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1.1 Information, Computation, and 
Communication 

 

Conceptually, computing can be seen as:  USER ⇔ COMP.SYS ⇔ ENVIRONMENT 

Work has become more abstract. Workers no longer make physical contact with the objects with 
which they deal; rather, they accomplish tasks through the medium of an information system. 

[It is also often true that once a job is computerized it is made routine and unchallenging, while at 
the same time it demands focused attention and abstract comprehension. Needless to say, that is a 
bad combination!] 

If any of the players is mobile relative to each other during the time of system use, we are dealing 
with an instance of mobile computing. Three types of mobility: mobility of the user; mobility of 
the device; and, since they can be accessed from any point, mobility of services. P.25, [Brown et 
al. 2002]. 

 

System is distributed if it consists of independent components, connected by communication 
links. 

Distribution often does not matter from the viewpoint of the task at hand; it matters only from the 
system developer’s viewpoint. However, there are instances where system distribution alters the 
way the task is performed. 

1.1.1 Functions and Processes 

Relations 
For two sets of elements, A and B, the Cartesian product A and B is defined as the set of pairs of 
their elements: 

{ }BbAabaBA ∈∧∈=× ),(  

A unary operation R on a set A is defined to be a subset of A, R ⊆ A. An n-ary relation R on A, 
for n > 1, is a subset of the n-fold Cartesian product, R ⊆ A × A × … × A. Binary relations play a 
particularly important role, and we often write R(a, b) or aRb to mean the same as (a, b) ∈ R. For 
example, in the case of ordering relations we write a < b rather than (a, b) ∈ <. 

There are several properties that apply to binary relations. Let R denote any binary relation on a 
set A. We say: 

R is reflexive  if (∀ a ∈ A) (aRa) 

R is symmetric  if (∀ a, b ∈ A) (aRb ⇒ bRa) 

R is antisymmetric if (∀ a, b ∈ A) [(aRb ∧ a ≠ b) ⇒ ¬(bRa)] 
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R is connected  if (∀ a, b ∈ A) [(a ≠ b) ⇒ (aRb ∨ bRa)] 

R is transitive  if (∀ a, b, c ∈ A) [(aRb ∧ bRc) ⇒ (aRc)] 

Of course, not all binary relations have all of the above properties. For example, a partial 
ordering of a set A, usually denoted by the symbol ≤, is a binary relation on A which is reflexive, 
antisymmetric, and transitive. A partially ordered set, or poset, is the ordered pair (A, ≤). 

Functions 
Let R be an (n + 1)-ary relation on a set A. The domain of R is defined to be the set 

dom(R) = {a | ∃b[(a, b) ∈ R]} 

The range of R is defined to be the set 

ran(R) = {b | ∃a[(a, b) ∈ R]} 

 

If n = 1, so that R is a binary relation consisting of ordered pairs, then dom(R) is the set of first 
components of members of R, and ran(R) the set of second components. Likewise, if n > 1, the 
elements of R are still ordered pairs, only now the domain of R consists not of elements of A but 
of the n-fold product A × A × … × A. 

A function is a relation that uniquely associates members of one set with members of another set. 
More formally, an n-ary function on a set A is and (n + 1)-ary relation, R, on A such that for every 
a ∈ dom(R) there is exactly one b ∈ ran(R) such that (a, b) ∈ R. As before, if R is an n-ary 
function on A and a1, a2, …, an, b ∈ A, we write R(a1, …, an) = b instead of (a1, …, an, b) ∈ R. 

We write 

f : A → B 

to denote that f is a function such that dom(f) = A and ran(f) ⊆ B. Notice that if f : A → B, then 
f ⊆ A × B. A function is therefore a many-to-one (or sometimes one-to-one) relation. We also say 
that f is a mapping from one domain A into another domain B. Each domain represents a set of 
possible values, with A being the set of possible values upon which the function operates and B 
the set of possible values that can be produced by the function. 

In the correct notation, the symbol f or f(⋅) refers to the function itself, while f(x) refers to the 
value taken by the function when evaluated at a point x. The dot (⋅) is meant to indicate that the 
function f takes a single argument, i.e., it is a unary function. 

Processes 
A process is a naturally occurring or designed sequence of operations or events, possibly taking 
up time, space, expertise or other resource, which produces some outcome. A process may be 
identified by the changes it creates in the properties of one or more objects under its influence. 

A function may be thought of as a computer program or mechanical device that takes the 
characteristics of its input and produces output with its own characteristics. Every process may be 
defined functionally and every process may be defined as one or more functions. 
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Figure 1-1. The histogram of the number of arrivals per unit of time (τ = 1) for a Poisson 
process with average arrival rate λ = 5. 

An example random process that will appear later in the text is Poisson process. It is usually 
employed to model arrivals of people or physical events as occurring at random points in time. 
Poisson process is a counting process for which the times between successive events are 
independent and identically distributed exponential random variables. For a Poisson process, the 
number of arrivals in any interval of length τ is Poisson distributed with parameter λ⋅τ. That is, 
for all t, τ > 0, 

{ } ,...1,0,
!
)()()( ===−+ − n

n
entAtAP

nλττ λτ    (1.1) 

The average number of arrivals within an interval of length τ is λτ (based on the mean of the 
Poisson distribution). This leads to the interpretation of λ as an arrival rate (average number of 
arrivals per unit time). An example of the Poisson distribution is shown in Figure 1-1.  

This model is not entirely realistic for many types of sessions and there is a great amount of 
literature which shows that it fails particularly at modeling the LAN traffic. However, such 
simple models provide insight into major tradeoffs involved in network design, and these 
tradeoffs are often obscured in more realistic and complex models. 

Markov process is a random process with the property that the probabilities of occurrence of the 
various possible outputs depend upon one or more of the preceding outputs. 

