

Course Name: Software Engineering

Course Number and Section: 14:332:152

Group #10

VirtualLogicLabs
Report #3

Github: ​https://github.com/SagarPhanda/VirtualLogicLabs

Date Submitted: April 22, 2018

Group Members (6):

Sagar Phanda, Khalid Akash, Dhruvik Patel, Vikas Khan, Joe Cella, Yiwen Tao

https://github.com/SagarPhanda/VirtualLogicLabs

Individual Contributions Breakdown

All group members contributed equally.

(Each member spent the same amount of time and contributed equally for each
segment of the Report. This was worked on in team meetings as well as independently

by each team member.)

1

Table of Contents
Summary of Changes 5

Summary of Changes Part 2: Feedback-based changes 6

Clarification on the Issue of Coding 7

1. Customer Statement of Requirements 9
1.1 Problem Statement 9

1.1.1. The Problem: 9
1.1.2 Proposed Solution: 9

2. Glossary of Terms 12

3. System Requirements 14
3.1 Enumerated Functional Requirements 14

3.1.1 General Requirements 14
3.1.2 Lab 1 Requirements 15
3.1.3 Lab 2 Requirements 16
3.1.4 Lab 3 Requirements 16

3.2 Enumerated Nonfunctional Requirements 17
3.3 On-Screen Appearance Requirements 17

3.3.1 Login UI 18
3.3.2 Student UI 18
3.3.3 Pre-lab Assignment UI 19
3.3.4 Lab UI 20
3.3.5 Post-lab Assignment UI 22

4. Functional Requirements Specification 23
4.1 Stakeholders 23
4.2 Actors and Goals 23
4.3 Use Cases 23

4.3.1 Casual Description 23
4.3.2 Use Case Diagram 26

4.3.2.1 Student 26
4.3.2.2 Instructor 26
4.3.2.3 Camera 27

4.3.3 Traceability Matrix 27
4.3.4 Fully Dressed Descriptions 29

4.4 System sequence diagram 34
4.4.1 UC-1 manageEquipment 34
4.4.2 UC-2 finishAndCheck 35

2

4.4.3 UC-5 grades 36
4.4.4 UC-14 giveQuiz 36
4.4.5 UC-15, UC-16, and UC-17 labOne, labTwo, and labThree 37

6. Domain Analysis 40
6.1 Domain Model 40

6.1.1 Concept Definitions 41
6.1.2 Association Definitions 42
6.1.3 Attribute Definitions 43
6.1.4 Traceability Matrix 44

6.2 System Operation Contracts 46

7. Interaction Diagrams 49
7.1 UC-1: manageEquipment 49
7.2 UC-2: finishAndCheck 50
7.3 UC-5: grades 51
7.4 UC-14: giveQuiz 52
7.5 UC-15, UC-16, UC-17: labOne, labTwo, labThree 53

8. Class Diagram and Interface Specification 54
8.1 Class Diagram 54

8.1.1 General Class Diagram 55
8.1.2 Equipment Manager Inner Structure 56

8.2 Data Types and Operation Signatures 58
8.3 Traceability Matrix 63

9. System Architecture and System Design 65
9.1 Architectural Styles 65
9.2 Identifying Subsystems 67

9.2.1 UML Package Diagram 67
9.3 Mapping Subsystems to Hardware 67
9.4 Persistent Data Storage 68
9.5 Network Protocol 68
9.6 Global Control Flow 68

9.6.1 Execution Orderness 68
9.6.2 Time Dependency 69
9.6.3 Concurrency 69

9.7 Hardware Requirements 69

10. Algorithms and Data Structures 70
10.1 Algorithms 70
10.2 Data Structures 74

3

11. User Interface Design and Implementation 76
11.1 Login Page 76
11.2 Admin Subsystem 76
11.3 Changes from previous UI design 76

12. Design of Tests 79
12.1 Test Cases 79
12.2 Test Coverage of Test Cases 81
12.3 Integration Testing Strategy 81

13. History of Work 82

14. References 83

4

Summary of Changes

1. Added cheat detection system that makes use of the student’s webcam to take a photo
of the student. This photo is saved in the database and is used to assure the instructor
that each student is completing their own lab, instead of getting someone else to do it for
them.

2. Functional requirements were added when we came across potential problems/needs.
Specifically, we added a trash can for discarding pieces, and a sandbox mode for
practice with the circuit elements (REQ38 and REQ39).

3. Requirement were renumbered, because previously the numbering was inaccurate, and
we needed to account for the new requirements. The traceability matrix was also
changed accordingly.

4. The chat feature was not able to be completed
5. Adjusted use case descriptions to account for new functional requirements
6. Functionality requirements were changed based on convenience and ease of use. For

example, we initially intended to have a click-and-drag logic probe, but eventually
determined that it would be easier to display the values of each node directly on the
protoboard itself, represented by colors green and red.

7. Grading methods were changed. Initially, we were going to allow students only 1
submission, and grade based on that, also taking points off for taking a long time. Now,
the timer has no impact on the grade, and students get as many attempts as it takes to
get it correct, with points being deducted for each incorrect attempt.

8. Added content to section 10, Algorithms and Data Structures in order to show more
effectively the complexity of the code that was used in this project.

9. Added a description of Unity, the development tool used for this project, to section 10, so
that people better understand the development process.

10. Added detailed descriptions to each piece that is usable within the labs, as well as
descriptions of how they were built into the program.

11. UI design evolved immensely (viewable in section 11.3 of this report), as we were able to
make it easier and more convenient to use.

12. Added identifying numbers to all images and tables in the report
13. Added descriptions to most of the tables and images used in the report.
14. Updated user interface diagrams, now showing the actual lab interfaces instead of just

designs.
15. Converted plan of work into history of work, reviewing how accurately we stuck to

deadlines and completed what we intended to complete.
16. Alphabetized glossary of terms for a more organized presentation

5

Summary of Changes Part 2: Feedback-based changes
After demo 1, we received a good amount of feedback about how we could possibly

improve our project and add to its functionality. We took this feedback very seriously, and made
several adjustments to our original plan, and included them in our system.

They are as follows:

● Completed grading feature. Following the first demo, there seemed to be some
confusion as to how exactly grading would be done. For demo 2, the grading
functionality was completed, and operaterates in this fashion:

○ Grading is done by the system and is done instantly. There is no need for
a professor to grade any of the labs him/herself.

○ Grading is based on 100 total points. For every incorrect attempt that the
user makes to submit the prelab or postlab, 1 point is deducted. For
every incorrect attempt to submit the actual lab, 5 points are deducted.
The user will not be allowed to advance until they complete the given
section.

■ As an example, if a student submits an incorrect solution to the
prelab once before succeeding, an incorrect solution to the lab
twice before succeeding, and an incorrect solution to the prelab
three times before succeeding, his final grade would be
100 - 1*1 - 2*5 - 3*1 = 86

● Grades can be taken by the professor and output into the format (CSV) used by
numerous grade-saving websites, namely sakai.

● Made protoboard expandable in order to give the user more freedom when
building circuits. Now, clicking the “+” sign on the left-hand side of the board will
add another section to it, while clicking the “-” sign will remove a section,
provided that there is more than 1 section already there.

● Added leaderboard functionality. This allows students to see the top 10 scores
for each lab so they can compare their scores with the scores of their peers. We
did, however, take into account students’ right to privacy, as these leaderboards
display numerical grades only, omitting any identifying factor for students, such
as name, ID number, username, etc.

● Although originally planned, we were not able to implement the save-state
functionality due to its incredibly complex nature, and the time constraints for this
project. The system has a lot of data associated each state of the program. Data
involved includes the positions of every single device, and logic node/logic pin
associated with each device, and the ​states​ of each of those pins. Our attempt to
recreate the previously saved state involved saving the positions of all of the
active devices on the screen (and their nodes/pins). However, due to the fact that
we are using an Event Driven framework, simply changing the positions to their
previous positions on initialization was not good enough as our Digital Logic
Design algorithms would not be executed. Although we did not have enough time

6

to implement this, a possible point of attack to this problem would have been to
load the device GameObjects in a random location on the screen on a separate
thread, put the thread to sleep for a few frames/a few milliseconds, and then
move them to their saved locations. This would allow our framework to detect
changes to the positions and produce callbacks to our algorithms to process the
change in positions.

Clarification on the Issue of Coding

Feedback from demo 1 caused us to realize the we did not make clear how much
of this project was coding-based, and how much of it was done using a desktop
framework. This section aims to display how significant coding was to the development
of our project.

