an iterative minimization
of a maximum likelihood criterion. Other methods are adaptive, continuously updating
the model parameters on a sample by sample basis.

Here, we briefly discuss a class of methods, originally suggested by Durbin [1299,1300],
which begin by fitting a long AR model to the data, and then deriving the MA or ARMA
model parameters from that AR model by using only least-squares solutions of linear
equations.

15.14. MA and ARMA modeling 813

MA Models

A moving-average model of order q, denoted by MA(q), is described by the I/O equation
driven by a zero-mean white-noise signal εn of variance σ2

ε :

yn = b0εn + b1εn−1 + b2εn−2 + · · · + bqεn−q (15.14.1)

Thus, the synthesis model filter and the power spectrum of yn are:

B(z)= b0 + b1z−1 + b2z−2 + · · · + bqz−q , Syy(ω)= σ2
ε
∣∣B(ω)∣∣2

(15.14.2)

Without loss of generality, we may assume that b0 = 1. We will also assume that
B(z) is a minimum-phase polynomial so that the analysis filter A(z)= 1/B(z) is stable
and causal.

Durbin’s method consists of approximating the analysis filter A(z) by a polyno-
mial AM(z) of some large order M, such that M � q. The polynomial coefficients
a = [1, a1, . . . , aM]T are found by applying any least-squares LP method to the given
sequence y = [y0, y1, . . . , yN−1]T, including Burg’s method.

Finally, the desired MA filter b = [1, b1, . . . , bq]T is obtained by designing an order-
q least-squares inverse to a = [1, a1, . . . , aM]T using, for example, the techniques of
section 12.14. Specifically, we wish to solve the approximate equation AM(z)B(z)�
1. This condition may be expressed in matrix form using the (M + q + 1)×(q + 1)
convolution matrix of the filter a acting on the input b:

Ab = u , where A = datamat(a, q) (15.14.3)

and u = [1,0, . . . ,0]T is the (M+q+1)-dimensional representation of δn. For example,
if q = 2 andM = 4, we have:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
a1 1 0
a2 a1 1
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ 1
b1

b2

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1 0
a2 a1 1
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 1
b1

b2

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15.14.4)

where in the second equation, we deleted the first row of A, which corresponds to the
identity 1 = 1. Thus, denoting the bottom part of A by Abot, we obtain the following
(M + q)×(q+ 1) linear system to be solved by least-squares:

Abotb = 0 ⇒ b = lpls(Abot) (15.14.5)

This problem is identical to that of Eq. (15.13.7) and therefore, its solution was ob-
tained with the help of the function lpls. These design steps have been incorporated
into the MATLAB function madurbin with usage:

[b,sigma2] = madurbin(y,q,M); % MA modeling by Durbin’s method

814 15. SVD and Signal Processing

To clarify further the above solution, we write (15.14.5) in partitioned form, separat-
ing out the first column of Abot and the bottom part of b:

Abot = [a1,A1], b =
[

1
βββ

]
⇒ Abotb = [a1,A1]

[
1
βββ

]
= a1 +A1βββ = 0

The least-squares solution is (assuming A1 has full rank):

βββ = −A1\ a1 = −(A†1A1)−1A†1a1 (15.14.6)

This has the form of a linear prediction solution βββ = −R−1r, where R = A†1A1 and
r = A†1a1. It easily verified that R, r are given by:

Rij = (A†1A1)ij= Raa(i− j) , ri = (A†1a1)i= Raa(i+ 1) (15.14.7)

for i, j = 0,1, . . . , q− 1, and Raa is the sample autocorrelation of the filter a:

Raa(k)=
M−|k|∑
m=0

a∗m+|k|am , −M ≤ k ≤M (15.14.8)

In other words, as observed by Durbin, the MA filter b may obtained by fitting an
AR(q) model to the AR filter a using the autocorrelation or Yule-Walker method. Thus,
an alternative design procedure is by the following two steps:

a = lpf(yw(y,M)); % fit an AR(M) model to y

b = lpf(yw(a,q)); % fit an AR(q) model to a

where the function lpf extracts the prediction filter from the output of the function yw.
Once the MA filter is designed, the input noise variance σ2

ε may be calculated using
Parseval’s identity:

σ2
y = σ2

ε

∫ π
−π
|B(ω)|2dω

2π
= σ2

ε

q∑
m=0

|bm|2 = σ2
ε b†b ⇒ σ2

ε =
σ2
y

b†b

where σ2
y can be estimated directly from the data sequence by:

σ̂2
y =

1

N

N−1∑
n=0

|yn|2

ARMA models

An ARMA(p, q) model is characterized by a synthesis filter of the form:

H(z)= B(z)
A(z)

= 1+ b1z−1 + · · · + bqz−q
1+ a1z−1 + . . .+ apz−p (15.14.9)

The sequence yn is generated by driving H(z) by zero-mean white-noise εn:

yn + a1yn−1 + · · · + apyn−p = εn + b1εn−1 + · · · + bqεn−q (15.14.10)

15.14. MA and ARMA modeling 815

The corresponding power spectrum of yn is:

Syy(ω)= σ2
ε |H(ω)|2 = σ2

ε

∣∣∣∣B(ω)A(ω)

∣∣∣∣2

= σ2
ε

∣∣∣∣∣1+ b1e−jω + · · · + bqe−jqω
1+ a1e−jω + · · · + ape−jpω

∣∣∣∣∣
2

If the innovations sequence εn were known, then by considering Eq. (15.14.10) at
successive time instants, say, n = 0,1, . . . ,N− 1, one could solve for the model param-
eters a = [1, a1, . . . , ap]T and b = [1, b1, . . . , bq]T. To see how this might be done, we
rewrite (15.14.10) vectorially in the form:

[yn, yn−1, . . . , yn−p]

⎡⎢⎢⎢⎢⎢⎣
1
a1

...
ap

⎤⎥⎥⎥⎥⎥⎦ = [εn, εn−1, . . . , εn−q]

⎡⎢⎢⎢⎢⎢⎣
1
b1

...
bq

⎤⎥⎥⎥⎥⎥⎦ (15.14.11)

or, compactly,

yT(n)a = eT(n)b , where y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ , e(n)=

⎡⎢⎢⎢⎢⎢⎣
εn
εn−1

...
εn−q

⎤⎥⎥⎥⎥⎥⎦ (15.14.12)

Arranging these into a column vector for n = 0,1 . . . ,N − 1, we may express them
as a single vector equation involving the data matrices of yn and εn:

Ya = E b , where Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT(0)
...

eT(n)
...

eT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15.14.13)

The data matricesY and E have dimensionsN×(p+1) andN×(q+1), respectively,
and correspond to the “prewindowed” type. They can be constructed from the sequences
y = [y0, y1 . . . , yN−1]T and e = [ε0, ε1 . . . , εN−1]T by the OSP function datamat:

Y = datamat(y, p,’pre’)
E = datamat(e, q,’pre’)

For example, if N = 7, p = 3, and q = 2, and assuming zero initial conditions, then
Eq. (15.14.13) reads as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 0 0 0
y1 y0 0 0
y2 y1 y0 0
y3 y2 y1 y0

y4 y3 y2 y1

y5 y4 y3 y2

y6 y5 y4 y3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1
a1

a2

a3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 0 0
ε1 ε0 0
ε2 ε1 ε0

ε3 ε2 ε1

ε4 ε3 ε2

ε5 ε4 ε3

ε6 ε5 ε4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ 1
b1

b2

⎤⎥⎦ (15.14.14)

816 15. SVD and Signal Processing

Even though overdetermined, these equations are consistent and may be solved for
the model parameters. Unfortunately, in practice, only the observed output sequence
y = [y0, y1 . . . , yN−1]T is available.

A possible strategy to overcome this problem, originally proposed by Durbin, is to
replace the unknown exact innovation vector e = [ε0, ε1 . . . , εN−1]T by an estimated one
ê = [ε̂0, ε̂1 . . . , ε̂N−1]T and then solve (15.14.13) approximately using least-squares, that
is, if Ê is the data matrix of the approximate innovations, then solve the least-squares
problem:

Yâ = Ê b̂ � J = ‖Yâ− Ê b̂‖2 = min (15.14.15)

One way to obtain an estimated innovations sequence ê is to fit to y an autoregressive
model AM(z) of large order M, such that M� p+ q. This amounts to approximating
the synthesis filter by the all-pole model Ĥ(z)= 1/AM(z). Passing the given sequence
yn through the approximate analysis filter AM(z) would generate the estimated inno-
vations, that is, Ê(z)= AM(z)Y(z). Thus, the first step in the design is, in MATLAB
notation:

aM = lpf
(
yw(y,M)

)
ê = filter(aM,1,y)

Ê = datamat(ê, q,’pre’)

(15.14.16)

The second step is to solve (15.14.15) using least squares. To this end, we separate the
first columns of the matrices Y, Ê, and the bottom parts of â, b̂ to get:

Y = [y0, Y1], Ê = [ê0, Ê1], â =
[

1
α̂αα

]
, b̂ =

[
1

β̂ββ

]

and recast (15.14.15) in the form:

Yâ = Ê b̂ ⇒ [y0, Y1]
[

1
α̂αα

]
= [ê0, Ê1]

[
1

β̂ββ

]
⇒ y0 +Y1α̂αα = ê0 + Ê1β̂ββ

This may be rearranged into Y1α̂αα− Ê1β̂ββ = −(y0 − ê0), and solved:

[Y1,−Ê1]
[
α̂αα
β̂ββ

]
= −(y0 − ê0) ⇒

[
α̂αα
β̂ββ

]
= −[Y1,−Ê1] \(y0 − ê0) (15.14.17)

This completes step two. We note that because of the prewindowed choice of the data
matrices, the first columns y0, ê0 are the length-N signal sequences y and ê themselves,
that is, y0 = y = [y0, y1 . . . , yN−1]T and ê0 = ê = [ε̂0, ε̂1 . . . , ε̂N−1]T. Thus, we have,
y+ Y1α̂αα = ê+ Ê1β̂ββ, and rearranging, ê = y+ Y1α̂αα− Ê1β̂ββ. An alternative least-squares
criterion that is used sometimes is the following:

J = ‖ê‖2 = ‖y+Y1α̂αα− Ê1β̂ββ‖2 = min (15.14.18)

This has the solution: [
α̂αα
β̂ββ

]
= −[Y1,−Ê1]\y (15.14.19)

15.14. MA and ARMA modeling 817

We will be using (15.14.17). The second-stage solutions can be shown not to be
asymptotically efficient. In order to minimize their variance, Mayne and Firoozan [1301]
proposed a third step. It consists of replacing the sequences yn, ε̂n by the inverse-filtered
versions V(z)= Y(z)/B̂(z) and W(z)= Ê(z)/B̂(z) and repeating step two. This pro-
duces the final estimates of the ARMA parameters a and b.

The filtered sequences vn,wn and their data matrices are constructed as follows, in
MATLAB notation:

v = filter(1, b̂,y); V = datamat(v, p,’pre’);
w = filter(1, b̂, ê); W = datamat(w, q,’pre’);

(15.14.20)

The resulting least-squares problem is then:

Va =W b ⇒ [v0, V1]
[

1
ααα

]
= [w0,W1]

[
1
βββ

]
(15.14.21)

with performance index J = ‖Va−W b‖2 = min. The solution of (15.14.21) is:[
ααα
βββ

]
= −[V1,−W1] \(v0 −w0) (15.14.22)

In summary, the Mayne-Firoozan three-stage ARMA parameter estimation method
consists of Eqs. (15.14.16), (15.14.17), and (15.14.22).

To justify the need for the inverse filtering, we consider an improved innovations
vector obtained from ê by adding a small correction, that is, e = ê + δe, or in terms
of the data matrices, E = Ê + δE. We imagine that the vector e is closer to the true
innovations vector than ê. The small change δe will induce similar small changes in
the ARMA parameters, a = â + δa and b = b̂ + δb, which must satisfy the improved
input/output equation:

Ya = E b (15.14.23)

To first order in the corrections, that is, ignoring terms like δEδb, we have:

Ya = (Ê + δE)(b̂+ δb)= Ê(b̂+ δb)+δE b̂ = Ê b+ δE b̂ , or

Ya− Ê b = δE b̂ (15.14.24)

The term δE b̂ represents the filtering of the vector δe by the filter b̂, and therefore,
it can just as well be expressed in terms of the convolution matrix of b̂ acting on δe, that
is, δE b̂ = B̂δe. Actually, B̂ is the N×N square portion of the full convolution matrix,
with the bottom q rows (the input-off transients) deleted. For example, with N = 7 and
q = 2, we have:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δε0 0 0
δε1 δε0 0
δε2 δε1 δε0

δε3 δε2 δε1

δε4 δε3 δε2

δε5 δε4 δε3

δε6 δε5 δε4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ 1

b̂1

b̂2

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

b̂1 1 0 0 0 0 0

b̂2 b̂1 1 0 0 0 0

0 b̂2 b̂1 1 0 0 0

0 0 b̂2 b̂1 1 0 0

0 0 0 b̂2 b̂1 1 0

0 0 0 0 b̂2 b̂1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δε0

δε1

δε2

δε3

δε4

δε5

δε6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

818 15. SVD and Signal Processing

The matrix B̂ is invertible. Therefore, we may solve (15.14.24) for δe. Defining
V = B̂−1Y andW = B̂−1Ê, we have:

Ya− Ê b = δE b̂ = B̂δe ⇒ B̂−1(Ya− Ê b)= δe ⇒ Va−W b = δe (15.14.25)

Thus, the least-squares problem (15.14.21) is equivalent to minimizing the norm of
the correction vector:

J = ‖Va−W b‖2 = ‖δe‖2 = min � Va =W b

The operations V = B̂−1Y and W = B̂−1Ê are equivalent to the inverse filtering
operations (15.14.20). The MATLAB function armamf implements this three-step ARMA
modeling algorithm. It has usage:

[a,b,sigma2] = armamf(y,p,q,M,iter); % Mayne-Firoozan ARMA modeling

The third stage may be repeated a few additional times. At each iteration, the filtered
signals V(z)= Y(z)/B(z) andW(z)= Ê(z)/B(z) are obtained by using the filter B(z)
from the previous iteration. The parameter iter specifies the total number of iterations.
The default value is iter=2.

The innovations variance σ2
ε is estimated by calculating the impulse response hn of

the designed ARMA filter, H(z)= B(z)/A(z), and using:

σ2
y = σ2

ε

∞∑
n=0

|hn|2 (15.14.26)

where the infinite summation may be approximated by a finite one of appropriate length—
typically, a multiple of the 60-dB time-constant of the filter.

We have written a number of other MATLAB functions for MA and ARMA work.
Examples of their usage are included in their respective help files.

h = arma2imp(a,b,N); % ARMA impulse response

[a,b] = imp2arma(h,p,q); % impulse response to ARMA coefficients

R = armaacf(a,b,s2,M); % ARMA autocorrelation function

[A,B,D] = armachol(a,b,s2,N); % ARMA covariance matrix Cholesky factorization

y = armasim(a,b,s2,N,seed); % simulate an ARMA process using FILTER

y = armasim2(a,b,s2,N,seed); % simulate an ARMA process using ARMACHOL

J = armainf(a,b); % ARMA asymptotic Fisher information matrix

--

[b,sig2] = mafit(R); % fit MA(q) model to given covariance lags

[a,b,sig2] = armafit(R,p,q); % fit ARMA(p,q) model to given covariance lags

--

[b,sig2] = madurbin(y,q,M); % MA modeling by Durbin’s method

[b,sig2] = mainnov(y,q,M); % MA modeling by the innovations method

--

[a,b,sig2] = armainnov(y,p,q,M); % ARMA modeling by innovations method

[a,b,sig2] = armamf(y,p,q,M); % ARMA modeling by Mayne-Firoozan method

[a,b,sig2] = armamyw(y,p,q,Ma,Mb); % ARMA modeling by modified Yule-Walker

--

[B,D] = cholgs(R); % Cholesky factorization by Gram-Schmidt method

[B,D] = cholinnov(R); % Cholesky factorization by innovations method

15.15. Karhunen-Loève Transform 819

15.15 Karhunen-Loève Transform

Traditionally, the Karhunen-Loève transform (KLT), also known as the Hotelling trans-
form, of an (M + 1)-dimensional stationary zero-mean random signal vector y(n)=
[y0(n), y1(n), . . . , yM(n)]T with covariance matrix R = E[y∗(n)yT(n)] is defined as
the linear transformation:

z(n)= VTy(n) (KLT) (15.15.1)

where V is the (M + 1)×(M + 1) unitary matrix of eigenvectors of R, that is,

V = [v0,v1, . . . ,vM] , Rvi = λivi, i = 0,1, . . . ,M (15.15.2)

with the eigenvalues λi assumed to be in decreasing order. The orthonormality of the
eigenvectors v†i vj = δij is equivalent to the unitarity of V,

V†V = VV† = IM+1 (15.15.3)

The eigenvalue equations can be written compactly in the form:

RV = VΛ , Λ = diag{λ0, λ1, . . . , λM} ⇒ V†RV = Λ (15.15.4)

The components of the transformed vector, z(n)= [z0(n), z1(n), . . . , zM(n)]T, are
called principal components. They can be expressed as the dot products of the eigen-
vectors vi with y(n):

z(n)= VTy(n) ⇒

⎡⎢⎢⎢⎢⎢⎣
z0(n)
z1(n)

...
zM(n)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

vT0 y(n)
vT1 y(n)

...
vTMy(n)

⎤⎥⎥⎥⎥⎥⎦ , or,

zi(n)= vTi y(n) , i = 0,1, . . . ,M (15.15.5)

These may be thought of as the filtering of y(n) by the FIR filters vi. Therefore, the
vectors vi are often referred to as eigenfilters. The principal components are mutually
orthogonal, that is, uncorrelated. The matrix V†RV = Λ is the covariance matrix of the
transformed vector z(n):

E[z∗(n)zT(n)]= V†E[y∗(n)yT(n)]V = V†RV , or,

E[z∗(n)zT(n)]= Λ (15.15.6)

or, component-wise:

E[z∗i (n)zj(n)]= λiδij , i, j = 0,1, . . . ,M (15.15.7)

Thus, the KLT decorrelates the components of the vector y(n). The eigenvalues
of R are the variances of the principal components, σ2

i = E[|zi(n)|2]= λi. Because
λ0 ≥ λ1 ≥ · · · ≥ λM, the principal component z0(n) will have the largest variance, the
component z1(n), the next to largest, and so on.

820 15. SVD and Signal Processing

Defining the total variance of y(n) to be the sum of the variances of its M + 1
components, we can show that the total variance is equal to the sum of the variances of
the principal components, or the sum of the eigenvalues of R. We have:

σ2
y =

M∑
i=0

E[|yi(n)|2]= E[y†(n)y(n)] (total variance) (15.15.8)

Using the trace property y†y = tr(y∗yT), we find:

σ2
y = tr

(
E[y∗(n)yT(n)]

) = tr(R)= λ0 + λ1 + · · · + λM (15.15.9)

The inverse Karhunen-Loève transform is obtained by noting that V−T = V∗, which
follows from V†V = I. Therefore,

y(n)= V∗z(n) (inverse KLT) (15.15.10)

It can be written as a sum of the individual principal components:

y(n)= V∗z(n)= [v∗0 ,v∗1 , . . . ,v∗M]

⎡⎢⎢⎢⎢⎢⎣
z0(n)
z1(n)

...
zM(n)

⎤⎥⎥⎥⎥⎥⎦ =
M∑
i=0

v∗i zi(n) (15.15.11)

In many applications, the first few principal components, zi(n), 0 ≤ i ≤ r−1, where
r�M+ 1, account for most of the total variance. In such cases, we may keep only the
first r terms in the inverse transform:

ŷ(n)=
r−1∑
i=0

v∗i zi(n) (15.15.12)

If the ignored eigenvalues are small, the reconstructed signal ŷ(n) will be a good
approximation of the original y(n). This approximation amounts to a rank-r reduction
of the original problem. The mean-square approximation error is:

E
[‖y(n)−ŷ(n)‖2] = E[M∑

i=r
|zi(n)|2

] = M∑
i=r
λi (15.15.13)

15.16 Principal Component Analysis

Principal component analysis (PCA) is essentially equivalent to the KLT. The only dif-
ference is that instead of applying the KLT to the theoretical covariance matrix R, it is
applied to the sample covariance matrix R̂ constructed from N available signal vectors
y(n), n = 0,1, . . . ,N − 1:

R̂ = 1

N

N−1∑
n=0

y∗(n)yT(n) (15.16.1)

15.16. Principal Component Analysis 821

where we assume that the sample means have been removed, so that

m = 1

N

N−1∑
n=0

y(n)= 0

We will ignore the overall factor 1/N, as we did in section 15.12, and work with the
simpler definition:

R̂ =
N−1∑
n=0

y∗(n)yT(n)= Y†Y , Y =

⎡⎢⎢⎢⎢⎢⎣
yT(0)
yT(1)

...
yT(N − 1)

⎤⎥⎥⎥⎥⎥⎦ (15.16.2)

where Y is theN×(M+1) data matrix constructed from the y(n). The eigenproblem of
R̂, that is, R̂V = VΛ, defines the KLT/PCA transformation matrix V. The corresponding
principal component signals will be:

z(n)= VTy(n) , n = 0,1, . . . ,N − 1 (15.16.3)

These can be combined into a single compact equation involving the data matrix
constructed from the z(n). Indeed, noting that zT(n)= yT(n)V, we have:

Z = YV (PCA) (15.16.4)

where Z is the N×(M + 1) data matrix of the z(n):

Z =

⎡⎢⎢⎢⎢⎢⎣
zT(0)
zT(1)

...
zT(N − 1)

⎤⎥⎥⎥⎥⎥⎦ (15.16.5)

The inverse transform can be obtained by multiplying (15.16.4) by V† from the right
and using the unitarity property of V, that is, ZV† = YVV†, or,

Y = ZV† ⇒ y(n)= V∗z(n) , n = 0,1, . . . ,N − 1 (15.16.6)

or, explicitly in terms of the PCA signals zi(n):

y(n)=
M∑
i=0

v∗i zi(n) , n = 0,1, . . . ,N − 1 (15.16.7)

The uncorrelatedness property of the KLT translates now to the orthogonality of
the signals zi(n)= vTi y(n) as functions of time. It follows from (15.16.4) that Z has
orthogonal columns, or equivalently, a diagonal sample covariance matrix:

Z†Z = V†R̂V = Λ ⇒
N−1∑
n=0

z∗(n)zT(n)= Λ (15.16.8)

822 15. SVD and Signal Processing

or, written component-wise:

N−1∑
n=0

z∗i (n)zj(n)= λiδij , i, j = 0,1, . . . ,M (15.16.9)

In fact, the principal component signals zi(n) are, up to a scale, equal to the left
singular eigenvectors of the SVD of the data matrix Y.

Following the simplified proof of the SVD that we gave in Sec. 15.5, we assume a
full-rank case so that all the λi are nonzero and define the singular values σi =

√
λi, for

i = 0,1, . . . ,M, and the matrices:

U = ZΣ−1 , Σ = diag{σ0, σ1, . . . , σM} = Λ1/2 (15.16.10)

where U,Σ have sizes N×(M+ 1) and (M+ 1)×(M+ 1), respectively. It follows from
(15.16.8) that U has orthonormal columns:

U†U = Σ−1Z†ZΣ−1 = Λ−1/2ΛΛ1/2 = IM+1 (15.16.11)

Solving for Y in terms of U, we obtain the economy SVD of Y. Indeed, we have
Z = UΣ and Y = ZV†, so that

Y = UΣV† (economy SVD) (15.16.12)

Thus, principal component analysis based on R̂ is equivalent to performing the econ-
omy SVD of the data matrix Y.

The matrixU has the same size asY, but mutually orthogonal columns. The (M+1)-
dimensional vectors u(n)= Σ−1z(n)= Σ−1VTy(n), n = 0,1, . . . ,N−1, have U as their
data matrix and correspond to normalized versions of the principal components with
unit sample covariance matrix:

U†U =
N−1∑
n=0

u∗(n)uT(n)= IM+1 �
N−1∑
n=0

u∗i (n)uj(n)= δij

where ui(n) is the ith component of u(n)= [u0(n), u1(n), . . . , uM(n)]T. It is the same
as zi(n), but normalized to unit norm.

Example 15.16.1: Consider the following 8×2 data matrix Y and its economy SVD:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.31 1.92
2.49 1.68

−2.31 −1.92
−2.49 −1.68

3.32 2.24
−3.08 −2.56

3.08 2.56
−3.32 −2.24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.3
0.3 −0.3

−0.3 −0.3
−0.3 0.3

0.4 −0.4
−0.4 −0.4

0.4 0.4
−0.4 0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
10 0
0 0.5

][
0.8 −0.6
0.6 0.8

]T
= UΣVT

The singular values of Y are σ0 = 10 and σ1 = 0.5. Let the two columns of Y be y0

and y1, so that Y = [y0,y1]. The scatterplot of the eight pairs [y0, y1] is shown below.

15.16. Principal Component Analysis 823

We observe the clustering along a preferential direction. This is the direction of the first
principal component.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

y0

y 1

Scatterplot of [y0 , y1]

z0
z1

The corresponding 8×2 matrix of principal components and its diagonal covariance matrix
are:

Z = [z0, z1]= UΣ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0.15
3 −0.15

−3 −0.15
−3 0.15

4 −0.20
−4 −0.20

4 0.20
−4 0.20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Λ = ZTZ =

[
σ2

0 0
0 σ2

1

]
=

[
100 0

0 0.25

]

The covariance matrix of Y, R = YTY, is diagonalized by the matrix V:

R =
[

64.09 47.88
47.88 36.16

]
=

[
0.8 −0.6
0.6 0.8

][
100 0

0 0.25

][
0.8 −0.6
0.6 0.8

]T
= VΛVT

Each principal component pair [z0, z1] is constructed by the following linear combinations
of the [y0, y1] pairs:

z0 = vT0 y = [0.8,0.6]
[
y0

y1

]
= 0.8y0 + 0.6y1

z1 = vT1 y = [−0.6,0.8]
[
y0

y1

]
= −0.6y0 + 0.8y1

Conversely, each [y0, y1] pair may be reconstructed from the PCA pair [z0, z1]:[
y0

y1

]
= V∗z = [v∗0 ,v∗1]

[
z0

z1

]
= v∗0 z0 + v∗1 z1 =

[
0.8
0.6

]
z0 +

[
−0.6

0.8

]
z1

The two terms in this expression define parametrically two straight lines on the y0, y1

plane along the directions of the principal components, as shown in the above figure. The
percentage variances carried by z0, z1 are:

824 15. SVD and Signal Processing

σ2
0

σ2
0 +σ2

1
= 0.9975 = 99.75 % ,

σ2
1

σ2
0 +σ2

1
= 0.0025 = 0.25 %

This explains the clustering along the z0 direction. ��

Example 15.16.2: The table below gives N = 24 values of the signals yT(n)= [y0(n), y1(n)].
The data represent the measured lengths and widths of 24 female turtles and were obtained
from the file turtle.dat on the book’s web page. This data set represents one of the most
well-known examples of PCA [1306]. To simplify the discussion, we consider only a subset
of this data set.

The data matrixY has dimensionN×(M+1)= 24×2. It must be replaced by its zero-mean
version, that is, with the column means removed from each column. Fig. 15.16.1 shows
the scatterplot of the pairs [y0, y1].

n y0(n) y1(n) n y0(n) y1(n) n y0(n) y1(n)

0 98 81 8 133 102 16 149 107
1 103 84 9 133 102 17 153 107
2 103 86 10 134 100 18 155 115
3 105 86 11 136 102 19 155 117
4 109 88 12 137 98 20 158 115
5 123 92 13 138 99 21 159 118
6 123 95 14 141 103 22 162 124
7 133 99 15 147 108 23 177 132

−50 −25 0 25 50

−50

−25

0

25

50

y0

y 1

Scatterplot of [y0 , y1]

z1
z0

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

u0

u
1

Scatterplot of [u0 , u1]

Fig. 15.16.1 Scatterplots of original data and their principal components.

We observe that the pairs are distributed essentially one-dimensionally along a particular
direction, which is the direction of the first principal component.

Performing the economy SVD on (the zero-mean version of) Y gives the singular values
σ0 = 119.05 and σ1 = 12.38, and the unitary PCA transformation matrix V:

V = [v0,v1]=
[

0.8542 −0.5200
0.5200 0.8542

]
, v0 =

[
0.8542
0.5200

]
, v1 =

[
−0.5200

0.8542

]

15.17. SVD Signal Enhancement 825

The total variance is σ2
y = σ2

0 + σ2
1 . The percentages of this variance carried by the two

principal components are:

σ2
0

σ2
0 +σ2

1
= 0.989 = 98.9 % ,

σ2
1

σ2
0 +σ2

1
= 0.011 = 1.1 %

Thus, the principal component z0 carries the bulk of the variance. The two principal
components are obtained by the linear combinations z = VTy, or,

z0 = vT0 y = 0.8542y0 + 0.52y1

z1 = vT1 y = −0.52y0 + 0.8542y1

The inverse relationships are y = V∗z = v∗0 z0 + v∗1 z1, or,[
y0

y1

]
=

[
0.8542
0.5200

]
z0 +

[
−0.5200

0.8542

]
z1

The two terms represent the projections of y onto the two PCA directions. The two straight
lines shown in Fig. 15.16.1 are given by these two terms separately, where z0 and z1 can
be used to parametrize points along these lines.

The MATLAB code used to generate this example was as follows:

Y = loadfile(’turtle.dat’); % read full data set

Y = zmean(Y(:,4:5)); % get columns 4,5 and remove column means

[U,S,V] = svd(Y,0); % economy SVD

figure; plot(Y(:,1),Y(:,2),’.’); % scatterplot of [y0, y1]
figure; plot(U(:,1),U(:,2),’.’); % scatterplot of [u0, u1]

The right graph in Fig. 15.16.1 is the scatterplot of the columns ofU, that is, the unit-norm
principal components u0(n), u1(n), n = 0,1, . . . ,N−1. Being mutually uncorrelated, they
do not exhibit clustering along any special directions. ��

Several applications of PCA in diverse fields, such as statistics, physiology, psychol-
ogy, meteorology, and computer vision, are discussed in [1237–1239,1241–1244,1303–
1314].

15.17 SVD Signal Enhancement

The main idea of PCA is rank reduction for the purpose of reducing the dimensionality
of the problem. In many signal processing applications, such as sinusoids in noise, or
plane waves incident on an array, the noise-free signal has a data matrix of reduced rank.
For example, the rank is equal to the number of (complex) sinusoids that are present.
We will be discussing this in detail later.

The presence of noise causes the data matrix to become full rank. Forcing the rank
back to what it is supposed to be in the absence of noise has a beneficial noise-reduction
or signal-enhancement effect. However, rank-reduction destroys any special structure
that the data matrix might have, for example, being Toeplitz or Toeplitz over Hankel. A

826 15. SVD and Signal Processing

further step is required after rank reduction that restores the special structure of the
matrix. But when the structure is restored, the rank becomes full again. Therefore, one
must iterate this process of rank-reduction followed by structure restoration.

Given an initial data matrix of a given type, such as the autocorrelation, covariance,
or forward/backward type, the following steps implement the typical SVD enhancement
iteration:

Y = datamat(y,M,type); % construct data matrix from signal y

Ye = Y; % initialize enhancement iteration

for i=1:K, % iterate K times, typically, K=2-3.

Ye = sigsub(Ye,r); % force rank reduction to rank r

Ye = toepl(Ye,type); % restore Toeplitz/Toeplitz-Hankel structure

end

ye = datasig(Ye,type); % extract enhanced signal from Ye

After the iteration, one may extract the “enhanced” signal from the enhanced data
matrix. The MATLAB function sigsub, introduced in Sec. 15.9, carries out an economy
SVD of Y and then keeps only the r largest singular values, that is, it extracts the signal
subspace part of Y. The function toepl, discussed in Sec. 15.18, restores the Toeplitz
or Toeplitz-over-Hankel structure by finding the matrix with such structure that lies
closest to the rank-reduced data matrix.

The SVD enhancement iteration method has been re-invented in different contexts.
In the context of linear prediction and extracting sinusoids in noise it is known as the
Cadzow iteration [1268–1270]. In the context of chaotic dynamics, climatology, and
meteorology, it is known as singular spectral analysis (SSA)† [1322–1337]; actually, in
SSA only one iteration (K = 1) is used. In nonlinear dynamics, the process of forming
the data matrix Y is referred to as “delay-coordinate embedding” and the number of
columns,M + 1, of Y is the “embedding dimension.”

In the literature, one often finds that the data matrixY is defined as a Hankel instead
of a Toeplitz matrix. This corresponds to reversing the rows of the Toeplitz definition.
For example, using the reversing matrix J, we have:

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y2

⎤⎥⎥⎥⎥⎥⎥⎦ = Toeplitz ⇒ YJ =

⎡⎢⎢⎢⎢⎢⎢⎣
y0 y1 y2

y1 y2 y3

y2 y3 y4

y3 y4 y5

y4 y5 y6

⎤⎥⎥⎥⎥⎥⎥⎦ = Hankel

In such cases, in the SVD enhancement iterations one must invoke the function toepl
with its Hankel option, that is, type=1.

Example 15.17.1: As an example that illustrates the degree of enhancement obtained from
such methods, consider the length-25 signal yn listed in the file sine1.dat on the book’s
web page. The signal consists of two equal-amplitude sinusoids of frequencies f1 = 0.20
and f2 = 0.25 cycles/sample, in zero-mean, white gaussian noise with a 0-dB SNR. The
signal samples were generated by:

yn = cos(2πf1n)+ cos(2πf2n)+0.707vn , n = 0,1, . . . ,24

†Sometimes also called “singular system analysis” or the “caterpillar” method.

15.17. SVD Signal Enhancement 827

where vn is zero-mean, unit-variance, white noise, and the amplitude 1/
√

2 = 0.707 en-
sures that SNR = 0 dB.

The short duration and the low SNR make this a difficult signal to handle. Fig. 15.17.1 com-
pares the performance of four spectrum estimation methods: the ordinary periodogram,
the linear-prediction-based methods of Burg and Yule-Walker, and the SVD-enhanced Burg
method in which the SVD-enhanced signal is subjected to Burg’s algorithm, instead of the
original signal.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−70

−60

−50

−40

−30

−20

−10

0

10

sp
ec

tr
a

in
 d

B

f [cycles/sample]

 N = 25, M = 20, K = 3

 SVD−Burg
 ordinary Burg
 Yule−Walker
 periodogram

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−70

−60

−50

−40

−30

−20

−10

0

10

sp
ec

tr
a

in
 d

B

f [cycles/sample]

 N = 15, M = 10, K = 3

 SVD−Burg
 ordinary Burg
 Yule−Walker
 periodogram

Fig. 15.17.1 SVD-enhanced linear prediction spectra.

The effective rank is r = 4 (each real sinusoid counts for two complex ones.) The SVD-
enhanced version of Burg’s method gives narrow peaks at the two desired frequencies. The
number of iterations was K = 3, and the prediction filter orderM = 20.

The Yule-Walker method results in fairly wide peaks at the two frequencies—the SNR is
just too small for the method to work. The ordinary Burg method gives narrower peaks,
but because the filter orderM is high, it also produces several false peaks that are just as
narrow.

Reducing the order of the prediction filter from M down to r, as is done in the SVD
method to avoid any false peaks, will not work at all for the Yule-Walker and ordinary
Burg methods—both will fail to resolve the peaks.

The periodogram exhibits wide mainlobes and sidelobes—the signal duration is just too
short to make the mainlobes narrow enough. If the signal is windowed prior to computing
the periodogram, for example, using a Hamming window, the two mainlobes will broaden
so much that they will overlap with each other, masking completely the frequency peaks.

The graph on the right of Fig. 15.17.1 makes the length even shorter, N = 15, by using
only the first 15 samples of yn. The SVD method, implemented withM = 10, still exhibits
the two narrow peaks, whereas all of the other methods fail, with the ordinary Burg being
a little better than the others, but still exhibiting a false peak. The SVD method works well
also for K = 2 iterations, but not so well for K = 1. The following MATLAB code illustrates
the computational steps for producing these graphs:

y = loadfile(’sine1.dat’); % read signal samples yn from file

r = 4; M = 20; K = 3; % rank, filter order, number of iterations

828 15. SVD and Signal Processing

f = linspace(0.1,0.4,401); w = 2*pi*f; % frequency band

a = lpf(burg(y,M)); % Burg prediction filter of orderM
H1 = 1./abs(dtft(a,w)); % compute ordinary Burg LP spectrum

H1 = 20*log10(H1/max(H1)); % spectrum in dB

a = lpf(yw(y,M)); % Yule-Walker prediction filter

H2 = 1./abs(dtft(a,w)); % compute Yule-Walker LP spectrum

H2 = 20*log10(H2/max(H2));

H3 = abs(dtft(y,w));
H3 = 20*log10(H3/max(H3)); % periodogram spectrum in dB

Y = datamat(y,M); % Y is the autocorrelation type

Ye = Y;
for i=1:K, % SVD enhancement iterations

Ye = sigsub(Ye,r); % set rank to r
Ye = toepl(Ye); % toeplitzize Ye

end
ye = datasig(Ye); % extract enhanced time signal

a = lpf(burg(ye,r)); % Burg prediction filter of order r
H = 1./abs(dtft(a,w)); % compute enhanced Burg LP spectrum

H = 20*log10(H/max(H));

plot(f,H,’-’, f,H1,’--’, f,H2,’:’, f,H3,’-.’);

The functions lpf, burg, yw implement the standard Burg and Yule-Walker methods. ��
Example 15.17.2: The SVD enhancement process can be used to smooth data and extract local

or global trends from noisy times series. Typically, the first few principal components
represent the trend.

As an example, we consider the global annual average temperature obtained from the web
site: www.cru.uea.ac.uk/cru/data/temperature/. The data represent the temperature
anomalies in degrees oC with respect to the 1961–1990 average.

Using M = 30 and one SVD enhancement iteration, K = 1, we find the first five variances,
given as percentages of the total variance:

{λ1, λ2, λ3, λ4, λ5} = {63.78, 12.44, 2.27, 1.79, 1.71}

The first two PCs account for 76% of the total variance. The percent variances are plotted
in Fig. 15.17.2.

The smoothed signals extracted from reducing the rank to r = 1,2,3,4,5,6 are shown in
Figs. 15.17.3, 15.17.4, and 15.17.5. We note that the r = 2 case represents the trend well.
As the rank is increased, the smoothed signal tries to capture more and more of the finer
variations of the original signal.

Assuming that the global trend ye(n) is represented by the first two principal components
(r = 2), one can subtract it from the original sequence resulting into the residual y1(n)=
y(n)−ye(n), and the SVD enhancement method may be repeated on that signal. The first
few components of y1(n) can be taken to represent the local variations in the original
y(n), such as short-period cyclical components. The rest of the principal components of
y1(n) may be taken to represent the noise.

The MATLAB code used to generate these graphs was as follows:

15.17. SVD Signal Enhancement 829

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Principal Component Variances

index i

λ i
 (

pe
rc

en
t)

Fig. 15.17.2 Percentage variances of the first 31 principal components.

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Signal Subspace, r = 1

year

de
gr

ee
s

o C

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Signal Subspace, r = 2

year

de
gr

ee
s

o C

Fig. 15.17.3 Principal component signals of ranks r = 1,2.

A = loadfile(’TaveGL2.dat’); % read data file

y = A(:,14); % column-14 holds the annual averages

n = A(:,1); % column-1 holds the year

M = 30; K=1; r = 1; % or, r = 2,3,4,5,6
y = zmean(y); % zero mean

Ye = datamat(y,M,2); % forward-backward Toeplitz-Hankel type

for i=1:K, % SVD enhancement iteration

Ye = sigsub(Ye,r); % extract rank-r signal subspace

Ye = toepl(Ye,2); % convert to Toeplitz-Hankel

end
ye = datasig(Ye,2); % extract smoothed signal

plot(n,y,’:’, n,ye,’-’); % plot original and smoothed signal

For comparison, we show in Fig. 15.17.6, the Whittaker-Henderson smoothing method,
which appears to have comparable performance with the SVD method. The MATLAB code

830 15. SVD and Signal Processing

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Signal Subspace, r = 3

year

de
gr

ee
s

o C

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Signal Subspace, r = 4

year

de
gr

ee
s

o C

Fig. 15.17.4 Principal component signals of ranks r = 3,4.

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Signal Subspace, r = 5

year

de
gr

ee
s

o C

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Signal Subspace, r = 6

year

de
gr

ee
s

o C

Fig. 15.17.5 Principal component signals of ranks r = 5,6.

for that was,

lambda = 10000;
ywh = whsm(y,lambda,3);
plot(n,y,’r:’, n,ywh,’b-’);

Here, the degree of smoothing is controlled by the regularization parameter λ. ��

15.18 Structured Matrix Approximations

We saw in the previous section that the process of rank reduction destroys the Toeplitz
or Toeplitz/Hankel nature of the data matrix. The purpose of the MATLAB function
toepl was to restore the structure of the data matrix by finding the closest matrix of the
desired structure.

15.18. Structured Matrix Approximations 831

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Whittaker−Henderson, λ = 10000

year

de
gr

ee
s

o C

1860 1880 1900 1920 1940 1960 1980 2000
−0.6

−0.3

0

0.3

0.6
Whittaker−Henderson, λ = 1000

year

de
gr

ee
s

o C

Fig. 15.17.6 Whittaker-Henderson smoothing method.

Given a data matrix Y that ideally should be Toeplitz, such as the autocorrelation
or covariance types, one can find a Toeplitz matrix T that is closest to Y with respect
to a matrix norm. The easiest norm to use is the Frobenius norm. Thus, we have the
approximation problem:

J = ‖Y −T‖2
F = min, where T is required to be Toeplitz (15.18.1)

The solution is the Toeplitz matrix obtained by replacing each diagonal of Y by the
average along that diagonal. We demonstrate this with a small example. Let Y and T be
defined as:

Y =
⎡⎢⎣ y11 y12 y13

y21 y22 y23

y31 y32 y33

⎤⎥⎦ , T =
⎡⎢⎣ t2 t1 t0
t3 t2 t1
t4 t3 t2

⎤⎥⎦
The difference matrix is:

Y −T =
⎡⎢⎣ y11 − t2 y12 − t1 y13 − t0
y21 − t3 y22 − t2 y23 − t1
y31 − t4 y32 − t3 y33 − t2

⎤⎥⎦
Because the Frobenius norm is the sum of the squares of all the matrix elements, we

have:
J = ‖Y −T‖2

F =|y11 − t2|2 + |y22 − t2|2 + |y33 − t2|2

+ |y12 − t1|2 + |y23 − t1|2 + |y13 − t0|2

+ |y21 − t3|2 + |y32 − t3|2 + |y13 − t4|2

The minimization conditions ∂J/∂ti = 0, i = 0,1,2,3,4, easily lead to the desired
solutions: t0 = y13, t4 = y31 and

t1 = y12 + y23

2
, t2 = y11 + y22 + y33

3
, t3 = y21 + y32

2

832 15. SVD and Signal Processing

For a Hankel matrix approximation, we have the minimization problem:

J = ‖Y −H‖2
F = min, where H is required to be Hankel (15.18.2)

Its solution is obtained by replacing each antidiagonal of Y by the average along that
antidiagonal. This problem can be reduced to an equivalent Toeplitz type by noting that
the row-reversing operation Y → YJ, where J is the usual reversing matrix, leaves the
Frobenius norm unchanged and it maps a Hankel matrix into a Toeplitz one. Setting
T = HJ, the problem (15.18.2) becomes:

J = ‖Y −H‖2
F = ‖YJ −T‖2

F = min, where T is required to be Toeplitz (15.18.3)

OnceT is found by averaging the diagonals ofYJ, the Hankel matrixH is constructed
by row-reversal, H = TJ. This amounts to averaging the antidiagonals of the original
data matrix Y.

Finally, in the case of Toeplitz over Hankel structure, we have a data matrix whose
upper half is to be Toeplitz and its lower half is the row-reversed and conjugated upper
part. Partitioning Y into these two parts, we set:

Y =
[
YT
YH

]
, M =

[
T
T∗J

]
= required approximation

The matrix approximation problem is then:

J = ‖Y −M‖2
F =

∥∥∥∥∥
[
YT
YH

]
−

[
T
T∗J

]∥∥∥∥∥
2

F
= ‖YT −T‖2

F + ‖Y∗HJ −T‖2
F = min

where we used the property ‖YH−T∗J‖2
F = ‖Y∗HJ−T‖2

F. The solution of this minimiza-
tion problem is obtained by choosingT to be the average of the Toeplitz approximations
of YT and Y∗HJ, that is, in the notation of the function toepl:

T = toepl(YT)+toepl(Y∗HJ)
2

Example 15.18.1: As an example, we give below the optimum Toeplitz, Hankel, and Toeplitz
over Hankel approximations of the same data matrix Y:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10
20 20 20
30 30 30
40 40 40
50 50 50
60 60 60

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 15 10
30 20 15
40 30 20
50 40 30
55 50 40
60 55 50

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 15 20
15 20 30
20 30 40
30 40 50
40 50 55
50 55 60

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10
20 20 20
30 30 30

40 40 40
50 50 50
60 60 60

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 30 25
40 35 30
45 40 35

25 30 35
30 35 40
35 40 45

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
T

T∗J

]

15.19. Matrix Pencil Methods 833

The function toepl has usage:

Z = toepl(Y,type); % structured approximation of a data matrix

Y = data matrix

type=0: Toeplitz type, each diagonal of Y is replaced by its average

type=1: Hankel type, each anti-diagonal of Y is replaced by its average

type=2: Toeplitz over Hankel, Y must have even number of rows

15.19 Matrix Pencil Methods

The matrix pencil of two N×M matrices A,B, is defined to be the matrix:

A− λB (15.19.1)

where λ is a parameter. The generalized eigenvalues of the matrix pair {A,B} are those
values of λ that cause A−λB to reduce its rank. A generalized eigenvector correspond-
ing to such a λ is a vector in the null space N(A− λB).

A matrix pencil is a generalization of the eigenvalue concept to non-square matrices.
A similar rank reduction takes place in the ordinary eigenvalue problem of a square
matrix. Indeed, the eigenvalue-eigenvector condition Avi = λivi can be written as (A−
λiI)vi = 0, which states that A − λI loses its rank when λ = λi and vi lies in the null
space N(A− λiI).

Matrix pencil methods arise naturally in the problem of estimating damped or un-
damped sinusoids in noise [1280], and are equivalent to the so-called ESPRIT methods
[1276]. Consider a signal that is the sum of r, possibly damped, complex sinusoids in
additive, zero-mean, white noise:

yn =
r∑
i=1

Aie−αinejωin + vn =
r∑
i=1

Aizni + vn (15.19.2)

where zi = e−αi+jωi , i = 1,2, . . . , r. The problem is to estimate the unknown damping
factors, frequencies, and complex amplitudes of the sinusoids, {αi,ωi,Ai}, from avail-
able observations of a length-N data block y = [y0, y1, . . . , yN−1]T of the noisy signal
yn. We may assume that the zi are distinct.

In the absence of noise, the (N −M)×(M + 1)–dimensional, covariance-type, data
matrix Y can be shown to have rank r, provided that the embedding orderM is chosen
such that r ≤M ≤ N − r. The data matrix Y is defined as:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(M)
...

yT(n)
...

yT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y(n)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−M

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
r∑
i=1

Ai zni

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
z−1
i
z−2
i
...
z−Mi

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (15.19.3)

834 15. SVD and Signal Processing

and, Y becomes:

Y =
r∑
i=1

Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−M
i

]
(15.19.4)

Thus, Y is the sum of r rank-1 matrices, and therefore, it will have rank r. Its null
space N(Y) can be characterized conveniently in terms of the order-r polynomial with
the zi as roots, that is,

A(z)=
r∏
i=1

(1− ziz−1) (15.19.5)

Multiplying A(z) by an arbitrary polynomial F(z) of orderM− r, gives an order-M
polynomial B(z)= A(z)F(z), such that r of its roots are the zi, that is, B(zi)= 0, for
i = 1,2 . . . , r, and the remainingM−r roots are arbitrary. The polynomial B(z) defines
an (M + 1)–dimensional vector b = [b0, b1, . . . , bM]T through its inverse z-transform:

B(z)= b0 + b1z−1 + · · · + bMz−M =
[
1, z−1, z−2, . . . , z−M

]
⎡⎢⎢⎢⎢⎢⎣
b0

b1

...
bM

⎤⎥⎥⎥⎥⎥⎦ (15.19.6)

Then, the root conditions can be stated in the form:

B(zi)=
[
1, z−1

i , z
−2
i , . . . , z

−M
i

]
⎡⎢⎢⎢⎢⎢⎣
b0

b1

...
bM

⎤⎥⎥⎥⎥⎥⎦ = 0 , i = 1,2, . . . , r (15.19.7)

This implies that the vector b must lie in the null space of Y:

Y b =
r∑
i=1

Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−M
i

]
⎡⎢⎢⎢⎢⎢⎣
b0

b1

...
bM

⎤⎥⎥⎥⎥⎥⎦ = 0 (15.19.8)

Conversely, if b satisfies Eq. (15.19.8), then because M ≤ N − r, or, r ≤ N −M, the
(N−M)–dimensional column vectors [zMi , . . . , z

n
i , . . . , z

N−1
i]T are linearly independent,†

†This follows from the fact that the r×r Vandermonde matrix Vki = zk−1
i , k, i = 1,2, . . . , r, has nonva-

nishing determinant det(V)=∏
1≤i<j≤r(zi − zj), because the zi are distinct. See Ref. [1234].

15.19. Matrix Pencil Methods 835

and therefore, we must have:

Y b =
r∑
i=1

Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B(zi)= 0 ⇒ B(zi)= 0 (15.19.9)

Thus, B(z)must have the form B(z)= A(z)F(z). Because F(z) has degreeM−r, it
will be characterized byM+1−r arbitrary coefficients. It follows that the dimensionality
of b, and hence of the null space N(Y), will beM+ 1− r. This implies that the rank of
Y is r.

Next, we consider the matrix pencil of the two submatrices Y1, Y0 of Y, where Y1 is
defined to be the first M columns of Y, and Y0, the last M, that is,

Y1 =
r∑
i=1

Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i

]

Y0 =
r∑
i=1

Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i

]
(15.19.10)

They were obtained by keeping the first or lastM entries of [1, z−1
i , z

−2
i , . . . , z

−M
i]:[

1, z−1
i , z

−2
i , . . . , z

−(M−1)
i︸ ︷︷ ︸

firstM

, z−Mi
] = [

1, z−1
i , z

−2
i , . . . , z

−(M−1)
i , z−Mi︸ ︷︷ ︸

lastM

]

Both matrices Y1, Y0 have dimension (N −M)×M. Noting that[
1, z−1

i , z
−2
i , . . . , z

−(M−1)
i

] = zi[z−1
i , z

−2
i , . . . , z

−M
i

]
,

we may rewrite Y1 in the form:

Y1 =
r∑
i=1

ziAi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i

]
(15.19.11)

836 15. SVD and Signal Processing

Therefore, the matrix pencil Y1 − λY0 can be written as:

Y1 − λY0 =
r∑
i=1

(zi − λ)Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zMi
...
zni
...

zN−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
z−1
i , z

−2
i , . . . , z

−M
i

]
(15.19.12)

Because r ≤M and r ≤ N−M, and Y1−λY0 is a sum of r rank-1 matrices, it follows
that, as long as λ 	= zi, the rank of Y1 − λY0 will be r. However, whenever λ becomes
equal to one of the zi, one of the rank-1 terms will vanish and the rank of Y1−λY0 will
collapse to r − 1. Thus, the r desired zeros zi are the generalized eigenvalues of the
rank-r matrix pencil Y1 − λY0.

When noise is added to the sinusoids, the matrix pencil Y1−λY0 will have full rank,
but we expect its r most dominant generalized eigenvalues to be good estimates of the
zi.

In fact, the problem of finding the r eigenvalues zi can be reduced to an ordinary
r×r eigenvalue problem. First, the data matrices Y1, Y0 are extracted from the matrix
Y, for example, if N = 10 andM = 3, we have:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3 y2 y1 y0

y4 y3 y2 y1

y5 y4 y3 y2

y6 y5 y4 y3

y7 y6 y5 y4

y8 y7 y6 y5

y9 y8 y7 y6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ Y1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y7 y6 y5

y8 y7 y6

y9 y8 y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y7 y6 y5

y8 y7 y6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Second, a rank-r reduction is performed on Y0, approximating it as Y0 = UrΣrV†r ,

where Ur has size (N −M)×r, Σr is r×r, and Vr , M×r. The matrix pencil becomes
then Y1−λUrΣrV†r . Multiplying from the left byU†r and from the right by Vr and using
the orthogonality properties U†rUr = Ir and V†rVr = Ir , we obtain the equivalent r×r
matrix pencil:

U†r (Y1 − λY0)Vr = U†rY1Vr − λΣr or,

Σ−1
r U†r (Y1 − λY0)Vr = Z − λIr , where Z = Σ−1

r U†rY1Vr (15.19.13)

Finally, the eigenvalues of the r×r matrix Z are computed, which are the desired
estimates of the zi. The matrix pencil Z−λIr may also be obtained by invertingY0 using
its pseudoinverse and then reducing the problem to size r×r. Using Y+0 = VrΣ−1

r U
†
r , it

can be shown easily that:

V†r (Y
+
0 Y1 − λIM)Vr = Z − λIr

15.20. QR Factorization 837

Once the zi are determined, the amplitudes Ai may be calculated by least-squares.
Writing Eq. (15.19.2) vectorially for the given length-N signal yn, we have:⎡⎢⎢⎢⎢⎢⎣

y0

y1

...
yN−1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zr
...

...
...

...
zN−1

1 zN−1
2 · · · zN−1

r

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
A1

A2

...
Ar

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
v0

v1

...
vN−1

⎤⎥⎥⎥⎥⎥⎦ (15.19.14)

or, written compactly as
y = SA+ v (15.19.15)

with least-squares solution:
A = S+y = S\y (15.19.16)

The above design steps have been implemented into the MATLAB mpencil:

[z,A] = mpencil(y,r,M); % matrix pencil method

The N×r Vandermonde matrix S with matrix elements Sni = zni , for 0 ≤ n ≤ N − 1
and 1 ≤ i ≤ r, is known as a steering matrix and its individual columns as steering
vectors. It can be computed by the MATLAB function steering:

S = steering(N-1,z); % steering matrix

15.20 QR Factorization

The Gram-Schmidt orthogonalization of random variables has many uses: (a) it leads
to signal models through the innovations representation, (b) it is equivalent to linear
prediction, (c) it corresponds to the Cholesky factorization of the covariance matrix,
and (d) it provides efficient computational bases for linear estimation problems, leading
to fast solutions of normal equations via Levinson’s or Schur’s algorithms and to fast
adaptive implementations, such as adaptive Gram-Schmidt preprocessors in antenna
arrays and fast adaptive lattice filters in time-series applications.

The Gram-Schmidt orthogonalization of an (M+1)-dimensional complex-valued zero-
mean random vector y = [y0, y1, . . . , yM]T is defined by:

ε0 = y0

for m = 1,2, . . . ,M do:

εm = ym −
m−1∑
i=0

E[ε∗i ym]
E[ε∗i εi]

εi

(15.20.1)

The constructed random vector εεε = [ε0, ε1 . . . , εM]T has uncorrelated components
E[ε∗i εj]= 0, if i ≠ j. The unit lower-triangular innovations matrix B may be defined in
terms of its lower-triangular matrix elements:

bmi = E[y
∗
mεi]

E[ε∗i εi]
, 1 ≤m ≤M , 0 ≤ i ≤m− 1 (15.20.2)

838 15. SVD and Signal Processing

Then, Eq. (15.20.1) can be written as ym = εm +
∑m−1
i=0 b

∗
miεi, or expressed vectorially:

y = B∗εεε (15.20.3)

for example, ⎡⎢⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
b∗10 1 0 0
b∗20 b∗21 1 0
b∗30 b∗31 b∗32 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎦
The matrix B is the unit lower-triangular Cholesky factor of the covariance matrix of

the random vector y:

R = BDB† (15.20.4)

where R = E[y∗yT] and D = E[εεε∗εεεT]= diag{E0, E1, . . . , EM}, where Ei is the variance
of εi, that is, Ei = E[ε∗i εi].

We may work also with the random variables qi = εi/E1/2
i , i = 0,1, . . . ,M, normal-

ized to have unit variance. Then, the random vector q = [q0, q1, . . . , qM]T will have
unit covariance matrix:

q = D−1/2εεε ⇒ E[q∗qT]= I (15.20.5)

where I is the (M+1)-dimensional identity matrix. Defining the upper triangular matrix
G = D1/2B†, we note that G†G = BDB† and GT = B∗D1/2 and therefore, Eqs. (15.20.3)
and (15.20.4) can be rewritten as:

y = GTq , R = G†G (15.20.6)

In practice, we must work with sample covariance matrices estimated on the basis
of N vectors y(n), n = 0,1, . . . ,N− 1. The N×(M+1) data matrix Y constructed from
these vectors is used to obtain the sample covariance matrix:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ R̂ = Y†Y (15.20.7)

The QR-factorization factors the data matrix Y into an N×(M+1) matrix Q with
orthonormal columns and an (M+1)×(M+1) upper triangular matrix G:

Y = QG, Q†Q = I , G = upper triangular (15.20.8)

The matrix Q is obtained by the Gram-Schmidt orthogonalization of the (M+1)
columns ofY. The QR-factorization implies the Cholesky factorization of the covariance
matrix R̂. Using Q†Q = I, we have:

R̂ = Y†Y = G†Q†QG = G†G (15.20.9)

15.20. QR Factorization 839

WritingQ row-wise, we can extract the snapshot vector q(n) corresponding to y(n),
that is,

Y = QG ⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yT(0)
...

yT(n)
...

yT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT(0)
...

qT(n)
...

qT(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
G ⇒ yT(n)= qT(n)G , or,

y(n)= GTq(n) , n = 0,1, . . .N − 1 (15.20.10)

which is the same as Eq. (15.20.6).
Writing qT(n)= [q0(n), q1(n), . . . , qM(n)], the ith column of Q is the time signal

qi(n), n = 0,1, . . . ,N−1. Orthonormality in the statistical sense translates to orthonor-
mality in the time-average sense:

E[q∗qT]= I ⇒ Q†Q =
N−1∑
n=0

q∗(n)qT(n)= I (15.20.11)

or, component-wise, for i, j,= 0,1, . . . ,M:

E[q∗i qj]= δij ⇒
N−1∑
n=0

q∗i (n)qj(n)= δij (15.20.12)

In comparing the SVD versus the QR-factorization, we observe that both methods
orthogonalize the random vector y. The SVD corresponds to the KLT/PCA eigenvalue
decomposition of the covariance matrix, whereas the QR corresponds to the Cholesky
factorization. The following table compares the two approaches.

KLT/PCA Cholesky Factorization

R = E[y∗yT]= VΛV† R = E[y∗yT]= G†G = BDB†

y = V∗z = V∗Σ u y = GTq = B∗εεε
E[z∗zT]= Λ = Σ2 E[εεε∗εεεT]= D
E[u∗uT]= I E[q∗qT]= I

SVD QR

Y = UΣV† = ZV† Y = QG
R̂ = Y†Y = VΛV† = VΣ2V† R̂ = Y†Y = G†G
y(n)= V∗z(n)= V∗Σ u(n) y(n)= GTq(n)= B∗εεε(n)
N−1∑
n=0

u∗(n)uT(n)= I
N−1∑
n=0

q∗(n)qT(n)= I

840 15. SVD and Signal Processing

15.21 Canonical Correlation Analysis

Canonical correlation analysis (CCA) attempts to determine if there are any significant
correlations between two groups of random variables. It does so by finding linear com-
binations of the first group and linear combinations of the second group that are maxi-
mally correlated with each other [1237–1239,1315–1321].

Consider the two groups of random variables to be the components of two zero-
mean random vectors ya and yb of dimensions p and q. Concatenating the vectors
ya,yb into a (p+q)-dimensional vector, we have:

y =
[

ya
yb

]
, where ya =

⎡⎢⎢⎢⎢⎢⎣
ya1

ya2

...
yap

⎤⎥⎥⎥⎥⎥⎦ , yb =

⎡⎢⎢⎢⎢⎢⎣
yb1

yb2

...
ybq

⎤⎥⎥⎥⎥⎥⎦ (15.21.1)

Its covariance matrix can be expressed in the partitioned form:

R = E[y∗yT]=
[
E[y∗ayTa] E[y∗ayTb]
E[y∗byTa] E[y∗byTb]

]
=

[
Raa Rab
Rba Rbb

]
(15.21.2)

In general, the matrices Raa,Rab,Rbb are full and inspection of their entries does
not provide—especially when the matrices are large—a clear insight as to the essential
correlations between the two groups.

What should be the ideal form of R in order to bring out such essential correlations?
As an example, consider the case p = 3 and q = 2 and suppose R has the following
structure, referred to as the canonical correlation structure:

R =

⎡⎢⎢⎢⎢⎢⎢⎣
Ra1,a1 Ra1,a2 Ra1,a3 Ra1,b1 Ra1,b2

Ra2,a1 Ra2,a2 Ra2,a3 Ra2,b1 Ra2,b2

Ra3,a1 Ra3,a2 Ra3,a3 Ra3,b1 Ra3,b2

Rb1,a1 Rb1,a2 Rb1,a3 Rb1,b1 Rb1,b2

Rb2,a1 Rb2,a2 Rb2,a3 Rb2,b1 Rb2,b2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 c1 0
0 1 0 0 c2

0 0 1 0 0

c1 0 0 1 0
0 c2 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
where the random vectors are ya = [ya1, ya2, ya3]T and yb = [yb1, yb2]T, and we
denoted Rai,aj = E[y∗aiyaj], Rai,bj = E[y∗aiybj], Rbi,bj = E[y∗biybj].

This form tells us that the random variables {ya1, ya2, ya3} are mutually uncorrelated
and have unit variance, and so are the {yb1, yb2}. Moreover, between group a and group
b, the random variable ya1 is correlated only with yb1, with correlation c1 = E[y∗a1yb1],
and ya2 is correlated only with yb2, with correlation c2 = E[y∗a2yb2]. Assuming c1 ≥ c2,
the pair {ya1, yb1} will be more correlated than the pair {ya2, yb2}. The case p = 2 and
q = 3 would be:

R =

⎡⎢⎢⎢⎢⎢⎢⎣
Ra1,a1 Ra1,a2 Ra1,b1 Ra1,b2 Ra1,b3

Ra2,a1 Ra2,a2 Ra2,b1 Ra2,b2 Ra2,b3

Rb1,a1 Rb1,a2 Rb1,b1 Rb1,b2 Rb1,b3

Rb2,a1 Rb2,a2 Rb2,b1 Rb2,b2 Rb2,b3

Rb3,a1 Rb3,a2 Rb3,b1 Rb3,b2 Rb3,b3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 c1 0 0
0 1 0 c2 0

c1 0 1 0 0
0 c2 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

15.21. Canonical Correlation Analysis 841

Thus, the canonical structure, having a diagonal submatrix Rab, describes the corre-
lations between a and b in their clearest form. The goal of CCA is to bring the general
covariance matrix R of Eq. (15.21.2) into such a canonical form. This is accomplished
by finding appropriate linear transformations that change the bases ya and yb into the
above form.

One may start by finding p- and q-dimensional vectors a,b such that the linear com-
binations wa = aTya and wb = bTyb are maximally correlated, that is, finding a,b that
maximize the normalized correlation coefficient:

c = E[w∗awb]√
E[w∗awa]E[w∗bwb]

= max (15.21.3)

Noting that E[w∗awb]= a†Rabb, E[w∗awa]= a†Raaa, and E[w∗bwb]= b†Rbbb, the
above criterion becomes:

c = a†Rabb√
(a†Raaa)(b†Rbbb)

= max (15.21.4)

We may impose the constraints that wa,wb have unit variance, that is, E[w∗awa]=
a†Raaa = 1 and E[w∗bwb]= b†Rbbb = 1. Then, the equivalent criterion reads:

c = a†Rabb = max , subject to a†Raaa = 1 , b†Rbbb = 1 (15.21.5)

This is reminiscent of the maximization criterion for singular values that we dis-
cussed in Sec. 15.5. To recast (15.21.5) into that form, we first change into a basis in
which the group random vectors have unit covariance matrix. Performing the full SVDs
of Raa and Rbb, we set:

Raa = UaΛaV†a = VaΣ2
aV

†
a , Ua = Va , Σa = Λ1/2

a , V†aVa = Ip
Rbb = UbΛbV†b = VbΣ2

bV
†
b , Ub = Vb , Σb = Λ1/2

b , V†bVb = Iq
(15.21.6)

These are essentially the eigenvalue decompositions of the hermitian positive defi-
nite matrices Raa,Rbb. We assume that Σa,Σb are non-singular, that is, Raa,Rbb have
full rank. Then, we define the transformed random vectors and corresponding cross-
correlation matrix:

ua = Σ−1
a VTaya

ub = Σ−1
b V

T
byb

⇒ Cab = E[u∗auTb]= Σ−1
a V†aRabVbΣ

−1
b (15.21.7)

In this basis, E[u∗auTa]= Σ−1
a V

†
aRaaVaΣ−1

a = Σ−1
a V

†
aVaΣ2

aV
†
aVaΣ−1

a = Ip, and simi-
larly, E[u∗buTb]= Iq. The transformed covariance matrix will be:

u =
[

ua
ub

]
⇒ Ruu = E[u∗uT]=

[
E[u∗auTa] E[u∗auTb]
E[u∗buTa] E[u∗buTb]

]
=

[
Ip Cab
C†ab Iq

]

An alternative method of obtaining unit-covariance bases is to use the Cholesky
factorization. For example, we may set Raa = G†aGa, where Ga is upper triangular, and
define ua = G−Ta ya.

842 15. SVD and Signal Processing

Having transformed to a new basis, we also transform the coefficients a,b so that
wa,wb are expressed as linear combinations in the new basis:

fa = ΣaV†aa ⇒ a = VaΣ−1
a fa ⇒ wa = aTya = fTaua

fb = ΣbV†bb ⇒ b = VbΣ−1
b fb ⇒ wb = bTyb = fTbub

(15.21.8)

Similarly, we have:

E[w∗awa]= a†Raaa = f†aΣ−1
a V

†
aRaaVaΣ−1

a fa = f†afa

E[w∗bwb]= b†Rbbb = f†bΣ
−1
b V

†
bRbbVbΣ

−1
b fb = f†bfb

E[w∗awb]= a†Rabb = f†aΣ−1
a V

†
aRabVbΣ−1

b fb = f†aCabfb

(15.21.9)

Then, the criterion (15.21.5) may be expressed as an SVD maximization criterion in
the new basis:

c = f†aCabfb = max , subject to f†afa = f†bfb = 1 (15.21.10)

It follows from Eq. (15.5.17) that the solution is c = c1, the maximum singular value
ofCab, and the vectors fa, fb are the first singular vectors. The remaining singular values
of Cab are the lower maxima of (15.21.10) and are obtained subject to the orthogonality
constraints of Eq. (15.5.18).