1.1.2 Information and Entropy 
Information theory considers the transmission of messages from source to receiver. Claude E. 
Shannon (1916-2001), who invented information theory in 1948, viewed information as being the 
resolution of uncertainty. It is the part of a message that is unknown to and cannot be foreseen by 
the receiver. “Information” in information theory is related to the element of surprise on behalf of 
the receiver, which is result of uncertainty, or unexpectedness. This concurs with the intuitive 
notion that the whole idea of information is to “inform” or transfer knowledge. If you are told 
something that you already know, you are not given information—there is nothing new added to 
your store of knowledge. Moreover, even if you are told something that you can deduce from 
other things that you know, you are not given information. The essence of information is in the 
novelty—the contrasting from that previously known, and from that which may be expected 
based upon what is formerly known. 
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 Sources:

Receiver

Book 

Die 

Coin 

{Head, Tail}

{1, 2, 3, 4, 5, 6}

Letters, Letter-combinations, Words, …

 
Figure 1-2. Example information sources. 

Representation 
Symbols represent physical objects or abstract concepts. For example, the pips on the six sides of 
a die can be represented as {“1”, “2”, “3”, “4”, “5”, “6”} or {“I”, “II”, “III”, “IV”, “V”, “VI”} or 
{“001”, “010”, “011”, “100”, “101”, “110”} or {“one”, “two”, “three”, “four”, “five”, “six”}. All 
of these represent differently one aspect of a die: the pip count on different sides. Rolling a die 
can be considered an information source generating a sequence of symbols or events. Example 
information sources are given in Figure 1-2. 

How is it possible for a lower level process to use smaller number of symbols to communicate 
larger number of symbols of a higher-level? – Only by reducing the rate. (Compute the entropy of 
each level/source.) 

If a “higher-level” process generates more different symbols, but at a lower rate than a “lower-
level” process (with less number of different symbols, but higher rate), and communicates with 
another higher-level process, then the higher-level process is represented in terms of the lower 
one. 

Information Measure 
The measure of information must lie in the amount of surprise that resides in the unexpected or 
uncertain portion of the data received. The more unexpected the information content of a 
message, the greater the surprise, and hence more information. 

As the unit of information we take the simplest uncertain event with only two outcomes, for 
example, the single throw of a fair coin. The outcome of such an even is a binary choice, the 
answer to a single “yes” or “no” question. This can be represented with a single binary digit or 
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bit1, which can take the values “0” or “1.” Each “information bit” is the answer to a single yes/no 
question, posed according to the best possible strategy for the given situation. Obviously, the best 
possible strategy depends on what the recipient already knows. 

For example, assume that we are receiving a stream of messages from tossing a biased coin such 
that the “Head” outcome is much more likely than “Tail.” If we do not know about the bias, it is 
equally profitable, on the average, to ask whether it is “Tail” as is “Head.” However, if we know 
about the bias, it is more profitable to ask first whether the outcome is “Head” since this saves us 
lots of questions, on the average. 

The average information per message from an information source is called the source’s entropy. 
It is the minimum number of yes/no questions required on the average to arrive at the given data, 
knowing everything that we do know. If a source M emits messages m1, m2, …, mn, with 
probabilities P(m1), P(m2), …, P(mn), respectively, then the entropy H(M) of the source is the 
average number of binary digits per message2: 

 H(M) =  ( )∑ = ⋅− n
i ii mPmP1 2 )(log)(  = ( ))(1log)( 21 i

n
i i mPmP ⋅∑ =  bits per symbol (1.2) 

(We assume that each message contains a single symbol.) This minimum average number of 
information bits (entropy) has real world significance, since it determines the minimum required 
capacity for communication and storage of information. The number of bits of information is the 
fundamental uncertainty associated with it. 

Interestingly, the Shannon’s recommended strategy implied by (1.2) is to choose those questions 
to ask for which the answers “yes” and “no” are about equally likely. For example, when 
determining the result of spinning a roulette wheel with 38 equiprobable choices, it is not the best 
strategy to ask whether an individual number, such as “17” appeared, since the probability of 
obtaining “yes” is only 1/38, whereas probability of “no” is 37/38. On the other hand, asking 
whether the result is one of the first 19 numbers gives “yes” with the probability ½ (same for 
“no”). In the former case, one needs to ask 19 yes/no questions, on the average. Conversely, in 
the latter case, one always obtains the right answer by asking exactly 6 yes/no questions. 

The source is modeled as a random, independent identically distributed (iid) symbol sequence. 

Ergodic process (Pierce, p.81) – probabilities do not change over time 

Ergodic: of or relating to a process in which a sequence or sizable sample is equally 
representative of the whole (as in regard to statistical parameter) 

— from PRINCIPIA CYBERNETICA WEB (http://pespmc1.vub.ac.be/ASC/ERGODIC.html) 

 

                                                      
1 The term “bit” was coined by statistician John W. Tukey (1915-2000) in 1949 during a lunchtime 
conversation at Bell Labs. He is also credited with introducing the terms “byte,” “software,” and 
“cepstrum” (the Fourier transform of the logarithm of the Fourier transform). 

2 In case your calculator does not support binary logarithms, )2(log
)(log)(log

10
102

xx =  
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Figure 1-3. Huffman code tree for a biased die. See text for details. 

Source Coding 
Source coding is also called data compression. 

Let us assume that the source generates symbols by rolling a die. If the die is unbiased, the 
probability distribution of symbols is uniform, P(Xi) = 1/6 ≈ 0.1667; i = 1, …, 6. The source 
entropy in this case is H(M) ≈ 2.585. 

Let us now assume that the die is biased, e.g., by embedding a concealed piece of metal, so that 
the new probabilities are as shown in Figure 1-3, in the lower left corner where the symbols are 
listed on the left and the probabilities are shown in parentheses. The source entropy in this case is 
H(M′) ≈ 1.664. 

If we merely assigned a binary number to each symbol, we would need 3 bits to transmit each 
symbol. How can we encode the symbols more efficiently? One way is to use Huffman coding, as 
illustrated in the following example. 

