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1 Introduction 
 

 

An interface is a way to interact with something. For example, your television remote control is 
an interface to your television. In software developer’s speak, user interface (UI) allows users to 
interact with the “content” stored in the computer memory (locally or across the network). We 
assume that the “content” is not an amorphous mass, but rather a structured collection of 
“elements.” As for any other task, different activities require different “tools.” The user also 
needs to “see” the stored content, so the “elements” should be visualized using graphical figures. 
Also, some feedback is required about the effect of the user’s actions on the elements of the 
content. Real-time feedback between hand motion and vision is very helpful; it visualizes the 
effects immediately as the user operates on the content, so the user can quickly compare-and-
correct his or her actions. 

Using the user interface, the user can: 

• Modify the properties of model elements 

• Select the viewpoint and navigate the “model world”—select which part of the model is 
visualized (if not all of it fits in the view), which can be done as continuous navigation 
through the “model space” 

The UI developer’s primary concerns are: what can be standardized for reuse, and the layout 
management. 

There are different types of human-computer interaction. The one we focus on here is 
conversational interaction, but where the conversation is accomplished by manual gestures more 
than with spoken language. We see user interface playing the role of back-and-forth interpreter 
between the languages of human and the languages of computer. The analogy with language 
understanding is exploited extensively and used as inspiration throughout. 

UI is usually molded about its particular application domain so that a great deal of work would be 
required to remold such a UI to a different application. This is particularly true for interfaces 
based on hand operation of input devices. The design presented here, called Manifold, is an 
attempt to solve the above problems in an application-independent manner, so that the UI can be 
easily “detached” from one application and “attached” to another one. The first version of 
Manifold appeared in [27]. This work is also based on [13,42]. This text is intended to 
accompany the Manifold software release and to be read along with the code. The best 
documentation is the code itself, and this text is only meant to improve the readability of the code. 
It is my hope that the interplay of abstract concepts and actual implementation will allow the 
reader to understand both specific and broader issues of user interface design. 

1.1 Model-View-Controller Design Pattern 
Fig. 1 illustrates an abstraction of the user interface. The user generates input device events which 
are interpreted as actions on the content model. After execution the requested actions, the model 
sends notifications about the effect of the actions, and the notifications are visualized as feedback 
to the user. Further clarification of the process is offered by Fig. 2. Notice the optional reading of 
the new attributes by the View. This is how classical Observer design pattern works [16], i.e., the 
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Observer reads the Subject state upon being notified about the state changes. Conversely, in the 
Java event delegation pattern [22], the event source sends to the listener the event containing the 
new state information along with the notification. 

The feedback loop does not need to take the entire round-trip through the domain model, to 
provide visual feedback to the user. The system may instead simulate what would happen should 
the actions take place, but not execute those actions on the model. Such techniques, e.g., rubber-
banding or ghost figures, usually caricature the real model’s operation.  The process from Fig. 1 
is then shunted, as in this simplified diagram: 

 

input device events => interpretation of events => visual feedback how the content would be 
altered. 

The benefits of the Model-View-Controller (MVC) design pattern were first discussed in [24] and 
the reader should also check [16,26]. 
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Fig. 1. This user interface abstraction also illustrates the Model-View-Controller design pattern. 
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Fig. 2. UML sequence diagram abstracting the MVC functioning. 
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1.2 Direct Manipulation 
Direct manipulation is a form of interaction where the user is presented with the data objects on 
the display and then manipulates those objects using interactive devices and receives rapid 
feedback. The word “manipulation” is used as in “to move, arrange, operate, or control … in a 
skillful manner” (American Heritage Dictionary, Fourth Edition). Direct manipulation provides 
an illusion of directly interacting with the object with instantaneous feedback in the data 
visualization. Ben Shneiderman is credited for coining the phrase “direct manipulation” [43,44]. 
He highlights the following characteristics of direct manipulation interfaces: 

• Visibility of the objects of interest 

• Incremental action at the interface with rapid feedback on all actions 

• Reversibility of all actions, so that users are encouraged to explore without severe 
penalties 

• Syntactic correctness of all actions, so that every user action is a legal operation 

• Replacement of complex command languages with actions to manipulate directly the 
visible objects (and, hence, the name direct manipulation) 

Rapid feedback is critical since it gives the illusion that the user is actually working in the virtual 
world displayed on the screen. It raises otherwise-obscured awareness of the interaction process. 
In addition, it quickly provides evaluative information for every executed user action. 

Direct manipulation is along the lines of the broader framework of the desktop metaphor, which 
assumes that we save training time by taking advantage of the time that users have already 
invested in learning to operate the traditional office with its paper documents and filing cabinets 
[44]. 

An example of direct manipulation is illustrated in Fig. 3, where the user moves a file to a folder. 
In a DOS or UNIX shell, this operation would be executed by typing in commands. For example, 
in a UNIX shell, it would be: 

% mv file child\ folder 
Note that feedback about the success of the operation is minimal. 

1 2 3
 

Fig. 3. Example of a direct manipulation interface. The user picks up a file in the current folder and relocates 
it into a new folder. Notice the ghost image shown while the file is “in transit” to the destination folder. Also, 
the “child folder” becomes highlighted (changes color) to indicate its readings to receive the file. 
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Direct manipulation consists of the following steps that run iteratively, for the duration of 
interaction (see Fig. 4): 

1. User points and operates the input device, which results in a low-level event 

2. System converts the low-level event to a data processing command 

3. System delivers the command to the application-logic module, which executes the 
command 

4. The application-logic module notifies the data visualization module about the data 
modifications inflicted by the command 

5. The visualization module visualizes the updated data 

An interaction cycle is defined as a unit block of user interaction with the system. An example of 
“interaction cycle” is: (1) the user depresses a mouse button; (2) drags the mouse across the 
workspace; and, (3) releases the mouse button. A cycle can comprise several press-drag-release 
sequences, for example when creating a polygonal line. 

The pointing device may be directly “touching” the visualization of the manipulated object, such 
as with a stylus pen, or it may do it indirectly, via a cursor shown on the visualization display, as 
is the case with the mouse. 

Note also that the “visualization module” is one example of providing instantaneous feedback to 
the user. Other examples include tactile or audio feedback, so a more accurate name for this 
module would be “perceptualization module.” 

Direct manipulation paradigm blurs the boundary between the input and the output modules of a 
software product. The data visualization is used to formulate subsequent input events, so both 
deal with the same software component. This aggregation of input and output is reflected in 
programming toolkits, as widgets are not considered as input or output objects exclusively. 
Rather, widgets embody both input and output functions, so they are referred to as interaction 
objects or interactors. 

Needles to say, manipulation is but one kind of interaction. Other types include dialogs and 
gestures (such as pointing or outlining simple shapes). But it is the one we focus on here, 
although some attention will be paid to other interaction types. The pointing gesture is illustrated 
in Fig. 5, where the user can quickly “peek” into the domain model by mouse cursor roll-over. 

 

1. Operate the 
    Input Device 

2. Convert Low-level 
    Event to Data 
    Processing Command 

Data 

Direct 
Manipulation 

3. Process the
    Command 

4. Notify About
    Modification

Data 
Visualization

5. Render and
    Display 

 

Fig. 4. Sequence of actions in one step of the direct manipulation cycle. 
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1.3 Conversation Metaphor and Event Frames 
What the presentation module can tell to the domain module? This generally depends on the 
application. In many cases it is possible to constrain the application to use a specific internal data 
structure, such as tree. The tree requirement is reasonable since many new applications use XML 
(extensible Markup Language: http://www.w3.org/XML) for data representation and exchange, and 
parsing XML documents results in tree structures. XML is now being promoted as the new Web 
markup language for information representation and exchange. The tree data structure may not be 
the most efficient data type for all applications, but settling on one data type simplifies the 
communication and makes it general for all applications. Some applications may suffer 
performance penalty due to fixing the shared document structure. For example, a spreadsheet can 
be more efficiently represented as a multidimensional array. The performance of a tree-based 
spreadsheet may degenerate for a large document. However, we believe that such cases would 
appear relatively rarely in practice and the gains from having a general solution far outweigh the 
drawbacks. 

The three operations that apply to a tree are: create node (Op1), delete node (Op2), and modify 
node attributes (Op3). Any other operation on a tree can be expressed as a composition of these 
three basic operations. [We could expand this list with the operations to add/delete attributes of a 
node, to include the scenario where not all the attributes are specified a priori]. Even though some 
nodes may reference other nodes to implement behaviors (as in spreadsheet cells), the behavior 
structure is external to the tree. So, in this case the presentation-domain communication is limited 
to three commands: add-node, delete-node, and modify-attributes. Earlier versions of Manifold 
defined commands (see the Command design pattern in [16]) for these three operations on trees. 
We also need some “meta-commands,” such as opening and closing documents, etc. 

In the present version we decided to depart from the command-pattern philosophy. The problem 
with commands is that they must be known in advance, and different commands are implemented 
as classes extending the base class. A more flexible approach is borrowed from speech and 
language understanding systems. 

Knowledge frames were introduced by Minsky [28] as a mechanism for knowledge 
representation in Artificial Intelligence. An extensive coverage of frames is available in [58]. 
They have been popular in language understanding and we used case frames in our earlier work 
on multimodal interfaces [42]. 

 
Fig. 5. Example of a gesturing in the user interface. By rolling the mouse cursor over a file’s icon (pointing 
gesture), the user can reveal essential metadata about the file. Notice that there is no manipulation involved.
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A novel feature of Manifold is using frames for hand-based interaction, such as direct 
manipulation. Similar to language interpreter, which parses sentences (sequences of words) to 
construct case frames, Manifold parses sequences of input events to construct what we call event 
frames. 

 
Table 1: Interactive events and corresponding actions in the presentation module. 

Input Event User’s Intention Presentation Module Action 

Mouse move Explore; Prepare for manipul. Notify figures of roll-over; animate in response 
Mouse press Begin new manipulation Identify/Select the figure(s) to manipulate 
Mouse drag Explore, compare and correct Animate the potential effects if the 

manipulation is executed 
Mouse release Finish the manipulation Carry out the intended action 
Other Event-specific E.g., window focus events 
 

In the phraseology of language processing, the presentation module needs to parse the sequences 
of input events and determine the meaning of individual events in the interaction context. 