Firstly, the use of the Unity Engine framework (Version 2017.3.1f1) was essential to this

project, as it served as the basis upon which we built. Unity’s main job is to render the 2D or
3D models on to the screen (for this case, its 2D) and facilitate a platform to detect interactions
between different “GameObjects”. Everything that can be interacted with in our interfaces is
considered a “Game Object,” and these game objects can be manipulated, to an extent, by the
user, with Unity working to detect collisions among these objects. This does not mean,
however, that the project was developed using simple click-and-drag setups. In fact, every
game object has a script associated with it that tells it how to behave and interact with other
game objects.

The game objects’ reliance on scripts (in this case, written in C#) is what really makes

the coding the focal point of our project. While Unity provided blank game objects for us to
manipulate, we had to use the code to write scripts that define the behavior of every single
element that is used. Each individual chip, along with the wires, LEDs, switches, UI buttons,
magnifying glass, trash can, and every single node on the protoboard had a script associated
with them that told them how to react in certain situations. For example, when designing OR
gate game objects, we had to write scripts that specifically told the game object how to function
in every situation. Essentially, we programmed that game object to function exactly how an OR
gate would be expected to function. Overall, this took thousands of lines of code to
accomplish,and could not possibly have been done just by using a desktop framework.

Further information of specific algorithms we used between our “GameObjects” can be

found in the ​Systems Structure and Algorithms sections (Section 9 and 10)​ of our report.

7

1. Customer Statement of Requirements

1.1 Problem Statement
1.1.1. The Problem:
In a world where technology is so prevalent and easily accessible, many students

are using it to supplement learning from lectures. These students would greatly benefit
from the ability to observe the workings and functions of a laboratory settings on their
own time - however, it is difficult to provide labs for large classes of students due to the
sheer number of people and logistical or financial restrictions of the schools and
universities. Both students and instructors would greatly benefit from a resource that
would allow for a laboratory experience that would enhance what they learned in class,
but would also allow for instructors to track the progress of their student easily.
Specifically, our focus will be on Digital Logic Design Labs. These labs are very
technical and require a lot of different parts (power source, protoboard, gates, wires,
LEDs, etc.). There are, however, labs that one can use to gain a good comprehension
of the material, but do not necessarily require physical interactions with the pieces to
gain a full understanding of the working of the circuits. Such labs would be perfect labs
to be completed in an online environment.

 Even in scenarios where students do get experience in an actual lab, professors
must manually grade and track each student’s results and lab reports, which can be
extremely tedious and time consuming. In addition to keeping data for the students, the
school would need to hire lab instructors to manually help and serve hundreds of
different students, which takes a great deal of time and resources. With hundreds of
students in lab classes, returning grades to students in a timely manner is becoming
harder and harder. The process for grading is extremely time consuming, with a
procedure that includes collecting hard copies of reports, observing students’ work on
their labs, physically grading each report, and lastly uploading the grades. This
procedure is also an inconvenience for the students as well because it is hard for them
to know how they are doing in the class at critical times. One example of this is when
the deadline to drop a course is approaching, and students would like to know how they
are doing in the class, so they can make an important decision. Lastly, it is very difficult
to grade all of the hard copies the students submit, especially when students fail to
follow the specified format or make small mistakes that cause discrepancies in the
entire lab.

1.1.2 Proposed Solution:
The way that we chose to approach this problem is to have virtual sessions

where students can simulate labs on their own computers. These sessions can
accurately depict the procedures involved in the labs and allow the students to become

8

more familiar with the material. The main goal of this treatment is to facilitate student
learning, with an added bonus being that we are also able to aid the instructors in
keeping track of their students’ progress. The former is of higher priority, because we
feel that if students are able to learn at their own pace and on their own time, it will
assist with the overall improvement of the course. Some of the things the software
system is expected to include are listed below.

● Labs accessible 24/7:
○ The student will be tasked with completing two labs that are typically given

in a real digital logic design laboratory setting. The labs will allow them to
apply their digital logic knowledge in various situations, such as
constructing a full adder, or testing the output of certain circuit
configurations. The student will be able to select any devices needed for
the lab that is available through the laboratory library and mix and match
them anyway they like just like they would be able to in the lab. The
laboratory will be the implementation of the first three labs in this manual:
http://www.ece.rutgers.edu/~marsic/Teaching/DLD/lab-man_2012.pdf

● Instant Feedback:

○ The most important aspect of any form of learning is feedback of whether
the student was successful or unsuccessful in any given task. The virtual
lab should check for any wrongdoings upon user request for completion
and give the user instant feedback, so he/she may understand what was
done incorrectly, and correct it in future use. Visual indicators will also be
given throughout the lab in order to show the interaction between the
circuit devices, so the student is able to see exactly how the circuit is
functioning as it is being built.

● Reinforced Learning:

○ Before and after each lab, the student will be required to take a quiz,
which covers the topics that a typical pre-lab report would cover. The
purpose of these pre-quizzes is to ensure the student will be able to
perform the lab adequately and that he or she has the proper prerequisite
knowledge to perform it. Since the purpose of the pre-quiz is to aid
preparation, it will be checked for completeness and correctness before
the student is allowed to advance. After the lab is performed, a post quiz
will be given to ask general questions about the lab to attempt to see if the
student really learned anything valuable from the lab. The quizzes in

9

http://www.ece.rutgers.edu/~marsic/Teaching/DLD/lab-man_2012.pdf

general will cover topics such as truth tables, karnaugh maps, and logic
equations, in addition to general questions.

● Instant Grading:

○ After configuring a circuit, based on the lab the student is performing, the
operation of the circuit will be checked for correctness. The student will
lose points for every attempt that is made to finish a lab with the incorrect
configuration. The pre-lab and post-lab quizzes are also graded and
added to the final grade for that lab. Lab grades will be available to both
students and instructors immediately following the completion of a lab

● Cheating Verification:

○ Unfortunately, an unintended consequence of having a virtualized lab
session is the increased likelihood of some students taking advantage of
the opportunity to cheat by allowing others to do these labs for them. A
solution to this issue is to implement facial recognition software. Each
student should be asked to take a picture that will be analyzed by a facial
recognition software. The camera of the student’s laptop/computer will
stay on while the application is running, which will ensure that the original
student is the one completing the lab experiment.

10

2. Glossary of Terms

Administrator An “Actor” of this project that takes the role of viewing grades, creating and
deleting users. Also referred to as “Teacher”, “Professor”, and “Instructor”.

AND gate A boolean operator that outputs the value one if and only if all the operands
are equal to one, and otherwise has a value of zero

Boolean A binary variable, having two possible values, “true” and “false”.

Combinational
system

A logical system with no memory, for which the output depends only on the
current input values

Full Adder A circuit configuration which adds three one-bit binary numbers (C, A, B)
and outputs two one-bit binary numbers, a sum (S) and a carry (C1). The
full-adder is usually a component in a cascade of adders, which add 8, 16,
32, etc. bit binary numbers.

Grey Code An ordering of the binary numeral system such that two successive values
differ in only one bit (binary digit).

Karnaugh Map A diagram consisting of a rectangular array of squares, each representing a
different combination of the variables of a Boolean function

LED (light-emitting
diode)

A semiconductor device that emits visible light when an electric current
passes through it.

Logic Diagram Diagrams in the field of logic, used for representation and to carry out
certain types of reasoning.

Logical product A logical term that is the Boolean AND of two or more variables

Logical sum A logical term that is the Boolean OR of two or more variables

Minterm A Boolean expression resulting in 1 for the output of a single cell, and 0s
for all other cells in a Karnaugh map, or truth table. If a minterm has a
single 1 and the remaining cells as 0s, it would appear to cover a minimum
area of 1s.

NAND gate A Boolean operator that gives the value zero if and only if all the operands
have a value of one, and otherwise has a value of one (equivalent to NOT
AND).

OR gate A Boolean operator that gives the value one if at least one operand (or
input) has a value of one, and otherwise has a value of zero.

Protoboard A board used for making experimental models of an electric circuit (fig 2.1)

11

Student An “Actor” of this project that takes the role of making use of the laboratory
simulations that is graded.

Switch A device for making and breaking the connection in an electric circuit.

Truth table A tabular list of all possible input combinations for a combinational system
and the corresponding outputs.