 

Example 1.1 Huffman Code 

We start by rank-ordering the messages from least probable to most probable, see Figure 1-3. In 
constructing the code, we first find the two lowest probabilities, in our case 0.01 for symbol “2” and of 
the three symbols with the probability 0.05 we pick arbitrarily “1.” We draw lines to the point marked 
(0.06), which is the probability of either “2” or “1.” From now on, we disregard the individual 
probabilities connected by the lines and look again for the two lowest probabilities, which are 0.05 for 
both “3” and “4.” Again draw lines to the right to a point marked (0.10), which is their sum. The 
lowest remaining probabilities are now 0.06 and 0.10, so we draw a line connecting them, to obtain a 
point marked (0.16). We proceed thus until paths run from each symbol to a common point to the right, 
the point marked (1.00). 

To obtain the codes for the symbols, we label each lower path going to the left from a point 1 and each 
upper path 0. The code for a given symbol is then the sequence of digits encountered going left from 
the common point 1.00 to the symbol in question. The codes are listed in Table 1-1. 
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Table 1-1 Summary of Huffman code for a biased die. P is the probability of the symbol, N 
is the number of digits in its codeword, and N⋅P is the average number of bits needed to 
encode the particular symbol. 

Symbol P Code N N⋅P 
"1" 0.05   "0001" 4 0.20 
"2" 0.01   "0000" 4 0. 04 
"3" 0.05   "0010" 4 0.20 
"4" 0.05   "0011" 4 0.20 
"5" 0.25   "01" 2 0.50 
"6" 0.59   "1" 1 0.59 

Average number of bits per symbol: 1.73 
 

Although most symbols require four binary digits to per symbol, the savings comes from the fact that 
they occur very rarely and we use only one or two digits for the most frequent symbols. In Table 1-1, 
the probability of a symbol times the number of digits in the code gives the average number of digits 
per symbol in a long message due to the use of that particular symbol. If we add the products of these 
probabilities, we obtain the average number of digits per symbol, which is 1.73. This is a little larger 
than the entropy per symbol, which was given above as 1.664, but it is smaller number of digits than 
the 3 digits per symbol we would have used if we had merely assigned a different 3-digit code to each 
symbol. 

 

Comments 
As already pointed out, the amount of information a source generates depends on what the 
observer chooses to watch and on the observer’s prior knowledge. Thus, there is a built-in 
element of subjectivity in the process of information measurement and there is no absolute 
amount of entropy associated with information source. 

Some authors, e.g., Lucky [1988: p. 9] contend that creation of information does not require 
natural resources. This author respectfully disagrees; cf. Maxwell’s daemon [Leff & Rex 1990; 
2003]. But, see also [Landauer 1991] on the Landauer’s principle and the cost of forgetting. The 
idea is that information invariably encodes on real, physical objects, ranging from wooden 
abacuses (papyrus) to sheets of paper to semiconducting computer chips to neurons in the brain. 
Being physical, information is subject to the laws of physics. Landauer in 1961 succeeded in 
locating the precise point in any computation in which energy is converted to heat and carried 
away as waste. 

See Technomanifestos, p. 16, Wiener’s comment “information is unsuited to being commodity.” 
Also, see [von Baeyer 2003: p. 25]. Cf. A. Boucouvalas, value of information with time. 

[ Shouldn’t human limitations of 50 bps be seen in this (see section on Representation) light? I.e., 
the conversion is not proper, since humans can generate many high-level symbols although at a 
particular moment they may be generating only 50 bps. ] 

Information theory started with a simple structure—sources and channels. There were simple 
examples—iid sources, binary channels and Gaussian channels. The structure has grown, but 
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Figure 1-4. Shannon’s diagram of the communication process. 

almost as a tree—it displays chunking property, hierarchical abstraction, well known in cognitive 
psychology. One can still start at the bottom and quickly get anywhere. As the old branches die 
off and new ones start, they do not affect each other or the rest of the tree—the alterations are 
strictly confined at the conceptual level. 

Re: complexity, see Pierce on complexity of melodies and recognizability of author's style, 
whether in music, poetry, or painting. Maximum information content would be that of random 
noise, but they seek a simple but unique pattern. 

1.1.3 Communication 
Ideally, a channel should accept messages at the input, transmit them, and deliver unaltered at the 
output. An important concept is the rate of information transmission. Every physical channel has 
a finite upper limit on the amount of information that it can transmit per unit of time. 

Another important aspect is noise—noise reduces the channel capacity and, moreover, does do in 
a non-deterministic way. In other words, some transmitted messages will not reach destination 
and we cannot know beforehand which ones will be impaired nor how. 

The overall communication process suggested by Shannon’s theory of information works as 
follows (Figure 1-4). First, we should seek by a complex encoding to represent the message from 
the source by the smallest number of binary digits possible—the source’s entropy. This will 
produce a nonredundant stream of binary digits. This process is usually called “compression” of 
information. The reason for compression is to adjust the messages to the limited channel 
capacity—the smaller the messages, the more of them can be transmitted per unit of time. We are 
then faced with the problem of transmitting a nonredundant stream of binary digits without error 
over a noisy channel. To do this, we encode the nonredundant message digits into a redundant 
stream of signal digits (symbols), which is called error-control encoding. Thus, we remove 
redundancy from the messages produced by the message source and then add the right sort of 
redundancy to produce signal with immunity against noise of a particular channel type. Shannon 
has shown that it is possible to achieve error-free communication by adding suitable redundancy 
[Shannon & Weaver 1949]. 

One can relatively easily admit that removing redundancy from source information by source 
coding helps communication, since it reduces the quantity of data that needs to be transmitted 
without losing valuable information. However, adding new redundancy may at first look 
suspicious. Even if this can be admitted as a means to harden the signal against noise 
impairments, the question arises of the best way of adding the redundancy in channel coding, in 
the sense that it guarantees achieving maximum transmission capacity in the presence of noise. 
An analogy shown in Figure 1-5 may help in understanding this. Here, we remove the pods 
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Beans 
(Redundancy = pods) 

Beans 
(No redundancy) 

Beans 
(No redundancy)

Beans 
(Redundancy = can)

Erroneous 
Communication Channel

Source 
Coding 

Channel
Coding

Figure 1-5. An analogy for redundancy manipulation in communication. Bean pods are not 
the “right” kind of redundancy for bean transport, whereas metal cans are. See text for 
details. 