I would argue that frames represent a minimum commitment between the presentation and domain 
modules. This allows for easy detaching a given presentation module and attaching it to another 
domain module, with minimum or no modifications. It is feasible to implement a “translator” 
module, which translates the presentation module frames to any domain. Extensible stylesheet 
transformation (XSLT) can serve this purpose, without any source-code editing. 
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2 Basic User Interface Design: 
Core Framework 

 

 

We start with a basic design for interaction. The first requirement is that the domain model is 
visualized, for the user to see and decide on the next action. When the user interacts with the 
input device, the generated events must be interpreted and passed on to the domain model as 
processing commands. These two steps are abstracted as the lower and upper arms in Fig. 1, 
respectively. 

Fig. 6 shows the use case diagram of the application that will be used as an example for 
employing the Manifold framework. Since this is a work in progress, other features are either 
being implemented or are planned. These include: editing operations (cut/copy/paste/select-
all/clear-all/to-top/to-bottom/align/group/ungroup, etc.). It would be also very useful to be able to 
save the content of the workspace to a file and load it back later, or import objects from the Web 
(given the object’s URL). 

2.1 Model Visualization 
2.1.1 Structured Graphics Design 
We use glyphs to visualize the elements of the domain model. Glyph is a visual representation 
corresponding to a model data element in a domain model.  It visualizes the model’s state 
changes. The name “glyph” is borrowed from typography to connote simple, lightweight objects 
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Fig. 6. The use case diagram for the example application of the Manifold framework. 
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with an instance-specific appearance [8]. The key purpose of Glyph is to implement the 
Composite design pattern [16], so to be able to hierarchically compose glyphs into more complex 
figures. 

All glyphs are usually composed into a scene graph hierarchical data structure, which is a tree 
with glyphs as nodes. 

The base class for glyphs is manifold.Glyph, which is an abstract class, see Fig. 7. Although 
all glyphs are visual, we felt that the geometric aspect, primarily the transformation attribute, may 
not be needed for all of them. The class manifold.impl2D.Glyph2D implements geometric 
functionality specific for Java 2D domain. From this, two types of two-dimensional glyphs are 
derived: 

1. Leaf glyphs, which have visual appearance, i.e., they can be rendered. For example, 
glyphs for primitive geometric shapes inherit from 
manifold.impl2D.GeometricFigure, and are implemented in the package 
manifold.impl2D.glyphs. 

2. Inner glyphs, represented by manifold.impl2D.TransformGroup, which is 
composite, a container for groups of glyphs. 

abstract
Glyph2D

– transform : Transform2D
– highlighter : Highlighter

+  getTransfrom() : AffineTransform
+  getBoundingShape() : Shape
+  simulateHandleMovement(newPoint : Point2D)
+  pick(traversal : Traversal)

Glyph3D

abstract
Glyph

– id : String
– visible : boolean
– cachedState : Hashtable

+  addChild(child : Glyph)
+  removeChild(child : Glyph)
+  setProperty(name : String, value : Object)
+  draw(traversal : Traversal)
+  pick(traversal : Traversal)

abstract
GeometricFigure

+  draw(traversal : Traversal)
#  translateAndScaleShape(double[])

TransformGroup

+  pickClosest(shape : PickShape)
+  pickAll(shape : PickShape)
+  draw(graphics : Graphics2D)
+  draw(traversal : Traversal)

Text

abstract
Glyph2D

– transform : Transform2D
– highlighter : Highlighter

+  getTransfrom() : AffineTransform
+  getBoundingShape() : Shape
+  simulateHandleMovement(newPoint : Point2D)
+  pick(traversal : Traversal)

Glyph3DGlyph3D

abstract
Glyph

– id : String
– visible : boolean
– cachedState : Hashtable

+  addChild(child : Glyph)
+  removeChild(child : Glyph)
+  setProperty(name : String, value : Object)
+  draw(traversal : Traversal)
+  pick(traversal : Traversal)

abstract
GeometricFigure

+  draw(traversal : Traversal)
#  translateAndScaleShape(double[])

TransformGroup

+  pickClosest(shape : PickShape)
+  pickAll(shape : PickShape)
+  draw(graphics : Graphics2D)
+  draw(traversal : Traversal)

TextText

Fig. 7. UML class diagram of glyph inheritance hierarchy in the current Manifold. This shows only the main 
attributes and operations, and the actual code has more. See text for details. 
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The reader should keep in mind that glyphs represent merely a visual appearance of the 
underlying element of the domain model. The actual implementation of Manifold may be built 
using a graphics toolkit that already has an equivalent of Glyph, in which case it does not need to 
use this class.  For example, Java 3D offers such capabilities. Another example is illustrated by 
GUI toolkit widgets which visualize the tree data structure, such as javax.swing.JTree, and 
also supply their own “glyphs” for visualization. That is why other Manifold classes do not 
depend on this class. 

The way GeometricFigure glyphs are split into 
manifold.impl2D.glyphs.Rectangular and manifold.impl2D.glyphs.Line 
is purely artifact of the Java 2D class design. The composite glyph, 
manifold.impl2D.TransformGroup, has two additional methods related to pick traversal, 
pickAll() and pickClosest(), which are called by manipulators to determine what 
glyphs are under the current mouse cursor. There is also additional draw() method that takes a 
Graphics2D object as the argument. This method is called from the Display thread, via the 
method Viewer2DImpl.paintComponent(). We debated as to which class to put these 
methods to. Two natural alternatives are the classes TransformGroup and 
manifold.Viewer. TransformGroup is the only glyph type can have child glyphs, so it is 
appropriate that serves as the starting point of the scene graph traversals. The alternative, 
Viewer and particularly its implementation Viewer2DImpl, has the advantage of avoiding the 
need for externally accessing the viewer’s scene graph, via the method 
Viewer.getSceneGraph(), which then could be omitted. We decided for the first option on 
the intuition that it is a better choice. 

The multiple faces of glyphs are summarized in Fig. 8. Glyphs participate in the following 
activities: 

simulateHandleMovement()

pick()

connectMe() draw()

Glyph

Tool / Manipulator Domain
(via Viewer)

Display

setProperty()

setCachedState()

addChild()

getBoundaryShape()

removeChild()

Fig. 8. The multiple faces (aspects) of Glyphs, as seen by other Manifold objects: helping with constructing 
the manipulation event frames, managing structured graphics, and rendering the visual appearance. 
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• Helping the Tools/Manipulators to construct the manipulation event frames, to be sent to 
the domain; This includes simulation of interactive behaviors; 

• Managing structured graphics; and, 

• Rendering the glyph’s visual appearance. 

Notice that all the interactions are unidirectional, i.e., Glyph does not (need to) know about these 
other objects. The significance of this schematic will become clearer below, as we progress with 
the design description. The simulation of interactive behaviors helps the user understand what 
effects his/her actions would cause on the domain, thus allowing a quick compare-and-correct 
experimentation until the desired values are found. Examples are rubber-banding and ghost 
figures, and these will be introduced later. 

Design Issue 2.1: Currently, the container data structure for the glyphs is tree. Redesign the 
framework to incorporate the Flyweight design pattern [16], so to support directed acyclic graphs 
(DAGs). 

2.1.2 Glyph State Caching 
We enforce strict distinction between the application domain and the presentation layers of a 
software package. Our glyphs are basically hollow, without any state—their actual state is defined 
by the corresponding objects in the application domain. Glyph only mirrors what the application 
domain object notifies it. 

Glyphs, however, do cache the state information in the look-up table called cachedState. The 
reason for caching is to improve performance, especially if the domain is located across the 
network. The look-up table represents the glyph’s attributes as a set of 〈property, value〉 pairs. 
This is common practice in Java Beans [22], and was also used in Amulet [31]. The number of 
properties is not limited or specified in advance. But there is the constraint of having to use 
globally known names for general access. The commonly used attributes are defined in 
manifold.EventFrame, although some may be defined locally in glyphs. The 
cachedState entries are dynamically created at runtime and their values are dynamically 
typed. 

This feature of hollow glyphs mirroring the state of the underlying domain objects is important to 
emphasize. In many graphical toolkits, the state graphical figures is clearly defined and may even 
be the only available state. Unlike this, our glyphs are purposely designed to act only as the front-
end attachments, the “visible faces” for the application domain objects, which can be exchanged. 

Design Issue 2.2: Glyph transformation are deemed to be too domain specific, e.g., two- vs. 
three-dimensional graphics, and would require frequent type up-casting when the transformation 
is retrieved. Therefore, they do not appear in the base Glyph interface but in the derived 
Glyph2D interface. Also, in Java 3D, only transform group has the transformation attribute, not 
the leaf nodes. Should the same be enforced here? The tradeoff is that we may potentially need a 
TransformGroup object to shadow every glyph that can be manipulated. Where is the most 
appropriate place for these attributes in terms of performance (memory requirements and 
computing speed) and conceptual clarity? 

2.1.3 Shadow Glyphs 
Bederson et al. [4] identify two approaches to structured graphics design: polylithic and 
monolithic toolkit-based solutions. The above design may at first appear as monolithic according 
to their classification, but I would argue that it is more of a hybrid. Glyphs are lightweight, unlike 
typical GUI toolkit components, and can be composed. Very little functionality is in the base 
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classes, which can have different functional aspects, not only graphical. The actual geometric 
shape is defined through composition (the shape field), rather than inheritance. Glyph attributes 
(visual and/or other) are not fixed a priori but can be arbitrary, accessible via the cached state 
look-up table. What I consider the most important is that other classes know very little of the 
Glyph interface; after all, most of it is shown in Fig. 7! The current approach is efficient in terms 
of runtime memory space and is friendlier to the application developer, as noticed in [4]. 