XOR gate A digital logic gate that gives a logic one output when the number of true
inputs is odd, and otherwise has a value of zero. (Fig 2.2)

Table 2: Glossary of Terms

Figure 2.1: A Protoboard used for creating experimental models of electric circuits

Figure 2.2: A circuit representation of an XOR gate, along with an image of the chip, and the breakdown of the functioning of the

chip’s pins

12

3. System Requirements
3.1 Enumerated Functional Requirements

Below is a comprehensive list of every requirement for the system that we have designed. It is
separated into sections based on where the requirement is needed within the scope of the
system.

The table below contains three sections. The first is a numbered list, giving a unique identifier
to each requirement. The second is a number between 1 and 5 representing the importance, or
priority of each requirement, with 5 being high priority, and 1 representing low priority. The final
column is a general description of each requirement.

3.1.1 General Requirements

Number PW Requirement

REQ1 5 The user shall be able to place any circuit material onto a protoboard, and
that element should accurately portrays the correct logic.

REQ2 2 The user shall be able to “probe” around any logic circuit to view whether
certain areas are high and low (represented by green and red nodes).

REQ3 3 The user shall be able to use an power source that provides a constant 5
volts, and a ground that the user can connect to the circuit.

REQ4 5 The user should be able to place logic switches into the circuit board that can
be turned on to let current through, and off to cut off current.

REQ5 4 The system should be able to auto-grade the performance of the student for
both the viewing of the student and the professor.

REQ6 2 The system should let the student use LEDs that turn on and off based on
the input given to it.

REQ7 2 The system should time the student, and make the finishing time viewable to
the student and professor.

REQ8 5 The system should give a list of all the materials available, and allow the
student to select which ones to use.

REQ9 5 The system should allow flexible wiring to be connected to the protoboard
and other logic devices.

REQ10 2 The system shall allow the student to use a “magnifying glass” that allows the
student to see the inner workings of any logic chips.

13

REQ11 1 The system should be able to display to the student their achievements for
each lab they complete (grade, time to complete, etc.).

REQ12 2 The system shall take a picture of the student in a well-lit condition to serve
as a “base picture”, and then a picture should be taken every minute
thereafter and match the pictures by facial recognition algorithms to detect
potential cheating.

REQ13 3 The system shall assign students grades based on their performance in the
labs which is decided by pre-lab and post-lab performance, as well as the
number of attempts it takes to submit a correct circuit during the lab

REQ14 1 The system shall connect the students to each other and to the professor in a
chat-like service inside the application.

REQ15 1 The system shall produce grades in a common markup language for the
professor to use and upload to his/her grading system.

REQ16 4 The system shall give pre and post quiz that is specific to each lab to ensure
the student is properly prepared for the lab.

Table 3.1.1: General Requirements

3.1.2 Lab 1 Requirements

Number PW Requirement

REQ17 4 The system will let the user implement a simple logic function to become
familiar with future labs.

REQ18 5 The system will allow the user to select circuit elements that can be used to
implement the given logic function.

REQ19 5 The system will present the user with a logic function and a truth table to fill
out. This will serve as the pre-lab assignment.

REQ20 3 The system will have a “Check” button that allows the users to check their
answers upon completion of the lab.

REQ21 5 The system will display a protoboard, power supply, and a drop-down list of
circuit elements, switches, and LEDs in order to implement the boolean
function.

REQ22 1 The last screen of the pre-lab, post lab, and lab will display a congratulations
message when submissions are correct and advance the user to the next
interface after a brief period of time

Table 3.1.2: Lab 1 Requirements

14

3.1.3 Lab 2 Requirements

Number PW Requirement

REQ23 3 The student should be able to mark Karnaugh maps with the logic function
as a given. This shall serve as the pre-lab assignment.

REQ24 2 The student should be able to get the minimal sum-of-products expression
and draw the logic diagram with a 2 input NAND, 3 input NAND gate, 2 input
OR gate and a hex inverter.

REQ25 3 The student should be able to get the outcome waveform with the logic
diagram drawn.

REQ26 2 The student should be able to modify the sum-of-products expression to
eliminate timing hazard and make a new logic diagram.

REQ27 4 The system should allow the student to be able to construct a given logic
circuit, and use it to construct a logic table of the output given each set of
inputs

REQ28 5 The system should allow the student to use the given components to
construct a full adder and verify that it works correctly for all input
combinations.

Table 3.1.3: Lab 2 Requirements

3.1.4 Lab 3 Requirements

Number PW Requirement

REQ29 5 The system should be able to let the student select from a list of available
materials, however, for this lab, three multiplexers and an exclusive OR
gate will be used.

REQ30 5 The system should check if the student has put the lab materials in the
right configuration in the protoboard for the decoder configuration, and
encoder configuration for Binary to Gray Code.

REQ31 5 The user will be asked to enter the correct response to the equation
needed to solve the Binary to Gray code conversion.

Table 3.1.4: Lab 3 Requirements

15

3.2 Enumerated Nonfunctional Requirements

Number PW Requirement

REQ32 2 The system should give feedback to every right or wrong action.

REQ33 3 The system shall have login functionality for both instructors and
students.

REQ34 3 The system will allow admins to create new users and put them into
the system.

REQ35 1 The system will allow users to recover passwords.

REQ36 5 The system shall have an interface that allows the users to select
which labs to perform.

REQ37 2

The system shall save the state of each lab so that the user is able to
return and finish the lab at another time.

REQ38 2 The system shall contain a “Sandbox Mode,” which allows students to
test different circuits and become familiar with the circuit elements
without having to complete an actual lab.

REQ39 2 The system shall have a “trash can” icon that users can drag
unwanted pieces to in order to discard them

Table 3.2: Enumerated Nonfunctional Requirements

3.3 On-Screen Appearance Requirements
Each subsection below contains diagrams of each specific interface that is included in
this project. Each has a small description below it to distinguish what it is and when it
will be presented to the user.

16

3.3.1 Login UI

Figure 3.3.1: Login UI

Figure 3.3.1 is our login UI, and it is the first screen that the user is presented with when they
start the application. They will enter their username and password in the text boxes, then click
login, following which the system will determine if they are in the database. If they are, it will
direct them to the next UI. If not, they will not be let in. There is also a Reset Password button
in the case of a forgotten password.

3.3.2 Student UI

Figure 3.3.2: Student UI

17

Figure 3.3.2 is the UI that the system displays after it detects that a student has logged in. It
allows the student to select one of four different modes. Three of them are labs, and the final
one brings the user to sandbox mode, where they can experiment with different circuit designs.

3.3.3 Pre-lab Assignment UI

Figure 3.3.3.1: Prelab 1 UI

Figure 3.3.3.2: Prelab 2 UI

18

Figures 3.3.3.1 and 3.3.3.2 above are the prelab UIs for labs 1 and 2 respectively. Both ask the
user to fill in a truth table based on a given logic function. The boxes are clickable, and doing so
will allow the user to fill in either a 0 or a 1 by typing it into their keyboard. After finishing, the
user clicks a check button to submit the answers for grading.

3.3.4 Lab UI

Figure 3.3.4.1: Lab 1 UI

19

Figure 3.3.4.2: Lab 2 UI

The lab interfaces displayed above in figure 3.3.4.1 and 3.3.4.2 are very similar. Both contain a
protoboard, on which one can connect chips, wires, switches, and LEDs, as they will “lock” into
place if lined up with nodes. In the top left corner is a power source, which has two separate
connections for wires: a red one for +5 volts, and a black one for ground. The top right corner
contains the drop down menu, from where users may obtain chips, wires, switches, and LEDs.
The magnifying glass may be dragged over chips to obtain a closer look at the inner structure.
Unwanted pieces can be dragged over to the trash can and released to discard them. The
small tags above and to the right of the protoboard can be attached to circuit elements, and are
the main basis for grading. For example, in lab 1, the A, B, and C tags should be attached to
the switches that they are represented by, and the F tag should be attached to an LED
representing the output. These tags will also “lock” into place when put in the correct position.
Finally, there exist a “Main Menu” button to bring the user back to the main menu, and a “Finish”
button to submit the assignment.

20

3.3.5 Post-lab Assignment UI

Figure 3.3.5.1: Postlab 1 UI

Figure 3.3.5.1 is the postlab assignment UI for lab 1. This particular assignment is a Karnaugh
Map, and the user is asked to fill in the correct values for each box. The boxes are clickable,
and doing so will allow the user to type in either a 0 or a 1 from the keyboard. The check button
at the bottom is used to submit answers when finished.

21

4. Functional Requirements Specification
4.1 Stakeholders

● Student

○ The student will need to be able to complete assigned lab reports and must be
able to communicate any questions they have to their teacher. They should also
be responsible for making sure the cheat detector (Camera) detects them taking
the laboratory.