Thus, the desired canonical correlation structure is derived from the SVD of the ma-
trix Cab. The singular values of Cab are called the canonical correlations. The following
procedure will construct all of them. Start with the full SVD of Cab:

Cab = FaCF†b , C = diag{c1, c2 . . . , cr} ∈ Cp×q (15.21.11)

where c1 ≥ c2 ≥ · · · ≥ cr > 0 and r = min(p, q) (full rank case), and Fa, Fb are unitary
matrices, that is, F†aFa = FaF†a = Ip and F†bFb = FbF†b = Iq. Then, construct the CCA
coefficient matrices:

A = VaΣ−1
a Fa = [a1, a2, . . . , ap]= p×p matrix

B = VbΣ−1
b Fb = [b1,b2, . . . ,bq]= q×q matrix

(15.21.12)

The coefficient matrices A,B transform the basis ya,yb directly into the canonical cor-
relation basis. We define:

wa = ATya

wb = BTyb
⇒ w =

[
wa
wb

]
=

[
AT 0
0 BT

][
ya
yb

]
(15.21.13)

Then, the corresponding covariance matrix will be:

Rww = E[w∗wT]=
[
E[w∗

awTa] E[w∗
awTb]

E[w∗
bwTa] E[w∗

bwTb]

]
=

[
A†RaaA A†RabB
B†RbaA B†RbbB

]
(15.21.14)

By construction, we have A†RaaA = Ip, A†RabB = C, and B†RbbB = Iq. Thus, we
obtain the canonical correlation structure:

15.21. Canonical Correlation Analysis 843

Rww = E[w∗wT]=
[
E[w∗

awTa] E[w∗
awTb]

E[w∗
bwTa] E[w∗

bwTb]

]
=

[
Ip C
C† Iq

]
(15.21.15)

The canonical correlations and canonical random variables are obtained from the
columns of A,B by the linear combinations:

ci = E[w∗aiwbi] , wai = aTi ya , wbi = bTi yb , i = 1,2, . . . , r (15.21.16)

The MATLAB function ccacov.m takes as input a (p+q)×(p+q) covariance ma-
trix R and computes the coefficient matrices A,B and canonical correlations C, using
Eqs. (15.21.6), (15.21.7), and (15.21.12). It has usage:

[A,C,B] = ccacov(R,p); % CCA of a covariance matrix

Next, we consider the practical implementation of CCA based on N observations
ya(n),yb(n), n = 0,1, . . . ,N−1. We form the N×p and N×q data matrices, as well as
the concatenated N×(p+q) data matrix:

Ya =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTa(0)
...

yTa(n)
...

yTa(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Yb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yTb(0)
...

yTb(n)
...

yTb(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y = [Ya,Yb] (15.21.17)

We assume that the column means have been removed from Y. The corresponding
sample covariance matrices are then:

R̂ = Y†Y =
⎡⎣Y†aYa Y†aYb
Y†bYa Y†bYb

⎤⎦ = [
R̂aa R̂ab
R̂ba R̂bb

]
(15.21.18)

We may obtain the CCA transformation matrices A,B by applying the previous con-
struction to R̂. However, a more direct approach is as follows. Starting with the economy
SVDs of Ya and Yb, we have:

Ya = UaΣaV†a = economy SVD of Ya , Ua ∈ CN×p , U†aUa = Ip
Yb = UbΣbV†b = economy SVD of Yb , Ub ∈ CN×q , U†bUb = Iq
Cab = U†aUb = cross-covariance in u-basis , Cab ∈ Cp×q
Cab = FaCF†b = full SVD , C = diag{c1, c2 . . . , cr} , r = min(p, q)

A = VaΣ−1
a Fa = CCA coefficients , A ∈ Cp×p

B = VbΣ−1
b Fb = CCA coefficients , B ∈ Cq×q

Wa = YaA , Wa ∈ CN×p with orthonormal columns, W†
aWa = Ip

Wb = YbB , Wb ∈ CN×q with orthonormal columns, W†
bWb = Iq

W†
aWb = C = p×q diagonal matrix of canonical correlations

(15.21.19)

844 15. SVD and Signal Processing

The transformed data matrices Wa,Wb and W = [Wa,Wb] have the canonical cor-
relation structure:

W†W =
⎡⎣W†

aWa W†
aWb

W†
bWa W†

bWb

⎤⎦ = [
Ip C
C† Iq

]
(15.21.20)

Denoting the ith columns ofWa,Wb bywai(n),wbi(n), n = 0,1, . . . ,N−1, we note
that they have unit norm as N-dimensional vectors, and the ith canonical correlation is
given by the time-average:

ci =
N−1∑
n=0

w∗ai(n)wbi(n) , i = 1,2, . . . , r (15.21.21)

The above steps have been implemented by the MATLAB function cca. It takes as
inputs the data matrices Ya,Yb and outputs A,B,C. Its usage is as follows:

[A,C,B] = cca(Ya,Yb); % CCA of two data matrices

Example 15.21.1: As an example, consider again the turtle data in the file turtle.dat. We take
Ya,Yb to be the (N = 24) measured lengths and widths of the male (group a) and female
(group b) turtles. The data are shown below:

Ya Yb

n ya1 ya2 yb1 yb2

1 93 74 98 81
2 94 78 103 84
3 96 80 103 86
4 101 84 105 86
5 102 85 109 88
6 103 81 123 92
7 104 83 123 95
8 106 83 133 99
9 107 82 133 102
10 112 89 133 102
11 113 88 134 100
12 114 86 136 102

Ya Yb

n ya1 ya2 yb1 yb2

13 116 90 137 98
14 117 90 138 99
15 117 91 141 103
16 119 93 147 108
17 120 89 149 107
18 120 93 153 107
19 121 95 155 115
20 123 93 155 117
21 127 96 158 115
22 128 95 159 118
23 131 95 162 124
24 135 106 177 132

After removing the columns means, the computed sample covariance matrix is:

R̂ = Y†Y =
⎡⎣ Y†aYa Y†aYb
Y†bYa Y†bYb

⎤⎦ = 103

⎡⎢⎢⎢⎢⎣
3.1490 1.8110 5.5780 3.3785
1.8110 1.1510 3.1760 1.9495

5.5780 3.1760 10.3820 6.2270
3.3785 1.9495 6.2270 3.9440

⎤⎥⎥⎥⎥⎦
The computed CCA coefficients and canonical correlations are:

A =
[

0.0191 0.0545
−0.0023 −0.0955

]
, B =

[
0.0083 0.0418
0.0026 −0.0691

]

C =
[
c1 0
0 c2

]
=

[
0.9767 0

0 0.1707

]

15.21. Canonical Correlation Analysis 845

The correlation structure in the transformed basisW = [Wa,Wb] is:

W†W =
⎡⎣W†

aWa W†
aWb

W†
bWa W†

bWb

⎤⎦ =
⎡⎢⎢⎢⎢⎣

1 0 0.9767 0
0 1 0 0.1707

0.9767 0 1 0
0 0.1707 0 1

⎤⎥⎥⎥⎥⎦
The first columns of Wa,Wb are the most correlated. They are obtained as the following
linear combinations of the columns of Ya,Yb:

wa1(n)= 0.0191ya1(n)−0.0023ya2(n)

wb1(n)= 0.0083yb1(n)+0.0026yb2(n)
⇒

N−1∑
n=0

wa1(n)wb1(n)= c1 = 0.9767

where the linear combination coefficients are the first columns of A,B. The following
MATLAB code implements this example:

D = loadfile(’turtle.dat’); % read data file

Ya = zmean(D(:,1:2)); % extract columns 1,2 and remove their mean

Yb = zmean(D(:,4:5)); % extract columns 4,5 and remove their mean

[A,C,B] = cca(Ya,Yb);

Y = [Ya,Yb]; Ryy = Y’*Y; % correlated basis

Wa = Ya*A; Wb = Yb*B;
W = [Wa,Wb]; Rww = W’*W; % canonical correlation basis

The quantities A,B,C could also be obtained by the function ccacov applied to R = Y†Y
with p = 2. Once the coefficients A,B are known, the data matrices Ya,Yb may be trans-
formed toWa,Wb. ��

Finally, we mention that CCA is equivalent to the problem of finding the canonical
angles between two linear subspaces. Consider the two subspaces of CN spanned by the
columns of Ya and Yb. The economy SVDs of Ya,Yb provide orthonormal bases Ua,Ub
for these subspaces.

The canonical angles between the two subspaces are defined [1234,1320,1321] in
terms of the singular values of the matrixU†aUb, but these are the canonical correlations.
The cosines of the canonical angles are the canonical correlations:

ci = cosθi , i = 1,2 . . . , r = min(p, q) (15.21.22)

The largest angle corresponds to the smallest singular value, that is, cosθmax =
cmin = cr . This angle (in radians) is returned by the built-in MATLAB function subspace,
that is,

th_max = subspace(Ya,Yb);

846 15. SVD and Signal Processing

15.22 Problems

15.1 SVD construction. Consider the following 5×3 matrix, where ε is a small positive parameter:

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
1+ 3ε 1 1

1 1 1
1 1+ 3ε 1
1 1 1
1 1 1+ 3ε

⎤⎥⎥⎥⎥⎥⎥⎦
a. Construct the economy SVD of Y, in the form, Y = UΣVT .

b. Show that the rank-1 and rank-2 approximations to Y are given by:

Y1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1+ ε 1+ ε 1+ ε

1 1 1
1+ ε 1+ ε 1+ ε

1 1 1
1+ ε 1+ ε 1+ ε

⎤⎥⎥⎥⎥⎥⎥⎦ , Y2 =

⎡⎢⎢⎢⎢⎢⎢⎣
1+ ε 1+ ε 1+ ε

1 1 1
1+ ε 1+ 2.5ε 1− 0.5ε

1 1 1
1+ ε 1− 0.5ε 1+ 2.5ε

⎤⎥⎥⎥⎥⎥⎥⎦
c. Verify the results of parts (a-b) numerically for the value ε = 0.1.

Hint: Note the following matrix has eigenvalues and normalized eigenvectors:

R =
⎡⎢⎣ R0 R1 R1

R1 R0 R1

R1 R1 R0

⎤⎥⎦ ⇒
⎡⎢⎣ λ1

λ2

λ3

⎤⎥⎦ =
⎡⎢⎣ R0 + 2R1

R0 −R1

R0 −R1

⎤⎥⎦ , V =
⎡⎢⎣ 1/

√
3 0 2/

√
6

1/
√

3 1/
√

2 −1/
√

6
1/
√

3 −1/
√

2 −1/
√

6

⎤⎥⎦
15.2 Computer Experiment – Southern Oscillation Index. It has been observed that in the southern

Pacific there occurs regularly an upwelling of large masses of lower-level colder water which
has important implications for marine life and coastal weather. This effect, which is variable
on a monthly and yearly basis, has been termed El Niño. It has been held responsible for
many strange global weather effects in the past decades.

One measure of the variability of this effect is the so-called southern oscillation index (SOI)
which is the atmospheric pressure difference at sea level between two standard locations in
the Pacific, namely, Tahiti and Darwin, Australia. This data exhibits a strong 40–50 month
cycle and a weaker 10–12 month cycle.

The SOI data, spanning the years 1920–1992, are in the included file soi2.dat. The monthly
data must be concatenated, resulting into a long one-dimensional time series y(n) and the
mean must be removed. (The concatenation can be done by the following MATLAB com-
mands: assuming that Y is the data matrix whose rows are the monthly data for each year,
then redefine Y=Y’; and set y = Y(:);)

a. It is desired to fit an AR model to this data, plot the AR spectrum, and identify the
spectral peaks. Starting with model orderM = 15, calculate the ordinary Burg estimate
of the prediction-error filter , say ab.

b. Form the order-M autocorrelation and forward/backward data matrices Y, perform an
SVD, and plot the principal component variances as percentages of the total variance.
You will observe that beyond the 5th principal component, the variances flatten out,
indicating that the dimension of the signal subspace can be taken to be of the order
of r = 5–9.

Start with the choice r = 8 and perform K = 1 and K = 3 rank-r enhancement
operations on the data matrix, as expressed symbolically in MATLAB language:

15.22. Problems 847

Y = datamat(y,M,type) % type = 0 or 2
Ye = Y; % initialize SVD iterations
for i=1:K,

Ye = sigsub(Ye,r) % rank-r signal subspace
Ye = toepl(Ye,type) % type = 0 or 2

end
ye = datasig(Ye,type) % extract enhanced signal from Ye

c. Using the enhanced data matrix Ye, calculate the least-squares prediction error filter,
aLS, by solving Yea = 0.

d. From the extracted enhanced signal ye(n), calculate the corresponding order-r Burg
estimate of the prediction-error filter, say ae. (You could also do an order-M Burg
estimate from ye(n), but the order-r choice is more appropriate since r is the assumed
dimension of the signal subspace.)

e. Calculate and plot in dB the AR spectra of the three prediction filters, ab, aLS, ae.
Normalize each spectrum to unity maximum.

Identify the frequency of the highest peak in each spectrum and determine the corre-
sponding period of the cycle in months. Identify also the frequency and period of the
secondary peak that would represent the 10–12 month cycle.

f. Repeat the steps (a)–(e) for the following values of the parameters: For M = 4, r = 3,
K = 1,3. And then, for M = 15, r = 5,6,7,9, and K = 1,3. Moreover, do both the
autocorrelation and forward-backward versions of the data matrices. Some example
graphs are shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

45

pe
rc

en
t

PC index

 PC variances, M=15

0 0.05 0.1 0.15 0.2 0.25 0.3
−50

−40

−30

−20

−10

0

10

sp
ec

tr
u

m
 in

 d
B

f [cycles/sample]

 M=15, r=8, K=3

 enhanced Burg
 enhanced LSQ
 standard Burg

15.3 Computer Experiment – Sunspot Numbers. The Wolf sunspot numbers are of great historical
importance in the development of spectral analysis methods (periodogram and parametric).
Sunspot activity is cyclical and variation in the sunspot numbers has been correlated with
weather and other terrestrial phenomena of economic significance. There is a strong 10-11
year cycle.

The observed yearly number of sunspots over the period 1700–2004 can be obtained from
the course’s web page. The mean of this data must be removed.

a. It is desired to fit an AR model to this data, plot the AR spectrum, and identify the
dominant peak corresponding to the 10–11 year cycle.

b. Perform the steps (a)–(e) as described in Problem 15.2 for the following values of the
parameters: M = 10, r = 2,3,4, K = 1,3. Try also the simpler case M = 3, r = 2,
K = 1,3. Some example graphs are shown below.

848 15. SVD and Signal Processing

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

pe
rc

en
t

PC index

 PC variances, M=10

0 0.05 0.1 0.15 0.2 0.25 0.3
−50

−40

−30

−20

−10

0

10

sp
ec

tr
u

m
 in

 d
B

f [cycles/sample]

 M=10, r=2, K=1

 enhanced Burg
 enhanced LSQ
 standard Burg

15.4 Computer Experiment – PCA analysis of Olympic Track Records. Please read reference [1309]
on applying PCA to the 1984 Olympic track records. The attached files, olymp1.dat, olymp2.dat,
contain the women’s and men’s track data in a form that can be read by the function load-

file.m.

Read the data files into the 55×7 and 55×8 data matricesY1 andY2 and remove their column
means using the function zmean.

a. For the women’s data matrix Y1, plot the scatterplot of the 100-meter and 200-meter
columns (after removing their mean). Notice that they lie mostly along a one-dimensional
subspace. Perform a PCA on these two columns and determine the percentage vari-
ances carried by the two principal components. On the scatterplot, place the two
straight lines representing the two principal components, as was done in Fig.16.16.1
of the text.

b. Repeat part (a) for the following track pairs:

(100m, 800m), (100m,3000m), (100m, Marathon), (3000m, Marathon)

Comment on the observed clustering of the data points along one-dimensional direc-
tions. Do these make intuitive sense? For example, is a good 100m-sprinter also a
good marathoner, or, is a good 100m-sprinter also a good 200m-sprinter?

c. Next, consider the full data matrix Y1. Working with the SVD of Y1, perform a PCA on
it and determine, print in a table, and plot the percentage variances of the principal
components. Then, determine the PCA coefficients of the first two principal compo-
nents and compare them with those given in the attached paper. Based on the first
component determine the countries that correspond to the top 15 scores. (Hint: use
the MATLAB function sort.)

d. Repeat part (c) using the men’s data matrix Y2.

e. Next, combine the women’s and men’s data matrices into a single matrix by concate-
nating their columns, that is, Y = [Y1, Y2]. Carry out a PCA on Y and determine,
print in a table, and plot the percentage variances. Determine the PCA coefficients of
the first principal component. Then, determine the top 15 countries. Finally, make a
table like the one below that presents the results of parts (c,d,e). Some representative
graphs and results are included below.

rank women men women + men
--
1 USA USA USA

15.22. Problems 849

2 USSR GB & NI USSR
3 GDR Italy GDR
4 GB & NI USSR GB & NI
5 FRG GDR FRG
6 Czechoslovakia FRG Italy
7 Canada Australia Canada
8 Poland Kenya Poland
9 Italy France Czechoslovakia
10 Finland Belgium Australia
11 Australia Poland Finland
12 Norway Canada France
13 New Zealand Finland New Zealand
14 Netherlands Switzerland Sweden
15 Romania New Zealand Netherlands

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

100 m

20
0

m

 data
 PCA

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

3000 m

m
ar

at
h

on

 data
 PCA

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

PCA variances, σ
i
2 − women

PCA index

pe
rc

en
t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

20

40

60

80

100

PCA variances, σ
i
2 − women + men

PCA index

pe
rc

en
t

16
Adaptive Filters

16.1 Adaptive Implementation of Wiener Filters

We review briefly the solution of the Wiener filtering problem.

The general solution does not place any a priori restriction on the order of the Wiener filter. In
general, an infinite number of weights is required to achieve the lowest estimation error. However,
in adaptive implementations we must insist in advance that the number of filter weights be finite.
This is so because the adaptation algorithm adapts each weight individually. Obviously, we cannot
adapt an infinite number of weights. We will assume then, that the optimal Wiener filter is an FIR
filter, say withM + 1 weights

h = [h0, h1, h2, . . . , hM]T , H(z)= h0 + h1z−1 + h2z−2 + · · · + hMz−M

This filter processes the available observations yn to produce the estimate

x̂n =
M∑
m=0

hmyn−m = h0yn + h1yn−1 + h2yn−2 + · · · + hMyn−M

The weights hm are chosen optimally so that the mean-square estimation error is minimized;
that is,

E = E[e2
n]= min , en = xn − x̂n

This minimization criterion leads to the orthogonality equations, which are the determining
equations for the optimal weights. Writing the estimate in vector notation

x̂n = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ = hTy(n)

16.1. Adaptive Implementation of Wiener Filters 851

we may write the orthogonality equations as

E[enyn−m]= 0 , 0 ≤m ≤M

or, equivalently,
E[eny(n)]= 0

These give the normal equations

E[(xn − x̂n)y(n)]= E
[(
xn − hTy(n)

)
y(n)

] = 0 , or,

E[y(n)y(n)T]h = E[xny(n)] , or,

Rh = r , R = E[y(n)y(n)T] , r = E[xny(n)]

The optimal weights are obtained then by

h = R−1r (16.1.1)

The corresponding minimized value of the estimation error is computed by

E = E[e2
n]= E

[
en

(
xn − hTy(n)

)] = E[enxn]= E[(
xn − hTy(n)

)
xn

]
= E[x2

n]−hTE[y(n)xn]= E[x2
n]−hTr = E[x2

n]−rTR−1r

The normal equations, and especially the orthogonality equations, have their usual correlation
canceling interpretations. The signal xn being estimated can be written as

xn = en + x̂n = en + hTy(n)

It is composed of two parts, the term en which because of the orthogonality equations is
entirely uncorrelated with y(n), and the second term, which is correlated with y(n). In effect,
the filter removes from xn any part of it that is correlated with the secondary input y(n); what is
left, en, is uncorrelated with y(n). The Wiener filter acts as a correlation canceler. If the primary
signal xn and the secondary signal y(n) are in any way correlated, the filter will cancel from the
output en any such correlations.

One difficulty with the above solution is that the statistical quantitiesR and r must be known,
or at least estimated, in advance. This can be done either by block processing or adaptive process-
ing methods. The principal advantages of block processing methods are that the design is based
on a single, fixed, data record and that the length of the data record may be very short. Thus,
such methods are most appropriate in applications where the availability of data is limited, as for
example, in parametric spectrum estimation based on a single block of data, or in deconvolution
applications where the data to be deconvolved are already available, for example, a still distorted
picture or a recorded segment of a seismic response.

Availability of data, however, is not the only consideration. In a changing environment, even if
more data could be collected, it may not be correct to use them in the design because stationarity
may not be valid for the longer data block. Block processing methods can still be used in such
cases, but the optimum filters must be redesigned every time the environment changes, so that
the filter is always matched to the data being processed by it. This is, for example, what is done
in speech processing. The input speech signal is divided into fairly short segments, with each
segment assumed to arise from a stationary process, then the statistical correlations are estimated
by sample correlations and the optimal prediction coefficients corresponding to each segment
are computed. In a sense, this procedure is data-adaptive, but more precisely, it is block-by-block
adaptive.

852 16. Adaptive Filters

In other applications, however, we do not know how often to redesign and must use adaptive
implementations that provide an automatic way of redesigning the optimum processors to con-
tinually track the environment. For example, communications and radar antennas are vulnerable
to jamming through their sidelobes. Adaptive sidelobe cancelers continuously adjust themselves
to steer nulls toward the jammers even when the jammers may be changing positions or new
jammers may be coming into play. Another example is the equalization of unknown or changing
channels, or both. In switched telephone lines the exact transmission channel is not known in
advance but is established at the moment the connection is made. Similarly, in fading commu-
nications channels the channel is continuously changing. To undo the effects of the channel,
such as amplitude and phase distortions, an equalizer filter must be used at the receiving end
that effectively acts as an inverse to the channel. Adaptive equalizers determine automatically
the characteristics of the channel and provide the required inverse response. Other applications,
well-suited to adaptive implementations, are noise canceling, echo canceling, linear prediction
and spectrum estimation, and system identification and control.

In this chapter we discuss several adaptation algorithms, such as the Widrow-Hoff least mean
square (LMS) algorithm, the conventional recursive least squares (RLS) algorithm, the fast RLS
algorithms, and the adaptive lattice algorithms and present some of their applications [1341–
1349]. A typical adaptive implementation of a Wiener filter is depicted in Fig. 16.1.1.

Fig. 16.1.1 Adaptive Wiener filter.

The adaptation algorithm continuously monitors the output error signal en and attempts to
minimize the output power E[e2

n], or, equivalently tries to decorrelate en from the secondary
input yn. At each time instant n, the current values of the weights are used to perform the
filtering operation. The computed output en is then used by the adaptation part of the algorithm
to change the weights in the direction of their optimum values. As processing of the input signals
xn and yn takes place and the filter gradually learns the statistics of these inputs, its weights
gradually converge to their optimum values given by the Wiener solution (16.1.1). Clearly, the
input statistics must remain unchanged for at least as long as it takes the filter to learn it and
converge to its optimum configuration. If, after convergence, the input statistics should change,
the filter will respond by readjusting its weights to their new optimum values, and so on. In other
words, the adaptive filter will track the non-stationary changes of the input statistics as long as
such changes occur slowly enough for the filter to converge between changes. The three basic
issues in any adaptive implementation are:

1. The learning or convergence speed of the algorithm.
2. The computational complexity of the algorithm.
3. The numerical accuracy and stability of the algorithm.

The convergence speed is an important factor because it determines the maximum rate of
change of the input non-stationarities that can be usefully tracked by the filter. The computa-

16.2. Correlation Canceler Loop (CCL) 853

tional complexity refers to the number of operations required to update the filter from one time
instant to the next. The table below shows how various adaptive algorithms fare under these
requirements.

algorithm speed complexity stability

LMS slow simple stable

RLS fast complex stable

Fast RLS fast simple unstable

Lattice fast simple stable

Only adaptive lattice algorithms satisfy all three requirements. We will discuss these algo-
rithms in detail later on. In the next section we begin with the LMS algorithm because it is the
simplest and most widely used. We finish this section with the obvious remark that adaptive or
block processing optimal filter designs, regardless of type, cannot do any better than the the-
oretical Wiener solution. The optimal filter, therefore, should be first analyzed theoretically to
determine if it is worth using it in the application at hand.

16.2 Correlation Canceler Loop (CCL)

To illustrate the basic principles behind adaptive filters, consider the simplest possible filter, that
is, a filter with only one weight

The weight h must be selected optimally so as to produce the best possible estimate of xn :

x̂n = hyn
The estimation error is expressed as

E = E[e2
n]= E

[
(xn − hyn)2)

] = E[x2
n]−2hE[xnyn]+E[y2

n]h2

= E[x2
n]−2hr +Rh2

(16.2.1)

The minimization condition is

∂E
∂h

= 2E
[
en
∂en
∂h

]
= −2E[enyn]= −2r + 2Rh = 0 (16.2.2)

which gives the optimum solution hopt = R−1r, and also shows the correlation cancellation
condition E[enyn]= 0. The adaptive implementation is based on solving the equation

∂E
∂h

= 0 (16.2.3)

iteratively, using a gradient-descent method. The dependence of the error E on the filter param-
eter h is parabolic, with an absolute minimum occurring at the above optimal value hopt = R−1r.

854 16. Adaptive Filters

This is shown below

In the adaptive version, the filter parameter h is made time-dependent, h(n), and is updated from
one time instant to the next as follows

h(n+ 1)= h(n)+Δh(n) (16.2.4)

whereΔh(n) is a correction term that must be chosen properly in order to ensure that eventually
the time-varying weight h(n) will converge to the optimal value:

h(n)→ hopt = R−1r as n→∞
The filtering operation is now given by the still linear but time non-invariant form

x̂n = h(n)yn (16.2.5)

The computation of the estimate at the next time instant should be made with the new weight,
that is,

x̂n+1 = h(n+ 1)yn+1

and so on. The simplest way to choose the correction term Δh(n) is the gradient-descent, or
steepest-descent, method. The essence of the method is this: It is required that the change
h → h + Δh must move the performance index closer to its minimum than before, that is, Δh
must be such that

E(h+Δh)≤ E(h)
Therefore, if we always demand this, the repetition of the procedure will lead to smaller and

smaller values of E until the smallest value has been attained. Assuming that Δh is sufficiently
small, we may expand to first order and obtain the condition

E(h)+Δh ∂E(h)
∂h

≤ E(h)
IfΔh is selected as the negative gradient −μ(∂E/∂h) then this inequality will be guaranteed,

that is, if we choose

Δh = −μ ∂E(h)
∂h

(16.2.6)

then the inequality is indeed satisfied:

E(h)+Δh ∂E(h)
∂h

= E(h)−μ
∣∣∣∣∣∂E(h)∂h

∣∣∣∣∣
2

≤ E(h)

The adaptation parameter μ must be small enough to justify keeping only the first-order
terms in the above Taylor expansion. Applying this idea to our little adaptive filter, we choose
the correction Δh(n) according to Eq. (16.2.6), so that

h(n+ 1)= h(n)+Δh(n)= h(n)−μ ∂E
(
h(n)

)
∂h

(16.2.7)

16.3. The Widrow-Hoff LMS Adaptation Algorithm 855

Using the expression for the gradient
∂E(h)
∂h

= −2r + 2Rh, we find

h(n+ 1) = h(n)−μ[−2r + 2Rh(n)
]

= (1− 2μR)h(n)+2μr

This difference equation may be solved in closed form. For example, using z-transforms with
any initial conditions h(0), we find

h(n)= hopt + (1− 2μR)n(h(0)−hopt) (16.2.8)

where hopt = R−1r. The coefficient h(n) will converge to its optimal value hopt, regardless of the
starting value h(0), provided μ is selected such that

|1− 2μR| < 1

or, −1 < 1−2μR < 1, or since μmust be positive (to be in the negative direction of the gradient),
μ must satisfy

0 < μ <
1

R
(16.2.9)

To select μ, one must have some a priori knowledge of the magnitude of the input variance
R = E[y2

n]. Such choice for μ will guarantee convergence, but the speed of convergence is
controlled by how close the number 1 − 2μR is to one. The closer it is to unity, the slower the
speed of convergence. As μ is selected closer to zero, the closer 1−2μRmoves towards one, and
thus the slower the convergence rate. Thus, the adaptation parameter μ must be selected to be
small enough to guarantee convergence but not too small to cause a very slow convergence.

16.3 The Widrow-Hoff LMS Adaptation Algorithm

The purpose of the discussion in Sec. 16.2 was to show how the original Wiener filtering problem
could be recast in an iterative form. From the practical point of view, this reformulation is still not
computable since the adaptation of the weights requires a priori knowledge of the correlations
R and r. In the Widrow-Hoff algorithm the above adaptation algorithm is replaced with one that
is computable [1341,1342]. The gradient that appears in Eq. (16.2.7)

h(n+ 1)= h(n)−μ ∂E
(
h(n)

)
∂h

is replaced by an instantaneous gradient by ignoring the expectation instructions, that is, the
theoretical gradient

∂E(
h(n)

)
∂h

= −2E[enyn]= −2r + 2Rh(n)= −2E[xnyn]+2E[y2
n]h(n)

is replaced by
∂E
∂h

= −2enyn = −2
(
xn − h(n)yn

)
yn = −2xnyn + 2y2

nh(n) (16.3.1)

so that the weight-adjustment algorithm becomes

h(n+ 1)= h(n)+2μenyn (16.3.2)

In summary, the required computations are done in the following order:

1. At time n, the filter weight h(n) is available.

856 16. Adaptive Filters

2. Compute the filter output x̂n = h(n)yn.

3. Compute the estimation error en = xn − x̂n.

4. Compute the next filter weight h(n+ 1)= h(n)+2μenyn.

5. Go to next time instant n→ n+ 1.

The following remarks are in order:

1. The output error en is fed back and used to control the adaptation of the filter weight
h(n).

2. The filter tries to decorrelate the secondary signal from the output en. This, is easily
seen as follows: If the weight h(n) has more or less reached its optimum value, then
h(n+ 1)� h(n), and the adaptation equation implies also approximately that enyn � 0.

3. Actually, the weight h(n) never really reaches the theoretical limiting value hopt = R−1r.
Instead, it stabilizes about this value, and continuously fluctuates about it.

4. The approximation of ignoring the expectation instruction in the gradient is known as
the stochastic approximation. It complicates the mathematical aspects of the problem
considerably. Indeed, the difference equation

h(n+ 1)= h(n)+2μenyn = h(n)+2μ
(
xn − h(n)yn

)
yn

makes h(n) depend on the random variable yn in highly nonlinear fashion, and it is very
difficult to discuss even the average behavior of h(n).

5. In discussing the average behavior of the weight h(n), the following approximation is
typically (almost invariably) made in the literature

E
[
h(n+ 1)

] = E[
h(n)

]+ 2μE
[
xnyn

]− 2μE
[
h(n)y2

n
]

= E[
h(n)

]+ 2μE
[
xnyn

]− 2μE
[
h(n)

]
E
[
y2
n
]

= E[
h(n)

]+ 2μr − 2μE
[
h(n)

]
R

where in the last term, the expectation E
[
h(n)

]
was factored out, as though h(n) were

independent of yn. With this approximation, the average E
[
h(n)

]
satisfies the same dif-

ference equation as before with solution given by Eq. (16.2.8). Typically, the weight h(n)
will be fluctuating about the theoretical convergence curve as it converges to the optimal
value, as shown below

After convergence, the adaptive weight h(n) continuously fluctuates about the Wiener
solution hopt. A measure of these fluctuations is the mean-square deviation of h(n) from

hopt, that is, E
[(
h(n)−hopt

)2]
. Under some restrictive conditions, this quantity has been

calculated [1350] to be

E
[(
h(n)−hopt

)2]→ μEmin (for large n)

16.3. The Widrow-Hoff LMS Adaptation Algorithm 857

where Emin is the minimized value of the performance index (16.2.1). Thus, the adaptation
parameter μ controls the size of these fluctuations. This gives rise to the basic trade-off of
the LMS algorithm: to obtain high accuracy in the converged weights (small fluctuations),
a small value of μ is required, but this will slow down the convergence rate.

A realization of the CCL is shown in Fig. 16.3.1. The filtering part of the realization must be
clearly distinguished from the feedback control loop that performs the adaptation of the filter
weight.

Fig. 16.3.1 Correlation canceler loop.

Historically, the correlation canceler loop was introduced in adaptive antennas as a sidelobe
canceler [1351–1356] The CCL is the simplest possible adaptive filter, and forms the elementary
building block of more complicated, higher-order adaptive filters.

We finish this section by presenting a simulation example of the CCL loop. The primary signal
xn was defined by

xn = −0.8yn + un
where the first term represents that part of xn which is correlated with yn. The part un is not
correlated with yn. The theoretical value of the CCL weight is found as follows:

r = E[xnyn]= −0.8E[ynyn]+E[unyn]= −0.8R+ 0 ⇒ hopt = R−1r = −0.8

The corresponding output of the CCL will be x̂n = hoptyn = −0.8yn, and therefore it will com-
pletely cancel the first term of xn leaving at the output en = xn − x̂n = un.

In the simulation we generated 1000 samples of a zero-mean white-noise signal yn of variance
0.1, and another independent set of 1000 samples of a zero-mean white-noise signal un also of
variance 0.1, and computed xn. The adaptation algorithm was initialized, as is usually done, to
zero initial weight h(0)= 0. Fig. 16.3.2 shows the transient behavior of the adaptive weight h(n),
as well as the theoretical weight E

[
h(n)

]
, as a function of the number of iterations n, for the two

values of μ, μ = 0.03 and μ = 0.01.
Note that in both cases, the adaptive weight converges to the theoretical value hopt = −0.8,

and that the smaller μ is slower but the fluctuations are also smaller. After the adaptive weight
has reached its asymptotic value, the CCL begins to operate optimally, removing the correlated
part of xn from the output en.

858 16. Adaptive Filters

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

iterations n

h
(n

)

Transient behavior of CCL loop

μ = 0.01

μ = 0.03

Fig. 16.3.2 Transient behavior of theoretical (dashed) and adaptive weights h(n).

Later on we will consider the complex-valued version of adaptive Wiener filters. Their ele-
mentary building block is the complex CCL shown below

The performance index is now

E = E[|en|2] = E[|xn − hyn|2] = min

with optimum solution

hopt = R−1r , R = E[y∗nyn] , r = E[xny∗n]

Analog implementations of the CCL are used in adaptive antennas. An analog CCL is shown

16.4. Adaptive Linear Combiner 859

below

where a high gain amplifier G and an ordinary RC-type integrator are used. If τ denotes the RC
time constant of the integrator, the weight updating part of the CCL is

τḣ(t)+h(t)= Gu(t)= Ge(t)y∗(t)
The performance of the analog CCL can be analyzed by replacing the adaptive weight h(t)

by its statistical average, satisfying

τḣ(t)+h(t)= GE[
e(t)y∗(t)

] = GE[(
x(t)−h(t)y(t))y∗(t)]

or, defining R = E[
y(t)y∗(t)

]
and r = E[

x(t)y∗(t)
]
,

τḣ(t)+h(t)= Gr −GRh(t)
with solution for t ≥ 0:

h(t)= hopt + (h(0)−hopt)e−at

where hopt is the asymptotic value

hopt = (1+GR)−1Gr

Thus, a high gain G is needed to produce an asymptotic value close to the theoretical Wiener
solution R−1r. The time constant of adaptation is given by

1

a
= τ

1+GR
Note that this particular implementation always converges and the speed of convergence is

still inversely dependent on R.

16.4 Adaptive Linear Combiner

A straightforward generalization of the correlation canceler loop is the adaptive linear com-
biner, where one has available a main signal xn and a number of secondary signals ym(n),
m = 0,1, . . . ,M. These (M + 1) secondary signals are to be linearly combined with appropriate
weights h0, h1, . . . , hM to form an estimate of xn:

x̂n = h0y0(n)+h1y1(n)+· · · + hMyM(n)= [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤⎥⎥⎥⎥⎥⎦ = hTy(n)

860 16. Adaptive Filters

A realization of this is shown in Fig. 16.4.1. The adaptive linear combiner is used in adap-
tive radar and sonar arrays [1351–1355]. It also encompasses the case of the ordinary FIR, or
transversal, Wiener filter [1342].

Fig. 16.4.1 Linear combiner.

The optimal weights hm minimize the estimation error squared

E = E[e2
n]= min , en = xn − x̂n

The corresponding orthogonality equations state that the estimation error be orthogonal
(decorrelated) to each secondary signal ym(n):

∂E
∂hm

= 2E
[
en
∂en
∂hm

]
= −2E

[
enym(n)

] = 0 , 0 ≤m ≤M

or, in vector form

E
[
eny(n)

] = 0 ⇒ E
[
xny(n)

]− E[
y(n)yT(n)

]
h = r−Rh = 0

with optimum solution hopt = R−1r.
The adaptive implementation is easily obtained by allowing the weights to become time-

dependent, h(n), and updating them in time according to the gradient-descent algorithm

h(n+ 1)= h(n)−μ ∂E
(
h(n)

)
∂h

with instantaneous gradient

∂E
∂h

= −2E
[
eny(n)

]→ −2eny(n)

so that
h(n+ 1)= h(n)+2μeny(n)

or, component-wise
hm(n+ 1)= hm(n)+2μenym(n) , 0 ≤m ≤M (16.4.1)

The computational algorithm is summarized below:

1. x̂n = h0(n)y0(n)+h1(n)y1(n)+· · · + hM(n)yM(n)
2. en = xn − x̂n
3. hm(n+ 1)= hm(n)+2μenym(n) , 0 ≤m ≤M

16.4. Adaptive Linear Combiner 861

Fig. 16.4.2 Adaptive linear combiner.

It is evident that each weight hm(n) is being adapted by its own correlation canceler loop,
while all weights use the same feedback error en to control their loops. The case of two weights
(M = 1) is shown in Fig. 16.4.2.
The adaptive linear combiner has two major applications:

1. Adaptive sidelobe canceler.

2. Adaptive FIR Wiener filter.

The two cases differ only in the way the inputs to the linear combiner are supplied. The linear
combiner part, performing the optimum processing, is the same in both cases. The time series
case is discussed in the next section. The array problem is depicted below.

It consists of a main and a number of secondary antennas. The main antenna is highly
directional and oriented toward the desired signal. Jammers picked up by the sidelobes of the

862 16. Adaptive Filters

main antenna and by the secondary antennas will tend to be canceled because the adaptive linear
combiner, acting as a correlation canceler, will adjust itself to cancel that part of the main signal
that is correlated with the secondary ones. The desired signal may also be canceled partially if it
is picked up by the secondary antennas. Strong jammers, however, will generally dominate and
as a result the canceler will configure itself to cancel them. The cancellation of the desired signal
can also be prevented by imposing additional constraints on the filter weights that can sustain
the beam in the desired look-direction.

The adaptation speed of the adaptive canceler is affected by the relative power levels of the
jammers. If there are jammers with greatly differing powers, the overall adaptation speed may be
slow. The stronger jammers tend to be canceled faster; the weaker ones more slowly. Qualitatively
this may be understood by inspecting, for example, expression (14.2.32). The power levels Pi of
the plane waves act as penalty factors in the performance index, that is, the minimization of the
performance index will tend to favor first the largest terms in the sum. This limitation of the LMS
algorithm has led to the development of alternative algorithms, such as adaptive Gram-Schmidt
preprocessors or RLS, in which all jammers get canceled equally fast.

16.5 Adaptive FIR Wiener Filter

The adaptive FIR or transversal filter is a special case of the adaptive linear combiner. In this
case, there is only one secondary signal yn. The required M + 1 signals ym(n) are provided as
delayed replicas of yn, that is,

ym(n)= yn−m (16.5.1)

A realization is shown in Fig. 16.5.1. The estimate of xn is

x̂n =
M∑
m=0

hm(n)yn−m = h0(n)yn + h1(n)yn−1 + · · · + hM(n)yn−M

Fig. 16.5.1 Adaptive FIR Wiener filter.

The time-varying filter weights hm(n) are continuously updated according to the gradient-
descent LMS algorithm

hm(n+ 1)= hm(n)+2μenym(n) , or,

hm(n+ 1)= hm(n)+2μenyn−m , 0 ≤m ≤M (16.5.2)

16.5. Adaptive FIR Wiener Filter 863

Each weight is therefore updated by its own CCL. Again, we summarize the computational
steps:

1. Compute the estimate x̂n =
M∑
m=0

hm(n)yn−m

2. Compute the error signal en = xn − x̂n
3. Adjust the weights hm(n+ 1)= hm(n)+2μenyn−m , 0 ≤m ≤M
The function lms is an implementation of the algorithm. With a minor modification it can

also be used for the more general adaptive linear combiner. Each call to the function reads a pair
of input samples {xn, yn}, performs the filtering operation to produce the output pair {x̂n, en},
updates the filter coefficients hm(n) to their new values hm(n+ 1) to be used by the next call,
and updates the internal state of the filter. It is essentially the function dwf with the weight
adaptation part added to it.

Next, we present the same simulation example as that given in Section Sec. 16.3, but it is now
approached with a two-tap adaptive filter (M = 1). The filtering equation is in this case

x̂n = h0(n)yn + h1(n)yn−1

The theoretical Wiener solution is found as follows: First note that

Rxy(k) = E[xn+kyn]= E
[
(−0.8yn+k + un+k)yn

] = −0.8E[yn+kyn]

= −0.8Ryy(k)= −0.8R(k)

Thus, the cross correlation vector is

r =
[
Rxy(0)
Rxy(1)

]
= −0.8

[
R(0)
R(1)

]

and the Wiener solution becomes:

h = R−1r =
[
R(0) R(1)
R(1) R(0)

]−1 [
−0.8R(0)
−0.8R(1)

]

= −0.8
R(0)2−R(1)2

[
R(0) −R(1)
−R(1) R(0)

][
R(0)
R(1)

]
=

[
−0.8

0

]

We could have expected that h1 is zero, since the signal xn does not depend on yn−1, but only
on yn. The adaptive weights were both initialized to the (arbitrary) value of h0(0)= h1(0)= −0.4,
and the value of μ was 0.03. Fig. 16.5.2 shows the two adaptive weights h0(n) and h1(n) as a
function of n, converging to their optimal values of h0 = −0.8 and h1 = 0.

How does one select the filter orderM? The rule is that the filter must have at least as many
delays as that part of xn which is correlated with yn. To see this, suppose xn is related to yn by

xn = c0yn + c1yn−1 + · · · + cLyn−L + un (16.5.3)

where un is uncorrelated with yn. Then, the filter order must be at least L. If M ≥ L, we can
write:

xn = c0yn + c1yn−1 + · · · + cMyn−M + un = cTy(n)+un
where c is the extended vector having ci = 0 for L + 1 ≤ i ≤ M. The cross-correlation between
xn and y(n) is

r = E[
xny(n)

] = E[(
yT(n)c)y(n)

] = E[
y(n)yT(n)

]
c = Rc

864 16. Adaptive Filters

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

iterations n

LMS weights

h1(n)

h0(n)

Fig. 16.5.2 Transient behavior of FIR adaptive filter.

Thus, the Wiener solution will be h = R−1r = c. This, in turn, implies the complete cancella-
tion of the y-dependent part of xn. Indeed, x̂n = hTy(n)= cTy(n) and

en = xn − x̂n =
(
cTy(n)+un

)− cTy(n)= un
What happens if we underestimate the filter order and chooseM < L? In this case, we expect

to cancel completely the firstM terms of Eq. (16.5.3) and to cancel the remaining terms as much
as possible. To see this, we separate out the firstM terms writing

xn = [c0, . . . , cM]

⎡⎢⎢⎢⎣
yn
...

yn−M

⎤⎥⎥⎥⎦+ [cM+1, . . . , cL]

⎡⎢⎢⎢⎣
yn−M−1

...
yn−L

⎤⎥⎥⎥⎦+ un ≡ cT1 y1(n)+cT2 y2(n)+un

The problem of estimating xn using an Mth order filter is equivalent to the problem of esti-
mating xn from y1(n). The cross-correlation between xn and y1(n) is

E
[
xny1(n)

] = E[
y1(n)yT1 (n)

]
c1 + E

[
y1(n)yT2 (n)

]
c2

It follows that the optimum estimate of xn is

x̂n = E
[
xnyT1 (n)

]
E
[
y1(n)yT1 (n)

]−1
y1(n)

= (
cT1 E

[
y1(n)yT1 (n)

]+ cT2 E
[
y2(n)yT1 (n)

])
E
[
y1(n)yT1 (n)

]−1
y1(n)

= (
cT1 + cT2 E

[
y2(n)yT1 (n)

]
E
[
y1(n)yT1 (n)

]−1)
y1(n)

= cT1 y1(n)+cT2 ŷ2/1(n)

where ŷ2/1(n)= E
[
y2(n)yT1 (n)

]
E
[
y1(n)yT1 (n)

]−1
y1(n) is recognized as the optimum estimate

of y2(n) based on y1(n). Thus, the estimation error will be

en = xn − x̂n =
[
cT1 y1(n)+cT2 y2(n)+un

]− [
c1y1(n)+cT2 ŷ2/1(n)

]
= cT2

[
y2(n)−ŷ2/1(n)

]+ un
which shows that the y1(n) part is removed completely, and the y2(n) part is removed as much
as possible.

16.6. Speed of Convergence 865

16.6 Speed of Convergence

The convergence properties of the LMS algorithm [1342,1350,1356] may be discussed by restoring
the expectation values where they should be, that is

∂E
∂h

= −2E
[
eny(n)

]
, y(n)=

⎡⎢⎢⎢⎢⎢⎣
y0(n)
y1(n)

...
yM(n)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦
resulting in the difference equation for the weight vector

h(n+ 1) = h(n)−μ ∂E
∂h

= h(n)+2μE
[
eny(n)

]
= h(n)+2μ

{
E
[
xny(n)

]− E[
y(n)yT(n)

]
h(n)

}
= h(n)+2μr− 2μRh(n)

or,
h(n+ 1)= (I − 2μR)h(n)+2μr (16.6.1)

where r = E[
xny(n)

]
andR = E[

y(n)yT(n)
]
. The difference equation (16.6.1) has the following

solution, where hopt = R−1r

h(n)= hopt + (I − 2μR)n(h(0)−hopt)

Convergence to hopt requires that the quantity (1− 2μλ), for every eigenvalue λ of R, have
magnitude less than one (we assume that R has full rank and therefore all its eigenvalues are
positive):

|1− 2μλ| < 1 � −1 < 1− 2μλ < 1 � 0 < μ <
1

λ
This condition will be guaranteed if we require this inequality for λmax, the maximum eigen-

value:

0 < μ <
1

λmax
(16.6.2)

Note that λmax can be bounded from above by

λmax < tr(R)=
M∑
i=0

Rii =
M∑
i=0

R(0)= (M + 1)R(0)

and one may require instead μ < 1/
(
(M + 1)R(0)

)
. As for the speed of convergence, suppose

that μ is selected half-way within its range (16.6.2), near 0.5/λmax, then the rate of convergence
will depend on the slowest converging term of the form (1 − 2μλ)n that is, the term having
|1−2μλ| as close to one as possible. This occurs for the smallest eigenvalue λ = λmin. Thus, the
slowest converging term is effectively given by (1− 2μλmin)n= (1− λmin/λmax)n. The effective
time constant in seconds is obtained by writing t = nT, where T is the sampling period, and
using the approximation (

1− λmin

λmax

)n
� exp

(
−λmin

λmax
n
)
= e−t/τ

where

τ = T λmax

λmin

866 16. Adaptive Filters

The eigenvalue spread λmax/λmin controls, therefore, the speed of convergence. The conver-
gence can be as fast as one sampling instantT if the eigenvalue spread is small, i.e., λmax/λmin � 1.
But, the convergence will be slow if the eigenvalue spread is large. As we shall see shortly, a large
spread in the eigenvalues of the covariance matrixR corresponds to a highly self-correlated signal
yn.

Thus, we obtain the general qualitative result that in situations where the secondary signal
is strongly self-correlated, the convergence of the gradient-based LMS algorithm will be slow. In
many applications, such as channel equalization, the convergence must be as quick as possible.
Alternative adaptation schemes exist that combine the computational simplicity of the LMS al-
gorithm with a fast speed of convergence. Examples are the fast RLS and the adaptive lattice
algorithms.

The possibility of accelerating the convergence rate may be seen by considering a more general
version of the gradient-descent algorithm in which the time update for the weight vector is chosen
as

Δh = −M ∂E
∂h

(16.6.3)

where M is a positive definite and symmetric matrix. The LMS steepest descent case is obtained
as a special case of this when M is proportional to the unit matrix I, M = μI. This choice
guarantees convergence towards the minimum of the performance index E(h), indeed,

E(h+Δh)� E(h)+ΔhT
(
∂E
∂h

)
= E(h)−

(
∂E
∂h

)T
M

(
∂E
∂h

)
≤ E(h)

Since the performance index is

E = E[e2
n]= E

[(
xn − hTy(n)

)2] = E[x2
n]−2hTr+ hTRh

it follows that ∂E/∂h = −2(r−Rh), and the difference equation for the adaptive weights becomes

h(n+ 1)= h(n)+Δh(n)= h(n)+2M(
r−Rh(n)

)
or,

h(n+ 1)= (I − 2MR)h(n)+2Mr (16.6.4)

with solution for n ≥ 0
h(n)= hopt + (I − 2MR)n(h(0)−hopt) (16.6.5)

where hopt = R−1r is the asymptotic value, and h(0), the initial value. It is evident from
Eq. (16.6.4) or (16.6.5) that the choice of M can drastically affect the speed of convergence. For
example, if M is chosen as

M= (2R)−1 (16.6.6)

then I − 2MR = 0, and the convergence occurs in just one step! This choice of M is equivalent
to Newton’s method of solving the system of equations

f(h)= ∂E
∂h

= 0

for the optimal weights. Indeed, Newton’s method linearizes about each point h to get the next
point, that is, Δh is selected such that

f(h+Δh)� f(h)+
(
∂f

∂h

)
Δh = 0

where we expanded to first order in Δh. Solving for Δh, we obtain

Δh = −
(
∂f

∂h

)−1

f(h)

16.6. Speed of Convergence 867

But since f(h)= −2(r−Rh), we have ∂f/∂h = 2R. Therefore, the choiceM= (2R)−1 corre-
sponds precisely to Newton’s update. Newton’s method is depicted below for the one-dimensional
case.

Note that the property that Newton’s method converges in one step is a well-known property
valid for quadratic performance indices (in such cases, the gradient f(h) is already linear in h
and therefore Newton’s local linearization is exact). The important property about the choice
M= (2R)−1 is thatM is proportional to the inverse of R. An alternative choice could have been
M= αR−1. In this case I − 2MR becomes proportional to the identity matrix:

I − 2MR = (1− 2α)I

having equal eigenvalues. Stability requires that |1 − 2α| < 1, or equivalently, 0 < α < 1, with
Newton’s choice corresponding exactly to the middle of this interval, α = 1/2. Therefore, the
disparity between the eigenvalues that could slow down the convergence rate is eliminated, and
all eigenmodes converge at the same rate (which is faster the more M resembles (2R)−1).

The implementation of such Newton-like methods requires knowledge of R, which we do not
have (if we did, we would simply compute the Wiener solution hopt = R−1r.) However, as we shall
see later, the so-called recursive least-squares algorithms effectively provide an implementation
of Newton-type methods, and that is the reason for their extremely fast convergence. Adaptive
lattice filters also have very fast convergence properties. In that case, because of the orthogonal-
ization of the successive lattice stages of the filter, the matrix R is diagonal (in the decorrelated
basis) and the matrix M can also be chosen to be diagonal so as to equalize and speed up the
convergence rate of all the filter coefficients. Recursive least-squares and adaptive lattice filters
are discussed in Sections Sec. 16.16 and 16.18, respectively.

Finally, we would like to demonstrate the previous statement that a strongly correlated signal
yn has a large spread in the eigenvalue spectrum of its covariance matrix. For simplicity, consider
the 2×2 case

R = E[
y(n)yT(n)

] = E[[
yn
yn−1

][
yn, yn−1

]] = [
R(0) R(1)
R(1) R(0)

]

The two eigenvalues are easily found to be

λmin = R(0)−|R(1)|
λmax = R(0)+|R(1)|

and therefore, the ratio λmin/λmax is given by

λmin

λmax
= R(0)−|R(1)|
R(0)+|R(1)|

Since for an autocorrelation function we always have |R(1)| ≤ R(0), it follows that the largest
value of R(1) is ±R(0), implying that for highly correlated signals the ratio λmin/λmax will be
very close to zero.

868 16. Adaptive Filters

16.7 Adaptive Channel Equalizers

Channels used in digital data transmissions can be modeled very often by linear time-invariant
systems. The standard model for such a channel including channel noise is shown here.

In the Figure, Hc(z) is the transfer function for the channel and vn, the channel noise, as-
sumed to be additive white gaussian noise. The transfer function Hc(z) incorporates the effects
of the modulator and demodulator filters, as well as the channel distortions. The purpose of a
channel equalizer is to undo the distorting effects of the channel and recover, from the received
waveform yn, the signal xn that was transmitted. Typically, a channel equalizer will be an FIR filter
with enough taps to approximate the inverse transfer function of the channel. A basic equalizer
system is shown below.

In this figure, H(z) is the desired transfer function of the equalizer. In many situations,
such in the telephone network, the channel is not known in advance, or it may be time-varying
as in the case of multipath channels. Therefore, it is desirable to design equalizers adaptively
[1357–1359].

A channel equalizer, adaptive or not, is an optimal filter since it tries to produce as good
an estimate x̂n of the transmitted signal xn as possible. The Wiener filtering concepts that we
developed thus far are ideally suited to this problem. This is shown below.

The design of the optimal filter requires two things: first, the autocorrelation of the received
signal yn, and second, the cross-correlation of the transmitted signal xn with the received signal.
Since the transmitted signal is not available at the receiver, the following procedure is used.
After the channel connection is established, a “training” sequence xn, which is also known to
the receiver, is transmitted over the channel. Then, the equalizer may be designed, and then the
actual message transmitted. To appreciate the equalizer’s action as an inverse filter, suppose
that the training sequence xn is a white-noise sequence of variance σ2

x . According to the theory
developed in Chap. 11, the optimal filter estimating xn on the basis of yn is given by

H(z)= 1

σ2
εB(z)

[Sxy(z)
B(z−1)

]
+

16.8. Adaptive Echo Cancelers 869

where B(z) is the spectral factor of Syy(z)= σ2
εB(z)B(z−1). To simplify the discussion, let us

ignore the causal instruction:

H(z)= Sxy(z)
σ2
εB(z)B(z−1)

= Sxy(z)
Syy(z)

Since we have Y(z)= Hc(z)X(z)+V(z), we find

Sxy(z) = Sxx(z)Hc(z−1)+Sxv(z)= Sxx(z)Hc(z−1)= σ2
xHc(z−1)

Syy(z) = Hc(z)Hc(z−1)Sxx(z)+Svv(z)= σ2
xHc(z)Hc(z−1)+σ2

v

the equalizer’s transfer function is then

H(z)= Sxy(z)
Syy(z)

= σ2
xHc(z−1)

σ2
xHc(z)Hc(z−1)+σ2

v

It is seen that when the channel noise is weak (small σ2
v), the equalizer essentially behaves

as the inverse filter 1/Hc(z) of the channel.
In an adaptive implementation, we must use a filter with a finite number of weights. These

weights are adjusted adaptively until they converge to their optimal values. Again, during this
“training mode” a known pilot signal is sent over the channel and is received as yn. At the
receiving end, the pilot signal is locally generated and used in the adaptation algorithm. This
implementation is shown below.

16.8 Adaptive Echo Cancelers

Consider two speakers A and B connected to each other by the telephone network. As a result
of various impedance mismatches, when A’s speech reaches B, it manages to “leak” through and
echoes back to speaker A, as though it were B’s speech.

An echo canceler may be placed near B’s end, as shown.

870 16. Adaptive Filters

It produces an (optimum) estimate of A’s echo through B’s circuits, and then proceeds to
cancel it from the signal returning to speaker A. Again, this is another case for which optimal
filtering ideas are ideally suited. An adaptive echo canceler is an adaptive FIR filter placed as
shown [1360–1365].

As always, the adaptive filter will adjust itself to cancel any correlations that might exist
between the secondary signal yn (A’s speech) and the primary signal xn (A’s echo).

16.9 Adaptive Noise Canceling

In many applications, two signals are available; one is composed of a desired signal plus undesired
noise interference, and the other is composed only of noise interference which, if not identical
with the noise part of the first signal, is correlated with it. This is shown in Fig. 16.9.1. An
adaptive noise canceler [1350] is an adaptive filter as shown in the Figure. It acts as a correlation
canceler. If the signals xn and yn are in any way correlated (i.e., the noise component of xn with
yn), then the filter will respond by adapting its weights until such correlations are canceled from
the output en. It does so by producing the best possible replica of the noise component of xn
and proceeding to cancel it. The output en will now consist mainly of the desired signal.

Fig. 16.9.1 Adaptive noise canceler.

There are many applications of adaptive noise canceling, such as adaptive sidelobe cancel-
lation, acoustic noise cancellation [1368–1370], canceling 60 Hz interference in EKG recordings,
plasma estimation [1371], and ghost cancellation in television [1372].

An interesting property of the adaptive noise canceler is that when the secondary signal yn is
purely sinusoidal at some frequencyω0, the adaptive filter behaves as a notch filter [1350,1373]
at the sinusoid’s frequency, that is, the transfer relationship between the primary input xn and
the output en becomes the time-invariant transfer function of a notch filter. This is a surprising
property since the adaptation equations for the weights and the filtering I/O equation are in
general time-noninvariant. To understand this effect, it proves convenient to work with complex-
valued signals using a complex-valued reformulation of the LMS algorithm [1374]. We make a

16.9. Adaptive Noise Canceling 871

short digression on this, first. We assume that xn, yn and the weights h(n) are complex-valued.
The performance index is replaced by

E = E[e∗nen]
where the I/O filtering equation is still given by

x̂n =
M∑
m=0

hmyn−m = hTy(n)

Since the weights h are complex, the index E depends on both the real and the imaginary
parts of h. Equivalently, we may think of E as a function of the two independent variables h and
h∗. A complex change in the weights Δh will change the index to

E(h+Δh,h∗ +Δh∗)= E(h,h∗)+ΔhT
∂E
∂h

+Δh†
∂E
∂h∗

Choosing Δh to be proportional to the complex conjugate of the negative gradient, that is,

Δh = −2μ
∂E
∂h∗

= 2μE[eny(n)∗]

will move the index E towards its minimum value; indeed,

E(h+Δh,h∗ +Δh∗)= E(h,h∗)−4μ
(
∂E
∂h

)† (
∂E
∂h

)
≤ E(h,h∗)

Thus, the complex version of the LMS algorithm consists simply of replacing the instanta-
neous gradient by its complex conjugate [1374]. We summarize the algorithm as follows:

1. Compute x̂n = h(n)Ty(n).
2. Compute en = xn − x̂n.

3. Update weights h(n+ 1)= h(n)+2μeny(n)∗.

Using this complex version, we now discuss the notching behavior of the adaptive filter.
Suppose yn is sinusoidal

yn = Aejω0n

at some frequencyω0. Then, the weight-update equation becomes:

hm(n+ 1)= hm(n)+2μeny∗n−m = hm(n)+2μA∗e−jω0(n−m)

form = 0,1, . . . ,M. The factor e−jω0(n−m) suggests that we look for a solution of the form

hm(n)= fm(n)e−jω0(n−m)

Then, fm(n) must satisfy the difference equation

e−jω0fm(n+ 1)= fm(n)+2μA∗en

As a difference equation in n, this equation has constant coefficients, and, therefore, may be
solved by z-transform techniques. Taking z-transforms of both sides we find

e−jω0zFm(z)= Fm(z)+2μA∗E(z)

which may be solved for Fm(z) in terms of E(z) to give

Fm(z)= E(z) 2μA∗ejω0

z− ejω0

872 16. Adaptive Filters

On the other hand, the I/O filtering equation from yn to the output x̂n is

x̂n =
M∑
m=0

hm(n)yn−m =
M∑
m=0

fm(n)e−jω0(n−m)Aejω0(n−m) =
M∑
m=0

fm(n)A

or, in the z-domain

X̂(z)=
M∑
m=0

Fm(z)A = E(z)2μ(M + 1)|A|2ejω0

z− ejω0

Finally, the I/O equation from xn to en becomes

en = xn − x̂n
and, in the z-domain

E(z)= X(z)−X̂(z)= X(z)−E(z)2μ(M + 1)|A|2ejω0

z− ejω0

which may be solved for the transfer function E(z)/X(z)

E(z)
X(z)

= z− ejω0

z−Rejω0
, R ≡ 1− 2μ(M + 1)|A|2 (16.9.1)

This filter has a zero at z = ejω0 which corresponds to the notch at the frequency ω0. For
sufficiently small values of μ and A, the filter is stable; its pole is at z = Rejω0 and can be made
to lie inside the unit circle (0 < R < 1). If the primary input xn happens to have a sinusoidal
component at frequency ω0, this component will be completely notched away from the output.
This will take place even when the sinusoidal reference signal is very weak (i.e., when A is small).
The implications of this property for jamming by signal cancellation in adaptive array processing
have been discussed in [1375]. The notching behavior of the adaptive noise canceler when the
reference signal consists of a sinusoid plus noise has been discussed in [1376].

A related result is that the adaptive noise canceler behaves as a time-invariant comb filter
whenever its secondary input yn is a periodic train of impulses separated by some period [1377].
This property can be used to cancel periodic interference. Because the method of signal averaging
can be thought of as comb filtering, the above property may also be used as an alternative method
to perform signal averaging for pulling weak periodic signals from background noise, such as
evoked potentials [1378].

16.10 Adaptive Line Enhancer

A special case of adaptive noise canceling is when there is only one signal xn available which is
contaminated by noise. In such a case, the signal xn provides its own reference signal yn, which
is taken to be a delayed replica of xn, that is, yn = xn−Δ, as shown in Fig. 16.10.1, referred to as
the adaptive line enhancer (ALE) [1350,1379–1381].

Will such arrangement be successful? The adaptive filter will respond by canceling any com-
ponents of the main signal xn that are in any way correlated with the secondary signal yn = xn−Δ.
Suppose the signal xn consists of two parts: a narrowband component that has long-range cor-
relations such as a sinusoid, and a broadband component which will tend to have short-range

16.10. Adaptive Line Enhancer 873

Fig. 16.10.1 Adaptive line enhancer.

correlations. One of these could represent the desired signal and the other an undesired inter-
fering noise. Pictorially the autocorrelations of the two components could look as follows.

where kNB and kBB are effectively the self-correlation lengths of the narrowband and broadband
components, respectively. Beyond these lags, the respective correlations die out quickly. Suppose
the delay Δ is selected so that

kBB ≤ Δ ≤ kNB

Since Δ is longer than the effective correlation length of the BB component, the delayed
replica BB(n−Δ) will be entirely uncorrelated with the BB part of the main signal. The adaptive
filter will not be able to respond to this component. On the other hand, since Δ is shorter than
the correlation length of the NB component, the delayed replica NB(n − Δ) that appears in the
secondary input will still be correlated with the NB part of the main signal, and the filter will
respond to cancel it. Thus, the filter outputs will be as shown.

Note that if Δ is selected to be longer than both correlation lengths, the secondary input will
become uncorrelated with the primary input, and the adaptive filter will turn itself off. In the
opposite case, when the delay Δ is selected to be less than both correlation lengths, then both
components of the secondary signal will be correlated with the primary signal, and therefore, the
adaptive filter will respond to cancel the primary xn completely. The computational algorithm
for the ALE is as follows

1. x̂n =
M∑
m=0

hm(n)y(n−m)=
M∑
m=0

hm(n)x(n−m−Δ)

874 16. Adaptive Filters

2. en = xn − x̂n
3. hm(n+ 1)= hm(n)+2μenx(n−m−Δ) , m = 0,1, . . . ,M

The Wiener solution for the steady-state weights is h = R−1r, where R and r are both express-
ible in terms of the autocorrelation of the signal xn, as follows:

Rij = E[yn−iyn−j]= E[xn−Δ−i xn−Δ−j]= Rxx(i− j)
ri = E[xnyn−i]= E[xnxn−Δ−i]= Rxx(i+Δ)

for i, j = 0,1, . . . ,M. When the input signal consists of multiple sinusoids in additive white noise,
the inverse R−1 may be obtained using the methods of Sec. 14.2, thus resulting in a closed form
expression for the steady-state optimal weights [1381].

16.11 Adaptive Linear Prediction

A linear predictor is a special case of the ALE with the delay Δ = 1. It is shown in Fig. 16.11.1,
where to be consistent with our past notation on linear predictors we have denoted the main
signal by yn. The secondary signal, the input to the adaptive filter, is then yn−1. Due to the
special sign convention used for linear predictors, the adaptation algorithm now reads

1. ŷn = −
[
a1(n)yn−1 + a2(n)yn−2 + · · · + aM(n)yn−M

]
2. en = yn − ŷn = yn + a1(n)yn−1 + · · · + aM(n)yn−M
3. am(n+ 1)= am(n)−2μenyn−m , m = 1,2 . . . ,M

The realization of Fig. 16.11.1 can be redrawn more explicitly as in Fig. 16.11.2. The lmsap is
an implementation of the LMS adaptive predictor. At each call, the function reads a sample yn,
computes the filter output en, updates the filter coefficients am(n) to their new values am(n+1)
to be used by the next call, and updates the registers of the tapped delay line. With a small
modification it can be used in the adaptive array problem (see below).

Fig. 16.11.1 Adaptive linear predictor.

Because of the importance of the adaptive predictor, we present a direct derivation of the
LMS algorithm as it applies to this case. The weights am are chosen optimally to minimize the
mean output power of the filter, that is, the mean-square prediction error:

E = E[e2
n]= aTRa = min (16.11.1)

where a = [1, a1, a2, . . . , aM]T is the prediction error filter. The performance index (16.11.1)
is minimized with respect to the M weights am. The gradient with respect to am is the mth
component of the vector 2Ra, namely,

∂E
∂am

= 2(Ra)m= 2
(
E[y(n)y(n)T]a

)
m = 2

(
E[y(n)y(n)Ta]

)
m

= 2
(
E[y(n)en]

)
m = 2E[enyn−m]

16.11. Adaptive Linear Prediction 875

Fig. 16.11.2 Direct-form realization of adaptive predictor.

The instantaneous gradient is obtained by ignoring the expectation instruction. This gives
for the LMS time-update of themth weight

Δam(n)= −μ ∂E
∂am

= −2μenyn−m , m = 1,2, . . . ,M (16.11.2)

The adaptive predictor may be thought of as an adaptive whitening filter, or an analysis filter
which determines the LPC model parameters adaptively. As processing of the signal yn takes
place, the autoregressive model parameters am are extracted on-line. This is but one example of
on-line system identification methods [1384–1392].

The extracted model parameters may be used in any desired way—for example, to provide
the autoregressive spectrum estimate of the signal yn. One of the advantages of the adaptive
implementation is that it offers the possibility of tracking slow changes in the spectra of non-
stationary signals. The only requirement for obtaining meaningful spectrum estimates is that the
non-stationary changes of the spectrum be slow enough for the adaptive filter to have a chance
to converge between changes. Typical applications are the tracking of sinusoids in noise whose
frequencies may be slowly changing [1382,1383,1393], or tracking the time development of the
spectra of non-stationary EEG signals [1028]. At each time instant n, the adaptive weights am(n),
m = 1,2, . . . ,M may be used to obtain an instantaneous autoregressive estimate of the spectrum
of yn in the form

Sn(ω)= 1∣∣1+ a1(n)e−jω + a2(n)e−2jω + · · · + aM(n)e−Mjω
∣∣2

This is the adaptive implementation of the LP spectrum estimate discussed in Sec. 14.2. The
same adaptive approach to LP spectrum estimation may also be used in the problem of multiple
source location, discussed in Sec. 14.3. The only difference in the algorithm is to replace yn−m
by ym(n)—that is, by the signal recorded at themth sensor at time n—and to use the complex-
valued version of the LMS algorithm. For completeness, we summarize the computational steps
in this case, following the notation of Sec. 14.3.

1. e(n)= y0(n)+a1(n)y1(n)+a2(n)y2(n)+· · · + aM(n)yM(n)
2. am(n+ 1)= am(n)−2μe(n)y∗m(n) , m = 1,2, . . . ,M

At each time instant n, the corresponding spatial spectrum estimate may be computed by

Sn(k)= 1∣∣1+ a1(n)e−jk + a2(n)e−2jk + · · · + aM(n)e−Mjk
∣∣2

where the wavenumber k and its relationship to the angle of bearing was defined in Sec. 14.3.
Fig. 16.11.3 shows the corresponding adaptive array processing configuration.