To find a middle ground and enjoy the benefits of both worlds, we introduce shadow glyphs. 
Shadow glyphs, as the name says, shadow a real glyph, see Fig. 9(a). They are not “real” in the 
sense that the rest of the framework simply does not know about them—they are normally 
structurally invisible, meaning that cannot be addressed and messaged to. Only the well-known, 
shadowed glyph, which is also the parent glyph of all of its shadow glyphs, knows about its 
subordinate shadows. Notice, however, that the parent glyph normally does not keep the shadow 
glyphs on its list of child glyphs as shown in Fig. 9(b). Rather, separate references are usually 
maintained for the shadow glyphs. As usual, there are exceptions, and in our case Grid is added 
as a child to the scene graph TransformGroup (see Viewer2DImpl constructor) for 
convenience reasons. 

A mechanism similar to our shadow glyphs was proposed in Fresco [51] as delegation in the 
sense that a glyph object can delegate some or all of its glyph behavior to another glyph. I am not 
aware that they were ever implemented. It appears that the delegate glyphs would be children of a 
common TransformGroup parent, Fig. 9(b), as is common in three-dimensional graphics. We 
feel that this would create a logistical nightmare for maintaining such glyph structure, particularly 
in terms of addressing the glyphs. Such experience was reported in [4]. We should keep in mind 
that shadow glyphs fulfill specific functions and should be addressed by specific names, unlike 
the children glyphs which are addressed anonymously. 

It is primarily the gateway between the presentation and the application domain that needs to 
establish the correspondence between the objects in the application domain and the glyphs. Also, 
further down the chain, the object that handles manipulation (Manipulator, introduced in Section 
2.2 below) needs to know the identity of the glyphs it manipulates and send the resulting event 
frame to the domain, addressing explicitly the affected domain objects. Should the shadow glyphs 
be visible as in Fig. 9(b), this would introduce complications. Since other objects, including the 
application domain, do not need to know about shadow glyphs, we selected the choice in Fig. 9(a). 

We can use shadow glyphs or delegation for many purposes: to perform input handling or 
filtering, to decorate figures with shadows, borders, or bevels, and to perform layout alignment 
such as centering. Another use is to provide a special glyph for debugging that displays parameter 
values before passing operations on to the subordinate. There are several example shadow glyphs 
currently implemented in the Manifold framework. They are: 

To other objects
Visible Glyph Shadow Glyph

1 *To other objects
Visible Glyph Shadow Glyph

1 *

TransformGroup

Main Glyph,
e.g., GeometricFigure

Delegate Glyph

*

(a) (b)
Fig. 9. Alternative designs for delegating the glyph functionality. (a) Shadow glyph(s) form a “cluster” around 
the visible glyph and the internal structure of the cluster is concealed from the rest of the world. (b) Delegate 
glyphs are regular children of a composite glyph. 
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• manifold.impl2D.glyphs.Grid, which draws a background grid on its parent 
glyph; 

• manifold.impl2D.glyphs.Highlighter, which provides highlighting 
adornments, such as the graphical selection handles (interaction points), on its parent 
glyph; 

The highlighter is entirely independent of the main glyph that it highlights. The only assumption 
made by the highlighter is that the main glyph can provide its own boundary shape and the 
locations of the interaction handles. The minimum knowledge of the main glyph is generally true 
for all shadow glyphs. 

Handle dimensions are constant, independent of the glyph dimensions or the zoom factor of the 
container viewer. 

It is of interest to notice how the main/visible glyph serves as a façade for its shadow glyphs, 
which on the other hand maintain some of its state. For example, the methods isSelected() 
and setSelected() of Glyph2D are implemented via the visible flag of the 
Highlighter shadow glyph. 

Design Issue 2.3: Consider employing the Decorator design pattern [16] to implement the 
functionality of shadow glyphs. 

Design Issue 2.4: Perhaps some aspect-oriented programming (AOP) can be employed in the 
glyph design? 

2.1.4 The Dynamics of Visualization 
The visualization process is shown in Fig. 10. The reader should carefully trace the message calls 
and compare the Java code to understand the working. The roles of the Viewer and Display 
objects will become clear in Section 3.1 below. The class of the object named “gateway” is 
shown as unknown. Its role is to serve as the gateway between the presentation and domain layers, 
and the actual class will be described in Section 3.2 below. 

As Fig. 10 shows, Glyph listens (indirectly, via the parent Viewer) for changes of its 
underlying model. Upon receiving a change notification, it recomputes its own appearance, but it 
cannot redisplay itself because the actual display depends on how this glyph relates to others. An 

modify
content

notify

Domain
Model

propertyChange()

gateway : ? listener : Viewer : Glyph : Display

setProperty() compute new
appearance

requestRedraw()

ok := isRedrawRequired()

opt ok == true redraw()

Fig. 10. UML sequence diagram of model visualization. Right-hand side shows the separate, periodic Display 
thread. The “gateway” marked with question sign is the Controller class introduced in Section 3.2 below. 
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external class must redraw other glyphs affected/damaged by this glyph’s changed appearance. 
This is the role for the Viewer. 

2.2 Parsing the Input Event Sequences 
Input events typically come from one of two sources: focusable devices, such as keyboard or 
voice, and positional devices, such as the mouse. For a focusable device, the main viewer will use 
a translation table to map the raw event into an action represented by an event frame. The event 
frame is passed on to the application domain for interpretation and execution. Here we consider 
events from positional devices. 

Tool encapsulates the semantics of user interaction with application.  User handling of input 
device(s) generates interaction events, which need to be translated to actions on the domain 
model.  For example, the user’s activity of depressing the mouse button and drags the mouse 
around the workspace has different meaning, depending on the currently selected tool.  Examples 
are rotation of a graphical figure, resizing, translation, etc.  The selected tool “knows” which one 
of these is currently in effect. The design espoused here is inspired by Unidraw [54,55] and 
Fresco [10,51]. 

2.2.1 Manipulation 
To carry out the manipulation, Tool creates Manipulator.  In other words, Tool encapsulates state 
and Manipulator encapsulates behavior.  A new Manipulator object should be instantiated (by 
invoking Tool.createManipulator()) at the moment the user starts a new interaction 
cycle and disposed of at the end of the interaction cycle. An example of “interaction cycle” is: (1) 
user depresses a mouse button; (2) drags the mouse across the workspace; and, (3) releases the 
mouse button. 

Roughly speaking, Tool encapsulates the static part of the interpretation apparatus, i.e., describing 
what this tool does. Manipulator encapsulates the dynamic part, the transient state associated with 
a single manipulation cycle. 

Typical event interpretation is illustrated in Fig. 11. Fig. 11(a) is a high-level abstraction 
emphasizing the role of a Tool/Manipulator tandem. Fig. 11(b) elaborates some details, but the 
actual code may still contain further details, and the reader should consult the source code for 
accurate information. Also, the diagram will be detailed and completed with several other 
diagrams below.As apparent from Fig. 11(b), the manipulator plays the key role in orchestrating 
the event interpretation, which is witnessed by the fact that most messages emanate from the 
Manipulator’s lifeline. 

There are some departures from Unidraw [54,55] and Fresco [10,51] in the above design. Unlike 
Unidraw, commands (i.e., domain events) are generated even during the manipulation, not at the 
end by “interpreting” the Manipulator. This was already done in Fresco, but here instead of 
Manipulator methods returning Commands, Manipulator methods send MEvents to the Controller. 

There is an important issue of the format of messages from Manipulator to the domain, which is 
further considered in Section 4.4.1 below. 

Design Issue 2.5: Currently, manipulation sends events to the domain while the object is being 
manipulated. Most editors allow “preview,” through animation, and perform actions on the 
domain model only at the end of manipulation, which corresponds to the 
Manipulator.effect() method. The reason for our current approach is to be able to 
support real-time, synchronous collaboration. In this case, the actions of one user should be 
visible to all other users, if desired. Perhaps a different design can better solve this requirement? 
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Design Issue 2.6: The Selector tool combines several types of manipulation, as is customary 
in graphical editors. For example, the user can: (1) select individual glyph; (2) select several 
glyphs; (3) move the selected glyph(s) around; (4) resize the selected glyph(s) by dragging one of 
their handles; and, (5) clear the selections by clicking in the empty space. Cramming all these 
functionalities in a single class is not an elegant solution. Ideally, we should instantiate different 
tool/manipulator for different manipulation types. However, we do not know what type of 
manipulation will take place until the first “mouse press” event, which invokes grasp() on the 
Manipulator. 

Notice that only the glyphs which are the children of the root glyph, i.e., the glyphs at the tree 
height equal one, can be manipulated individually. A glyph at a higher level is only manipulated 
along with its antecedent glyph at the level one. This is a customary choice in graphical editors. 
However, this policy may need to be changed in different editor types. For example, in the 

  

User

: Tool
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1: operate
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input device
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frame to domain

Event → Frame
Parsing

(a)

(b)

evt := create()

GUI toolkit : : InputListener
currentTool

: Tool
manip

: Manipulator
sceneGraph

: Glyph
User

press inp dev

evt
: InputDevEvent

pressEventOccurred(evt)

picked
: Glyph

frame
: EventFrame

manip := createManipulator()

grasp(evt)

pt : = getPoint()
picked := pick(pt)

id := getId()

frame := create(id)

gateway : ?

send(frame)

evt := create()drag inp dev

dragEventOccurred(evt)
manipulate(evt)

Send to
Presentation
Models  (∗)

evt := create()

GUI toolkit : : InputListener
currentTool

: Tool
manip

: Manipulator
sceneGraph

: Glyph
User

press inp dev

evt
: InputDevEvent

pressEventOccurred(evt)

picked
: Glyph

frame
: EventFrame

manip := createManipulator()

grasp(evt)

pt : = getPoint()
picked := pick(pt)

id := getId()

frame := create(id)

gateway : ?

send(frame)

evt := create()drag inp dev

dragEventOccurred(evt)
manipulate(evt)

Send to
Presentation
Models  (∗)

 
Fig. 11. UML diagrams summarizing typical input event interpretation in Manifold. The collaboration diagram 
in (a) accentuates the central role of Tool/Manipulator in this process. Other classes in sequence diagram 
(b) act only as helpers. (∗) Refer to Fig. 13 below about notifying the Presentation Models. 
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TreeViewer editor (described below in Section 3.1), we may want to be able to manipulate 
individual glyphs at any height of the tree. 