● Instructor (Professor, Teacher)

○ The teacher will need to be able to enhance the learning of the students by
viewing statistics and grades to see what topics should be focused on. They will
be able to communicate with the students, check the grades for each students
that have completed the labs, and be able to manage any new or existing users.

4.2 Actors and Goals

● Student (Initiating)​:
○ to perform digital logic experiments and get results at the end of each labs using

logic equipment such as encoders, decoders, multiplexers, etc.
● Teacher (Initiating)​:

○ to present assignments (labs) and obtain grades for all the students in the class.
Also they should be able to have live interactions with the students.

● Database (Participating)​:
○ SQL relational database that keeps all the data, including usernames,

passwords, chat, and grades.
● Camera (Participating)​:

○ Facilitates the cheat detector to insure that students are completing their own
assignments.

4.3 Use Cases

4.3.1 Casual Description

Table 4.3.1 below presents a complete list of our use cases, created to resolve each of
our functionality requirements. It consists of 4 columns. The first serves to list the unique
numerical identifier for each use case. The second provides the common name that we will use
to refer to the use case. The third is a short description of what the functionality of the use case
will be. The last is a list of the requirements that the use case satisfies.

22

Use Case Name Description Requirement

UC-1 manageEquipment Allows the user to get equipment
from a drop down menu and
place them in the lab, connect
them logically, or delete them.

REQ1, REQ2, REQ3,
REQ4, REQ6, REQ8
REQ9, REQ17, REQ18,
REQ19, REQ20,
REQ21, REQ24,
REQ29, REQ39

UC-2 finishAndCheck Checks the output for all logical
input cases and compares with
the correct answers

REQ5, REQ20, REQ28,
REQ30

UC-3 login Logs the user or instructor into
the system to their respective
views.

REQ33

UC-4 manageUsers Allows the admin to add a user
with a set password, and delete
users.

REQ34, REQ35

UC-5 grades Grading subsystem for instructor
to view or delete grades. The
instructor can also choose the
download the grades in a
markup language.

REQ5, REQ13, REQ15

UC-6 selectLab Allows students to select a
specific lab and open it up to the
screen. Allows students to select
lab 1, lab 2, and lab 3.

REQ36, REQ38

UC-7 magnifyEquipment Allows student to obtain
additional information on
different objects

REQ10

UC-8 timer Keeps track of how much time a
user takes to complete a given
lab. Times are saved so
students and instructors can see
the results.

REQ7

UC-9 saveState Saves state of the lab if the
student shuts the program down
or changes lab.

REQ37

UC-10 switchToMainMen
u

Allows the user to stop their
current activity and go back to

REQ22

23

the main menu.

UC-11 openChat Allows anyone to open and
speak in the program chat or
contact instructor

REQ14

UC-12 giveFeedback Gives students visual feedback
on their circuit’s performance,
showing a green check mark if it
obtains the correct output for a
particular combination of inputs,
or a red “X” if it obtains the
incorrect output for a particular
combination of inputs

REQ5, REQ11, REQ13,
REQ32

UC-13 cheatDetector Allows instructors to track
students and identify cheating
with the camera.

REQ12

UC-14 giveQuiz Gives the student pre and post
quizzes. May ask to fill out
karnaugh maps and truth tables.

REQ16, REQ19,
REQ23, REQ24,
REQ25, REQ26,
REQ27, REQ31

UC-15 labOne Perform laboratory one which
also acts as a tutorial to the
students on how to perform the
labs.

REQ17, REQ18,
REQ19, REQ20,
REQ21, REQ22

UC-16 labTwo Perform laboratory two which
lets student implement a ‘full
adder’

REQ23, REQ24,
REQ25, REQ26,
REQ27, REQ28

UC-17 labThree Perform laboratory three which
lets student implement a ‘binary
to gray’ converter

REQ29, REQ30, REQ31

Table 4.3.1: Casual Description of Use Cases

24

4.3.2 Use Case Diagram

The three diagrams below are the use case diagrams as the apply to the student,
instructor, and camera, respectively. From these diagrams, one can see how the actors interact
directly and indirectly with each of the use cases, as well as how the use cases interact with
each other within the scope of the program.

4.3.2.1 Student

Figure 4.3.2.1: Student Use Case Diagram

4.3.2.2 Instructor

Figure 4.3.2.2: Instructor Use Case Diagram

25

4.3.2.3 Camera

Figure 4.3.2.3: Camera Use Case Diagram

4.3.3 Traceability Matrix

Table 4.3.3 is our traceability matrix, which displays the interaction between our use
cases, and our functional requirements. The rightmost column lists the requirements in
numerical order, while the topmost row lists the use cases in the numerical order. The second
column from the left corresponds to the priority on a scale from 1 to 5 corresponding with each
requirement. An “X” in a box on the table means that the requirement in that row is satisfied by
the use case in the intersecting column. The second to last row lists the maximum priority of a
requirement that is covered by that particular use case. The final row lists the sum of the priority
values of the requirements covered by that use case.

 PW
UC-

1 UC-2 UC-3 UC-4 UC-5
UC-

6 UC-7 UC-8 UC-9 UC-10 UC-11 UC-12 UC-13 UC-14 UC-15 UC-16 UC-17

REQ1 5 X

REQ2 2 X

REQ3 3 X

REQ4 5 X

REQ5 4 X X X

REQ6 2 X

REQ7 2 X

REQ8 5 X

REQ9 5 X

REQ10 2 X

REQ11 1 X

REQ12 2 X

REQ13 3 X X

REQ14 1 X

REQ15 1 X

26

REQ16 4 X

REQ17 4 X X

REQ18 5 X X

REQ19 5 X X X

REQ20 3 X X X

REQ21 5 X X

REQ22 1 X X

REQ23 3 X X

REQ24 2 X X X

REQ25 3 X X

REQ26 2 X X

REQ27 4 X X

REQ28 5 X X

REQ29 5 X X

REQ30 5 X X

REQ31 5 X X

REQ32 2 X

REQ33 3 X

REQ34 3 X

REQ35 1 X

REQ36 5 X

REQ37 2 X

REQ38 2 X

REQ39 2 X

MAX PW 5 5 5 3 3 4 5 2 2 2 1 1 4 2 5 5 5 5

TOTAL
PW 124 58 17 3 4 8 7 2 2 2 1 1 11 2 28 23 19 15

Table 4.3.3: Traceability Matrix

27

4.3.4 Fully Dressed Descriptions

The boxes below contain fully dressed descriptions of certain use cases. The use cases
were chosen based on the number of requirements that they satisfied, and the number of
priority points that it corresponded to. Each table contains the name and number of the use
case, the requirements that it covers, the initiating actor(s), the actor’s goals, the preconditions,
postconditions, and the flow of events.

Use Case UC-1: manageEquipment

Requirements: REQ1, REQ2, REQ3, REQ4, REQ6, REQ8 REQ9, REQ17, REQ18,
REQ19, REQ20, REQ21, REQ24, REQ29, REQ39

Initiating Actor: Student

Actor’s Goals: To open an items menu and select a logic device to place on the
protoboard while constructing a circuit

Preconditions: The student must be actively completing a lab or in sandbox mode,
where they will be presented with the option to select/move logic
devices.

Postconditions: Once completed the student will be able to see the item in its correct
place on the protoboard, and will be able to put other logic devices
around it in order to complete the circuit

Flow of events:

→The user clicks the drop-down equipment button, and selects an equipment he/she wants.
←The equipment appears next to the protoboard.
→The user clicks and drags the equipment to the desired destination.
←The equipment follows the user’s mouse and stops at the destination.

Use Case UC-2: finishAndCheck

Requirements: REQ5, REQ20, REQ28, REQ30

Initiating Actor: Student

Actor’s Goals: To submit their constructed circuit for grading

Preconditions: The student must have completed the circuit for a particular lab, at
which point they can click a button to submit their work for grading

Postconditions: The student will have submitted his or her work, and the system will

28

compare the student’s answers to the correct solution, assigning
grades accordingly.

Flow of events:

→The user moves clicks and drags pieces to the protoboard and constructs the circuit
←The system responds, displaying the user’s completed circuit
→The user clicks the finish button
←The system checks the students’ answers for correctness, comparing it to the desired
answer

Use Case UC-5: grades

Requirements: REQ5, REQ13, REQ15

Initiating Actor: Student/Instructor

Actor’s Goals: To view grades from completed labs, and in the case of the instructor,
to document the grades for each student

Preconditions: Labs must be completed for a grade to be assigned.