876 16. Adaptive Filters

Fig. 16.11.3 Adaptive array processor.

The time-adaptive as well as the block-data adaptive methods of superresolution array pro-
cessing have been reviewed in [1099,1129]. The above LMS algorithm for the array weights is
effectively equivalent to the Howells-Applebaum algorithm [1351–1355]. Adaptive predictors
may also be used to improve the performance of spread-spectrum systems [1396–1402].

16.12 Adaptive Implementation of Pisarenko’s Method

In Sec. 14.2, we noted that the Pisarenko eigenvalue problem was equivalent to the minimization
of the performance index

E = E[e∗nen]= a†Ra = min (16.12.1)

subject to the quadratic constraint
a†a = 1 (16.12.2)

where

en =
M∑
m=0

amyn−m = [a0, a1, . . . , aM]

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ = aTy(n)

The solution of the minimization problem shown in Eqs. (16.12.1) and (16.12.2) is the eigen-
vector a belonging to the minimum eigenvalue of the covariance matrixR. If there are L sinusoids
of frequenciesωi, i = 1,2, . . . , L, and we use a filter of orderM, such thatM ≥ L, then the eigen-
polynomialA(z) corresponding to the minimum eigenvector a will have L zeros on the unit circle
at precisely the desired set of frequencies, that is,

A(zi)= 0 , where zi = ejωi , i = 1,2, . . . , L

The adaptive implementation [1403] of the Pisarenko eigenvalue problem is based on the
above minimization criterion. The LMS gradient-descent algorithm can be used to update the
weights, but some care must be taken to satisfy the essential quadratic constraint (16.12.2) at
each iteration of the algorithm. Any infinitesimal change da of the weights must respect the
constraint. This means the da cannot be arbitrary but must satisfy the condition

d(a†a)= a†(da)+(da)†a = 0 (16.12.3)

so that the new weight a + da still lies on the quadratic surface a†a = 1. The ordinary gradient
of the performance index E is

∂E
∂a∗

= Ra

16.12. Adaptive Implementation of Pisarenko’s Method 877

Projecting this onto the surface a†a = 1 by the projection matrix P = I − aa†, where I is the
(M + 1)-dimensional unit matrix, we obtain the “constrained” gradient(

∂E
∂a∗

)
c
= P ∂E

∂a∗
= (I − aa†)(Ra)= Ra− Ea (16.12.4)

which is tangent to the constraint surface at the point a. The vanishing of the constrained gradient
is equivalent to the Pisarenko eigenvalue problem. The weight update can now be chosen to be
proportional to the constrained gradient

Δa = −μ
(
∂E
∂a∗

)
c
= −μ(Ra− Ea)

The projection of the gradient onto the constraint surface is shown below.

This choice guarantees thatΔa satisfies Eq. (16.12.3); indeed, because of the projection matrix
in front of the gradient, it follows that a†Δa = 0. Actually, since Δa is not infinitesimal, it will
correspond to a finite motion along the tangent to the surface at the point a. Thus, the new point
a + Δa will be slightly off the surface and must be renormalized to have unit norm. Using the
properties,

R a = E[y(n)∗y(n)T]a = E[y(n)∗en] and E = E[e∗nen]
we write the update as

Δa = −μ(
E[eny(n)∗]−E[e∗nen]a

)
The LMS algorithm is obtained by ignoring the indicated ensemble expectation values. The

weight adjustment procedure consists of two steps: first, shift the old weight a(n) by Δa(n),
and then renormalize it to unit norm:

a(n+ 1)= a(n)+Δa(n)
‖a(n)+Δa(n)‖ (16.12.5)

where the weight update is computed by

Δa(n)= −μ[
eny(n)∗−e∗nena(n)

]
(16.12.6)

In summary, the computational steps are as follows:

1. At time n, a(n) is available and normalized to unit norm.

2. Compute the output en =
∑M
m=0 am(n)yn−m = a(n)Ty(n).

3. Update the filter weights using Eq. (16.12.5) and (16.12.6).

4. Go to the next time instant, n→ n+ 1.

878 16. Adaptive Filters

Fig. 16.12.1 Adaptive implementation of Pisarenko’s method.

A realization of the adaptive filter is shown in Fig. 16.12.1. After a number of iterations, the
algorithm may be stopped and the Pisarenko spectrum estimate computed:

Sn(ω)= 1∣∣a0(n)+a1(n)e−jω + a2(n)e−2jω + · · · + aM(n)e−Mjω
∣∣2

After convergence, Sn(ω) should exhibit very sharp peaks at the sought frequencies ωi, i =
1,2 . . . , L. The convergence properties of this algorithm have been studied in [1404]. Alternative
adaptation schemes for the weights have been proposed in [1406]. The algorithm may also be
applied to the array problem of multiple source location [1407]. Again, the only change is to
replace yn−m by ym(n), depicted below.

Both the adaptive prediction and the Pisarenko approaches to the two problems of extracting
sinusoids in noise and multiple emitter location have a common aim, namely, to produce an
adaptive filter A(z) with zeros very near or on the unit circle at the desired frequency angles.
Taking the inverse magnitude response as an estimate of the spectrum of the signal,

S(ω)= 1

|A(ω)|2
is a simple device to obtain a curve that exhibits sharp spectral peaks at the desired frequencies.

A satisfactory alternative approach would be simply to find the roots of the polynomialA(z)
and pick those that are closest to the unit circle. The phase angles of these roots are precisely
the desired frequencies. In other words, the frequency information we are attempting to extract

16.12. Adaptive Implementation of Pisarenko’s Method 879

by means of the adaptive filter is more directly represented by the zeros of the filter than by its
weights.

It would be desirable then to develop methods by which these zeros can be estimated directly
without having to submit the filter A(z) to root-finding algorithms. In implementing this idea
adaptively, we would like to adapt and track the zeros of the adaptive filter as they move about
on the complex z-plane, converging to their final destinations which are the desired zeros. In
this way, the frequency information can be extracted directly. Such “zero-tracking” adaptation
algorithms have been proposed recently [1408,1409].

Even though the representations of the filter in terms of its zeros and in terms of its weights
are mathematically equivalent, the zero representation may be more appropriate in some applica-
tions in the sense that a better insight into the nature of the underlying processes may be gained
from it than from the weight representation.

As an example, we mention the problem of predicting epileptic seizures by LPC modeling of
the EEG signal where it was found [1410] that the trajectories of the zeros of the prediction-error
filter on the z-plane exhibited an unexpected behavior, namely, prior to the onset of a seizure,
one of the zeros became the “most mobile” and moved towards the unit circle, whereas the other
zeros did not move much. The trajectory of the most mobile zero could be used as a signature for
the onset of the oncoming seizure. Such behavior could not be easily discerned by the frequency
response or by the final zero locations.

Next, we describe briefly the zero-tracking algorithm as it applies to the Pisarenko problem
and present a simulation example. Its application to adaptive prediction and to emitter location
has been discussed in [1409]. For simplicity, we assume that the number of sinusoids that are
present is the same as the order of the filter a, that is, L =M. The case L < M will be discussed
later on. The eigenpolynomial of the minimum eigenvector a may be factored into its zeros as
follows:

A(z) = a0 + a1z−1 + a2z−2 + · · · + aMz−M

= a0(1− z1z−1)(1− z2z−1)· · · (1− zMz−1)
(16.12.7)

where a0 may be thought of as a normalization factor which guarantees the unit norm constraint
(16.12.2), and zi = ejωi , i = 1,2, . . . ,M are the desired sinusoid zeros on the unit circle.

In the adaptive implementation, the weights am become time-dependent am(n) and are
adapted from each time instant to the next until they converge to the asymptotic values de-
fined by Eq. (16.12.7). At each n, the corresponding polynomial can be factored into its zeros as
follows:

a0(n)+a1(n)z−1 + a2(n)z−2 + · · · + aM(n)z−M

= a0(n)
(
1− z1(n)z−1

)(
1− z2(n)z−1

) · · · (1− zM(n)z−1
) (16.12.8)

where again the factor a0(n) ensures the unit-norm constraint. In the zero-tracking algorithm,
the weight update equation (16.12.5) is replaced by a zero-update equation of the form:

zi(n+ 1)= zi(n)+Δzi(n) , i = 1,2, . . . ,M (16.12.9)

where the zero updates Δzi(n) must be such that to ensure the convergence of the zeros to
their asymptotic values zi. One way to do this is to make the algorithm equivalent to the LMS
algorithm. The functional dependence of zi(n) on am(n) defined by Eq. (16.12.8) implies that if
the weights am(n) are changed by a small amount Δam(n) given by Eq. (16.12.6), then a small
change Δzi(n) will be induced on the corresponding zeros. This is given as follows:

Δzi(n)=
M∑
m=0

∂zi(n)
∂am

Δam(n) (16.12.10)

where the partial derivatives are given by [12]

880 16. Adaptive Filters

∂zi(n)
∂am

= − 1

a0(n)
zi(n)M−m∏

j 	=i

(
zi(n)−zj(n)

) , 0 ≤m ≤M (16.12.11)

Equation (16.12.10) is strictly valid for infinitesimal changes, but for small μ, it can be taken
to be an adequate approximation for the purpose of computing Δzi(n). The advantage of this
expression is that only the current zeros zi(n) are needed to compute Δzi(n). The complete
algorithm is summarized as follows:

1. At time n, the zeros zi(n), i = 1,2, . . . ,M are available.

2. Using convolution, compute the corresponding filter weights and normalize them to unit
norm, that is, first convolve the factors of Eq. (16.12.8) to obtain the vector

b(n)T = [
1, b1(n), b2(n), . . . , bM(n)

]
= [

1, −z1(n)
]∗ [

1, −z2(n)
]∗ · · · ∗ [

1, −zM(n)
]

and then normalize b(n) to unit norm:

a(n)= b(n)
‖b(n)‖

3. Compute the filter output en = a(n)Ty(n).
4. Compute the LMS coefficient updates Δam(n) using Eq. (16.12.6). Compute the zero up-

datesΔzi(n) using Eqs. (16.12.10) and (16.12.11), and update the zeros using Eq. (16.12.9).

The algorithm may be initialized by a random selection of the initial zeros inside the unit
circle in the z-plane. Next, we present a simulation example consisting of a fourth order filter
and four sinusoids

yn = vn + ejω1n + ejω2n + ejω3n + ejω4n

with frequencies

ω1 = 0.25π, ω2 = −0.25π, ω3 = 0.75π, ω4 = −0.75π

and a zero-mean, unit-variance, white noise sequence vn (this corresponds to all sinusoids having
0 dB signal to noise ratio). The value of μ was 0.001. Figure 7.14 shows the adaptive trajecto-
ries of the four filter zeros as they converge onto the unit circle at the above frequency values.
After convergence, the adaptive zeros remain within small neighborhoods about the asymptotic
zeros. The diameter of these neighborhoods decreases with smaller μ, but so does the speed of
convergence [1409].

The transient behavior of the zeros can be seen by plotting zi(n) versus iteration number
n. Fig. 16.12.3 shows the real and imaginary parts of the adaptive trajectory of the zero z2(n)
converging to the real and imaginary parts of the asymptotic zero z2 = ejω2 = e−j0.25π = (1 −
j)/
√

2.
When the number L of sinusoids is less than the orderM of the filter, only L of theM zeros

zi(n) of the filter will be driven to the unit circle at the right frequency angles. The remaining
(M − L) zeros correspond to spurious degrees of freedom (the degeneracy of the minimum
eigenvalue σ2

v), and are affected by the adaptation process only insofar as theM zero trajectories
are not entirely independent of each other but are mutually coupled through Eq. (16.12.11). Where
these spurious zeros converge to depends on the particular initialization. For some special initial
conditions it is possible for the spurious zeros to move close to the unit circle, thus causing a
confusion as to which are the true sinusoid zeros. To safeguard against such a possibility, the
algorithm may be run again with a different choice of initial zeros. Fig. 16.12.4 shows the adaptive

16.13. Gradient Adaptive Lattice Filters 881

−1 0 1

−1

0

1

complex z− plane

z4

z3

z2

z1

Fig. 16.12.2 z-Plane trajectories of the four adaptive zeros zi(n), i = 1,2,3,4.

0 500 1000 1500
−1

−0.5

0

0.5

1

time n

 Rez2(n)
 Imz2(n)

Fig. 16.12.3 Real and imaginary parts of z2(n) versus n.

trajectory of a single sinusoid, L = 1, using a third order filter,M = 3. The sinusoid’s frequency
was ω1 = 0.25π, its SNR was 0 dB, and μ was 0.001. One of the three filter zeros is driven to
the unit circle at the desired angle ω1, while the two spurious zeros traverse fairly short paths
which depend on their initial positions.

16.13 Gradient Adaptive Lattice Filters

In this section we discuss the “gradient adaptive lattice” implementations of linear prediction
and lattice Wiener filters [1411–1416]. They are based on a gradient-descent, LMS-like approach
applied to the weights of the lattice representations rather than to the weights of the direct-
form realization. Taking advantage of the decoupling of the successive stages of the lattice, and
properly choosing the adaptation constants μ, all lattice weights can be made to converge fast
and, in contrast to the LMS weights, with a convergence rate that is essentially independent of
the eigenvalue spread of the input covariance matrix. The gradient lattice algorithms are very
similar but not identical to the recursive least-squares lattice algorithms (RLSL) [1436–1444], and

882 16. Adaptive Filters

−1 0 1

−1

0

1

complex z− plane

z1

Fig. 16.12.4 Single sinusoid with order-3 adaptive filter.

they share the same properties of fast convergence and computational efficiency with the latter.
Typically, the gradient lattice converges somewhat more slowly than RLSL. Some comparisons
between the two types of algorithms are given in [1416,1443].

We start by casting the ordinary lattice filter of linear prediction in a gradient-adaptive form,
and then discuss the gradient-adaptive form of the lattice Wiener filter, the stationary version of
which was presented in Sec. 12.11.

The lattice recursion for an Mth order prediction-error filter of a stationary signal yn was
found in Sec. 12.7 to be

e+p+1(n) = e+p (n)−γp+1e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1e+p (n)
(16.13.1)

for p = 0,1, . . . ,M − 1, and where e±0 (n)= yn. The optimal value of the reflection coefficient
γp+1 can be obtained by minimizing the performance index

Ep+1 = E[e+p+1(n)2+e−p+1(n)2] (16.13.2)

Differentiating with respect to γp+1, we find

∂Ep+1

∂γp+1
= E

[
e+p+1(n)

∂e+p+1(n)
∂γp+1

+ e−p+1(n)
∂e−p+1(n)
∂γp+1

]

and using Eq. (16.13.1)

∂Ep+1

∂γp+1
= −2E

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.3)

Inserting Eq. (16.13.1) into (16.13.3), we rewrite the latter as

∂Ep+1

∂γp+1
= −2(Cp+1 − γp+1Dp+1) (16.13.4)

where
Cp+1 = 2E

[
e+p (n)e−p (n− 1)

]
(16.13.5)

Dp+1 = E
[
e+p (n)2+e−p (n− 1)2

]
(16.13.6)

16.13. Gradient Adaptive Lattice Filters 883

Setting the gradient (16.13.4) to zero, we find the optimal value of γp+1

γp+1 = Cp+1

Dp+1
= 2E

[
e+p (n)e−p (n− 1)

]
E
[
e+p (n)2+e−p (n− 1)2

] (16.13.7)

which, due to the assumed stationarity, agrees with Eq. (12.7.3). Replacing the numerator and
denominator of Eq. (16.13.7) by time averages leads to Burg’s method.

The gradient adaptive lattice is obtained by solving ∂Ep+1/∂γp+1 = 0 iteratively by the
gradient-descent method

γp+1(n+ 1)= γp+1(n)−μp+1
∂Ep+1

∂γp+1(n)
(16.13.8)

where μp+1 is a small positive adaptation constant. Before we drop the expectation instructions
in Eq. (16.13.3), we use the result of Eq. (16.13.4) to discuss qualitatively the convergence rate of
the algorithm. Inserting Eq. (16.13.4) into (16.13.8), we find

γp+1(n+ 1)= γp+1(n)+2μp+1(Cp+1 − γp+1(n)Dp+1)

or,
γp+1(n+ 1)= (1− 2μp+1Dp+1)γp+1(n)+2μp+1Cp+1 (16.13.9)

Actually, if we replace γp+1 by γp+1(n) in Eq. (16.13.1), the stationarity of the lattice is
lost, and it is not correct to assume that Cp+1 and Dp+1 are independent of n. The implicit
dependence of Cp+1 and Dp+1 on the (time-varying) reflection coefficients of the previous lattice
stages makes Eq. (16.13.9) a nonlinear difference equation in the reflection coefficients. In the
analogous discussion of the LMS case in Sec. 16.6, the corresponding difference equation for the
weights was linear with constant coefficients. Because of the tapped delay-line structure, the
stationarity of the input signal y(n) was not affected by the time-varying weights. Nevertheless,
we will use Eq. (16.13.9) in a qualitative manner, replacing Cp+1 and Dp+1 by their constant
asymptotic values, but only for the purpose of motivating the final choice of the adaptation
parameter μp+1. The solution of Eq. (16.13.9), then, is

γp+1(n)= γp+1 + (1− 2μp+1Dp+1)n(γp+1(0)−γp+1) (16.13.10)

whereγp+1 is the asymptotic value of the weight given in Eq. (16.13.7). The stability of Eqs. (16.13.9)
and (16.13.10) requires that

|1− 2μp+1Dp+1| < 1 (16.13.11)

If we choose μp+1 as

2μp+1 = α
Dp+1

(16.13.12)

then 1−2μp+1Dp+1 = 1−α will satisfy Eq. (16.13.11). Note thatα was chosen to be independent
of the order p. This implies that all reflection coefficients γp+1(n) will essentially converge at
the same rate. Using Eqs. (16.13.3) and (16.13.12), we write Eq. (16.13.8) as follows:

γp+1(n+ 1)= γp+1(n)+ α
Dp+1

E
[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.13)

The practical implementation of this method consists of ignoring the expectation instruction,
and using a least-squares approximation for Dp+1 of the form [1411–1413]

Dp+1(n)= (1− λ)
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2

]
(16.13.14)

884 16. Adaptive Filters

where 0 < λ < 1. It may also be computed recursively by

Dp+1(n)= λDp+1(n− 1)+(1− λ)[e+p (n)2+e−p (n− 1)2
]

(16.13.15)

This quantity is a measure of Dp+1 of Eq. (16.13.6); indeed, taking expectations of both sides
and assuming stationarity, we find

E
[
Dp+1(n)

] = (1− λ) n∑
k=0

λn−kE
[
e+p (k)2+e−p (k− 1)2

]

= (1− λ)
n∑
k=0

λn−kDp+1 = (1− λn+1)Dp+1

which converges to Dp+1 for large n. With the above changes, we obtain the adaptive version of
Eq. (16.13.13),

γp+1(n+ 1)= γp+1(n)+ α
Dp+1(n)

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.16)

It can be written in a slightly different form by defining the quantity

dp+1(n) =
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2

]
= λdp+1(n− 1)+[

e+p (n)2+e−p (n− 1)2
] (16.13.17)

and noting that Dp+1(n)= (1 − λ)dp+1(n). Defining the new parameter β = α/(1 − λ), we
rewrite Eq. (16.13.16) in the form

γp+1(n+ 1)= γp+1(n)+ β
dp+1(n)

[
e+p+1(n)e−p (n− 1)+e−p+1(n)e+p (n)

]
(16.13.18)

This is usually operated withβ = 1 or, equivalently,α = 1−λ. This choice makes Eq. (16.13.18)
equivalent to a recursive reformulation of Burg’s method [1411–1413]. This may be seen as fol-
lows. Set β = 1 and define the quantity cp+1(n) by

cp+1(n)=
n∑
k=0

λn−k
[
2e+p (k)e−p (k− 1)

]
Then, inserting Eq. (16.13.1), with γp+1 replaced by γp+1(n), into Eq. (16.13.18), we find after

some algebra

γp+1(n+ 1)= cp+1(n)
dp+1(n)

or, written explicitly

γp+1(n+ 1)=
2
n∑
k=0

λn−k
[
e+p (k)e−p (k− 1)

]
n∑
k=0

λn−k
[
e+p (k)2+e−p (k− 1)2

] (16.13.19)

which corresponds to Burg’s method, and also guarantees that |γp+1(n + 1)| will remain less
than one at each iteration. The adaptive lattice is depicted in Fig. 16.13.1. At each time instant
n, the order recursions (16.13.1) are

e+p+1(n) = e+p (n)−γp+1(n)e−p (n− 1)

e−p+1(n) = e−p (n− 1)−γp+1(n)e+p (n)
(16.13.20)

for p = 0,1, . . . ,M − 1, with γp+1(n) updated in time using Eq. (16.13.18) or Eq. (16.13.19).
Initialize (16.13.20) by e±0 (n)= yn. We summarize the computational steps as follows:

16.13. Gradient Adaptive Lattice Filters 885

Fig. 16.13.1 Adaptive lattice predictor.

1. At time n, the coefficients γp+1(n) and dp+1(n− 1) are available.

2. Iterate Eq. (16.13.20) for p = 0,1, . . . ,M − 1.

3. Using Eq. (16.13.17), compute dp+1(n) for p = 0,1, . . . ,M − 1.

4. Using Eq. (16.13.18), compute γp+1(n+ 1) for p = 0,1, . . . ,M − 1.

5. Go to n→ n+ 1.

Next, we discuss the adaptive lattice realization of the FIR Wiener filter of Sec. 12.11. We use
the same notation as in that section. The time-invariant lattice weights gp are chosen optimally
to minimize the mean-square estimation error

E = E[e2
n]= min (16.13.21)

where en = xn − x̂n, and

x̂n =
M∑
p=0

gpe−p (n)= [g0, g1, . . . , gM]

⎡⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−M(n)

⎤⎥⎥⎥⎥⎥⎦ = gTe−(n) (16.13.22)

The gradient with respect to g is
∂E
∂g

= −2E
[
ene−(n)

]
(16.13.23)

Inserting Eq. (16.13.22) into (16.13.23), we rewrite the latter as

∂E
∂g

= −2(r−Rg) (16.13.24)

where r and R are defined in terms of the backward lattice signals e−p (n) as

r = E[
xne−(n)

]
, R = E[

e−(n)e−(n)T
]

(16.13.25)

The gradient-descent method applied to the weights g is

g(n+ 1)= g(n)−M ∂E
∂g(n)

(16.13.26)

where, following the discussion of Sec. 16.6, we have used a positive definite symmetric adapta-
tion matrix M, to be chosen below. Then, Eq. (16.13.26) becomes

g(n+ 1)= (I − 2MR)g(n)+2Mr (16.13.27)

The orthogonality of the backward prediction errors e−(n) causes their covariance matrix R
to be diagonal

R = diag{E0, E1, . . . , EM} (16.13.28)

886 16. Adaptive Filters

where Ep is the variance of e−p (n)

Ep = E
[
e−p (n)2

]
, p = 0,1, . . . ,M (16.13.29)

If we choose M to be diagonal, say, M = diag{μ0, μ1, . . . , μM}, then the state matrix (I −
2MR) of Eq. (16.13.27) will also be diagonal and, therefore, Eq. (16.13.27) will decouple into its
individual components

gp(n+ 1)= (1− 2μpEp)gp(n)+2μprp , p = 0,1, . . . ,M (16.13.30)

where rp = E
[
xne−p (n)

]
. Its solution is

gp(n)= gp + (1− 2μpEp)n(gp(0)−gp) (16.13.31)

where gp = rp/Ep are the optimal weights. The convergence rate depends on the quantity (1 −
2μpEp). Choosing μp such that

2μp = α
Ep
, 0 < α < 1 (16.13.32)

implies that all lattice weights gp(n)will have the same rate of convergence. Using Eqs. (16.13.32)
and (16.13.23) we can rewrite Eq. (16.13.26) component-wise as follows

gp(n+ 1)= gp(n)+ αEp E
[
ene−p (n)

]
Ignoring the expectation instruction, and replacing Ep by its time average,

Ep(n)= (1− λ)
n∑
k=0

λn−ke−p (k)2= λEp(n− 1)+(1− λ)e−p (n)2 (16.13.33)

we obtain the adaptation equation for the pth weight

gp(n+ 1)= gp(n)+ α
Ep(n)

ene−p (n) , p = 0,1, . . . ,M (16.13.34)

Defining

d−p (n)=
n∑
k=0

λn−ke−p (k)2= λd−p (n− 1)+e−p (n)2 (16.13.35)

and noting that Ep(n)= (1− λ)d−p (n), we rewrite Eq. (16.13.34) as

gp(n+ 1)= gp(n)+ β
d−p (n)

ene−p (n) , p = 0,1, . . . ,M (16.13.36)

where β = α/(1−λ). Typically, Eq. (16.13.36) is operated with β = 1, orα = 1−λ, [1411–1413].
The realization of the adaptive lattice Wiener filter is shown in Fig. 16.13.2.

A slightly different version of the algorithm is obtained by replacing en in Eq. (16.13.36) by
ep(n), that is, the estimation error based on a pth order Wiener filter:

ep(n)= xn − x̂p(n) , x̂p(n)=
p∑
i=0

gie−i (n)

It satisfies the recursions (12.11.10) through (12.11.11). This version arises by minimizing
the order-p performance index Ep = E[

ep(n)2
]

rather than the order-M performance index
(16.13.21). This version is justified by the property that all lower order portions of g are already
optimal. If {g0, g1, . . . , gp−1} are already optimal, then to go to the next orderp it is only necessary
to determine the optimal value of the new weight gp, which is obtained by minimizing Ep with
respect to gp. The overall algorithm is summarized below:

16.13. Gradient Adaptive Lattice Filters 887

1. At time n, the quantities γp(n), dp(n− 1), for p = 1,2, . . . ,M and gp(n), d−p (n− 1), for
p = 0,1, . . . ,M, are available, as well as the current input samples xn, yn.

2. Initialize in order by

e±0 (n)= yn , x̂0(n)= g0(n)e−0 (n) , e0(n)= xn − x̂0(n)

d−0 (n)= λd−0 (n− 1)+e−0 (n)2

g0(n+ 1)= g0(n)+ β
d−0 (n)

e0(n)e−0 (n)

3. For p = 1,2, . . . ,M, compute:

e+p (n)= e+p−1(n)−γp(n)e−p−1(n− 1)

e−p (n)= e−p−1(n− 1)−γp(n)e+p−1(n)

dp(n)= λdp(n− 1)+e+p−1(n)2+e−p−1(n− 1)2

γp(n+ 1)= γp(n)+ β
dp(n)

[
e+p (n)e−p−1(n− 1)+e−p (n)e+p−1(n)

]
x̂p(n)= x̂p−1(n)+gp(n)e−p (n)
ep(n)= ep−1(n)−gp(n)e−p (n)
d−p (n)= λd−p (n− 1)+e−p (n)2

gp(n+ 1)= gp(n)+ β
d−p (n)

ep(n)e−p (n)

4. Go to the next time instant, n→ n+ 1.

The adaptation of the reflection coefficients γp(n) provides a gradual orthogonalization of
the backward error signals e−p (n), which in turn drive the adaptation equations for the lattice
weights gp(n).

The algorithm is initialized in time by setting γp(0)= 0, dp(−1)= 0, gp(0)= 0, d−p (−1)= 0.
Because initially all the γs and the delay registers of the lattice are zero, it follows that the
backward output of the pth lattice section, e−p (n), will be zero for n < p. The corresponding

Fig. 16.13.2 Adaptive lattice Wiener filter.

888 16. Adaptive Filters

d−p (n) will also be zero and thus cannot be used in the updating of gp(n). During this startup
period, we keep gp(n)= 0, n < p. A similar problem does not arise for the γs because dp(n)
contains contributions from the forward lattice outputs, which are not zero.

The function glwf is an implementation of the gradient lattice Wiener filter. It is the same
as lwf with the weight adaptation parts added to it. Next, we present a simulation example. The
signals xn and yn were generated by

xn = yn + 1.5yn−1 − 2yn−2 + un , yn = 0.75yn−1 − 0.5yn−2 + εn
where un and εn were mutually independent, zero-mean, unit-variance, white noises. It follows
from our general discussion in Sec. 16.5 that we must use a Wiener filter of order at leastM = 2
to cancel completely the y-dependent part of xn. Solving the order-two linear prediction problem
for yn using bkwlev, we find the theoretical L matrix and reflection coefficients

L =
⎡⎢⎣ 1 0 0
−0.5 1 0

0.5 −0.75 1

⎤⎥⎦ , γ1 = 0.5 , γ2 = −0.5 (16.13.37)

The direct-form coefficients of the Wiener filter are precisely the coefficients of the y-dependent
part of xn. Thus, we have

h =
⎡⎢⎣ 1

1.5
−2

⎤⎥⎦ , g = L−Th =
⎡⎢⎣ 2

0
−2

⎤⎥⎦ (16.13.38)

In the simulation we generated 100 samples of xn and yn (after letting the transients of the
difference equation of yn die out). The function glwf was run on these samples with λ = 1 and
β = 1. Fig. 16.13.3 shows the adaptive reflection coefficients γ1(n) and γ2(n) versus iteration
number n. The figure shows on the right the three coefficients gp(n), p = 0,1,2, versus n,
converging to their theoretical values gp above. For comparison purposes, we have also included
the direct-form weight h2(n) adapted according to the standard LMS algorithm with μ = 0.01. It
should be compared to g2(n) because by construction the last elements of g and h are the same;
here, g2 = h2. The LMS algorithm can be accelerated somewhat by using a larger μ, but at the
expense of increasing the noisiness of the weights.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
Gradient Lattice Predictor

n

γ1(n)

γ2(n)

0 20 40 60 80 100
−4

−2

0

2

4
Gradient Lattice Wiener Filter

n

g0(n)

g1(n)

g2(n)

h2(n)LMS

Fig. 16.13.3 Adaptive coefficients γp(n) and gp(n).

16.14. Adaptive Gram-Schmidt Preprocessors 889

16.14 Adaptive Gram-Schmidt Preprocessors

In this section we derive the spatial analogs of the gradient adaptive lattice algorithms. The
main function of the adaptive lattice filter is to decorrelate the tapped delay-line data vector
y(n)= [yn, yn−1, . . . , yn−M]T . In effect, it carries out the Gram-Schmidt orthogonalization of
the components of y(n) at each time instant n. In array processing problems, because the
data vector y(n)= [y0(n), y1(n), . . . , yM(n)]T does not have the tapped-delay line property,
the Gram-Schmidt orthogonalization cannot be done by a simple a lattice filter. It requires a
more complicated structure that basically amounts to carrying out the lower triangular linear
transformation y = Bεεε, which decorrelates the covariance matrix of y.

The Gram-Schmidt construction of an arbitrary random vector y was discussed in Sec. 1.6.
Here, we recast these results in a way that can be used directly in gradient-adaptive implementa-
tions. The Gram-Schmidt construction proceeds recursively starting at one end, say, ε0 = y0.
At the mth step of the recursion, we have available the mutually decorrelated components
{ε0, ε1, . . . , εm−1}. The next component εm is defined by

εm = ym −
m−1∑
i=0

bmiεi , bmi = 1

Ei
E[ymεi] (16.14.1)

where Ei = E[ε2
i]. By construction, εm is decorrelated from all the previous εis, that is, E[εmεi]=

0, i = 0,1 . . . ,m − 1. The summation term in Eq. (16.14.1) represents the optimum estimate of
ym based on the previous εis and εm represents the estimation error. Therefore, the coefficients
bmi can also be derived by the mean-square criterion

Em = E[ε2
m]= min (16.14.2)

The gradient with respect to bmi is

∂Em
∂bmi

= −2E[εmεi]= −2
(
E[ymεi]−bmiEi

)
(16.14.3)

where we used the fact that the previous εis are already decorrelated, so that E[εiεj]= δijEi, for
i, j = 0,1, . . . ,m−1. Setting the gradient to zero gives the optimum solution (16.14.1) for bmi. In
a gradient-adaptive approach, the coefficients bmi will be time-dependent, bmi(n), and updated
by

bmi(n+ 1)= bmi(n)−μmi ∂Em
∂bmi(n)

= bmi(n)+2μmiE[εmεi] (16.14.4)

Using the above expression for the gradient, we find the difference equation

bmi(n+ 1)= (1− 2μmiEi)bmi(n)+2μmiE[ymεi]

with solution, for n ≥ 0

bmi(n)= bmi + (1− 2μmiEi)n(bmi(0)−bmi)
where bmi is the optimum solution (16.14.1). As in Sec. 16.13, because of the diagonal nature
of the covariance matrix of the previous εis, the system of difference equations for the bmis
decouples into separate scalar equations. Choosing μmi by

2μmi = αEi , 0 < α < 1

implies that all coefficients bmi(n) will converge at the same rate. With this choice, Eq. (16.14.4)
becomes

bmi(n+ 1)= bmi(n)+αEi E[εmεi]

890 16. Adaptive Filters

As before, we may replace Ei by its weighted time average Ei(n)= (1− λ)di(n), where

di(n)=
n∑
k=0

λn−kεi(k)2= λdi(n− 1)+εi(n)2

Setting β = α/(1 − λ) and dropping the expectation values, we obtain the adaptive Gram-
Schmidt algorithm:

1. At time n, bmi(n) and di(n − 1) are available, and also the current data vector y(n)=
[y0(n), y1(n), . . . , yM(n)]T . (The algorithm is initialized in time by bmi(0)= 0 and
di(−1)= 0.)

2. Set ε0(n)= y0(n).

3. Form = 1,2, . . . ,M, compute:

εm(n)= ym(n)−
m−1∑
i=0

bmi(n)εi(n)

dm−1(n)= λdm−1(n)+εm−1(n)2

for i = 0,1 . . . ,m− 1, compute:

bmi(n+ 1)= bmi(n)+ β
di(n)

εm(n)εi(n)

4. Go to the next time instant, n→ n+ 1.

The conventional Gram-Schmidt construction builds up the matrix B row-wise; for example
in the caseM = 3

B =

⎡⎢⎢⎢⎣
1 0 0 0
b10 1 0 0
b20 b21 1 0
b30 b31 b32 1

⎤⎥⎥⎥⎦
According to Eq. (16.14.1), εm is constructed from the entries of themth row of B. This gives

rise to the block-diagram realization of the Gram-Schmidt construction shown in Fig. 16.14.1. We
will see shortly that each circular block represents an elementary correlation canceling operation
of the type [1355,1417–1421]

e = u− bv

with

E[ev]= 0 ⇒ b = E[uv]
E[v2]

Therefore, each block can be replaced by an ordinary adaptive CCL or by an accelerated CCL,
as discussed below. This point of view leads to an alternative way of organizing the Gram-Schmidt
construction with better numerical properties, known as the modified Gram-Schmidt procedure
[1166], which builds up the matrix B column-wise. Let bi be the ith column of B, so that

y = Bεεε = [b0,b1, . . . ,bM]

⎡⎢⎢⎢⎢⎢⎣
ε0

ε1

...
εM

⎤⎥⎥⎥⎥⎥⎦ =
M∑
j=0

bjεj

16.14. Adaptive Gram-Schmidt Preprocessors 891

Fig. 16.14.1 Gram-Schmidt array preprocessor.

Removing the contribution of the first i columns, we define for i = 1,2, . . . ,M

yi = y−
i−1∑
j=0

bjεj =
M∑
j=i

bjεj (16.14.5)

Component-wise, we write

yim =
M∑
j=i
bmjεj , m = 0,1, . . . ,M

It follows from the lower-triangular nature of B that yim = 0 form < i. Moreover, because B
has unit diagonal, we have atm = i that yii = biiεi = εi. Thus,

εi = yii (16.14.6)

Equation (16.14.5) can be written recursively as follows

yi = biεi +
M∑

j=i+1

bjεj = biεi + yi+1

or,

yi+1 = yi − biεi

and component-wise, yi+1,m = yim−bmiεi. The recursion is initialized by y0 = y. It is evident by
inspecting Fig. 16.14.1 that yi represents the output column vector after each column operation.
It follows also that each circular block is an elementary correlation canceler. This follows by
noting that yi+1 is built out of εj with j ≥ i+ 1, each being uncorrelated with εi. Thus,

E[εiyi+1]= E[εiyi]−biEi = 0 ⇒ bi = 1

Ei
E[εiyi]

or, component-wise

bmi = 1

Ei
E[εiyim] , m = i+ 1, i+ 2, . . . ,M (16.14.7)

An adaptive implementation can be obtained easily by writing

bi(n+ 1)= bi(n)+2μiE[εiyi+1]= (1− 2μiEi)bi(n)+2μiE[εiyi]

As usual, we set 2μi = α/Ei, replace Ei by Ei(n)= (1 − λ)di(n), and drop the expectation
values to obtain the following algorithm, which adapts the matrix elements of B column-wise:

892 16. Adaptive Filters

1. At time n, bmi(n) and di(n − 1) are available, and also the current data vector y(n)=
[y0(n), y1(n), . . . , yM(n)]T .

2. Define y0m(n)= ym(n), form = 0,1, . . . ,M.

3. For i = 0,1, . . . ,M, compute:

εi(n)= yii(n)
di(n)= λdi(n− 1)+εi(n)2

For i+ 1 ≤m ≤M, compute:

yi+1,m(n)= yim(n)−bmi(n)εi(n)

bmi(n+ 1)= bmi(n)+ β
di(n)

εi(n)yi+1,m(n)

4. Go to the next time instant, n→ n+ 1.

The algorithm may be appended to provide an overall Gram-Schmidt implementation of the
adaptive linear combiner of Sec. 16.4. In the decorrelated basis, the estimate of xn and estimation
error may be written order recursively as

x̂i(n)= x̂i−1(n)+gi(n)εi(n) , ei(n)= ei−1(n)−gi(n)εi(n) (16.14.8)

with the weights gi(n) adapted by

gi(n+ 1)= gi(n)+ β
di(n)

ei(n)εi(n) , i = 0,1, . . . ,M (16.14.9)

The function mgs is an implementation of the adaptive modified Gram-Schmidt procedure.
At each call, the function reads the snapshot vector y, computes the decorrelated vector εεε, and
updates the matrix elements of B in preparation for the next call. An LMS-like version can be
obtained by replacing the accelerated CCLs by ordinary CCLs [1355]

bmi(n+ 1)= bmi(n)+2μεi(n)yi+1,m(n) (16.14.10)

An exact recursive least squares version of the modified Gram-Schmidt algorithm can also be
derived [1421]. It bears the same relationship to the above gradient-based version that the exact
RLS lattice filter bears to the gradient lattice filter. The computational complexity of the algorithm
is high because there are M(M + 1)/2 coefficients to be adapted at each time instant, namely,
the matrix elements in the strictly lower triangular part of B. By contrast, in the lattice structure
there are onlyM reflection coefficients to be adapted. Despite its computational complexity, the
algorithm is quite modular, built out of elementary CCLs.

Next, we present a simulation example of orderM = 2. The vectors y were constructed by

y =
⎡⎢⎣ 1 0 0
−2 1 0

1 2 1

⎤⎥⎦
⎡⎢⎣ ε0

ε1

ε2

⎤⎥⎦ = Bεεε
with the components of εεε having variances E0 = 1, E1 = 4, and E2 = 9. We generated 100
independent snapshots εεε and computed the corresponding y = Bεεε. Fig. 16.14.2 shows the two
matrix elements b10(n) and b21(n) adapted by running mgs on the 100 snapshots with λ = 1
and β = 1. They are converging to the theoretical values b10 = −2 and b21 = 2. On the right,
the figure shows the same two matrix elements adapted by the LMS algorithm (16.14.10) with
μ = 0.01.

16.15. Rank-One Modification of Covariance Matrices 893

0 20 40 60 80 100
−4

−2

0

2

4
Modified Gram− Schmidt

n

b21(n)

b10(n)

0 20 40 60 80 100
−4

−2

0

2

4
Modified Gram− Schmidt with LMS

n

b21(n)

b10(n)

Fig. 16.14.2 Modified Gram-Schmidt algorithm and its LMS version.

16.15 Rank-One Modification of Covariance Matrices

All recursive least-squares (RLS) algorithms, conventional, lattice, and fast direct-form structures,
can be derived from the rank-one updating properties of covariance matrices. In this section we
discuss these properties and derive all the necessary algebraic steps and computational reduc-
tions that make the fast RLS versions possible. In the succeeding sections, we couple these results
with the so-called shift-invariance property to close the loop, as it were, and complete the deriva-
tion of the fast RLS algorithms.

The rank-one modification of a covariance matrix R0 is obtained by adding the rank-one term

R1 = R0 + yyT (16.15.1)

where y is a vector of the same dimension as R0. Similarly, the modification of a cross-correlation
vector r0 will be defined as follows, where x is a scalar

r1 = r0 + xy (16.15.2)

We define the Wiener solutions based on the pairs R0, r0 and R1, r1 by

h0 = R−1
0 r0 , h1 = R−1

1 r1 (16.15.3)

and the corresponding estimates of x and estimation errors

x̂0 = hT0 y , e0 = x− x̂0 and x̂1 = hT1 y , e1 = x− x̂1 (16.15.4)

Similarly, using the notation of Sec. 1.8, we will consider the solution of the forward and
backward prediction problems

R0a0 = E0au , R1a1 = E1au (16.15.5)

and
R0b0 = E0bv , R1b1 = E1bv (16.15.6)

and the corresponding forward and backward prediction errors

e0a = aT0 y , e1a = aT1 y and e0b = bT0 y , e1b = bT1 y (16.15.7)

894 16. Adaptive Filters

The basic question that we pose is how to construct the solution of the filtering and prediction
problems 1 from the solution of the corresponding problems 0; that is, to construct h1 from h0,
a1 from a0, and b1 from b0. We will generally refer to the various quantities of problem-0 as a
priori and to the corresponding quantities of problem-1 as a posteriori. The constructions are
carried out with the help of the so-called a priori and a posteriori Kalman gain vectors defined
by

k0 = R−1
0 y , k1 = R−1

1 y (16.15.8)

We also define the so-called likelihood variables

ν = yTR−1
0 y , μ = 1

1+ ν =
1

1+ yTR−1
0 y

(16.15.9)

Note that the positivity condition ν > 0 is equivalent to 0 < μ < 1. Multiplying Eq. (16.15.1)
from the left by R−1

1 and from the right by R−1
0 , we obtain

R−1
0 = R−1

1 +R−1
1 yyTR−1

0 = R−1
1 + k1kT0 (16.15.10)

Acting on y and using the definitions (16.15.8) and (16.15.9), we find

R−1
0 y = R−1

1 y+ k1kT0 y ⇒ k0 = k1 + k1ν = (1+ ν)k1 = 1

μ
k1

or,
k1 = μk0 (16.15.11)

It follows that

yTR−1
1 y = kT1 y = μkT0 y = μν = ν

1+ ν = 1− 1

1+ ν = 1− μ

Thus, solving for μ

μ = 1− yTR−1
1 y = 1

1+ yTR−1
0 y

(16.15.12)

Solving Eq. (16.15.10) for R−1
1 , we obtain

R−1
1 = R−1

0 − k1kT0 = R−1
0 − μk0kT0 = R−1

0 − 1

1+ yTR−1
0 y

R−1
0 yyTR−1

0 (16.15.13)

which is recognized as the application of the matrix inversion lemma to Eq. (16.15.1). It provides
the rank-one update of the inverse matrices. Denoting P0 = R−1

0 and P1 = R−1
1 , we may rewrite

Eq. (16.15.13) in the form

P1 = P0 − μk0kT0 , k0 = P0y , μ = 1

1+ yTP0y
(16.15.14)

Before we derive the relationship between the Wiener solutions Eq. (16.15.3), we may obtain
the relationship between the a priori and a posteriori estimation errors. Noting that the estimates
can be written as,

x̂0 = hT0 y = rT0R−1
0 y = rT0 k0

x̂1 = hT1 y = rT1R−1
1 y = rT1 k1

and using Eq. (16.15.2), we obtain

x̂1 = kT1 r1 = (μk0)T(r0 + xy)= μx̂0 + μνx = μx̂0 + (1− μ)x = x− μe0

from which it follows that
e1 = μe0 (16.15.15)

16.15. Rank-One Modification of Covariance Matrices 895

The simplest method of determining the relationship between the h1 and h0 is to act on h0

by the covariance matrix R1 of problem-1, and then use the recursions (16.15.1) and (16.15.2),
that is,

R1h0 = (R0 + yyT)h0 = r0 + x̂0y = (r1 − xy)+x̂0y = r1 − e0y

Multiplying by R−1
1 , we find

h0 = R−1
1 r1 − e0R−1

1 y = h1 − e0k1

or, solving for h1 and using Eqs. (16.15.11) and (16.15.15)

h1 = h0 + e0k1 = h0 + μe0k0 = h0 + e1k0 (16.15.16)

Note that the update term can be expressed either in terms of the a priori estimation error e0

and a posteriori Kalman gain k1, or the a posteriori error e1 and a priori Kalman gain k0. Next,
we summarize what may be called the conventional RLS computational sequence:

1. k0 = P0y

2. ν = kT0 y , μ = 1

1+ ν
3. k1 = μk0

4. P1 = P0 − k1kT0

5. x̂0 = hT0 y , e0 = x− x̂0 , e1 = μe0 , x̂1 = x− e1

6. h1 = h0 + e0k1

Because in step 4 an entire matrix is updated, the computational complexity of the algorithm
grows quadratically with the matrix order; that is, O(M2) operations.

Next, we consider the forward and backward prediction solutions. Equations (1.8.28) and
(1.8.35) applied to R0 become

R−1
0 =

[
0 0T

0 R̃−1
0

]
+ 1

E0a
a0aT0 =

[
R̄−1

0 0
0T 0

]
+ 1

E0b
b0bT0

Acting on y and using Eq. (16.15.7), we find

k0 =
[

0
k̃0

]
+ e0a

E0a
a0 =

[
k̄0

0

]
+ e0b

E0b
b0 (16.15.17)

where k̃0 = R̃−1
0 ỹ and k̄0 = R̄−1

0 ȳ, where we recall the decompositions (1.8.2) and (1.8.3)

y =
[
ya
ỹ

]
=

[
ȳ
yb

]

Similarly, we obtain for the a posteriori gains

k1 =
[

0
k̃1

]
+ e1a

E1a
a1 =

[
k̄1

0

]
+ e1b

E1b
b1 (16.15.18)

Because b0 and b1 have last coefficients of unity, it follows that the last coefficients of the
Kalman gains will be

k0b = e0b

E0b
, k1b = e1b

E1b
(16.15.19)

Similarly, the first coefficients will be

k0a = e0a

E0a
, k1a = e1a

E1a
(16.15.20)

896 16. Adaptive Filters

Taking the dot product of Eq. (16.15.17) with y and using the definition (16.15.9) and (16.15.7),
we obtain

ν = ν̃+ e
2
0a
E0a

= ν̄+ e
2
0b
E0b

or,
ν = ν̃+ e0ak0a = ν̄+ e0bk0b (16.15.21)

where ν̃ = k̃
T
0 ỹ and ν̄ = k̄

T
0 ȳ. Similarly, using kT1 y = 1 − μ and taking the dot product of

Eq. (16.15.18) with y, we find

1− μ = 1− μ̃+ e
2
1a
E1a

= 1− μ̄+ e
2
1b
E1b

or,

μ = μ̃− e
2
1a
E1a

= μ̄− e
2
1b
E1b

(16.15.22)

This is equivalent to Eq. (16.15.21). To relate a1 and a0, we apply the usual method of acting
on the a priori solution a0 by the a posteriori covariance matrix R1:

R1a0 = (R0 + yyT)a0 = R0a0 + y(yTa0)= E0au+ e0ay

Multiplying by R−1
1 and using R−1

1 u = a1/E1a, we obtain

a0 = E0a

E1a
a1 + e0ak1 (16.15.23)

This has five useful consequences. First, equating first coefficients and using Eq. (16.15.20),
we obtain

1 = E0a

E1a
+ e0ak1a = E0a

E1a
+ e0ae1a

E1a
(16.15.24)

or,
E1a = E0a + e0ae1a (16.15.25)

Second, writing Eq. (16.15.24) in the form E0a/E1a = 1− e0ak1a, we rewrite Eq. (16.15.23) as

a0 = (1− e0ak1a)a1 + e0ak1 = a1 + e0a(k1 − k1aa1)= a1 + e0a

[
0
k̃1

]

where we used Eq. (16.15.18). Thus,

a1 = a0 − e0a

[
0
k̃1

]
(16.15.26)

Third, taking the dot product with y and using k̃
T
1 ỹ = 1− μ̃, we find

e1a = aT1 y = aT0 y− e0a(k̃
T
1 ỹ)= e0a − (1− μ̃)e0a = μ̃e0a or,

e1a = μ̃e0a (16.15.27)

This is analogous to Eq. (16.15.15). Fourth, writing e0a = e1a/μ̃ = (1+ν̃)e1a, it follows by adding
one to Eq. (16.15.21) that

(1+ ν)= (1+ ν̃)+(1+ ν̃)e1a
e0a

E0a
= (1+ ν̃)E0a + e0ae1a

E0a
= (1+ ν̃)E1a

E0a

and inverting,

μ = μ̃ E0a

E1a
(16.15.28)

16.15. Rank-One Modification of Covariance Matrices 897

This, in turn, is equivalent to Eq. (16.15.22) as can be seen by

μ = μ̃ E1a − e0ae1a

E1a
= μ̃− (μ̃e0a)

e1a

E1a
= μ̃− e

2
1a
E1a

Fifth, using Eq. (16.15.27) and the result k̃1 = μ̃k̃0, we may rewrite Eq. (16.15.26) in terms of
the a posteriori error e1a and the a priori gain k̃0 as follows

a1 = a0 − e1a

[
0
k̃0

]
(16.15.29)

Defining the inverse matrices P̃0 = R̃−1
0 and P̃1 = R̃−1

1 , we summarize the conventional RLS
computational sequence for the forward predictor:

1. k̃0 = P̃0ỹ

2. ν̃ = k̃
T
0 ỹ , μ̃ = 1

1+ ν̃
3. k̃1 = μ̃ k̃0

4. P̃1 = P̃0 − k̃1k̃
T
0

5. e0a = aT0 y , e1a = μ̃e0a

6. a1 = a0 − e0a

[
0
k̃1

]
The fast RLS algorithms make use also of the backward predictors. Starting with R1b0 =

(R0 + yyT)b0 = E0bv + e0by, and following similar steps as for the forward case, we obtain
parallel results for the backward predictor, that is,

b0 = E0b

E1b
b1 + e0bk1 (16.15.30)

from which it follows that

1 = E0b

E1b
+ e0bk1b = E0b

E1b
+ e0be1b

E1b
(16.15.31)

or,
E1b = E0b + e0be1b (16.15.32)

Similarly, we have k̄1 = μ̄ k̄0, and
e1b = μ̄e0b (16.15.33)

and the equivalencies

ν = ν̄+ e
2
0b
E0b

� μ = μ̄− e
2
1b
E1b

� μ = μ̄ E0b

E1b
(16.15.34)

Finally, the update equations of b1 are

b1 = b0 − e0b

[
k̄1

0

]
= b0 − e1b

[
k̄0

0

]
(16.15.35)

Writing Eq. (16.15.31) in the form E1b/E0b = 1/(1 − e0bk1b), and solving Eq. (16.15.30) for
b1, we have the alternative expression

b1 = E1b

E0b
(b0 − e0bk1)= b0 − e0bk1

1− e0bk1b
(16.15.36)

This is used in the so-called fast Kalman (FK) [1422,1423] computational sequence, which we
summarize below

898 16. Adaptive Filters

1. e0a = aT0 y

2. a1 = a0 − e0a

[
0
k̃1

]
3. e1a = aT1 y

4. E1a = E0a + e0ae1a

5. Compute the first element of k1, k1a = e1a

E1a

6. k1 =
[

0
k̃1

]
+ k1aa1 , and extract the last element of k1, k1b

7. e0b = bT0 y

8. b1 = b0 − e0bk1

1− e0bk1b

9.

[
k̄1

0

]
= k1 − k1bb1

10. x̂0 = hT0 y , e0 = x− x̂0 , h1 = h0 + e0k1 , x̂1 = hT1 y , e1 = x− x̂1

Step 9 is obtained from Eq. (16.15.18). Steps 1–9 perform the calculation and update of the
Kalman gain vector k1, which is used in step 10 for the Wiener filtering part. This algorithm avoids
the updating of the inverse autocorrelation matrices P0 and P1. The computationally intensive
parts of the algorithm are the computation of the inner products and the vector updates. Steps
1, 2, 3, 6, 7, and 9 requireM operations each, and step 8 requires 2M operations. Thus, the gain
calculation in steps 1–9 requires a total of 8M operations. The Wiener filtering and updating
part in step 10 require an additional 3M operations. Thus, the overall complexity grows like
8M + 3M = 11M operations; that is, linearly in the orderM.

Several of the above operations can be avoided. In particular, the computation of the error
e1a in step 3 can be done by Eq. (16.15.27), thus, avoiding the inner product. Similarly, the inner
product in step 7 can be avoided by solving Eq. (16.15.19) for e0b, that is, e0b = k0bE0b. Also, the
division by the overall scalar factor 1/(1−e0bk1b) in step 8 can be avoided by using Eq. (16.15.35)
instead. This saves 3M out of the 8M computations—a 40% reduction. Similarly, the operation
x̂1 = hT1 y in the Wiener filtering part can be avoided by e1 = μe0 and x̂1 = x− e1. The resulting
computational sequence is the so-called fast a posteriori error sequential technique (FAEST) [1424].
It uses the a posteriori errors and the a priori Kalman gains, and is summarized below

1. e0a = aT0 y

2. e1a = μ̃e0a = e0a/(1+ ν̃)
3. Compute the first element of k0, k0a = e0a

E0a

4. E1a = E0a + e0ae1a

5. k0 =
[

0
k̃0

]
+ k0aa0 , and extract the last element of k0, k0b

6. e0b = k0bE0b

7.

[
k̄0

0

]
= k0 − k0bb0

8. ν = ν̃+ e0ak0a , ν̄ = ν− e0bk0b

9. e1b = μ̄e0b = e0b/(1+ ν̄)
10. E1b = E0b + e0be1b

16.15. Rank-One Modification of Covariance Matrices 899

11. a1 = a0 − e1a

[
0
k̃0

]

12. b1 = b0 − e1b

[
k̄0

0

]
13. x̂0 = hT0 y , e0 = x− x̂0 , e1 = μe0 = e0/(1+ ν) , x̂1 = x− e1

14. h1 = h0 + e1k0

Step 8 was obtained from Eq. (16.15.21). Steps l, 5, 7, 11, and 12 require M operations each.
Therefore, the gain calculation can be done with 5M operations. The last two Wiener filtering steps
require an additional 2M operations. Thus, the total operation count grows like 5M+ 2M = 7M.
The so-called fast transversal filter (FTF) [1425] computational sequence is essentially identical
to FAEST, but works directly with the variables μ instead of ν. The only change is to replace step
8 by the following:

8. μ = μ̃ E0a

E1a
, μ̄ = μ

1− e0bk0bμ
(FTF)

The second equation is obtained from (16.15.34), (16.15.31), and the proportionality k1 =
μk0, which implies the same for the last elements of these vectors, k1b = μk0b. We have

μ̄ = μ E1b

E0b
= μ

1− e0bk1b
= μ

1− e0bk0bμ

The above computational sequences are organized to start with the tilde quantities, such as
ν̃ and k̃0, and end up with the bar quantities such as ν̄ and k̄0. The reason has to do with the
shift-invariance property, which implies that all bar quantities computed at the present iteration
become the corresponding tilde quantities of the next iteration; for example,

ν̃(n+ 1)= ν̄(n) , k̃0(n+ 1)= k̄0(n)

This property allows the repetition of the computational cycle from one time instant to the
next. As we have seen, the computational savings of FAEST over FK, and FK over conventional RLS,
have nothing to do with shift invariance but rather are consequences of the rank-one updating
properties.

The FAEST, FTF, and FK algorithms are the fastest known RLS algorithms. Unfortunately,
they can exhibit numerically unstable behavior and require the use of rescue devices and re-
initializations for continuous operation [1426–1435]. Next, we consider the lattice formulations.
Equations (1.8.50) can be applied to the a priori lattice

e0a = ē0a − γ0bẽ0b

e0b = ẽ0b − γ0aē0a
(16.15.37)

and a posteriori lattice
e1a = ē1a − γ1bẽ1b

e1b = ẽ1b − γ1aē1a
(16.15.38)

with the reflection coefficients computed by

γ0a = Δ0

Ē0a
, γ0b = Δ0

Ẽ0b
and γ1a = Δ1

Ē1a
, γ1b = Δ1

Ẽ1b
(16.15.39)

To find the relationship between Δ1 and Δ0, we use Eq. (1.8.44) applied to R1

R1

[
0
b̃1

]
= Δ1u+ Ẽ1bv , R1

[
ā1

0

]
= Δ1v+ Ē1au (16.15.40)

900 16. Adaptive Filters

Applying Eq. (1.8.44) also to R0, we obtain

R1

[
ā0

0

]
= (
R0 + yyT

)[
ā0

0

]
= Δ0v+ Ē0au+ ē0ay (16.15.41)

and

R1

[
0
b̃0

]
= (
R0 + yyT

)[
0
b̃0

]
= Δ0u+ Ẽ0bv+ ẽ0by (16.15.42)

Forming the dot products,

[0, b̃
T
1]R1

[
ā0

0

]
and [0, b̃

T
0]R1

[
ā1

0

]

we obtain the two alternative expressions

Δ1 = Δ0 + ē0aẽ1b , Δ1 = Δ0 + ē1aẽ0b (16.15.43)

They represent the least-squares modifications of the partial correlation (1.8.53). The two
expressions are equivalent. Applying Eq. (16.15.33) to ẽ1b, we have ẽ1b = ¯̃μẽ0b. Applying
Eq. (16.15.27) to ē1a, we have ē1a = ˜̄μē0a. But, ¯̃ν = ˜̄ν because, as is evident from Eq. (1.8.51),
the tilde part of ȳ is the same as the bar part of ỹ, namely, yc. Thus, ¯̃ν = ˜̄ν = yTc R

−1
0c yc, which

implies ¯̃μ = ˜̄μ. Applying Eq. (16.15.34), we have the updating equation μ̃ = ¯̃μ− ẽ2
1b/Ẽ1b.

As for the Wiener filtering part, we can apply the order-updating equations (1.8.24) through
(1.8.27) to the a priori and a posteriori problems to get

x̂0 = x̄0 + g0be0b , e0 = ē0 − g0be0b

x̂1 = x̄1 + g1be1b , e1 = ē1 − g1be1b
(16.15.44)

where g0b and g1b are the last components of the lattice weight vectors g0 and g1. Because of
the relationship h = LTg, it follows that the last component of h is equal to the last component
of g. Thus, extracting the last components of the relationship h1 = h0 + e0k1, we find

g1b = g0b + e0k1b = g0b + e0
e1b

E1b
(16.15.45)

This provides a direct way to update the gs. The more conventional updating method is
indirect; it is obtained by writing

g0b = ρ0b

E0b
, g1b = ρ1b

E1b
(16.15.46)

Using Eq. (16.15.44), we can find a recursion for the ρs as follows

ρ1b = E1bg1b = E1bg0b + (ē0 − g0be0b)e1b = (E1b − e0be1b)g0b + ē0e1b

or, using E1b − e0be1b = E0b and ρ0b = E0bg0b, we obtain

ρ1b = ρ0b + ē0e1b = ρ0b + 1

μ̄
ē1e1b (16.15.47)

The conventional RLS lattice (RLSL) computational sequence is summarized below [1436–
1444]:

1. Δ1 = Δ0 + ẽ1bē0a = Δ0 + ẽ1bē1a/¯̃μ

2. γ1a = Δ1

Ē1a
, γ1b = Δ1

Ẽ1b

16.15. Rank-One Modification of Covariance Matrices 901

3. e1a = ē1a − γ1bẽ1b , e1b = ẽ1b − γ1aē1a

4. E1a = Ē1a − γ1bΔ1 , E1b = Ẽ1b − γ1aΔ1

5. μ̃ = ¯̃μ− ẽ
2
1b

Ẽ1b

6. ρ1b = ρ0b + ē1e1b/μ̄

7. g1b = ρ1b

E1b

8. e1 = ē1 − g1be1b , x̂1 = x− e1

This is referred to as the a posteriori RLS lattice because it uses the a posteriori lattice equa-
tions (16.15.38). There are 14 multiplication/division operations in this sequence. We will see
later that the use of the so-called forgetting factor λ requires 2 more multiplications. Thus, the
total number of operations is 16. Because this sequence must be performed once per order, it
follows that, for an order-M problem, the computational complexity of the RLS lattice will be
16M operations per time update. This is to be compared with 7M for the FAEST direct-form
version. However, as we have already mentioned, the direct-form versions can exhibit numerical
instabilities. By contrast, the lattice algorithms are numerically stable [1431,1445].

Many other variations of the RLS lattice are possible. For example, there is a version based on
Eq. (16.15.37), called the a priori RLS lattice algorithm [1358,1444], or a version called the double
(a priori/a posteriori) RLS algorithm [1441,1444] that uses Eqs. (16.15.37) and (16.15.38) simulta-
neously. This version avoids the computation of the likelihood parameter μ. Like Eq. (16.15.45),
we can also obtain direct updating formulas for the reflection coefficients, thereby avoiding the
recursion (16.15.43) for the partial correlations Δ. Using the second term of Eqs. (16.15.43) and
(16.15.25) applied to Ē1a, that is, Ē1a + Ē0a + ē0aē1a. we find

γ1a = Δ1

Ē1a
= Δ0 + ē1aẽ0b

Ē1a
= γ0aĒ0a + ē1aẽ0b

Ē1a

= γ0a(Ē1a − ē0aē1a)+ē1aẽ0b

Ē1a
= γ0a + ē1a

Ē1a
(ẽ0b − γ0aē0a)

and using Eq. (16.15.37), we obtain

γ1a = γ0a + e0b
ē1a

Ē1a
(16.15.48)

Similarly, working with the first term of Eq. (16.15.43), we find

γ1b = γ0b + e0a
ẽ1b

Ẽ1b
(16.15.49)

Replacing ē1a = ˜̄μē0a and ẽ1b = ¯̃μẽ0b in the above equations gives rise to the so-called a
priori direct-updating RLS lattice [1445], also called the a priori error-feedback lattice because the
outputs e0a and e0b of the a priori lattice equations (16.15.37) are used to update the reflection
coefficients.

An a posteriori direct or error-feedback algorithm [1445] can also be obtained by working
with the a posteriori lattice Eq. (16.15.38). In this case, we must express e0a and e0b in terms of
the a posteriori quantities as follows:

e0a = ē0a − γ0bẽ0b = (ē1a − γ0bẽ1b)/˜̄μ and e0b = (ẽ1b − γ0aē1a)/¯̃μ

The a priori and a posteriori error-feedback lattice algorithms are computationally somewhat
more expensive—requiring O(20M) operations—than the conventional RLS lattice. But, they

902 16. Adaptive Filters

have much better numerical accuracy under quantization [1445] and, of course, their long-term
behavior is numerically stable.

Below we list the computational sequence of what may be called the double/direct RLS lattice
algorithm that, on the one hand, uses direct-updating for increased numerical accuracy, and on
the other, has the same computational complexity as the conventional a posteriori RLS lattice,
namely, 16M operations [1487]:

1. e0a = ē0a − γ0bẽ0b , e0b = ẽ0b − γ0aē0a

2. γ1a = γ0a + e0b
ē1a

Ē1a
, γ1b = γ0b + e0a

ẽ1b

Ẽ1b

3. e1a = ē1a − γ1bẽ1b , e1b = ẽ1b − γ1aē1a

4. E1a = E0a + e1ae0a , E1b = E0b + e1be0b

5. e0 = ē0 − g0beeb

6. g1b = g0b + e0
e1b

E1b

7. e1 = ē1 − g1be1b , x̂1 = x− e1

It uses simultaneously the a priori and a posteriori lattice equations (16.15.37) and (16.15.38).
There are 14 operations (plus 2 for the forgetting factor) per order per time update, that is, a total
of 16M per time update.

Finally, we discuss the sense in which the a priori and a posteriori backward errors e0b and
e1b provide a decorrelation of the covariance matrices R0 and R1. Following Eqs. (1.8.13) and
(1.8.17), we write the LU factorizations of the a priori and a posteriori problems

L0R0LT0 = D0b , L1R1LT1 = D1b (16.15.50)

where L0 and L1 have as rows the backward predictors bT0 = [βββT0 ,1] and bT1 = [βββT1 ,1].

L0 =
[
L̄0 0
βββT0 1

]
, L1 =

[
L̄1 0
βββT1 1

]
(16.15.51)

The corresponding backward basis vectors are constructed by

e0b = L0y =
[
L̄0 0
βββT0 1

][
ȳ
yb

]
=

[
L̄0ȳ
bT0 y

]
=

[
ē0b

e0b

]
(16.15.52)

and

e1b = L1y =
[
L̄1 0
βββT1 1

][
ȳ
yb

]
=

[
L̄1ȳ
bT1 y

]
=

[
ē1b

e1b

]
(16.15.53)

The rank-one updating property (16.15.1) for the Rs can be translated into an updating equa-
tion for the LU factorizations[112–114], in the following form:

L1 = LL0 (16.15.54)

It turns out that the unit lower triangular matrix L can be built entirely out of the a priori
backward errors e0b, as we show below. The determining equation for L may be found by

D1b = L1R1LT1 = LL0(R0 + yyT)LT0 LT = L(D0b + e0be
T
0b)L

T (16.15.55)

Thus, L performs the LU factorization of the rank-one update of a diagonal matrix, namely,
D0b + e0be

T
0b. The solution is easily found by introducing the block decompositions

L =
[
L̄ 0
βββT 1

]
, D1b =

[
D̄1b 0
0T E1b

]
, D0b + e0be

T
0b =

[
D̄0b + ē0bē

T
0b e0bē0b

e0bē
T
0b E0b + e2

0b

]

16.15. Rank-One Modification of Covariance Matrices 903

Using the methods of Sec. 1.8, e.g., Eqs. (1.8.7) and (1.8.11) applied to this problem, we find
the solution

βββ = −μ̄e0bD̄−1
0b ē0b , μ̄ = 1

1+ ēT0bD̄
−1
0b ē0b

(16.15.56)

Using R̄−1
0 = L̄T0 D̄−1

0b L̄0, we recognize

ēT0bD̄
−1
0b ē0b = ȳTL̄T0 D̄

−1
0b L̄0ȳ = ȳTR̄−1

0 ȳ = ν̄

Therefore, the quantity μ̄ defined above is the usual one. Similarly, we find

E1b = (E0b + e2
0b)+e0bē

T
0b βββ = E0b + e2

0b − μ̄e2
0bν̄

Noting that 1− μ̄ν̄ = μ̄, this reduces to Eq. (16.15.32). Writing D̄−1
0b ē0b = L̄−T0 R̄−1

0 ȳ = L̄−T0 k̄0,
we may express βββ in terms of the Kalman gain vector:

βββ = −μ̄e0bL−T0 k̄0 (16.15.57)

It easy to verify that the block-decomposed form of Eq. (16.15.54) is equivalent to

L̄1 = L̄L̄0 , βββ1 = βββ0 + L̄T0βββ (16.15.58)

Because of Eq. (16.15.57), the updating equation for the βββs is equivalent to Eq. (16.15.35).
Using this formalism, we may show the proportionality between the a posteriori and a priori
backward errors. We have e1b = L1y = LL0y = Le0b, and in block form

e1b =
[
L̄ 0
βββT 1

][
ē0b

e0b

]
=

[
L̄e0b

e0b +βββTē0b

]

Therefore, e1b = e0b + βββTē0b = e0b − μ̄e0bν̄ = μ̄e0b. It follows that L acting on e0b can be
replaced by the diagonal matrix of μ̄s acting on e0b. The double/direct lattice algorithm effectively
provides the error signals required to build L. For example, Eq. (16.15.56) can be written in a form
that avoids the computation of the μs

βββ = −μ̄e0bD̄−1
0b ē0b = −e1bD̄−1

0b ē0b (16.15.59)

The a priori and a posteriori estimates x̂0 and x̂1 may also be expressed in the backward bases.
Defining g0 = L−T0 h0, we find x̂0 = hT0 y = gT0 L0y = gT0 e0b, and similarly, defining g1 = L−T1 h1, we
find x̂1 = gT1 e1b. Thus,

g1 = L−T1 h1 , g0 = L−T0 h0 (16.15.60)

and
x̂1 = gT1 e1b , x̂0 = gT0 e0b (16.15.61)

Finally, the updating equation (16.15.16) for the direct-form weights translates into an up-
dating equation for the lattice weights:

g1 = L−T1 h1 = L−T1 (h0 + e0k1)= L−TL−T0 h0 + e0L−T1 k1

where we used the factorization (16.15.54) for the first term. Using R−1
1 = LT1D−1

1b L1, we find for
the second term L−T1 k1 = L−T1 R−1

1 y = D−1
1b L1y = D−1

1b e1b. Therefore,

g1 = L−Tg0 + e0D−1
1b e1b (16.15.62)

Extracting the last elements we obtain Eq. (16.15.45).