2.2.2 Gestures 
As already mentioned, manipulation does not cover all types of interaction. Gestures, such as 
pointing or outlining simple shapes, can occur without the characteristic manipulation cycle and 
there is an interesting design issue of handling them. Gestures can be produced by moving the 
pointing device around, without clicking the mouse buttons, e.g., Fig. 5. The Manipulator is 
expressly dedicated to parsing manipulation interaction, so it is not well suited for other types of 
interaction. Interestingly, this issue does not seem to have arisen in UniDraw [54] or Fresco [51]. 

Our solution is to handle the other input event types in the Tool. For example, the Linker tool 
needs to handle the mouse movement events. When the user intends to connect two glyphs by a 
Link, the user first moves the mouse cursor around to detect which glyphs have connectors and 
where are those positioned. Notice that at this time the user does not perform any manipulation. 
[The reader should recall or try in Microsoft PowerPoint using connector to easier appreciate the 
process being described here.] 

To reveal additional information about the pointed-at glyph, the Tool may need to query the 
domain model. There is a property query frame designated for this purpose, Section 3.2 below. 

 

This section describes the Manifold core. It largely covers what the developer building atop the 
Manifold needs to know. The rest what follows is a bulk, reflecting the idiosyncrasies of the 
underlying GUI toolkit. 
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3 Elaboration of the Basic 
Design 

 

 

The process described in the previous section cannot take place in void, that is, it must occur 
within the context of a graphical user interface (GUI) toolkit, such as Microsoft Windows 
libraries, or Java AWT or Swing toolkits. This is where things get messy. 

There are two key entities in the Manifold’s environment: the user and the domain application. As 
illustrated in Fig. 12, key objects that play the role of gateways between Manifold and its 
environment are Viewer and Controller.1 

3.1 Interaction with GUI Toolkit and Input Devices 
Describe here also various presentation “models” and listeners. 

3.1.1 Viewers 
 

Design Issue 5.1: A desirable feature would be to be able to open a new viewer type, select 
glyph(s) in an existing viewer, drag them and drop into the new viewer. For example, if the new 
viewer displays some statistics, it would compute the statistics over the imported glyphs and 

                                                      
1 This Controller should not be confused with the Controller from the Model-View-Controller design 
pattern. See discussion in Section 3.2. 
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Fig. 12. Manifold framework and its relationship to the contextual environment. 
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automatically visualize this different aspect of the imported glyphs. For this, the application needs 
to set “visibility filters” to prevent all glyphs being exposed in the new viewer. Who manages 
such filters? It should be a class in the presentation module, since the domain module should not 
care about the viewer(s). 

Input Listeners: We could not perceive a benefit in specifying a common interface for input 
listeners. This class is tightly linked with the viewer implementation, so it can be specified only 
when the viewer implementation is known. On the other hand, this class is relatively independent 
of the input device, since we assume that it only receives input-event notifications from the 
device drivers. Its only role is to glue the device drivers (via the viewer) to the tools and 
manipulators associated with the viewer. 

3.1.2 Controlling the Frame Rate 
Re-rendering and re-displaying the scene graph is a resource consuming task and we need checks 
and controls on its invocation. The control of the rate of refresh, or “frame rate,” is centralized in 
the Display object. When a glyph’s property changes, it asks its parent viewer for a redraw, by 
calling Viewer.requestRedraw(). Individual property modifications are too fine 
granularity and may result in a “storm” of redraw requests. Hence, the request is recorded, but the 
actual redraw takes place only when the Display invokes Viewer.redraw(). The process 
is summarized in the right-hand size of Fig. 10. 

Display in current implementation runs in a separate thread. It can perform the redraws 
periodically, at regular time instances that can be adjusted. Another approach, which is taken in 
the current implementation, is to have other objects notify Display about opportunities for redraw. 
Of course, the choice must be carefully performed, for otherwise we are no better than with 
fulfilling each glyph’s redraw request. Worse, there is extra overhead of an additional thread. 

Our choice should be guided by the fact that view updates are initiated by the model(s), see Fig. 1 
and 2. Since the Controller (described in Section 3.2) stands as the gateway between the domain 
and the presentation, it is selected to notify the Display about possible needed redraws. 
Similarly, presentation models (Section 3.1.3) should also notify the Display. 

Design Issue 3.1: If you anticipate working only with small domain models (with 
correspondingly small number of glyphs) and you are thread-thrifty, you may decide not to run 
Display in a separate thread. Rather, Display is asked to perform redraws within the current 
thread. How to redesign Display to be able to make this choice (threaded vs. non-threaded) at 
runtime? Also, depending on the particular GUI toolkit used for the Manifold implementation, the 
toolkit may have mechanism for the framerate control. This should be possible to exploit from 
Display. 

 

For the visual display of dynamic data, one of the most important considerations is maintaining 
suitably high frame rates. Typically, this is considered to be at least 20–30Hz [5]. Below this 
level motion appears discontinuous, and constraints on object interactions (such as collision 
detection and control in 3D graphics) may fail to be represented correctly due to the high inter-
frame latency. 

If we are to implement an advanced user interface with haptic force feedback [6], haptic output 
rendition imposes even greater demands on the system than visual displays. An important factor 
contributing to the correct perception of a collision with a solid, haptically-rendered surface is the 
amount by which the virtual surface can be penetrated. This is highly dependent on the latency 
inherent in the feedback system controlling the haptic device. Latency arises from two sources: 



 18

the update rate of the device’s feedback loop, and communication delays. An update rate of at 
least 1KHz [6] is considered to be necessary for solid contacts; below this rate objects begin to 
feel ‘spongy’, and if the rate drops too low, instabilities arise. 

Design Issue 3.2: How to build into Manifold a mechanism to monitor the current frame rate and 
take corrective steps if it does not meet the user-specified quality-of-service? What corrective 
mechanisms can be implemented? 

3.1.3 Presentation Models 
Presentation models are formed after the Java Swing models. These are not actual domain models, 
but a refinement of the MVC pattern. A presentation model essentially maintains the state 
specific to the current viewing parameters or purely visual aspects of the glyphs. Examples are 
the viewing point, e.g., the position of the scrollbars on a window, or current choices on radio 
buttons. We already encountered shadow glyphs as purely presentation concepts that are not of 
interest to the application domain (Section 2.1.3 above). 

Although these presentation concepts (viewing parameters and glyph decorations) are not of 
interest to the domain, we need to keep them consistent across multiple views, if there are 
multiple views. For example, in the current Manifold implementation, the viewers 
Viewer2DImpl and TreeViewer visualize the domain model in two different ways. When a 
glyph or several glyphs are selected (and highlighted) in one viewer, they should be highlighted 
in the other viewer, as well. For this, we need an equivalent of an application domain model, and 
that is what the presentation models are about. 

Manifold currently defines two types of presentation models: 

• manifold.ToolsModel, which maintains information about the currently selected 
tool and whether or not the tool is of single-action type; 

• manifold.SelectionsModel, which maintains information about the currently 
selected glyphs in the viewer(s). 

Fig. 13 shows how the tool/manipulator sets the selections model, which in turn notifies all the 
listeners registered for SelectionsEvents. In our case, these are 
manifold.swing.Viewer2DImpl and manifold.swing.TreeViewer. Notice that 
this diagram is conceptually similar to the one in Fig. 10, since both are depicting notification 
from the model to the glyphs. 

Notice that the implementation of Glyph.setSelected() actually makes visible the 
Highlighter shadow glyph, rather than maintaining a boolean flag for this specific purpose. 
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Design Issue 3.3: Intrinsic presentation models, such as javax.swing.tree.TreeModel 
maintained by javax.swing.JTree in manifold.swing.TreeViewer force us to 
maintain simultaneously two or more presentation models. This results in some inelegant 
solutions to keep them in synchrony and avoid interferences. An example is the helper field 
externalSelectionsChange maintained in TreeViewer to distinguish the notifications 
from the intrinsic model from those from manifold.SelectionsModel. An option would 
be to reuse the TreeViewer’s tree model in manifold.swing.Viewer2DImpl as well. 
This in turn requires using only leaf Glyphs and not composites such as 
manifold.impl2D.TransformGroup (because the composite is given by the intrinsic tree 
model). A leaf glyph would be held in a corresponding 
javax.swing.tree.DefaultMutableTreeNode as the “user object,” and 
stored/retrieved by set / getUserObject(). This is an option to consider for future work. 
Keep in mind, though, that Glyph has three different aspects (Fig. 8), and 
DefaultMutableTreeNode models only one of these! 

3.2 Interaction with Application Domain 
 

Here, Controller is a single object acting as a gateway between the presentation and domain 
modules of the system. Conversely, in the MVC design pattern, Controller is a component of the 
pattern, usually implemented as a set of cooperating objects working together on the input 
interpretation task. 

 

manip
: SelectorManipulator : SelectionsModel

viewer
:SelectionsListener : Glyph

setSelections()

selectionsChange()
setSelected(true)

grasp()

loop [for all listeners]

 
Fig. 13. UML sequence diagram for updating the presentation model. This diagram is embedded in the one 
in Fig. 11. SelectorManipulator is inner class of the Selector tool, and the selections model can have 
arbitrary number of SelectionsListeners, as indicated by the loop. 
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The reader may find it useful at this point to revisit the UML diagrams where the Controller 
appeared, to better master the design. In particular, see Figs. 6 and 7, where it was referred to as 
“gateway.” 

3.2.1 Vocabulary of Slot Verbs 
The controller implementation must specify a well-known list of the verbs that will be used in the 
event frames generated by the manipulators. The vocabulary is application-dependant and both 
manipulators and the application domain must know the meaning of these verbs. To be more 
precise, the manipulators must know how to parse the input events into the verbs (and other slots 
of the event frame). Application domain knows what action(s) to take in response to particular 
event frames. Of course, there is no need for manipulators to know neither what those actions are 
nor what their meaning is. 