Postconditions: After grades are assigned, both students and instructors will be able to
view them.

Flow of events:

Student:
→The student completes and clicked finish button.
←The system instantly records the corresponding grade of the student.
→The student completes the post quiz and presses submit
←The system assigns the student the post-quiz grade.

Instructor:
→The instructor logs in to the system
←The system presents the instructor with a) Download Grade b) Display All Grades buttons
→The instructor clicks a) Download Grade b) Display All Grades
→ a) A pdf version of students’ grade is downloaded b) All students’ grades are displayed

Use Case UC-14: giveQuiz

Requirements: REQ16, REQ19, REQ23, REQ24, REQ25, REQ26, REQ27, REQ31

Initiating Actor: student

29

Actor’s Goals: The student will be required to take a quiz after the completion of each
lab that will test their understanding of the work that was just done.

Preconditions: The student must have completed the lab, or decided to start a lab

Postconditions: The student will be asked to complete a quiz, consisting of potentially
multiple choice questions, Karnaugh maps, and truth tables. Upon
completion, they will be able to submit the quiz for grading

Flow of events:

→The student enters or completes a lab
←The system responds by directing the user to a pre-lab or post-lab quiz
→The user completes the quiz by filling out necessary information
→The user submits for grading by pressing submit
←The system compares the users answers to the correct answers and assigns grades
accordingly

Use Case UC-15: labOne

Requirements: REQ17, REQ18, REQ19, REQ20, REQ21, REQ22

Initiating Actor: Student

Actor’s Goals: Perform the lab (Introduction to Hardware) and the quizzes included
within it and receive a grade in the end.

Preconditions: Student must have logged in and not have finished this particular lab
prior to starting it.

Postconditions: Student will have completed all the requirements to finish this lab,
including the quiz, and have received a grade for it.

Flow of events:

→The student clicks on the ‘Laboratory One’ button.
←The system switches the scene to the introduction to lab one and presents a pre-quiz to
prepare the student
→The student enters the required answers correctly
← The system starts the lab and gives the user the option to use any devices available in the
system that they wish
→ The student can use the ‘magnifying glass’ object to inspect particular equipment
← The system shows the student more information about the particular device.
→ The student configures the devices in the protoboard as they wish, with set outputs
designated in a predefined area and clicks finish after he or she is finished.
← The system checks the output with the required output to ensure that the user has

30

completed the lab correctly. The system will require the student to use an Inverter, AND gate,
and OR gate with the correct output on the designated LEDs to pass the experiment correctly.
The system then presents the student with a post-quiz which is graded.
→ The student takes the post-quiz, answers the questions, and presses submit.
← The system checks the answer and assigns the grade accordingly.

Use Case UC-16: labTwo

Requirements: REQ23, REQ24, REQ25, REQ26, REQ27, REQ28

Initiating Actor: Student

Actor’s Goals: Perform the lab (Combinational SSI Circuits) and the quizzes included
within it and receive a grade in the end.

Preconditions: Student must have logged in and not have finished this particular lab
prior to starting it.

Postconditions: Student will have finished all the requirements to finish this lab,
including the quiz, and have received a grade for it.

Flow of events:

→The student clicks on the ‘Laboratory Two’ button.
←The system switches the scene to the introduction to lab one and presents a pre-quiz to
prepare the student
→The student enters the required answers correctly
← The system starts the lab and gives the user the option to use any devices available in the
system that they wish
→ The student can use the ‘magnifying glass’ object to inspect particular equipment
← The system shows the student more information about the particular device.
→ The student configures the devices in the protoboard as they wish, with set outputs
designated in a predefined area and clicks finish after he or she is finished.
← The system checks the output with the required output to ensure that the user has
completed the lab correctly. The system will require the student to use an Inverter, NAND
gates, and Or gate to design a Full Adder with the correct output on the designated LEDs to
pass the experiment correctly. The system then presents the student with a post-quiz which is
graded.
→ The student takes the post-quiz, answers the questions, and presses submit.
← The system checks the answer and assigns the grade accordingly.

31

Use Case UC-17: labThree

Requirements: REQ29, REQ30, REQ31

Initiating Actor: Student

Actor’s Goals: Perform the lab (Combinational MSI Circuits) and the quizes included
within it and receive a grade in the end.

Preconditions: Student must have logged in and not have finished this particular lab
prior to starting it.

Postconditions: Student will have finished all the requirements to finish this lab,
including the quiz, and have received a grade for it.

Flow of events:

→The student clicks on the ‘Laboratory Three’ button.
←The system switches the scene to the introduction to lab one and presents a pre-quiz to
prepare the student
→The student enters the required answers correctly.
← The system starts the lab and gives the user the option to use any devices available in the
system that they wish
→ The student configures the devices in the protoboard as they wish with set outputs
designated in a predefined area and clicks finish after he or she is finished.
← The system checks the output with the required output to ensure that the user has
completed the lab correctly with XOR gates, and MUXes to implement a grey to binary
decoder. The system then presents the student with a post-quiz.
→ The student takes the post-quiz and answers the questions.
← The system checks the answer and assigns the grade accordingly.

32

4.4 System sequence diagram
Figure 4.4.1 through 4.4.5 are the system sequence diagrams for each of the use cases

that had a fully-dressed description associated with them. These diagrams show the events
brought about by external actors, as well as the internal workings of the system.

4.4.1 UC-1 manageEquipment

Figure 4.4.1: manageEquipment Sequence Diagram

33

4.4.2 UC-2 finishAndCheck

Figure 4.4.2: finishAndCheck System Sequence Diagram

34

4.4.3 UC-5 grades

Figure 4.4.3: grades System Sequence Diagram

4.4.4 UC-14 giveQuiz

Figure 4.4.4: giveQuiz System Sequence Diagram

35

4.4.5 UC-15, UC-16, and UC-17 labOne, labTwo, and labThree

Figure 4.4.5: labOne, labTwo, and labThree System Sequence Diagrams

The system sequence diagram in Figure 4.4.5 demonstrates the general sequence for all three

labs, as they follow a very similar pattern:

36

5. Effort Estimation Using Use Case Points
0. Log In - Total variable presses + 1/0 clicks

a. Enter Username (variable length)
b. Enter Password (variable length)
c. Press enter/click log in

1. Manage Equipment - Total 3 Clicks

a. Click on drop down menu that holds all the equipment
b. Click on the equipment desired which places the equipment under the mouse
c. Click anywhere in the view to place the equipment

2. Grades - Total 2 Clicks
Assumption: Instructor logs in

a. Instructor clicks on the grades tab

3. Set Cheat Detector Camera - 2 Clicks
Assumption: Student is already logged in and camera exists

a. Click on “ProctorTrack” (name to be changed) tab.
b. Press calibrate and wait for software approval

4. Chat - Total 2 clicks + 1 press
Assumption: Student is already logged in

a. Click on Chat tab
b. Click on the text box on the bottom to enter text
c. Press enter

5. Create User - Total 3 clicks
Assumption: Instructor is already logged in

a. Click the User Management tab
b. Enter username and password
c. Click create user

6. Select Lab - Total 2 clicks
Assumption: User is already logged in

a. Click on the Labs tab
b. Click on the lab of choice

7. Individual labs

● Selecting new device - total 3 clicks
○ Click on dropdown menu
○ Click on device
○ Click on the lab scene

37

● Connecting two nodes with wire - total 3 commands/clicks
○ Press W to start the wire connection
○ Click on first node
○ Click on second node

● Finish and check - Total 1 click
○ Click the finish button

● Magnifying glass - Total 1 click
○ Click on the magnifying glass and drag over an IC chip

● Trash - Total 1 Click
○ Click on the targeted device, and drag to trash

● Total Lab Simulation - Various amounts of clicks with a combination of the above
operations

8. Individual quizzes

● Insert Answer - Total 1 Click + Answer Character Amount
○ Click on the input field, and enter the dynamic answer

● Finish and Check answer - Total 1 Click
○ Click on the button to finish

38

6. Domain Analysis
6.1 Domain Model

Figure 6.1: The Domain Model

39

6.1.1 Concept Definitions

 Table 6.1.1 lists the system’s concept definitions. The first column is the general responsibility
description. The second denotes whether the concept is of type “D” (Doing) or type “K”
(Knowing). The final column is the name of the concept.