904 16. Adaptive Filters

16.16 RLS Adaptive Filters

The LMS and gradient lattice adaptation algorithms, based on the steepest descent method, pro-
vide a gradual, iterative, minimization of the performance index. The adaptive weights are not
optimal at each time instant, but only after convergence. In this section, we discuss recursive least-
squares (RLS) adaptation algorithms that are based on the exact minimization of least-squares
criteria. The filter weights are optimal at each time instant n.

Adaptive RLS algorithms are the time-recursive analogs of the block processing methods of
linear prediction and FIR Wiener filtering that we discussed in Sections 12.12 and 12.14. They may
be used, in place of LMS, in any adaptive filtering application. Because of their fast convergence
they have been proposed for use in fast start-up channel equalizers [1448–1451]. They are also
routinely used in real-time system identification applications. Their main disadvantage is that
they require a fair amount of computation, O(M2) operations per time update. In biomedical
applications, they can be easily implemented on minicomputers. In other applications, such as
the equalization of rapidly varying channels or adaptive arrays [1355,1453–1455], they may be
too costly for implementation.

The fast reformulations of RLS algorithms, such as the RLSL, FK, FAEST, and FTF, have O(M)
computational complexity. The fast RLS algorithms combine the best of the LMS and RLS, namely,
the computational efficiency of the former and the fast convergence of the latter. Among the fast
RLS algorithms, the RLS lattice has better numerical stability properties than the direct-form
versions.

We start with the RLS formulation of the FIR Wiener filtering problem. The estimation crite-
rion, E = E[e(n)2]= min, is replaced with a least-squares weighted time-average that includes all
estimation errors from the initial time instant to the current time n, that is, e(k), k = 0,1, . . . , n:

En =
n∑
k=0

e2(k)= min (16.16.1)

where
e(k)= x(k)= x̂(k)

and x̂(k) is the estimate of x(k) produced by the order-M Wiener filter

x̂(k)=
M∑
m=0

hmyk−m = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
yk
yk−1

...
yk−M

⎤⎥⎥⎥⎥⎥⎦ = hTy(k)

Note that in adaptive array problems, y(k) represents the vector of measurements at the array
elements, namely, y(k)= [y0(k), y1(k), . . . , yM(k)]. To better track possible non-stationarities
in the signals, the performance index may be modified by introducing exponential weighting

En =
n∑
k=0

λn−ke2(k)= e2(n)+λe2(n− 1)+λ2e2(n− 2)+· · · + λne2(0) (16.16.2)

where the forgetting factor λ is positive and less than one. This performance index emphasizes
the most recent observations and exponentially ignores the older ones. We will base our discus-
sion on this criterion. Setting the derivative with respect to h to zero, we find the least-square
analogs of the orthogonality equations

∂En
∂h

= −2
n∑
k=0

λn−ke(k)y(k)= 0

16.16. RLS Adaptive Filters 905

which may be cast in a normal equation form

n∑
k=0

λn−k
[
x(k)−hTy(k)

]
y(k)= 0 , or,

⎡⎣ n∑
k=0

λn−ky(k)y(k)T
⎤⎦ h =

n∑
k=0

λn−kx(k)y(k)

Defining the quantities

R(n) =
n∑
k=0

λn−ky(k)y(k)T

r(n) =
n∑
k=0

λn−kx(k)y(k)

(16.16.3)

we write the normal equations as R(n)h = r(n), with solution h = R(n)−1r(n). Note that the
n-dependence of R(n) and r(n) makes h depend on n; we shall write, therefore,

h(n)= R(n)−1r(n) (16.16.4)

These are the least-squares analogs of the ordinary Wiener solution, with R(n) and r(n)
playing the role of the covariance matrix R = E[y(n)yT(n)] and cross-correlation vector r =
E[x(n)y(n)]. These quantities satisfy the rank-one updating properties

R(n)= λR(n− 1)+y(n)y(n)T (16.16.5)

r(n)= λr(n− 1)+x(n)y(n) (16.16.6)

Thus, the general results of the previous section can be applied. We have the correspon-
dences:

y → y(n) x → x(n)
R1 → R(n) R0 → λR(n− 1)
P1 → P(n)= R(n)−1 P0 → λ−1P(n− 1)= λ−1R(n− 1)−1

r1 → r(n) r0 → λr(n− 1)
h1 → h(n)= R(n)−1r(n) h0 → h(n− 1)= R(n− 1)−1r(n)
x̂1 → x̂(n)= h(n)Ty(n) x̂0 → x̂(n/n− 1)= h(n− 1)Ty(n)
e1 → e(n)= x(n)−x̂(n) e0 → e(n/n− 1)= x(n)−x̂(n/n− 1)
k1 → k(n)= R(n)−1y(n) k0 → k(n/n− 1)= λ−1R(n− 1)−1y(n)
ν → ν(n)= k(n/n− 1)Ty(n) μ → μ(n)= 1/

(
1+ ν(n))

We used the notation x̂(n/n−1), e(n/n−1), and k(n/n−1) to denote the a priori
estimate, estimation error, and Kalman gain. Note thatR0, r0 are the quantitiesR(n−1),
r(n−1) scaled by the forgetting factor λ. In the a priori solution h0 = R−1

0 r0, the factors

λ cancel to give
[
λR(n − 1)

]−1[λr(n − 1)
] = R(n − 1)−1r(n − 1)= h(n − 1). Thus,

the a priori Wiener solution is the solution at the previous time instant n− 1. With the
above correspondences, the conventional RLS algorithm listed in the previous section
becomes

1. k(n/n− 1)= λ−1P(n− 1)y(n)

2. ν(n)= k(n/n− 1)Ty(n) , μ(n)= 1

1+ ν(n)

906 16. Adaptive Filters

3. k(n)= μ(n)k(n/n− 1)

4. P(n)= λ−1P(n− 1)−k(n)k(n/n− 1)T

5. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

6. e(n)= μ(n)e(n/n− 1) , x̂(n)= x(n)−e(n)
7. h(n)= h(n− 1)+e(n/n− 1)k(n)

The algorithm may be initialized in time by taking R(−1)= 0, which would imply
P(−1)= ∞. Instead, we may use P(−1)= δ−1I, where δ is a very small number, and I
the identity matrix. The algorithm is quite insensitive to the choice of δ. Typical values
are δ = 0.1, or δ = 0.01.

The function rls is an implementation of the algorithm. Because the algorithm can
also be used in array problems, we have designed the function so that its inputs are
the old weights h(n− 1), the current sample x(n), and the entire data vector y(n) (in
time series problems only the current time sample yn is needed, the past samples yn−i,
i = 1,2, . . . ,M being stored in the tapped delay line). The outputs of the function are
h(n), x̂(n), and e(n). A simulation example will be presented in the next section.

The term Kalman gain arises by interpreting h(n)= h(n−1)+e(n/n−1)k(n) as a
Kalman predictor/corrector algorithm, where the first term h(n− 1) is a prediction of
the weight h(n) based on the past, e(n/n− 1)= x(n)−h(n− 1)Ty(n) is the tentative
estimation error made on the basis of the prediction h(n − 1), and the second term
e(n/n− 1)k(n) is the correction of the prediction. The fast convergence properties of
the algorithm can be understood by making the replacement k(n)= R(n)−1y(n) in the
update equation

h(n)= h(n− 1)+R(n)−1y(n)e(n/n− 1) (16.16.7)

It differs from the LMS algorithm by the presence of R(n)−1 in the weight update
term. Because R(n) is an estimate of the covariance matrix R = E[y(n)y(n)T], the
presence of R(n)−1 makes the RLS algorithm behave like Newton’s method, hence its
fast convergence properties [1456,1457]. Another important conceptual difference with
the LMS algorithm is that in the RLS algorithm the filters h(n) and h(n−1) are the exact
Wiener solutions of two different minimization criteria; namely, En = min and En−1 =
min, whereas in the LMS algorithm they are successive gradient-descent approximations
to the optimum solution.

The role of the forgetting factor λ may be understood qualitatively, by considering
the quantity

nλ =

∞∑
n=0

nλn

∞∑
n=0

λn
= λ

1− λ

to be a measure of the effective memory of the performance index En. Smaller λs cor-
respond to shorter memory nλ, and can track better the non-stationary changes of the
underlying signals. The memory nλ of the performance index should be as short as the
effective duration of the non-stationary segments, but not shorter because the perfor-
mance index will not be taking full advantage of all the available samples (which could

16.17. Fast RLS Filters 907

extend over the entire non-stationary segment); as a result, the computed weights h(n)
will exhibit more noisy behavior. In particular, if the signals are stationary, the best
value of λ is unity.

In Sec. 16.12, we considered the adaptive implementation of eigenvector methods
based on an LMS gradient-projection method. Adaptive eigenvector methods can also
be formulated based on the rank-one updating property (16.16.5). For example, one may
use standard numerical methods for the rank-one updating of the entire eigenproblem
of R(n) [1166,1458,1459].

If one is interested only in a few largest or smallest eigenvalues and corresponding
eigenvectors, one can use the more efficient power method or inverse power method
and their generalizations, such as the simultaneous and subspace iterations, or Lanc-
zos methods, which are essentially the subspace iteration improved by Rayleigh-Ritz
methods [1246,1460].

The basic procedure for making these numerical methods adaptive is as follows
[1461–1467]. The power method generates the maximum eigenvector by the iteration
e(n)= Re(n− 1), followed by normalization of e(n) to unit norm. Similarly, the mini-
mum eigenvector may be generated by the inverse power iteration e(n)= R−1e(n− 1).
Because R and R−1 are not known, they may be replaced by their estimates R(n)
and P(n)= R(n)−1, which are being updated from one time instant to the next by
Eq. (16.16.5) or by step 4 of the RLS algorithm, so that one has e(n)= R(n)e(n−1) for
the power iteration, or e(n)= P(n)e(n− 1) for the inverse power case.

This can be generalized to the simultaneous iteration case. For example, to generate
adaptively the K minimum eigenvectors spanning the noise subspace one starts at each
iterationnwithKmutually orthonormalized vectors ei(n−1), i = 0,1, . . . , K−1. Each is
subjected to the inverse power iteration ei(n)= P(n)ei(n−1) and finally, theK updated
vectors ei(n) are mutually orthonormalized using the Gram-Schmidt or modified Gram-
Schmidt procedure for vectors. Similar simultaneous iteration methods can also be
applied to the gradient-projection method of Sec. 16.12. The main limitation of applying
the simultaneous iteration methods is that one must know in advance the dimension K
of the noise subspace.

16.17 Fast RLS Filters

In this section, we present fast RLS algorithms based on a direct-form realization [1422–
1424,1436–1445,1468–1477]. Fast RLS lattice filters are discussed in the next section.
The fast direct-form RLS algorithms make use of the forward and backward predictors.
The subblock decompositions of the (M + 1)-dimensional data vector y(n) are

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ =
[

ȳ(n)
yn−M

]
=

[
yn

ỹ(n)

]
(16.17.1)

908 16. Adaptive Filters

Therefore, the twoM-dimensional parts of y(n) are

ȳ(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−M+1

⎤⎥⎥⎥⎥⎥⎦ , ỹ(n)=

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−M

⎤⎥⎥⎥⎥⎥⎦ (16.17.2)

The covariance matrices of these subvectors will be

R̄(n)=
n∑
k=0

λn−kȳ(k)ȳ(k)T , R̃(n)=
n∑
k=0

λn−kỹ(k)ỹ(k)T (16.17.3)

The definitions (16.17.2) imply the shift-invariance property

ỹ(n+ 1)= ȳ(n) (16.17.4)

Using this property, we find

R̃(n+ 1) =
n+1∑
k=0

λn+1−kỹ(k)ỹ(k)T=
n∑

k=−1

λn−kỹ(k+ 1)ỹ(k+ 1)T

=
n∑

k=−1

λn−kȳ(k)ȳ(k)T= R̄(n)+λn+1ȳ(−1)ȳ(−1)T

If we make the prewindowing assumption that ȳ(−1)= 0, we obtain the shift-invariance
property for the covariance matrices

R̃(n+ 1)= R̄(n) (16.17.5)

Before we use the shift-invariance properties, we make some additional correspon-
dences from the previous section:

ȳ → ȳ(n)
ỹ → ỹ(n)
R1a1 = E1au → R(n)a(n)= E+(n)u
R1b1 = E1bv → R(n)b(n)= E−(n)v
R0a0 = E0au → λR(n− 1)a(n− 1)= λE+(n− 1)u
R0b0 = E0bv → λR(n− 1)b(n− 1)= λE−(n− 1)v
e1a = aT1 y → e+(n)= a(n)Ty(n)
e1b = bT1 y → e−(n)= b(n)Ty(n)
e0a = aT0 y → e+(n/n− 1)= a(n− 1)Ty(n)
e0b = bT0 y → e−(n/n− 1)= b(n− 1)Ty(n)
E1a = E0a + e1ae0a → E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)
E1b = E0b + e1be0b → E−(n)= λE−(n− 1)+e−(n)e−(n/n− 1)
k̃1 = R̃−1

1 ỹ → k̃(n)= R̃(n)−1ỹ(n)
k̄1 = R̄−1

1 ȳ → k̄(n)= R̄(n)−1ȳ(n)
k̃0 = R̃−1

0 ỹ → k̃(n/n− 1)= λ−1R̃(n− 1)−1ỹ(n)
k̄0 = R̄−1

0 ȳ → k̄(n/n− 1)= λ−1R̄(n− 1)−1ȳ(n)
ν̃ = k̃

T
0 ỹ → ν̃(n)= k̃(n/n− 1)Tỹ(n)

ν̄ = k̄
T
0 ȳ → ν̄(n)= k̄(n/n− 1)Tȳ(n)

μ̃ = 1/(1+ ν̃) → μ̃(n)= 1/
(
1+ ν̃(n))

μ̄ = 1/(1+ ν̄) → μ̄(n)= 1/
(
1+ ν̄(n))

16.17. Fast RLS Filters 909

We have used the superscripts ± to indicate the forward and backward quantities.
Again, note the cancellation of the factors λ from the a priori normal equations, which
implies that the a priori predictors are the predictors of the previous time instant; that
is, a0 → a(n− 1) and b0 → b(n− 1).

Using the shift-invariance properties (16.17.4) and (16.17.5), we find that all the tilde
quantities at the next time instant n + 1 are equal to the bar quantities at the present
instant n; for example,

k̃(n+ 1)= R̃(n+ 1)−1ỹ(n+ 1)= R̄(n)−1ȳ(n)= k̄(n)

Similarly,

k̃(n+ 1/n)= λ−1R̃(n)−1ỹ(n+ 1)= λ−1R̄(n− 1)−1ȳ(n)= k̄(n/n− 1)

and for the likelihood variables

ν̃(n+ 1)= k̃(n+ 1/n)Tỹ(n+ 1)= k̄(n/n− 1)Tȳ(n)= ν̄(n)

and similarly for the μs. We summarize:

k̃(n+ 1) = k̄(n) , k̃(n+ 1/n)= k̄(n/n− 1)

ν̃(n+ 1) = ν̄(n) , μ̃(n+ 1)= μ̄(n)
(16.17.6)

These equations can be added at the ends of the computational sequences of the
previous section to complete the computational cycle at each time instant. In the present
notation, the complete fast Kalman algorithm [1422,1423] is:

0. At time n, we have available the quantities h(n − 1), a(n − 1), b(n − 1), k̃(n),
E+(n− 1), x(n), and y(n)

1 . e+(n/n− 1)= a(n− 1)Ty(n)

2. a(n)= a(n− 1)−e+(n/n− 1)
[

0
k̃(n)

]

3. e+(n)= a(n)Ty(n)

4. E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)

5. Compute the first element of k(n), k0(n)= e
+(n)
E+(n)

6. k(n)=
[

0
k̃(n)

]
+ k0(n)a(n), extract the last element of k(n), kM(n)

7. e−(n/n− 1)= b(n− 1)Ty(n)

8. b(n)= b(n− 1)−e−(n/n− 1)k(n)
1− e−(n/n− 1)kM(n)

9.

[
k̄(n)

0

]
= k(n)−kM(n)b(n)

910 16. Adaptive Filters

10. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

11. h(n)= h(n− 1)+e(n/n− 1)k(n)

12. x̂(n)= h(n)Ty(n) , e(n)= x(n)−x̂(n)
13. k̃(n+ 1)= k̄(n)

14. Go to the next time instant, n→ n+ 1

The first and last entries of the a posteriori Kalman gain vector k(n) were denoted
by k0(n) and kM(n), that is, k(n)= [k0(n), k1(n), . . . , kM(n)]T. Similarly, we obtain
the complete FAEST algorithm [1424]:

0. At time n, we have available the quantities h(n−1), a(n−1), b(n−1), k̃(n/n−1),
ν̃(n), E±(n− 1), x(n), and y(n)

1 . e+(n/n− 1)= a(n− 1)Ty(n)

2. e+(n)= e+(n/n− 1)/
(
1+ ν̃(n)) = μ̃(n)e+(n/n− 1)

3. Compute the first element of k(n/n− 1), k0(n/n− 1)= e
+(n/n− 1)
λE+(n− 1)

4. E+(n)= λE+(n− 1)+e+(n)e+(n/n− 1)

5. k(n/n− 1)=
[

0
k̃(n/n− 1)

]
+ k0(n/n− 1)a(n− 1)

6. Extract the last element of k(n/n− 1), kM(n/n− 1)

7. e−(n/n− 1)= kM(n/n− 1)
[
λE−(n− 1)

]
8.

[
k̄(n/n− 1)

0

]
= k(n/n− 1)−kM(n/n− 1)b(n− 1)

9. ν(n)= ν̃(n)+e+(n/n−1)k0(n/n−1) , ν̄(n)= ν(n)−e−(n/n−1)kM(n/n−1)

10. e−(n)= e−(n/n− 1)/
(
1+ ν̄(n)) = μ̄(n)e−(n/n− 1)

11. E−(n)= λE−(n− 1)+e−(n)e−(n/n− 1)

12. a(n)= a(n− 1)−e+(n)
[

0
k̃(n/n− 1)

]

13. b(n)= b(n− 1)−e−(n)
[

k̄(n/n− 1)
0

]

14. x̂(n/n− 1)= h(n− 1)Ty(n) , e(n/n− 1)= x(n)−x̂(n/n− 1)

15. e(n)= e(n/n− 1)/
(
1+ ν(n)) = μ(n)e(n/n− 1) , x̂(n)= x(n)−e(n)

16. h(n)= h(n− 1)+e(n)k(n/n− 1)

16.18. RLS Lattice Filters 911

17. k̃(n+ 1/n)= k̄(n) , ν̃(n+ 1)= ν̄(n)
19. Go to the next time instant, n→ n+ 1

The algorithm is initialized in time by clearing the tapped delay line of the filter and
setting h(−1)= 0, a(−1)= u = [1,0T]T, b(−1)= v = [0T,1]T, k̃(0/−1)= 0, ν̃(0)= 0,
and E±(−1)= δ, where δ is a small constant. Exact initialization procedures have been
discussed in [1426]. The FTF algorithm [1426] is obtained by replacing step 9 by the
following:

μ(n)= μ̃(n) λE
+(n− 1)
E+(n)

, μ̄(n)= μ(n)
1− e−(n/n− 1)kM(n/n− 1)μ(n)

(FTF)

The function faest is an implementation of the FAEST algorithm. The function trans-
forms an input pair of samples {x, y} into an output pair {x̂, e}, updates the tapped delay
line of the filter, and updates the filter h(n).

Next, we present a simulation example comparing the FAEST and LMS algorithms.
The example is the same as that discussed in Sec. 16.13 and defined theoretically by
Eqs. (16.13.37) and (16.13.38). Fig. 16.17.1 shows two of the adaptive weights, h1(n)
and h2(n), adapted by FAEST and LMS. The weights are converging to their theoretical
values of h1 = 1.5 and h2 = −2. The RLS parameters were λ = 1 and δ = 0.01; the LMS
parameter was μ = 0.01.

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
FAEST and LMS Adaptive Weights

n

h1(n)FAEST

h2(n)FAEST

h1(n)LMS

h2(n)LMS

Fig. 16.17.1 Comparison of FAEST and LMS adaptive weights.

16.18 RLS Lattice Filters

The fast direct-form RLS filters were fixed-order filters. By contrast, the RLS lattice algo-
rithms [1436–1445], for each time instant n, do a recursion in the order, p = 0,1, . . . ,M.
Therefore, it is necessary to indicate the order p by using an extra index in all the quan-
tities of the past two sections. For example, the order-p data vector and its bar and tilde

912 16. Adaptive Filters

parts will be denoted by

yp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ , ȳp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−p+1

⎤⎥⎥⎥⎥⎥⎦ , ỹp(n)=

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
yn−p

⎤⎥⎥⎥⎥⎥⎦ (16.18.1)

Therefore, we have

ȳp(n)= yp−1(n) , ỹp(n)= ȳp(n− 1)= yp−1(n− 1) (16.18.2)

Similarly, the covariance matrices will be

R̄p(n)= Rp−1(n) , R̃p(n)= Rp−1(n− 1) (16.18.3)

The order-p predictors will be denoted by ap(n) and bp(n), with error signals
e+p (n)= ap(n)Typ(n) and e−p (n)= bp(n)Typ(n) The corresponding mean-square er-
rors will be denoted by E±p (n). Similarly, the a priori estimation errors are denoted by
e+p (n/n−1)= ap(n−1)Typ(n) and e−p (n/n−1)= bp(n−1)Typ(n). Using Eq. (16.18.3),
we find the following correspondences between the order-(p−1) and order-p problems:

R̄1 → Rp−1(n), ā1 → ap−1(n), Ē1a → E+p−1(n)
R̄0 → λRp−1(n− 1), ā0 → ap−1(n− 1), Ē0a → λE+p−1(n− 1)
R̃1 → Rp−1(n− 1), b̃1 → bp−1(n− 1), Ẽ1b → E−p−1(n− 1)
R̃0 → λRp−1(n− 2), b̃0 → bp−1(n− 2), Ẽ0b → λE−p−1(n− 1)

ē1a = āT1 ȳ → e+p−1(n)= ap−1(n)Typ−1(n)
ẽ1b = b̃

T
1 ỹ → e−p−1(n− 1)= bp−1(n− 1)Typ−1(n− 1)

ē0a = āT0 ȳ → e+p−1(n/n− 1)= ap−1(n− 1)Typ−1(n)
ẽ0b = b̃

T
0 ỹ → e−p−1(n− 1/n− 2)= bp−1(n− 2)Typ−1(n− 1)

γ1a → γ+p (n)
γ0a → γ+p (n− 1)
γ1b → γ−p (n)
γ0b → γ−p (n− 1)

e1a = ē1a − γ1bẽ1b → e+p (n)= e+p−1(n)−γ−p (n)e−p−1(n− 1)

e1b = ẽ1b − γ1aē1a → e−p (n)= e−p−1(n− 1)−γ+p (n)e+p−1(n)

e0a = ē0a − γ0bẽ0b → e+p (n/n− 1)= e+p−1(n/n− 1)−γ−p (n− 1)e−p−1(n− 1/n− 2)

e0b = ẽ0b − γ0aē0a → e−p (n/n− 1)= e−p−1(n− 1/n− 2)−γ+p (n− 1)e+p−1(n/n− 1)

a1 =
[

ā1

0

]
− γ1b

[
0
b̃1

]
→ ap(n)=

[
ap−1(n)

0

]
− γ−p (n)

[
0

bp−1(n− 1)

]

b1 =
[

0
b̃1

]
− γ1a

[
ā1

0

]
→ bp(n)=

[
0

bp−1(n− 1)

]
− γ+p (n)

[
ap−1(n)

0

]

a0 =
[

ā0

0

]
− γ0b

[
0
b̃0

]
→ ap(n− 1)=

[
ap−1(n− 1)

0

]
− γ−p (n− 1)

[
0

bp−1(n− 2)

]

b0 =
[

0
b̃0

]
− γ0a

[
ā0

0

]
→ bp(n− 1)=

[
0

bp−1(n− 2)

]
− γ+p (n− 1)

[
ap−1(n− 1)

0

]

16.18. RLS Lattice Filters 913

γ1a = γ0a + e0b
ē1a

Ē1a
→ γ+p (n)= γ+p (n− 1)+e−p (n/n− 1)

e+p−1(n)
E+p−1(n)

γ1b = γ0b + e0a
ẽ1b

Ẽ1b
→ γ−p (n)= γ−p (n− 1)+e+p (n/n− 1)

e−p−1(n− 1)
E−p−1(n− 1)

e0 = ē0 − g0be0b → ep(n/n− 1)= ep−1(n/n− 1)−gp(n− 1)e−p (n/n− 1)

g1b = g0b + e0
e1b

E1b
→ gp(n)= gp(n− 1)+ep(n/n− 1)

e−p (n)
E−p (n)

e1 = ē1 − g1be1b → ep(n)= ep−1(n)−gp(n)e−p (n)
We have denoted the forward/backward reflection coefficients by γ±p (n), and the

lattice Wiener weights by gp(n). The order-p a priori and a posteriori estimation errors
are ep(n/n−1)= x(n)−x̂p(n/n−1) and ep(n)= x(n)−x̂p(n). The likelihood variable
μ = 1− yTR−1

1 y is
μp(n)= 1− yp(n)TRp(n)−1yp(n) (16.18.4)

and can also be written as

μp(n)= 1

1+ νp(n) =
1

1+ λ−1yp(n)TRp(n− 1)−1yp(n)

Similarly, we have

μ̃p(n) = 1− ỹp(n)TR̃p(n)−1ỹp(n)

= 1− yp−1(n− 1)TRp−1(n− 1)−1yp−1(n− 1)

= μp−1(n− 1)

and
μ̄p(n) = 1− ȳp(n)TR̄p(n)−1ȳp(n)

= 1− yp−1(n)TRp−1(n)−1yp−1(n)

= μp−1(n)

Therefore,
μ̃p(n)= μp−1(n− 1) , μ̄p(n)= μp−1(n) (16.18.5)

Thus, the proportionality between a posteriori and a priori errors will be

e+p (n)= μ̃p(n)e+p (n/n− 1) , e−p (n)= μ̄p(n)e−p (n/n− 1) (16.18.6)

Using either of Eq. (16.18.5), we find for the quantity ¯̃μ = ˜̄μ

¯̃μp(n)= μ̄p−1(n− 1)= μ̃p−1(n)= μp−2(n− 1) (16.18.7)

Based on the above correspondences, we can obtain all versions of RLS lattice al-
gorithms, such as the conventional a posteriori, a priori, double, and a priori and a
posteriori error-feedback. In particular, we summarize the complete double/direct RLS
lattice algorithm [156]:

0. At time n, we have available the quantities γ±p (n− 1), gp(n− 1), E±p (n− 1), and
x(n), y(n).

914 16. Adaptive Filters

1. Initialize in order by

e±0 (n/n− 1)= e±0 (n)= y(n)
E±0 (n)= λE±0 (n− 1)+e±0 (n)e±0 (n/n− 1)

e0(n/n− 1)= x(n)−g0(n− 1)e−0 (n/n− 1)

g0(n)= g0(n− 1)+e0(n/n− 1)
e−0 (n)
E−0 (n)

e0(n)= x(n)−g0(n)e−0 (n)

2. For p = 1,2, . . . ,M, compute

e+p (n/n− 1)= e+p−1(n/n− 1)−γ−p (n− 1)e−p−1(n− 1/n− 2)

e−p (n/n− 1)= e−p−1(n− 1/n− 2)−γ+p (n− 1)e+p−1(n/n− 1)

γ+p (n)= γ+p (n− 1)+e−p (n/n− 1)
e+p−1(n)
E+p−1(n)

γ−p (n)= γ−p (n− 1)+e+p (n/n− 1)
e−p−1(n− 1)
E−p−1(n− 1)

e+p (n)= e+p−1(n)−γ−p (n)e−p−1(n− 1)

e−p (n)= e−p−1(n− 1)−γ+p (n)e+p−1(n)

E±p (n)= λE±p (n− 1)+e±p (n)e±p (n/n− 1)

ep(n/n− 1)= ep−1(n/n− 1)−gp(n− 1)e−p (n/n− 1)

gp(n)= gp(n− 1)+ep(n/n− 1)
e−p (n)
E−p (n)

ep(n)= ep−1(n)−gp(n)e−p (n)

3. x̂M(n)= x(n)−eM(n), and go to the next time instant, n→ n+ 1.

The algorithm is initialized in time by clearing the delay registers of both lattices
and setting γ±p (−1)= 0, E±p (−1)= 0, and gp(−1)= 0. As in the case of the gradient
lattice, it follows that the backward outputs from the pth lattice section, e−p (n/n− 1),
will be zero for n < p; therefore, we must keep γ−p (n)= gp(n)= 0 for n < p because
these quantities require divisions by E−p (n). There are 16 multiplications/divisions in
step 2; therefore, the complexity of the algorithm grows like 16M per time update.

The rlsl is an implementation of the above algorithm. It is essentially the same as
lwf used twice for the a priori and a posteriori lattices and with the weight adaptation
parts added to it.

Fig. 16.18.1 shows the reflection coefficients γ±1 (n) and γ±2 (n) adapted by the RLS
lattice algorithm, for the same example presented in Sec. 16.13, which was also used in

16.18. RLS Lattice Filters 915

the FAEST simulation. Note that, after some initial transients, the forward and backward
reflection coefficients become more or less the same as they converge to their theoretical
values. Compare also with the reflection coefficients of Fig. 16.13.3 adapted by the
gradient lattice. The version of the gradient lattice that we presented uses one set of
reflection coefficients, which may be thought of as some sort of average combination
of the forward/backward ones. Indeed, the curves for the gradient lattice reflection
coefficients fall mostly between the curves of the forward and backward ones. Similarly,
the lattice Wiener weights gp(n) have almost the same behavior as those of Fig. 16.13.3.
We finish this section by discussing LU factorizations. Equations (16.15.20) become

Lp(n)Rp(n)Lp(n)T= D−p (n) , λLp(n− 1)Rp(n− 1)Lp(n− 1)T= λD−p (n− 1)
(16.18.8)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
RLSL Predictor

n

γ1
±(n)

γ2
±(n)

Fig. 16.18.1 Reflection coefficients adapted by the double/direct RLSL algorithm.

where
D−p (n)= diag{E−0 (n), E−1 (n), . . . , E−p (n)}

The vectors of a posteriori and a priori backward error signals are constructed by

e−p (n)=

⎡⎢⎢⎢⎢⎢⎣
e−0 (n)
e−1 (n)

...
e−p (n)

⎤⎥⎥⎥⎥⎥⎦ = Lp(n)yp(n) ,

e−p (n/n− 1)=

⎡⎢⎢⎢⎢⎢⎣
e−0 (n/n− 1)
e−1 (n/n− 1)

...
e−p (n/n− 1)

⎤⎥⎥⎥⎥⎥⎦ = Lp(n− 1)yp(n)

This follows from the fact that the rows of the matrices Lp(n) are the backward
predictors of successive orders. The Lp(n)matrices are related by Eq. (16.15.54), which
reads

Lp(n)= Lp(n/n− 1)Lp(n− 1) (16.18.9)

916 16. Adaptive Filters

The rows of the unit lower triangular updating matrix Lp(n/n− 1) are constructed
by (16.15.59), that is,

βββp = −e−p (n)
[
λD−p−1(n− 1)

]−1
e−p−1(n/n− 1) (16.18.10)

or, component-wise

βpi = −e−p (n)
e−i (n/n− 1)
λE−i (n− 1)

= −μ̄p(n)e−p (n/n− 1)
e−i (n/n− 1)
λE−i (n− 1)

, i = 0,1, . . . , p− 1

The direct and lattice Wiener weights are related by Eq. (16.15.60), i.e., gp(n)=
Lp(n)−Thp(n), and the a posteriori and a priori estimation errors are given by (16.15.61)

x̂p(n)= gp(n)Tep(n) , x̂p(n/n− 1)= gp(n− 1)Te−p (n/n− 1) (16.18.11)

and satisfy the recursions in order

x̂p(n)= x̂p−1(n)+gp(n)e−p (n) , x̂p(n/n−1)= x̂p−1(n/n−1)+gp(n−1)e−p (n/n−1)

This implies the following recursions for the estimation errors

ep(n)= ep−1(n)−gp(n)e−p (n) , ep(n/n−1)= ep−1(n/n−1)−gp(n−1)e−p (n/n−1)

Finally, the time updating equation (16.15.62) for the lattice weights takes the form

gp(n)= Lp(n/n− 1)−Tgp(n− 1)+ep(n/n− 1)D−p (n)−1e−p (n)

and extracting the last component, we obtain

gp(n)= gp(n− 1)+ep(n/n− 1)
e−p (n)
E−p (n)

RLS lattice and gradient adaptive lattice filters may be used in any Wiener filtering
application. Their attractive features are: (a) computational efficiency; (b) very fast rate
of convergence, which is essentially independent of the eigenvalue spread of the input
covariance matrix; (c) modularity of structure admitting parallel VLSI implementations;
and (d) numerical stability and accuracy under quantization.

16.19 Computer Project – Adaptive Wiener Filters

It is desired to design an adaptive Wiener filter to enhance a sinusoidal signal buried in
noise. The noisy sinusoidal signal is given by

xn = sn + vn, where sn = sin(ω0n)

withω0 = 0.075π. The noise vn is related to the secondary signal yn by

vn = yn + yn−1 + yn−2 + yn−3 + yn−4 + yn−5 + yn−6

The signal yn is assumed to be an order-4 AR process with reflection coefficients:

{γ1, γ2, γ3, γ4} = {0.5,−0.5,0.5,−0.5}
The variance σ2

ε of the driving white noise of the model must be chosen in such a
way as to make the variance σ2

v of the noise component vn approximately unity.

16.19. Computer Project – Adaptive Wiener Filters 917

a. For a Wiener filter of orderM = 6, determine the theoretical direct-form Wiener filter
coefficient vector:

h = [h0, h1, . . . , h6]

for estimating xn (or, rather vn) from yn. Determine also the theoretical lattice/ladder
realization coefficients:

γ = [γ1, γ2, . . . , γ6], g = [g0, g1, . . . , g6]

b. Generate input pairs {xn, yn} (making sure that the transients introduced by the
filter have died out), and filter them through the LMS algorithm to generate the filter
output pairs {x̂n, en}. On the same graph, plot en together with the desired signal
sn.

Plot also a few of the adaptive filter coefficients such as h4(n), h5(n), and h6(n).
Observe their convergence to the theoretical Wiener solution.

You must generate enough input pairs in order to achieve convergence of the LMS
algorithm and observe the steady-state converged output of the filter.

Experiment with the choice of the adaptation parameter μ. Start by determining
λmax, λmin, the eigenvalue spread λmax/λmin of R and the corresponding time con-
stant.

c. Repeat (b), using the gradient lattice adaptive filter. Plot all of the adaptive reflection
coefficients γp(n) versus n, and a few of the ladder coefficients, such as g4(n),
g5(n), and definitely g6(n).

(Because theoretically g6 = h6 (why?), plotting h6(n) and g6(n)will let you compare
the convergence speeds of the LMS and lattice adaptive filters.)

You must experiment with a couple of values of λ (use β = 1). You must work of
course with exactly the same set of input pairs as in part (b).

d. Next, we change this experiment into a non-stationary one. Suppose the total number
of input pairs that you used in parts (b) and (c) isN. And suppose that at time n = N,
the input statistics changes suddenly so that the primary signal is given now by the
model:

xn = sn + vn, where vn = yn + yn−1 + yn−2 + yn−3

and yn changes from a fourth-order AR model to a second-order model with reflec-
tion coefficients (use the same σ2

ε

{γ1, γ2} = {0.5,−0.5}

Repeat parts (a,b,c), keeping the filter order the same, M = 6. Use 2N input pairs,
such that the first N follow the original statistics and the second N follow the
changed statistics. Compare the capability of the LMS and lattice adaptive filters
in tracking such changes.

Here, the values of μ for the LMS case and λ for the lattice case, will make more of a
difference in balancing the requirements of learning speed and quality of estimates.

918 16. Adaptive Filters

e. Finally, feel free to “tweak” the statements of all of the above parts as well as the
definition of the models in order to show more clearly and more dramatically the
issues involved, namely, LMS versus lattice, learning speed versus quality, and the
effect of the adaptation parameters, eigenvalue spread, and time constants. One
other thing to notice in this experiment is that, while the adaptive weights tend to
fluctuate a lot as they converge, the actual filter outputs x̂n, en behave better and are
closer to what one might expect.

16.20 Problems

16.1 Computer Experiment. (a) Reproduce the results of Fig. 16.3.2.

(b) On the same graph of part (a), plot the theoretical convergence curve of the weight
h(n) obtained by using Eq. (16.2.8).

(c) Using 10 different realizations of xn and yn, compute 10 different realizations of the
adaptive weight of Eq. (16.3.2). Compute the average weight over the 10 realizations
and plot it versus n, together with the theoretical weight of Eq. (16.2.8). Use μ = 0.03.

(d) Reproduce the results of Fig. 16.5.2.

16.2 In steered adaptive arrays [1093] and other applications, one has to solve a constrained
Wiener filtering problem. Suppose the (M+1)-dimensional weight vector h = [h0, h1, . . . , hM]T

satisfies the L linear constraints cTi h = fi, i = 1,2, . . . , L, where L ≤ M and the ci are given
(M+1)-dimensional vectors, and fi are given scalars. The set of constraints may be written
compactly as CTh = f, where C = [c1, c2, . . . , cL] and f = [f1, f2, . . . , fL]T .

(a) Show that the solution of the minimization problem E = E[e2
n]= min, subject to the

constraint CTh = f, is given by

h = hu +R−1C(CTR−1C)−1(f−CThu)

where hu = R−1r is the unconstrained Wiener solution and R = E[y(n)y(n)T], r =
E[xny(n)].

(b) In an adaptive implementation, h(n+ 1)= h(n)+Δh(n), the constraint must be sat-
isfied at each iteration. The time update term, therefore, must satisfy CTΔh(n)= 0.
Show that the following (gradient projection) choice satisfies this condition

Δh(n)= −μP ∂E
∂h(n)

, P = I −C(CTC)−1CT

Moreover, show that this choice moves the performance index closer to its minimum
at each iteration.

(c) Show that the resulting difference equation can be written as

h(n+ 1)= P[
h(n)−2μRh(n)+2μr

]+ hLS

where hLS = C(CTC)−1f is recognized as the least-squares solution of the linear equa-
tion CTh = f. And, show that CTh(n+ 1)= f.

(d) Show that the LMS adaptive algorithm resulting by dropping the expectation values is,
with en = xn − x̂n = xn − h(n)Ty(n)

h(n+ 1)= P[
h(n)+2μeny(n)

]+ hLS

16.20. Problems 919

16.3 Rederive the results in parts (c) and (d) of Problem 16.2 using the following approach. In-
troduce a Lagrange multiplier vector λλλ = [λ1, λ2, . . . , λL]T into the performance index en-
forcing the constraint equations; that is, E = E[e2

n]+λλλT(f − CTh). Show that the ordinary
unconstrained gradient descent method h(n+ 1)= h(n)−μ∂E/∂h(n) gives rise to the dif-
ference equation

h(n+ 1)= (I − 2μR)h(n)+2μr− μCλλλ(n)
Impose the constraint CTh(n+1)= f, eliminate λλλ(n), and show that this equation is equiv-
alent to that in part (c) of the previous problem.

16.4 Verify that Eq. (16.6.5) is the solution of Eq. (16.6.4).

16.5 Consider an adaptive filter with two taps:

x̂n = h0(n)yn + h1(n)yn−1 =
[
h0(n), h1(n)

][
yn
yn−1

]
= h(n)Ty(n)

The optimal filter weights are found adaptively by the gradient descent algorithm

h(n+ 1)= h(n)−μ ∂E
∂h(n)

where E = E[e2
n] and en is the estimation error.

(a) Show that the above difference equation may be written as

h(n+ 1)= h(n)+2μ
(
r−Rh(n)

)
where

r =
[
Rxy(0)
Rxy(1)

]
, R =

[
Ryy(0) Ryy(1)
Ryy(1) Ryy(0)

]
(b) Suppose Rxy(0)= 10, Rxy(1)= 5, Ryy(0)= 3, Ryy(1)= 2. Find the optimal weights

h = lim h(n) as n→∞.

(c) Select μ = 1/6. Explain why such a value is sufficiently small to guarantee conver-
gence of the difference equation of part (a). What other values of μ also guarantee
convergence?

(d) With μ = 1/6, solve the difference equation of part (a) in closed form for n ≥ 0.
Discuss the rate of convergence.

16.6 Consider a single CCL as shown in Fig. 16.3.1.

(a) Suppose the reference signal is set equal to a unit step signal; that is, y(n)= u(n).
Show that the CCL will behave as a time-invariant linear filter with input xn and output
en. Determine the transfer function H(z) from xn to en.

(b) Find and interpret the poles and zeros of H(z).

(c) Determine the range of μ-values for which H(z) is stable.

16.7 Repeat Problem 16.6 when the reference signal is the alternating unit step; that is, y(n)=
(−1)nu(n).

920 16. Adaptive Filters

16.8 Let hR and hI be the real and imaginary parts of the complex weight vector h = hR + jhI .
Show that

∂E
∂h∗

= 1

2

[
∂E
∂hR

+ j ∂E
∂hI

]
Consider the simultaneous gradient descent with respect to hR and hI , that is, hR → hR+ΔhR
and hI → hI +ΔhI , with

ΔhR = −μ ∂E∂hR
, ΔhI = −μ ∂E∂hI

Show that it is equivalent to the gradient descent h → h+Δh, where

Δh = −2μ
∂E
∂h∗

Note the conjugation and the factor of two.

16.9 Using the transfer function of Eq. (16.9.1), derive an approximate expression for the 3-dB
width of the notch. You may work to lowest order in μ.

16.10 Computer Experiment. Consider the noise canceling example discussed in Sec. 12.11 and in
Problems 12.25–12.27 and defined by the following choice of parameters:

ω0 = 0.075π [rads/sample] , φ = 0 , a1 = −0.5 , a2 = 0.8 , M = 4

(a) Generate a realization of the signals x(n) and y(n) and process them through the
adaptive noise canceler of Sec. 16.9, using anMth order adaptive filter and adaptation
parameter μ. By trial and error select a value for μ that makes the LMS algorithm
convergent, but not too small as to make the convergence too slow. Plot one of the
filter weights hm(n) versus iteration number n, and compare the asymptotic value
with the theoretical value obtained in Problem 12.26.

(b) After the weights have converged, plot 100 output samples of the error signal e(n),
and observe the noise cancellation property.

(c) Repeat (a) and (b) using an adaptive filter of orderM = 6.

16.11 Computer Experiment. (a) Plot the magnitude of the frequency response of the adaptive
noise canceler notch filter of Eq. (16.9.1) versus frequency ω (z = ejω). Generate several
such plots for various values of μ and observe the effect of μ on the width of the notch.

(b) Let x(n)= ejω0n and y(n)= Aejω0n, and select the parameters as

ω0 = 0.075π, M = 2 , A = 0.01 , μ = 0.1

Process x(n) and y(n) through the adaptive noise canceler of Sec. 16.9, and plot the
output e(n) versus n and observe the cancellation of the signal x(n) due to the notch
filter created by the presence of the weak sinusoidal reference signal y(n).

16.12 Computer Experiment. Let x(n)= x1(n)+x2(n), where x1(n) is a narrowband component
defined by

x1(n)= sin(ω0n+φ) , ω0 = 0.075π [rads/sample]

where φ is a random phase uniformly distributed over [0,2π], and x2(n) is a fairly broad-
band component generated by sending zero-mean, unit-variance, white noise ε(n) through
the filter

x2(n)= ε(n)+2ε(n− 1)+ε(n− 2)

16.20. Problems 921

(a) Compute the autocorrelation functions of x1(n) and x2(n) and sketch them versus lag
k. Based on this computation, select a value for the delay Δ to be used in the adaptive
line enhancer discussed in Sec. 16.10.

(b) Generate a realization of x(n) and process it through the ALE with an appropriately
chosen adaptation parameter μ. Plot the output signals x̂(n) and e(n), and compare
them with the components x1(n) and x2(n), respectively.

16.13 The response of the ALE to an input sinusoid in noise can be studied as follows: Let the
input be

xn = A1ejω1n+jφ + vn
where φ is a random phase independent of the zero-mean white noise vn. The optimum
Wiener filter weights of the ALE are given by

h = R−1r

where Rij = Rxx(i− j) and ri = Rx(i+Δ), as discussed in Sec. 16.10.

(a) Using the methods of Sec. 14.2, show that the optimum filter h is given by

h = ejω1Δ

σ2
v
P1
+M + 1

sω1

where the phasing vector sω1 was defined in Sec. 14.2, and P1 = |A1|2 is the power of
the sinusoid.

(b) Show that the mean output power of the ALE is given by

E
[|x̂n|2] = h†Rh = σ2

v h†h+ P1|h†sω1 |2

(c) Show that the SNR at the output is enhanced by a factor M + 1 over the SNR at the
input; that is, show that

(SNR)out= P1|h†sω1 |2
σ2
v h†h

= P1

σ2
v
(M + 1)= (M + 1)(SNR)in

(d) Derive an expression for the eigenvalue spread λmax/λmin in terms of the parameters
σ2
v , P1, andM.

(e) Show that if the delay Δ is removed; that is, Δ = 0, then the optimal weight vector
becomes equal to the unit vector

h = [1,0,0, . . . ,0]T

and that this choice corresponds to complete cancellation of the input signal x(n)
from the output e(n).

16.14 Computer Experiment. Consider the autoregressive process yn generated by the difference
equation

yn = −a1yn−1 − a2yn−2 + εn
where a1 = −1.6, a2 = 0.8, and εn is zero-mean, unit-variance, white noise. Generate a
realization of yn and process it through the LMS adaptive predictor of order 2, as discussed
in Sec. 16.11. Use a value for the adaptation parameter μ of your own choice. Plot the
adaptive prediction coefficients a1(n) and a2(n) versus n, and compare their converged
values with the theoretical values given above.

922 16. Adaptive Filters

16.15 The adaptive predictor may be considered as the linearly constrained minimization problem
E = E[e2

n]= min, subject to the constraint that the first element of a = [1, a1, . . . , aM]T be
unity. This constraint may be written compactly as uTa = 1, where u = [1,0, . . . ,0]T .
Rederive the adaptation equations of Sec. 16.11 using the formalism and results of Problem
16.2.

16.16 Computer Experiment. A complex-valued version of the LMS adaptive predictor of Sec. 16.11
is defined by

en = yn + a1(n)yn−1 + a2(n)yn−2 + · · · + aM(n)yn−M
am(n+ 1)= am(n)−2μeny∗n−m , m = 1,2, . . . ,M

Let yn consist of two complex sinusoids in zero-mean white noise

yn = A1ejω1n +A2ejω2n + vn

where the frequencies and the SNRs are

ω1 = 0.3π, ω2 = 0.7π [radians/sample]

10 log10

[|A1|2/σ2
v
] = 10 log10

[|A2|2/σ2
v
] = 20 dB

(a) Generate a realization of yn (using a complex-valued vn) and process it through anMth
order LMS adaptive predictor using an adaptation constant μ. Experiment with several
choices of M and μ. In each case, stop the algorithm after convergence has taken
place and plot the AR spectrum S(ω)= 1/|A(ω)|2 versus frequencyω. Discuss your
results.

(b) Using the same realization of yn, iterate the adaptive Pisarenko algorithm defined
by Eqs. (16.12.5) and (16.12.6). After convergence of the Pisarenko weights, plot the
Pisarenko spectrum estimate S(ω)= 1/|A(ω)|2 versus frequencyω.

(c) Repeat (a) and (b) when the SNR of the sinewaves is lowered to 0 dB. Compare the
adaptive AR and Pisarenko methods.

16.17 Computer Experiment. Reproduce the results of Figs. 7.19 and 7.20.

16.18 Derive Eqs. (16.14.8) and (16.14.9) that describe the operation of the adaptive linear combiner
in the decorrelated basis provided by the Gram-Schmidt preprocessor.

16.19 Computer Experiment. Reproduce the results of Fig. 16.14.2.

16.20 What is the exact operational count of the conventional RLS algorithm listed in Sec. 16.15?
Note that the inverse matrices P0 and P1 are symmetric and thus only their lower-triangular
parts need be updated.

16.21 Verify the solution (16.15.56) for the rank-one updating of the LU factors L0 and L1. Also
verify that Eq. (16.15.58) is equivalent to (16.15.54).

16.22 Computer Experiment. Reproduce the results of Fig. 16.17.1. Carry out the same experiment
(with the same input data) using the conventional RLS algorithm and compare with FAEST.
Carry out both experiments with various values of λ and comment on the results.

16.23 Computer Experiment. Reproduce the results of Fig. 16.18.1.

17
Appendices

A Matrix Inversion Lemma

The matrix inversion lemma, also known as Woodbury’s identity, is useful in Kalman
filtering and recursive least-squares problems. Consider the matrix relationship,

R = A+UBV (A.1)

where
A ∈ CN×N , U ∈ CN×M , B ∈ CM×M , V ∈ CM×N

and assume that A,B are both invertible and thatM ≤ N. Then, the term UBV has rank
M, while R,A have rankN. The matrix inversion lemma states that the inverse of R can
be obtained from the inverses of A,B via the formula,

R−1 = (A+UBV)−1= A−1 −A−1U
[
B−1 +VA−1U

]−1VA−1 (A.2)

Proof: Multiply both sides of (A.1) by R−1 from the right, and then by A−1 from the left
to obtain,

A−1 = R−1 +A−1UBVR−1 (A.3)

then, multiply both sides from the left by V,

VA−1 = VR−1 +VA−1UBVR−1 ⇒ VA−1 = [
IM +VA−1UB

]
VR−1

where IM is theM ×M identity matrix, and solve for BVR−1,

VA−1 = [
B−1 +VA−1U

]
BVR−1 ⇒ BVR−1 = [

B−1 +VA−1U
]−1VA−1

and substitute back into (A.3), after solving for R−1,

R−1 = A−1 −A−1UBVR−1 = A−1 −A−1U
[
B−1 +VA−1U

]−1VA−1

Thus givenA−1 and B−1, the inverse of theN×Nmatrix R requires only the inverse
of the smallerM ×M matrix, B−1 +VA−1U.

923

924 17. Appendices

B MATLAB Functions

% OSP Toolbox
% S. J. Orfanidis - 2018
%
% ---
% Local Polynomial Smoothing Filters
% ---
% binom - vector of binomial coefficients
% bkfilt - Baxter-King bandpass filter
% cldec - classical decomposition method
% combfd - comb fractional-delay filter design
% compl - complement of an odd-length symmetric filter
% diffb - backward difference operator
% diffmat - difference convolution matrix
% diffpol - differentiate polynomial
% diffs - seasonal backward difference operator
% ecg - ECG generator.
% ecgsim - ECG simulation
% filtdbl - filtering with double-sided FIR filter
% hahnbasis - Hahn orthogonal polynomials
% hahncoeff - coefficients of Hahn orthogonal polynomials
% hahnpol - Hahn orthogonal polynomial evaluation
% hahnrec - Hahn orthogonal polynomials
% hend - Henderson weighting function
% kmat - difference convolution matrix
% kraw - Krawtchouk binomial weighting function
% kwindow - Kaiser window for spectral analysis
% lagrfd - Lagrange-interpolation fractional-delay filter
% lpbasis - local polynomial basis
% lpdiff - weighted local polynomial differentiation filters
% lpfilt - local polynomial filtering - fast version
% lpfilt2 - local polynomial filtering - slower version
% lpinterp - local polynomial interpolation and differentiation filters
% lpmat - local polynomial smoothing matrix
% lpmissing - weighted local polynomial filters for missing data
% lprs - local polynomial minimum-Rs smoothing filters
% lprs2 - local polynomial minimum-Rs smoothing filters (closed-form)
% lpsm - weighted local polynomial smoothing and differentiation filters
% minrev - minimum revision asymmetric filters
% polval - polynomial evaluation in factorial power series
% rlpfilt - robust local polynomial filtering
% sigav - signal averaging
% smadec - decomposition using seasonal moving-average filters
% smafilt - impulse responses of seasonal decomposition moving average filters
% smat - seasonal moving-average filtering matrix
% smav - seasonal moving average filter
% stirling - Stirling numbers of first or second kind, signed or unsigned
% swhdec - seasonal Whittaker-Henderson decomposition
% trendma - trend moving-average filter, 2xD if D is even, 1xD if D is odd
% upmat - upsample matrix of smoothing filters
% whkdec - Whittaker-Henderson-Kaiser seasonal decomposition
% x11dec - US Census X-11 decomposition method for seasonal adjustment
% x11filt - impulse responses of the US Census X-11 seasonal adjustment filters

% ---
% Local Linear Regression

B. MATLAB Functions 925

% ---
% avobs - average repeated observations
% locband - bandwidth for local polynomial regression
% locgcv - local polynomial GCV and CV evaluation
% locgrid - uniform grid for local polynomial evaluation
% locpol - local polynomial regression
% locval - evaluation/interpolation of local polynomial regression
% locw - local weighting functions for local polynomial regression
% loess - Cleveland’s robust locally weighted scatterplot smoothing (loess)
% loess2 - Cleveland’s robust locally weighted scatterplot smoothing (loess)

% ---
% Spline and Whittaker-Henderson Smoothing
% ---
% splambda - find optimum lambda for spline smoothing using GCV
% splav - averaged repeated observations at spline knots
% splcoeff - spline coefficients
% splgcv - evaluate GCV(lambda)
% splmat - spline smoothing matrices Q,T
% splsm - spline smoothing using Reinsch’s algorithm
% splsm2 - spline smoothing using Reinsch’s algorithm - robust version
% splval - evaluate spline smoothing polynomials
% whgcv - Whittaker-Henderson smoothing method
% whgen - generalized Whittaker-Henderson
% whimp - Whittaker-Henderson filter impulse response
% whsm - Whittaker-Henderson smoothing method
% whsm1 - Whittaker-Henderson smoothing method - L1 version

% ---
% Exponentially Weighted Averages
% ---
% binmat - binomial boost matrices for exponential smoothers
% ema - exponential moving average - exact version
% emaerr - calculate MAE, MSE, and MAPE for a range of lambda’s
% emap - map equivalent lambdas between d=0 EMA and d=1 EMA
% emat - polynomial to cascaded transformation matrix
% holt - Holt’s exponential smoothing
% holterr - calculate MAE, MSE, and MAPE for a range of lambda’s
% mema - multiple exponential moving average
% stema - steady-state exponential moving average

% ---
% Linear Prediction & Wiener and Kalman Filtering Functions
% ---
% acext - autocorrelation sequence extension using Levinson recursion
% acf - sample auto-correlation function
% acmat - construct autocorrelation Toeplitz matrix from autocorrelation lags
% acsing - sinusoidal representation of singular autocorrelation matrices
% aicmdl - estimates dimension of signal subspace from AIC and MDL criteria
% argen - generate a zero-mean segment of an AR process
% bkwlev - backward Levinson recursion
% burg - Burg’s method of linear prediction
% dir2nl - direct form to normalized lattice
% dpd - dynamic predictive deconvolution
% dwf - sample processing algorithm of direct-form Wiener filter
% dwf2 - direct-form Wiener filter using circular delay-line buffer
% dwfilt - direct-form Wiener filtering of data
% dwfilt2 - circular-buffer direct-form Wiener filtering of data

926 17. Appendices

% faest - sample processing algorithm of adaptive lattice Wiener filter
% firw - FIR Wiener filter design
% flipv - flip a vector, column, row, or both for a matrix
% frwlev - forward Levinson recursion
% glwf - sample processing algorithm of lattice Wiener filter
% kfilt - Kalman filtering
% ksmooth - Kalman smoothing
% latt - sample processing algorithm of analysis lattice filter
% lattfilt - lattice filtering of a data vector
% lattsect - sample processing algorithm of a single lattice section
% lattsynth - sample processing algorithm of synthesis lattice filter
% lev - Levinson-Durbin recursion
% lms - sample processing LMS algorithm of direct-form Wiener filter
% lpf - extract linear prediction filter from matrix L
% lpg - extract reflection coefficients from matrix L
% lpspec - compute LP spectrum of a prediction-error filter
% lwf - sample processing algorithm of lattice Wiener filter
% lwfilt - lattice Wiener filtering of data
% mgs - adaptive modified Gram-Schmidt
% mgslms - adaptive Gram-Schmidt using LMS
% minorm - minimum-norm noise subspace eigenvector
% music - MUSIC spectrum computation
% nlfilt - filtering in the normalized lattice form
% obmat - observability matrix for canonical or transposed realizations
% obmatc - observability matrix for continuous-time
% rlev - reverse of Levinson’s algorithm
% rls - RLS algorithm for adaptive linear combiner
% rlsl - sample processing algorithm of lattice Wiener filter
% rmusic - minimum-norm noise subspace eigenvector
% scatt - direct scattering problem
% schur1 - Schur algorithm for linear prediction
% schur2 - Schur algorithm for Cholesky factorization
% spike - spiking filter design
% yw - Yule-Walker method of linear prediction

% ---
% SVD, Subspace, and ARMA Modeling Functions
% ---
% arma2imp - ARMA impulse response
% armaacf - ARMA autocorrelation function
% armachol - ARMA covariance matrix Cholesky factorization
% armafit - fitting an ARMA(p,q) model to covariance lags
% armainf - ARMA asymptotic Fisher information matrix
% armainnov - ARMA modeling using the innovations method
% armamf - Mayne-Firoozan ARMA modeling method
% armamyw - ARMA modeling by the modified Yule-Walker method
% armasim - simulate a zero-mean segment of a gaussian ARMA process
% armasim2 - simulate a zero-mean segment of a gaussian ARMA process
% bwidth - beamwidth mapping from psi-space to phi-space
% cca - Canonical Correlation Analysis
% ccacov - CCA applied to a covariance matrix
% cholgs - Cholesky factorization by Gram-Schmidt orthogonalization
% cholinnov - Cholesky factorization by innovations representation
% crb - calculate Cramer-Rao bounds for sinusoids in noise
% crb2 - calculate Cramer-Rao bounds for sinusoids in noise
% datamat - convolution data matrix of a signal vector
% datasig - extract data signal from a Toeplitz or Toeplitz/Hankel data matrix

B. MATLAB Functions 927

% dolph - Dolph-Chebyshev array weights
% fisher - calculate Fisher information matrix for sinusoids in noise
% imp2arma - impulse response to ARMA coefficients
% irls - Lp_regularized iteratively reweighted least squares
% irls_wh - Lp_regularized IRLS Whittaker-Henderson
% lpls - construct least-squares linear prediction filter from data matrix
% madurbin - MA modeling by Durbin’s method
% mafit - Wilson’s method of fitting an MA(q) model to covariance lags
% mainnov - MA modeling by the innovations method
% mpencil - matrix-pencil method of extracting sinusoids in noise
% poly2 - specialized version of poly
% scan - scan array with given scanning phase
% setrank - reduce the rank of a diagonal matrix of singular values
% sigsub - construct reduced-rank signal subspace of a data matrix
% sines - generate sum of real or complex decaying sinusoids in noise
% snap - generate snapshot matrix for array problems
% snapshot - generate data matrix of snapshots for array problems
% snr - magnitude to SNR in dB, and conversely
% steer - steer array towards given angle
% steering - construct steering matrix of multiple sinusoids/plane-waves
% steermat - construct steering matrix of multiple sinusoids/plane-waves
% svdenh - SVD signal enhancement
% toepl - Toeplitz, Hankel, or Toeplitz/Hankel approximation of data matrix
% varper - percentage variances

% ---
% Wavelet Functions
% ---
% advance - circular time-advance (left-shift) of a vector
% casc - cascade algorithm for phi and psi wavelet functions
% circonv - circular convolution
% cmf - conjugate mirror of a filter
% convat - convolution a trous
% convmat - sparse convolution matrix
% convmat2 - sparse convolution matrix (simplified version)
% daub - Daubechies scaling filters (daublets, symmlets, coiflets)
% dn2 - downsample by a factor of 2
% dwtcell - cell array of sparse discrete wavelet transform matrices
% dwtdec - DWT decomposition into orthogonal multiresolution components
% dwtmat - discrete wavelet transform matrices
% dwtmat2 - discrete wavelet transform matrices
% dwtwrap - wrap a DWT matrix into a lower DWT matrix
% flipv - flip a vector, column, row, or both for a matrix
% fwt - fast wavelet transform using convolution and downsampling
% fwtm - fast wavelet transform in matrix form
% fwtmat - overall DWT orthogonal matrix
% ifwt - inverse fast wavelet transform using upsampling and convolution
% ifwtm - inverse fast wavelet transform in matrix form
% iuwt - inverse undecimated wavelet transform
% iuwtm - inverse undecimated wavelet transform
% modwrap - wrap matrix column-wise mod-N
% phinit - eigenvector initialization of phi
% plotdec - plot DWT/UWT decomposition or DWT/UWT coefficients
% up2 - upsample a vector by factor of two
% upr - upsample a vector by factor of 2^r
% uwt - undecimated wavelet transform
% uwtdec - UWT multiresolution decomposition
% uwtm - undecimated wavelet transform

928 17. Appendices

% uwtmat - undecimated wavelet transform matrices
% uwtmat2 - undecimated wavelet transform matrices
% w2V - wavelet vector to wavelet matrix
% wcoeff - extract wavelet coefficients from DWT at given level
% wdenoise - Donoho & Johnstone’s VisuShrink denoising procedure
% wduwt - wavelet denoising with UWT
% wthr - soft/hard level-dependent wavelet thresholding

% ---
% Technical Analysis Functions
% ---
% accdist - accumulation/distribution line
% atr - true range & average true range
% bbands - Bollinger bands
% bma - Butterworth moving average
% cci - commodity channel index
% chosc - Chaikin oscillator
% chvol - Chaikin volatility
% cmflow - Chaikin money flow
% cmo - Chande momentum oscillator
% delay - lag or delay or advance by d samples
% dema - steady-state double exponential moving average
% dirmov - directional movement system
% dmi - dynamic momentum index (DMI)
% donch - Donchian channels
% dpo - detrended price oscillator
% ehma - exponential Hull moving average
% fbands - fixed-envelope bands
% forosc - forecast oscillator
% gdema - generalized dema
% hma - Hull moving average
% ilrs - integrated linear regression slope indicator
% kbands - Keltner bands or channels
% lreg - linear regression, slope, and R-squared indicators
% mom - momentum and price rate of change
% ohlc - make Open-High-Low-Close bar chart
% ohlcyy - OHLC plot with other indicators on the same graph
% pbands - Projection Bands and Projection Oscillator
% pma - predictive moving average, linear fit
% pma2 - predictive moving average, polynomial order d=1,2
% pmaimp - predictive moving average impulse response
% pmaimp2 - predictive moving average impulse response, d=1,2
% pnvi - positive and negative volume indices (PVI & NVI)
% prosc - price oscillator & MACD
% psar - Wilder’s parabolic SAR
% r2crit - R-squared critical values
% rsi - relative strength index (RSI)
% sebands - standard-error bands
% sema - single exponential moving average
% shma - SMA-based Hull moving average
% sma - simple moving average
% stbands - STARC bands
% stdev - standard deviation index
% stoch - stochastic oscillator
% t3 - Tillson’s T3 indicator, triple gdema
% tcrit - critical values of Student’s t-distribution
% tdistr - cumulative t-distribution
% tema - triple exponential moving average

B. MATLAB Functions 929

% tma - triangular moving average
% trix - TRIX oscillator
% vema - variable-length exponential moving average
% vhfilt - Vertical Horizontal Filter
% wema - Wilder’s exponential moving average
% wma - weighted or linear moving average
% yylim - adjust left/right ylim & ticks

% ---
% Miscellaneous Functions
% ---
% canfilt - IIR filtering in canonical form using linear delay-line buffer
% ccan - IIR filter in canonical form using circular delay-line buffer
% ccanfilt - IIR filtering in canonical form using circular delay-line buffer
% frespc - frequency response of a cascaded IIR filter at a frequency vector w
% loadfile - load data file ignoring any text lines
% taxis - define time axis
% up - upsample by a factor of L
% ustep - unit-step or rising unit-step function
% xaxis - set x-axis limits and tick marks
% yaxis - set y-axis limits and tick marks
% zmean - zero mean of each column of a data matrix (or row vector)

References

References for Chap. 1

[1] A. Papoulis, Probability, Random Variables, and Stochastic Processes, (2nd ed.), New York, McGraw-
Hill, 1984; and 4th ed., with S. U. Pillai, 2002.

[2] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, vol. 2, (4th ed.), London, Griffin,
1979.

[3] H. W. Sorenson, Parameter Estimation, New York, Marcel Dekker, 1980.

[4] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, (2nd ed.), New York, Wiley, 1984.

[5] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, vol. 3, (3d ed.), New York, Hafner
Press, 1976.

[6] J. Cryer, Times Series Analysis, Boston, Duxbury Press, 1986.

[7] J. L. Doob, Stochastic Processes, New York, Wiley, 1953.

[8] P. R. Halmos, Finite-Dimensional Vector Spaces, New York, Van Nostrand, 1958.

[9] R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra, New York, Dover, 1958.

[10] C. Bingham, M. D. Godfrey, and J. W. Tukey, Modern Techniques of Power Spectrum Estimation, IEEE
Trans. Audio Electroacoust., AU-15, 56–66 (1967).

[11] G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, San Francisco, Holden-Day,
1968.

[12] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ, Prentice Hall,
1975.

[13] J. S. Lim and A. V. Oppenheim, eds., Advanced Topics in Signal Processing, Prentice Hall, Upper
Saddle River, NJ, 1988.

[14] R. K. Otnes and L. Enochson, Digital Time Series Analysis, New York, Wiley, 1972.

[15] W. Davenport and W. Root, Introduction to the Theory of Random Signals and Noise, New York,
McGraw-Hill, 1958.

[16] D. Childers, Ed., Modern Spectrum Analysis, New York, Wiley, 1978.

[17] F. J. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,
Proc. IEEE, 66, 51–83 (1978).

[18] A. H. Nuttal and G. C. Carter, A Generalized Framework for Power Spectral Estimation, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-28, 334–335 (1980).

[19] S. M. Kay, Modern Spectral Estimation, Englewood Cliffs, NJ, Prentice Hall, 1988.

[20] S. L. Marple, Digital Spectral Analysis with Applications, Englewood Cliffs, NJ, Prentice Hall, 1987.

[21] P. D. Welch, The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based
on Time Averaging over Short, Modified Periodograms, IEEE Trans. Audio Electroacoust., AU-15, 70–
73 (1967).

[22] G. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis Forecasting and Control, 4/e, Wiley,
New York, 2008.

[23] H. Wold, A Study in the Analysis of Time Series, Uppsala, Sweden, Almqvist and Wiksell, 1931 and
1954.