(source coding) in order to ship as many beans as possible. We then add cans to protect the beans 
from damage in transportation. 

If process (channel) loss takes known form or can be modeled, we can represent the loss as an 
additional variable (noise). Suppose that we transmit a sequence of bits over the channel, and 
errors occur where marked “X”: 

Source Data: 0  1  0  0  1  1  0  0  1  0  1  1  0  1  1 
Errors: X_________________X_____X__________________ 
Received Data: 1  1  0  0  1  1  1  0  0  0  1  1  0  1  1 

In order to reconstruct the original data we would have to know the error locations. These could 
be represented as a sequence of bits with 0 for “no error” and 1 for “error,” as follows: 

Error Locations: 1  0  0  0  0  0  1  0  1  0  0  0  0  0  0 
If we only knew this sequence, we would know which bits had to be changed (inverted), and we 
could repair the received data. It is the result of the uncertainty added during transit by the 
communications channel. How much information does it take to learn this sequence and repair 
the data? We can quantify this by employing entropy. In the case of independent binary symbols, 
we obtain: 

H(N) = − [Pe ⋅ log2(Pe) + (1−Pe) ⋅ log2(1−Pe)] 

where Pe is the probability of the symbol 1, representing an error. [We assume that Pe is the same 
regardless of whether 0 or 1 is sent; this is called binary symmetric channel.] 

It is as if the received binary digits are “missing” H(N) bits of information. This leads us to an 
intuition about the channel capacity to transmit information. For a binary symmetric channel with 
independent error events the capacity is: 

C = 1 − H(N) = 1 + Pe ⋅ log2(Pe) + (1−Pe) ⋅ log2(1−Pe) bits per binary digit  (1.3) 

This intuition will be substantiated more formally below. 
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Figure 1-6. Information transmission. (a) The binary symmetric channel with error
probability Pe. (b) General discrete channel. 

“0" 

The overall communication process suggested by Shannon’s theory of information works as 
follows. First, we should seek by a complex encoding to represent the message from the source 
by the smallest number of binary digits possible—the source’s entropy. This will produce a 
nonredundant stream of binary digits. This process is usually called “compression” of 
information. We are then faced with the problem of transmitting a nonredundant stream of binary 
digits without error over a noisy channel. To do this, we encode the nonredundant message digits 
into a redundant stream of signal digits (symbols), which is called error-control encoding. The 
natural redundancy of the source bits is seldom suited to provide the specific protection we need 
at the channel. Thus, we remove redundancy from the messages produced by the message source 
and then add the right sort of redundancy to produce signal with immunity against noise of a 
particular channel type. Shannon has shown that it is possible to achieve error-free 
communication by adding suitable redundancy [Shannon & Weaver 1949]. 

Capacity of a Noisy Discrete Memoryless Channel 
Shannon defined the capacity of a channel as its intrinsic ability to convey information. We 
consider a simple noisy communication system where transmission of a discrete symbol is 
independent of what has gone before. We say that the channel is memoryless, i.e., the probability 
of receiving a particular symbol given that another symbol is transmitted is independent on what 
symbol(s) were transmitted previously. 

Let us consider a system for transmitting the information about the outcomes of rolling a dice, 
Figure 1-6(b). At the left we have a number of switches labeled with the digits. To the right we 
have a number of lights, again labeled with the digits. When the experimenter at the transmitter to 
the left sets the switch, one of the bulbs lights up at the receiver to the right. If our 
communication system were noiseless, setting the switch 1 would always light the 1 bulb, and so 
on. However, in an imperfect or noisy communication system, setting the 3 switch, for instance, 
may light any of the bulbs to the right, as shown by the lines radiating from the 3 switch in Figure 
1-6(b). We write P(Yj | Xi) as the conditional probability that the bulb j will light given that the 
switch i is set. 
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Figure 1-7. (a) Average information of the whole communication system seen by Observer 3. 
(b) Diagrammatic summary of relations between various averages of information. 

We know from Eq. (1.2) that the entropy of the source X, the rate at which the message source 
generates information, is 

H(X) = ( )∑ = ⋅− n
i ii XPXP1 2 )(log)(  

We can regard the output of the receiver as another source, Y, as seen by Observer 2 in Figure 
1-7. The number of lights need not be equal to the number n of switches, but we will assume that 
it is, so the entropy of the output at the receiver is 

H(Y) = ( )∑ = ⋅− n
j jj YPYP1 2 )(log)(  

We know that H(X) depends only on the input of the communication channel and H(Y) depends 
both on the input to the channel and on the errors made in transmission. 

Now imagine an observer that can simultaneously see both the transmitter and the receiver 
(Observer 3 in Figure 1-7(a)) and detect how often certain combinations of X and Y occur; say, 
how often 3 is sent and 4 is received. Or, knowing the statistics of the message source and the 
statistics of the noisy channel, we can compute such probabilities. From these, we can compute 
the average uncertainty of the communication system as a whole by joint probabilities of 
occurrence of the combination of input and output symbols: 

H(X, Y) = ( ) ( )( )ji
n
i

n
j ji YXPYXP ,log, 21 1 ⋅∑ ∑= =−  

Since a symbol at the transmitter can result in different symbols at the receiver, we can think of 
each transmitter symbol as a source. Thus, given that we know the input to the channel is the 
symbol Xi, we can define conditional or relative entropy like so 

H(Y | Xi) = ( )∑ = ⋅− n
j ijij XYPXYP1 2 )|(log)|(  

and for any channel input, we multiply the uncertainty for a given input by the probability that 
that input will occur and sum over all inputs 

H(Y | X) = ( ) ( ) ( ) ( ) (( )ijij
n
i

n
j i

n
i ii XYPXYPXPXYHXP |log|| 21 11 ⋅⋅−=⋅− ∑ ∑∑ = == )  

Finally, we have that the combined average information of the whole system is 
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H(X, Y) = H(X) + H(Y | X)     (1.4) 

That is, the uncertainty of sending Xi and receiving Yj is the uncertainty of sending Xi plus the 
uncertainty of receiving Yj when Xi is sent. 