In our example implementation, the following verbs are defined in 
manifold.ControllerImpl: 

 public static final String ADD_NODE = "add"; 

 public static final String DELETE_NODE = "delete"; 

 public static final String SET_PROPERTIES = "setProperties"; 

 public static final String PROPERTY_QUERY = "propertyQuery"; 
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3.3 Class Dependencies 
 

The class dependencies are shown in Fig. 14. This diagram was generated manually, though, so I 
might have missed a few. Almost all current Manifold classes are shown, with the exception of 
ControllerImpl, Application, and some legacy classes in manifold.util. 

Some dependencies are not shown. For example, SelectionsModel keeps reference to the 
Controller to get hold of Display when the selections are altered. The main purpose, 
though, is for the future use, to be able to send selection events to remote applications, e.g., in 
collaborative groupware applications. Also, the connection from Glyph to Viewer is not shown 
in this figure, but it is shown in Fig. 15. 

The class inheritance diagram is shown in Fig. 15. PropertyEditor is shown without any 
descendants, since this is a work in progress, but there will be some, see Section 5.2 below. Each 
tool has a link to its corresponding manipulator, although the link is shown only from Rotator 
to RotatorManipulator, to avoid cluttering the diagram. Although the link is not shown, 
both viewers (Viewer2DImpl and TreeViewer) have visibility of the Glyph which is 
needed when managing the glyph tree (scene graph). 

There is also ControllerImpl which implements the Controller, which is not shown 
since it serves only as a reference implementation. 
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Fig. 14. The class relationships diagram of the current Manifold implementation. The inheritance 
relationships are shown in Fig. 15. 
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4 Geometry and 
Transformations 

 

 

4.1 Global, Screen, and Local Coordinate Systems 
Fig. 16 shows the relationships between different coordinate systems. The domain model is 
represented in the global (world) coordinate system. Normally, these would be Global Positioning 
System (GPS) coordinates of latitude and longitude. The screen window shows part of or the 
entire domain model, which is indicated by the size of the scrollbars. The screen coordinates are 
expressed in pixels and need to be converted to the world coordinates. 

Glyphs can be grouped into multiple hierarchies and each grouping can have its own associated 
transformation. Because of this, we maintain glyphs in their local coordinate system. A prototype 
of the glyph is immutable, always centered in the origin of its local coordinate system, without 
any rotation, and with the fixed unitary dimensions. This is shown in Fig. 17(a). In order to create 
arbitrarily processed glyphs, we assign a transformation to the glyph, which transforms it relative 
to the transformation of its parent glyph. The root glyph of the scene graph also has associated 
transformation, which maps from the world coordinates to screen coordinates and vice versa. 
Example of transforming a glyph is shown in Fig. 17(b). Notice that the glyph itself remains 
unaffected by the transformation. The transformation is maintained separately and only applied 
during the scene graph traversal, Section 4.3 below. 

Why maintain immutable prototypes? For example, java.awt.geom.RectangularShape 
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Fig. 16. Coordinate systems for an ellipse glyph. Notice also the glyph’s handles. 
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has the method setFrame() to directly alter/transform the shape. Why not keep only the 
shape reference and allow arbitrary means of transforming the glyph’s shape, not only using its 
associated transformation? The reason is that this would create confusion with the developer 
using the Glyph interface. The developer needs to keep track of the current transformation 
method. Plus, a general solution would have to be implemented anyway, to include the case 
where the developer want to use the exclusively the associated transformation. 

The current method of keeping the immutable prototype and specifying the glyph’s geometrical 
properties using only the associated transformation offers a simple and uniform interface. 

The entire viewer with its content can be transformed, as illustrated in Fig. 18. To achieve this, 
we apply the transformation to the root glyph of the scene graph. 

4.2 Affine Transformations 
Affine transformations are transformations in which parallel lines remain parallel. An affine 
transformation is any transformation that preserves collinearity (i.e., all points lying on a line 
initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line 
segment remains the midpoint after transformation).  Translation, scaling, skewing, and rotation 
are affine transformations; perspective transformations are not. Here is a quick refresher on 
multiplying two affine transformation matrices: 
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Java 2D defines the class java.awt.geom.AffineTransform and the reader should check 
its accompanying documentation for details. 
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Fig. 17. (a) Glyph’s prototype as represented in its local coordinate system. (b) Glyph transformed in the 
global coordinate system: positioned at (3, 5), width scaled to 6 and height to 4, and rotated by θ = 30° = π/6.
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AffineTransform satisfies most of our needs and is used throughout the 
manifold.impl2D package, except that it does not provide easy access to the “pure” 
component transformations. To compensate for this lack we define 
manifold.impl2D.Transform2D. 

Typical graphical editor supports translations, rotations, and scaling of the geometric figures. A 
translation by (tx, ty) along the x- and y-axes is represented as: 
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A scaling by (sx, sy) along the x- and y-axes is represented as: 
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An arbitrary affine transformation composed of rotation, scaling, and translation is then: 
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Notice that the order is important—translation must be applied the last—because translation and 
rotation are not commutative. The problem is illustrated in Fig. 19. Although this may appear as 
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Fig. 18. Example of a global transformation of the viewer. (a) Original. (b) The entire viewer with its content 
is transformed. Notice the size of scrollbars in (b). 
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belaboring high-school geometry, it is very easy to overlook such minutia in a complex code and 
then spend lot of time hunting the petty bug. 

If you applied the “pure” transformations as in (*) and then invoked 
AffineTransform.getScaleX(), what you obtain is the element m00 = sx ⋅ cosθ, which 
does not represent the “pure” scaling transformation. Similarly, 
AffineTransform.getMatrix(double[] flatmatrix_) gives out the 
flatmatrix_ array with the 6 specifiable values of the 3×3 affine transformation matrix in the 
following format: 

[ ]120211011000 mmmmmm=_flatmatrix  

AffineTransform accessor method calls return the following: 
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If you assume that translation, rotation, and scaling were applied independently, i.e., as “pure” 
transformations, and you want to reconstruct the individual transformation components, one way 
to do it is: 
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Of course, we have to be careful with the inverse tangent (arc tan), since it is multivalued, and we 

only consider the values in the range ⎥⎦
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2
,

2
ππ . 

When setting transformations, the scale values should not be set to zero, since this yields infinite 
numbers for the inverse transformation. Instead, a minimum value of Double.MIN_VALUE = 
4.9E-324 should be used. 
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Fig. 19. Illustration of the non-commutative nature of the translation and rotation transformations. (a) Original 
glyph. (b) Glyph rotated by θ = 30° = π/6, then translated by (1.3, .07). (c) Glyph translated, and then rotated.
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4.2.1 Line Glyph: Zero- and Negative Scaling 
The line segment glyph presents an interesting case. As stated above, our convention is to 
represent simple geometric figures with immutable prototypes and derive an arbitrary sized figure 
by using an appropriate glyph transformation. An example is shown in Fig. 17. There are, 
however, some peculiarities in applying this approach to line segments. Namely, two extensions 
are required: 

• Negative scaling elements of the transformation; 

• Zero scaling elements of the transformation. 

First, rectangular shapes are not oriented, so positive scaling transformations suffice to cover all 
the cases of interest. Unlike this, for line segments we may want to know the line’s orientation, 
that is, its starting and ending points. This is useful for the purpose of decorating the line with 
adornments such as arrows or other types of endpoint shapes. For this reason, we allow negative 
scaling as detailed below. 

Second, we could try to control the slope of the line segment by the axial scaling components, 
similar to controlling the width/height of rectangular shapes. However, this turns out to be an 
awkward solution. A purely horizontal or vertical line has one of its dimensions equal to zero, and 
this presents serious problems when transforming the picking shape (Section 4.3.2 below) to the 
line glyph’s local coordinate system. 

Our solution is to distinguish the two subtasks that need to be accomplished: 

1. Messaging from the source of the property change, such as manipulator, about the new 
glyph’s transformation; 

2. Shape re-computation during the glyph rendering (draw) traversal. 

To support uniform messaging for all simple geometric figures, we allow for zero- and negative 
scaling parameters in the glyph’s transformation. 

A more elegant solution appears to be to control the line’s obliqueness by the rotation angle θ. 
For this reason, manifold.impl2D.glyphs.Line overrides some of its base class methods. 
We maintain the immutable prototype as a horizontal line segment. The segment’s length is 
controlled by the larger of the two scaling elements. This is so because sy = 0 specifies a 
horizontal line and sx = 0 specifies a vertical line. The smaller scaling is silently enforced to be 
always the same as the larger one. This uniform scaling in both dimensions solves the problem 
with transforming the picking shape (Section 4.3.2 below). 

To obtain an oblique line segment, we rotate the prototype by the corresponding angle. However, 
this does not show in the glyph interface. The interface remains consistent, so even the line slope 
can be specified with different scalings. This is particularly important in Manipulators, so the 
Manipulator methods need not discern between manipulating rectangular shapes and lines, 
Section 4.4 below. For this reason, the Glyph methods setProperty() and 
setCachedState() are overridden. In these methods, non-uniform scalings are intercepted 
and converted to line rotations. To account for the full range of rotations, [0°, 360°], we must 
allow for negative scaling. The reader should examine the source code for details. 

Allowing for negative scaling may appear as a needless complication. However, in this way we 
retain the uniform external interface for controlling the Glyph’s geometry, that of affine 
transformations only. It should also be pointed out that negative scalings are never used in actual 
transformation. Rather, this is purely a messaging mechanism to communicate to glyphs their 
orientation. 
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What if the line is simultaneously non-uniformly scaled and rotated? We ignore the rotation 
component and overwrite it with the one derived from the scaling components. In other words, 
the caller should take care not to send such ambiguous “messages.” 

Problem: Does (sx, sy) = (10, 10) mean that the line should not rotated at all, or should it be 
rotated by 45°? 

4.3 Traversals 
One place where you regularly encounter transformations is during the scene graph traversal to 
perform operations on individual glyphs. Traversal implements the Visitor design pattern [16] for 
visiting a collection of glyphs. A traversal is passed to a glyph’s traverse operation and maintains 
common information as well as the stack of information associated with each level of the 
traversal. 

Typical traversals are draw traversal, used in (re-)rendering the individual glyphs, and pick 
traversal, used in determining which glyph the user is trying to select for manipulation. Notice 
that these two traversals are explicitly supported in the Glyph interface, Fig. 7, via methods 
draw() and pick(), respectively. 