[24] A. Papoulis, Predictable Processes and Wold’s Decomposition: A Review, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-33, 933 (1985).

930

REFERENCES 931

[25] A. N. Kolmogorov, Sur l’Interpolation et Extrapolation des Suites Stationnaires, C. R. Acad. Sci., 208,
2043–2045 (1939). See also “Interpolation and Extrapolation of Stationary Random Sequences, and
Stationary Sequences in Hilbert Space,” reprinted in T. Kailath, Ed., Linear Least-Squares Estimation,
Stroudsburg, PA, Dowden, Hutchinson, and Ross, 1977.

[26] E. A. Robinson, Time Series Analysis and Applications, Houston, TX, Goose Pond Press, 1981.

[27] C. R. Rao, Linear Statistical Inference and Its Applications, (2nd ed.), New York, Wiley, 1973.

[28] D. S. G. Pollock, Handbook of Time Series Analysis, Signal Processing, and Dynamics, Academic, New
York, 1999.

[29] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed., Prentice
Hall, Upper Saddle River, NJ, 1999.

[30] S. J. Orfanidis, Introduction to Signal Processing, Prentice Hall, Upper Saddle River, NJ, 1996. Avail-
able online from: http://www.ece.rutgers.edu/~orfanidi/intro2sp/.

[31] S. J. Orfanidis, Optimum Signal Processing, 2nd ed., online book, 2007, available from:
http://www.ece.rutgers.edu/~orfanidi/osp2e/.

[32] S. Lang and J. McClellan, A Simple Proof of Stability for All-Pole Linear Prediction Models, Proc. IEEE,
67, 860-861 (1979).

[33] S. Kay and L. Pakula, Simple Proofs of the Minimum Phase Property of the Prediction Error Filter,
IEEE Trans. Acoust., Speech, Signal Process., ASSP-31, 501 (1983).

[34] P. Stoica and A. Nehorai, On Stability and Root Location of Linear Prediction Models, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-35, 582 (1987).

[35] S. J. Orfanidis, A Proof of the Minimal Phase Property of the Prediction Error Filter, Proc. IEEE, 71,
905 (1983).

Local Polynomial Smoothing Filters

[36] G. V. Schiaparelli, “Sul Modo Di Ricavare La Vera Espressione Delle Leggi Della Natura Dalle Curve
Empiriche,” Effemeridi Astronomiche di Milano per l’anno 1866, p.3–56, reprinted in Le Opere di G.
V. Schiaparelli, vol.8, Ulrico Hoepli Publisher, Milano, 1930, and Johnson Reprint Corp., New York.

[37] A. Lees, “Interpolation and Extrapolation of Sampled Data,” IEEE Trans. Inform. Th., 2, 12 (1956).

[38] K. R. Johnson, “Optimum, Linear, Discrete Filtering of Signals Containing a Nonrandom Component,”
IEEE Trans. Inform. Th., 2, 49 (1956).

[39] M. Blum, “An Extension of the Minimum Mean Square Prediction Theory for Sampled Input Signals,”
IEEE Trans. Inform. Th., IT-2, 176 (1956).

[40] M. Blum, “On the Mean Square Noise Power of an Optimum Linear Discrete Filter Operating on
Polynomial plus White Noise Input,” IEEE Trans. Inform. Th., IT-3, 225 (1957).

[41] J. D. Musa, “Discrete Smoothing Filters for Correlated Noise,” Bell Syst. Tech. J., 42, 2121 (1963).

[42] A. Savitzky and M Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Pro-
cedures,” Anal. Chem.. 36, 1627 (1964).

[43] M. U. A. Bromba and H. Ziegler, “Efficient Computation of Polynomial Smoothing Digital Filters,”
Anal. Chem., 51, 1760 (1979).

[44] M. U. A. Bromba and H. Ziegler, “Application Hints for Savitzky-Golay Digital Smoothing Filters,”
Anal. Chem., 53, 1583 (1981).

[45] T. H. Edwards and P. D. Wilson, “Digital Least Squares Smoothing of Spectra,” Appl. Spectrosc., 28,
541 (1974).

[46] T. H. Edwards and P. D. Wilson, “Sampling and Smoothing of Spectra,” Appl. Spectrosc. Rev., 12, 1
(1976).

[47] C. G. Enke and T. A. Nieman, “Signal-to-Noise Ratio Enhancement by Least-Squares Polynomial
Smoothing,” Anal. Chem., 48, 705A (1976).

[48] H. H. Madden, “Comments on the Savitzky-Golay Convolution Method for Least-Squares Fit Smooth-
ing and Differentiation of Digital Data,” Anal. Chem., 50, 1383 (1978).

[49] R. A. Leach, C. A. Carter, and J. M. Harris, “Least-Squares Polynomial Filters for Initial Point and
Slope Estimation,” Anal. Chem., 56, 2304 (1984).

932 REFERENCES

[50] P. A. Baedecker, “Comments on Least-Squares Polynomial Filters for Initial Point and Slope Estima-
tion,” Anal. Chem., 57, 1477 (1985).

[51] J. Steinier, Y. Termonia, and J. Deltour, “Comments on Smoothing and Differentiation of Data by
Simplified Least Squares Procedures,” Anal. Chem.. 44, 1627 (1972).

[52] H. Ziegler, “Properties of Digital Smoothing Polynomial (DISPO) Filters,” Appl. Spectrosc., 35, 88
(1981).

[53] G. R. Phillips and J. M. Harris, “Polynomial Filters for Data Sets with Outlying or Missing Observations:
Application to Charged-Coupled-Device- Detected Raman Spectra Contaminated by Cosmic Rays,”
Anal. Chem., 62, 2351 (1990).

[54] M. Kendall, Time-Series, 2nd ed., Hafner Press, Macmillan, New York, 1976.

[55] M. Kendall and A. Stuart, Advanced Theory of Statistics, vol. 3, 2nd ed., Charles Griffin & Co., London,
1968.

[56] R. W. Hamming, Digital Filters, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1983.

[57] C. S. Williams, Designing Digital Filters, Prentice Hall, Upper Saddle River, NJ, 1986.

[58] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd ed.,
Cambridge Univ. Press, New York, 1992.

[59] J. F. Kaiser and W. A. Reed, “Data Smoothing Using Lowpass Digital Filters,” Rev. Sci. Instrum., 48,
1447 (1977).

[60] J. F. Kaiser and R. W. Hamming, “Sharpening the Response of a Symmetric Nonrecursive Filter by
Multiple Use of the Same Filter,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-25, 415 (1975).

[61] J. Luo, et al., “Properties of Savitzky-Golay Digital Differentiators,” Dig. Sig. Process., 15, 122 (2005).

[62] J. Luo, “Savitzky-Golay Smoothing and Differentiation Filter for Even Number Data,” Signal Process.,
85, 1429 (2005).

[63] S. Hargittai, “Savitzky-Golay Least-Squares Polynomial Filters in ECG Signal Processing,” Computers
Cardiol., 32, 763 (2005).

[64] T. C. Mills, “A Note on Trend Decomposition: The ‘Classical’ Approach Revisited with an Application
to Surface Temperature Trends,” J. Appl. Statist., 34, 963 (2007).

Henderson Filters

[65] E. L. De Forest, “On Some Methods of Interpolation Applicable to the Graduation of Irregular Series,
such as Tables of Mortality,” Ann. Rep. Board of Regents of Smithsonian Institution, 1871, p.275.
Also, ibid., 1873, p.319.

[66] E. L. De Forest, “On Adjustment Formulas,” The Analyst (De Moines, Iowa), 4, 79 (1877), and ibid.,
p. 107.

[67] E. L. De Forest, “On the Limit of Repeated Adjustments,” The Analyst (De Moines, Iowa), 5, 129
(1878), and ibid., p. 65.

[68] H. H. Wolfenden, “Development of Formulae for Graduation by Linear Compounding, With Special
Reference to the Work of Erastus L. De Forest,” Trans. Actuarial Soc. Am., 26, 81 (1925).

[69] F. R. Macauley, The Smoothing of Time Series, Nat. Bureau Econ. Res., NY, 1931.

[70] M. D. Miller, Elements of Graduation, Actuarial Soc. Am. and Am. Inst. Actuaries, 1946.

[71] C. A. Spoerl, “Actuarial Science—A Survey of Theoretical Development,” J. Amer. Statist. Assoc., 46,
334 (1951).

[72] S. M. Stigler, “Mathematical Statistics in the Early States,” Ann. Statist., 6, 239 (1978).

[73] H. L. Seal, “The Fitting of a Mathematical Graduation Formula: A Historical Review with Illustrations,”
Blätter. Deutsche Gesellschaft für Versicherungsmathematik, 14, 237 (1980).

[74] H. L. Seal, “Graduation by Piecewise Cubic Polynomials: A Historical Review,” Blätter. Deutsche
Gesellschaft für Versicherungsmathematik, 15, 89 (1981).

[75] J. M. Hoem, “The Reticent Trio: Some Little-Known Early Discoveries in Life Insurance Mathematics
by L. H. Opperman, T. N. Thiele, and J. P. Gram,” Int. Statist. Rev., 51, 213 (1983).

[76] W. F. Sheppard, “Reduction of Errors by Means of Negligible Differences,” Proc. Fifth Int. Congress
of Mathematicians, 2, 348 (1912), Cambridge.

REFERENCES 933

[77] W. F. Sheppard, “Fitting Polynomials by Method of Least Squares,” Proc. London Math. Soc., Ser. 2,
13, 97 (1913).

[78] W. F. Sheppard, “Graduation by Reduction of Mean Square Error,” J. Inst. Actuaries, 48, 171 (1914),
see also, ibid., 48, 412 (1914), and 49, 148 (1915).

[79] R. Henderson, “Note on Graduation by Adjusted Average,” Trans. Actuarial Soc. Am., 18, 43 (1916).

[80] H. Vaughan, “Further Enquiries into the Summation Method of Graduation,” J. Inst. Actuaries, 66,
463 (1935).

[81] K. Weichselberger, “Über eine Theorie der gleitenden Durchschnitte und verschiedene Anwendun-
gen dieser Theorie,” Metrica, 8, 185 (1964).

[82] I. J. Schoenberg, “Some Analytical Aspects of the Problem of Smoothing,” in Studies and Essays
Presented to R. Courant on his 60th Birthday, Interscience, NY, 1948.

[83] I. J. Schoenberg, “On Smoothing Operations and Their Generating Functions,” Bull. Am. Math. Soc.,
59, 199 (1953).

[84] T. N. E. Greville, “On Stability of Linear Smoothing Formulas,” SIAM J. Numer. Anal., 3, 157 (1966).

[85] W. F. Trench, “Stability of a Class of Discrete Minimum Variance Smoothing Formulas,” SIAM J.
Numer. Anal., 9, 307 (1972).

[86] T. N. E. Greville, “On a Problem of E. L. De Forest in Iterated Smoothing,” SIAM J. Math. Anal., 5, 376
(1974).

[87] O. Borgan, “On the Theory of Moving Average Graduation,” Scand. Actuarial J., p. 83, (1979).

[88] P. B. Kenny and J. Durbin, “Local Trend Estimation and Seasonal Adjustment of Economic and Social
Time Series,” J. Roy. Statist. Soc., Ser. A, 145, 1 (1982).

[89] D. London, Graduation: The Revision of Estimates, ACTEX publications, Winsted, CT, 1985.

[90] E. S. W. Shiu, “Minimum-Rz Moving-Average Formulas,” Trans. Soc. Actuaries, 36, 489 (1984).

[91] E. S. W. Shiu, “A Survey of Graduation Theory,” in H. H. Panjer, ed., Actuarial Mathematics, Proc.
Symp. Appl. Math, vol.35, 1986.

[92] E. S. W. Shiu, “Algorithms for MWA Graduation Formulas,” Actuarial Res. Clearing House, 2, 107
(1988).

[93] W. D. Hoskins and P. J. Ponzo, “Some Properties of a Class of Band Matrices,” Math. Comp., 26, 393
(1972).

[94] A. Eisinberg, P. Pugliese, and N. Salerno, “Vandermonde Matrices on Integer Nodes: The Rectangular
Case,” Numer. Math., 87, 663 (2001).

[95] M. Dow, “Explicit Inverse of Toeplitz and Associated Matrices,” ANZIAM J., 44 (E), 185 (2003).

[96] A. Grey and P. Thomson, “Design of Moving-Average Trend Filters Using Fidelity, Smoothness and
Minimum Revisions Criteria,” Res. Rep. CENSUS/SRD/RR-96/1, Statistical Research Division, Bureau
of the Census, Washington, DC.

[97] T. Proietti and A. Luati, “Least Squares Regression: Graduation and Filters,” in M. Boumans, ed.,
Measurement in Economics: A Handbook, Academic, London, 2007.

[98] T. Proietti and A. Luati, “Real Time Estimation in Local Polynomial Regression, with Application to
Trend-Cycle Analysis,” Ann. Appl. Statist., 2, 1523 (2008).

[99] A. Luati and T. Proietti, “On the Equivalence of the Weighted Least Squares and the Generalised Least
Squares Estimators,” Compstat 2008—Proc. Comput. Statist., P. Brito, ed., Physica-Verlag, Heidelberg,
2008. Available online from http://mpra.ub.uni-muenchen.de/8910/

Asymmetric End-Point Filters

[100] T. N. E, Greville, “On Smoothing a Finite Table,” J. SIAM, 5, 137 (1957).

[101] T. N. E, Greville, “Band Matrices and Toeplitz Inverses,” Lin. Alg. Appl., 27, 199 (1979).

[102] T. N. E, Greville, “Moving-Weighted-Average Smoothing Extended to the Extremities of the Data.
I. Theory,” Scand. Actuarial J., p. 39, (1981), and “part II. Methods,”, ibid. p.65. See also “Part III.
Stability and Optimal Properties,”, J. Approx. Th., 33 43 (1981).

[103] J. M. Hoem and P. Linnemann, “The Tails in Moving Average Graduation,” Scand. Actuarial J., p. 193,
(1988).

934 REFERENCES

Discrete Chebyshev and Hahn Polynomials

[104] P. L. Chebyshev, “Sur l’Interpolation,” reprinted in A. Markoff and N. Sonin, Oeuvres de P. L. Cheby-
shev, vol.1, p. 541, Commissionaires de l’Acádemie Impériale des Sciences, St. Petersbourg, 1899,
also Chelsea Publishing Co. , NY, 1961. See also p. 203, 381, 473, 701, and vol.2, p. 219. Available
online from http://www.archive.org/details/uvresdepltcheby00chebgoog

[105] P. Butzer and F. Jongmans, “P. L. Chebyshev (1821-1894), A Guide to His Life and Work,” J. Approx.
Th., 96, 111 (1999).

[106] C. Jordan, “Sur une Série de Polynomes Dont Chaque Somme Partielle Représente la Meilleure Ap-
proximation d’un Degré Donné Suivant la Méthode des Moindres Carrés,” Proc. London Math. Soc.,
2nd series, 20, 297 (1922).

[107] L. Isserlis and V. Romanovsky, “Notes on Certain Expansions in Orthogonal and Semi-Orthogonal
Functions,” Biometrika, 19, 87 (1927).

[108] C. Jordan, Calculus of Finite Differences, Chelsea Publishing Co. NY, 1939.

[109] G. Szegö, Orthogonal Polynomials, Am Math. Soc., Providence, RI, 1939.

[110] P. T. Birge and J. W. Weinberg, “Least Squares Fitting of Data by Means of Polynomials,” Rev. Mod.
Phys., 19, 298 (1947).

[111] M. Weber and A. Erdélyi, “On the Finite Difference Analogue of Rodrigues’ Formula,” Am. Math.
Monthly, 59, 163 (1952).

[112] G. E. Forsythe, “Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Com-
puter,” J. Soc. Indust. Appl. Math., 5, 74 (1957).

[113] S. Karlin and J. L. McGregor, “The Hahn Polynomials, Formulas and an Application,” Scripta Math.,
26, 33 (1961).

[114] P. G. Guest, Numerical Methods of Curve Fitting, Cambridge Univ. Press, London, 1961.

[115] N. Morrison, Introduction to Sequential Smoothing and Prediction, McGraw-Hill, NY, 1969.

[116] B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, NY,
1972.

[117] D. E. Clapp, “Adaptive Forecasting with Orthogonal Polynomial Filters,” AIIE Trans., 6, 359 (1974).

[118] F. B. Hildebrand, Introduction to Numerical Analysis, 2/e, McGraw-Hill, New York, 1974, reprinted
by Dover Publications, Mineola, NY, 1987.

[119] R. R. Ernst, “Sensitivity Enhancement in Magnetic Resonance,” in Advances in Magnetic Resonance,
vol. 2, J. S. Waugh, ed., Academic Press, 1966.

[120] C. P. Neuman and D. I. Schonbach, “Discrete (Legendre) Orthogonal Polynomials—A Survey,” Int. J.
Numer. Meth. Eng., 8, 743 (1974).

[121] A. Proctor and P. M. A. Sherwood, “Smoothing of Digital X-ray Photoelectron Spectra by and Extended
Sliding Least-Squares Approach,” Anal. Chem., 52 2315 (1980).

[122] P. D. Willson and S. R. Polo, “Polynomial Filters of any Degree,” J. Opt. Soc. Am., 71, 599 (1981).

[123] M. U. A. Bromba and H. Ziegler, “On Hilbert Space Design of Least-Weighted- Squares Digital Filters,”
Int. J. Circuit Th. Appl., 11, 7 (1983).

[124] P. Steffen, “On Digital Smoothing Filters: A Brief Review of Closed Form Solutions and Two New
Filter Approaches,” Circ., Syst., and Signal Process., fb5, 187 (1986).

[125] H. W. Schüssler and P. Steffen, “Some Advanced Topics in Filter Design,” in Ref. [13].

[126] S. E. Bialkowski, “Generalized Digital Smoothing Filters Made Easy by Matrix Calculations,” Anal.
Chem., 61, 1308 (1989).

[127] P. A. Gorry, “General Least-Squares Smoothing and Differentiation of by the Convolution (Savitzky-
Golay) Method,” Anal. Chem., 62, 570 (1990).

[128] P. A. Gorry, “General Least-Squares Smoothing and Differentiation of Nonuniformly Spaced Data by
the Convolution Method,” Anal. Chem., 63, 534 (1991).

[129] J. E. Kuo and H. Wang, “Multidimensional Least-Squares Smoothing Using Orthogonal Polynomials,”
Anal. Chem., 63, 630 (1991).

[130] G. Y. Pryzva, “Kravchuk Orthogonal Polynomials,” Ukranian Math. J., 44, 792 (1992).

REFERENCES 935

[131] P. Persson and G. Strang, “Smoothing by Savitzky-Golay and Legendre Filters,” in J. Rosenthal and
D. S. Gilliam, eds., Mathematical Systems Theory in Biology, Communications, Computation, and
Finance, Springer-Verlag, NY, 2003.

[132] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford,
2004.

[133] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univer-
sity Press, Cambridge, (2005).

[134] S. Samadi and A. Nishihara, “Explicit Formula for Predictive FIR Filters and Differentiators Using
Hahn Orthogonal Polynomials,” IEICE Trans. Fundamentals, E90, 1511 (2007).

[135] M. J. Gottlieb, “Concerning Some Polynomials Orthogonal on a Finite or Enumerable Set of Points,”
A. J. Math, 60, 453 (1938).

[136] R. E. King and P. N. Paraskevopoulos, “Digital Laguerre Filters,” Circ. Th. Appl., 5, 81 (1977).

[137] M. R. Teague, “Image Analysis via the General Theory of Moments,” J. Opt. Soc. Am., 70, 920 (1980).

[138] R. M. Haralick, “Digital Step Edges from Zero Crossing of Second Directional Derivatives,” IEEE Trans.
Patt. Anal. Mach. Intell., PAMI-6, 58 (1984).

[139] C-S. Liu and H-C. Wang, “A Segmental Probabilistic Model of Speech Using an Orthogonal Polynomial
Representation,” Speech Commun., 18 291 (1996).

[140] P. Meer and I. Weiss, “Smoothed Differentiation Filters for Images,” J. Vis. Commun. Imag. Process.,
3, 58 (1992).

[141] G. Carballo, R. Álvarez-Nodarse, and J. S. Dehesa, “Chebyshev Polynomials in a Speech Recognition
Model,” Appl. Math. Lett., 14, 581 (2001).

[142] R. Mukundan, S. H. Ong, and P. A. Lee, “Image Analysis by Tchebichef Moments,” IEEE Trans. Image
Process., 10, 1357 (2001).

[143] J. Arvesú, J. Coussement, and W. Van Asscheb, “Some Discrete Multiple Orthogonal Polynomials,”
J. Comp. Appl. Math., 153, 19 (2003).

[144] R. Mukundan, “Some Computational Aspects of Discrete Orthonormal Moments,” IEEE Trans. Image
Process., 13, 1055 (2004).

[145] L. Kotoulas and I. Andreadis, “Image Analysis Using Moments,” Proc. IEEE Int. Conf. Technol. Autom.
(ICTA-05), p.360, (2005).

[146] L. Kotoulas and I. Andreadis, “Fast Computation of Chebyshev Moments,” IEEE Trans. Circuits Syst.
Video Technol., 16, 884 (2006).

[147] K. W. Lee, et al., “Image reconstruction Using Various Discrete Orthogonal Polynomials in Compar-
ison with DCT,” Appl. Math. Comp., 193, 346 (2007).

[148] H. Zhu, et al., “Image Analysis by Discrete Orthogonal Dual Hahn Moments,” Patt. Recogn. Lett. 28,
1688 (2007).

[149] H. Shu, L. Luo, and J-L Coatrieux, “Moment-Based Approaches in Imaging. Part 1, Basic Features,”
IEEE Eng. Med. Biol. Mag., 26, no.5, 70 (2007).

[150] H. Shu, L. Luo, and J-L Coatrieux, “Moment-Based Approaches in Imaging. Part 2, Invariance,” IEEE
Eng Med Biol Mag., 27, no.1, 81 (2008).

[151] E. Diekema and T. H. Koornwinder, “Differentiation by integration using orthogonal polynomials, a
survey,” , J. Approx., 164, 637 (2012).

Predictive and Fractional-Delay Filters

[152] R. W. Schafer and L. R. Rabiner, “A Digital Signal Processing Approach to Interpolation,” Proc. IEEE,
61, 692 (1973).

[153] H. W. Strube, “Sampled-Data Representation of a Nonuniform Lossless Tube of Continuously Vari-
able Length,” J. Acoust. Soc. Amer., 57, 256 (1975).

[154] P. Heinonen and Y. Neuvo, “FIR-Median Hybrid Filters with Predictive FIR Substructures,” IEEE Trans.
Acoust., Speech, Signal Process., 36, 892 (1988).

[155] C. W. Farrow, “A Continuously Variable Digital Delay Element,” Proc. IEEE Int. Symp. Circuits and
Systems, ISCAS-88, p. 2641, (1988).

936 REFERENCES

[156] G-S Liu and C-H Wei, “Programmable Fractional Sample Delay Filter with Lagrange Interpolation,”
Electronics Lett., 26, 1608 (1990).

[157] T. G. Campbell and Y. Neuvo, “Predictive FIR Filters with Low Computational Complexity,” IEEE
Trans. Circ. Syst., 38 1067 (1991).

[158] S. J. Ovaska, “Improving the Velocity Sensing Resolution of Pulse Encoders by FIR Prediction,” IEEE
Trans. Instr. Meas., 40, 657 (1991).

[159] S. J. Ovaska, “Newton-Type Predictors—A Signal Processing Perspective,” Signal Process., 25, 251
(1991).

[160] G-S Liu and C-H Wei, “A New Variable Fractional Sample Delay Filter with Nonlinear Interpolation,”
IEEE Trans. Circ. Syst.–II, 39, 123 (1992).

[161] L. Erup., F. M. Gardner, and R. A. Harris, “Interpolation in Digital Modems—Part II: Implementation
and Performance,” IEEE Trans. Commun., 41, 998 (1993).

[162] T. I. Laakso, et al., “Splitting the Unit Delay—Tools for Fractional Delay Filter Design,” IEEE Signal
Process. Mag., 13, 30, Jan. 1996.

[163] P. J. Kootsookos and R. C. Williamson, “FIR Approximation of Fractional Sample Delay Systems,”
IEEE Trans. Circ. Syst.–II, 43, 269 (1996).

[164] O. Vainio, M. Renfors, and T. Saramäki, “Recursive Implementation of FIR Differentiators with Op-
timum Noise Attenuation,” IEEE Trans. Instrum. Meas., 46, 1202 (1997).

[165] P. T, Harju, “Polynomial Prediction Using Incomplete Data,” IEEE Trans. Signal Process., 45, 768
(1997).

[166] S. Tassart and P. Depalle, “Analytical Approximations of Fractional Delays: Lagrange Interpolators
and Allpass Filters,” IEEE Int. Conf. Acoust., Speech, Sig. Process., (ICASSP-97), 1 455 (1997).

[167] S. Väliviita and S. J. Ovaska, “Delayless Recursive Differentiator with Efficient Noise Attenuation for
Control Instrumentation,” Signal Process., 69, 267 (1998).

[168] S-C Pei and C-C Tseng, “A Comb Filter Design Using Fractional-Sample Delay,” IEEE Trans. Circ.
Syst.–II, 45, 649 (1998).

[169] S. Väliviita, S. J. Ovaska, and O. Vainio, “Polynomial Predictive Filtering in Control and Instrumen-
tation: A Review,” IEEE Trans. Industr. Electr., 46, 876 (1999).

[170] E. Meijering, “A Chronology of Interpolation: From Ancient Astronomy to Modern Signal and Image
Processing,” Proc. IEEE, 90, 319 (2002).

[171] V. Välimäki, et al. “Discrete-Time Modeling of Musical Instruments,” Rep. Progr. Phys., 69, 1 (2006).

[172] C. Candan, “An Efficient Filtering Structure for Lagrange Interpolation,” IEEE Signal Proc. Lett., 14,
17 (2007).

[173] J. Vesma and T. Saramäki, “Polynomial-Based Interpolation Filters—Part I: Filter Synthesis,” Circ.
Syst, Signal Process., 26, 115 (2007).

Maximally Flat Filters

[174] O. Herrmann, “On the Approximation Problem in Nonrecursive Digital Filter Design,” IEEE Trans.
Circ. Th., CT-18, 411 (1971).

[175] J. A. Miller, “Maximally Flat Nonrecursive Digital Filters,” Electron. Lett., 8, 157 (1972).

[176] M. F. Fahmy, “Maximally Flat Nonrecursive Digital Filters,” Int. J. Circ. Th. Appl, 4, 311 (1976).

[177] J-P. Thiran, “Recursive Digital Filters with Maximally Flat Group Delay,” IEEE Trans. Circ. Th., CT-18,
659 (1971).

[178] M. U. A. Bromba and H. Ziegler, “Explicit Formula for Filter Function of Maximally Flat Nonrecursive
Digital Filters,” Electron. Lett., 16, 905 (1980), and ibid., 18, 1014 (1982).

[179] H. Baher, “FIR Digital Filters with Simultaneous Conditions on Amplitude and Group Delay,” Electron.
Lett., 18, 296 (1982).

[180] L. R. Rajagopal and S. C. D. Roy, “Design of Maximally-Flat FIR Filters Using the Bernstein Polyno-
mial,,, IEEE Trans. Circ. Syst., CAS-34, 1587 (1987).

[181] E. Hermanowicz, “Explicit Formulas for Weighting Coefficients of Maximally Flat Tunable FIR delay-
ers,” Electr. Lett., 28, 1936 (1992).

REFERENCES 937

[182] I. W. Selesnick and C. S. Burrus, “Maximally Flat Low-Pass FIR Filters with Reduced Delay,” IEEE
Trans. Circ. Syst. II, 45, 53 (1998).

[183] I. W. Selesnick and C. S. Burrus, “Generalized Digital Butterworth Filter Design,” IEEE Trans. Signal
Process., 46, 1688 (1998).

[184] S. Samadi, A. Nishihara, and H. Iwakura, “Universal Maximally Flat Lowpass FIR Systems,” IEEE Trans.
Signal Process., 48, 1956 (2000).

[185] R. A. Gopinath, “Lowpass Delay Filters With Flat Magnitude and Group Delay Constraints,” IEEE
Trans. Signal Process., 51, 182 (2003).

[186] S. Samadi, O. Ahmad, and M, N, S. Swami, “Results on Maximally Flat Fractional-Delay Systems,” IEEE
Trans. Circ. Syst.–I, 51, 2271 (2004).

[187] S. Samadi and A. Nishihara, “The World of Flatness,” IEEE Circ. Syst. Mag., p.38, third quarter 2007.

Local Polynomial Modeling and Loess

[188] E. A. Nadaraya, “On Estimating Regression,” Th. Prob. Appl., 10, 186 (1964).

[189] G. S. Watson, “Smooth Regression Analysis,” Sankya, Ser. A, 26, 359 (1964).

[190] M. B. Priestley and M. T. Chao, “Non-Parametric Function Fitting,” J. Roy. Statist. Soc., Ser. B, 34, 385
(1972).

[191] C. J. Stone, “Consistent Nonparametric Regression (with discussion),” Ann. Statist., 5, 595 (1977).

[192] W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing of Scatterplots,” J. Amer.
Statist. Assoc., 74, 829 (1979).

[193] W. S. Cleveland and R. McGill “The Many Faces of a Scatterplot,” J. Amer. Statist. Assoc., 79, 807
(1984).

[194] . H. Friedman, “A Variable Span Smoother,” Tech. Rep. No. 5, Lab. Comput. Statist., Dept. Statist.,
Stanford Univ., (1984); see also, J. H. Friedman and W. Stueltze, “Smoothing of Scatterplots,” Dept.
Statist., Tech. Rep. Orion 3, (1982).

[195] H-G. Müller, “Smooth Optimum Kernel Estimators of Densities, Regression Curves and Modes,” Ann.
Statist., 12, 766 (1984).

[196] T. Gasser, H-G. Müller, and V. Mammitzsch, “Kernels for Nonparametric Curve Estimation,” J. Roy.
Statist. Soc., Ser. B, 47, 238 (1985).

[197] J. A. McDonald and A. B. Owen, “Smoothing with Split Linear Fits,” Technometrics, 28, 195 (1986).

[198] A. B. Tsybakov, “Robust Reconstruction of Functions by the Local-Approximation Method,” Prob.
Inf. Transm., 22, 69 (1986).

[199] W. S. Cleveland and S. J. Devlin, “Locally Weighted Regression: An Approach to Regression Analysis
by Local Fitting,” J. Amer. Statist. Assoc., 83, 596 (1988).

[200] A. Buja, A. Hastie, and R. Tibshirani, “Linear Smoothers and Additive Models (with discussion),”
Ann. Statist., 17, 453 (1989).

[201] B. L. Granovsky and H-G. Müller, “The Optimality of a Class of Polynomial Kernel Functions,” Stat.
Decis., 7, 301 (1989).

[202] W. Härdle, Applied Nonparametric Regression, Cambridge Univ. Press, Cambridge, 1990.

[203] A. Hastie and R. Tibshirani, Generalized Additive Models, Chapman & Hall, London, 1990.

[204] B. L. Granovsky, H-G. Müller, “Optimizing Kernel Methods: A Unifying Variational Principle,” Int.
Stat. Rev., 59, 373 (1991).

[205] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,” Amer.
Statist., 46, 175 (1992).

[206] I. Fan and I. Gijbels, “Variable Bandwidth and Local Linear Regression Smoothers,” Ann. Statist., 20,
2008 (1992).

[207] W. S. Cleveland and Grosse, “A Package of C and Fortran Routines for Fitting Local Regression
Models,” 1992. Available from: http://www.netlib.org/a/dloess.

[208] W. S. Cleveland, Visualizing Data, Hobart Press, Summit, NJ, 1993.

[209] I. Fan, “Local Linear Regression Smoothers and Their Minimax Efficiencies,” Ann. Statist., 21, 196
(1993).

938 REFERENCES

[210] A. Hastie and C. Loader, “Local Regression: Automatic Kernel Carpentry,” Statist. Sci., 8, 120 (1993).

[211] M. C. Jones, S. J. Davies, and B. U. Park, “Versions of Kernel-Type Regression Estimators,” J. Amer.
Statist. Assoc., 89, 825 (1994).

[212] I. Fan and I. Gijbels, “Data-Driven Bandwidth Selection in Local Polynomial Fitting: Variable Band-
width and Spatial Adaptation,” J. Roy. Statist. Soc., Ser. B, 57, 371 (1995).

[213] D. Ruppert, S. J. Sheather, and M. P. Wand, “An Effective Bandwidth Selector for Local Least Squares
Regression,” J. A. Statist. Assoc., 90, 125 (1995).

[214] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman & Hall, London, 1995.

[215] W. S. Cleveland and C. Loader, “Smoothing by Local Regression: Principles and Methods,” in W.
Härdle and M. G. Schimek, eds., Statistical Theory and Computational Aspects of Smoothing, Physica-
Verlag, Heidelberg, May 1996.

[216] M. C. Jones, J. S. Marron, and S. J. Sheaver, “A Brief Survey of Bandwidth Selection for Density
Estimation,” J. Amer. Statist. Assoc., 91, 401 (1996).

[217] B. Seifert and T. Gasser, “Finite Sample Variance of Local Polynomials: Analysis and Solutions,” J.
Amer. Statist. Assoc., 91, 267 (1996).

[218] J. S. Simonoff, Smoothing Methods in Statistics, Springer-Verlag, New York, 1996.

[219] I. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman & Hall, London, 1996.

[220] A. Goldenshluger and A. Nemirovski, “On Spatial Adaptive Estimation of Nonparametric Regres-
sion,” Math. Meth. Stat., 6, 135 (1997).

[221] A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, Oxford Univ. Press,
New York, 1997.

[222] C. M. Hurvich and J. S. Simonoff, “Smoothing Parameter Selection in Nonparametric Regression
Using an Improved AIC Criterion,” J. Roy. Statist. Soc., Ser. B, 60, 271 (1998).

[223] C. R. Loader, “Bandwidth Selection: Classical or Plug-In?,” Ann. Statist., 27, 415 (1999).

[224] C. Loader, Local Regression and Likelihood, Springer-Verlag, New York, 1999.

[225] V. Katkovnik, “A New method for Varying Adaptive Bandwidth Selection,” IEEE Trans. Signal Process.,
47, 2567 (1999).

[226] I. Horová, “Some Remarks on Kernels,” J. Comp. Anal. Appl., 2, 253 (2000).

[227] W. R. Schucany, “An Overview of Curve Estimators for the First Graduate Course in Nonparametric
Statistics,” Statist. Sci., 19, 663 (2004).

[228] C. Loader, “Smoothing: Local Regression Techniques,” in J. Gentle, W. Härdle, and Y. Mori, eds.,
Handbook of Computational Statistics, Springer-Verlag, Heidelberg, 2004.

[229] V. Katkovnik, K. Egiazarian, and J. Astola, Local Approximation Techniques in Signal and Image
Processing, SPIE Publications, Bellingham, WA, 2006.

[230] Data available from: http://www.netlib.org/a/dloess. Original source: N. D. Brinkman,
“Ethanol - A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions,” SAE Transactions,
90, 1410 (1981).

[231] Data available from http://fedc.wiwi.hu-berlin.de/databases.php, (MD*Base collection).
Original source: Ref. [202] and G. Schmidt, R. Mattern, and F. Schüller, EEC Res. Program on Biome-
chanics of Impacts, Final report, Phase III, Project 65, Inst. für Rechtsmedizin, Univ. Heidelberg,
Germany.

Exponential Smoothing

[232] R. G. Brown, Smoothing, Forecasting and Prediction of Discrete-Time Series, Prentice Hall, Englewood-
Cliffs, NJ, 1962.

[233] D. C. Montgomery and L. A. Johnson, Forecasting and Time Series Analysis, McGraw-Hill, New York,
1976.

[234] C. D. Lewis, Industrial and Business Forecasting Methods, Butterworth Scientific, London, 1982.

[235] B. Abraham and J. Ledolter, Statistical Methods for Forecasting, Wiley, New York, 1983.

[236] S. Makridakis, et al., The Forecasting Accuracy of Major Time Series Models, Wiley, New York, 1983.

[237] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting, Methods and Applications, 3/e,
Wiley, New York, 1998.

REFERENCES 939

[238] C. Chatfield, Time Series Forecasting, Chapman & Hall/CRC Press, Boca Raton, FL, 2001.

[239] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting with Exponential Smoothing,
Springer-Verlag, Berlin, 2008.

[240] C. C. Holt, “Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages,” Office
of Naval Research memorandum (ONR 52), 1957, reprinted in Int. J. Forecast., 20, 5 (2004); see also,
ibid., 20, 11 (2004).

[241] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving Averages,” Manag. Sci., 6, 324
(1960).

[242] J. F. Muth, “Optimal Properties of Exponentially Weighted Forecasts,” J. Amer. Statist. Assoc., 55,
299 (1960).

[243] R. G. Brown and R. F. Meyer, “The Fundamental Theorem of Exponential Smoothing,” Oper. Res., 9,
673 (1961).

[244] D. A. D’Esopo, “A Note on Forecasting by the Exponential Smoothing Operator,” Oper. Res., 9, 686
(1961).

[245] D. R. Cox, “Prediction by Exponentially Weighted Moving Averages and Related Methods,” J. Roy.
Statist. Soc., Ser. B, 23, 414 (1961).

[246] R. H. Morris and C. R. Glassey, “The Dynamics and Statistics of Exponential Smoothing Operators,”
Oper. Res., 11, 561 (1963).

[247] H. Theil and S. Wage, “Some Observations on Adaptive Forecasting,” Manag. Sci., 10, 198 (1964).

[248] P. J. Harrison, “Short-Term Sales Forecasting,” Appl. Statist., 14, 102 (1965).

[249] P. J. Harrison, “Exponential Smoothing and Short-Term Sales Forecasting,” Manag. Sci., 13, 821
(1967).

[250] W. G. Gilchrist, “Methods of Estimation Involving Discounting,” J. Roy. Satist. Soc., Ser. B, 29, 355
(1967).

[251] C. C. Pegels, “Exponential Forecasting: Some New Variations,” Manag. Sci., 15, 311 (1969).

[252] A. C. Watts, “On Exponential Smoothing of Discrete Time Series,” IEEE TRans. Inform. Th., 16, 630
(1970).

[253] K. O. Cogger, “The Optimality of General-Order Exponential Smoothing,” Oper. Res., 22, 858 (1974).

[254] S. D. Roberts and D. C. Whybark, “Adaptive Forecasting Techniques,” Int. J. Prod. Res., 12, 635 (1974).

[255] M. L. Goodman, “A New Look at Higher-Order Exponential Smoothing for Forecasting,” Oper. Res.,
22, 880 (1974).

[256] D. E. Clapp, “Adaptive Forecasting with Orthogonal Polynomial Models,” AIIE Trans., 6, 359 (1974).

[257] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977.

[258] J. F. Kaiser and R. W. Hamming, “Sharpening the Response of a Symmetric Nonrecursive Filter by the
Multiple Use of the same Filter,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-25, 415 (1977).

[259] E. Mckenzie, “The Monitoring of Exponentially Weighted Forecasts,” J. Oper. Res. Soc., 29, 449 (1978).

[260] C. Chatfield, “The Holt-Winters Forecasting Procedure,” Appl. Statist., 27, 264 (1978).

[261] R. Fildes, “Quantitative Forecasting—The State of the Art: Extrapolative Methods,” J. Oper. Res. Soc.,
30, 691 (1979).

[262] S. Ekern, “Adaptive Exponential Smoothing Revisited,” J. Oper. Res. Soc., 32, 775 (1981).

[263] S. A. Roberts, “A General Class of Holt-Winters Type Forecasting Models,” Manag. Sci., 28, 808
(1982).

[264] E. J. Muth, “The Discrete Laguerre Polynomials and their Use in Exponential Smoothing,” IIE Trans.,
15, 166 (1983).

[265] E. S. Gardner, Jr., “Exponential Smoothing: The State of the Art,” J. Forecast., 4, 1 (1985).

[266] B. Abraham and J. Ledolter, “Forecast Functions Implied by Autoregressive Integrated Moving Av-
erage Models and Other Related Forecast Procedures,” Int. Statist. Rev., 54, 51 (1986).

[267] D. J. Dalrymple, “Sales Forecasting Practices: Results from a United States Survey,” Int. J. Forecast.,
3, 379 (1987).

[268] C. Chatfield and M. Yar, “Holt-Winters Forecasting: Some Practical Issues,” Statistician, 37, 129
(1988).

940 REFERENCES

[269] E. Yashchin, “Estimating the Current Mean of a Process Subject to Abrupt Changes,” Technometrics,
37, 311 (1995).

[270] S. Satchell and A. Timmermann, “On the Optimality of Adaptive Expectations: Muth Revisited,” Int.
J. Forecast., 11, 407 (1995).

[271] H. Winklhofer, A. Diamantopoulos, and S. F. Witt, “Forecasting practice: A Review of the Empirical
Literature and an Agenda for Future Research,” Int. J. Forecast., 12, 193 (1996).

[272] S. Makridakis and M. Hibon, “The M3-Competition: Results, Conclusions and Implications,” Int. J.
Forecast., 16, 451 (2000).

[273] C. Chatfield, et al., “A New Look at Models for Exponential Smoothing,” Statistician, 50, 147 (2001).

[274] A. Chen and E. A. Elsayed, “Design and Performance Analysis of the Exponentially Weighted Moving
Average Mean Estimate for Processes Subject to Random Step Changes,” Technometrics, 44, 379
(2002).

[275] D. J. Robb and E. A. Silver, “Using Composite Moving Averages to Forecast Sales,” J. Oper. Res. Soc.,
53, 1281 (2002).

[276] J. W. Taylor, “Smooth Transition Exponential Smoothing,” J. Forecast., 23, 385 (2004).

[277] E. S. Gardner, Jr., “Exponential Smoothing: The State of the Art—Part II,” Int. J. Forecast., 22, 239
(2006).

[278] B. Billah, et al., “Exponential Smoothing Model Selection for Forecasting,” Int. J. Forecast., 22, 239
(2006).

[279] J. G. De Gooijer and R. J. Hyndman, “25 Years of Time Series Forecasting,” Int. J. Forecast., 22, 443
(2006).

Technical Analysis in Financial Market Trading

[280] S. B. Achelis, Technical Analysis from A to Z, 2nd ed., McGraw-Hill, NY, 2001.

[281] J. W. Wilder, New Concepts in Technical Trading Systems, Trend Research, Greensboro, NC, 1978.

[282] “Surviving The Test of Time With J. Welles Wilder,” interview by B. Twomey, Tech. Anal. Stocks &
Commod., 27, no.3, 58 (2009).

[283] T. S. Chande and S. Kroll, The New Technical Trader, Wiley, NY, 1994.

[284] J. F. Ehlers, Rocket Science for Traders, Wiley, NY, 2001.

[285] J. F. Ehlers, Cybernetic Analysis for Stocks and Futures, Wiley, NY, 2004.

[286] P. J. Kaufman, New Trading Systems and Methods, 4/e, Wiley, 2005.

[287] D. K. Mak, Mathematical Techniques in Financial Market Trading, World Scientific, Singapore, 2006.

[288] Technical Analysis, PDF book, 2011, Creative Commons Attribution-Share, available from:
https://www.mrao.cam.ac.uk/~mph/Technical_Analysis.pdf

[289] International Federation of Technical Analysts, www.ifta.org

[290] V. Zakamulin, Market Timing with Moving Averages, Palgrave Macmillan, 2017. See also by same
author, “Moving Averages for Market Timing,”, Oct. 2016. Available at SSRN:
https://ssrn.com/abstract=2854180

[291] D. Penn, “The Titans Of Technical Analysis,” Tech. Anal. Stocks & Commod., 20, no.10, 32 (2002).

[292] A. W. Lo and J. Hasanhodzic, The Heretics of Finance, Bloomberg Press, NY, 2009.

[293] M. Carr and A. Hestla, “Technical Analysis Adapts and Thrives,” Tech. Anal. Stocks & Commod., 29,
no.4, 46 (2011).

[294] J. K. Hutson, “Good Trix”, Tech. Anal. Stocks & Commod., 1, no.5, 105, (1983); ibid., 2, no.2, 91,
(1984). See also, D. Penn, “TRIX”, Tech. Anal. Stocks & Commod., 29, no.9, 197, (2003).

[295] R. Barrons Roosevelt, “Metaphors For Trading,” Tech. Anal. Stocks & Commod., 16, no.2, 67 (1998).

[296] T. S. Chande, “Adapting Moving Averages to Market Volatility,” Tech. Anal. Stocks & Commod., 10,
no.3, 108 (1992).

[297] P. G. Mulloy, “Smoothing Data with Faster Moving Averages,” Tech. Anal. Stocks & Commod., 12,
no.1, 11 (1994).

[298] P. G. Mulloy, “Smoothing Data with Less Lag,” Tech. Anal. Stocks & Commod., 12, no.2, 72 (1994).

REFERENCES 941

[299] T. S. Chande, “Forecasting Tomorrow’s Trading Day,” Tech. Anal. Stocks & Commod., 10, no.5, 220
(1992).

[300] P. E. Lafferty, “The End Point Moving Average,” Tech. Anal. Stocks & Commod., 13, no.10, 413 (1995).

[301] D. Kraska, “The End Point Moving Average,”, Letters to Tech. Anal. Stocks & Commod., 14, Feb.
(1996).

[302] J. F. Ehlers, “Zero-Lag Data Smoothers,” Tech. Anal. Stocks & Commod., 20, no.7, 26 (2002). See also,
J. F. Ehlers and R. Way, “Zero Lag (Well, Almost),” ibid., 28, 30, Nov. (2010).

[303] W. Rafter, “The Moving Trend,” Tech. Anal. Stocks & Commod., 21, no.1, 38 (2003).

[304] D. Meyers, “Surfing the Linear Regression Curve with Bond Futures,” Tech. Anal. Stocks & Commod.,
16, no.5, 209 (1998).

[305] B. Star, “Confirming Price Trend,” Tech. Anal. Stocks & Commod., 25, no.13, 72 (2007).

[306] P. E. Lafferty, “How Smooth is Your Data Smoother?,” Tech. Anal. Stocks & Commod., 17, no.6, 251
(1999).

[307] T. Tillson, “Smoothing Techniques For More Accurate Signals,” Tech. Anal. Stocks & Commod., 16,
no.1, 33 (1998).

[308] J. Sharp, “More Responsive Moving Averages,” Tech. Anal. Stocks & Commod., 18, no.1, 56 (2000).

[309] A. Hull, “How to reduce lag in a moving average,” https://alanhull.com/hull-moving-average.

[310] B. Star, “Detecting Trend Direction and Strength,” Tech. Anal. Stocks & Commod., 20, no.1, 22 (2007).

[311] S. Evens, “Momentum And Relative Strength Index,” Tech. Anal. Stocks & Commod., 17, no.8, 367
(1999).

[312] S. Evens, “Stochastics,” Tech. Anal. Stocks & Commod., 17, no.9, 392 (1999).

[313] P. Roberts, “Moving Averages: The Heart of Trend Analysis,” Alchemist, 33, 12 (2003), Lond. Bullion
Market Assoc., available online from: www.lbma.org.uk.

[314] K. Edgeley “Oscillators Go with the Flow,” Alchemist, 37, 17 (2005), Lond. Bullion Market Assoc.,
available online from: www.lbma.org.uk.

[315] D. Penn, “Moving Average Trios,” Tech. Anal. Stocks & Commod., 25, no.9, 54 (2007).

[316] B. Star, “Trade the Price Swings,” Tech. Anal. Stocks & Commod., 21, no.12, 68 (2003).

[317] A. Sabodin, “An MACD Trading System,” Tech. Anal. Stocks & Commod., 26, no.3, 12 (2008).

[318] C. K. Langford, “Three Common Tools, One Protocol,” Tech. Anal. Stocks & Commod., 26, no.10, 48
(2008).

[319] H. Seyedinajad, “The RSI Miracle,” Tech. Anal. Stocks & Commod., 27, no.1, 12 (2009).

[320] M. Alves, “Join the Band: Applying Hysteresis to Moving Averages,” Tech. Anal. Stocks & Commod.,
27, no.1, 36 (2009).

[321] E. Donie, “An MACD Parallax View,” Tech. Anal. Stocks & Commod., 27, no.4, 12 (2009).

[322] R. Singh and A. Kumar, “Intelligent Stock Trading Technique using Technical Analysis,” Int. J. Mgt.
Bus. Studies, 1, 46 (2011).

[323] J. Bollinger, “Using Bollinger Bands,” Tech. Anal. Stocks & Commod., 10, no.2, 47 (1992).

[324] S. Evens, “Bollinger Bands,” Tech. Anal. Stocks & Commod., 17, no.3, 116 (1999).

[325] S. Vervoort, “Smoothing the Bollinger %b,” Tech. Anal. Stocks & Commod., 28, no.5, 40 (2010); and
Part 2, ibid., 28, no.6, 48 (2010).

[326] J. Gopalakrishnan and B. Faber, “Interview: System Trading Made Easy With John Bollinger,” Tech.
Anal. Stocks & Commod., 30, no.3, 36 (2012).

[327] A. Mustapha, “Bollinger Bands & RSI: A Magical Combo,” Tech. Anal. Stocks & Commod., 34, no.6,
18 (2016).

[328] M. Widner, “Signaling Change with Projection Bands,” Tech. Anal. Stocks & Commod., 13, no.7, 275
(1995).

[329] J. Andersen, “Standard Error Bands,” Tech. Anal. Stocks & Commod., 14, no.9, 375 (1996).

[330] S. Evens, “Keltner Channels,” Tech. Anal. Stocks & Commod., 17, no.12, 533 (1999).

[331] D. Penn, “Donchian Breakouts,” Tech. Anal. Stocks & Commod., 20, no.2, 34 (2002); and, “Building a
Better Breakout,”, ibid., 21, no.10, 74 (2003).

[332] B. Star, “Trade Breakouts And Retracements With TMV,” Tech. Anal. Stocks & Commod., 30, no.2, 13
(2012).

942 REFERENCES

[333] F. Bertrand, “RSI Bands,” Tech. Anal. Stocks & Commod., 26, no.4, 44 (2008).

[334] S. Lim, T. T.. Hisarli, and N, S. He, “Profitability of a Combined Signal Approach: Bollinger Bands
and the ADX,” IFTA J., p.23, 2014 edition, https://ifta.org/publications/journal/.

[335] P, Aan, “Parabolic Stop/Reversal,” Tech. Anal. Stocks & Commod., 7, no.11, 411 (1989).

[336] T. Hartle, “The Parabolic Trading System,”, Tech. Anal. Stocks & Commod., 11, no.11, 477 (1993).

[337] D. Meyers, “Modifying the Parabolic Stop And Reversal,” Tech. Anal. Stocks & Commod., 14, no.4,
152 (1995).

[338] J. Sweeney, “Parabolics,” Tech. Anal. Stocks & Commod., 15, no.7, 329 (1997).

[339] R. Teseo, “Stay in the Market with Stop-And-Reverse,” Tech. Anal. Stocks & Commod., 20, no.4, 76
(2002).

[340] K. Agostino and B. Dolan, “Make the Trend Your Friend in Forex,” Tech. Anal. Stocks & Commod.,
22, no.9, 14 (2004).

[341] D. Sepiashvili, “The Self-Adjusting RSI,” Tech. Anal. Stocks & Commod., 24, no.2, 20 (2006).

[342] G. Siligardos, “Leader Of The MACD,” Tech. Anal. Stocks & Commod., 26, no.7, 24 (2008).

[343] M. J. Pring, “The Special K, Part 1,” Tech. Anal. Stocks & Commod., 26, no.12, 44 (2008); and Part 2,
ibid., 27, no.1, 28 (2009); see also, ibid., “Identifying Trends With The KST Indicator,” 10, no.10, 420
(1992).

[344] P. Konner, “Combining RSI with RSI,” Tech. Anal. Stocks & Commod., 29, no.1, 16 (2011).

[345] Fidelity’s Technical Indicator Guide:
https://www.fidelity.com/learning-center/trading-investing/technical-
analysis/technical-indicator-guide/overview

OANDA Technical Indicator Guide and Tutorials:
https://www.oanda.com/forex-trading/learn/forex-indicators
https://www.oanda.com/forex-trading/learn/technical-analysis-for-traders

[346] TradingView Wiki:
https://www.tradingview.com/wiki

[347] A. Raudys, V. Lenciauskas, and E. Malcius, “Moving Averages for Financial Data Smoothing,” in T.
Skersys, R. Butleris, and R. Butkiene (Eds.), Proceedings Information and Software Technologies, 19th
Int. Conf., ICIST 2013; paper available online from,
https://pdfs.semanticscholar.org/257b/837649d8b50662b3fe2c21fce825a1c184e5.pdf

[348] C. W. Gross and J. E. Sohl, “Improving Smoothing Models with an Enhanced Initialization scheme,”
J. Bus. Forecasting, 8, 13 (1989).

[349] J. R. Taylor, Introduction to Error Analysis, Oxford University Press, University Science Books, Mill
Valley, CA.

Spline Smoothing

[350] http://pages.cs.wisc.edu/~deboor/bib/, extensive online spline bibliography.

[351] G. Wahba, Spline Models for Observational Data, SIAM Publications, Philadelphia, 1990.

[352] P. J. Green and B. W. Silverman, Nonparametric Regression and Generalized Linear Mofdels: A Rough-
ness Penalty Approach, Chapman & Hall, London, 1994.

[353] R. L. Eubank, Spline Smoothing and Nonparametric Regression, Marcel Dekker, New York, 1988.

[354] I. M. Gelfand and S. V. Fomin, Calculus of Variations, Dover Publications, Mineola, NY, 2000; reprint
of 1963 Prentice Hall edition.

[355] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

[356] J. L. Walsh, J. H. Ahlberg, and E. N. Nilson, “Best Approximation Properties of the Spline Fit,” J. Math.
Mech., 11, 225 (1962).

[357] I. J. Schoenberg, “Spline Functions and the Problem of Graduation,” Proc. of the Nat. Acad. Sci., 52,
no.4, 947 (1964).

[358] C. H. Reinsch, “Smoothing by Spline Functions,” Numer. Mathematik, 10, 177 (1967), and “Smoothing
by Spline Functions. II,” ibid., 16, 451 (1971).

REFERENCES 943

[359] P. M. Anselone and P. J. Laurent, “A General Method for the Construction of Interpolating or Smooth-
ing Spline-Functions,” Numer. Math., 12, 66 (1968).

[360] D. Kershaw, “The Explicit Inverses of Two Commonly Occurring Matrices,” Math. Comp., 23. 189
(1969).

[361] A. M. Erisman and W. F. Tinney, “On Computing Certain Elements of the Inverse of a Sparse Matrix,”
Commun. ACM, 18, 177 (1975).

[362] S. Wold, “Spline Functions in Data Analysis,” Technometrics, 16, 1 (1974).

[363] L. L. Horowitz, “The Effects of Spline Interpolation on Power Spectral Density,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-22, 22 (1974).

[364] L. D’Hooge, J. De Kerf, and M. J. Goovaerts, “Adjustment of Mortality Tables by Means of Smoothing
Splines,” Bulletin de l’Association Royale des Actuaires Belge, 71, 78 (1976).

[365] D. L. Jupp, “B-Splines for Smoothing and Differentiating Data Sequences,” Math. Geol., 8, 243 (1976).

[366] C.S. Duris, “Discrete Interpolating and Smoothing Spline Functions,” SIAM J. Numer. Anal., 14, 686
(1977), and “Fortran Routines for Discrete Cubic Spline Interpolation and Smoothing,” ACM Trans.
Math. Softw., 6, 92 (1980).

[367] H. S. Hou and H. C. Andrews, “Cubic Splines for Image Interpolation and Digital Filtering,” IEEE
Trans. Acoust., Speech, Signal Process., ASSP-26, 508 (1978).

[368] G. H. Golub, M. Heath, and G. Wahba, “Generalized Cross-Validation as a Method for Choosing a
Good Ridge Parameter,” Technometrics, 21, 215 (1979).

[369] P. Craven and G. Wahba, “Smoothing by Spline Functions, Estimating the Correct Degree of Smooth-
ing by the Method of Generalized Cross-Validation,” Numer. Math., 31, 377 (1979).

[370] P. L. Smith, “Splines as a Useful and Convenient Statistical Tool,” Amer. Statist., 33, 57 (1979).

[371] R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-29, 1153 (1981).

[372] J. McCutcheon, “Some Remarks on Splines,”, Trans. Fac. Actuaries, 37, 421 (1981).

[373] C. L. Vaughan, “Smoothing and Differentiation of Displacement-Time Data: Application of Splines
and Digital Filtering,” Int. J. Bio-Med. Comput., 13, 375 (1982).

[374] E. J. Wegman and I. W. Wright, “Splines in Statistics,” J. Amer. Statist. Assoc., 78, 351 (1983).

[375] B. K. P. Horn, “The Curve of Least Energy,” ACM Trans. Math. Softw., 9, 441 (1983).

[376] B. W. Silverman, “A Fast and Efficient Cross-Validation Method for Smoothing Parameter Choice in
Spline Regression,” J. Amer. Statist. Assoc., 79, 584 (1984).

[377] M. F. Hutchison and F. R. de Hoog, “Smoothing Noisy Data with Spline Functions,” Numer. Math.,
47, 99 (1985).

[378] B. W. Silverman, “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression
Curve Fitting,” J. Roy. Statist. Soc., Ser. B, 47, 1 (1985).

[379] P. H. C. Eilers and B. D. Marx, “Flexible Smoothing with B-Splines and Penalties,” Statist. Sci., 11, 89
(1989).

[380] K. F. Üstüner and L. A. Ferrari, “Discrete Splines and Spline Filters,” IEEE Trans. Circ. Syst.—II, 39,
417 (1992).

[381] M. A. A. Moussa and M. Y. Cheema, “Non-Parametric Regression in Curve Fitting,” Statistician, 41
209 (1992).

[382] M. Unser, A. Aldroubi, and M. Eden, “B-Spline Signal Processing: Part I—Theory,” IEEE Trans. Signal
Process., 41, 821 (1993), and “Part II—Efficient Design and Applications,” ibid., p. 834.

[383] R. L. Eubank, “A Simple Smoothing Spline,” Amer. Statist., 48, 103 (1994).

[384] D. Nychka, “Splines as Local Smoothers,” Ann. Statist., 23, 1175 (1995).

[385] M. Unser, “Splines, A Perfect Fit for Signal and Image Processing,” IEEE Sig. Process. Mag., 16, no.6,
22, (1999).

[386] R. Champion, C. T. Lenard, and T. M. Mills, “A Variational Approach to Splines,” ANZIAM J., 42, 119
(2000).

[387] V. Solo, “A Simple Derivation of the Smoothing Spline,” Amer. Statist., 54, 40 (2000).

[388] S. Sun, M. B. Egerstedt, and C. F. Martin, “Control Theoretic Smoothing Splines,” IEEE Trans. Autom.
Contr., 45, 2271 (2000).

944 REFERENCES

[389] H. Bachau, et al., “Applications of B-Splines in Atomic and Molecular Physics,” Rep. Prog. Phys., 64,
1815 (2001).

[390] S. A. Dyer and J. S. Dyer, “Cubic-Spline Interpolation, Part 1,”, IEEE Instr. & Meas. Mag., March 2001,
p. 44, and “Part 2,”, ibid., June 2001, p.34.

[391] J. D. Carew, et al., “Optimal Spline Smoothing of fMRI Time Series by Generalized Cross-Validation,”
NeuroImage, 18, 950 (2003).

[392] A. K. Chaniotis and D. Poulikakos, “High Order Interpolation and Differentiation Using B-Splines,”
J. Comput. Phys., 197, 253 (2004).

[393] P. H. C. Eilers, “Fast Computation of Trends in Scatterplots,” Kwantitatieve Meth., 71, 38 (2004).

[394] T. C. M. Lee, “Improved Smoothing Spline Regression by Combining Estimates of Different Smooth-
ness,” Statist. Prob. Lett., 67, 133 (2004).

[395] M. Unser and T. Blu, “Cardinal Exponential Splines: Part I—Theory and Filtering Algorithms,” IEEE
Trans. Signal Process., 53, 1425 (2005), and M. Unser, “Cardinal Exponential Splines: Part II—Think
Analog, Act Digital,” ibid., p. 1439.

[396] H. L. Weinert, “A Fast Compact Algorithm for Cubic Spline Smoothing,” Comput. Statist. Data Anal.,
53, 932 (2009).

[397] G. Kimeldorf and G. Wahba, “A Correspondence Between Bayesian Estimation on Stochastic Pro-
cesses and Smoothing by Splines,” Ann. Math. Statist., 41, 495 (1970).

[398] G. Kimeldorf and G. Wahba, “Some Results on Tschebycheffian Spline Functions,” J. Math. Anal.
Appl., 33, 82 (1971).

[399] G. Wahba, “Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors
in Regression,” J. Roy. Statist. Soc., Ser. B, 40, 364 (1978).

[400] H. L. Weinert and G. S. Sidhu, “A Stochastic Framework for Recursive Computation of Spline Func-
tions: Part II, Interpolating Splines,” IEEE Trans. Inform. Th., 24, 45 (1978).

[401] H. L. Weinert, R. H. Byrd, and G. S. Sidhu, “A Stochastic Framework for Recursive Computation of
Spline Functions: Part II, Smoothing Splines,” J. Optim. Th. Appl., 30, 255 (1980).

[402] W. E. Wecker and C. F. Ansley, “The Signal Extraction Approach to Nonlinear Regression and Spline
Smoothing,” J. Amer. Statist. Assoc., 78, 81 (1983).

[403] R. Kohn and C. F. Ansley, “A New Algorithm for Spline Smoothing Based on Smoothing a Stochastic
Process,” SIAM J. Stat. Comput., 8, 33 (1987).

[404] R. Kohn and C. F. Ansley, “A Fast Algorithm for Signal Extraction, Influence and Cross-Validation in
State Space Models, Biometrika, 76, 65 (1989).

Whittaker-Henderson Smoothing

[405] A. Hald, “T. N. Thiele’s Contributions to Statistics,” Int. Statist. Rev., 49, 1 (1981), with references to
Thiele’s works therein.

[406] S. L. Lauritzen, “Time Series Analysis in 1880: A Discussion of Contributions Made by T. N. Thiele,”
Int. Statist. Rev., 49, 319 (1981). Reprinted in S. L. Lauritzen, ed., Thiele: Pioneer in Statistics, Oxford
Univ. Press, Oxford, New York, 2002.

[407] G. Bohlmann, “Ein Ausgleichungsproblem,” Nachrichten Gesellschaft Wissenschaften zu Göttingen,
Mathematische-Physikalische Klasse, no.3, p.260, (1899).

[408] E. Whittaker, “On a New Method of Graduation,” Proc. Edinburgh Math. Soc., 41, 63 (1923).

[409] E. Whittaker, “On the Theory of Graduation,” Proc. Roy. Soc. Edinburgh, 44, 77 (1924).

[410] E. Whittaker and G. Robinson, The Calculus of Observations, Blackie & Son, London, 1924.

[411] R. Henderson, “A New Method of Graduation,” Trans. Actuarial Soc. Am., 25, 29 (1924).

[412] R. Henderson, “Further Remarks on Graduation,” Trans. Actuarial Soc. Am., 26, 52 (1925).

[413] A. C. Aitken, “On the Theory of Graduation,” Proc. Roy. Soc. Edinburgh, 46, 36 (1925).

[414] A. W. Joseph, “The Whittaker-Henderson Method of Graduation,” J. Inst. Actuaries, 78, 99 (1952).

[415] C. E. V. Leser, “A Simple Method of Trend Construction,” J. Roy. Statist. Soc., Ser. B, 23, 91 (1961).

[416] A. W. Joseph, “Subsidiary Sequences for Solving Leser’s Least-Squares Graduation Equations,” J. Roy.
Statist. Soc., Ser. B, 24, 112 (1962).

REFERENCES 945

[417] G. S. Kimeldorf and D. A. Jones, “Bayesian Graduation,” Trans. Soc. Actuaries, 19, Pt.1, 66 (1967).

[418] R. J. Shiller, “A Distributed Lag Estimator Derived from Smoothness Priors,” Econometrica, 41, 775
(1973).

[419] B. D. Cameron, et al., “Some Results of Graduation of Mortality Rates by the Whittaker-Henderson
and Spline Fitting Methods,” Bulletin de l’Association Royale des Actuaires Belge, 71, 48 (1976).

[420] G. Taylor, “A Bayesian Interpretation of Whittaker-Henderson Graduation,” Insurance: Math. & Econ.,
11, 7 (1992).

[421] R. J. Verrall, “A State Space Formulation of Whittaker Graduation, with Extensions,” Insurance: Math.
& Econ., 13, 7 (1993).

[422] D. R. Schuette, “A Linear Programming Approach to Graduation”, Trans. Soc. Actuaries, 30, 407
(1978); with Discussions, ibid., pp. 433, 436, 440, 442, 443.

[423] F. Y. Chan, et al., “Properties and modifications of Whittaker-Henderson graduation,” Scand. Actu-
arial J., 1982, 57 (1982).

[424] F. Y. Chan, et al., “A generalization of Whittaker-Henderson graduation,” Trans. Actuarial Soc. Am.,
36, 183 (1984).

[425] F. Y. Chan, et al., “Applications of linear and quadratic programming to some cases of the Whittaker-
Henderson graduation method,” Scand. Actuarial J., 1986, 141 (1986).

[426] G. Mosheiov and A. Raveh, “On Trend Estimation of Time Series: A Simple Linear Programming
Approach,” J. Oper. Res. Soc., 48, 90 (1997).

[427] R. J. Brooks, et al., “Cross-validatory graduation,” Insurance: Math. Econ., 7, 59 (1988).

[428] P. H. C. Eilers, “A Perfect Smoother,” Anal. Chem., 75, 3631 (2003).

[429] W. E. Diewert and T. J. Wales, “A ‘New’ Approach to the Smoothing Problem,” in M. T. Belongia and
J. M. Binner, eds., Money, Measurement and Computation, Palgrave Macmillan, New York, 2006.

[430] H.L. Weinert, “Efficient Computation for Whittaker-Henderson Smoothing,” Comput. Statist. Data
Anal., 52, 959 (2007).

[431] T. Alexandrov, et al. “A Review of Some Modern Approaches to the Problem of Trend Extraction,”
US Census, Statistics Report No. 2008-3, available online from
http://www.census.gov/srd/papers/pdf/rrs2008-03.pdf.

[432] A. S. Nocon and W. F. Scott, “An extension of the Whittaker-Henderson method of graduation,”
Scand. Actuarial J., 2012, 70 (2012).

[433] J. Vondrák, “A Contribution to the Problem of Smoothing Observational Data,” Bull. Astron. Inst.
Czech., 20, 349 (1969).

[434] J. Vondrák, “Problem of Smoothing Observational Data II,” Bull. Astron. Inst. Czech., 28,84 (1977).

[435] J. Vondrák and A. Čepek, “Combined Smoothing Method and its Use in Combining Earth Orientation
Parameters Measured by Space Techniques,” Astron. Astrophys. Suppl. Ser., 147, 347 (2000).

[436] D. W. Zheng, et al., “Filtering GPS Time-Series using a Vondrak Filter and Cross-Validation,” J.
Geodesy, 79, 363 (2005).

[437] Z-W Li, et al., “Least Squares-Based Filter for Remote Sensing Image Noise Reduction,” IEEE Trans.
Geosci. Rem. Sens., 46, 2044 (2008).

[438] Z-W Li, et al., “Filtering Method for SAR Interferograms with Strong Noise,” Int. J. Remote Sens., 27,
2991 (2006).

Hodrick-Prescott and Bandpass Filters

[439] R. J. Hodrick and E. C. Prescott, “Postwar U.S. Business Cycles: An Empirical Investigation,” J. Money,
Credit & Banking, 29, 1 (1997); earlier version: Carnegie-Mellon Univ., Discussion Paper No. 451,
(1980).