We can similarly derive 

H(X, Y) = H(Y) + H(X | Y)     (1.5) 

which means that the uncertainty of receiving Yj and sending Xi is the uncertainty of receiving Yj 
plus the uncertainty that Xi was sent when Yj was received. Here, H(X | Y) is the uncertainty as to 
which symbol was transmitted when a given symbol is received. 

Figure 1-7(b) summarizes the relations between various entropies in the system. One important 
quantity is the average mutual information between the source X and receiver Y, I(X; Y), which is 
the average information that is successfully conveyed. As shown, 

I(X; Y) = H(X) − H(X | Y) = H(Y) − H(Y | X)    (1.6) 

We can read this equation to mean that the average mutual information (known to both source 
and receiver) is what is known (statistically) to one side minus what is lost in transmission due to 
the noise. The quantity H(X | Y), the average amount of information lost because of noise, is 
called equivocation of the communication channel. One possible interpretation of the 
equivocation is that it is the additional average information needed for correction of channel 
errors. The average uncertainty about the received symbol when the transmitted symbol is known, 
H(Y | X), is known as the average error due to channel noise. 

If we take I(X; Y), H(X), and H(X | Y) as entropies in bits per second, then I(X; Y) represents the 
rate of transmission of information over the channel. From Eq. (1.6) the rate of transmission of 
information is the source rate or entropy less the equivocation. Or, in other words, it is the 
entropy of the message as sent less the uncertainty of the recipient as to what message was sent. 

The channel capacity C is the maximum rate of transmission of information over the channel; 
hence it is the maximum value of I(X; Y) with respect to the variations of the transmitted symbol 
probabilities P(Xi). In other words, we keep choosing the message source so as to make the 
transmission rate as large as possible for a given channel. Of course, if the entropy of a source X 
exceeds the channel capacity, the excess information, H(X) − C, is lost in transmission by default. 

The simplest case, but a very important one, is the binary symmetric channel (BSC) for which the 
probability of an error is Pe and of correct transmission is (1 − Pe), regardless of what bit (0 or 1) 
is sent (Figure 1-6(a)). The capacity of such a binary channel can be easily derived analytically, 
as given by Eq. (1.3) above. 

We notice that, in general, finding the maximal value of I(X; Y), i.e., the channel capacity, is very 
difficult to perform. We will see an example in Chapter 3. 

Channel Coding for Error-Control 
Shannon’s fundamental theorem for a noisy channel states that 

Let a discrete channel have a capacity C and a discrete source the entropy per second H. If H < C there 
exists a coding system such that the output of the source can be transmitted over the channel with an 
arbitrary small frequency of errors (or an arbitrary small equivocation). If H > C it is possible to 



Ivan Marsic • Rutgers University 14

 Communication
Channel 

Communication
Channel Blocks:
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Figure 1-8. Bits vs. blocks: It is only the transmitter and receiver mutual convention—there 
is no difference in their appearance on the channel. 

encode the source so that the equivocation is less than H − C + ε, where ε is arbitrarily small. There is 
no method of encoding which gives an equivocation less than H − C. 

Notice that the theorem does not promise eliminating the errors altogether—it only says that the 
error rate can be made vanishingly small—even then the errors could still happen, but with an 
extremely low probability. It also does not specify how to develop the code with such a property. 

Clearly, considering individual symbols cannot help us detect occurrence of an error. Individual 
symbols are atomic and cannot contain any other information except about self. For example, for 
the binary channel in Figure 1-6(a), it is impossible to detect an error by looking just at the last 
received binary digit. To do so, we need to introduce redundancy. Redundancy essentially means 
that instead of considering the transmission of individual symbols, we consider the transmission 
of blocks or sequences of symbols, Figure 1-8. In such a block, some symbols carry the 
information from the transmitting source and other symbols carry information about the source-
information-carrying symbols. The latter are called check symbols, see Figure 1-9(b). The check 
symbols help the receiver to detect errors inside their blocks and perhaps even correct it or the 
receiver could notify the transmitter that the block was garbled, and ask for a retransmission. 

For the sake of simplicity, assume that we deal with binary symbols, 0 and 1. A sequence of 0’s 
and 1’s of length n is called (binary) n-block. Each transmitted n-block is made up of r binary 
digits representing the source messages and the remaining (n − r) are check digits. There are 2n 
possible different n-blocks shown as points of sets in Figure 1-9(c). We need only 2r different 
n-blocks to transmit all possible source sequences of length r. Since r < n, the transmitter and 
receiver can agree and select 2r different n-blocks as valid sequences, also called codewords. A 
dictionary of codewords is called code. The remaining 2n − r sequences they declare as invalid. Of 
course, the transmitter will always send only codewords, so when receiver receives an invalid n-
block, it knows that an error occurred and can try to repair it or request retransmission. This is 
illustrated in Figure 1-10. 

Code is established by a prior mutual agreement of the transmitter and receiver and a copy of it (a 
“dictionary”) is placed at both of them. This is known as a priori shared context—a prerequisite 
for any communication to happen. 

Notice also that channel coding effectively reduces the source transmission rate, since check bits 
consume some of the channel capacity. The ratio of redundant bits to information bits, (n − r)/r, is 
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Figure 1-9. (a) Channel without encoding transmits source symbols only. (b) Channel
encoding aggregates symbols into blocks (codewords) and introduces additional (check)
symbols that carry information about blocks of source symbols. (c) Codeword assignment
problem. 

called the redundancy of the code, and the ratio of information bits to total bits, r/n, is called the 
code rate. The code rate is a measure of how much additional capacity is required to transmit 
information at the same rate as without channel coding. 