Responsibility Description Type Concept Name

Provides the interface GUI for the actors to login to the application, the
authentication is done through the database

K Login

Allows the user to communicate with other users D Chat

Stores student account data K Person

Presents the user with lab 1 activity D Lab1

Presents the user with lab 2 activity D Lab2

Presents the user with lab 3 activity D Lab3

Provides user with tool to interact with the lab environment in order to
perform the lab

D Equipment

Generates a summary of lab performance results D Grade

Provides an interface for the student to interact with GUI and interacts
with Lab classes to show the laboratory simulations

D StudentSubsystem

Provides an interface for the instructor to interact with the GUI D StudentSubsystem

Identifies if the user is cheating by using the camera D CheatDetector

Holds ‘Persons’ in an online database, and holds chat messages D Database

Administers a quiz to the student at the end of lab 1 D Lab 1

Administers a quiz to the student at the end of lab 2 D Lab 1

Administers a quiz to the student at the end of lab 3 D Lab 1

Student that participates in the Laboratory Simulation portion of the
application

D Student

Instructor that views the grade and oversees the account creations in
the application

D Instructor

40

6.1.2 Association Definitions

Table 6.1.2 displays the association definitions, showing how the concepts interact with one
another. The first column shows the concepts that are interacting. The second column is a
description of how the concepts associate with each other. The last is the name of the
association, which is put into broad categories based on the type of interaction.

Concept Pair Association Description Association Name

Student ↔ StudentGUI Student passes request to StudentGUI to
display student interface qualities

Conveys request

Instructor ↔ InstructorGUI Instructor passes request to InstructorGUI to
display instructor interface qualities

Conveys request

StudentGUI ↔ LoginGUI Actor’s interface signifies that a student is
attempting to sign in.

Conveys request

InstructorGUI ↔ LoginGUI Actor’s interface signifies that an instructor is
attempting to sign in.

Conveys request

LoginGUI ↔ StudentGUI Login passes request to StudentGUI to trigger
student interface from the Student class

Generates

LoginGUI↔InstructorGUI Login passes request to InstructorGUI to
trigger instructor interface from the Instructor
class

Generates

Lab↔Equipment Active Labs will allow students to interact with
equipment as they build the necessary circuits

Generates

Lab1↔Quiz1 The completion of a lab 1 triggers a quiz that
the student must complete to receive a grade

Generates

Lab2↔Quiz2 The completion of a lab 1 triggers a quiz that
the student must complete to receive a grade

Generates

Lab3↔Quiz3 The completion of a lab 1 triggers a quiz that
the student must complete to receive a grade

Generates

Lab↔CheatDetector Active labs enable CheatDetector to identify if
a student is using outside materials

Requests notify

CheatDetector↔Camera CheatDetector accesses camera and uses it to
monitor student as labs and quizzes are in
progress

Provides data

41

StudentGUI↔CheatDetector The GUI uses the CheatDetector to allow the
student to calibrate his/her face and verify.

Generates

Student↔Report The student class uses the report to assign the
student the respective lab’s grade.

Provides data

Lab↔Report The lab uses the report to generate the grade
for the lab portion of the simulation

Generates

Quiz↔Report After the quiz is finished, the quiz generates a
grade report for the Quiz portion of the
simulation

Generates

Chat↔StudentGUI The chat functionality is displayed in the
Student section of the GUI

Generates

Chat↔InstructorGUI The chat functionality is displayed in the
Instructor section of the GUI

Generates

Chat↔Database The chat queries the database for new
messages

Requests notify

CheatDetector↔Student The cheat detector uses the image associated
with the student to verify that the user is the
correct student.

Requests notify

Student↔Database Generate student class from the database Generates

Instructor↔Database Generate instructor class from the database Generates

Table 6.1.2: Association Definitions

6.1.3 Attribute Definitions

Table 6.1.3 contains the attribute definitions. The first column lists the concepts. The second
contains the attributes that the concept is associated with. The final column provides a brief
description of the attribute.

Concept Attributes Attribute Description

Login checkType() Checks if the user is a professor or a student

authenticate() Checks if the username and password match the record in
the database

Lab compareOutput() Compares the output of the logic to the answer

saveProgress() Saves student’s current work to database

42

Equipment getEquipment() Gets the equipment that the user wants ready to be placed

Report EvaluateLab() Evaluates the lab to generate a grade for the specified lab.

EvaluateQuiz() Evaluates the quiz to generate a grade for the specified quiz

GetGradeFromLab() Returns grade from the specified lab for the student class

StudentGUI processCommand() Processes any GUI commands given (generic name for
future implementation)

InstructorGUI processCommand() Processes any GUI commands given (generic name for
future implementation)

CheatDetector retrieveData() Retrieves camera footage

verifyPerson() Uses facial recognition to determine if student is cheating

Quiz giveQuiz() Administers quiz to student

recordResults() Records results of quiz

checkAnswers() Checks the users answers with the recorded actual
answers.

Database authenticatePerson() Connects to the online database and authenticates the
entered Username and Password with the data in the
database.

LoginGUI checkType() Checks the user’s type (student/instructor)

launchGUI() Launches the respective GUI for the student or the instructor

authenticate() Calls on the database to authenticate the entered username
and password

Student resetGrade() Method to reset the specified lab grade from the Instructor

Instructor getGrade() Method to get a list of students’ grade

Chat enterMessage() Allows user to enter a custom message to the chat

Table 6.1.3: Attribute Definitions

6.1.4 Traceability Matrix

Table 6.1.4 is the traceability matrix, showing how the use cases interact with the domain
concepts.

43

Table 6.1.4: Traceability Matrix

44

6.2 System Operation Contracts
Each of the boxes below contains a system operation contract. They display the classes and
functions that will be utilized by the system, as well as any variables that certain functions may
be dependent on.

Name: ​manageEquipment(partType, partLocation)
Responsibility: ​Control the movement of the pieces by responding to the user’s
click/drag
Cross-References: ​UC-1
Output: ​The system can introduce new object to the board and have them interact
with each other
Pre-Conditions: ​Student clicks on and drags a piece to place on the protoboard
Post-Conditions:

● An Equipment object is created with the ability to interact with the protoboard
● Different parts interact with each other as they are moved around the board
● Location values for each object constantly change as they are moved around

Name: ​check();
Responsibility: ​To check to see if the solution that a student has submitted is correct
Cross-References: ​UC-2
Output: ​The system will either output a message saying that the user is correct, or
display a grade and a description of the errors that were made
Pre-Conditions: ​The student finishes a task and presses the finish button
Post-Conditions:

● The student’s answers are assigned to variables and compared to the values
of the correct answers to test for equivalence

● Variable grade is assigned a value based on percentage of correct responses
● Test if grade equals 100 (perfect score), and will display congratulations

message accordingly

Name: ​grade(labScore);
Responsibility: ​Receives the scores from each lab that the user completes and
copies the grade into the gradebook for both students and teachers to view
Cross-References: ​UC-5
Output: ​The output to this is the grade that the student received, and it is available to
both students and teachers
Pre-Conditions: ​The student has finished a lab and submitted his/her work for
grading
Post-Conditions:

● Each student object has their grade variable assigned to them
● Grade becomes viewable by students and instructors

45

Name: ​quiz()
Responsibility: ​Give the student s a quiz upon the completion of each lab
Cross-References: ​UC-14
Output:​ A quiz is given to the user, which they must complete
Pre-Conditions: ​The user completes and submits a lab
Post-Conditions:

● The user is presented with a quiz, typically the image of a Karnaugh Map or
Truth table that must be solved

● Empty spaces must be filled with values, which will be compared to the correct
values after submission

Name: ​lab1()
Responsibility: ​To allow the user to perform tasks given to them in lab 1
Cross-References: ​UC-15
Output: ​Brings the user to a screen where they are able to complete lab 1
Pre-Conditions: ​The user must select “Lab 1” from the labs menu
Post-Conditions:

● The user is given the ability to complete lab 1
● System displays image of a truth table, which user must fill out correctly
● There is no circuit design for lab 1
● quiz() is called to give the user a quiz afterwords

Name: ​lab2()
Responsibility: ​To allow the user to perform tasks given to them in lab 2
Cross-References: ​UC-16
Output:​ Brings the user to a screen where they are able to complete lab 2
Pre-Conditions: ​The user must select “Lab 2” from the labs menu
Post-Conditions:

● The user is given the ability to use lab 2
● manageEquipment(partType, partLocation) is called often as the user moves

pieces around the board
● quiz() is called to give the user a quiz afterwords

Name: ​lab3()
Responsibility: ​To allow the user to perform tasks given to them in lab 3
Cross-References: ​UC-17
Output:​Brings the user to a screen where they are able to complete lab 1
Pre-Conditions: ​The user must select “Lab 3” from the labs menu
Post-Conditions:

The user is given the ability to use lab 2

46

manageEquipment(partType, partLocation) is called often as the user moves
pieces around the board

quiz() is called to give the user a quiz afterwords

47

7. Interaction Diagrams
The figures below are the interaction diagrams for several of our use cases. Each one has a
description below it, explaining in detail how the system is set up and how the interactions are
carried out.