[440] M. Unser, A. Aldroubi, and M. Eden, “Recursive Regularization Filters: Design, Properties, and Ap-
plications,” IEEE Trans. Patt. Anal. Mach. Intell., 13, 272 (1991).

[441] A. C. Harvey and A. Jaeger, “Detrending, Stylized Facts and the Business Cycle,” J. Appl. Econometr.,
8, 231 (1993).

946 REFERENCES

[442] R. G. King and S. T. Rebelo, “Low Frequency Filtering and Real Business Cycles,” J. Econ. Dynam.
Contr., 17, 207 (1993), and appendix available online from
http://www.kellogg.northwestern.edu/faculty/rebelo/htm/LFF-Appendix.pdf.

[443] T. Cogley and J. M. Nason, “Effects of the Hodrick-Prescott Filter on Trend and Difference Stationary
Time Series. Implications for Business Cycle Research,” J. Econ. Dynam. Contr., 19, 253 (1995).

[444] J. Ehlgen, “Distortionary Effects of the Optimal Hodrick-Prescott Filter,” Econ. Lett., 61, 345 (1998).

[445] U. Woitech, “A Note on the Baxter-King Filter,” Dept. Econ., Univ. Glasgow, Working Paper, No. 9813,
1998, http://www.gla.ac.uk/media/media_22357_en.pdf.

[446] M. Baxter and R. G. King, “Measuring Business Cycles: Approximate Band-Pass Filters for Economic
Time Series,” Rev. Econ. Stat., 81, 575 (1999).

[447] Y. Wen and B. Zeng, “A Simple Nonlinear Filter for Economic Time Series Analysis,” Econ. Lett., 64,
151 (1999).

[448] M. Bianchi, M. Boyle, and D. Hollingsworth, “A Comparison of Methods for Trend Estimation,” Appl.
Econ. Lett., 6, 103 (1999).

[449] P. Young and D. Pedregal, “Recursive and En-Bloc Approaches to Signal Extraction,” J. Appl. Statist.,
26, 103 (1999).

[450] J. J. Reeves, et al., “The Hodrick-Prescott Filter, a Generalization, and a New Procedure for Extracting
an Empirical Cycle from a Series,” Stud. Nonlin. Dynam. Econometr., 4, 1 (2000).

[451] D. S. G. Pollock, “Trend Estimation and De-Trending via Rational Square-Wave Filters,” J. Econometr.,
99, 317 (2000).

[452] V. Gómez, “The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series,”
J. Bus. Econ. Statist., 19, 365 (2001).

[453] T. M. Pedersen, “The Hodrick-Prescott Filter, the Slutzky Effect, and the Distortionary Effect of
Filters,” J. Econ. Dynam. Contr., 25, 1081 (2001).

[454] E. Slutzky, “The Summation of Random Causes as the Source of Cyclic Processes,” Econometrica,
37, 105 (1937).

[455] V. M. Guerrero, R. Juarez, and P. Poncela, “Data Graduation Based on Statistical Time Series Meth-
ods,” Statist. Probab. Lett., 52, 169 (2001).

[456] M. O. Ravn and H. Uhlig, “On Adjusting the Hodrick-Prescott Filter for the Frequency of Observa-
tions,” Rev. Econ. Statist., 84, 371 (2002).

[457] C. J. Murray, “Cyclical Properties of Baxter-King Filtered Time Series,” Rev. Econ. Statist., 85, 472
(2003).

[458] A. C. Harvey and T. M . Trimbur, “General Model-Based Filters for Extracting Cycles and Trends in
Economic Time Series,” Rev. Econ. Statist., 85, 244 (2003).

[459] L. J. Christiano + T. J. Fitzgerald, “The Band Pass Filter,” Int. Econ. Rev., 44, 435 (2003).

[460] A. Iacobucci and A. Noullez, “A Frequency Selective Filter for Short-Length Time Series,” Comput.
Econ., 25, 75 (2005).

[461] A. Guay and P. St.-Amant, “Do the Hodrick-Prescott and Baxter-King Filters Provide a Good Approx-
imation of Business Cycles?,” Ann. Économie Statist., No. 77, p. 133, Jan-Mar. 2005.

[462] T. M. Trimbur, “Detrending Economic Time Series: A Bayesian Generalization of the Hodrick-Prescott
Filter,” J. Forecast., 25, 247 (2006).

[463] A. Maravall, A. del Ŕio, “Temporal Aggregation, Systematic Sampling, and the Hodrick-Prescott
Filter,” Comput. Statist. Data Anal., 52, 975 (2007).

[464] V. M. Guerrero, “Estimating Trends with Percentage of Smoothness Chosen by the User,” Int. Statist.
Rev., 76, 187 (2008).

[465] T. McElroy, “Exact Formulas for the Hodrick-Prescott Filter,” Econometr. J., 11, 209 (2008).

[466] D. E. Giles, “Constructing confidence bands for the Hodrick-Prescott filter,” Appl. Econ. Letters, 20,
480 (2013).

[467] D. S. G. Pollock, “Econometric Filters,” Comput. Econ., 48, 669 (2016).

L1 Trend Filtering

[468] S-J. Kim, et al., “�1 Trend Filtering,” SIAM Rev., 51, 339 (2009).

REFERENCES 947

[469] A. Moghtaderi, P. Borgnat, and P. Flandrin, “Trend Filtering: Empirical Mode Decompositions Versus
�1 and Hodrick-Prescott,” Adv. Adaptive Data Anal., 3, 41 (2011).

[470] B. Wahlberg, C. R. Rojas, and M. Annergren, “On �1 Mean and Variance Filtering,” 2011 Conf. Record
45th Asilomar Conf. Signals, Systems and Computers, (ASILOMAR), IEEE, p. 1913, (2011).

[471] R. J. Tibshirani, “Adaptive piecewise polynomial estimation via trend filtering,” Ann. Stat.. 42, 285
(2014).

[472] Y-X Wang, et al., “Trend Filtering on Graphs,” Proc. 18th Int. Conf. Artif. Intell. Stat. (AISTATS),
p. 1042, May 2015.

[473] A. Ramdas and R. J. Tibshirani, “Fast and Flexible ADMM Algorithms for Trend Filtering,” J. Comput.
Graph. Stat., 25, 839 (2016).

[474] H. Yamada and L. Jin, “Japan’s output gap estimation and �1 trend filtering,” Empir. Econ., 45, 81
(2013).

[475] H. Yamada, “Estimating the trend in US real GDP using the �1 trend filtering,” Appl. Econ. Letters,
2016, p. 1.

[476] H. Yamada and G. Yoon, “Selecting the tuning parameter of the �1 trend filter,” Studies Nonlin.
Dynam. Econometr., 20, 97 (2016).

[477] S. Selvin, et al., “�1 Trend Filter for Image Denoising,” Procedia Comp. Sci., 93, 495 (2016).

[478] J. Ottersten, B. Wahlberg, and C. R. Rojas, “Accurate Changing Point Detection for �1 Mean Filtering,”
IEEE Sig. Process. Lett., 23, 297 (2016).

Regularization

[479] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, 2004. Avail-
able online from:
http://sites.google.com/site/ingridteles02/Book-ConvexOptimization.pdf.

[480] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, Winston, Washington DC, 1977.

[481] A. N. Tikhonov, et al., Numerical Methods for the Solution of Ill-Posed Problems, Springer, New York,
1995.

[482] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,”
Technometrics, 12, 55 (1970).

[483] V. V. Ivanov, Theory of Approximate Methods and Their Application to the Numerical Solution of
Singular Integral Equations, Nordhoff International, 1976.

[484] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984.

[485] N. Aronszajn, “Theory of Reproducing Kernels,” Trans. Amer. Math. Soc., 68, 337 (1950).

[486] M. Foster, “An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inversion,” J.
SIAM, 9, 387 (1961).

[487] D. L. Phillips, “A Technique for the Numerical Solution of Certain Integral Equations of the First
Kind,” J. ACM, 9, 84 (1962).

[488] M. A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical Foundations of the Potential Func-
tion Method in Pattern Recognition Learning,” Autom. Remote Contr., 25, 821 (1964).

[489] J. Callum, “Numerical Differentiation and Regularization,” SIAM J. Numer. Anal., 8, 254 (1971).

[490] L. Eld’en, “An Algorithm for the Regularization of Ill-Conditioned, Banded Least Squares Problems,”
SIAM J. Statist. Comput., 5, 237 (1984).

[491] A. Neumaier, “Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization,”
SIAM Rev., 40, 636 (1988).

[492] M. Bertero, C. De Mol, and E. R. Pikes, “Linear Inverse Problems with Discrete Data: I: General Formu-
lation and Singular System Analysis,” Inv. Prob., 1, 301 (1985).; and “II. Stability and Regularisation,”
ibid., 4, 573 (1988).

[493] M. Bertero, T. Poggio, and V. Torre, “Ill-Posed Problems in Early Vision,” Proc. IEEE, 76, 869 (1988).

[494] T. Poggio and F. Girosi, “Networks for Approximation and Learning,” Proc. IEEE, 78, 1481 (1990).

[495] A. M. Thompson, J. W. Kay, and D. M. Titterington, “Noise Estimation in Signal Restoration Using
Regularization,” Biometrika, 78, 475 (1991).

948 REFERENCES

[496] C. Cortes and V. Vapnik, “Support Vector Networks,” Mach. Learn., 20, 1 (1995).

[497] F. Girosi, M. Jones, and T. Poggio, “Regularization Theory and Neural Networks Architectures,”
Neural Comput., 7, 219 (1995).

[498] A. J. Smola, B. Schölkopf, and K-R. Müller, “The Connection Between Regularization Operators and
Support Vector Kernels,” Neural Net., 11, 637 (1998).

[499] V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

[500] W. Fu, “Penalized Regressions: The Bridge versus the Lasso,” J. Comput. Graph. Statist., 7, 397
(1998). 1998.

[501] V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory, and Methods, Wiley, New York,
1998.

[502] F. Girosi, “An Equivalence Between Sparse Approximation and Support Vector Machines,” Neural
Comput., 10, 1455 (1998).

[503] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-
Based Learning Methods, Cambridge Univ. Press, Cambridge, 2000.

[504] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization Networks and Support Vector Machines,” Adv.
Comput. Math., 13 1 (2000).

[505] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Springer-Verlag, New York, 2001.

[506] F. Cucker and S. Smale, “On the Mathematical Foundations of Learning,” Bull. AMS, 39, 1 (2001).

[507] L. Tenorio, “Statistical Regularization of Inverse Problems,” SIAM Rev., 43, 347 (2001).

[508] K-R. Müller, et al., “An Introduction to Kernel-Based Learning Algorithms,” IEEE TRans. Neural Net.,
12, 181 (2001).

[509] B. Schölkopf, R. Herbrich, and A. J. Smola, “A Generalized Representer Theorem,” Proc. 14th Ann.
Conf. Comput. Learn. Th., p.416, (2001).

[510] T. Evgeniou, et al., “Regularization and Statistical Learning Theory for Data Analysis,” Comput.
Statist. Data Anal., 38, 421 (2002).

[511] F. Cucker and S. Smale, “Best Choices for Regularization Parameters in Learning Theory: On the
Bias-Variance Problem,” Found. Comput. Math., 2, 413 (2002).

[512] B. Schölkopf and A. Smola. Learning with Kernels, MIT Press, Cambridge, MA, 2002.

[513] J. A. K. Suykens, et al., Least Squares Support Vector Machines, World Scientific, Singapore, 2002.

[514] Z. Chen and S. Haykin, “On Different Facets of Regularization Theory,” Neural Comput., 14, 2791
(2002).

[515] T. Poggio and S. Smale, “The Mathematics of Learning: Dealing with Data,” Notices AMS, 50, no.5,
537 (2003).

[516] M. Mart́inez-Ramón and C. Christodoulou, Support Vector machines for Antenna Array Processing
and Electromagnetics, Morgan & Claypool, 2006.

[517] M. Mart́inez-Ramón, et al., “Kernel Antenna Array Processing,”, IEEE Trans. Antennas Propagat., 55,
642 (2007).

[518] M. Filippone, et al. “A Survey of Kernel and Spectral Methods for Clustering,” Patt. Recogn., 41, 176
(2008).

[519] W. Liu, P. P. Pokharel, and J. C. Principe, “The Kernel Least-Mean-Square Algorithm,” IEEE Trans.
Signal Process., 56, 543 (2008).

L1 Regularization and Sparsity

[520] O. J. Karst, “Linear Curve Fitting Using Least Deviations,” J. Amer. Statist. Assoc., 53, 118 (1958).

[521] E. J. Schlossmacher, “An Iterative Technique for Absolute Deviations Curve Fitting,” J. Amer. Statist.
Assoc., 68, 857 (1973).

[522] V. A. Sposito, W. J. Kennedy and, J. E. Gentle, “Algorithm AS 110: Lp Norm Fit of a Straight Line,” J.
Roy. Statist. Soc., Series C, 26, 114 (1977).

[523] R. H. Byrd, D. A. Pyne, “Convergence of the iteratively reweighted least squares algorithm for robust
regression,” Tech. Report, 313, Dept. Math. Sci., Johns Hopkins University, Baltimore, MD, 1979

REFERENCES 949

[524] C. S. Burrus, 2012, “Iterative Reweighted least-squares,” OpenStax-CNX web site,
http://cnx. org/content/m45285/1.12.

[525] S. C. Narula and J. F. Wellington, “The Minimum Sum of Absolute Errors Regression: A State of the
Art Survey,” Int. Statist. Review, 50, 317 (1982).

[526] R. Yarlagadda, J. B. Bednar, and T. L. Watt, “Fast algorithms for lp deconvolution,” IEEE Trans. Signal
Process., 33, 174 (1985). See also, J. A. Scales and S. Treitel, “On the connection between IRLS and
Gauss’ method for l1 inversion: Comments on ‘Fast algorithms for lp deconvolution’,” ibid., 35, 581
(1987).

[527] J. A. Scales, A. Gersztenkorn, and S. Treitel, “Fast lp solution of large, sparse, linear systems: Ap-
plication to seismic travel time tomography,” J. Comput. Phys., 75, 314 (1988).

[528] G. Darche, “Iterative L1 deconvolution,” Stanford Exploration Project, Annual Report 61, Jan. 1989;
available from: http://sepwww.stanford.edu/public/docs/sep61.

[529] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,”
Physica D, 60, 259 (1992).

[530] K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput., 24, 227 (1995).

[531] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Roy. Statist. Soc., Ser. B, 58, 267
(1996).

[532] F. Gorodnitsky and B. Rao, “Sparse signal reconstruction from limited data using FOCUSS: A
reweighted norm minimization algorithm,” IEEE Trans. Signal Process., 45, 600 (1997).

[533] M. R. Osborne, B. Presnell, and B. A. Turlach, “On the LASSO and Its Dual,” J. Comput. Graph. Stat.,
9, 319 (2000).

[534] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev.,
43, 129 (2001).

[535] B. Efron, et al., “Least Angle Regression,” Ann. Statist., 32, 407 (2004).

[536] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint,” Comm. Pure Appl. Math., 57 1413 (2004).

[537] R. Tibshirani, et al., “Sparsity and smoothness via the fused Lasso,” J. Roy. Statist. Soc., Ser. B, 67,
91 (2005).

[538] J-J. Fuchs, “Recovery of exact sparse representations in the presence of bounded noise.” IEEE Trans.
Inform. Th., 51, 3601 (2005); and, “On Sparse Representations in Arbitrary Redundant Bases,” ibid.,
50, 1341 (2004).

[539] J. A. Tropp, “Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise,” IEEE
Trans. Inform. Th., 52, 1030 (2006).

[540] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. Roy. Statist. Soc.,
Ser. B, 67, 301 (2005).

[541] D. L. Donoho, “For most large underdetermined systems of linear equations the minimal �1-norm
solution is also the sparsest solution,” Comm. Pure Appl. Math., 59, 797 (2006).

[542] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans, Inform. Th., 51, 4203 (2005).

[543] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate
measurements,” Comm. Pure Appl. Math., 59 1207 (2006).

[544] E. J. Candès, J. K. Romberg, “�1-MAGIC: Recovery of Sparse Signals via Convex Programming,” User’s
Guide, 2006, available online from:
https://statweb.stanford.edu/~candes/l1magic/downloads/l1magic.pdf

[545] D. L. Donoho, “Compressed Sensing,” IEEE Trans, Inform. Th., 52, 1289 (2006).

[546] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal Component Analysis,” J. Comput. Graph. Stat.,
15, 265 (2006).

[547] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries
for sparse representation,” IEEE Trans. Signal Process., 54, 4311 (2006).

[548] S-J Kim, et al., “An Interior-Point Method for Large-Scale �1-Regularized Least Squares,” IEEE J.
Selected Topics Sig. Process., 1, 606 (2007).

[549] A. d’Aspremont, et al., “A direct formulation for sparse PCA using semidefinite programming,” SIAM
Rev., 49, 434 (2007).

950 REFERENCES

[550] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems,” IEEE J. Selected Topics Sig. Process.,
1, 586 (2007).

[551] M. Lobo, M. Fazel, and S. Boyd, “Portfolio optimization with linear and fixed transaction costs,” Ann.
Oper. Res., 152, 341 (2007).

[552] E. J. Candès and T. Tao, “The Dantzig Selector: Statistical Estimation When p Is Much Larger than
n,” Ann. Statist., 35, 2313 (2007); with Discussions, ibid., p. 2352, 2358, 2365, 2370, 2373, 2385,
2392.

[553] E. J. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted �1 minimization,” J. Fourier
Anal. Appl., 14, 877 (2008).

[554] R. G. Baraniuk, et al., “A simple proof of the restricted isometry property for random matrices,”
Constructive Approx. 28, 253 (2008).

[555] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,”
Comptes Rendus Mathematique, 346, 589 (2008).

[556] E. J. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE Sig. Process. Mag., 25(2),
21 (2008).

[557] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From Sparse Solutions of Systems of Equations to
Sparse Modeling of Signals and Images,” SIAM Rev., 51, 34 (2009).

[558] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems,” SIAM J. Imaging Sci., 2, 183 (2009).

[559] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decompo-
sition based on smoothed L0 norm,” IEEE Trans. Signal Process., 57, 289 (2009).

[560] R. E. Carrillo and K. E. Barner, “Iteratively re-weighted least squares for sparse signal reconstruction
from noisy measurements,” 43rd IEEE Conf. Inform. Sci. Syst., CISS 2009, p. 448.

[561] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing and best k-term approximation,” J.
Amer. Math. Soc., 22, 211 (2009).

[562] E. J. Candès and Y. Plan, “Near-ideal model selection by �1 minimization,” Ann. Statist., 37, 2145
(2009).

[563] M. J. Wainwright, “Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using �1-
Constrained Quadratic Programming (Lasso),” IEEE Trans. Inform. Th., 55, 2183 (2009).

[564] I. Daubechies, M. Fornasier, and I. Loris, “Accelerated Projected Gradient Method for Linear Inverse
Problems with Sparsity Constraints,” J. Fourier Anal. Appl., 14, 764 (2008).

[565] I. Daubechies, et al., “Iteratively reweighted least squares minimization for sparse recovery,” Comm.
Pure Appl. Math., 63, 1 (2010).

[566] D. Wipf and S. Nagarajan, “Iterative reweighted �1 and �2 methods for finding sparse solutions,”
IEEE J. Selected Topics Sig. Process., 4, 317 (2010).

[567] E. Van Den Berg, et al., “Algorithm 890: Sparco: A testing framework for sparse reconstruction,”
ACM Trans. Math. Softw., 35, 29 (2009). Sparco web site:
http://www.cs.ubc.ca/labs/scl/sparco/

[568] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image
Processing, Springer, 2010.

[569] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data, Springer, 2011.

[570] J. Yang, and Y. Zhang, “Alternating direction algorithms for �1-problems in compressive sensing,”
SIAM J. Sci. Comp., 33, 250 (2011). YALL1 package: http://yall1.blogs.rice.edu/

[571] E. J. Candès, et al. “Robust Principal Component Analysis?,” J. Assoc. Comput. Mach., 58, 11 (2011).

[572] D. Hardoon and J. Shawe-Taylor, “Sparse canonical correlation analysis,” Mach. Learn. 83, 331
(2011).

[573] Z. Ma, “Sparse principal component analysis and iterative thresholding,” Ann. Stat., 41, 772 (2013).

[574] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast Image Recovery Using Variable
Splitting and Constrained Optimization,” IEEE Trans. Image Process., 19, 2345 (2010); and “An
Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse
Problems,” ibid., 20, 68 (2011). SALSA software available from:
http://cascais.lx.it.pt/~mafonso/salsa.html

REFERENCES 951

[575] S. Boyd, et al., “Distributed optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning, 3(1), 3(1), 1 (2011); see also,
http://stanford.edu/~boyd/admm.html.

[576] N. Parikh and S. Boyd, “Proximal Algorithms,” Foundations and Trends in Optimization, 1, 123 (2013).

[577] F. Bach, et al., “Optimization with Sparsity-Inducing Penalties,” Foundations and Trends in Machine
Learning, 4(1), 1 (2012).

[578] Y-B Zhao and D. Li, “Reweighted �1-minimization for sparse solutions to underdetermined linear
systems,” SIAM J. Optim., 22, 1065 (2012).

[579] J. Mairal and B. Yu, “Complexity analysis of the lasso regularization path,” arXiv, arXiv preprint:
1205.0079 (2012).

[580] I. Selesnick, 2012, “Introduction to Sparsity in Signal Processing,” OpenStax-CNX web site,
https://cnx.org/content/m43545/latest, including MATLAB examples using SALSA [574].

[581] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Birkhäuser, 2013.

[582] J. P. Brooks, J. H. Dulá, and E. L. Boone, “A Pure L1-norm Principal Component Analysis,” Comput.
Stat. Data Anal., 61, 83 (2013).

[583] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2/e, Aca-
demic Press, 2013.

[584] R. J. Tibshirani, “The lasso problem and uniqueness,” Electr. J. Statist., 7, 1456 (2013).

[585] D. Ba, et al., “Convergence and Stability of Iteratively Re-weighted Least Squares Algorithms,” IEEE
Trans. Signal Process., 62, 183 (2014).

[586] I. Rish and G. Grabarnik, Sparse Modeling: Theory, Algorithms, and Applications, Chapman and
Hall/CRC, 2014.

[587] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The Lasso and Gen-
eralizations, CRC Press, 2015.

[588] C. F.Mecklenbräuker, P. Gerstoft, and E. Zöchmann, “c-LASSO and its dual for sparse signal estima-
tion from array data,” Sig. Process., 130, 204 (2017).

[589] http://dsp.rice.edu/cs, Compressive Sensing Resources.

[590] MATLAB packages for solving the L1 regularization and related problems:

Mathworks https://www.mathworks.com/help/stats/lasso-and-elastic-net.html
https://www.mathworks.com/help/stats/lasso.html

ADMM http://stanford.edu/~boyd/admm.html
CVX http://cvxr.com/cvx/

FISTA http://ie.technion.ac.il/~becka/papers/rstls_package.zip
Homotopy http://www.ece.ucr.edu/~sasif/homotopy/
L1-MAGIC https://statweb.stanford.edu/~candes/l1magic/

LARS https://publish.illinois.edu/xiaohuichen/code/lars/
https://sourceforge.net/projects/sparsemodels/files/LARS/

NESTA https://statweb.stanford.edu/~candes/nesta/
REGTOOLS http://www.imm.dtu.dk/~pcha/Regutools/

SALSA http://cascais.lx.it.pt/~mafonso/salsa.html
SOL http://web.stanford.edu/group/SOL/software.html

Sparco http://www.cs.ubc.ca/labs/scl/sparco/
SpaRSA http://www.lx.it.pt/~mtf/SpaRSA/

Sparselab https://sparselab.stanford.edu/
SPGL1 http://www.cs.ubc.ca/labs/scl/spgl1/
TwIST http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm
YALL1 http://yall1.blogs.rice.edu/

Comb Filters and Signal Averaging

[591] S. F. George and A. S. Zamanakos, “Comb Filters for Pulsed Radar Use,” Proc. IRE, 42, 1159 (1954).

[592] G. Arndt, F. Stuber, and R. Panneton, “Video-Signal Improvement Using Comb Filtering Techniques,”
IEEE TRans. Commun., 21, 331 (1973).

952 REFERENCES

[593] S-C Pei and C-C Tseng, “A Comb Filter design Using Fractional-Sample Delay,” IEEE Trans. Circ.
Syst.–II: Anal. Dig. Sig. Process., 45, 649 (1998).

[594] A. G. Dempster, “Use of Comb Filters in GPS L1 Receivers,” GPS Solut., 12, 179 (2008).

[595] S. J. Orfanidis, “High-Order Digital Parametric Equalizer Design,” J. Audio Eng. Soc., 53, 1026
(2005). The MATLAB toolbox is available from http://www.ece.rutgers.edu/~orfanidi/hpeq/,
or, http://www.aes.org/journal/suppmat/

[596] D. G. Childers, “Biomedical Signal Processing,” in Selected Topics in Signal Processing, S. Haykin, ed.,
Prentice Hall, Upper Saddle River, NJ, 1989.

[597] A. Cohen, Biomedical Signal Processing, vols. 1 and 2, CRC Press, Boca Raton, FL, 1986.

[598] H. G. Goovaerts and O. Rompelman, “Coherent Average Technique: A Tutorial Review,” J. Biomed.
Eng., 13, 275 (1991).

[599] P. Horowitz and W. Hill, The Art of Electronics, 2nd ed., Cambridge University Press, Cambridge,
1989.

[600] O. Rompelman and H. H. Ros, “Coherent Averaging Technique: A Tutorial Review, Part 1: Noise
Reduction and the Equivalent Filter,” J. Biomed. Eng., 8, 24 (1986); and “Part 2: Trigger Jitter, Over-
lapping Responses, and Non-Periodic Stimulation,” ibid., p. 30.

[601] V. Shvartsman, G. Barnes, L. Shvartsman, and N. Flowers, “Multichannel Signal Processing Based on
Logic Averaging,” IEEE Trans. Biomed. Eng., BME-29, 531 (1982).

[602] C. W. Thomas, M. S. Rzeszotarski, and B. S. Isenstein, “Signal Averaging by Parallel Digital Filters,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 338 (1982).

[603] T. H. Wilmshurst, Signal Recovery from Noise in Electronic Instrumentation, 2nd ed., Adam Hilger
and IOP Publishing, Bristol, England, 1990.

[604] J. F. Kaiser and R. W. Schafer, “On the Use of the I0-Sinh Window for Spectrum Analysis,” IEEE Trans.
Acoust., Speech, Signal Process., ASSP-28, 105 (1980).

X-11 Seasonal Adjustment Method

[605] J. Shiskin, A. Young, and J. Musgrave, “The X-11 Variant of the Census Method II Seasonal Adjust-
ment Program,” US Census Bureau, Technical Paper 15, (1967), available from [609].

[606] E. B, Dagum, “The X-11-ARIMA Seasonal Adjustment Method,” Statistics, Canada, (1980), available
from [609].

[607] http://www.census.gov/srd/www/x12a/, US Census Bureau X-12-ARIMA Seasonal Adjustment
Program.

[608] http://www.census.gov/srd/www/sapaper/sapaper.html, US Census Bureau Seasonal Adjust-
ment Papers.

[609] http://www.census.gov/srd/www/sapaper/historicpapers.html, Historical Papers on X-11
and Seasonal Adjustment.

[610] K. F. Wallis, “Seasonal Adjustment and Relations Between Variables,” J. Amer. Statist. Assoc., 69, 18
(1974).

[611] K. F. Wallis, “Seasonal Adjustment and Revision of Current Data: Linear Filters for the X-11 Method,”
J. Roy. Statist. Soc., Ser. A, 145, 74 (1982).

[612] W. R. Bell and S. C. Hillmer, “Issues Involved with Seasonal Adjustment of Economic Time Series,”
J. Bus. Econ. Statist., 2, 291 (1984). Available on line from
http://www.census.gov/srd/papers/pdf/rr84-09.pdf.

[613] W. R. Bell and B. C. Monsell, “X-11 Symmetric Linear Filters and their Transfer Functions,” US Census
Bureau, SRD Research Report, No. RR-92/15, (1992). Available online from the web site [608].

[614] E. B. Dagum, N. Chhab, and K. Chiu, “Derivation and Properties of the X11ARIMA and Census X11
Linear Filters,” J. Official Statist., 12, 329 (1996).

[615] J. C. Musgrave, “A Set of Weights to End all End Weights,” Working paper, US Dept. Commerce,
(1964), available online from [609].

[616] M. Doherty, “The Surrogate Henderson Filters in X-11”, Aust. N. Z. J. Stat., 43, 385 (2001), originally
circulated in 1996.

REFERENCES 953

[617] D. F. Findley, et al., “New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Pro-
gram,” J. Bus. Econ. Statist., 16, 127 (1998), with Comments, p.153.

[618] D. Ladiray and B. Quenneville, Seasonal Adjustment with the X-11 Method, Lecture Notes in Statistics
No. 158, Springer-Verlag, New York, 2001. Available online from the web site [608] (in French and
Spanish.)

[619] A. G. Gray and P. J. Thomson, “On a Family of Finite Moving-Average Trend Filters for the Ends of
Series,” J. Forecasting, 21, 125 (2002).

[620] B. Quenneville, D. Ladiray, and B. Lefrançois, “A Note on Musgrave Asymmetrical Trend-Cycle Fil-
ters,” Int. J. Forecast., 19, 727 (2003).

[621] D. F. Findley and D. E. K. Martin, “Frequency Domain Analysis of SEATS and X-11/X-12-ARIMA
Seasonal Adjustment Filters for Short and Moderate-Length Time Series,” J. Off, Statist., 22, 1 (2006).

[622] C. E. V. Leser, “Estimation of Quasi-Linear Trend and Seasonal Variation,” J. Amer. Statist. Assoc.,
58, 1033 (1963).

[623] H. Akaike, “Seasonal Adjustment by a Bayesian Modeling,” J. Time Ser. Anal., 1, 1 (1980).

[624] E. Schlicht, “A Seasonal Adjustment Principle and a Seasonal Adjustment Method Derived from this
Principle,” J. Amer. Statist. Assoc., 76, 374 (1981).

[625] F. Eicker, “Trend-Seasonal Decomposition of Time Series as Whittaker-Henderson Graduation,”
Statistics, 19, 313 (1988).

Model-Based Seasonal Adjustment

[626] E. J. Hannan, “The Estimation of Seasonal Variation in Economic Time Series,” J. Amer. Statist. Assoc.,
58, 31 (1963).

[627] E. J. Hannan, “The Estimation of Changing Seasonal Pattern,” J. Amer. Statist. Assoc., 59, 1063 (1964).

[628] M. Nerlove, “Spectral Analysis of Seasonal Adjustment Procedures,” Econometrica, 32, 241 (1964).

[629] J. P. Burman, “Moving Seasonal Adjustment of Economic Time Series,” J. Roy. Statist. Soc., Ser. A,
128, 534 (1965).

[630] D. M. Grether and M. Nerlove, “Some Properties of “Optimal” Seasonal Adjustment,” Econometrica,
38, 682 (1970).

[631] G. E. P. Box, S. Hillmer, and G. C. Tiao, “Analysis and Modeling of Seasonal Time Series,” (1978),
available online from [609].

[632] J. P. Burman, “Seasonal Adjustment by Signal Extraction,” J. Roy. Statist. Soc., Ser. A, 143, 321 (1980).

[633] S. C. Hillmer and G. C. Tiao, “An ARIMA-Model-Based Approach to Seasonal Adjustment,” J. Amer.
Statist. Assoc., 77, 63 (1982).

[634] W. S. Cleveland, A. E, Freeny, and T. E. Graedel, “The Seasonal Component of Atmospheric CO2:
Information from New Approaches to the Decomposition of Seasonal Time Series,” J. Geoph. Res.,
88, 10934 (1983).

[635] P. Burridge and K. F. Wallis, “Unobserved-Components Models for Seasonal Ajustment Filters,” J.
Bus. Econ. Statist., 2, 350 (1984).

[636] G. Kitagawa and W. Gersch, “A Smoothness Priors-State Space Modeling of Time Series with Trend
and Seasonality,” J. Amer. Statist. Assoc., 79, 378 (1984).

[637] R. B. Cleveland, et al., “STL: A Seasonal-Trend Decomposition Procedure Based on Loess,” J. Official
Statist., 6, 3 (1990).

[638] G. Kitagawa and W. Gersch, Smoothness Priors Analysis of Time Series, Springer, New York, 1996.

[639] V. Gómez and A. Maravall, “Programs TRAMO and SEATS. Instructions for the User (with some
updates),” Working Paper 9628, (Servicio de Estudios, Banco de España, 1996).

[640] C. Planas, “The Analysis of Seasonality In Economic Statistics: A Survey of Recent Developments,”
Qüestió, 22, 157 (1998).

[641] V. Gómez and A. Maravall, “Seasonal Adjustment and Signal Extraction in Economic Time Series,”
chapter 8, in A Course in Time Series Analysis, D. Peña, G. C. Tiao, and R. S. Tsay, eds., Wiley, New
York, 2001. Available online from http://bde.es/servicio/software/tramo/sasex.pdf.

[642] J. A.D. Aston, et al., “New ARIMA Models for Seasonal Time Series and Their Application to Seasonal
Adjustment and Forecasting,” US Census Bureau, (2007), available online from [608].

954 REFERENCES

Unobserved Components Models

[643] E. J. Hannan, “Measurement of a Wandering Signal Amid Noise,” J. Appl. Prob., 4, 90 (1967).

[644] E. L. Sobel, “Prediction of a Noise-Distorted, Multivariate, Non-Stationary Signal,” J. Appl. Prob., 4,
330 (1967).

[645] W. P. Cleveland and G. C. Tiao, “Decomposition of Seasonal Time Series: A Model for the Census
X-11 Program,” J. Amer. Statist. Assoc., 71, 581 (1976).

[646] D. A. Pierce, “Signal Extraction Error in Nonstationary Time Series,” Ann. Statist., 7, 1303 (1979).

[647] W. Bell, “Signal Extraction for Nonstationary Time Series,” Ann. Statist., 12, 646 (1984), with correc-
tion, ibid., 19, 2280 (1991).

[648] A. Maravall, “A Note on Minimum Mean Squared Error Estimation of Signals with Unit Roots,” J.
Econ. Dynam. & Contr., 12, 589 (1988).

[649] W. R. Bell and E. K. Martin, “Computation of Asymmetric Signal Extraction Filters and Mean Squared
Error for ARIMA Component Models,” J. Time Ser. Anal., 25, 603 (2004). Available online from [608].

[650] S. Beveridge and C. Nelson, “A New Approach to Decomposition of Economic Time Series into Perma-
nent and Transitory Components with Particular Attention to Measurement of the Business Cycle,”
J. Monet. Econ., 7, 151 (1981).

[651] V. Gómez and A. Maravall, “Estimation, Prediction, and Interpolation for Nonstationary Series with
the Kalman Filter,” J. Amer. Statist. Assoc. 89, 611 (1994).

[652] P. Young, “Data-Based Mechanistic Modelling of Environmental, Ecological, Economic, and Engineer-
ing Systems,” Environ. Model. & Soft., 13, 105 (1998).

[653] V. Gómez, “Three Equivalent Methods for Filtering Finite Nonstationary Time Series,” J. Bus. Econ.
Stat., 17, 109 (1999).

[654] A. C. Harvey and S. J. Koopman, “Signal Extraction and the Formulation of Unobserved Components
Modelsm” Econometr. J., 3, 84 (2000).

[655] R. Kaiser and A. Maravall, Measuring Business Cycles in Economic Time Series, Lecture Notes in
Statistics, 154, Springer-Verlag, New York, 2001. Available online from
http://www.bde.es/servicio/software/tramo/mhpfilter.pdf.

[656] E. Ghysels and D. R. Osborn, The Econometric Analysis of Seasonal Time Series, Cambridge Univ.
Press, Cambridge, 2001.

[657] D. S. G. Pollock, “Filters for Short Non-Stationary Sequences,” J. Forecast., 20, 341 (2001).

[658] R. Kaiser and A. Maravall, “Combining Filter Design with Model-Based Filtering (with an Application
to Business Cycle Estimation),” Int. J. Forecast., 21 691 (2005).

[659] A. Harvey and G. De Rossi, “Signal Extraction,” in Palgrave Handbook of Econometrics, vol 1, K.
Patterson and T. C. Mills, eds., 2006, Palgrave MacMillan, New York, 2006.

[660] A. Harvey, “Forecasting with Unobserved Components Time Series Models,” Handbook of Economic
Forecasting, G. Elliot, C. Granger, and A. Timmermann, eds., North Holland, 2006.

[661] D. S. G. Pollock, “Econometric Methods of Signal Extraction,” Comput. Statist. Data Anal., 50, 2268
(2006).

[662] M. Bujosa, A. Garcia-Ferrer, and P. C. Young, “Linear Dynamic Harmonic Regression,” Comput. Statist.
Data Anal., 52, 999 (2007).

[663] T. McElroy, “Matrix Formulas for Nonstationary ARIMA Signal Extraction,” Econometr. Th., 24, 988
(2008).

[664] M. Wildi, Real-Time Signal Extraction, Springer, New York, 2008. Available online from
http://www.idp.zhaw.ch/fileadmin/user_upload/engineering/_Institute_und_Zentren
/IDP/sonderthemen/sef/signalextraction/papers/IDP-WP-08Sep-01.pdf.

Wavelets and Applications

[665] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

[666] J. M. Combes, A. Grossmann, and P. Tchamitchian, eds., Wavelets, Time-Frequency Methods and
Phase Space, Springer-Verlag, Berlin, 1989.

[667] C. K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.

REFERENCES 955

[668] Y. Meyer, Wavelets, Algorithms and Applications, SIAM, Philadelphia, 1993.

[669] A. Akansu and R. Haddad, Multiresolution Signal Decomposition, Academic Press, New York, 1993.

[670] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs, NJ, 1993.

[671] G. Kaiser, A Friendly Guide to Wavelets Birkhäuser, Boston, 1994.

[672] V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, AK Peters, Boston, 1994.

[673] M. Vetterli and J. Kovačevíc, Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, NJ, 1995.

[674] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, MA, 1996.

[675] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer,
Prentice Hall, Upper Saddle River, NJ, 1998.

[676] S. Mallat, A Wavelet Tour of Signal Processing, Academic, New York, 1998.

[677] A. Antoniadis and G. Oppenheim, eds., Wavelets and Statistics, Lecture Notes in Statistics v. 103,
Springer-Verlag, New York, 1995.

[678] B. Vidakovic, Statistical Modeling with Wavelets, Wiley, New York, 1999.

[679] R. Gençay, F. Selçuk, and B. Whitcher, An Introduction to Wavelets and Other Filtering Methods in
Finance and Economics, Academic, New York, 2001.

[680] A. Jensen and A. la Cour-Harbo, Ripples in Mathematics, Springer, New York, 2001.

[681] S. Jaffard, Y. Meyer, and R. D. Ryan, Wavelets: Tools for Science and Technology, SIAM, Philadelphia,
2001.

[682] A. Cohen, Numerical Analysis of Wavelet Methods, Elsevier, Amsterdam, 2003.

[683] C. Heil, D. F. Walnut, and I. Daubechies, Fundamental Papers in Wavelet Theory, Princeton Univ.
Press, Princeton, NJ, 2006.

[684] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis Cambridge University
Press, Cambridge, 2006.

[685] P. Van Fleet, Discrete Wavelet Transformations, Wiley, New York, 2008.

[686] G. P. Nason, Wavelet Methods in Statistics with R, Springer, New York, 2008.

[687] G. Strang, “Wavelets and Dilation Equations: A Brief Introduction,” SIAM J. Math. Anal., 31, 614
(1989).

[688] C. Heil and D. Walnut, “Continuous and Discrete Wavelet Transforms,” SIAM Rev., 31, 628 (1989).

[689] L. Cohen, “Time-Frequency Distributions: A Review,” Proc. IEEE, 77, 941 (1989).

[690] O. Rioul and M. Vetterli, “Wavelets and Signal Processing,” IEEE SP Mag., 8, no.4, 14, October 1991.

[691] Special issue on Wavelets, IEEE Trans. Inform. Th., 38, Mar. 1992.

[692] IEEE Trans. Signal Process., Special Issue on Wavelets and Signal Processing, 41, Dec. 1993.

[693] A. H. Tewfik, M. Kim, and M. Deriche, “Multiscale Signal Processing Techniques: A Review,” in N. K.
Bose and C. R. Rao, eds., Handbook of Statistics, vol. 10, Elsevier, Amsterdam, 1993.

[694] Special Issue on Wavelets, Proc. IEEE, 84, Apr. 1996.

[695] G. Strang, “Wavelet Transforms versus Fourier Transforms,” Bull. (New Series) Am. Math. Soc., 28,
288 (1993).

[696] B. Jawerth and T. Swelden, “An Overview of Wavelet Based Multiresolution Analyses,” SIAM Rev.,
36, 377 (1994).

[697] G. Strang, “Wavelets,” Amer. Scientist, 82, 250, May-June 1994.

[698] P. M. Bentley and J. T. E. McDonnell, “Wavelet Transforms: An Introduction,” Electr. Comm. Eng. J.,
p. 175, Aug. 1994.

[699] A. Graps, “An Introduction to Wavelets,” IEEE Comput. Sci. Eng. Mag., 2, no. 2, 50, Summer 1995.

[700] J. R. Williams and K. Amaratunga, “Introduction to Wavelets in Engineering,” Int. J. Numer. Meth.
Eng., 37, 2365 (1994).

[701] I. Daubechies, “Where Do Wavelets Come From? A Personal Point of View,” Proc. IEEE, 84, 510
(1996).

[702] W. Sweldens, “Wavelets: What next?,” Proc. IEEE, 84, 680 (1996).

[703] C. Mulcahy, “Plotting and Scheming with Wavelets,” Math. Mag., 69, 323 (1996).

[704] C. Mulcahy, “Image Compression Using The Haar Wavelet Transform,” Spelman College Sci. Math.
J., 1, 22 (1997).

956 REFERENCES

[705] M . Vetterli, “Wavelets, Approximation, and Compression,” IEEE SP Mag., Sept. 2001, p. 59.

[706] P. P. Vaidyanathan, “Quadrature Mirror Filter Banks, M-band Extensions and Perfect Reconstruction
Techniques,” IEEE ASSP Mag., 4, no. 3, 4, July 1987.

[707] P. P. Vaidyanathan and Z. Doganata, ”The Role of Lossless Systems in Modern Digital Signal Pro-
cessing: A Tutorial,” IEEE Trans. Educ., 32, 181 (1989).

[708] P. P. Vaidyanathan, “Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A
Tutorial,” Proc. IEEE, 78, 56 (1990).

[709] A. Haar, “Zur Theorie der Orthogonalen Funktionensysteme,” Math. Annal., 69, 331 (1910).
Reprinted in [683].

[710] D. Gabor, “Theory of Communication,” J. IEE, 93, 429 (1946).

[711] D. Esteban and C. Galand, “Application of Quadrature Mirror Filters to Split-Band Voice Coding
Schemes,” Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., May 1977, p. 191. Reprinted in [683].

[712] P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans. Com-
mun., 31, 532 (1983). Reprinted in [683].

[713] M. J. T. Smith and T. P. Barnwell III, “A Procedure for Designing Exact Reconstruction Filter Banks
for Tree-Structured Sub-Band Coders,” Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process., San
Diego, CA, March 1984. Reprinted in [683].

[714] F. Mintzer, “Filters for Distortion-Free Two-Band Multirate Filter Banks,” IEEE Trans. Acoust., Speech,
Signal Process., 33, 626 (1985). Reprinted in [683].

[715] A. Grossmann and J. Morlet, “Decomposition of Hardy Functions into Square Integrable Wavelets
of Constant Shape,” SIAM J. Math. Anal., 15, 723 (1984). Reprinted in [683].

[716] A. Grossmann, J. Morlet, and T. Paul, “Transforms Associated to Square Integrable Group Represen-
tations I,” J. Math. Phys., 26, 2473 (1985). Reprinted in [683].

[717] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Commun. Pure Appl. Math.,
41 909 (1988). Reprinted in [683].

[718] G. Battle, “A block spin construction of ondelettes. Part I: Lemarié functions” Commun. Math. Phys.,
110, 601 (1987); and, “Part II: the QFT connection,” ibid., 114, 93 (1988). Reprinted in [683].

[719] P. G. Lemarié, “Ondelettes á localisation exponentielle,” J. Math. Pures Appl., 67, 227 (1988).

[720] Y. Meyer, “Wavelets with Compact Support,” Zygmund Lectures, U. Chicago (1987). Reprinted in
[683].

[721] S. Mallat, “A Theory for Multiresolution Signal Decomposition: the Wavelet Representation,” IEEE
Trans. Patt. Recogn. Mach. Intell., 11, 674 (1989). Reprinted in [683].

[722] S. Mallat, “Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R),” Trans. Amer.
Math. Soc., 315, 69 (1989). Reprinted in [683].

[723] A. Cohen, “Ondelettes, Analysis Multirésolutions et Filtres Mirroirs en Quadrature,” Ann. Inst. H.
Poincaré, Anal. Non Linéaire, 7, 439 (1990). Reprinted in [683].

[724] A. Grossmann, R. Kronland-Martinet, and J. Morlet, “Reading and Understanding Continuous
Wavelet Transforms,” in [666].

[725] M. Holschneider, et al, “A Real Time Algorithm for Signal Analysis with the Help of the Wavelet
Transform,” in [666].

[726] I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analysis,” IEEE
Trans. Inform. Th., 36, 961 (1990). Reprinted in [683].

[727] M. Holsclmeider, “Wavelet Analysis on the Circle,” J. Math. Phys., 31, 39 (1990).

[728] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast Wavelet Transforms and Numerical Algorithms I,,,
Commun. Pure Appl. Math., 44, 141 (1991). Reprinted in [683].

[729] W. Lawton, “Tight Frames of Compactly Supported Affine Wavelets,, J. Math. Phys., 31, 1898 (1990).
Reprinted in [683].

[730] W. Lawton, “Necessary and Sufficient Conditions for Constructing Orthonormal Wavelet Bases,” J.
Math. Phys., 32, 57 (1991).

[731] W. Lawton, “Multiresolution Properties of the Wavelet Galerkin Operator,” J. Math. Phys., 32, 1440
(1991).

REFERENCES 957

[732] I. Daubechies and J. Lagarias, “Two-Scale Difference Equations I. Existence and Global Regularity
of Solutions,” SIAM J. Math. Anal., 22, 1388 (1991); and, “II. Local Regularity, Infinite Products of
Matrices and Fractals,” ibid., 24, 1031 (1992).

[733] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal Bases of Compactly Supported Wavelets,”
Commun. Pure Appl. Math., 45, 485 (1992).

[734] O. Rioul and P. Duhamel, “Fast Algorithms for Discrete and Continuous Wavelet Transforms,” IEEE
Trans. Inform. Th., 38, 569 (1992).

[735] M. Vetterli and C. Herley, “Wavelets and Filter Banks: Theory and Design,” IEEE Trans. Signal Process.,
40, 2207 (1992).

[736] G. G. Walter, “A Sampling Theorem for Wavelet Subspaces,” IEEE Trans. Inform. Th., 38, 881 (1992).

[737] N. H. Getz, “A Perfectly Invertible, Fast, and Complete Wavelet Transform for Finite Length Se-
quences: The Discrete Periodic Wavelet Transform,” SPIE Mathematical Imaging, vol, 2034, p. 332,
(1993).

[738] L. Cohen, “The Scale Representation,” IEEE Trans. Signal Process., 41, 3275 (1993).

[739] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets II, Variations on a Theme,”
SIAM J. Math. Anal., 24, 499 (1993).

[740] O. Rioul, “A Discrete-Time Multiresolution Theory,” IEEE Trans. Signal Process., 41, 2591 (1993).

[741] X. Xia and Z. Zhang, “On Sampling Theorem, Wavelets, and Wavelet Transforms, IEEE Trans. Signal
Process., 41, 3524 (1993).

[742] W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets,” Appl.
Comput. Harmon. Anal.,3, 186 (1996).

[743] W. Sweldens, “The Lifting Scheme: A Construction of Second Generation Wavelets,” SIAM J. Math.
Anal., 29, 511 (1996).

[744] G. Strang, “Eigenvalues of (↓2)H and Convergence of the Cascade Algorithm,” IEEE Trans. Signal
Process., 44, 233 (1996).

[745] S. H. Maes, “Fast Quasi-Continuous Wavelet Algorithms for Analysis and Synthesis of One-
Dimensional Signals,” SIAM J. Appl. Math., 57, 1763 (1997).

[746] I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into Lifting Steps,” J. Fourier Anal.
Appl., 4, 247 (1998).

[747] M. Unser and T. Blu, “Wavelet Theory Demystified,” IEEE Trans. Signal Process., 51, 470 (2003).

[748] P. Dutilleux, “An Implementation of the Algorithme à Trous to Compute the Wavelet Transform,”
in [666].

[749] S. Mallat, “Zero-Crossings of a Wavelet Transform,” IEEE Trans. Inform. Th., 37, 1019 (1991).

[750] G. Beylkin, “On the Representation of Operators in Bases of Compactly Supported Wavelets,” SIAM
J. Numer. Anal., 29, 1716 (1992).

[751] M. J. Shensa, “The Discrete Wavelet Transform: Wedding the á Trous and Mallat Algorithms,” IEEE
Trans. Signal Process., 40, 2464 (1992).

[752] G. P. Nason and B. W. Silverman, “The Discrete Wavelet Transform in S,” J. Comput. Graph. Statist.,
3, 163 (1994).

[753] G. P. Nason and B. W. Silverman, “The Stationary Wavelet Transform and Some Statistical Applica-
tions,” in [677].

[754] R. R. Coifman and D. L. Donoho, “Translation-Invariant Denoising,” in [677].

[755] J. C. Pesquet, H. Krim, and H. Carfantan, “Time-Invariant Orthonormal Wavelet Representations,”
IEEE Trans. Signal Process., 44, 1964 (1996).

[756] J. Liang and T. W. Parks, “A Translation-Invariant Wavelet Representation Algorithm with Applica-
tions,” IEEE Trans. Signal Process., 44, 225 (1996).

[757] M. Lang, et al., “Noise Reduction Using An Undecimated Discrete Wavelet Transform,” IEEE Signal
Process. Lett., 3, 10 (1996).

[758] H. Sari-Sarraf and D. Brzakovic, “A Shift-Invariant Discrete Wavelet Transform,” IEEE Trans. Signal
Process., 45, 2621 (1997).

[759] J. E. Fowler, “The Redundant Discrete Wavelet Transform and Additive Noise, IEEE Signal Process.
Lett., 12, 629 (2005).

958 REFERENCES

[760] A. F. Abdelnour and I. W. Selesnick, “Symmetric Nearly Shift-Invariant Tight Frame Wavelets,” IEEE
Trans. Signal Process., 53, 231 (2005).

[761] J.-L. Starck, J. Fadili, and F. Murtagh, “The Undecimated Wavelet Decomposition and its Reconstruc-
tion,” IEEE Trans. Imag. Process., 16, 297 (2007).

[762] J. D. Johnston, “Transform Coding of Audio Signals Using Perceptual Noise Criteria,” IEEE J. Selected
Areas Commun., 6, 314 (1988).

[763] D. J. LeGall, H. Gaggioni, and C. T. Chen, “Transmission of HDTV Signals Under 140 Mbits/s Using
a Subband Decomposition and Discrete Cosine Transform Coding,” in L. Chiariglione, ed., Signal
Processing of HDTV, Elsevier, Amsterdam, 1988.

[764] JPEG Technical Specification: Revision (DRAFT), Joint Photographic Experts Group, ISO/IEC
JTC1/SC2/WG8, CCITT SGVIII, August 1990.

[765] G. K. Wallace, “The JPEG Still Picture Compression Standard,” Commun. ACM, 34, 30 (1991).

[766] D. LeGall, “MPEG: A Video Compression Standard for Multimedia Applications,” Commun. ACM, 34
46 (1991).

[767] N. S. Jayant, “Signal Compression: Technology Targets and Research Directions,” IEEE J. Sel. Areas
Commun., 10, 796 (1992).

[768] M. Antonini, et al., “Image Coding Using Wavelet Transform,” IEEE Trans. Im. Process., 1, 205 (1992).

[769] R. DeVore, B. Jawerth, and V. Popov, “Compression of Wavelet Decompositions,” Amer. J. Math.,
114, 737 (1992). Reprinted in [683].

[770] R. DeVore, B. Jawerth, and B. Lucier, “Image Compression Through Wavelet Transform Coding,” IEEE
Trans. Inform. Th., 38, 719 (1992).

[771] M. Farge, “Wavelet Transforms and their Applications to Turbulence,” Ann. Rev. Fluid Mech., 24,
395 (1992).

[772] J. N. Bradley, C. M. Brislawn, and T. Hopper, “The FBI Wavelet/Scalar Quantization Standard for
Grey-Scale Fingerprint Image Compression,” Proc. SPIE, 1961, 293 (1993).

[773] C. M. Brislawn, “Fingerprints Go Digital,” Notices AMS, 42 no. 11, 1278 (1995).

[774] C. M. Brislawn, et al., “FBI Compression Standard for Digitized Fingerprint Images,” Proc. SPIE, 2847,
344 (1996).

[775] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for Computer Graphics: A Primer, part 1,”
IEEE Comput. Graph. Appl., 15, 76 (1995).

[776] G. Pan, “Orthogonal Wavelets with Applications in Electromagnetics,” IEEE Trans. Magn., 32, 975
(1996).

[777] R. Zaciu, et al., “Image Compression Using an Overcomplete Discrete Wavelet Transform,” IEEE
Trans. Consum. Electron., 42, 500 (1996).

[778] N. Erdol and F. Basbug, “Wavelet Transform Based Adaptive Filters: Analvsis and New Results,” IEEE
Trans. Signal Process., 44, 2163 (1996).

[779] A. Bijaoui, et al., “Wavelets and the Study of the Distant Universe,” Proc. IEEE, 84, 670 (1996).

[780] M. Unser and A. Aldroubi, “A Review of Wavelets in Biomedical Applications,” Proc. IEEE, 84, 626
(1996).

[781] B. K. Alsberg, A. M. Woodward, and D. B. Kell, “An Introduction to Wavelet Transforms for Chemo-
metricians: A Time-Frequency Approach,” Chemometr. Intell. Lab. Syst., 37, 215 (1997).

[782] B. K. Alsberg, et al., “Wavelet Denoising of Infrared Spectra,” Analyst, 122, 645 (1997).

[783] B. Walczak and D. L. Massart, “Wavelets – Something for Analytical Chemistry?,” Trends Anal. Cem.,
15, 451 (1997).

[784] A. Chambolle, et al., “Nonlinear Wavelet Image Processing: Variational Problems, Compression and
Noise Removal Through Wavelet Shrinkage,” IEEE Trans. Imag. Process., 7, 319 (1998).

[785] A. K-M. Leung, F-T. Chau, and J-B. Gao, “A Review on Applications of Wavelet Transform Techniques
in Chemical Analysis: 1989–1997,” Chemometr. Intell. Lab. Syst., 43, 165 (1998).

[786] G. Strang, “The Discrete Cosine Transform,” SIAM Rev., 41, 135 (1999).

[787] C. Torrence and G. P. Compo, “A Practical Guide to Wavelet Analysis,” Bull. Amer. Meteor. Soc., 79,
621 (1998).

[788] J. B. Ramsey, “The Contribution of Wavelets to the Analysis of Economic and Financial Data,” Phil.
Trans. Roy. Soc. Lond. A, 357, 2593 (1999).

REFERENCES 959

[789] M. W. Marcellin, et al., “An Overview of JPEG2000,” Proc. Data Compression Conf., Snowbird, Utah,
March 2000, p. 523.

[790] ISO/IEC JTC1/SC29/WG1/N1646R, JPEG 2000 Part I Final Committee Draft Version 1.0, Mar. 2000,
available from http://www.jpeg.org/public/fcd15444-1.pdf.

[791] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image Coding System: An
Overview,”, IEEE Trans. Consum. Electron., 46, 1103 (2000).

[792] C-H. Lee, Y-J Wang, and W-L Huang, “A Literature Survey of Wavelets in Power Engineering Applica-
tions,” Proc. Natl. Sci. Counc. ROC(A), 24, 249 (2000).

[793] C.H. Kim and R. Aggarwal, “Wavelet Transforms in Power Systems, Part 1: General Introduction
to the Wavelet Transforms,” Power Eng. J., 14, 81 (2000); and “Part 2: Examples of Application to
Actual Power System Transients,”, ibid., 15, 193 (2000).

[794] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive Wavelet Thresholding for Image Denoising and Com-
pression,” IEEE Trans. Imag. Process., 9, 1532 (2000).

[795] D. B. H. Tay, “Rationalizing the Coefficients of Popular Biorthogonal Wavelet Filters,” IEEE Trans.
Circ. Syst. Video Tech., 10, 998 (2000).

[796] B. E. Usevitch, “A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of JPEG 2000,”
IEEE SP Mag., Sept. 2001, p. 22.

[797] M. D. Adams, “The JPEG-2000 Still Image Compression Standard,” ISO/IEC JTC 1/SC 29/WG1 N 2412,
Sept. 2001, Available from http://www.ece.ubc.ca/~mdadams.

[798] J-L, Starck and F. Murtagh, “Astronomical Image and Signal Processing Looking at Noise, Informa-
tion, and Scale,” IEEE SP Mag., p.30, Mar. 2001.

[799] J. B. Ramsey, “Wavelets in Economics and Finance: Past and Future,” Stud. Nonlin. Dynam.
Econometr., 2002.

[800] M. Unser and T. Blu, “Mathematical Properties of the JPEG2000 Wavelet Filters,” IEEE Trans. Imag.
Process., 12, 1080 (2003).

[801] F. Truchetet and O. Laligant, “Wavelets in Industrial Applications: A Review,” Proc. SPIE, 5607, 1
(2004).

[802] M. J. Fadili and E. T. Bullmore, “A Comparative Evaluation of Wavelet-Based Methods for Hypothesis
Testing of Brain Activation Maps,” NeuroImage, 23, 1112 (2004).

[803] M. N. O. Sadiku, C. M. Akujuobi, and R. C. Garcia, “An Introduction to Wavelets in Electromagnetics,”
IEEE Microwave Mag., 6, no.5, p.63, June 2005.

[804] P. S. Addison, “Wavelet Transforms and the ECG: A Review,” Physiol. Meas., 26, R155 (2005).

[805] M. Kaboudan, “Computational Forecasting of Wavelet-converted Monthly Sunspot Numbers,” J. Appl.
Statist., 33, 925 (2006).

[806] P. Liò, “Wavelets in Bioinformatics and Computational Biology: State of Art and Perspectives,” Bion-
form. Rev., 21, 207 (2007).

[807] P. M. Crowley, “A Guide to Wavelets for Economists,” J. Econ. Surveys, 21, 207 (2007).

[808] J. E. Fowler and B. Pesquet-Popescu, ”An Overview on Wavelets in Source Coding, Communications,
and Networks,” EURASIP J. Imag. Vid. Process., vol. 2007, Article ID 60539, (2007).

[809] I. Balasingham and T. A. Ramstad, J. E. Fowler and B. Pesquet-Popescu, ”Are the Wavelet Transforms
the Best Filter Banks for Image Compression?” EURASIP J. Imag. Vid. Process., vol. 2008, Article ID
287197, (2008).

[810] F. Truchetet and O. Laligant, “Review of Industrial Applications of Wavelet and Multiresolution-
Based Signal and Image Processing,” J. Electron. Imag., 17, 031102 (2008)

[811] H. Hashish, S. H. Behiry, and N.A. El-Shamy, “Numerical Integration Using Wavelets,” Appl. Math.
Comput. 211, 480 (2009).

[812] B. Mandelbrot and J. W. Van Ness, “Fractional Brownian Motions: Fractional Noises and Applica-
tions,” SIAM Rev., 10, 422 (1968).

[813] S. Granger and R. Joyeux, “An Introduction to Long-Memory Time Series Models and Fractional
Differencing,” J. Time Ser. Anal., 1, 15 (1980).

[814] J. R. M. Hosking, “Fractional Differencing,” Biometrika, 68, 165 (1981).

[815] G. Wornell, “A Karhunen-Loève Like Expansion for 1/f Processes via Wavelets,” IEEE Trans. Inform.
Th., 36, 859 (1990).

960 REFERENCES

[816] G. Wornell and A. V. Oppenheim, “Wavelet-Based Representations for a Class of Self-Similar Signals
with Application to Fractal Modulation,” IEEE Trans. Inform. Th., 38, 785 (1992).

[817] P. Flandrin, “Wavelet Analysis and Synthesis of Fractional Brownian Motion,” IEEE Trans. Inform.
Th., 38, 910 (1992).

[818] P. Abry, et al., “The Multiscale Nature of Network Traffic,” IEEE SP Mag., 19, no. 3, 28, May 2002.

[819] R. A. DeVore and B. J. Lucier, “Fast Wavelet Techniques for Near-Optimal Image Processing,” MILCOM
’92, IEEE Mil. Commun. Conf., p.1129, (1992).

[820] D. Donoho, “Unconditional Bases are Optimal Bases for Data Compression and Statistical Estima-
tion,” Appl. Computat. Harmon. Anal., 1, 100 (1993).

[821] D. L. Donoho and I. M. Johnstone, “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, 81,
425 (1994).

[822] , D. L. Donoho, “Denoising by Soft Thresholding,” IEEE Trans. Inform. Th., 41, 613 (1995).

[823] , D. L. Donoho, et al., “Wavelet Shrinkage: Asymptopia?,” J. Roy. Statist. Soc., Ser. B, 57, 301 (1995).

[824] D. L. Donoho and I. M. Johnstone, “Adapting to Unknown Smoothness via Wavelet Shrinkage,” J.
Amer. Statist. Assoc., 90, 1200 (1995). Reprinted in [683].

[825] A. Antoniadis, “Smoothing Noisy Data with Tapered Coiflets Series,” Scand. J. Statist., 23, 313 (1996).

[826] F. Abramovich and B. W. Silverman, “Wavelet Decomposition Approaches to Statistical Inverse Prob-
lems,” Biometrika, 85, 115 (1998).

[827] D. L. Donoho, et al., “Data Compression and Harmonic Analysis,” IEEE Trans. Inform. Th., 44, 2435
(1998).

[828] F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet Thresholding via Bayesian Approach,”
J. Roy. Statist. Soc., Ser. B., 60, 725 (1998).

[829] B. W. Silverman, “Wavelets in Statistics: Beyond the Standard Assumptions,” Phil. Trans. Roy. Soc.
Lond. A, 357, 2459 (1999).

[830] G. P. Nason and R. von Sachs, “Wavelets in Time-Series Analysis,” Phil. Trans. Roy. Soc. Lond. A, 357,
2511 (1999).

[831] F. Abramovich, T. C. Baily, and T. Sapatinas, “Wavelet Analysis and Its Statistical Applications,”
Statistician, 49, 1 (2000).

[832] A. Antoniadis, J. Bigot, and T. Sapatinas, “Wavelet Estimators in Nonparametric Regression: A Com-
parative Simulation Study,” J. Statist. Softw., 6, 1 (2001).

[833] A. Antoniadis and J. Fan, “Regularization of Wavelet Approximations,” J. Amer. Statist. Assoc., 96,
939 (2001).

[834] http://www.cmap.polytechnique.fr/~bacry/LastWave, LastWave, Emmanuel Bacry.

[835] http://www.cs.kuleuven.ac.be/~wavelets, Uytterhoeven, et al., C++ implementation.

[836] http://www-stat.stanford.edu/~wavelab/ Wavelab.

[837] http://www.dsp.rice.edu/software/RWT Rice Wavelet Toolbox.

[838] http://paos.colorado.edu/research/wavelets, Torrance and Compo.

[839] http://www.curvelet.org/, Curvelets.

[840] http://www.stats.bris.ac.uk/~wavethresh, Wavethresh in R.

[841] http://taco.poly.edu/WaveletSoftware/, S. Cai and K. Li.

[842] http://www2.isye.gatech.edu/~brani/wavelet.html, B. Vidakovic.

[843] http://www-lmc.imag.fr/SMS/software/GaussianWaveDen/index.html, A. Antoniadis, J.
Bigot, and J. Sapatinas.

[844] http://www.atmos.washington.edu/~wmtsa/, Percival and Walden, WMTSA toolbox.

[845] http://cas.ensmp.fr/~chaplais/UviWave/About_UviWave.html, Uvi-Wave.

[846] http://inversioninc.com/wavelet.html, N. H. Getz, see Ref. [737].

[847] http://www.math.rutgers.edu/~ojanen/wavekit/, H. Ojanen, Wavekit.

[848] http://cam.mathlab.stthomas.edu/wavelets/packages.php, P. Van Fleet, see [685].

Wiener and Kalman Filtering

REFERENCES 961

[849] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering
Applications, New York, Wiley, 1949.

[850] A. N. Kolmogorov, Sur l’Interpolation et Extrapolation des Suites Stationnaires, C. R. Acad. Sci., 208,
2043–2045 (1939). See also Interpolation and Extrapolation of Stationary Random Sequences, and
Stationary Sequences in Hilbert Space, reprinted in T. Kailath, Ed., Linear Least-Squares Estimation,
Stroudsburg, PA, Dowden, Hutchinson, and Ross, 1977.

[851] H. W. Bode and C. E. Shannon, A Simplified Derivation of Linear Least-Squares Smoothing and Pre-
diction Theory, Proc. IRE, 38, 417-425 (1950).

[852] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Trans. ASME, Ser. D,
J. Basic Eng., 82, 34–45 (1960).

[853] R. E. Kalman and R. S. Bucy, “New Results in Linear Filtering and Prediction Theory,” Trans. ASME,
Ser. D, J. Basic Eng., 83, 95–107 (1961).

[854] R. E. Kalman, “New Methods in Wiener Filtering Theory,” in Proc. First Symp. Engineering Appl. of
Random Function Theory and Probability, J. L. Bogdanoff and F. Kozin, eds., Wiley, New York, 1963,
pp. 270–388.

[855] H. W. Sorenson, “Least-Squares Estimation: From Gauss to Kalman,” IEEE Spectrum, 7, 63 (1970).

[856] T. Kailath, “An Innovations Approach to Least-Squares Estimation. Part I: Linear Filtering in Additive
White Noise,” IEEE Trans. Autom. Control, AC-13, 646–655 (1968).

[857] P. Whittle, Prediction and Regulation, New York: Van Nostrand Reinhold, 1963.

[858] A. M. Yaglom, Theory of stationary Random Functions, Englewood Cliffs, NJ, Prentice-Hall, 1962.

[859] T. Kailath, Some Topics in Linear Estimation, in M. Hazewinkel and J. C. Willems, Eds., Stochas-
tic Systems: The Mathematics of Filtering and Identification, Boston, D. Reidel Publications, 1981,
pp.307–350.

[860] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Dover Publications, NY, 2007, reporting
of the Academic Press, 1970 edition.

[861] A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communication and Control, New
York, McGraw-Hill, 1971.

[862] A. Gelb, Applied Optimal Estimation, Cambridge, MA, MIT Press, 1974.

[863] B. Anderson and J. Moore, Optimal Filtering, Englewood Cliffs, NJ, Prentice-Hall, 1979. Available
online from: http://users.cecs.anu.edu.au/~john/papers/index.html

[864] M. Srinath and P. Rajasekaran, Introduction to Statistical Signal Processing, New York, Wiley, 1979.

[865] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, Englewood Cliffs, NJ, 2000.

[866] T. Kailath, “A View of Three Decades of Linear Filtering Theory,” IEEE Trans. Info. Theory, IT-20,
146 (1974).

[867] T. R. Kronhamn, “Geometric Illustration of the Kalman Filter Gain and Covariance Update Algo-
rithms,” IEEE Control Syst. Magazine, May 1985, p. 41.

[868] B. Friedland, “Optimum Steady-State Position and Velocity Estimation Using Noisy Sampled Position
Data,” IEEE Trans. Aerosp. Elect. Syst., AES-9, 906 (1972).