It is important to notice that there is no need to think of particular bits being designated check 
bits, and other bits information bits. All that matters is that both the transmitter and receiver use 
the same dictionary of codewords, defined by mapping such as one in Figure 1-9(c). 

For given n and r there are a total of 
  possible combinations of codeword assignments, i.e., 

different codes. For example, for n = 7 and r = 4, 










r

n

2
2

!16)!16128(
!128

16
128

2
2

4

7

⋅−
=








=










  ≈ 6.612 × 1034, 

obviously a huge number. The codewords in Figure 1-9(c) are assigned randomly. A key question 
is: Should we use any particular criteria for making up the dictionary? Or, is there any benefit of 
selecting one set of n-blocks for codewords as opposed to another set? To answer this, consider a 
code in Figure 1-11. For a given codeword, transmission errors can produce only another n-block 
since we are dealing with a discrete channel. In other words, the garbled message must lie on one 
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Figure 1-10. Channel coding helps the receiver detect errors. Notice that both transmitter
and receiver have a copy of the codeword dictionary, i.e., the code. (Transmitter substitutes
the codewords as per Figure 1-9(c).) 

of the vertices of the unit cube in Euclidean n-dimensional space—it cannot lie at any other point 
in the space. Therefore, the distance between two vertices is measured as the minimum number of 
edges that must be traversed on a path from one vertex to another. This is called Hamming 
distance and it basically counts the number of bits in which two n-blocks differ. For instance, 
dH(101, 011) = 2, while dH(101, 010) = 3. 

The minimum distance of a code dmin is the minimum of the 
  Hamming 

distances between any two nonidentical codewords of the code. [Notice that dH(cwi, cwj) ≥ 1 for 
any two codewords cwi, cwj, i ≠ j, so as soon as a distance of 1 is detected, we know that dmin = 1.] 
For the code shown in Figure 1-11(a), dmin = 2. As illustrated in Figure 1-11(b), any single-digit 
error will lead to an illegal n-block, so the receiver will be able to detect all the single-digit errors. 
Conversely, the minimum distance for the code in Figure 1-9(c) is one, since it takes only one bit 
to change the codeword 010 into 110 or 011. In this case, the receiver cannot detect all single-
digit errors. Clearly, some codes are better than others.  

( 122
2

2 1 −⋅=







 − rr
r )

While single-error detection is possible with a code whose dmin is two, single-error correction is 
only possible with a code whose minimum distance is at least three. One example is shown in 
Figure 1-11(c). If a maximum of one error is assumed to occur in the transmission of a single 
codeword, then the error can be found and the receiver can determine exactly which codeword 
has been sent. The codeword which differs from the received n-block in the fewest number of bits 
is assumed to be the one transmi8tted. (Such receiver is sometimes termed a “maximum-
likelihood” receiver.) However, the correcting ability disappears if two errors occur in the same 
codeword. It can be shown that for a given positive integer t, if a code satisfies dmin ≥ 2t, then all 
errors of (t − 1) bits or less can be corrected and errors of t bits can be detected but not, in general, 
corrected. 
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(0,1,0)
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(0,0,0)
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(1,1,0)

(0,1,1)

Figure 1-11. (a) A code with four codewords of length three, indicated by black circles. (b) 
Three possible 3-blocks formed by a single error in the transmission of the codeword 101.
(c) A code with two codewords of length three and six possible 3-blocks formed by single or 
double error in the transmission of the codeword 000. 

Code Size vs. Noise 
Longer codes are better than shorter codes and the reason is as follows. When designing a code, 
we need to decide on code redundancy, (n − r)/r, and code rate, r/n. This in turn is based on the 
decision on how many errors the code should be able to detect/correct and with what certainty. 
Errors are probabilistic events and to tell anything certain about them requires a large number of 
observations (to validate the relative frequencies and ultimately ensure that the law of large 
numbers takes effect). An analogy with a log raft in Figure 1-12 is useful to keep in mind when 
considering the grounds for bit aggregation as a means of increasing the noise resistance of 
messages. 

It is easier for the receiver to cope with errors when longer codes are used, similar as with people 
being able to easier correct letter-errors in longer words in spoken language. Another example is 
when solving a crosswords puzzle—it is easier to guess the correct word when given longer word 
with the same proportion of missing letters as in a shorter one. 

For example, if somebody gives you a coin and asks whether this is a fair coin, you would 
probably say: I need to toss it a number of times before I know this with any certainty. You 
cannot figure this out from two or three tosses only; you need something on the order of a 
hundred tosses or more. The more times you perform the experiment, the higher the certainty 
about the coin’s fairness. 

Likewise, assuming that we know Pe, we need a long block of bits to know with certainty how 
many bits will be in error at the receiver. If Pe = 0.13, then for a 100-block we are reasonably 
confident that 13 will be in error, and for a transmission of a 1000-block we are much more 
confident that 130 will be in error. But, for a 2- or 3-block, we cannot say how many will be in 
error with any confidence. Therefore, when messages are n-blocks with large n, we can with high 
confidence say how many bits will be in error. Accordingly, if we choose the appropriate length 
code, we can with high confidence claim that it has the power to detect/correct such-and-such 
number of transmission errors. 

By this logic, we could infer that the longer the code the better it is. However, there are some 
other reasons why the codewords should be of limited length. For example, even with the longest 
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(a) (b) 

Bits

Information

Noise 

 
Figure 1-12. An analogy illustrating why aggregating bits into blocks helps overcome noise.
Notice that in both cases we have the same logs (bits) exposed to the same noise; the only
difference is that in (b) they are “put together” and therefore better resist the noise effects.

code an error can occur (although with extremely low probability). If it does, the whole (long!) 
codeword must be retransmitted, which consumes lot of channel capacity. 

1.1.4 Computation 
 

1.1.5 Networks 
Networks could be of different types, such as road networks, electric utility networks, fluid 
networks, social networks, etc. Here we consider only the networks that carry information, such 
as: 

• Communication networks 

• Sensor networks 

• Sensor and actuator networks 

When analyzing networks, we could pursue an individually-anchored (ego-centric) approach vs. 
global (statistical) or ensemble properties of networks. 