4.3.1 Draw Traversal 
Output rendition traversal for two-dimensional scene graphs is implemented as 
manifold.impl2D.TraversalDraw2D. The left-to-right order of scene graph nodes 
represents the spatial order of the corresponding glyphs in the depth axis. In other words, the 
glyphs that are encountered first will be rendered in the background and those that are 
encountered last will be rendered in the foreground. Altering the location of a glyph within the 
parent’s list of children will alter the rendering order of the glyph. 

To render the glyphs, we use the Java 2D renderer java.awt.Graphics2D, which has a 
method draw(java.awt.Shape) for rendering simple geometric figures. We cannot invoke 
this method with the prototype shape of the glyph, since for all glyphs it would draw a small 
figure centered in the origin. We must first transform the glyph to the world, global coordinates. 

There are two options to consider. One is to transform the glyph’s shape and then pass it to the 
graphics environment. The other option is to apply the global transformation on the graphics 
environment, method Graphics2D.setTransform(), and then pass the unaltered prototype 
glyph to the graphics for rendition. Both options have some drawbacks, so our implementation 
uses a combination of the two. 

In the latter case of transforming the graphics environment before rendering, in cases where the 
scaling in different dimensions is unequal, glyph rendering results in undesirable effects as 
illustrated in Fig. 20. For this reason, we consider the former case, i.e., transforming the glyphs 
into the global coordinates before the rendition. One problem with this is that 
AffineTransform.createTransformedShape(Shape pSrc) returns the shape of 
the type java.awt.geom.GeneralPath, which is an approximation of the shape 
constructed from straight lines, and quadratic and cubic (Bézier) curves. This seems to be 
unnecessary complexity for simple geometric figures. 

Our solution in GeometricFigure.draw() is to decompose the concatenated 
transformation obtained from the draw traversal into the rotation and translation+scaling 
components. The translation+scaling component can be easily applied to rectangular figures (see 
java.awt.geom.RectangularShape) and lines by just transforming their opposite corner 
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points. This is done in GeometricFigure.translateAndScaleShape(). Conversely, 
the rotation component is applied to the graphics environment and the shape is finally rendered. 

Of course, this trick works only for simple geometric figures. Other glyph types must implement 
their own draw() method to suitably solve the problem. 

4.3.2 Pick Traversal 
Pick traversal finds the glyphs that intersect a given shape, usually a point or rectangle, specified 
in the world coordinates. It is used by the manipulator to determine what glyph(s) it should be 
currently working on, as indicated in Fig. 11(b). Conceptually, picking is like drawing and 
determining what glyphs intersect the point or region. Picking is unfortunately not as simple as 
Fig. 11(b) would imply. The detailed UML diagram which is embedded in the diagram of Fig. 
11(b) is shown in Fig. 21. Pick traversal for two-dimensional scene graphs is implemented as 
manifold.impl2D.TraversalPick2D, which is passed in to the glyph’s pick() method. 
When pick() returns, the traversal contains a list of the glyph trails that were hit. 

In our current implementation, the picking is decided based on the entire area of the glyph’s 
bounding shape. Thus, if a pick point falls within an empty figure contour, it is picked as if the 
contour were filled. The readers who may not like this choice are free to implement their own 
choice. 

Let us assume the example shown in Fig. 17(b) above, and 100 pixels correspond to one unit in 
world coordinates. In other words, the scaling transformation (sx, sy) = (100, 100) is applied to the 
root glyph of the scene graph. Suppose the user selects the Selector tool and clicks at the 
location (500, 700) in the screen coordinate system. The location of the mouse click is called the 
pick point. In order to determine whether the glyph is “hit” by the picking point, we need to check 
whether the glyph’s bounding box contains the (transformed) picking point. This cannot be done 
straightforwardly by invoking pick() on the glyph since the glyph only knows about its local 
coordinate system, Fig. 17(a). The glyph’s bounding box is the rectangle with the opposite 
corners in points (−0.5, −0.5), (0.5, 0.5). The straightforward answer is that the point (500, 700) 
lies outside the glyph’s bounding box. 

Before invoking pick(), we must transform the coordinates of the picking point to the glyph’s 
local coordinate system. This implies applying the inverse of all the transformations starting with 

Manifold
File   Edit   View

Manifold
File   Edit   View

 
Fig. 20. Scaling the graphics unequally in different dimensions results in skewed rendering. Here glyphs are 
scaled doubly in the horizontal dimension, resulting in the varying line thicknesses. 
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the root glyph up to the current glyph. The path transformations are maintained in the method 
visit(), as indicated by the note in Fig. 21. In our example, we have: 
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The transformed pick point (0.46, 0.18) clearly falls within the ellipse’s bounding box, and the 
ellipse glyph invokes hit(this) on the pick traversal to register the successful pick. 

As mentioned in Section 4.2.1, the affine transformation for Line glyphs cannot represent lines 
via scaling since axial lines require zero scaling in one dimension. This would present 
insurmountable obstacles in picking. For example, the pick point which is slightly off the line 
would be infinitely distant from the line when transformed to the line’s local coordinate system. 
For this reason, line segments must always have uniform scaling in both axes and represent their 
obliqueness via the rotation angle. 

 

loop

manip
: SelectorManipulator

sceneGraph
: TransformGroup : TraversalPick2D

child : Glyph2D

pickShape := create()

visit(this)

pick(this)

grasp()

currentGlyph :=
pickClosest(pickShape)

pick(this)

[for all child glyphs]
visit(child) bshape :=

getBoundingShape()

getPickShape()

opt hit == true hit(this)

highlighter
: Highlighter

selected := isVisible()

opt selected == true
handlePick := isHandlePicked(pickShape)

pickShape
: PickPoint

hit := contains(handle)
loop

hit := contains(bshape)

[for all handles]

result := getHitList()
return result

create(pickShape) Path transforms
concatenated
and pushed on stack

loop

manip
: SelectorManipulator

sceneGraph
: TransformGroup : TraversalPick2D

child : Glyph2D

pickShape := create()

visit(this)

pick(this)

grasp()

currentGlyph :=
pickClosest(pickShape)

pick(this)

[for all child glyphs]
visit(child) bshape :=

getBoundingShape()

getPickShape()

opt hit == true hit(this)

highlighter
: Highlighter

selected := isVisible()

opt selected == true
handlePick := isHandlePicked(pickShape)

pickShape
: PickPoint

hit := contains(handle)
loop

hit := contains(bshape)

[for all handles]

result := getHitList()
return result

create(pickShape) Path transforms
concatenated
and pushed on stack

Fig. 21. UML sequence diagram for the pick traversal. The picking process yields the “current glyph,” which is 
the glyph that the Manipulator currently operates on. 
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There is an interesting issue of transforming the glyph handles for the purpose of determining 
whether one of the handles is picked. We would like that the handles have fixed screen 
dimensions, in our case Glyph2D.HANDLE_DIM = 5 pixels. Obviously, we must transform 
this before checking whether the handle’s rectangle contains the pick point. The way we solve 
this is to apply the scaling component of the concatenated inverse transformation on the handle’s 
rectangle. If the scaling is different in different dimensions, we pick the smaller one. See the 
method Glyph2D.isHandlePicked() for details. 

It is instructive to revisit the design issue in Fig. 9 after reading this section. How would the pick 
traversal work if the design in Fig. 9(b) were selected? What glyph(s) would be picked and which 
identifiers should be messaged to the application domain? [Recall that the glyph identifiers must 
be the same as the identifiers of the corresponding domain objects, so that the presentation and 
domain modules can meaningfully communicate.] 

4.4 Manipulation 
Another context where coordinate systems and transformations play a key role is glyph 
manipulation. It is important both in initiation the Pick Traversal, and during the physical 
deformation of the selected glyph(s). 

In our terminology, manipulation primarily means altering the glyph’s geometry by applying 
different affine transformations. As such, manipulation affects only the glyph’s transformation 
property. 

4.4.1 Messaging 
Our first choice is about the messages that Manipulator sends to the domain (via Controller) and, 
eventually, to Glyph. Our current Manipulators perform only spatial transformations on Glyphs, 
so it appears that an AffineTransform should suffice to message all the relevant information 
about manipulation. 

There are some subtleties to this, particularly regarding the Line glyph, as described above. 
Example manipulation is illustrated in Fig. 23, which contains no rotation for the sake of 
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Fig. 22. The problem of messaging via the glyph’s transformation. (a) One would expect that the active 
handle h5 maps to h′5 as the user resizes the object through the anchor point h1. (b) This is what happens if 
the transformation’s scaling components are forced to always be positive. 
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simplicity. Recall that rectangular figures are specified with the opposite corners, denoted by 
points P1 and P2. As already explained, negative scaling signalizes that the figure has been flipped 
to a different quadrant relative to the anchor point. In addition, the transformation matrix sent in 
an event frame for manipulating a line can contain zero scaling in one of the axes. However, the 
glyph itself (and the domain, too) preprocesses such transformation matrix before storing it. The 
reader should check Line.fixZeroScaling() for details. 

In our reference implementation, the application domain is simulated in the class 
ControllerImpl, which simply bounces the frames back to the Manifold. However, a real 
application domain would quite likely not send the same frames back to the Manifold. A watch-
list item is to ensure that the domain uses the same messaging conventions as in the Manifold. 

4.4.2 Selection 
Glyph selection receives the interaction point from the input device and initiates a Pick Traversal. 
Another option is to delimit a screen region and ask a Pick Traversal to identify all the glyphs 
within this region. In both cases, the pick shape (point or region) is represented in the world 
coordinates. As described in Section 4.3.2, the pick traversal transforms the pick shape to the 
glyph’s local system before testing for containment. 

4.4.3 Animation and Simulation 
A key method that deals with the dynamics of glyph manipulation is 
Glyph2D.simulateHandleMovement(Point2D newPosition_). This method 
expects the handle’s new position, newPosition_, is given in the glyph’s local coordinates. 
This means that the whole simulation is performed on the glyph’s prototype. The key goal is to 
determine how the handle movement affects the glyph’s transformation property. The glyph’s 
new transformation is then exported in the return value of the method. 