[869] P. R. Kalata, “The Tracking Index: A Generalized Parameter for α–β and α–β–γ Target Trackers,”
IEEE Trans. Aerosp. Elect. Syst., AES-20, 174 (1984).

[870] R. T. Benedict and G. W. Bordner, “Synthesis of an Optimal Set of Radar Track-While-Scan Smoothing
Equations,” IRE Trans. Automat. Contr., AC-7, 27 (1962).

[871] S. J. Orfanidis, “An Exact Solution of the Time-Invariant Discrete Kalman Filter,” IEEE Trans. Automat.
Contr., AC-27 ,240 (1982).

[872] S. J. Orfanidis, “A Group Theoretical Approach to Optimal Estimation and Control,” J. Math. Anal.
Appl., 97, 393 (1983).

[873] J. E. Gray and G. J. Foster, “An Extension of the Tracking Index Concept to Non-Kalman Filter Selec-
tion Techniques,” Proc. 13th Southeastern Symp. Systems Theory, p.373, March 1998.

[874] E. Brookner, Tracking and Kalman Filtering Made Easy, Wiley, New York, 1998.

[875] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation,
Wiley, New York, 2001.

[876] K. V. Ramachandra, “Optimum Steady-State Position, Velocity, and Acceleration Estimation Using
Noisy Sampled Position Data,” IEEE Trans. Aerosp. Elect. Syst., AES-23, 705 (1987).

962 REFERENCES

[877] W. F. Arnold, III and A. J. Laub, “Generalized Eigenproblem Algorithms and Software for Algebraic
Riccati Equations,,, Proc. IEEE, 72, 1746 (1984).

[878] P. Benner, A. J. Laub, and V. Mehrmann, “A Collection of Benchmark Examples for the Numerical
Solution of Algebraic Riccati Equations II: Discrete-Time Case,” Dec. 1995, available online from
http://www.tu-chemnitz.de/sfb393/Files/PS/spc95-23.ps.gz

[879] L. A. McGee and S. F. Schmidt, “Discovery of the Kalman Filter as a Practical Tool for Aerospace
and Industry,” NASA-TM-86847, 1985, available from http://ntrs.nasa.gov/, Document ID:
19860003843.

[880] M. W. A. Smith and A. P, Roberts, “An Exact Equivalence Between thr Discrete- and Continuous-Time
Formulations of the Kalman Filter,” Math and Comput. in Simulation, 20, 102 (1978).

[881] A. E. Bryson and Y-C Ho, Applied Optimal Control, Hemisphere Publishing, Washington, 1975.

[882] A. E. Bryson and M. Frazier, “Smoothing for Linear and Non-Linear Dynamic Systems,” Proc. Opt. Syst,
Synthesis Conf., 1962, p.354, reprinted in T. Kailath, ed., Linear Least-Squares Estimation, Dowden,
Hutchinson, and Ross, Stroudsburg, PA, 1977.

[883] H. E. Rauch, “Solutions to the Linear Smoothing Problem,” IEEE Trans. Automat. Contr., AC-8, 371
(1963).

[884] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum Likelihood Estimates of Linear Dynamic Systems,”
AIAA J., 3, 1445 (1965).

[885] P. De Jong, “A Cross-Validation Filter for Time Series Models,” Biometrika, 75, 594 (1988).

[886] P. De Jong, “Smoothing and Interpolation with the State-Space Model,” J. Amer. Statist. Assoc. 84,
1085 (1989).

Kalman Filtering – Square Root Algorithms

[887] D. Q. Mayne, “A Solution of the Smoothing Problem for Linear Dynamic Systems,” Automatica, 4,
73 (1966).

[888] P. Dyer and S. McReynolds, “Extension of square-root filtering to include process noise,” J. Optim.
Th. Appl., 3, 444 (1969).

[889] P. G. Kaminski, A. E. Bryson, and S. F. Schmidt, “Discrete Square-Root Filtering—A Survey of Current
Techniques,” IEEE Trans. Automat. Contr., AC-16, 727 (1971).

[890] G. J. Bierman, “A Comparison of Discrete Linear Filtering Algorithms,” IEEE TRans. Aerosp. Electron.
Syst. AES-9, 28 (1973).

[891] M. Morf and T. Kailath, “Square-Root Algorithms for Least-Squares Estimation,” IEEE Trans. Automat.
Contr., AC-20, 487 (1975).

[892] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic, New York, 1977,
and Dover Publications, 2006.

[893] G. J. Bierman, “A New Computationally Efficient Fixed-Interval, Discrete-Time Smoothers,” Automat-
ica, 19, 503 (1983).

[894] M. Verhaegen and P. Van Dooren, “Numerical Aspects of Different Kalman Filter Implementations,”
IEEE Trans. Automat. Contr., AC-31, 907 (1986).

[895] S. R. McReynolds, “Covariance factorization algorithms for fixed-interval smoothing of linear dis-
crete dynamic systems,” IEEE Trans. Automat. Contr., AC-35, 1181 (1990).

[896] P. Park and T. Kailath, "Square-root Bryson-Frazier smoothing algorithms", IEEE Trans. Automat.
Contr., AC-40, 761 (1995).

Kalman Filtering – ML and EM Algorithms

[897] F. Schweppe, “Evaluation of Likelihood Functions for Gaussian Signals,” IEEE Trans. Inform. Th.,
IT-11, 61 (1965).

[898] R. L. Kashyap, “Maximum Likelihood Identification of Stochastic Linear Systems,” IEEE Trans. Au-
tomat. Contr., AC-15, 25 (1970).

[899] R. K. Mehra, “On the Identification of Variances and Adaptive Kalman Filtering,” IEEE Trans. Automat.
Contr., AC-15, 175 (1970).

REFERENCES 963

[900] R. K. Mehra, “On-Line Identification of Linear Dynamic Systems with Applications to Kalman Filter-
ing,” IEEE Trans. Automat. Contr., AC-16, 12 (1971).

[901] N. K. Gupta and R. K. Mehra, “Computational Aspects of Maximum Likelihood Estimation and Re-
duction in Sensitivity Function Calculations,” IEEE Trans. Automat. Contr., AC-19, 774 (1974).

[902] A. C. Harvey, Forecasting Structural Time Series Models and the Kalman Filter, Cambridge Univ.
Press, Cambridge, 1989.

[903] J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford Univ. Press, Oxford,
2001.

[904] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications, Springer, New York, 2006.

[905] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the
EM Algorithm,” J. Roy. Stat. Soc., Ser. B, 39, 1 (1977).

[906] G. J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, 2nd ed., Wiley, Hoboken, NJ, 2008.

[907] P. A. Ruud, “Extensions of Estimation Methods Using the EM Algorithm,” J. Econometrics, 49, 305
(1991).

[908] T. K. Moon, “The Expectation-Maximization Algorithm,” IEEE Sig. Proc. Mag., 13, no.6, 47 (1996).

[909] R. H. Shumway and D. S. Stoffer, “An Approach to Time Series Smoothing and Forecasting Using the
EM Algorithm,” J. Time Ser. Anal., 3, 253 (1982).

[910] M. W. Watson and R. F. Engle, “Alternative Algorithms for the Estimation of Dynamic Factor, MIMIC
and Varying Coefficient Regression Models,” J. Econometrics, 23, 385 (1983).

[911] Z. Ghahramani and G. Hinton, “Parameter Estimation for Linear Dynamic Systems,” Tech. Rep. CRG-
TR-96-2, Dept. Computer Science, University of Toronto, 1996, available from:
http://www.cs.toronto.edu/~hinton/absps/tr-96-2.pdf

[912] G. W. Cobb, “The Problem of the Nile: Conditional Solution to a Changepoint Problem,” Biometrika,
65, 243 (1978).

[913] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Am. Statistician, 58, 30 (2004).

[914] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-Minimization Algorithms in Signal Processing,
Communications, and Machine Learning,” IEEE Trans. Signal Process., 65, 794 (2017).

Linear Prediction

[915] G. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting, and Control, San Francisco, Holden-
Day, 1970.

[916] P. Whittle, Prediction and Regulation, New York, Van Nostrand Reinhold, 1963.

[917] J. Makhoul, Linear Prediction: A Tutorial Review, Proc. IEEE, 63, 56 (1975).

[918] N. Levinson, The Wiener RMS Error Criterion in Filter Design and Prediction, J. Math. Physics, 25,
261 (1947).

[919] J. Durbin, The Fitting of Time Series Models, Rev. Inst. Int. Stat., 28, 344 (1973).

[920] J. D. Markel and A. H. Gray, Jr., Linear Prediction of Speech, New York, Springer-Verlag, 1976.

[921] E. A. Robinson, Multichannel Time-Series Analysis with Digital Computer Programs, (2nd ed.), Hous-
ton, TX, Goose Pond Press, 1983.

[922] E. A. Robinson, Statistical Communication and Detection, New York, Hafner, 1967.

[923] S. Tretter, Introduction to Discrete-Time Signal Processing, New York, Wiley, 1976.

[924] E. A. Robinson and S. Treitel, Geophysical Signal Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1980.

[925] E. A. Robinson and S. Treitel, Maximum Entropy and the Relationship of the Partial Autocorrelation
to the Reflection Coefficients of a Layered System, IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-28, 22 (1980).

[926] S. M. Kay and S. L. Marple, Spectrum Analysis–A Modern Perspective, Proc. IEEE, 69, 1380 (1981).

[927] S. Haykin, Ed., Nonlinear Methods of Spectral Analysis, New York, Springer-Verlag, 1979.

[928] A. Papoulis, Predictable Processes and Wold’s Decomposition: A Review, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-33, 933 (1985).

[929] O. Barndorff-Nielsen and G. Schou, On the Parametrization of Autoregressive Models by Partial
Autocorrelations, J. Multiv. Anal., 3, 408 (1973).

964 REFERENCES

[930] F. L. Ramsey, Characterization of the Partial Autocorrelation Function, Ann. Stat., 2, 1296 (1974).

[931] M. Morf, A. Vieira, and T. Kailath, Covariance Characterization by Partial Autocorrelation Matrices.
Ann. Stat., 6, 643 (1978).

[932] R. E. Kalman, On Partial Realizations, Transfer Functions, and Canonical Forms, Acta Polytech. Scan-
dinav., Math. Comput. Sci. Series, 13, 9 (1979).

[933] R. E. Kalman, Realization of Covariance Sequences, in I. Gohberg, Ed., Toeplitz Centennial, Operator
Theory: Advances and Applications, vol. 4, Boston, Birkhäuser, 1982.

[934] W. Gragg and A. Lindquist, On the Partial Realization Problem, Lin. Alg. Appl., 50, 277 (1983).

[935] T. K. Citron, A. M. Bruckstein, and T. Kailath, An Inverse Scattering Approach to the Partial Realiza-
tion Problem, Proc. 1984 IEEE Int. Conf. Decision and Control, Las Vegas, NV, p. 1503.

[936] T. T. Georgiou, Realization of Power Spectra from Partial Covariance Sequences, IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-35, 438 (1987).

[937] S. Saito and K. Nakata, Fundamentals of Speech Processing, New York, Academic, 1985.

[938] N. I. Aheizer and M. Krein, Some Questions in the Theory of Moments, Providence, RI, Am. Math Soc.,
1962.

[939] R. R. Bitmead and B. D. O. Anderson, Asymptotically Fast Solution of Toeplitz and Related Systems
of Linear Equations, Lin. Alg. Appl., 34, 103 (1980).

[940] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, Fast Solution of Toeplitz Systems of Equations and
Computation of Padé Approximants, J. Algorithms, 1, 259 (1980).

[941] H. M. Ahmed. J. M. Delosme, and M. Morf, Highly Concurrent Computing Structures for Matrix
Arithmetic and Signal Processing, Computer Magazine, 15, 65 (Jan. 1982).

[942] H. T. Kung, Why Systolic Architectures?, Computer Magazine, 15, 37 (Jan. 1982).

[943] R. P. Brent and F. T. Luk, A Systolic Array of the Linear-Time Solution of Toeplitz Systems of Equa-
tions, J. VLSI Comput. Syst., 1, 1 (1983).

[944] S. K. Rao and T. Kailath, Orthogonal Digital Filters for VLSI Implementation, IEEE Trans. Circ. Syst.,
CAS-31, 933 (1984).

[945] D. R. Sweet, Fast Toeplitz Orthogonalization, Numer. Math., 43, 1 (1984).

[946] S. Y. Kung, On Super Computing with Systolic/Wavefront Array Processors, Proc. IEEE, 72, 867
(1984).

[947] S. Y. Kung, VLSI Array Processors, ASSP Magazine, 2, no.3, 4, (1985).

[948] S. Y. Kung, VLSI Signal Processing: From Transversal Filtering to Concurrent Array Processing, in
S. Y. Kung, H. J. Whitehouse, and T. Kailath, Eds., VLSI and Modern Signal Processing, Englewood
Cliffs, NJ, Prentice-Hall, 1985.

[949] G. R. Nudd and J. G. Nash, Application of Concurrent VLSI Systems to Two-Dimensional Signal
Processing, ibid.

[950] R. Schreiber, Systolic Linear Algebra Machines in Digital Signal Processing, ibid.

[951] P. Dewilde, E. Deprettere, and R. Nouta, Parallel and Pipelined VLSI Implementation of Signal Pro-
cessing Algorithms, ibid.

[952] R. Kumar, A Fast Algorithm for Solving a Toeplitz System of Equations, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-33, 254 (1985).

[953] J. R. Bunch, Stability of Methods for Solving Toeplitz Systems of Equations, SIAM J. Sci. Stat. Comput..
6, 349 (1985).

[954] A. D. McAulay, Parallel AR Computation with a Reconfigurable Signal Processor, Proc. 1986 IEEE Int.
Conf. Acoust., Speech, Signal Process., Tokyo, p.1365.

[955] A. W. Bojanczyk, Systolic Implementation of the Lattice Algorithm for Least Squares Linear Predic-
tion Problems, Lin. Alg. Appl., 77, 27 (1986).

[956] F. De Hoog, A New Algorithm for Solving Toeplitz Systems of Equations, Lin. Alg. Appl., 88/89, 123
(1987).

[957] H. Kimura and T. Osada, Canonical Pipelining of Lattice Filters, IEEE Trans. Acoust., Speech, Signal
Process., ASSP-35, 878 (1987).

[958] P. Dewilde and E. F. Deprettere, Modelling VLSI Interconnects as an Inverse Scattering Problem, Proc.
1987 IEEE Int. Conf. Circuits and Systems, Philadelphia, PA, p.147.

REFERENCES 965

[959] Y. Bistritz, Zero Location with Respect to the Unit Circle of Discrete-Time Linear System Polynomials,
Proc. IEEE, 72, 1131 (1984).

[960] P. Delsarte and Y. Genin, The Split Levinson Algorithm, IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-34, 470, (1986).

[961] Y. Bistritz, H. Lev-Ari, and T. Kailath, Immitance-Domain Levinson Algorithms, Proc. 1986 IEEE Int.
Conf: Acoust., Speech, Signal Process., Tokyo, p.253.

[962] P. Delsarte and Y. Genin, On the Splitting of Classical Algorithms in Linear Prediction Theory, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-35, 645 (1987).

[963] Y. Bistritz, H. Lev-Ari, and T. Kailath, Complexity Reduced Lattice Filters for Digital Speech Process-
ing, Proc. 1987 IEEE Int. Conf: Acoust., Speech, Signal Process., Dallas, TX, p.21.

[964] Y. Bistritz and T. Kailath, Fast Algorithms for Non-Hermitian Quasi-Toeplitz Matrices, Proc. 1987
IEEE Int. Conf. Circuits and Systems, Philadelphia, PA, p.1068.

[965] H. Krishna and S. D. Morgera, The Levinson Recurrence and Fast Algorithms for Solving Toeplitz
Systems of Linear Equations, IEEE Trans. Acoust., Speech, Signal Process., ASSP-35, 839 (1987).

[966] S. D. Morgera and H. Krishna, Generalized Levinson/Szegö Complex Recurrences for a Class of
Second-Order Nonstationary Stochastic Processes, Proc. 1987 IEEE Int. Conf. Circuits and Systems,
Philadelphia, PA, p.84.

[967] G. Martinelli, G. Orlandi, and P. Burrascano, Yule-Walker Equations and Bartlett’s Bisection Theory,
IEEE Trans. Circ. Syst., CAS-32, 1074 (1985).

[968] A. J. Berkhout, Stability and Least-Squares Estimation, Automatica, 11, 637 (1975).

[969] A. Vieira and T. Kailath, Another Approach to the Schur-Cohn Criterion, IEEE Trans. Circuits and
Systems, CAS-24, 218-220 (April 1977).

[970] R. J. Duffin, Algorithms for Classical Stability Problems, SIAM Rev., 11, 196 (1969).

[971] P. P. Vaidyanathan and S. K. Mitra, A Unified Structural Interpretation of Some Well-Known Stability-
Test Procedures for Linear Systems, Proc. IEEE, 75, 478 (1987).

[972] N. I. Achiezer, The Classical Moment Problem, Edinburgh, Oliver and Boyd, 1965.

[973] G. Szegö, Orthogonal Polynomials, Providence, RI, American Mathematical Society, 1958.

[974] E. A. Robinson and S. Treitel, Digital Signal Processing in Geophysics, in A. Oppenheim, Ed., Appli-
cations of Digital Signal Processing, Englewood Cliffs, NJ, Prentice-Hall, 1978.

[975] S. Treitel and E. A. Robinson, The Design of High-Resolution Digital Filters, IEEE Trans. Geosci.
Electron., GE-4, 25 (1966).

[976] J. Claerbout, Fundamentals of Geophysical Data Processing, New York, McGraw-Hill, 1976.

[977] I. C. Gohberg and I. A. Fel’dman, Convolution Equations and Projection Methods for their Solution,
Providence, RI, American Mathematical Society, 1974.

[978] W. F. Trench, An Algorithm for the Inversion of Finite Toeplitz Matrices, J. Soc. Ind. Appl. Math., 12,
515 (1964).

[979] S. Zohar, Toeplitz Matrix Inversion: The Algorithm of W. F. Trench, J. Assoc. Comput. Mach., 16, 592
(1969).

[980] S. Zohar, The Solution of a Toeplitz Set of Linear Equations, J. Assoc. Comput. Mach., 21, 272 (1974).

[981] T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz Operators, Innovations and Orthogonal Poly-
nomials, SIAM Rev., 20, 106 (1978).

[982] H. Lev-Ari and T. Kailath, Triangular Factorization of Structured Hermitian Matrices, in I. Gohberg,
Ed., I. Schur Methods in Operator Theory and Signal Processing, Operator Theory: Advances and
Applications, vol.18, Boston, Birkhäuser, 1986.

[983] I. Gohberg, T. Kailath, and I. Koltracht, Efficient Solution of Linear Systems of Equations with Re-
cursive Structure, Lin. Alg. Appl., 80, 81 (1986).

[984] I. Gohberg, T. Kailath, I. Koltracht, and P. Lancaster, Linear Complexity Parallel Algorithms for Linear
Systems of Equations with Recursive Structure, Lin. Alg. Appl., 88/89, 271 (1987).

[985] I. Schur, On Power Series Which Are Bounded in the Interior of the Unit Circle I and II, in I. Gohberg,
Ed., I. Schur Methods in Operator Theory and Signal Processing, Operator Theory: Advances and
Applications, vol.18, Boston, Birkhäuser, 1986.

[986] T. Kailath, A Theorem of I. Schur and Its Impact on Modern Signal Processing, ibid.

966 REFERENCES

[987] E. H. Bareiss, Numerical Solution of Linear Equations with Toeplitz and Vector Toeplitz Matrices,
Numer. Math., 13, 404 (1969).

[988] J. Rissanen, Algorithms for Triangular Decomposition of Block Hankel and Toeplitz Matrices with
Application to Factoring Positive Matrix Polynomials, Math. Comp., 27, 147 (1973).

[989] J. Rissanen, Solution of Linear Equations with Hankel and Toeplitz Matrices, Numer. Math., 22, 361
(1974).

[990] J. Le Roux and C. J. Gueguen, A Fixed Point Computation of Partial Correlation Coefficients, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-25, 257 (1977).

[991] P. Dewilde, A. Vieira, and T. Kailath, On the Generalized Szegö-Levinson Realization Algorithm
for Optimal Linear Predictors Based on a Network Synthesis Approach, IEEE Trans. Circuits Syst.,
CAS-25, 663 (1978).

[992] P. Delsarte, Y. Genin, and Y. Kamp, Schur Parametrization of Positive Definite Block-Toeplitz Sys-
tems, SIAM J. Appl. Math., 36, 34 (1979).

[993] T. Kailath, S. Y. Kung, and M. Morf, Displacement Rank of Matrices and Linear Equations, J. Math.
Anal. Appl., 68, 395 (1979).

[994] P. Dewilde and H. Dym, Schur Recursions, Error Formulas, and Convergence of Rational Estimators
for Stationary Stochastic Sequences, IEEE Trans. Inform. Th., IT-27, 446 (1981).

[995] P. Dewilde, J. T. Fokkema, and I. Widya, Inverse Scattering and Linear Prediction: The Continuous
Time Case, in M. Hazewinkel and J. C. Willems, Eds., Stochastic Systems: The Mathematics of Filtering
and Identification and Applications, Boston, Reidel, 1981.

[996] E. Jonkheere and P. Delsarte, Inversion of Toeplitz Operators, Levinson Equations, and Gohberg-
Krein Factorization–A Simple and Unified Approach for the Rational Case, J. Math. Anal. Appl., 87,
295 (1982).

[997] S. Y. Kung and Y. H. Hu, A Highly Concurrent Algorithm and Pipelined Architecture for Solving
Toeplitz Systems, IEEE Trans. Acoust., Speech, Signal Process., ASSP-31, 66 (1983).

[998] H. Lev-Ari and T. Kailath, Lattice Filter Parametrization and Modeling of Nonstationary Processes,
IEEE Trans. Inform. Th., IT-30, 2 (1984).

[999] T. Kailath, Ed. Modern Signal Processing, Washington, DC, Hemisphere Publishing, 1985.

[1000] T. Kailath, Signal Processing in the VLSI Era, in S. Y. Kung, H. J. Whitehouse, and T. Kailath, Eds.,
VLSI and Modern Signal Processing, Englewood Cliffs, NJ, Prentice-Hall, 1985.

[1001] A. Yagle and B. C. Levy, The Schur Algorithm and Its Applications, Acta Applic. Math., 3, 255 (1985).

[1002] T. Kailath, A. M. Bruckstein, and D. Morgan, Fast Matrix Factorization via Discrete Transmission
Lines, Lin. Alg. Appl., 75, 1 (1985).

[1003] P. P. Vaidyanathan and S. K. Mitra, Discrete Version of Richard’s Theorem and Applications to
Cascaded Lattice Realization of Digital Filter Transfer Functions, IEEE Trans. Circ. Syst., CAS-33, 26
(1986).

[1004] J. Le Roux, Some Properties of the Schur Recursion for the Direct Computation of the Matricial
Spectral Factor, Signal Processing, 11, 359 (1986).

[1005] A. M. Bruckstein and T. Kailath, An Inverse Scattering Framework for Several Problems in Signal
Processing, ASSP Magazine, no.1, 6 (1987).

[1006] P. Delsarte and Y. Genin, The Tridiagonal Approach to Inverse Scattering Problems, Proc. 1987 IEEE
Int. Conf. Circuits and Systems, Philadelphia, PA, p.140.

[1007] H. Lev-Ari and T. Kailath, Lossless Cascade Networks: The Crossroads of Stochastic Estimation,
Inverse Scattering, and Filter Synthesis, Proc. 1987 IEEE Int. Conf. Circuits and Systems, Philadelphia,
PA, p.1088.

[1008] J. P. Burg, Maximum Entropy Spectral Analysis, Presented at 37th Annual Int. SEG Meeting, Oklahoma
City, (1967).

[1009] D. Childers, Ed., Modem Spectrum Analysis, New York, IEEE Press, 1978.

[1010] E. R. Kanasewich, Time Sequence Analysis in Geophysics, Edmonton, University of Alberta Press,
1975.

[1011] D. E. Smylie, G. K. C. Clarice, and T. J. Ulrich, Analysis of Irregularities in the Earth’s Rotation, in
Methods of Computational Physics, Vol.13, New York, Academic, 1973, p.391.

REFERENCES 967

[1012] T. J. Ulrich and R. W. Clayton, Time Series Modelling and Maximum Entropy, Phys. Earth Planet.
Inter., 12, 188 (1976).

[1013] M. Morf, B. Dickinson, T. Kailath, and A. Vieira, Efficient Solution of Covariance Equations for Linear
Prediction, IEEE Trans. Acoust., Speech, Signal Process., ASSP-25, 429 (1977).

[1014] E. T. Jaynes, On the Rationale of Maximum-Entropy Methods, Proc. IEEE, 70, 939 (1982).

[1015] B. R. Frieden, Dice, Entropy, and Likelihood, Proc. IEEE, 73, 1764 (1985).

[1016] B. Helme and C. L. Nikias, Improved Spectrum Performance via a Data-Adaptive Weighted Burg
Technique, IEEE Trans. Acoust., Speech, Signal Process., ASSP-33, 903 (1985).

[1017] P. F. Fougere, Applications of Maximum Entropy Spectrum Estimation to Air Force Problems, Proc.
Third ASSP Workshop on Spectrum Estimation and Modeling, Boston, 1986, p.77.

[1018] J. Makhoul, Maximum Confusion Spectral Analysis, Proc. Third ASSP Workshop on Spectrum Estima-
tion and Modeling, Boston, 1986, p.6.

[1019] B. S. Atal and S. Hanauer, Speech Analysis and Synthesis by Linear Prediction of the Speech Wave,
J. Acoust. Soc. Amer., 50, 637 (1971).

[1020] F. Itakura and S. Saito, A Statistical Method for Estimation of Speech Spectral Density and Formant
Frequencies, Electr. Commun., 53-A, 36 (1970).

[1021] R. Schafer and L. Rabiner, Digital Representation of Speech Signals, Proc. IEEE, 63, 66 (1975).

[1022] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Englewood Cliffs, NJ, Prentice-
Hall, 1978.

[1023] J. D. Markel and A. H. Gray, Jr. Roundoff Noise Characteristics of a Class of Orthogonal Polynomial
Structures, IEEE Trans. Acoust., Speech, Signal Process., ASSP-23, 473 (1975).

[1024] R. Viswanathan and J. Makhoul, Quantization Properties of Transmission Parameters in Linear Pre-
dictive Systems, IEEE Trans. Acoust., Speech, Signal Process., ASSP-23, 309 (1975).

[1025] N. Morgan, Talking Chips, New York, McGraw-Hill, 1984.

[1026] M. R. Schroeder, Predictive Coding of Speech: Historical Review and Directions for Future Research,
Proc. 1986 IEEE Int. Conf. Acoust., Speech, Signal Process., Tokyo, p.261.

[1027] P. E. Papamichalis, Practical Approaches to Speech Coding, Englewood Cliffs, NJ, Prentice-Hall, 1987.

[1028] A. Isaksson, A. Wennberg, and L. H. Zetterberg, Computer Analysis of EEG Signals with Parametric
Models, Proc. IEEE, 69, 451 (1981).

[1029] W. Gersch, Spectral Analysis of EEG’s by Autoregressive Decomposition of Time Series, Math. Biosci.,
7, 205 (1970).

[1030] C. D. McGillem, J. I. Aunon, and D. G. Childers, Signal Processing In Evoked Potential Research:
Applications of Filtering and Pattern Recognition, CRC Critical Reviews of Bioengineering, 6, 225
(October 1981).

[1031] A. Isaksson and A. Wennberg, Spectral Properties of Nonstationary EEG Signals, Evaluated by Means
of Kalman Filtering: Application Examples from a Vigilance Test, in P. Kellaway and I. Petersen, Eds.,
Quantitative Analysis Studies in Epilepsy, New York, Raven Press, 1976.

[1032] G. Bodenstein and H. M. Praetorius, Feature Extraction from the Electroencephalogram by Adaptive
Segmentation, Proc. IEEE, 65, 642 (1977).

[1033] T. Bohlin, Analysis of EEG Signals with Changing Spectra using a Short-Word Kalman Estimator,
Math. Biosci., 35, 221 (1977).

[1034] F. H. Lopes da Silva, Analysis of EEG Nonstationarities, in W. A. Cobb and H. Van Duijn, Eds., Con-
temporary Clinical Neurophysiology (EEG Suppl. No. 34), Amsterdam, Elsevier, 1978.

[1035] Z. Rogowski, I. Gath, and E. Bental, On the Prediction of Epileptic Seizures, Biol. Cybernetics, 42, 9
(1981).

[1036] F. Itakura, Minimum Prediction Residual Principle Applied to Speech Recognition, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-23, 67 (1975).

[1037] J. M. Tribolet, L. R. Rabiner, and M. M. Sondhi, Statistical Properties of an LPC Distance Measure,
IEEE Trans. Acoust., Speech, Signal Process., ASSP-27, 550 (1979).

[1038] P. de Souza and P. J. Thompson, LPC Distance Measures and Statistical Tests with Particular Refer-
ence to the Likelihood Ratio, IEEE Trans. Acoust., Speech. Signal Process., ASSP-30, 304 (1982).

[1039] R. M. Gray, et al., Distortion Measures for Speech Processing, IEEE Trans. Acoust., Speech, Signal
Process., ASSP-28, 367 (1980).

968 REFERENCES

[1040] J. L. Flanagan, Talking with Computers: Synthesis and Recognition of Speech by Machines, IEEE
Trans. Biomed. Eng., BME-29, 223 (1982).

[1041] L. Dusek. T. B. Schalk, and M. McMahan, Voice Recognition Joins Speech on Programmable Board,
Electronics 56 (8), 128 (April 1983).

[1042] H. Wakita, Direct Estimation of the Vocal Tract Shape by Inverse Filtering of Acoustic Speech Wave-
forms, IEEE Trans. Audio Electroacoust., AU-21, 417 (1973).

[1043] J. A. Ware and K. Aki, Continuous and Discrete Inverse Scattering Problems in a Stratified Elastic
Medium. I. Plane Waves at Normal Incidence, J. Acoust. Soc. Am., 45, 91 (1969).

[1044] L. C. Wood and S. Treitel, Seismic Signal Processing, Proc. IEEE, 63, 649 (1975).

[1045] P. L. Goupillaud, An Approach to Inverse Filtering of Near-Surface Layer Effects from Seismic
Records, Geophysics, 26, 754 (1961).

[1046] J. F. Claerbout, Synthesis of a Layered Medium from Its Acoustic Transmission Response, Geo-
physics, 33, 264 (1968).

[1047] F. Koehler and M. T. Taner, Direct and Inverse Problems Relating Reflection Coefficients and Reflec-
tion Response for Horizontally Layered Media, Geophysics, 42, 1199 (1977).

[1048] E. A. Robinson and S. Treitel, The Fine Structure of the Normal Incidence Synthetic Seismogram,
Geophys. J . R. Astron. Soc., 53, 289 (1978).

[1049] S. Treitel and E. A. Robinson, Maximum Entropy Spectral Decomposition of a Seismogram into Its
Minimum Entropy Component Plus Noise, Geophysics, 46, 1108 (1981).

[1050] J. M. Mendel and F. Habibi-Ashrafi, A Survey of Approaches to Solving Inverse Problems for Lossless
Layered Media Systems, IEEE Trans. Geosci. Electron., GE-18, 320 (1980).

[1051] K. P. Bube and R. Burridge, The One-Dimensional Problem of Reflection Seismology, SIAM Rev., 25,
497 (1983).

[1052] S. H. Gray, The Relationship Between “Direct, Discrete” and “Iterative, Continuous” One-Dimensional
Inverse Methods, Geophysics, 49, 54 (1984).

[1053] A. M. Bruckstein, B. C. Levy, and T. Kailath, Differential Methods for Inverse Scattering, SIAM J. Appl.
Math., 45, 312 (1985).

[1054] R. G. Newton, Inversion of Reflection Data for Layered Media: A Review of Exact Methods, Geophys.
J. R. Astron. Soc., 65, 191 (1981).

[1055] E. A. Robinson, A Spectral Approach to Geophysical Inversion by Lorentz, Fourier, and Radon Trans-
forms, Proc. IEEE, 70, 1039 (1982).

[1056] J. G. Berryman and R. R. Greene, Discrete Inverse Methods for Elastic Waves in Layered Media,
Geophysics, 45, 213 (1980).

[1057] F. J. Dyson, Old and New Approaches to the Inverse Scattering Problem, in E. H. Lieb, B. Simon, and
A. S. Wightman, Eds., Studies in Mathematical Physics, Princeton, Princeton University Press, 1976.

[1058] K. M. Case, Inverse Scattering, Orthogonal Polynomials, and Linear Estimation, in I. C. Gohberg and
M. Kac, Eds., Topics in Functional Analysis, Advances in Mathematics Supplementary Studies, Vol.3,
New York, Academic, 1978.

[1059] M. T. Silvia and E. A. Robinson, Deconvolution of Geophysical Time Series in the Exploration for Oil
and Natural Gas, Amsterdam, Elsevier, 1979.

[1060] S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measure-
ments, Amsterdam, Elsevier, 1977.

[1061] B. R. Frieden, “Image Enhancement and Restoration,” in T. S. Huang, Ed., Picture Processing and
Digital Filtering, New York, Springer-Verlag, 1975.

[1062] S. Treitel and L. R. Lines, “Linear Inverse Theory and Deconvolution,” Geophysics, 47, 115 (1982).

[1063] J. F. Claerbout and F. Muir, “Robust Modeling with Erratic Data,” Geophysics, 38, 826 (1973).

[1064] H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvolution with the L1 Norm,” Geophysics, 44, 39
(1979).

[1065] D. W. Oldenburg, “A Comprehensive Solution to the Linear Deconvolution Problem,” Geophys. J. R.
Astron. Soc., 65, 331 (1981).

[1066] S. Levy and P. K. Fullagar, “Reconstruction of a sparse spike train from a portion of its spectrum
and application to high-resolution deconvolution,” Geophysics, 46, 1235 (1981).

REFERENCES 969

[1067] D. W. Oldenburg, S. Scheuer, and S. Levy “Recovery of the acoustic impedance from reflection seis-
mograms,” Geophysics, 48, 1318 (1983).

[1068] F. Santosa and W. W. Symes, W. W. “Linear inversion of band-limited reflection seismograms,” SIAM
J. Sci. Statist. Comput., 7, 1307 (1986).

[1069] R. Mammone and G. Eichmann, “Superresolving Image Restoration Using Linear Programming,”
Applied Optics, 21, 496 (1982).

[1070] R. Mammone and G. Eichmann, “Restoration of Discrete Fourier Spectra Using Linear Program-
ming,”J. Optical Soc. Am., 72, 987 (1982).

[1071] I. Barrodale and F. D. K. Roberts, “An Improved Algorithm for the DiscreteL1 Linear Approximation,”
SIAM J. Numer. Anal., 10, 839 (1973).

[1072] I. Barrodale and F. D. K. Roberts, “Algorithm 478: Solution of an Overdetermined System of Equa-
tions in the L1 Norm,” Commun. ACM, 17, 319 (1974).

[1073] B. Drachman, “Two Methods to Deconvolve: L1-Method Using Simplex Algorithm and L2-Method
Using Least Squares and a Parameter,” IEEE Trans. Antenn. Propag., AP-32, 219 (1984).

[1074] R. W. Schafer, R. M. Mersereau. and M. A. Richards, “Constrained Iterative Restoration Algorithms,”
Proc. IEEE, 69, 432 (1981).

Spectrum Estimation and Array Processing

[1075] O. L. Frost, Power Spectrum Estimation, in G. Tacconi, Ed., Aspects of Signal Processing, Boston.
Reidel. 1977.

[1076] P. R. Gutowski, E. A. Robinson, and S. Treitel, Spectral Estimation: Fact or Fiction?, IEEE Trans.
Geosci. Electron., GE-16, 80 (1978).

[1077] Proc. IEEE, 70 (9) (September 1982), Special Issue on Spectral Estimation.

[1078] A. Papoulis, Maximum Entropy and Spectral Estimation: A Review, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-29, 1176 (1981).

[1079] E. A. Robinson, A Historical Perspective of Spectrum Estimation, Proc. IEEE, 70, 885 (1982).

[1080] S. B. Kesler, Ed., Modern Spectrum Analysis II, New York, IEEE Press, 1986.

[1081] J. Capon, High Resolution Frequency Wavenumber Spectrum Analysis, Proc. IEEE, 57, 1408 (1969).

[1082] J. Capon, Maximum Likelihood Spectral Estimation, in S. Haykin. Ed., Nonlinear Methods of Spectral
Analysis, New York, Springer-Verlag. 1979.

[1083] R. T. Lacoss, Data Adaptive Spectral Analysis Methods, Geophysics, 36, 661 (1971).

[1084] V. F. Pisarenko, The Retrieval of Harmonics from a Covariance Function, Geoph. J . R. Astron. Soc.,
33, 347 (1973).

[1085] E. H. Satorius and J. R. Zeidler, Maximum Entropy Spectral Analysis of Multiple Sinusoids in Noise,
Geophysics, 43, 1111 (1978).

[1086] D. W. Tufts and R. Kumaresan, Singular Value Decomposition and Improved Frequency Estimation
Using Linear Prediction, IEEE Trans. Acoust., Speech. Signal Process., ASSP-30, 671 (1982).

[1087] D. W. Tufts and R. Kumaresan, Estimation of Frequencies of Multiple Sinusoids: Making Linear
Prediction Perform like Maximum Likelihood, Proc. IEEE, 70, 975 (1982).

[1088] S. L. Marple, Frequency Resolution of Fourier and Maximum Entropy Spectral Estimates, Geophysics,
47, 1303 (1982).

[1089] M. Quirk and B. Liu, On the Resolution of Autoregressive Spectral Estimation, Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 1095 (1983).

[1090] S. Y. Kung and Y. H. Hu, Improved Pisarenko’s Sinusoidal Spectrum Estimate via SVD Subspace
Approximation Methods, Proc. 21st IEEE Int. Conf. Decision and Control, Orlando, FL, (1982), p.
1312.

[1091] Y. H. Hu and S. Y. Kung, Toeplitz Eigensystem Solver, IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-33, 1264 (1985).

[1092] B. D. Steinberg, Principles of Aperture and Array System Design, New York, Wiley, 1976.

[1093] J. E. Hudson, Adaptive Array Principles, Stevenage, UK, Peter Peregrinus, 1981.

970 REFERENCES

[1094] D. E. N. Davies, K. G. Corless, D. S. Hicks, and K. Milne, Array Signal Processing, in A. W. Rudge,
K. Milne, A. D. Olver, and P. Knight, Eds., The Handbook of Antenna Design, vol. 2, London, Peter
Peregrinus, 1983.

[1095] N. L. Owsley, Sonar Array Processing, in S. Haykin, Ed., Array Signal Processing, Englewood Cliffs,
NJ, Prentice-Hall, 1985.

[1096] S. Haykin, Radar Signal Processing, ASSP Magazine, 2, no.2, 2 (1985).

[1097] B. L. Lewis, F. F. Kretschmer, and W. W. Shelton, Eds., Aspects of Radar Signal Processing, Norwood,
MA, Artech House, 1986.

[1098] W. C. Knight, R. G. Pridham, and S. M. Kay, Digital Signal Processing for Sonar, Proc. IEEE, 69, 1451
(1981).

[1099] W. F. Gabriel, Spectral Analysis and Adaptive Array Superresolution Techniques, Proc. IEEE, 68, 654
(1980).

[1100] R. N. McDonough, Application of the Maximum Likelihood Method and the Maximum Entropy
Method to Array Processing, in S. Haykin, Ed., Nonlinear Methods of Spectral Analysis, New York,
Springer-Verlag, 1979.

[1101] D. H. Johnson, The Application of Spectral Estimation Methods to Bearing Estimation Problems,
Proc. IEEE, 70, 1018 (1982).

[1102] A. J. Berni, Angle-of-Arrival Estimation Using an Adaptive Antenna Array, IEEE Trans. Aerosp. Elec-
tron. Syst., AES-11, 278 (1975).

[1103] T. Thorvaldsen, Maximum Entropy Spectral Analysis in Antenna Spatial Filtering, IEEE Trans. An-
tennas Propag., AP-28, 552 (1980).

[1104] T. E. Barnard, Two Maximum Entropy Beamforming Algorithms for Equally Spaced Line Arrays, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-30, 175 (1980).

[1105] N. L. Owsley, Spectral Signal Set Extraction, in G. Tacconi, Ed., Aspects of Signal Processing, Boston,
D. Reidel, 1977.

[1106] J. E. Evans, Aperture Sampling Techniques for Precision Direction Finding, IEEE Trans. Aerosp. Elec-
tron. Syst., AES-15, 899 (1979).

[1107] W. D. White, Angular Spectra in Radar Applications, IEEE Trans. Aerosp. Electron. Syst., AES-15, 895
(1979).

[1108] J. E. Evans, Comments on “Angular Spectra in Radar Applications” IEEE Trans. Aerosp. Electron.
Syst., AES-15, 891 (1979).

[1109] W. S. Ligget, Passive Sonar: Fitting Models to Multiple Time Series, in J. W. R. Griffiths, et al., Eds.,
Signal Processing, New York, Academic, 1973.

[1110] R. O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation, Proc. 1979 RADC Spec-
tral Estimation Workshop, Rome, NY, p. 243. Reprinted in the Special Issue on Adaptive Processing
Antenna Systems, IEEE Trans. Antennas Propag., AP-34, 276 (1986).

[1111] S. S. Reddi, Multiple Source Location–A Digital Approach, IEEE Trans. Aerosp. Electron. Syst., AES-15,
95 (1979).

[1112] G. Bienvenu and L. Kopp, Adaptivity to Background Noise Spatial Coherence for High Resolution
Passive Methods, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 307–310 (1980).

[1113] A Cantoni and L. Godara, Resolving the Directions of Sources in a Correlated Field Incident on an
Array, J. Acoust. Soc. Am., 67, 1247 (1980).

[1114] D. Bordelon, Complementarity of the Reddi Method of Source Direction Estimation with those of
Pisarenko and Cantoni and Godara, I, J. Acoust., Soc. Am., 69, 1355 (1981).

[1115] T. S. Durrani and K. C. Sharman, Extraction of an Eigenvector-Oriented “Spectrum” for the MESA
Coefficients, IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 649 (1982).

[1116] T. P. Bronez and J. A. Cadzow, An Algebraic Approach to Superresolution Adaptive Array Processing,
IEEE Trans. Aerosp. Electron. Syst., AES-19, 123 (1983).

[1117] R. Kumaresan and D. W. Tufts, Estimating the Angles of Arrival of Multiple Plane Waves, IEEE Trans.
Aerosp. Electron. Syst., AES-19, 134 (1983).

[1118] D. H. Johnson and S. R. DeGraaf, Improving the Resolution of Bearing in Passive Sonar Arrays by
Eigenvalue Analysis, IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 638 (1982).

REFERENCES 971

[1119] T. E. Evans, et al., High Resolution Angular Spectrum Estimation Techniques for Terrain Scattering
Analysis and Angle of Arrival Estimation, Proc. First ASSP Spectral Estimation Workshop, Hamilton,
Ontario, (198l), p. 134.

[1120] K. C. Sharman and T. S. Durrani, Eigenfilter Approaches to Adaptive Array Processing, Proc. IEE,
part F, 130, 22 (1983).

[1121] M. Wax and T. Kailath, Optimum Localization of Multiple Sources by Passive Arrays, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-31, 1210 (1983).

[1122] G. Bienvenu and L. Kopp, Optimality of High Resolution Array Processing Using the Eigensystem
Approach, IEEE Trans. Acoust., Speech, Signal Process., ASSP-31, 1235 (1983).

[1123] G. Bienvenu and H. Mermoz, Principles of High-Resolution Array Processing, in S. Y. Kung, H. J.
Whitehouse, and T. Kailath, Eds., VLSI and Modern Signal Processing, Englewood Cliffs, NJ, Prentice-
Hall, 1985.

[1124] N. L. Owsley, High-Resolution Spectrum Analysis by Dominant-Mode Enhancement, Ibid.

[1125] M. Wax and T. Kailath, Detection of Signals by Information Theoretic Criteria, IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-33, 387 (1985).

[1126] T. J. Shan, M. Wax, and T. Kailath, On Spatial Smoothing for Direction-of-Arrival Estimation of
Coherent Signals, IEEE Trans. Acoust., Speech, Signal Process., ASSP-33, 806 (1985).

[1127] A. Di, Multiple Source Location–A Matrix Decomposition Approach, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-33, 1086 (1985).

[1128] S. R. De Graaf and D. H. Johnson, Capability of Array Processing Algorithms to Estimate Source
Bearings, IEEE Trans. Acoust., Speech, Signal Process., ASSP-33, 1368 (1985).

[1129] W. F. Gabriel, Using Spectral Estimation Techniques in Adaptive Processing Antenna Systems, IEEE
Trans. Antennas Propag., AP-34, 291 (1986).

[1130] I. Karasalo, Estimating the Covariance Matrix by Signal Subspace Averaging, IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-34, 8 (1986).

[1131] G. Vezzosi, Estimation of Phase Angles from the Cross-Spectral Matrix, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-34, 405 (1986).

[1132] G. Su and M. Morf, Modal Decomposition Signal Subspace Algorithms, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-34, 585 (1986).

[1133] K. C. Sharman and T. S. Durrani, A Comparative Study of Modern Eigenstructure Methods for Bearing
Estimation–A New High Performance Approach, Proc. 1986 IEEE Int. Conf. Decision and Control,
Athens, p. 1737.

[1134] U. Nickel, Angular Superresolution with Phased Array Radar: A Review of Algorithms and Opera-
tional Constraints, IEE Proc., 134, Pt. F, 53 (1987).

[1135] A. Paulraj and T. Kailath, Eigenstructure Methods for Direction of Arrival Estimation in the Presence
of Unknown Noise Fields, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 13 (1986).

[1136] F. B. Tuteur and Y. Rockah, A New Method for Signal Detection and Estimation Using the Eigenstruc-
ture of the Covariance Difference, Proc. 1986 IEEE Int. Conf. Acoust., Speech, Signal Process., Tokyo,
p. 2811.

[1137] F. B. Tuteur and Y. Rockah, The Covariance Difference Method in Signal Detection, Proc. Third ASSP
Workshop on Spectrum Estimation and Modeling, Boston, 1986, p. 120.

[1138] S. Prasad, R. Williams, A. Mahalanabis, and L. Sibul, A Transform Based Covariance Differencing
Approach to Bearing Estimation, Proc. 1987 IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas,
p. 1119.

[1139] S. J. Orfanidis, A Reduced MUSIC Algorithm, Proc. Third ASSP Workshop on Spectrum Estimation
and Modeling, Boston, 1986, p. 165.

[1140] M. Wax and T. Kailath, Extending the Threshold of the Eigenstructure Methods, Proc. 1985 IEEE Int.
Conf. Acoust., Speech, Signal Process., Tampa, FL, p. 556.

[1141] R. Kumaresan and A. K. Shaw, High Resolution Bearing Estimation Without Eigendecomposition,
Proc. 1985 IEEE Int. Conf. Acoust., Speech, Signal Process., Tampa, FL, p. 576.

[1142] Y. Bresler and A. Macovski, Exact Maximum Likelihood Parameter Estimation of Superimposed Ex-
ponential Signals in Noise, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 1081 (1986).

[1143] Y. Bresler and A. Macovski, On the Number of Signals Resolvable by a Uniform Linear Array, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-34, 1361 (1986).

972 REFERENCES

[1144] R. Roy, A. Paulraj, and T. Kailath, Estimation of Signal Parameters via Rotational Invariance
Techniques–ESPRIT, Proc. 19th Asilomar Conf. Circ., Syst. and Computers, Asilomar, CA, 1985, p.
83.

[1145] R. Roy, A. Paulraj, and T. Kailath, ESPRIT- A Subspace Rotation Approach to Estimation of Parameters
of Cisoids in Noise, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 1340 (1986).

[1146] R. Roy, A. Paulraj, and T. Kailath, Comparative Performance of ESPRIT and MUSIC for Direction-of-
Arrival Estimation, Proc. 1987 IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas, p. 2344.

[1147] F. Haber and M. Zoltowski, Spatial Spectrum Estimation in a Coherent Signal Environment Using an
Array in Motion, IEEE Trans. Antennas Propag., AP-34, 301 (1986).

[1148] A. J. Luthra, A Solution to the Adaptive Nulling Problem with a Look-Direction Constraint in the
Presence of Coherent Jammers, IEEE Trans. Antennas Propag., AP-34, 702 (1986).

[1149] S. Kesler, J. Kesler, and G. Levita, Experiments in Resolving Coherent Targets in the Near Field, Proc.
Third ASSP Workshop on Spectrum Estimation and Modeling, Boston, 1986, p. 168.

[1150] S. S. Reddi, On a Spatial Smoothing Technique for Multiple Source Location, IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-35, 709 (1987), and ibid., p. 1352.

[1151] J. A. Cadzow, Y. S. Kim, D. C. Shiue, Y. Sun, and G. Xu, Resolution of coherent Signals Using a Linear
Array, Proc. 1987 IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas, p. 1597.

[1152] R. Williams, S. Prasad, A. Mahalanabis, and L. Sibul, Localization of Coherent Sources Using a Modi-
fied Spatial Smoothing Technique. Proc. 1987 IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas,
p. 2352.

[1153] A. M. Bruckstein, T. J. Shan, and T. Kailath, The Resolution of Overlapping Echos, IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-33, 1357 (1985).

[1154] I. Isenberg and R. D. Dyson, The Analysis of Fluorescent Decay by a Method of Moments, Biophys.
J., 9, 1337 (1969).

[1155] A. J. Evans and R. Fischl, Optimal Least-Squares Time-Domain Synthesis of Recursive Digital Filters,
IEEE Trans. Audio Electroacoust., AU-21, 61 (1973).

[1156] A. J. Berni, Target Identification by Natural Resonance Estimation, IEEE Trans. Aerosp. Electron. Syst.,
AES-11, 147 (1975).

[1157] M. L. Van Blaricum and R. Mittra, Problems and Solutions Associated with Prony’s Method for Pro-
cessing Transient Data, IEEE Trans. Antennas Propag., AP-26, 174 (1978).

[1158] T. L. Henderson, Geometric Methods for Determining System Poles from Transient Response, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-29, 982 (1981).

[1159] R. Kumaresan and D. W. Tufts, Estimating the Parameters of Exponentially Damped Sinusoids and
Pole-Zero Modeling in Noise, IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 833 (1982).

[1160] M. Wax, R. O. Schmidt, and T. Kailath, Eigenstructure Method for Retrieving the Poles from the
Natural Response, Proc. 1983 IEEE Int. Conf. Decision and Control, San Antonio, TX, p. 1343.

[1161] R. Kumaresan, L. L. Scharf, and A. K. Shaw, An Algorithm for Pole-Zero Modeling and Spectral
Analysis, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 637 (1986).

[1162] J. A. Cadzow and M. M. Wu, Analysis of Transient Data in Noise, IEE Proc., 134, Pt. F, 69 (1987).

[1163] S. J. Orfanidis, Pole Retrieval by Eigenvector Methods, Proc. 1987 IEEE Int. Conf. Acoust., Speech,
Signal Process., Dallas, p. 1505.

[1164] B. N. Parlett, The Symmetric Eigenvalue Problem, Englewood Cliffs, NJ, Prentice-Hall, 1980.

[1165] G. H. Golub and V. Pereyra, The Differentiation of Pseudo-Inverses and Non-Linear Least-Squares
Problems Whose Variables Separate, SIAM J. Numer. Anal., 10, 413 (1973).

[1166] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, Johns Hopkins University Press,
1983.

[1167] H. Cox, Resolving Power and Sensitivity to Mismatch of Optimum Array Processors, J. Acoust. Soc.
Am., 54, 771 (1973).

[1168] F. Gabriel, Adaptive Arrays–An Introduction, Proc. IEEE, 64, 239 (1976).

[1169] B. Widrow, et al., Adaptive Antenna Systems, Proc. IEEE, 55, 2143 (1967).

[1170] C. L. Zham, Application of Adaptive Arrays to Suppress Strong Jammers in the Presence of Weak
Signals, IEEE Trans. Aerosp. Electron. Syst., AES-9, 260 (1973).

[1171] T. W. Anderson, The Statistical Analysis of Time Series, New York, Wiley, 1971.

REFERENCES 973

[1172] D. N. Lawley and A. E. Maxwell, Factor Analysis as a Statistical Method, London, Butterworth, 1971.

[1173] C. R. Rao, Linear Statistical Inference and Its Applications, (2nd ed.), New York, Wiley, 1973.

[1174] D. R. Cox and D. V. Hinkley, Theoretical Statistics, London, Chapman and Hall, 1974.

[1175] D. R. Brillinger, Time Series, Data Analysis and Theory, New York, Holt, Rinehart and Winston, 1975.

[1176] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, vol. 2, (4th edition), London, Griffin,
1979.

[1177] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, vol. 3, (3d edition), New York, Hafner
Press. 1976.

[1178] M. S. Srivastava and C. G. Khatri, An Introduction to Multivariate Statistics, New York, North Holland,
1979.

[1179] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, (2nd ed.), New York, Wiley 1984.

[1180] J. Cryer, Times Series Analysis, Boston, Duxbury Press, 1986.

[1181] K. Dzhaparidze, Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary
Time Series, New York, Springer-Verlag, 1986.

[1182] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, New York, Springer-Verlag, 1987.

[1183] H. B. Mann and A. Wald, On the Statistical Treatment of Linear Stochastic Difference Equations,
Econometrica, 11, 173 (1943).

[1184] P. Whittle, The Analysis of Multiple Stationary Time Series, J. Roy. Stat. Soc., Ser. B, 15, 125 (1953).

[1185] J. Capon and N. R. Goodman, Probability Distributions for Estimators of the Frequency-Wavenumber
Spectrum, Proc. IEEE, 58, 1785 (1971).

[1186] O . Barndorff-Nielsen and G. Schou, On the Parametrization of Autoregressive Models by Partial
Autocorrelations, J. Multiv. Anal., 3, 408 (1973).

[1187] M. Pagano, Estimation of Models of Autoregressive Signal Plus White Noise, Ann. Stat., 2, 99 (1974).

[1188] K. N. Berk, Consistent Autoregressive Spectral Estimates, Ann. Stat., 2, 489 (1974).

[1189] A. B. Baggeroer, Confidence Intervals for Regression (MEM) Spectral Estimates, IEEE Trans. Inform.
Th., IT-22, 534 (1976).

[1190] H. Sakai, Statistical Properties of AR Spectral Analysis, IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-27, 402 (1979).

[1191] R. D. Martin, The Cramér-Rao Bound and Robust M-Estimates for Autoregressions, Biometrika, 69,
437 (1982).

[1192] S. M. Kay and J. Makhoul, On the Statistics of the Estimated Reflection Coefficients of an Autore-
gressive Process, IEEE Trans. Acoust., Speech, Signal Process., ASSP-31, 1447 (1983).

[1193] M. Aktar, B. Sankur, and Y. Istefanopulos, Properties of the Maximum Likelihood and Pisarenko
Spectral Estimates, Signal Processing, 8, 401 (1985).

[1194] B. Porat and B. Friedlander, Computation of the Exact Information Matrix of Gaussian Time Series
with Stationary Random Components, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 118
(1986).

[1195] S. Kay and D. Sengupta, Spectral Estimation of Non-Gaussian Autoregressive Processes, Proc. Third
ASSP Workshop on Spectrum Estimation and Modeling, Boston, 1986, p. 10.

[1196] D. Burshtein and E. Weinstein, Confidence Intervals for the Maximum Entropy Spectrum, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-35, 504 (1987).

[1197] M. A. Girschick, On the Sampling Theory of Roots of Determinantal Equations, Ann. Math. Stat., 10,
203 (1939).

[1198] D. N. Lawley, Tests of Significance for the Latent Roots of Covariance and Correlation Matrices,
Biometrika, 43, 128 (1956).

[1199] T. W. Anderson, Asymptotic Theory for Principal Component Analysis, Ann. Math. Stat., 34, 122
(1963).

[1200] R. P. Gupta, Asymptotic Theory for Principal Component Analysis in the Complex Case, J. Indian
Stat. Assoc., 3, 97 (1965).

[1201] D. E. Tyler, Asymptotic Inference for Eigenvectors, Ann. Stat., 9, 725 (1981).

[1202] H. Sakai, Statistical Analysis of Pisarenko’s Method for Sinusoidal Frequency Estimation, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-32, 95 (1984).

974 REFERENCES

[1203] K. Shaman, T. S. Durrani, M. Wax, and T. Kailath, Asymptotic Performance of Eigenstructure Spectral
Analysis Methods, Proc. 1984 IEEE Int. Conf. Acoust., Speech, Signal Process., San Diego, CA, p. 455.

[1204] D. J. Jeffries and D. R. Farrier, Asymptotic Results for Eigenvector Methods, IEE Proc., 132, Pt. F, 589
(1985).

[1205] M. Kaveh and A. J. Barabell, The Statistical Performance of the MUSIC and the Minimum-Norm
Algorithms for Resolving Plane Waves in Noise, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34,
331 (1986).

[1206] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, New York,
Springer-Verlag, 1986.

[1207] N. R. Goodman, Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution,
Ann. Math. Stat., 34, 152 (1963).

[1208] K. S. Miller, Complex Stochastic Processes, Reading, MA, Addison-Wesley, 1974.

LCMV and GSC Beamforming

[1209] O. L. Frost, “An algorithm for linearly constrained adaptive array processing,” Proc. IEEE, 60, 926
(1972).

[1210] S. Applebaum and D. Chapman, “Adaptive arrays with main beam constraints,” IEEE Trans. Antennas
Propagat., AP-24, 650 (1976).

[1211] C. W. Jim, “A comparison of two LMS constrained optimal structures,” Proc. IEEE, 65, 1730 (1977).

[1212] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained adaptive beamforming,”
IEEE Trans. Antennas Propagat., AP-20, 27 (1982).

[1213] L. J. Griffiths and K. M. Buckley, “Quiescent pattern control in linearly constrained adaptive arrays,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-35, 917 (1987).

[1214] C-Y. Tseng and L. J. Griffiths, “A systematic procedure for implementing the blocking matrix in
decomposed form,” Proc. 22nd Asilomar Conf. Signals Systems and Computers, vol. 2, pp. 808,
1988.

[1215] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE
Acoust. Speech Signal Processing Mag., 5, no.2, 4 (1988).

[1216] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,”
IEEE Signal Proc. Mag. 13, no.4, 67 (1996).

[1217] L. C. Godara, “Applications of Antenna Arrays to Mobile Communications, Part I,” Proc. IEEE, 85,
1031 (1997), and “Part II,” ibid., p.1195.

[1218] J. A. Apolinario, M. L. R. de Campos, and C. P. Bernal,“The constrained conjugate-gradient algorithm,”
IEEE Signal Proc. Lett., 7, 351 (2000).

[1219] B. R. Breed and J. Strauss, “A short proof of the equivalence of LCMV and GSC beamforming,” IEEE
Signal Proc. Lett., 9, 168 (2002).

[1220] S. Werner, J. A. Apolinario, and M. L. R. de Campos, “On the Equivalence of RLS Implementations of
LCMV and GSC Processors,” IEEE Signal Proc. Lett., 10, 356 (2003).

[1221] L. S. Resende, J. M. T. Romano, and M. G. Bellanger, “A fast least-squares algorithm for linearly
constrained adaptive filtering,” IEEE Trans. Signal Process., 44, 1168 (1996).

Markowitz Portfolios

[1222] H. Markowitz, “Portfolio Selection,” J. Finance, 7, 77 (1962).

[1223] W. F. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions of risk,” J.
Finance, 19, 425 (1964).

[1224] H. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Wiley (2000).

[1225] R. Merton, “An analytic derivation of the efficient portfolio frontier,” J. Financial Quant. Anal. 7,
1851 (1972).

[1226] H. M. Markowitz, “Foundations of Portfolio Theory,” J. Finance, 46, 469 (1991).

[1227] W. F. Sharpe, “Capital Asset Prices with and without Negative Holdings,” J. Finance, 46, 489 (1991).

REFERENCES 975

[1228] H. M. Markowitz, “The General Mean-Variance Portfolio Selection Problem [and Discussion],” Phil.
Trans.: Phys. Sci. Eng., 347, 543 (1994).

[1229] H. M. Markowitz, “The Early History of Portfolio Theory: 1600-1960,” Financial Analysts J., 55, no.4,
p.5, 1999.

[1230] K. V. Fernando, “Practical Portfolio Optimization,” Numerical Algorithms Group, Tech. Report,
https://www.nag.co.uk/doc/techrep/Pdf/tr2_00.pdf

[1231] P. A. Forsyth, “An Introduction to Computational Finance Without Agonizing Pain,” 2007, available
online from, https://cs.uwaterloo.ca/~paforsyt/agon.pdf

[1232] H. Ahmadi and D. Sitdhirasdr, “Portfolio Optimization is One Multiplication, the Rest is Arithmetic,”
J. Appl. Fin. & Banking, 6 81 (2016); http://www.scienpress.com/download.asp?ID=1729

[1233] J. B. Heaton, N. G. Polson, and J. H.Witte, “Deep learning for finance: deep portfolios,” Appl. Stoch.
Models Bus. Ind., 33, 3 (2017); with discussions, ibid.,, p.13, and p.16, and rejoinder, p.19.

SVD – Books

[1234] G. H. Golub and C. F. Van Loan, Matrix Computations, 3/e, Johns Hopkins University Press, Baltimore,
1996.

[1235] D. S. Watkins, Fundamentals of Matrix Computations, 2/e, Wiley, New York, 2002.

[1236] A. Björck, Numerical Methods for Least Squares Problems, SIAM Press, Philadelphia, 1996.

[1237] T. W. Anderson, Introduction to Multivariate Statistical Analysis, 2/e, Wiley, New York, 1984.

[1238] D. F. Morrison, Multivariate Statistical Methods, 3/e, McGraw-Hill, New York, 1990.

[1239] R. W. Preisendorfer, Principal Component Analysis in Meteorology and Oceanography, Elsevier, Am-
sterdam, 1988.

[1240] D. C. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice Hall, Englewood
Cliffs, NJ, 1989.

[1241] D. S. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, New York, 1995.

[1242] H. von Storch and F. W. Zwiers, Statistical Analysis in Climate Research, Cambridge Univ. Press,
Cambridge, 1999.

[1243] I. T. Jollife, Principal Component Analysis, 2/e, Springer-Verlag, New York, 2002.

[1244] K. I. Diamantaras and S. Y. Kung, Principal Component Neural Networks, Wiley, New York, 1996.

[1245] R. Gittins, Canonical Analysis, Springer-Verlag, New York, 1985.

[1246] B. Parlett, Symmetric Eigenvalue Problem, Prentice Hall, Upper Saddle River, NJ, 1980.

[1247] E. F. Deprettere, ed., SVD and Signal Processing, North-Holland, New York, 1988.

[1248] R. J. Vaccaro, ed., SVD and Signal Processing II, Elsevier, New York, 1991.

[1249] M. Moonen and B. de Moor, SVD and Signal Processing III, Elsevier, New York, 1995.

[1250] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem, SIAM, Philadelphia, 1991.

[1251] H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Springer-Verlag, New York, 1996.

[1252] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge Univ. Press, Cambridge, 1997.

[1253] A. S. Weigend and N. A. Gershenfeld, eds., Time Series Prediction: Forecasting the Future and Under-
standing the Past Addison-Wesley, Reading, MA, 1994. The time-series data and most of the chapters
are available on the web via FTP from: ftp://ftp.santafe.edu/pub/Time-Series/.

SVD – Applications

[1254] G. Strang, “The Fundamental Theorem of Linear Algebra,” Am. Math. Monthly, 100, 848 (1993).

[1255] D. Kalman, “A Singularly Valuable Decomposition: The SVD of a Matrix,” College Math. J., 27, 2
(1996).

[1256] C. Mulcahy and J. Rossi, “A Fresh Approach to the Singular Value Decomposition,” Coll. Math. J.,
29, 199 (1998).

[1257] C. Long, “Visualization of Matrix Singular Value Decomposition,” Math. Mag., 56, 161 (1983).

976 REFERENCES

[1258] V. C. Klema and A. J. Laub, “The Singular Value Decomposition: Its Computation and Some Appli-
cations,” IEEE Trans. Aut. Contr., AC-25, 164 (1980).

[1259] E. Biglieri and K. Yao, “Some Properties of Singular Value Decomposition and Their Applications to
Digital Signal Processing,” Sig. Process., 18, 277 (1989).

[1260] A. van der Veen, E. F. Deprettere, and A. L. Swindlehurst, “Subspace Based Signal Analysis Using
Singular Value Decomposition,” Proc. IEEE, 81, 1277 (1993).

[1261] J. Mandel, “Use of the Singular Value Decomposition in Regression Analysis,” Amer. Statistician, 36,
15 (1982).

[1262] I. J. Good, “Some Applications of the Singular Decomposition of a Matrix,” Technometrics, 11, 823
(1969).

[1263] D. D. Jackson, “Interpretation of Inaccurate, Insufficient and Inconsistent Data,” Geophys. J. Roy.
Astron. Soc., 28, 97 (1972).

[1264] D. W. Tufts, R. Kumaresan, and I. Kirsteins, “Data Adaptive Signal Estimation by Singular Value
Decomposition of a Data Matrix,” Proc. IEEE, 70, 684 (1982).

[1265] D. W. Tufts and R. Kumaresan, “Estimation of Frequencies of Multiple Sinusoids: Making Linear
Prediction Perform Like Maximum Likelihood,” Proc. IEEE, 70, 975 (1982).

[1266] D. W. Tufts and R. Kumaresan, “Singular Value Decomposition and Improved Frequency Estimation
Using Linear Prediction,” IEEE Trans. Acoust., Speech, Sig. Process., ASSP-30, 671 (1982).

[1267] R. Kumaresan and D. W. Tufts, “Estimating the Parameters of Exponentially Damped Sinusoids and
Pole-Zero Modeling in Noise,” IEEE Trans. Acoust., Speech, Sig. Process., ASSP-30, 833 (1982).

[1268] J. A. Cadzow, “Signal Enhancement—Composite Property Mapping Algorithm,” IEEE Trans. Acoust.,
Speech, Sig. Process., ASSP-36, 49 (1988).

[1269] L. L. Scharf, “The SVD and Reduced Rank Signal Processing,” Sig. Process., 25, 113 (1991).

[1270] J. A. Cadzow and D. M. Wilkes, “Enhanced Rational Signal Modeling,” Sig. Process., 25, 171 (1991).

[1271] B. De Moor, “The Singular Value Decomposition and Long and Short Spaces of Noisy Matrices,” IEEE
Trans. Sig. Process., SP-41, 2826 (1993).

[1272] H. Yang and M. A. Ingram, “Design of Partially Adaptive Arrays Using the Singular-Value Decompo-
sition,” IEEE Trans. Antennas Propagat., AP-45, 843 (1997).

[1273] S. Y. Kung, K. S. Arun, and D. V. B. Rao, “State Space and Singular Value Decomposition Based
Approximation Methods for the Harmonic Retrieval Problem, J. Opt. Soc. Am., 73, 1799 (1983).

[1274] H. Barkhuijsen, R. De Beer, W. Bovée, and D. Van Ormon, “Retrieval of Frequencies, Amplitudes,
Damping Factors, and Phases from Time-Domain Signals Using a Linear Least-Squares Process,” J.
Magn. Reson., 61, 465 (1985).

[1275] J. E. Hudson, “Decomposition of Antenna Signals into Plane Waves,” IEE Proc., pt. H, 132, 53 (1985).

[1276] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT–A Subspace Rotation Approach to Estimation of Param-
eters of Cisoids in Noise,” IEEE Trans. Acoust., Speech, Sig. Process., ASSP-34, 1340 (1986).