Information networks that we consider are designed by people with certain objectives or criteria. 
However, the design applies locally rather then globally on the entire Internet. Therefore, on the 
global scale, the even the human-designed networks are evolving randomly. The structural 
properties of randomly or quasi-randomly evolving networks have recently received considerable 
attention. Some important properties are small world [Watts 1999] and power-law scaling 
properties [Barabasi 2002]. 
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(a) (b)

Hosts: N = 6 
Lines:  N×(N−1) = 30

Figure 1-13. (a) Fully interconnected network. (b) New York City telephone wires in 1888. 

Consider the public telephone network, which is after telegraphy the oldest network based on 
electric communication. The simplest way to wire a group of people is to create a fully connected 
graph, shown in Figure 1-13(a). Should this appear wasteful and overly complex, it is in order to 
remind ourselves of the actual solutions used in early telephone networks, example shown in 
Figure 1-13(b). There are several advantages attributed to contemporary solutions where 
messages can traverse multiple paths in the network: 

• Economic efficiency—cheaper to avoid setting up all the possible links 

• Failure tolerance—should one path fail, an alternative one usually can be found 

There are drawbacks as well: 

• Complexity of maintenance 

• Complexity of analysis—unpredictability of the end-to-end path parameters (capacity, 
latency characteristics) 

It is interesting to observe that in the case of wired networks, both telephone- and data (the 
Internet) networks developed such that the users are scattered at the periphery and the network is 
essentially hidden in a “cloud.” As far the users are concerned there is not much difference of 
how the network “guts” really look like. This has changed with mobile ad hoc networks as will be 
seen in the later chapters. The users suddenly find themselves in the guts of the network. 

Connectivity and Fault Tolerance 
Graph theory provides insights about connectivity, path lengths, etc. 

See def: Jarray in DIALM-POMC, IMG_6600.JPG 
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R = 1 R = 1.5 R = 2

R = 3 R = 4 

R′ = 3 R′ = 4 

R′ = 6 R′ = 8  
Figure 1-14. Redundancy levels. From: [Baran 1964] 

Paul Baran considered in 1964 theoretically best architecture for survivability of data networks. 
This considers only network graph topology and no qualities are assigned to nodes and links. 

Incidentally, the real Internet developed quite differently, see e.g., Figure 1-14. 

 

See also [Pastor-Satorras & Vespignani, 2004; Dorogovtsev & Mendes, 2003] 

 

Fault tolerance is important for survivability (i.e., connectivity), but also for selecting sleeping 
nodes in power saving algorithms; see Lee in MobiCom’04, p. 275. We need to preserve 
connectivity after selected set of nodes in a sensor network goes to sleep mode. 

Capacity 
 

Delay 
Effect of node/link failures on delay 
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1.2 Summary and Bibliographical Notes 
 

Today it is clear that digital communication, digital networks, and computer systems are part of a 
major force changing the way we think and live. As we design most effective and efficient 
conduits to transmit maximum amount of information at maximum speed, we should keep in 
mind the purpose of communication, the greater picture of human activities that are being 
supported by the communication. 

Simple models are important that let us understand the main issues. A good model should be 
simple enough to provide intuition. It should be extendable, i.e., more realistic features can be 
added without violating the central idea of the model. It need not (and should not) model all 
aspects of the real problem. See also [Watts 1999] explanation of rationale for modeling in Small 
Worlds. The purpose of modeling, as of layering, is to divide and conquer—solve puzzles about 
toy models of real things. [demonstrate] how real [communication] systems can be viewed as 
elaborations of these simple models. 

Simple but generalizable examples (and counter-examples) are critical. 

 

In basic terms, Shannon’s information theory addresses two issues of practical importance: the 
efficient encoding of a source message and its reliable transmission over a noisy channel. Both 
issues are of fundamental importance to the study of wireless communications, which in turn is 
fundamental for mobile computing. More will be said about wireless communications in Chapters 
3 and 4. 

 

1.2.1 Bibliography 
[Shannon & Weaver 1949] is the original text that introduced information theory and it is still as 
fresh a read as at the time when it appeared. An introductory review of information theory is 
available in [Pierce 1980] and [Lucky 1989]. [Cover & Thomas 1991] offers a comprehensive 
formal, yet relatively accessible, treatment of the subject. 

Losee [1997] offers a useful framework for thinking about discipline independent abstract model 
of information, although in a somewhat disorganized manner flawed with occasional technical 
inaccuracies. [von Baeyer 2003] gives an interesting perspective on the nature of information, 
including the emerging field of quantum information. 

See also [Moss & Wiesenfeld 1995] on interesting aspects of noise. 

[Milburn 1998] offers a popular account of quantum computing. 

A very accessible review of the inner workings of computers is available in [Petzold 1999]; an 
expert would enjoy reading it as much as a novice. 
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Problems 
 

 

 

Section 1.1 
1.1 Let Xi represent an available alphabet of the symbols a, b, c, …, N in total number, and 

consider long sequences of these symbols generated by a stationary random process. Let 
the probabilities of occurrence of the various symbols be Pa, Pb, …, PN. In a typical 
sequence of S symbols the symbol a will occur approximately S⋅Pa times, b 
approximately S⋅Pb times, and so on. What is the probability that a typical sequence will 
occur? 

 

1.2 Consider experimenting with the circuit shown in Figure 1-15, which is faulty so that on 
the average it behaves as shown in the following table: 

Observation Open & Unlit Open & Lit Closed & Unlit Closed & Lit 
Probability 0.99 0.01 0.20 0.80 

An observation informs about what was done to the switch and how the bulb behaved. 
You can assume that the experimenter will make the switch OPEN or CLOSED with 
equal probability, i.e., either way happens 50% of the time.  
If you think of the experiment as an information source, each observation corresponding 
to one message, what is the source’s entropy? Design a Huffman code tree for the source.  
Hint: The table of probabilities is really stating the conditional probabilities. 