7.1 UC-1: manageEquipment

Figure 7.1: manageEquipment Interaction Diagram

The core of this particular sequence diagram is the equipmentList, equipmentHolder,
and equipment objects. EquipmentList is the graphical user interface component that shows the
list of equipments available to the user. This is coupled with the equipmentHolder class which
holds the list of equipment objects. This allows us to easily change the type and number of
equipments without worrying about breaking the functionality of the equipmentList component.
LaboratoryN is the ‘controller’ which takes the responsibility of communicating with the

48

equipment related classes. The inner workings of this structure are displayed above in Figure
7.1.

7.2 UC-2: finishAndCheck

Figure 7.2: finishAndCheck

In the scenario depicted in Figure 7.2, the user (student) needs a method of notifying the

system that he/she is done with a particular section of the lab. This is done through a button tied
to the user interface (FinishButton). After this button is clicked, the system transfers control to
the controller. The controller signals the ResultChecker entity to check whether the user’s
answers to the particular section of the lab are correct. The ResultChecker then signals the lab
output (Lab3Output, Lab2Output, or Lab1Output) to compare the student’s inputs with the
correct inputs, and then return the results. If the student’s answers are correct, the
ResultChecker notifies the controller that the sequence to finish the lab can be initiated.
Otherwise, an error is returned to the controller. Depending on whether the student was
successfully able to answer the lab section correctly or incorrectly, and the number of attempts
remaining, the controller will then instruct the SceneDisplay user interface to update the GUI
accordingly.

49

7.3 UC-5: grades

Figure 7.3: grades Interaction Diagram

The scenario depicted in figure 7.3 begins with the instructor attempting to look at the

grades for a particular student or group of students. The instructor interacts directly with the
GradeView user interface, and when the instructor requests grades, the controller is signalled
from the interface. The controller then contacts PersonList, which goes through the database
containing the names and grades for each student. The database then returns these values to
PersonList, which then passes it back to the controller, and in turn to GradeView, which displays
the information for the user to see.

50

7.4 UC-14: giveQuiz

Figure 7.4: giveQuiz Interaction Diagram

For the scenario in Figure 7.4, the Single Responsibility Principle was what we

attempted to implement. The QuizView is responsible for showing the graphical representation
of the quiz, the controller receive information from the specific quiz to control the QuizView’s
graphical capabilities. The QuizN class has the responsibility of holding the questions and
checking the answers entered into the QuizView. The controller delivers the answers the the
QuizN class.

51

7.5 UC-15, UC-16, UC-17: labOne, labTwo, labThree
The system sequence diagram below demonstrates the general sequence for all three labs as
they follow a very similar pattern:

Figure 7.5: labOne, labTwo, labThree Interaction Diagram

This sequence diagram tries to implement is little coupling as possible between the involved
classes.

Note: The ManageEquipment class is a representation of the UC-1 Sequence Diagram shown
above. We attempted to separate as many of the functions as possible to ensure there is
opportunity to dynamically change either the actions taken in when selecting equipments,
checking the results of the laboratory, and the prompts presented by the particular lab. We tried
to ensure that the Single Responsibility Principle is kept, where the LabView is only responsible
for rendering the graphics to the screen, the LabController is responsible for controlling the
view, and LabN is in charge of the lab specific instructions needed for the user.

52

8. Class Diagram and Interface Specification

8.1 Class Diagram
Figures 8.1.1 and 8.1.2 are the class diagrams for our system. They are separated to make
each one more visible and easier to understand. Equipment manager received its own class
diagram because of the complexity of its inner structure.

53

8.1.1 General Class Diagram

Figure 8.1.1: General Class Diagram (Updated)

54

8.1.2 Equipment Manager Inner Structure

55

Figure 8.1.2: Equipment Manager Inner Structure Class Diagram (Updated)

56

8.2 Data Types and Operation Signatures
Each of the boxes below is representative of a class in our system. The tables have 2 distinct
sections: an attribute section containing any important values or variables to that class, and an
operations section that lists the functions available for that class to use. Both of these are aided
by descriptions of their functionality.

Class Name: LoginGUI - Provides interface for login

Attributes: -username:string
-password:string
-accountType:type

Stores username
Stores password
Stores account type (student/instructor)

Operations: +checkType()
+launchGUI():String
+authenticate()

Checks the type (student/instructor)
Initiates login GUI for users
Tests if username and password are correct

Class Name: Database - stores users, passwords, grades

Attributes: -DatabaseKey:String Stores key for database

Operations: +authenticatePerson():Person Tests if user is in database

Class Name: Chat - Allows students to chat with each other and instructors

Attributes: -Messages:List Stores the chat messages

Operations: +enterMessage():String Allows student/instructor to input a new chat
message

Class Name: Person - Responsible for keeping track of individuals

Attributes: AccountType:String
Name:String

Holds type of account (student/instructor)
Stores name of user

Operations: - -

Class Name: Student - Keeps track of a particular student’s grades and other info

Attributes: -Lab1Grade:float
-Lab2Grade:float
-Lab3Grade:float
-cheatDetectorVerification:im

Holds lab 1 grade
Holds lab 2 grade
Holds lab 3 grade
Stores image of user to identify cheating

57

g

Operations: +resetGrade(int labNumber) Resets a grade for a specific lab
(designated by input labNumber)

Class Name: StudentGUI - interface for students

Attributes: -GUI Elements: GUIType Contains the buttons, textfields, and other GUI
attributes that are used in the StudentGUI.

Operations: +processCommand() Processes user commands

Class Name: Instructor - keeps track of instructor information

Attributes: -personListGUI Elements:
-GUIType:List

Contains the buttons, textfields, and other GUI
attributes that are used in the personListGUI
and other Instructor GUI elements.

Operations: +getGrades(): List Gets student grades for instructor

Class Name: InstructorGUI - interface for instructors

Attributes: -GUI Elements: GUIType Contains type of GUI (instructor)

Operations: +processCommand() Processes user commands

Class Name: Report - delivers grade reports to students and instructors

Attributes: -LabGrade: string Contains grades for lab

Operations: +evaluateLab()

+evaluateQuiz()

+getGradeFromLab():
string

Compares lab performance to correct
solutions
Compare quiz solutions to correct solutions

Obtains lab grades

Class Name: Lab1, Lab2, Lab3 - control the operations of the individual labs

Attributes: -LabName: string
-LabInstructions: List
-ExpectedOutput: GameObj

Contains name of lab
Contains lab instructions
Contains correct results

Operations: +compareOutput():output Compares student answers to correct output

58

+saveProgress() Saves student lab progress

Class Name: Quiz1, Quiz2, Quiz3 - controls operations of the quizzes

Attributes: -questions_answers:Map Holds answers to questions

Operations: +giveQuiz()
+checkAnswers(): List
+recordResults()

Gives student quiz
Checks for correct answers
Records student grade on quiz

Class Name: EquipmentManager - handles all equipment for the labs

Attributes: -equipmentList: List Contains pieces of lab equipment

Operations: +getEquipment(): string Gets selected equipment piece

Class Name: CheatDetector - identifies if students are cheating

Attributes: -camera: object Computer camera is used to monitor
students

Operations: +verifyPerson(): img

+retrieveData()

Verifies that the student matches his/her
stored image
Retrieves stored images of students to
compare to camera image

Class Name: LogicBehavior - is a component (A subclass of a GameObject) of a
GameObject called LogicNode which sets the voltage states of a particular
node in the Electrical Device.

Attributes: +LogicID: String

+LogicState: int
-LogicNode: GameObject
-OwningDevice: GameObject

The unique ID for each LogicNode
gameobject.
The state that emulates the circuit voltage of
the particular node (Low, High, Invalid).
The device that owns the particular
logicNode.

Operations: -Start()

-Update()

Initializes the conditions for the component
script.
Allows the logicBehavior script to react to
any changing input from the user every
frame.

59

Class Name: ProtoboardObject - Object that holds the logic nodes for a protoboard
gameobject and changes the state of its nodes accordingly.

Attributes: -NodeDictionary Dictionary (Hash Table) of LogicID to Node
GameObject mappings.