[1277] A. J. Mackay and A. McCowen, “An Improved Pencil-of-Functions Method and Comparisons with
Traditional Methods of Pole Extraction,” IEEE Trans. Antennas Propagat., AP-35, 435 (1987).

[1278] P. De Groen and B. De Moor, “The Fit of a Sum of Exponentials to Noisy Data,” J. Comp. Appl. Math.,
20, 175 (1987).

[1279] Y. Hua and T. K. Sarkar, “Generalized Pencil-of-Function Method for Extracting Poles of an EM System
from Its Transient Response,” IEEE Trans. Antennas Propagat., AP-37, 229 (1989).

[1280] Y. Hua and T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially
Damped/Undamped Sinusoids in Noise,” IEEE Trans. Acoust., Speech, Sig. Process., ASSP-38, 814
(1990).

[1281] Y. Hua and T. K. Sarkar, “On SVD for Estimating Generalized Eigenvalues of Singular Matrix Pencil
in Noise,” IEEE Trans. Sig. Process., SP-39, 892 (1991).

[1282] T. K. Sarkar and O. Pereira, “Using the Matrix Pencil Method to Estimate the Parameters of a Sum of
Complex Exponentials,” IEEE Ant. Propagat. Mag., 37, no.1, 48 (1995).

[1283] Y. Y. Lin, P. Hodgkinson, M. Ernst, and A. Pines, “A Novel Detection-Estimation Scheme for Noisy
NMR Signals: Applications to Delayed Acquisition Data,” J. Magn. Reson., 128, 30 (1997).

[1284] A. Driouach, A. Rubio Bretones, and R. Gómez Martin, “Application of Parametric Problems to In-
verse Scattering Problems,” IEE Proc.-Microw., Antenn., Propag., 143, 31 (1996).

REFERENCES 977

[1285] C. C. Chen and L. Peters, “Buried Unexploded Ordnance Identification via Complex Natural Reso-
nances,” IEEE Trans. Antennas Propagat., AP-45, 1645 (1997).

[1286] E. M. Dowling, R. D. DeGroat, and D. A. Linebarger, “Exponential Parameter Estimation in the Pres-
ence of Known Components and Noise,” IEEE Trans. Antennas Propagat., AP-42, 590 (1994).

[1287] S. Van Huffel, “Enhanced Resolution Based on Minimum Variance Estimation and Exponential Data
Modeling,” Sig. Process., 33, 333 (1993).

[1288] S. Van Huffel and H. Zha, “The Total Least Squares Problem,” in C. R. Rao, ed., Handbook of Statistics,
vol. 9, Elsevier, New York, 1993.

[1289] S. Van Huffel, H. Chen, C. Decanniere, and P. Van Hecke, “Algorithm for Time- Domain NMR Data
Fitting Based on Total Least Squares,” J. Magn. Reson., Series A, 110, 228 (1994).

[1290] V. U. Reddy and L. S. Biradar, “SVD-Based Information Theoretic Criteria for Detection of the Number
of Damped/Undamped Sinusoids and Their Performance Analysis,” IEEE Trans. Sig. Process., 41,
2872 (1993).

[1291] G. Zhu, W. Y. Choy, and B. C. Sanctuary, “Spectral Parameter Estimation by an Iterative Quadratic
Maximum Likelihood Method,” J. Magn. Reson., 135, 37 (1998).

[1292] R. Romano, M. T. Santini, and P. L. Indovina, “A Time-Domain Algorithm for NMR Spectral Normal-
ization,” J. Magn. Reson., 146, 89 (2000).

[1293] M. Hansson, T. Gänsler, and G. Salomonsson, “Estimation of Single Event- Related Potentials Utilizing
the Prony Method,” IEEE Trans. Biomed. Eng., BME-43, 51 (1996).

[1294] P. P. Kanjilal, S. Palit, and G. Saha, “Fetal ECG Extraction from Single- Channel Maternal ECG Using
Singular Value Decomposition,” IEEE Trans. Biomed. Eng., BME-44, 51 (1997).

[1295] D. Callaerts, B. De Moor, J. Vandewalle, and W. Sansen, “Comparison of SVD Methods to Extract the
Foetal Electrocardiogram from Cutaneous Electrode Signals,” Med. Biol. Eng. Comp., 28, 217 (1990).

[1296] H. C. Andrews and C. L. Patterson, “Outer Product Expansions and Their Uses in Image Processing,”
Am. Math. Monthly, 82, 1 (1975).

[1297] H. C. Andrews and C. L. Patterson, “Singular Value Decompositions and Digital Image Processing,”
IEEE Trans. Acoust., Speech, Sig. Process., ASSP-24, 26 (1976).

[1298] USC image database web site: http://sipi.usc.edu/services/database.

[1299] J. Durbin, “Efficient Estimation of Parameters of Moving-Average Models,” Biometrika, 46, 306
(1959).

[1300] J. Durbin, “The Fitting of Time Series Models,” Rev. Int. Statist. Inst., 28, 233 (1961).

[1301] D. Q. Mayne and F. Firoozan, “Linear Identification of ARMA Processes,” Automatica, 18, 461 (1982);
and, “An efficient multistage linear identification method for ARMA processes,” Proc. IEEE Conf.
Decision Contr., 1, 435 (1977); and, “Linear Estimation of ARMA Systems,” IFAC Proc. Volumes, 11,
no.1, 1907 (1978).

[1302] E. J. Hannan and J. Rissanen, “Recursive Estimation of Mixed Autoregressive-Moving Average Order”,
Biometrika, 69, 81 (1982).

SVD – Principal Component Analysis

[1303] H. Hotelling, “Analysis of a Complex of Statistical Variables into Principal Components,” J. Educ.
Psychol., 24, 417 (1933).

[1304] H. Hotelling, “The Most Predictable Criterion,” J. Educ. Psychol., 26, 139 (1935).

[1305] C. R. Rao, “The Use and Interpretation of Principal Component Analysis in Applied Research,”
Sankhya, 26, 329 (1964).

[1306] P. Jolicoeur and J. E. Mosimann, “Size and Shape Variation in the Painted Turtle: A Principal Com-
ponent Analysis,” Growth, 24, 339 (1960).

[1307] C. S. Bretherton, C. Smith, and J. M. Wallace, “An Intercomparison of Methods for Finding Coupled
Patterns in Climate Data,” J. Climate, 5, 541 (1992).

[1308] A. S. Hadi and R. F. Ling, “Some Cautionary Notes on the Use of Principal Components Regression,”
Amer. Statistician, 52, 15 (1998).

[1309] D. N. Naik and R. Khattree, “Revisiting Olympic Track Records: Some Practical Considerations in
the Principal Component Analysis,” Amer. Statistician, 50, 140 (1996).

978 REFERENCES

[1310] B. G. Kermani, S. S. Schiffman, and H. T. Nagle, “A Novel Method for Reducing the Dimensionality
in a Sensor Array,” IEEE Trans. Instr. Meas. IM-47, 728 (1998).

[1311] J. J. Gerbrands, “On the Relationships Between SVD, KLT, and PCA,” Patt. Recogn., 14, 375 (1981).

[1312] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cogn. Neurosci., 3, 71 (1991).

[1313] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using
Class Specific Linear Projection,” IEEE Trans. Patt. Anal. Mach. Intel., PAMI-19, 711 (1997).

[1314] J. Karhunen and J. Jountsensalo, “Generalizations of Principal Component Analysis, Optimization
Problems, and Neural Networks,” Neural Netw., 8, 549 (1995).

SVD – Canonical Correlation Analysis

[1315] H. Hotelling, “Relations Between Two Sets of Variates,” Biometrika, 28, 321 (1936).

[1316] K. E. Muller, “Understanding Canonical Correlation Through the General Linear Model and Principal
Components,” Amer. Statistician, 36, 342 (1982).

[1317] A. C. Pencher, “Interpretation of Canonical Discriminant Functions, Canonical Variates, and Princi-
pal Components,” Amer. Statistician, 46, 217 (1992).

[1318] L. L. Scharf and J. K. Thomas, “Wiener Filters in Canonical Coordinates for Transform Coding, Fil-
tering, and Quantizing,” IEEE Trans. Sig. Process., SP-46, 647 (1998).

[1319] N. A. Campbell and W. R. Atchley, “The Geometry of Canonical Variate Analysis,” Syst. Zool., 30, 268
(1981).

[1320] S. N. Afriat, “Orthogonal and Oblique Projectors and the Characteristics of Pairs of Vector Spaces,”
Proc. Camb. Phil. Soc., 53, 800 (1957).

[1321] A. Björck and G. H. Golub, “Numerical Methods for Computing the Angles Between Linear Sub-
spaces,” Math. Comp., 27, 579 (1973).

SVD – SSA and Chaotic Dynamics

[1322] D. Broomhead and G. P. King, “Extracting Qualitative Dynamics from Experimental Data,” Physica
D, 20, 217 (1986).

[1323] R. Vautard, P. Yiou, and M. Ghil, “Singular-Spectrum Analysis: A Toolkit for Short, Noisy, Chaotic
Signals,” Physica D, 58, 95 (1992).

[1324] R. Vautard and M. Ghil, “Singular-Spectrum Analysis in Nonlinear Dynamics With Applications to
Paleoclimatic Time Series,” Physica D, 35, 395 (1989).

[1325] C. L. Keppenne and M. Ghil, “Adaptive Spectral Analysis and Prediction of the Southern Oscillation
Index,” J. Geophys. Res., 97, 20449 (1992).

[1326] M. R. Allen and L. A. Smith, “Monte Carlo SSA: Detecting Oscillations in the Presence of Coloured
Noise,” J. Climate, 9, 3373 (1996).

[1327] SSA toolkit web page, www.atmos.ucla.edu/tcd/ssa\.

[1328] M. Ghil and R. Vautard, “Interdecadal Oscillations and the Warming Trend in Global Temperature
Time Series,” Nature, 350, 324 (1991).

[1329] M. E. Mann and J. Park, “Spatial Correlations of Interdecadal Variation in Global Surface Tempera-
tures,” Geophys. Res. Lett., 20, 1055 (1993).

[1330] C. Penland, M. Ghil, and K. Weickmann, “Adaptive Filtering and Maximum Entropy Spectra with
Application to Changes in Atmospheric Angular Momentum,” J. Geophys. Res., 96, 22659 (1991).

[1331] M. Palus and I. Dvorak, “Singular-Value Decomposition in Attractor Reconstruction: Pitfalls and
Precautions,” Physica D, 55, 221 (1992).

[1332] V. M. Buchstaber, “Time Series Analysis and Grassmannians,” Amer. Math. Soc. Transl., 162, 1 (1994).

[1333] J. B. Elsner and A. A. Tsonis, Singular Spectrum Analysis: A New Tool in Time Series Analysis, Plenum
Press, New York, 1996.

[1334] N. Golyandina, V. Nekrutkin, and A. Zhigliavsky, Analysis of Time Series Structure: SSA and Related
Techniques, Chapman & Hall/CRC Press, Boca Raton, FL, 2002.

[1335] J. D. Farmer and J. J. Sidorowich, “Exploiting Chaos to Predict the Future and Reduce Noise,” in Y.
C. Lee, ed., Evolution, Learning, and Cognition, World Scientific, Singapore, 1988.

REFERENCES 979

[1336] A. Basilevsky and D. P. J. Hum, “Karhunen-Loève Analysis of Historical Time Series With an Appli-
cation to Plantation Births in Jamaica,” J. Amer. Statist. Assoc., 74, 284 (1979).

[1337] D. L. Danilov, “Principal Components in Time Series Forecast,” J. Comp. Graph. Statist., 6, 112 (1997).

[1338] R. Cawley and G-H. Hsu, “Local-Geometric-Projection Method for Noise Reduction in Chaotic Maps
and Flows,” Phys. Rev. A, 46, 3057 (1992).

[1339] C. Penland and T. Magorian, “Prediction of Niño 3 Sea Surface Temperatures Using Linear Inverse
Modeling,” J. Clim., 6, 1067 (1993).

[1340] T. Sauer, “Time Series Prediction by Using Delay Coordinate Embedding,” in Ref. [1253].

Adaptive Filters

[1341] B. Widrow and M. Hoff, Adaptive Switching Circuits, IRE Wescon Conv. Rec., pt. 4, 96–104 (1960).

[1342] B. Widrow, Adaptive Filters, in R. Kalman and N. DeClaris, Eds., Aspects of Network and System
Theory, New York, Holt, Rinehart and Winston, 1971.

[1343] M. Honig and D. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications, Boston,
Kluwer Academic, 1984.

[1344] C. F. N. Cowan and P. M. Grant, Adaptive Filters, Englewood Cliffs, NJ, Prentice-Hall, 1985.

[1345] A. A. Giordano and F. M. Hsu, Least Square Estimation with Applications to Digital Signal Processing,
New York, Wiley, 1985.

[1346] B. Widrow and S. D. Steams, Adaptive Signal Processing, Englewood Cliffs, NJ, Prentice-Hall, 1985.

[1347] S. T. Alexander, Adaptive Signal Processing, New York, Springer-Verlag, 1986.

[1348] S. Haykin, Adaptive Filter Theory, Englewood Cliffs, NJ, Prentice-Hall, 1986.

[1349] J. R. Treichler, C. R. Johnson, and M. G. Larimore, Theory and Design of Adaptive Filters, New York,
Wiley, 1987.

[1350] B. Widrow, et al., Adaptive Noise Cancelling–Principles and Applications, Proc. IEEE, 63, 1692 (1975).

[1351] B. Widrow, et al., Adaptive Antenna Systems, Proc. IEEE, 55, 2143 (1967).

[1352] S. P. Applebaum, Adaptive Arrays, IEEE Trans. Antennas Prop., AP-24, 585 (1976).

[1353] F. Gabriel, Adaptive Arrays–An Introduction, Proc. IEEE, 64, 239 (1976).

[1354] A. M. Vural and M. T. Stark, A Summary and the Present Status of Adaptive Array Processing Tech-
niques, 19th IEEE Conference on Decision and Control, (1980), p.931.

[1355] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, New York, Wiley, 1980.

[1356] B. Widrow, et al., Stationary and Nonstationary Learning Characteristics of the LMS Adaptive Filter,
Proc. IEEE, 64, 1151 (1976).

[1357] R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, New York, McGraw-Hill,
1968.

[1358] J. G. Proakis, Digital Communications, New York, McGraw-Hill, 1983.

[1359] A. P. Clark, Equalizers for Digital Modems, New York, Halsted Press, 1985.

[1360] N. A. M. Vierhoeckx, H. Elzen, F. Snijders, and P. Gerwen, Digital Echo Cancellation for Baseband
Data Transmission, IEEE Trans. Acoust., Speech, Signal Process., ASSP-27, 768 (1979).

[1361] M. M. Sondhi and D. A. Berkley, Silencing Echoes on the Telephone Network, Proc. IEEE, 66, 948
(1980).

[1362] D. L. Duttweiler and Y. S. Chen, A Single Chip VLSI Echo Canceler, Bell Syst. Tech. J., 59, 149 (1980).

[1363] D. L. Duttweiler, Bell’s Echo-Killer Chip, IEEE Spectrum, 17, 34 (1980).

[1364] D. G. Messerschmitt, Echo Cancellation in Speech and Data Transmission, IEEE J. Selected Areas in
Commun., SAC-2, 283 (1984).

[1365] C. W. Gritton and D. W. Lin, Echo Cancellation Algorithms, ASSP Mag., 1, no.2, 30 (1984).

[1366] W. A. Harrison, J. S. Lim, and E. Singer, A New Application of Adaptive Noise Cancellation, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-34, 21 (1986).

[1367] G. S. Müller and C. K. Pauw, Acoustic Noise Cancellation, Proc. 1986 Int. Conf. Acoust., Speech, Signal
Process., Tokyo, p.913.

[1368] J. J. Rodriguez, J. S. Lim, and E. Singer, Adaptive Noise Reduction in Aircraft Communication Sys-
tems, Proc. 1987 Int. Conf. Acoust., Speech, Signal Process., Dallas, p.169.

980 REFERENCES

[1369] G. A. Powell, P. Darlington, and P. D. Wheeler, Practical Adaptive Noise Reduction in the Aircraft
Cockpit Environment, Proc. 1987 Int. Conf. Acoust., Speech, Signal Process., Dallas, p.173.

[1370] J. Dunlop, M. Al-Kindi, and L. Virr, Application of Adaptive Noise Cancelling to Diver Voice Com-
munications, Proc. 1987 Int. Conf. Acoust., Speech, Signal Process., Dallas, p.1708.

[1371] J. V. Candy, T. Casper, and R. Kane, Plasma Estimation: A Noise Cancelling Application, Automatica,
22, 223 (1986).

[1372] W. Ciciora, G. Sgrignoli, and W. Thomas, A Tutorial on Ghost Cancelling in Television Systems, IEEE
Trans. Consum. Electron., CE-25, 9 (1979).

[1373] J. Glover, Adaptive Noise Cancelling Applied to Sinusoidal Interferences, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-25, 484 (1977).

[1374] B. Widrow, J. McCool, and M. Ball, The Complex LMS Algorithm, Proc. IEEE, 63, 719 (1975).

[1375] B. Widrow, K. Duvall, R. Gooch, and W. Newman, Signal Cancellation Phenomena in Adaptive An-
tennas: Causes and Cures, IEEE Trans. Antennas Prop., AP-30, 469 (1982).

[1376] M. J. Shensa, Non-Wiener Solutions of Adaptive Noise Canceller with a Noisy Reference, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-28, 468 (1980).

[1377] S. J. Elliot and P. Darlington, Adaptive Cancellation of Periodic, Synchronously Sampled Interference,
IEEE Trans. Acoust., Speech, Signal Process., ASSP-33, 715 (1985).

[1378] S. J. Orfanidis, F. Aafif, and E. Micheli-Tzanakou, Visual Evoked Potential Extraction by Adaptive
Filtering, Proc. 9th IEEE EMBS Conf., Boston, November 1987.

[1379] J. R. Treichler, Transient and Convergent Behavior of the Adaptive Line Enhancer, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-27, 53 (1979).

[1380] D. W. Tufts, L. J. Griffiths, B. Widrow, J. Glover, J. McCool, and J. Treichler, Adaptive Line Enhance-
ment and Spectrum Analysis, Proc. IEEE, 65, 169 (1977).

[1381] J. R. Zeidler, et al., Adaptive Enhancement of Multiple Sinusoids in Uncorrelated Noise, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-26, 240 (1978).

[1382] L. J. Griffiths, Rapid Measurement of Digital Instantaneous Frequency, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-23, 207 (1975).

[1383] D. Morgan and S. Craig, Real-Time Linear Prediction Using the Least Mean Square Gradient Algo-
rithm, IEEE Trans. Acoust., Speech, Signal Process., ASSP-24, 494 (1976).

[1384] P. Eykhoff, System Identification: Parameter and State Estimation, New York, Wiley, 1974.

[1385] K. J. Åström and P. Eykhoff, System Identification–A Survey, Automatica, 7, 123 (1971).

[1386] G. C. Goodwin and R. L. Payne, Dynamic System Identification, Experimental Design and Data Anal-
ysis, New York, Academic, 1977.

[1387] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, Cambridge, MA, MIT
Press, 1983.

[1388] L. Ljung, System Identification: Theory for the User, Englewood Cliffs, NJ, Prentice-Hall, 1987.

[1389] K. J. Åström and B. Wittenmark, Computer Controlled Systems, Englewood Cliffs, NJ, Prentice-Hall,
1984.

[1390] K. J. Åström, Adaptive Feedback Control, Proc. IEEE, 75, 185 (1987).

[1391] N. Sundararajan and R. C. Montgomery, Identification of Structural Dynamics Systems Using Least-
Squares Lattice Filters, J. Guidance and Control, 6, 374 (1983).

[1392] N. Sundararajan, J. P. Williams, and R. C. Montgomery, Adaptive Modal Control of Structural Dynamic
Systems Using Recursive Lattice Filters, J. Guidance and Control, 8, 223 (1985).

[1393] W. S. Hodgkiss and J. A. Presley, Jr., Adaptive Tracking of Multiple Sinusoids whose Power Levels
are Widely Separated, IEEE Trans. Acoust., Speech, Signal Process., ASSP-29, 710 (1981).

[1394] W. F. Gabriel, Spectral Analysis and Adaptive Array Superresolution Techniques, Proc. IEEE, 68, 654
(1980).

[1395] W. F. Gabriel, Using Spectral Estimation Techniques in Adaptive Processing Antenna Systems, IEEE
Trans. Antennas Propag., AP-34, 291 (1986).

[1396] F. M. Hsu and A. A. Giordano, Digital Whitening Techniques for Improving Spread Spectrum Com-
munications Performance in the Presence of Narrowband Jamming and Interference, IEEE Trans.
Commun., COM-26, 209 (1978).

REFERENCES 981

[1397] J. W. Ketchum and J. G. Proakis, Adaptive Algorithms for Estimating and Suppressing Narrow-Band
Interference in PN Spread-Spectrum Systems, IEEE Trans. Commun., COM-30, 913 (1982).

[1398] L. M. Li and L. B. Milstein, Rejection of Narrow-Band Interference in PN Spread-Spectrum Systems
Using Transversal Filters, IEEE Trans. Commun., COM-30, 925 (1982).

[1399] R. A. Iltis and L. B. Milstein, Performance Analysis of Narrow-Band Interference Rejection Techniques
in DS Spread-Spectrum Systems, IEEE Trans. Commun., COM-32, 1169 (1984).

[1400] E. Masry, Closed-Form Analytical Results for the Rejection of Narrow-Band Interference in PN
Spread-Spectrum Systems–Part I: Linear Prediction Filters, IEEE Trans. Commun., COM-32, 888
(1984).

[1401] E. Masry, Closed-Form Analytical Results for the Rejection of Narrow-Band Interference in PN
Spread-Spectrum Systems–Part II: Linear Interpolation Filters, IEEE Trans. Commun., COM-33, 10
(1985).

[1402] A. Reichman and R. A. Scholtz, Adaptive Spread-Spectrum Systems Using Least-Squares Lattice
Filters, IEEE J. Selected Areas Commun., SAC-3, 652 (1985).

[1403] P. A. Thompson, An Adaptive Spectral Analysis Technique for Unbiased Frequency Estimation in the
Presence of White Noise, Proc. 13th Asilomar Conf. Circuits, Systems, and Computers, p.529 (Nov.
1979).

[1404] M. G. Larimore and R. J. Calvert, Convergence Studies of Thompson’s Unbiased Adaptive Spectral
Estimator, Proc. 14th Asilomar Conf. Circuits, Systems, and Computers, p.258 (Nov. 1980).

[1405] V. U. Reddy, B. Egard, and T. Kailath, Least Squares Type Algorithm for Adaptive Implementation of
Pisarenko’s Harmonic Retrieval Method, IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 399
(1982).

[1406] F. K. Soong and A. M. Petersen, On the High Resolution and Unbiased Frequency Estimates of Sinu-
soids in White Noise–A New Adaptive Approach, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
p.1362 (April 1982).

[1407] A. Cantoni and L. Godara, Resolving the Directions of Sources in a Correlated Field Incident on an
Array, J. Acoust. Soc. Am., 67, 1247 (1980).

[1408] S. J. Orfanidis and L. M. Vail, Zero-Tracking Adaptation Algorithms, Proc. ASSP Spectrum Estimation
Workshop, II, Tampa, FL (November 1983).

[1409] S. J. Orfanidis and L. M. Vail, Zero Tracking Adaptive Filters, IEEE Trans. Acoust., Speech, Signal
Process., ASSP-34, 1566 (1986).

[1410] Z. Rogowski, I. Gath, and E. Bental, On the Prediction of Epileptic Seizures, Biol. Cybernetics, 42, 9
(1981).

[1411] L. J. Griffiths, A Continuously-Adaptive Filter Implemented as a Lattice Structure, Int. Conf. Acoust.,
Speech, Signal Process., Hartford CT, p.87 (1977).

[1412] J. Makhoul, A Class of All-Zero Lattice Digital Filters: Properties and Applications, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-26, 304 (1978).

[1413] E. H. Satorius and S. T. Alexander, Channel Equalization Using Adaptive Lattice Algorithms, IEEE
Trans. Commun., COM-27, 899 (1979).

[1414] C. J. Gibson and S. Haykin, Learning Characteristics of Adaptive Lattice Filtering Algorithms, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-28, 681 (1980).

[1415] M. L. Honig and D. G. Messerschmitt, Convergence Properties of the Adaptive Digital Lattice Filter,
IEEE Trans. Acoust., Speech, Signal Process., ASSP-29, 642 (1981).

[1416] R. S. Medaugh and L. J. Griffiths, A Comparison of Two Fast Linear Predictors, Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Atlanta, GA (March 1981), p.293.

[1417] C. Giraudon, Results on Active Sonar Optimum Array Processing, in J. W. R. Griffiths, et al., Eds.,
Signal Processing, New York, Academic, 1973.

[1418] W. D. White, Cascade Preprocessors for Adaptive Antennas, IEEE Trans. Antennas Propag., AP-24,
670 (1976).

[1419] D. H. Brandwood and C. J. Tarran, Adaptive Arrays for Communications, IEE Proc., 129, Pt. F, 223
(1982).

[1420] J. G. McWhirter and T. J. Shepherd, Adaptive Algorithms in the Space and Time Domains, IEE Proc.,
130, Pts. F and H, 17 (1983).

982 REFERENCES

[1421] F. Ling, D. Manolakis, and J. G. Proakis, A Recursive Modified Gram-Schmidt Algorithm for Least-
Squares Estimation, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 829 (1986).

[1422] D. D. Falconer and L. Ljung, Application of Fast Kalman Estimation to Adaptive Equalization, IEEE
Trans. Commun., COM-26, 1439 (1976).

[1423] L. Ljung, M. Morf, and D. Falconer, Fast Calculations of Gain Matrices for Recursive Estimation
Schemes, Int. J. Control, 27, 1 (1978).

[1424] G. C. Carayannis, D. Manolakis, and N. Kalouptsidis, A Fast Sequential Algorithm for Least-Squares
Filtering and Prediction, IEEE Trans. Acoust., Speech, Signal Process., ASSP-31, 1394 (1983).

[1425] J. Cioffi and T. Kailath, Fast, Recursive Least-Squares, Transversal Filters for Adaptive Processing,
IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 304 (1984).

[1426] L. S. DeJong, Numerical Aspects of Recursive Realization Algorithms, SIAM J. Control Optimiz., 16,
646 (1978).

[1427] M. S. Mueller, On the Rapid Initial Convergence of Least-Squares Equalizer Adjustment Algorithms,
Bell Syst. Tech. J., 60, 2345 (1981).

[1428] D. W. Lin, On the Digital Implementation of the Fast Kalman Algorithm, IEEE Trans. Acoust., Speech,
Signal Process., ASSP-32, 998 (1984).

[1429] F. Ling and J. G. Proakis, Numerical Accuracy and Stability: Two Problems of Adaptive Estimation
Algorithms Caused by Round-Off Error, Proc. 1984 IEEE Int. Conf. Acoust., Speech, Signal Process.,
San Diego, CA, p.30.3.1.

[1430] C. G. Samson and V. U. Reddy, Fixed Point Error Analysis of the Normalized Ladder Algorithm, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-31, 1177 (1983).

[1431] S. Ljung and L. Ljung, Error Propagation Properties of Recursive Least-Squares Adaptation Algo-
rithms, Automatica, 21, 157 (1985).

[1432] D. Manolakis, G. Carayannis, and V. Zemas, Fast RLS Algorithms for Adaptive Filtering: Some Engi-
neering Problems, Proc. 1987 IEEE Int. Conf. Circuits and Systems, Philadelphia, PA, p.985.

[1433] S. H. Ardalan and S. T. Alexander, Fixed-Point Roundoff Error Analysis of the Exponentially Win-
dowed RLS Algorithm for Time-Varying Systems, IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-35, 770 (1987).

[1434] C. Caraiscos and B. Liu, A Roundoff Error Analysis of the LMS Adaptive Algorithm, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-32, 34 (1984).

[1435] J. M. Ciofi, Limited-Precision Effects in Adaptive Filtering, IEEE Trans. Circ. Syst., CAS-34, 821 (1987).

[1436] M. Morf and D. T. L. Lee, Recursive Least-Squares Ladder Forms for Fast Parameter Tracking, Proc.
17th IEEE Conf. Decision Contr., p.1326 (1979).

[1437] E. H. Satorius and M. J. Shensa, Recursive Lattice Filters–A Brief Overview, Proc. 19th IEEE Conf.
Decision Contr., p.955 (1980).

[1438] D. Lee, M. Morf, and B. Friedlander, Recursive Square-Root Ladder Estimation Algorithms, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-29, 627 (1981).

[1439] M. J. Shensa, Recursive Least-Squares Lattice Algorithms: A Geometrical Approach, IEEE Trans.
Autom. Control, AC-26, 695 (1981).

[1440] E. H. Satorius and J. D. Pack, Application of Least-Squares Lattice Algorithms to Channel Equaliza-
tion, IEEE Trans. Commun., COM-29, 136 (1981).

[1441] E. Schichor, Fast Recursive Estimation Using the Lattice Structure, Bell Syst. Tech. J., 61, 97 (1981).

[1442] M. S. Mueller, Least-Squares Algorithms for Adaptive Equalizers, Bell Syst. Tech. J., 60, 1905 (1981).

[1443] B. Friedlander, Lattice Filters for Adaptive Processing, Proc. IEEE, 70, 829 (1982).

[1444] G. C. Carayannis, D. Manolakis, and N. Kalouptsidis, A Unified View of Parametric Processing Algo-
rithms for Prewindowed Signals, Signal Processing, 10, 335 (1986).

[1445] F. Ling, D. Manolakis, and J. G. Proakis, Numerically Robust Least-Squares Lattice-Ladder Algorithms
with Direct Updating of the Reflection Coefficients, IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-34, 837 (1986).

[1446] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods of Modifying Matrix Factorizations,
Math. Comp., 28, 505 (1974).

[1447] P. E. Gill, W. Murray, and M. A. Saunders, Methods for Computing and Modifying the LVD Factors of
a Matrix, Math. Comp., 29, 1051 (1975).

REFERENCES 983

[1448] D. Godard, Channel Equalization Using a Kalman Filter for Fast Data Transmission, IBM J. Res. Dev.,
18, 267 (1974).

[1449] R. D. Gitlin and F. R. Magee, Self-Orthogonalizing Adaptive Equalization Algorithms, IEEE Trans.
Commun., COM-25, 666 (1977).

[1450] R. W. Chang, A New Equalizer Structure for Fast Start-up Digital Communication, Bell Syst. Tech. J.,
50, 1969 (1971).

[1451] J. G. McWhirter and T. J. Shepherd, Least-Squares Lattice Algorithm for Adaptive Channel
Equalization–A Simplified Derivation, IEE Proc., 130, Pt. F, 532 (1983).

[1452] J. Mendel, Discrete Techniques of Parameter Estimation, New York, Marcel Dekker, 1973.

[1453] L. E. Brennan, J. D. Mallet, and I. S. Reed, Adaptive Arrays in Airborne MTI Radar, IEEE Trans. Antenn.
Propag., AP-24, 607 (1976).

[1454] L. E. Brennan and I. S. Reed, Theory of Adaptive Radar, IEEE Trans. Aerosp. Electron. Syst., AES-9,
237 (1973).

[1455] L. E. Brennan, J. D. Mallet, and I. S. Reed, Rapid Convergence Rate in Adaptive Arrays, IEEE Trans.
Aerosp. Electron. Syst., AES-10, 853 (1974).

[1456] J. Cioffi, When Do I Use an RLS Adaptive Filter? Proc. 19th IEEE Asilomar Conf. Circ., Syst., Computers,
1986, p.636.

[1457] E. Eleftheriou and D. D. Falconer, Tracking Properties and Steady-State Performance of RLS Adaptive
Filter Algorithms, IEEE Trans. Acoust., Speech, Signal Process., ASSP-34, 1097 (1986).

[1458] G. H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Rev., 15, 318 (1973).

[1459] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-One Modification of the Symmetric Eigenproblem,
Numer. Math., 31, 31 (1978).

[1460] K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1976.

[1461] W. Bühring, Adaptive Orthogonal Projection for Rapid Converging Interference Suppression, Elec-
tron. Lett., 14, 515 (1978).

[1462] N. L. Owsley, Adaptive Data Orthogonalization, Proc. 1978 Int. Conf. Acoust., Speech, Signal Process.,
Tulsa, p.109.

[1463] J. Karhunen, Adaptive Algorithms for Estimating Eigenvectors of Correlation Type Matrices, Proc.
1984 Int. Conf. Acoust., Speech, Signal Process., San Diego, CA, p.14.6.1.

[1464] Y. H. Hu, Adaptive Methods for Real Time Pisarenko Spectrum Estimate, Proc. 1985 Int. Conf. Acoust.,
Speech, Signal Process., Tampa, FL, p.105.

[1465] K. C. Sharman, T. S. Durrani and L. Vergara-Dominguez, Adaptive Algorithms for Eigenstructure
Based Spectral Estimation and Filtering, Proc. 1986 IEEE Int. Conf. Decision and Control, Athens,
p.2224.

[1466] K. C. Sharman and T. S. Durrani, Eigenfilter Approaches to Adaptive Array Processing, IEE Proc.,
130, Pt. F, 22 (1983).

[1467] J. F. Yang and M. Kaveh, Adaptive Signal-Subspace Algorithms for Frequency Estimation and Track-
ing, Proc. 1987 Int. Conf. Acoust., Speech, Signal Process., Dallas, p.1593.

[1468] C. Samson, A Unified Treatment of Fast Algorithms for Identification, Int. J. Control, 35, 909 (1982).

[1469] M. Honig, Recursive Fixed-Order Covariance Least-Squares Algorithms, Bell Syst. Tech. J., 62, 2961
(1983).

[1470] H. Lev-Ari and T. Kailath, Least-Squares Adaptive Lattice and Transversal Filters: A Unified Geomet-
ric Theory, IEEE Trans. Inform. Th., IT-30, 222 (1984).

[1471] N. Kalouptsidis, G. Carayannis, and D. Manolakis, Fast Design of FIR Least-Squares Filters with
Optimum Lag, IEEE Trans. Acoust., Speech, Signal Process., ASSP-32, 48 (1984).

[1472] N. Kalouptsidis, G. Carayannis, and D. Manolakis, Efficient Recursive-in-Order Least Squares FIR
Filtering and Prediction, IEEE Trans. Acoust., Speech, Signal Process., ASSP-33, 1175 (1985).

[1473] A. Nehorai and M. Morf, A Unified Derivation for Fast Estimation Algorithms by the Conjugate
Direction Method, Lin. Alg. Appl., 72, 119 (1985).

[1474] J. D. Wang and H. J. Trussell, A Unified Derivation of the Fast RLS Algorithms, Proc. 1986 Int. Conf.
Acoust., Speech, Signal Process., Tokyo, p.261.

[1475] S. T. Alexander, Fast Adaptive Filters: A Geometrical Approach, ASSP Mag., 3, no. 4, 18 (1986).

984 REFERENCES

[1476] N. Kalouptsidis and S. Theodoridis, Fast Adaptive Least Squares Algorithms for Power Spectral
Estimation, IEEE Trans. Acoust., Speech, Signal Process., ASSP-35, 661(1987).

[1477] D. Manolakis, F. Ling, and J. G. Proakis, Efficient Time-Recursive Least-Squares Algorithms for Finite-
Memory Adaptive Filtering, IEEE Trans. Circ. Syst., CAS-34, 400 (1987).

[1478] J. G. McWhirter, Recursive Least-Squares Minimization Using a Systolic Array, Proc. SPIE, Real-Time
Signal Processing IV, 431, 105 (1983).

[1479] F. Ling and J. G. Proakis, A Generalized Multichannel Least Squares Lattice Algorithm Based on
Sequential Processing Stages, IEEE Trans. Acoust., Speech, Signal Process., ASSP-32, 381 (1984).

[1480] C. R. Ward, A. J. Robson, P. J. Hargrave, and J. G. McWhirter, Application of a Systolic Array to
Adaptive Beamforming, IEE Proc., 131, Pt. F, 638 (1984).

[1481] H. Sakai, A Parallel Least-Squares Linear Prediction Method Based on the Circular Lattice Filter, IEEE
Trans. Acoust., Speech, Signal Process., ASSP-34, 640 (1986).

[1482] R. Schreiber, Implementation of Adaptive Array Algorithms, IEEE Trans. Acoust., Speech, Signal
Process., ASSP-34, 1038 (1986).

[1483] H. Kimura and T. Osada, Canonical Pipelining of Lattice Filters, IEEE Trans. Acoust., Speech, Signal
Process., ASSP-35, 878 (1987).

[1484] H. Lev-Ari, Modular Architectures for Adaptive Multichannel Lattice Algorithms, IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-35, 543 (1987).

[1485] T. H. Meng and D. G. Messerschmitt, Arbitrarily High Sampling Rate Adaptive Filters, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-35, 455 (1987).

[1486] M. G. Bellanger, Adaptive Digital Filters and Signal Analysis, New York, Marcel Dekker, 1987.

[1487] S. J. Orfanidis, The Double/Direct RLS Lattice, Proc. 1988 Int. Conf. Acoust., Speech, Signal Process.,
New York.

Index

L1 trend filtering, 358
3-dB cutoff frequency, 110, 112

accumulation-distribution, 307
adaptive

a posteriori RLS lattice, 901
AR models, 86
array processing, 878
beamforming, 862
channel equalizers, 868
double-direct RLS lattice, 913
echo cancelers, 869
eigenvalue spread, 866
eigenvector methods, 876, 907
exact RLS lattice filters, 911
FAEST algorithm, 910
fast Kalman algorithm, 909
FTF algorithm, 911
gradient lattice filters, 881
gradient projection method, 877
Gram-Schmidt preprocessors, 889
line enhancer, 872, 921
linear combiner, 859
linear predictor, 874
noise canceler, 870
Pisarenko’s method, 876
sidelobe canceler, 861
signal separator, 872
spectrum analysis, 875, 878
tracking of zeros, 879
Wiener filters, 850, 862, 916

accuracy of converged weights, 857
conventional RLS, 904
convergence speed, 865
correlation canceler loop, 853
FAEST algorithm, 910
fast Kalman, 909
fast RLS direct form, 907
gradient lattice, 881
gradient-descent method, 854
linear prediction, 874
LMS algorithm, 855
Newton’s method, 866
RLS lattice, 911
stochastic approximation, 856

adaptive GSC, 746
airline data, 594

Akaike final prediction error (FPE), 678
Akaike information criterion (AIC), 710
algebraic Riccati equation, 103, 494
analysis filter, 61, 535, 537
analysis frame, 58
analysis lattice filters, 537
angle-of-arrival estimation, see superresolution

array processing
AR modeling of sunspot data, 88
AR, ARMA, MA signal models, 63
ARIMA modeling, 594
asymptotic statistics, 726

eigenvector methods, 730
linear predictors, 728
reflection coefficients, 729
sample covariance matrix, 21, 726, 730

autocorrelation
complex-valued signals, 100
computation by convolution, 50
FFT computation, 96
function, 44
matrix, 99, 486, 512
maximum entropy extension, 601
method, 514
of white noise, 54
PARCOR coefficients, 520
periodogram, 48
power spectrum, 46
reflection symmetry, 45
sample, 48, 514
sequence extension, 528
singular, 529
sinusoidal representation, 530, 694
white noise, 45

autocorrelation function
of a filter, 52

autocorrelation method, see Yule-Walker method,
561

autoregressive
models, 513
normal equations, 513
power spectrum, 514

Backus-Gilbert parameter, 587
backward prediction, 29
bandpass signal extraction, 117
bands, 294

985

986 INDEX

Bolinger, 294
fixed-width, 294
Keltner, 294
projection, 294
standard error, 294
Starc, 294

bandwidth selection, 204
Bartlett window, 681
bases, 766
Bayes rule, 4
beamforming, 694, 695, 703, 862
beamforming, quiescent pattern control, 740
beamforming, retrodirective, 737
biasing in frequency estimates, 688
Bolinger bands, 294
Burg’s method, 561
Butterworth moving average filters, 285

Cadzow iteration, 826
canonical angles between linear subspaces, 845
canonical correlation analysis, CCA, 840
Capon’s spectrum estimator, 688
caterpillar method, 826
CCL, 853

analog, 859
complex, 858

census X-11 decomposition filters, 407
Chaikin money flow, 307
Chaikin oscillator, 307
Chaikin volatility, 307
Chande momentum oscillator, CMO, 304
channel equalizers, 868
channels, 294
chaotic dynamics, 826
Chebyshev inequality, 3
Cholesky factorization, 18, 42
classical seasonal decomposition, 393
commodity channel index, CCI, 307
condition number, 785
conditional probability density, 4
consistent estimator, 3
correlation, 5
correlation canceler loop, 853
correlation canceling, 8
correlation matrix, 6
covariance difference methods, 703
covariance factorization, 497
covariance matrix, 6
covariance method, 561
Cramér-Rao bound, 4, 71
cross correlation, 47
cross power spectrum, 48
cross validation, 204
CVX package, 360, 419, 750, 794

data compression, 60
deconvolution, 589, 593
deconvolution with L1-norm, 594

decorrelated basis, 32
delay-coordinate embedding, 826
deterministic random signals, 56
detrended price oscillator, 308
differentiation filters, 148
direction finding, see superresolution array pro-

cessing
directional movement system, 305
discrete-time Fourier transform, 166
distance measure, 60, 100, 566
Dolph-Chebyshev array, 742
Donchian channels, 294
double-direct RLS lattice, 902, 913
dynamic momentum index, DMI, 308
dynamic predictive deconvolution, 568

echo cancelers, 869
EEG signal processing

classification, 566
prediction of epileptic seizures, 879

efficient estimator, 4
eigenvalue spread, 866
eigenvector methods, 706

adaptive, 876
AR limit, 693
coherent noise, 702
covariance difference, 703
ESPRIT method, 721
generalized, 702
maximum likelihood method, 719
minimum-norm method, 693, 713
MUSIC method, 709
noise subspace, 691, 699, 707
Pisarenko’s method, 689
Rayleigh quotient, 703
reduced-order method, 715
reduced-order polynomial, 708
signal subspace, 691, 699, 707
spatial smoothing, 723

EMA initialization, 259, 282
EMA, exponential moving average, 221
entropy of random vector, 601
envelopes, 294
ESPRIT method, 721
exact LPSM filters, 128
exponential smoother, 111, 221
exponentially-weighted moving average, 221
exponentially-weighted moving average, EMA, 109

FAEST algorithm, 898, 910
fast Kalman algorithm, 897, 909
fast RLS direct-form filters, 907
fast RLS lattice filters, 911
filter design

of Savitzky-Golay smoothers, 118
filtering methods in financial markets, 267
filtering of random signals, 51
FIR averager, 112

INDEX 987

first-order IIR smoother, 109
Fisher information matrix, 72, 729
fixed-width bands, 294
forecast oscillator, 308
forecasting and state-space models, 230
forgetting factor, 904
forward prediction, 27
forward/backward normal equations, 27
FTF algorithm, 899, 911
fundamental theorem of linear algebra, 770

gapped functions, 495, 512, 517, 547
gaussian probability density, 2
gaussian random vector, 6
generalize double EMA, GDEMA, 288
generalized cross validation, GCV, 327
generalized cross-validation, 205
generalized eigenvalue problem, 702
generalized sidelobe canceler. GSC, 735
geometric series

finite, 115
infinite, 109

gradient lattice filters, 881
gradient projection method, 877
gradient-descent method, 854
Gram-Schmidt array preprocessors, 889
Gram-Schmidt orthogonalization, 13

adaptive, 889
backward prediction, 543
Cholesky factorization, 18
innovations representation, 18
linear prediction, 19, 542
LU factorization, 18
modified, 889
random variables, 17
UL factorization, 19

Hahn orthogonal polynomials, 179
Henderson filters, 142, 169
higher-order exponential smoothing, 235
higher-order polynomial smoothing, 231
Hodrick-Prescott filters, 341, 348
Holt’s exponential smoothing, 264
Hull moving average, 288

ILRS, integrated linear regression slope, 270
immitance domain Schur algorithm, 551
independent random variables, 4
inner product of random variables, 14
innovations representation, 18
instantaneous gradient, 223
integrated linear regression slope, 270
interpolation filters, 135
interpolation vs. smoothing splines, 315
inverse scattering problem, 571
IRLS, iterative reweighted least-squares, 794
Itakura’s LPC distance measure, 100, 567
iterative reweighted least-squares, IRLS, 360, 794

joint probability density, 4

Kalman filter, 490, 500
Kalman filters

algebraic Riccati equation, 628
alpha-beta tracking filters, 613, 632
block diagram realization, 615
Byron-Frazier smoothing, 655
closed-loop state matrix, 615
continuous-time models, 641
derivation, 616
deterministic inputs, 625
EM algorithm, parameter estimation, 667
equivalence with Wiener filter, 645
estimation algorithm, 614
fixed-interval smoothing, 650
forecasting, 624
geometric interpretation, 622
information form, 615
Joseph form, 615
local level model, 611, 631
local trend model, 611, 640
missing observations, 624
ML parameter estimation, 663
Nile river data, 664
radar tracking, 612
Rauch-Tung-Striebel smoothing, 654
square-root algorithms, 657
standard form, 615
state-space models, 609
steady-state models, 631
time-invariant models, 626
Wiener-Brownian process, 644

Kalman gain, 93, 491, 894, 906
Karhunen-Loève transform, 819
Keltner bands, 294
kernel machines, 353
Krawtchouk polynomials, 187

LASSO, least absolute shrinkage and selection
operator, 793

lattice structures, 37, 537
Wiener filters, 553

LCMV and GSC equivalence, 744
LCMV beamforming, 735
least-squares inverse filters, 585
least-squares linear prediction, 810
least-squares Problems and SVD, 783
least-squares spiking filters, 585
least-squares waveshaping filters, 585
Levinson recursion, 514

autocorrelation extension, 528
backward, 521
forward, 519
matrix form, 524
reverse, 521
split, 532

likelihood variables, 894

988 INDEX

line enhancer, 872
linear estimation, 475

conditional mean, 10
correlation canceling, 8
decorrelated basis, 32
Gram-Schmidt orthogonalization, 13
jointly gaussian signals, 10
MAP, ML, MS, LMS criteria, 476
nonlinear estimation, 476
normal equations, 480
optimum estimator, 8
optimum filtering, 481
optimum prediction, 482
optimum smoothing, 481
orthogonal decomposition, 14
orthogonal projection, 8, 16
orthogonality equations, 480
signal separator, 8
unrestricted estimator, 10
Wiener filter, 484

linear phase property, 108
linear prediction

adaptive, 874
analysis filter, 535
asymptotic statistics, 728
autocorrelation extension, 528
autocorrelation method, 561
backward, 27
backward Levinson recursion, 521
Burg’s method, 561
Cholesky factorization, 27, 542
covariance method, 561
decorrelated basis, 32
forward, 27
forward Levinson recursion, 519
gapped function, 512, 517
Gram-Schmidt orthogonalization, 542
lattice filters, 537
Levinson recursion, 514
LU factorization, 27
maximum entropy extension, 528, 601
minimum-phase property, 83, 539
normal equations, 513, 516
optimum filter, 510
orthogonal polynomials, 544
orthogonality of backward errors, 542
reflection coefficients, 518
reverse Levinson, 521
Schur algorithm, 547
signal classification, 566
signal modeling, 70, 509
split Schur algorithm, 551
stability test, 541
synthesis filter, 535
transfer function, 509
Yule-Walker method, 67, 561

linear regression, 275
linear regression indicator, 270

linear regression slope indicator, 270
linear trend FIR filters, 233
linearly-constrained Wiener filter, 735
LMS algorithm, 223, 855
local level filters, 270, 290
local polynomial fitting, 119
local polynomial interpolation, 206
local polynomial modeling, 197
local polynomial smoothing filters, 118
local slope filters, 270, 290
loess smoothing, 218
LPSM filters, 118
LU factorization, 18

MA and ARMA modeling, 812
MAP, ML, MS, LMS estimation criteria, 476
Market indicators:

accdist, accumulation/distribution line, 304
atr, average true range, 299
bbands, Bolinger bands, 299
bma, Butterworth moving average, 287
cci, commodity channel index, 304
chosc, Chaikin oscillator, 304
chvol, Chaikin volatility, 304
cmflow, Chaikin money flow, 304
cmo, Chande momentum oscillator, 304
delay, d-fold delay, 292
dema, double EMA, 274
dirmov, directional movement system, 304
dmi, dynamic momentum index, 304
donch, Donchian channels, 299
dpo, detrended price oscillator, 304
ehma, exponential Hull moving average, 292
fbands, fixed-width bands, 299
forosc, forecast oscillator, 304
gdema, generalized DEMA, 292
hma, Hull moving average, 292
ilrs, integrated linear regression slope, 270
kbands, Keltner bands, 299
lreg, linear regression indicators, level, slope,

R-square, standard-errors, 278
mom, momentum, price rate of change, 304
ohlcyy, OHLC chart with left/right y-axes, 278
ohlc, open-high-low-close bar chart, 278
pbands, projection bands & oscillator, 299
pma2, quadratic PMA, 272
pmaimp2, PMA2 impulse response, 272
pmaimp, PMA impulse response, 272
pma, predictive moving average, 272
pnvi, positive/negative volume indices, 304
prosc, price oscillator and MACD, 304
psar, parabolic SAR, 302
r2crit, R-square critical values, 276
rsi, relative strength index, 304
sebands, standard-error bands, 299
sema, single EMA, 274
shma, simple Hull moving average, 292
sma, simple moving average, 270

INDEX 989

stbands, Starc bands, 299
stdev, length-N standard deviation, 295
stoch, stochastic, percent-K, percent-D, 304
t3, Tillson’s T3 indicator, 292
tcrit, t-distribution critical values, 276
tdistr, cumulative t-distribution, 276
tema, triple EMA, 274
tma, triangular moving average, 270
trix, TRIX oscillator, 304
vema, variable-length EMA, 304
vhfilt, Vertical horizontal filter, 304
wema, Wilder’s EMA, 285
wma, weighted moving average, 270
yylim, adjust left/right y-axes limits, 278
zema, zero-lag EMA, 292

MATLAB functions:
acext, autocorrelation sequence extension, 528
acf, sample autocorrelation function, 528
acmat, autocorrelation matrix from lags, 528
acsing, singular autocorrelation matrices, 528
advance, circular time-advance, 457
aicmdl, AIC and MDL criteria, 528
argen, AR process generation, 528
arma2imp, ARMA impulse response, 818
armaacf, ARMA autocorrelation function, 818
armachol, ARMA Cholesky factorization, 818
armafit, fit ARMA model to given covariance

lags, 818
armainf, ARMA Fisher information matrix, 818
armainnov, ARMA modeling by innovations

method, 818
armamf, ARMA by Mayne-Firoozan method,

818
armamyw, ARMA by modified Yule-Walker,

818
armasim2, ARMA process simulation, 818
armasim, ARMA process simulation, 818
avobs, average repeated observations, 218
binmat, binomial boost matrices, 263
binom, binomial coefficients, 170
bkwlev, backward Levinson recursion, 520
burg, Burg algorithm, 566
casc, cascade algorithm, 435
ccacov, CCA of covariance matrix, 843
cca, canonical correlation analysis, 844
cholgs, Cholesky factorization, 818
cholinnov, Cholesky factorization, 818
circonv, circular convolution, 448
cldec, classical decomposition method, 396
cmf, conjugate mirror filter, 433
combfd, comb/notch filter design, 378
compl, complementary filter, 400
convat, convolution a trous, 468
convmat, sparse convmtx, 154
datamat, data matrix from signal, 810
datasig, signal from data matrix, 810
daub, Daubechies scaling filters, 432
diffmat, difference convolution matrix, 170

dir2nl, direct form to normalized lattice, 528
dn2, downsample by factor of 2, 472
dn2, downsample by two, 457
dolph, Dolph-Chebyshev array, 742
dpd, dynamic predictive deconvolution, 580
dwf2, direct-form Wiener filter, 528
dwfilt2, direct-form Wiener filtering, 528
dwfilt, direct-form Wiener filtering, 528
dwf, direct-form Wiener filter, 528
dwtcell, cell array of DWT matrices, 453
dwtdec, DWT decomposition, 459
dwtmat, sparse DWT matrices, 450
ecgsim, ECG simulation, 374
emaerr, EMA error criteria, 250
emap, mapping equivalent lambdas, 249
emat, EMA basis transformation, 260
ema, exact EMA, 239
faest, FAEST algorithm, 911
filtdbl, double-sided filtering, 157
firw, FIR Wiener filter, 555
flipv, flip a vector, column, row, or both, 528
frwlev, forward Levinson recursion, 520
fwtmat, DWT transformation matrix, 455
fwtm, fast DWT, 453
fwt, fast wavelet transform, 457
glwf, adaptive lattice Wiener filter, 888
glwf, lattice Wiener filter, 528
hahnbasis, Hahn polynomial basis, 182
hahncoeff, Hahn polynomial coefficients, 182
hahnpol, Hahn polynomial evaluation, 182
hend, Henderson weights, 174
holterr, Holt error criteria, 265
holt, Holt’s exponential smoothing, 265
hpeq, high-order equalizer design, 384
ifwtm, inverse DWT, 453
ifwt, inverse fast wavelet transform, 457
imp2arma, impulse response to ARMA coef-

ficients, 818
iuwtm, inverse UWT in matrix form, 465
iuwt, inverse UWT, 467
kfilt, Kalman filtering, 627
ksmooth, Bryson-Frazier smoothing, 656
kwindow, Kaiser window, 400
lattfilt, lattice filtering, 528
lattice, lattice realization, 537
lattsect, single lattice section, 528
lattsynth, synthesis lattice filter, 528
latt, analysis lattice filter, 528
lev, Levinson recursion, 520
lms, LMS algorithm, 863
loadfile, numerical data from file, 159
locband, local bandwidth, 203
locgcv, CV and GCV evaluation, 206
locgrid, local uniform grid, 207
locpol, local polynomial modeling, 202
locval, interpolating local polynomials, 207
locw, local weighting functions, 198
loess, loess smoothing, 219

990 INDEX

lpbasis, local polynomial basis, 135, 246
lpdiff, differentiation filters, 151
lpfilt2, local polynomial filtering, 157
lpfilt, local polynomial filtering, 157
lpf, linear prediction filter from matrix L, 528
lpg, reflection coefficients from matrix L, 528
lpinterp, local polynomial interpolation, 152
lpls, least-squares linear prediction, 812
lpmat, local polynomial filter matrix, 157
lpmissing, filter matrix for missing data, 194
lprs2, closed-form Henderson filters, 186
lprs, local minimum-Rs filters, 174
lpsap, LMS adaptive predictor, 874
lpsm, local polynomial smoothing, 135
lpspec, LP spectrum computation, 528
lwfilt, lattice Wiener filtering, 528
lwf, lattice Wiener filter, 528, 557
madurbin, MA modeling by Durbin’s method,

818
mafit, fit MA model to given covariance lags,

818
mainnov, MA modeling by the innovations

method, 818
mema, multiple EMA, 260
mgslms, adaptive Gram-Schmidt with LMS,

892
mgs, adaptive modified Gram-Schmidt, 892
minorm, minimum-norm algorithm, 714
minrev, Musgrave’s minimum-revision filters,

415
modwrap, modulo-N wrapping of matrix, 447
mpencil, matrix pencil method, 837
music, MUSIC algorithm, 712
nlfilt, normalized lattice form, 528
obmatc, observability matrix, 528
obmat, observability matrix, 528
plotdec, plot DWT coefficients, 469
polval, polynomial evaluation in factorials,

182
rlev, reverse Levinson recursion, 520
rlpfilt, robust local polynomial filtering, 195
rlsl, adaptive lattice Wiener filter, 914
rls, RLS algorithm, 906
rmusic, reduced MUSIC, 718
sampcov, sample autocorrelation matrix, 22
scatt, direct scattering problem, 580
schur, Schur algorithm, 522
select, eigenvector selection, 712
shur1, Schur algorithm, 549
shur2, Schur algorithm, 549
sigav, signal averaging, 388
sigsub, signal and noise subspaces, 790
smadec, seasonal MA decomposition, 404
smat, seasonal MA filtering matrix, 404
smav, seasonal moving-average filters, 404
snap, snapshot matrix, 528
spike, spiking filter, 587
splambda, spline smoothing parameter, 335

splav, spline weighted averaging, 336
splgcv, spline smoothing GCV, 335
splmat, sparse spline matrices, 335
splsm2, robust spline smoothing, 335
splsm, spline smoothing, 335
splval, spline evaluation, 335
steermat, steering matrix, 740
stema, steady-state EMA, 246
stirling, Stirling numbers, 182
svdenh, SVD signal enhancement, 826
swhdec, seasonal Whittaker-Henderson, 419
toepl, Toeplitz data matrix, 826
trendma, trend moving-average, 395
up2, upsample by factor of 2, 472
up2, upsample by factor of two, 457
upmat, upsampling a filtering matrix, 403
upr, upsample a vector, 436
upr, upsample by a factor of 2r , 436
upulse, unit pulse, 240
up, upsampling, 374
ustep, unit step function, 215
uwtdec, UWT decomposition, 469
uwtmat, UWT matrices, 465
uwtm, UWT in matrix form, 465
uwt, UWT in convolutional form, 467
wcoeff, extract wavelet coefficients, 472
wcoeff, extract wavelet detail, 457
wdenoise, wavelet denoising, 462
wduwt, UWT denoising, 470
whgcv, Whittaker-Henderson GCV, 344
whgen, generalized Whittaker-Henderson, 344
whimp, Whittaker-Henderson impulse response,

352
whkdec, Whittaker-Henderson/Kaiser decom-

position, 407
whsm1, Whittaker-Henderson smoothing–L1

version, 360
whsm, Whittaker-Henderson smoothing, 344
wthr, wavelet thresholding, 472
x11dec, X-11 decomposition method, 409
yw, Yule-Walker method, 522
zmean, zero mean data, 792

matrix inversion lemma, 684, 705, 894, 923
matrix pencil, 722
matrix pencil methods, 833
maximally-flat filters, 187
maximum entropy, 528, 601
maximum likelihood (ML) method, 66
maximum likelihood estimator, 71
maximum likelihood method, 719
MDL criterion, 710
mean, 1
minimum roughness filters, 164
minimum variance filters, 142
minimum-norm method, 693, 713
minimum-phase filters, 77

alternative proof, 539
invariance of autocorrelation, 79

INDEX 991

minimum-delay property, 79, 80
minimum-phase property, 81
partial energy, 79
prediction-error filter, 83
signal models, 62, 82
spectral factorization, 82

missing data and outliers, 191
moments in smoothing filters, 146
momentum, 303
momentum, price rate of change, 305
Moore-Penrose pseudoinverse, 781
moving average convergence divergence, MACD,

306
moving average filters, 267

Butterworth, BMA, 285
EMA, exponential, 267
initialization, 280
predictive, PMA, 270
reduced lag, 288
SMA, simple, 267
TMA, triangular, 267
WMA, weighted, 267

multiple interferers, 737
Musgrave asymmetric filters, 412
MUSIC method, 709

natural cubic smoothing splines, 319
Newton’s method, 866
noise canceling, 870
noise reduction, 105

FIR averager, 111
first-order IIR smoother, 109
noise reduction ratio, 107
SNR in, 107
transient response, 108

noise reduction ratio, 55, 107
noise subspace, 691, 699, 707
nonlinear estimation, 476
normal distribution, 2
normal equations, 480, 516
norms, 765
notch and comb filters, 369
notch and comb filters with fractional delay, 375
NRR, see noise reduction ratio
nullity, 770

olympic track records, 848
optimum beamforming, 703
optimum filtering, 481
optimum linear combiner, 859
optimum linear estimator, 9
optimum portfolio theory

capital asset line, 751
capital asset pricing model, CAPM, 755
capital market line, 755
efficient frontier, 748, 752
generalized efficient frontier, 757
inequality constraints, 750

market portfolio, 755
Markowitz portfolio theory, 746
multiple constraints, 756
optimum mean-variance portfolios, 746
risk aversion, 750
risk premium, 755
security market line, 755
Sharpe ratio, 752
stock’s beta, 755
tangency portfolio, 752
two mutual fund theorem, 749

optimum prediction, 482
optimum signal separator, 9
optimum smoothing, 481
optimum unrestricted estimator, 10
orthogonal decomposition theorem, 14
orthogonal polynomial bases, 134
orthogonal polynomials, 544
orthogonal projection theorem, 16
orthogonal random variables, 14
orthogonality equations, 480
oscillators, 303

parabolic SAR, 294
parameter estimation

ML method, 66
Yule-Walker method, 67

parametric spectrum estimation, 60, 514
PARCOR coefficients, 22, 518
partial correlations, 22, 40
periodic signal extraction, 368
periodogram, 48
periodogram averaging, 51
phase vector, 601, 682, 697
Pisarenko’s method, 689, 876
polynomial interpolation filters, 135
polynomial predictive filters, 135
positive/negative volume indices, 307
power spectral density, 46
power spectrum, 46
predictive differentiation filters, 148
predictive filters, 135
predictive moving average filters, 270
price oscillator, 306
principal component analysis, 820
probability density, 1
projection bands, 294
projections, 766
pseudoinverse, 781
purely random signal, 45

QR factorization, 837
quiescent pattern control, 740

R-square indicator, 275
random number generation, 2
random signal models, 56

analysis filter, 61

992 INDEX

AR models, 513
AR, ARMA, MA models, 63
data compression, 60
first-order AR model, 63
linear prediction, 70, 509
minimum-phase, 62
signal classification, 60
signal synthesis, 58
spectrum estimation, 60
speech synthesis, 59
stability and stationarity, 63
synthesis filter, 58
Wold decomposition, 57

random signals, 44
deterministic, 56
filtering of, 51

random variable, 1
random vector, 5
random walk, 66
rank, 770
rank-one modification, 893
Rayleigh limit of resolution, 697
Rayleigh probability density, 92
Rayleigh quotient, 703
recursive least-squares algorithms, 904, 907, 911
reduced-lag moving average filters, 288
reduced-order method, 715
reduced-rank approximation, 786
reduced-rank signal processing, 825
reflection coefficients, 518
regression lemma, 12
regularization and kernel machines, 353
regularization filters, 346
regularization of ill-conditioned problems, 792
regularization, sparse, 793
regularization, Tikhonov, 792
regularized least-squares, 793
relative strength index, RSI, 304
reproducing kernel, 601
retrodirective beamforming, 737
Riccati difference equation, 502
RLS adaptive filters, 904, 905
RLS algorithm, 224
RLS Kalman gain, 906
RLS lattice

a posteriori, 900
a priori, 901
direct updating, 901
double-direct, 902, 913
error-feedback, 901

RLS rank-one modification, 893

sample covariance matrix, 20
sample covariance matrix statistics, 21, 726
Savitzky-Golay smoothing filters, 118
scattering matrix, 570
Schur algorithm, 42, 547
Schur recursion, 553

Schur-Cohn stability test, 541
seasonal

decomposition, 104
seasonal decomposition filters, 391
seasonal moving-average filters, 400
seasonal Whittaker-Henderson decomposition, 417
second-order statistics, 1
shift-invariance property, 44, 899, 908
sidelobe canceler, 861
signal averaging, 385
signal classification, 60, 566
signal enhancement, 105

noise reduction ratio, 107
SNR in, 107
transient response, 108

signal estimation, 476
signal extraction, 104
signal extraction, periodic, 368
signal models, see random signal models
signal separator, 872
signal subspace, 691, 699, 707
signal-to-noise ratio, 107
simulation of random vectors, 20
single, double, triple EMA, 252, 273
singular spectral analysis, SSA, 826
singular value decomposition, 765, 776
sinusoids in noise, 101

spectral analysis, 680
smoothing filters, 111, 112, 118

exponential, 111, 221
in spectroscopy, 118, 146
least-squares, 118
moment constraints, 146
polynomial data smoothing, 118
Savitzky-Golay, 118

smoothing parameter selection, 247
smoothing splines, 315
snapshot vector, 21
SNIR, 703
SNR, see signal-to-noise ratio
southern oscillation index, 846
sparse regularization, 793
sparse seasonal Whittaker-Henderson decompo-

sition, 419
sparse Whittaker-Henderson methods, 358
spatial smoothing method, 723
spectral factorization, 82

Wiener filter, 487
spectrum estimation

adaptive, 875, 878
AR estimates, 683
AR models, 514, 678
autocorrelation method, 514
classical Bartlett spectrum, 682
classical methods, 51
eigenvector methods, 689
ML estimates, Capon, 688
parametric, 514

INDEX 993

parametric models, 60
Pisarenko’s method, 689, 876
sinusoids, 680
windowed autocorrelation, 681
Yule-Walker method, 514

speech synthesis, 59, 566
spline filters, 329
splines, stochastic model, 331
splines, variational approach, 316
split Levinson algorithm, 532
split Schur algorithm, 551
stability and stationarity, 63
standard-error bands, 294
Starc bands, 294
stationarity, 45
steady-state EMA, 241
steepest descent, 223
steered array, 705
steering vector, 682, 697, 705
stochastic oscillator, 306
structured matrix approximations, 830
subspaces, bases, projections, 766
sunspot data, 88
sunspot numbers, 847
superresolution array processing, 694

adaptive, 878
Bartlett beamformer, 698
conventional beamformer, 695
LP spectrum estimate, 698
maximum likelihood method, 719
ML beamformer, 698
spatial smoothing, 723

SVD and least-squares problems, 783
SVD and linear equations, 770
SVD and signal processing, 805
SVD signal enhancement, 825
synthesis filter, 58, 535

technical analysis in financial markets, 267
thricing, 254
Tikhonov regularization, 792
Tillson’s T3 indicator, 288
time constant, 113
time-series forecast indicator, 270
transient response

in noise reduction filters, 108
TRIX oscillator, 309
Tukey’s twicing operation, 254
twicing, 254
twicing and zero-lag filters, 255

UL factorization, 94
unbiased estimator, 3
uncorrelated random variables, 14
uniform probability density, 2
unitarity of scattering matrix, 577

variable and adaptive bandwidth, 211

variable-length EMA. VEMA, 309
variance, 1
vector and matrix norms, 765
vector space of random variables, 14
vertical horizontal filter, VHF, 305
Vondrak filters, 341

wavelets
a trous operation, 442
analysis and synthesis filter banks, 443
analysis and synthesis with UWT, 464
decimated and undecimated filter banks, 463
denoising, 459
dilation equations, 430
discrete wavelet transform, 446
DWT in convolutional form, 456
DWT in matrix form, 448
fast DWT, 453
Haar & Daubechies scaling functions, 426
inverse DWT, 451
inverse UWT, 465
Mallat’s algorithm, 441
MATLAB functions, 472
multiresolution analysis, 425
multiresolution and filter banks, 441
multiresolution decomposition, 428, 458
orthogonal DWT transformation, 455
periodized DWT, 450
refinement equations, 430
scaling and wavelet filters, 432, 436
symmlets, 433
UWT denoising, 469
UWT matrices, 465
UWT multiresolution decomposition, 468
UWT, undecimated wavelet transform, 463
visushrink method, 462

waves in layered media, 568
weighted local polynomial modeling, 197
weighted polynomial filters, 164
Welch method of spectrum estimation, 51
WEMA, Wilder’s EMA, 284
white noise, 45, 54

filtering of, 54
whitening filter, 61, 511
Whittaker-Henderson smoothing, 341
Wiener filter

adaptive, 862
beamforming, 705
covariance factorization, 497
FIR filter, 481
gapped functions, 495
Kalman filter, 490
lattice realizations, 553
linear prediction, 509, 510
mean-square error, 488
orthogonal basis, 553
prewhitening, 484
spectral factorization, 487

994 INDEX

stationary, 484
transfer function, 488
unrealizable, 488

Wiener process, 66
Wold decomposition, 57

Yule-Walker method, 67, 514, 522, 561

zero tracking filters, 879
zero-lag EMA, 288
zero-lag filters, 255

	html-cover-2up
	10-oct-BK-2up-normal