 

 

Switch 
{Open, Closed} 

Bulb 
{Unlit, Lit}

 
Figure 1-15. Faulty circuit experiment. (See Problem 1.2) 
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Figure 1-16. Catalog of patterns for Problem 1.3. 

 
“0"

“1"

“0"

“1"

1

1/2

1/2  
Figure 1-17. Discrete memoryless channel for Problems 1.4 and 1.5. 

1.3 Assume a stream of 0’s and 1’s originating from a source with probabilities x and (1 − x), 
respectively. What is the source entropy? Now suppose that you are told that the 
incoming bits should be organized in 5 × 3 matrices and that the only possible patterns 
are those ten shown in Figure 1-16, appearing with equal probability. What is now the 
source entropy? Determine also the numerical value of x. 

 

1.4 Consider the discrete memoryless channel in Figure 1-17. Where input symbol “0” is 
received without error and the symbol “1” is received as a “0” with probability 1/2 and as 
a “1” with probability 1/2. The probability that a “0” is sent P(“0”) = 1/4 and a “1” is sent 
with probability P(“1”)=3/4.  
Determine the maximum likelihood (ML) decision rule for the above channel and the 
associated probability of a decision error. (Show your work) 
Hint: You should express your decision rule as how you would decode a received 0 and 
how you would decode a received 1. Also, the probability of a decision error is the 
average probability of error over both input symbols. 

 

1.5 Find the capacity of the discrete memoryless channel in Figure 1-17. What is the average 
information conveyed per symbol, I(X; Y)? 

 

1.6 A noisy discrete communication channel has a transmitter alphabet of N equiprobable 
symbols xi. There is no intersymbol influence; that is, successive transmitted symbols are 
independent. There is a probability p/N that any given incorrect symbol yj (j ≠ i) in the 
receiver alphabet (consisting of the same N symbols) will be received.  
Find an expression for the average transmitted information per symbol, I(X; Y), as a 
function of p. Simplify this for N  1. (Check these by substituting p = 0 and p = 1.) 
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Figure 1-18. Discrete memoryless channel for Problem 1.7. 

1.7 Consider a cascade of two binary symmetric channels, shown in Figure 1-18. The 
symbols at the source, at the output of the first channel, and at the output of the second 
channel are denoted by X, Y, and Z, respectively. 

a. Derive the cascaded channel transition probabilities P(Zj | Xi) for BSC channels. 
What if three or more identical BSCs are cascaded? 

b. For a cascade of two general (not necessarily BSC) channels, show that  
  H(X | Z) ≥ H(X | Y) and I(X; Y) ≥ I(X; Z)  
This shows that the information that can be transmitted over a cascaded channel can 
be no greater than that transmitted over a single channel. In effect, information 
channels tend to leak information.  
[Hint: Notice that, for a cascaded channel, P(Zk | Yj, Xi) = P(Zk | Yj).] 

 

1.8 In order to improve the chances of communicating a bit correctly over a given binary 
symmetric channel (BSC), the bit is transmitted n times in sequence. The receiver then 
makes a “majority rule” decision as to the bit value. Given the probability Pe of error 
when transmitting the bit just one time, what is the probability of error using this scheme 
when n=5? What is the probability that exactly two bits in the sequence will be 
incorrectly received? 

 

1.9 Consider the n-blocks for n = 2, 3, 4, 5, 6. In each case use single bit redundancy, i.e., 
n − r = 1, meaning that half of the n-blocks are legal codewords and the other half are 
illegal n-blocks. For a given n, how many different codes are possible to design 
(remember, code is a set of codewords)? For a given n, what is the average dmin across all 
the possible codes? Draw a diagram with n on abscissa and its average dmin on ordinate. 
Speculate about the shape of the curve for n ≥ 7 and provide arguments for your guess.  
[Note: You may need to implement a program to experiment with larger values of n.] 

 

1.10 Assume a noiseless channel connecting the transmitter and receiver at 1 bits per second 
(bps). The source is a roulette wheel with 38 equiprobable blocks being spun along with 
the ball and the information transmitted is on which pocket the ball has dropped into. 

a. What is the maximum number of times the roulette can be spun per unit of time, such 
that the outcomes can be successfully transmitted? 
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b. How does this change if a noisy channel with bit error probability Pe = 0.001 is 
employed? Discuss under what conditions it is appropriate to assume a BSC. 

 

1.11 Consider a source which generates messages with four information bits (m0, m1, m2, and 
m3) and it adds three check bits (c0, c1, and c2) to them calculated such that  
                  c0 = m0 ⊕ m1 ⊕ m3   
                  c1 = m0 ⊕ m2 ⊕ m3   
                  c2 = m1 ⊕ m2 ⊕ m3   
where ⊕ symbolizes modulo 2 addition. The encoded 7-bit messages are transmitted in 
the order:  t0 t1 t2 t3 t4 t5 t6  =  c0 c1 m0 c2 m1 m2 m3  and this is called Hamming code. The 
receiver recalculates the check bit equations the same way as the receiver. Show that: 

a. If no transmission errors have occurred the check bits at the receiver are  c0 = c1 = c2 
= 0. The only other way this can occur is if three errors or more occur. Assuming that 
Pe < ½ show that no errors if more likely than three or more errors. Hence, if the 
parity check equations are satisfied at the receiver, it is most likely that no errors 
occurred. 

b. If an odd number of errors occur, the check equations at the receiver will fail. 

c. If 1 error occurs, the check equations will fail (not be satisfied). For instance, if an 
error occurs in the 6th transmitted digit (t5 = m2), the check bits are c0 = 0, c1 = c2 = 1. 
The error syndrome c2 c1 c0 = 110, the binary number 6! Again, this syndrome is 
most likely caused by an error in the 6th digit, and making that decision means that 
we are most likely correct. This is what is called error correction. It is equivalent to 
maximum likelihood decision making. 

 

1.12 … another problem … 
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