Currently, the transformation of the new handle position is performed in the Manipulator’s 
manipulate() method, see SelectorManipulator.manipulate(). For this, we must 
traverse the branch of the scene graph, from the currently manipulated glyph to the root, and 
collect the inverse transformations along the path. The concatenated inverse transformation is 
then performed on the point, and the point is passed to simulateHandleMovement(). The 
reader may wonder whether the branch traversal could be done in a more elegant manner by 
defining a new Traversal class for this purpose. For example, we could define something like 
HandleMovementSimulationTraversal?! 

(a)

x

y

P1

P2

sy

sx

tx , ty

x

y

P1

P2

sy

sx

tx , ty
P1′ = P1

P2′

tx′ , ty′

sy′

sx′

P1′ = P1

P2′

tx′ , ty′

sy′

sx′

(b) (c)

P1″= P1

P2″
tx″ , ty″

sy″

sx″

P1″= P1

P2″
tx″ , ty″

sy″

sx″

Fig. 23. Glyph manipulation: resizing. It is assumed that P1 is the anchor point for the manipulation and P2 is 
being moved around. Scaling sy″ is negative to signalize that the figure has been flipped to a different 
quadrant relative to the anchor point. 
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Presently, we felt that this would not be appropriate. The simulation is performed only by the 
selected glyph and all we need is a transformed point as input to the process. However, we could 
imagine that there are several glyphs selected, where some or all of them could be in different 
branches of the scene graph. Then, manipulating a handle of one of them orchestrates 
manipulation simulation on all selected glyphs. Even Microsoft PowerPoint has such feature, but 
there is a user interface design issue associated with this feature. That is, having too many 
features may not be what users need, and the actual utility of this feature should be carefully 
considered. 

Design Issue 4.1: Examine this option more carefully and consider designing a new traversal type 
(in addition to draw and pick). 

Design Issue 4.2: In Glyph2D.simulateHandleMovement() and 
Line.simulateHandleMovement(), the way the new Glyph transformation is calculated 
is a quick-and-dirty solution. Check the code and devise a more robust calculation. 
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5 Controls, Dialogs, and Layout 
 

 

5.1 Controls 
Menus, toolbars, keyboard input, … 

 

It is well-known that people use different words to name the same thing or concept [15], so, if 
possible, it is preferable to list the available choices as menu items. 

 

5.2 Dialogs and Property Editors 
When computer needs specific information, it initiates a dialog with the user. “Dialog,” as 
understood in graphical user interface design, is a conversational vignette in a limited domain, on 
a well defined topic, with a goal of extracting specific information from the user. The computer 
knows in advance what to ask and what are the options it can expect from the user as an answer. 

Property Viewer displays only one glyph at a time—the one that is selected. It exposes the 
glyph’s properties for editing. Each property has a different editor, depending on the property’s 
data type, as illustrated in Fig. 24. There is only one property viewer instantiated per application. 
Every time a new glyph is selected, the old editors are emptied from the viewer, and the new set 
of editors are loaded. 

The composition of the current manifold.swing.PropertiesViewer implementation is 
shown in Fig. 25. The glyph-specific property editors are contained in the 
PropertyEditorsPanel, which is specific to different glyph types and is re-loaded every 
time a new glyph is selected. PropertyEditorsPanel contains multiple property editors, 
which are subclasses of javax.swing.JComponent. 

What if the selected glyph is non-leaf, inner glyph? In this case we can assume that the user wants 
to edit simultaneously all the properties that are common across all the leaf glyphs that are 
descendants of the selected glyph. Hence, the viewer first inquires the leaf glyphs for their 
editable properties to determine the set of the common properties. Notice that the information 
about the editable properties is known only to the glyph’s PropertyEditorsPanel, not to 
the glyph and not to the corresponding domain node, so the property viewer in fact inquires the 
PropertyEditorsPanel. 

By the same token, we may extend property editing to the case of multiple selected glyphs. In 
other words, the property viewer again queries all the leaf glyphs to determine the common 
properties. As already mentioned in different contexts, such complex features may look fancy, but 
the important question is what value the present to the user. This issue must be carefully 
considered before investing effort in implementing such features. 

As noticed above (Section 3.2), messaging about the attribute changes is transparent of the source. 
Dialogs communicate the change in the same way as Manipulators do. In fact, dialog-type 
interaction could entirely substitute direct manipulation, but for some purposes it would be 
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awkward, if not impossible, to produce so many messages in such a short time. Direct 
manipulation has an advantage of allowing a quick compare-and-correct experimentation until the 
desired value is found. However, if the exact desired values of glyph properties are known in 
advance, then it is superfluous to experiment with direct manipulation. 

5.3 Layout 
A layout manager is an object that controls the size and position (the tiling layout) of components 
inside a Container object. For example, a window is a container that contains components such as 
buttons and labels. The layout manager in effect for the window determines how the components 
are sized and positioned inside the window. The act of physically placing interface objects on a 
window, to achieve a uniform and aesthetically pleasing look is performed by sophisticated 
internal algorithms. 

Layout and the actual Java widgets used in composing a Manifold interface are controlled 
externally by specifying several XML configuration documents. These documents are formatted 
as specified by java.beans.XMLEncoder. With this facility, the Manifold can be assembled 
in different ways, without editing the Java source code. (But, you have to edit the XML source 
code, which is not fun either. ) 

The key issues here are: 

• Economizing the screen real estate 

• Reducing the user effort in locating the viewers and controls 

 

 

 

 

 

 

Presently, there is nothing in Manifold to manage layout. It is left to the designer to employ the 
suitable widgets for layout management and arrange the UI components around the screen. An 
example is given by the XML application specification file test.xml, which is part of the 
Manifold distribution. The application assembly is depicted in Fig. 26. 
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Fig. 24. Example of a property editing dialog box. Property editors allow editing the property values. 
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The class relationships are shown in Fig. 14, but most of the actual object instance relationships 
are established dynamically, at the “booting” time, and can be changed at runtime. It is 
noteworthy that no class in the system knows what particular objects contained in different XML 
files are available. Tools/Manipulators, Glyphs, PropertyEditors, Menus, any and all of these can 
be seamlessly added or removed at runtime without the rest of the system knowing about such 
alterations. The runtime links between the objects are made via the property mutator (setter) 
methods in the given XML document. 

GlyphFactory receives “orders” to build new glyphs specified by the glyph’s logical name, but 
the GlyphFactory itself does not know the actual classes since it relies on a look-up table: given 
the glyph’s logical name as the key, it finds the Java class as the corresponding value. 

 

The Java XMLEncoder may not be the best means for user interface description, but we use it 
because it is ready and available. Other options are the use custom interface builders, which 
would also require new UI markup language, such as the one in [25]. 

 

Automatic layout management is considered to some extent in [33]. Another work of interest is 
[34]. 
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Fig. 25. Composition of a property editing dialog box: (a) The screen rendering; (b) The UML class diagram. 
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Design Issue 5.1: Build a wizard to edit the XML source code to assemble the Manifold 
components into a specific configuration. There are many such wizards already available. Check, 
e.g.,  

R. Eckstein, “Creating Wizard Dialogs with Java Swing,” Copyright 1994-2005 Sun 
Microsystems, Inc., February 10, 2005. Online at: 
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/index.html 
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Fig. 26. Application assembly is performed by the class Application from several XML documents. 
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6 Visualization 
 

 

With visualization there is an issue of not only the amount of information conveyed in a display, 
but also the means of conveyance. If the means selected fits with the way the human brain works, 
then it will open the floodgates, and the same information can be conveyed in a much shorter time. 

Julesz’s pop-out effects 

O’Regan’s work on change blindness 
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7 Extensibility and Reusability 
 

 

Our goal is to protect the UI developer from dealing with complexities of the GUI toolkit and the 
application domain. We hope that the developers using Manifold will be inspired to build on 
following the suggested design patterns. With that goal in mind, we consider generic parts which 
can be reused in different application contexts, and what needs to be interchangeable. 

I am not enthusiastic about reusing any of the components of the Manifold framework in other 
frameworks. If such opportunity arises, that is great. However, my main concern is: what parts of 
the framework can be reused within Manifold but in different application contexts, and what parts 
need to be substituted to suit the task at hand. 

I believe that Manifold is extremely lightweight and reusable user interface framework. Fig. 27 
shows the “onion” structure, where the developer can start reusing at any layer of the “onion.” If 
you choose to start with the core interfaces only (the package manifold), you are only using the 
high level design. The package manifold.impl2D offers basic two-dimensional geometry 
functions. Instead of this, you could build on top of the core interfaces and implement an 
equivalent package to be used on small devices. The package manifold.swing offers layout 
and controls implemented using the Java Swing GUI toolkit. The entire current implementation 
offers a simple two-dimensional drawing editor. 

A major advantage of the Manifold design is that it is completely self-contained presentation 
module, implementing the Controller/View components of the MVC pattern. It can be attached to 
an arbitrary domain, since it assumes no knowledge of any domain classes or interfaces. The 
manifold classes only know that the Controller class acts as a gateway to the domain. On the 
other hand, the Controller class exposes all the relevant information flows within the 
presentation module. It is via this gateway that events from the presentation module can be 
intercepted and distributed as needed, and new events can be injected into the presentation 
module. 

Manifold really acts as a syntactic glue to connect different XML documents and Java classes 
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Fig. 27. The “onion” structure of the Manifold packages. 
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which define different visualizations and input interpreters, i.e., semantics. Its intelligence is in 
knowing what can be connected to what and routing messages between those software objects 
which perform the actual meaningful processing. 

7.1 Tools, Manipulators and Controller 
Example Tools and associated Manipulators provided in the current application can be taken out 
and replaced with other Tools/Manipulators in different application contexts. Fig. 28 summarizes 
the key characteristics of this tandem. The developer must follow the manifold.Tool and 
manifold.Manipulator interfaces and implement their desired functionality for the grasp-
manipulate-effect manipulation cycle. 

The tools normally know very little or nothing about the glyphs they operate upon. For example, 
the Creator tool does not import any Glyph interface at all. Deletor imports Glyph to 
handle the list of glyphs scheduled for erasure. Both Selector and Rotator import 
Glyph2D to access the glyph’s transformation and TransformGroup to obtain the picking 
traversal service. Selector also uses the handle-movement simulation service. Obviously, this 
is a very basic knowledge and a broad range of spatial glyphs can be manipulated by the existing 
tools/manipulators. We believe that this demonstrates high degree of decoupling between the 
tools and objects on which they operate (glyphs). 

The implementation of the Controller interface is also related with tools/manipulators. This 
is because the controller knows the action verbs of the event frames that the current application 
domain supports. The manipulator sets those verbs when creating the event frames for the domain. 

7.2 Glyphs and Viewers 
We believe that it is relatively easy to extend the “vocabulary” of glyphs that can be placed 
within the viewer canvas. Our glyphs pursue middle ground between what Bederson et al. [4] call 
polylithic and monolithic approaches to structured graphics. We introduce “shadow glyphs” that 
can be composed with visual glyphs to provide additional appearance or functionality. Although 
not entirely independent as nodes in polylithic approaches, the shadow glyphs nonetheless 
provide separation of concerns and structured graphics aspects. 

Glyphs know nothing about the tools/manipulators that operate on them. Generally, glyphs have 
minimal coupling with the rest of the Manifold framework. 

Glyphs are tightly coupled with the Viewer in which they will be displayed, and the viewer may 
provide “layout management” for them. 

 

Tool

Manipulator
grasp(InputDevEvent)
manipulate(InputDevEvent)
effect(InputDevEvent)

sendAsynchEvent(MEvent)

manip := createManipulator(Viewer)

 
Fig. 28. The main inputs and outputs of a Tool/Manipulator component. 
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7.3 Input Device Listeners 
As people start to use their PCs more, they start to identify ways in which they want to use 
peripherals for different tasks. Task specialization has led to a variety of keyboard and mice on 
the market; but, there are emerging more exotic interface technologies. 

As pointed out in Section 3.1.1 above, we found no advantage in specifying a common interface 
for input listeners. 

7.3.1 Speech 
A speech interface can be used to directly issue commands to the domain. However, it could be 
used in a direct manipulation mode, such as commanding: “Pick up the object X and start moving 
it north-east … keep going …keep going … turn to the right … stop.” 

 

Although there has been a great effort invested in trying to incorporate speech in human-
computer interfaces, speech continues to play a minor role in HCI, and not because speech 
recognition is still imperfect. This may appear surprising, given that speech and language play the 
central role in human communication. Some challenges of speech-based interfaces are considered 
in [11,45]. The greatest problem, in my opinion, is that the computer is very unintelligent. All 
programs, despite their apparent complexity, have relatively simple knowledge and intelligence. 
Moreover, there is no knowledge sharing across different programs—all programs work 
independently—the only sharing is via the clipboard! 

Because of this, humans still operate the computer, like a tool, rather than communicating to it 
like another intelligent being. 

7.3.2 Cyber Gloves and Pointing Devices 
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8 Complexity and Performance 
 

 

Software engineering is deceptively simple. People are usually impressed by processes/tasks 
where in a single step they have to make a great leap. Having to handle simple tasks is usually 
and unchallenging, perhaps even boring, regardless of the number of tasks, and it defies believing 
that such work can be complex. Thus, it is hard to argue that complexity can arise from having to 
deal with many simple things. 

But it is well known that humans cannot be conscious of more than one task at any moment, 
regardless of the task difficulty (Card, Moran & Newell, 1983). We can simulate simultaneous 
accomplishment of multiple tasks that require conscious control by alternating our attention 
between tasks, attending now to one, then to the others. We can achieve true simultaneity when 
all but at most one of our tasks become automatic. 

 

8.1 Design Complexity 
The designs usually start elegant—nobody well-intentioned devises shabby design—but as the 
number of classes grows, the complexity inevitably creeps in. As an economist would say, the 
bigger the organization becomes, the greater free-rider problem it has. If the barriers to entry 
become too low—and the ties among the members become tenuous—then an organization as it 
grows bigger becomes weaker, more disorganized. 

Design complexity is an important issue about any software product, but I’m not aware of good 
and generally accepted quantitative measures of software complexity. For this reason, some ad-
hoc measures are devised. 

When considering complexity of a software package, we are not really interested in knowing how 
complex it is, nor how to make it more complex. What we really want to know is, is this the 
simplest/smallest program that solves the problem we are set to solve? This is the Minimum 
Description Length problem [17]. We should not like redundancy and avoidable complexity. So, 
our aim is to maximally compress the program and find its smallest representation in the 
information-theoretic sense. Of course, to compare two designs, we need to have a measure of 
complexity. 

The wisdom of investing effort in seeking the smallest program for the task may be questioned in 
this age of cheap processing power and storage memory. But, I am not proposing code 
compaction for the sake of computers; rather, it is for the sake of people who will have to read 
this code. 

 

Fig. 14 and 15 are combined into Fig. 29, which shows the connectivity graph for all the classes 
in the current Manifold implementation. Again, this diagram was generated manually, so I might 
have missed a few links. Not shown are the links from GlyphFactory to the five leaf glyphs 
(Rectangular, Line, Link, Text, and Picture), to avoid further cluttering this already 
busy diagram. The utility class Application (symbolized by “A” in Fig. 29) has no links to 
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other classes. The utility class Debug (symbolized by “Dg”) is used for debugging purposes, and 
although there are many other classes pointing to it, the links are not shown since they are 
inconsequential. The classes PropertyEditor (“PE”), PropertiesViewer (“PV”), and 
PropertyEditorsPanel (“PEP”) are shown without links since they are not yet 
implemented. Eventually, there will be links to and from these classes. 

The chart in Fig. 30 plots the number of classes having different counts of input-, output-, or all 
links to other Manifold classes. Only the connections to Manifold classes are shown; the 
connections to Java classes are not shown. Inheritance link is counted as input link on the base 
class and as output link on the derived class. Bi-directional associations are counted both as input- 
and output links, i.e., twice in the count of all links, for both of the associated classes. 

As expected, most of the classes have very few links and vice versa: very few classes have many 
links. This characteristic was observed for very large software packages, as well [53]. 
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The total number of links is 188 and, given the total of 53 classes, there is about 3.6 links per 
class, on the average. Of course, as Fig. 30 shows, the links are not evenly distributed. The 
Manipulator leads the way with 12 links total, Viewer is the second with 10 links total, then Tool 
and Glyph have 8 links total each, etc. Obviously, these are central classes, so it is to be expected 
that they should have greater connectivity than any others. 

 

Although the current design is arguably lightweight and simple, the question of how it would look 
once it becomes a feature-laden interface can be settled only by further developing of the current 
framework. 

 

8.2 Performance 
No quantitative performance measurements have been conducted so far. 

 

Design Issue 7.1: The “booting time” of the application is always of concern. Consider the 
booting time of Adobe Acrobat. I always wonder whether there was a better way to load all those 
modules that I almost never use anyway, as I am waiting, seemingly forever, just to view a PDF 
document. Perhaps we should consider doing only basic initialization and let the user start 
working right away. The rest of the initialization can run in a separate background thread. 
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9 Discussion and Conclusions 
 

 

The Manifold framework presented here provides a domain-independent implementation of a 
presentation module. It is meaningful to state that this UI design acts as a translator and 
interpreter from the language of human (gestures) to the language of computers. It translates the 
user’s pointing gestures into action frames that are delivered to the underlying application domain. 
The conversational metaphor is exploited throughout the framework. 

Manipulation implies spatial representation of the domain data. This may appear to restrict the 
applicability of direct manipulation only to spatial domains that contain elements with spatial 
attributes (locations and dimensions). Examples are graphical editors of geometric models. 

However, this is not necessarily the case, as illustrated in Fig. 3, where files and folders are not 
geometric objects and spatial location has no meaning for an electronic document. But, it is true 
that the visualization of the domain must be spatial, rather than the domain itself. Visualizing the 
files and folders as spatial objects helps the user to easier interact with the file system and keep 
track of the documents. 

The Manifold framework provides a natural growth path to the complete fully-functional systems, 
such as the PowerPoint graphical editor. Another example application that is suitable to build on 
the Manifold is the virtual biology laboratories [49]. Those are already built using an earlier 
Manifold version and porting them to the current implementation would not require a major effort. 

In summary, applicability of direct manipulation does not depend on the spatial nature on the 
underlying data. All that matters is that the developer can come up with a spatial representation 
of the domain. 

Question/Criticism 5.1: How general is this design? Is it only good for “graphical editors”? cf. ref. 
[54,55]. To counter this, we use Tool/Manipulator to implement DragTree, as in OverlayManager. 

 

9.1 Bibliography 
General literature on user interface design [2,44] 

Light introduction to software engineering [26] 

Design patterns [16,7], also insightful is [12] 

Information visualization [56,9,48] 

Java books [12,50] 

Java 2D API review [23] 

Computational neurobiology of pointing and manipulation [41] 

History of graphical user interfaces [1,29,37] 

 

Some websites of interest (last checked August 2005): 
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• http://www.useit.com/ [useit.com: Jakob Nielsen on Usability and Web Design] 

• http://www.asktog.com/ [AskTog: Interaction Design Solutions for the Real World] 

• http://www.pixelcentric.net/x-shame/ [Pixelcentric Interface Hall of Shame] 

• http://citeseer.ist.psu.edu/context/16132/0 

• http://www.sensomatic.com/chz/gui/Alternative2.html 

• http://www.derbay.org/userinterfaces.html 

• http://www.pcd-innovations.com/infosite/trends99.htm  [Trends in Interface Designs 
(1999 and earlier)] 

• http://adb.sagepub.com/cgi/content/refs/11/2/109 [Giorgio Metta: Better Vision through 
Manipulation] 

• http://www.devarticles.com/c/a/Java/Graphical-User-Interface/  

• http://www.chemcomp.com/Journal_of_CCG/Features/guitkit.htm  

•  

 

http://www.google.com/Top/Science/Social_Sciences/Psychology/Cognitive/People/ 

http://nivea.psycho.univ-paris5.fr/ (J. Kevin O’Regan: change blindness) 
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