Operations: -start()

-update()

-setNodeProperties()

Initializes the conditions for the component
script.
Allows the device script to react to any
changing input from the user every frame.
A helper function to help the protoboard
initialize the logic nodes inside it.

Class Name: PowerSupply - Object that holds the logic nodes for a PowerSupply
gameobject and changes the state of its nodes accordingly.

Attributes: -NodeHashMap Dictionary (Hash Table) of LogicID to Node
GameObject mappings.

Operations: -start()

-update()

-setNodeProperties()

Initializes the conditions for the component
script.
Allows the device script to react to any
changing input from the user every frame.
A helper function to help the protoboard
initialize the logic nodes inside it.

Class Name*: AndGate/OrGate/XORGate/MuxChip/NandGate/WireBehavior- Object that
holds the logic nodes for a that particular gameobject and changes the state
of its nodes accordingly.

Attributes: -NodeHashMap Dictionary (Hash Table) of LogicID to Node
GameObject mappings.

Operations: -start()

-update()

-setNodeProperties()

Initializes the conditions for the component
script.
Allows the device script to react to any
changing input from the user every frame.
A helper function to help the protoboard
initialize the logic nodes inside it.

*Please note that the above table combined the classes for all of the chips and gates in order to
avoid repetition. Each one contains its own NodeHashMap, and has the same three operations:
start(), update(), and setNodeProperties().

60

61

8.3 Traceability Matrix
Below is our traceability matrix containing classes and domain concepts. It enables one to see
how the individual classes satisfy each of the domain concepts. It is broken into three separate
tables to make it easier to read, as we have a large number of classes and fitting them all onto a
single table would make it difficult to read. Below the table is a description of the mappings.

Domain
Concepts

Classes

LoginGUI Database Person Student StudentGUI Chat InstructorGUI Report

Login X

Database
Connection

 X

Admin
Subsystem

 X

Student
Subsystem

 X

GradesList X X

Chat X

Grades X

Table 8.3.1: Traceability Matrix Part 1

Domain
Concepts

Classes

Lab 1 Lab 2 Lab 3 Equipment
Manager

Quiz1 Quiz2 Quiz3 CheatDetector

Equipment X X X X

LabSelection X X X

Lab1 X X

Lab2 X X

Lab3 X X

CheatDetector X

Table 8.3.2: Traceability Matrix Part 2

62

Domain
Concepts

Classes

Logic
Interface

Logic
Behavior

Protoboard
Object

Wire
Behavior

Power
Supply

AND
gate

OR
gate

NAND
gate

XOR
gate

Equipment X X X X X X X X X

Table 8.3.3: Traceability Matrix Part 3

Most of our domain concepts mapped very similarly over to our class diagrams with a
few exceptions. The Login, StudentSubsystem, and AdminSubsystem domain concepts were
changed by adding a postfix ‘GUI’ at the end of them as much of their functionality are GUI
operations. We changed the name DatabaseConnection to Database as we expect that class to
handle everything from the initial connection to database management methods. We changed
the name of the concept Grades to Report as we felt we wanted more information within that
class than just the grades, such as the specific areas where the students failed in the Virtual
Lab to diagnose design issues. We changed the Lab domain concepts to contain both a Lab
class and a Quiz class as they are designed to be decoupled different systems. The equipment
underwent the biggest change as during development of the equipments, we found uses for
many classes that specifying different equipments.

63

9. System Architecture and System Design
9.1 Architectural Styles

Event-driven architecture - ​This architectural style relies heavily on detection of, and
reaction to events, or changes in state. As our system will be an interactive one, much
of it will rely on the actions of the users, and must respond accordingly. Our system
must be able to respond appropriately to each button click, as well as the click-and-drag
features installed in each lab. The systems developments and procedures are almost
exclusively reactions to the changes in state brought about by the user. The Unity Game
Engine (Framework) is based on an Event driven architecture where each script is
initialized in a Start method and the event loop executes the Update method. There are
special cases where a callback is necessary, such has when the user clicks the mouse,
a mouse operation callback is executed which can be handled in the “scripts” or
“classes”.

Database-centric architecture - ​This type of architecture typically relies on a standard
relational database management system rather than in-memory or file-based data
structures. We will be relying on databases for a good portion of this project, as a
means to store information about each student and instructor, lab grades, quiz grades,
usernames, and passwords

What is Unity and why was it used for this project?

This project is built on top of the Unity Engine framework (Version 2017.3.1f1). The Unity

Engine is a graphics/game library that can be interfaced with the .NET C# language, or
Javascript. For this particular project, we have solely focused on implementing our program in
C#. Unity’s main job is to render the 2D or 3D models on to the screen (for this case, its 2D) and
facilitate a platform to detect interactions between different “GameObjects”.

Everything in Unity is based around the concept of ‘GameObjects’ which have properties
or components that describe the GameObject, such as the Transform component, which
contains information about the GameObjects position, rotation, and scale on the screen. Each
GameObject can take in user made “Scripts” implemented as classes from the Classical Object
Model. They all ‘extend’ or ‘inherit’ from Unity’s own GameObject class called ‘MonoBehaviour’
which allows the programmer to immediately access information about the GameObject, such
as all the components belonging to the GameObject, and allows Unity to add it to it’s callback
systems. Unity’s callback system allows us to do powerful, things, such as detect collisions
between two GameObjects, detect user inputs such as mouse click. In addition to the
advantage of using these GameObject constructs, we can also utilize Unity’s multithreading
system, called Coroutines, that allowed us to do computationally heavy tasks/or animations
without freezing up the main graphical thread of the application.

64

Unity is an event-driven system, what this means is that there is an inner loop, called the
main Update loop which changes the components that each GameObject has during each
frame that the loop is called. This allows programmers to dynamically take user inputs, react to
changes to the overall system, and update the system based on predefined programmed
instructions. What this also means is that it is the programmer’s responsibility to ensure that any
algorithm taking advantage of this system is efficient so that it doesn’t affect the user experience
as all computation must be done before moving on to the next frame/loop.

In addition to Unity’s powerful libraries, we also heavily utilized the powerful .NET

framework libraries that come in with C#. We heavily utilized built in data structures, such as:
Dictionaries (Hash Table), Linked Lists, Array Lists, and Arrays in general.

There were several reasons we decided to use Unity over other engines. Our project is a

visual, simulation based project. Many visual libraries are built on C++ due to its speed and
optimization capabilities, however, due to the scope and experience of our members on this
project, we wanted to really focus on our mission itself, to create an accurate simulation of
Digital Logic laboratories. We wanted a language that was powerful, but also was easily
buildable/testable to different target operating systems and/or platforms. After a significant
amount of research, we decided that Unity would be the best framework to work under. It made
use of several different languages, including C# which is easily compilable to different platforms
due to it’s Virtual Machine system and JIT compiler (Similar to Java). It also frees the
programmers worry about garbage collection, which was important to us. In addition to the
language of choice, Unity came out on top due to its extensive documentation, support,
popularity amongst independent developers, and most importantly, the ease of building and
testing for different platforms.

65

9.2 Identifying Subsystems

9.2.1 UML Package Diagram

Figure 9.2.1: UML Package Diagram

The reason the packages are assembled the way that they are in Figure 9.2.1 is that

they are being developed independently. We can develop each group of classes independently,
and test them in such a way, such as developing the Virtual Lab subsystem, and Student
Subsystem independently without affecting the other. Each package however contains its own
Model-View-Controller structure that allow each subsystem to work. For example, the VirtualLab
Subsystem has its own model, which represent the equipment available to the lab, how the
equipments react to each other, and what the correct output is for a particular lab. The view is
run by the Unity Engine Framework that shows the sprite components of a particular equipment.
The controller controls how user input causes the equipments to react and passes the
appropriate actions to the model.

9.3 Mapping Subsystems to Hardware

Our system does run on multiple hardwares. We have a client - server interaction

between our application and a cloud based relational database. Our database keeps track of the
student’s data (Student Subsystem) for the administrator to manage (Admin Subsystem). Our
server also facilitates the messaging system. When a user, be it the student or the administrator
(Instructor/Professor), types in the messaging system, the message is sent to a database and
relayed along all other open messaging systems that query it.

66

9.4 Persistent Data Storage

Figure 9.4: Persistent Data Storage Model

Our lab system as an event-driven system so users can do whatever they want in the

real lab. Each event will change the associated value in the database. The system tracks how
far each user goes in each lab so that their progress is saved on cloud. We use amazon web
service to store the data, which is reliable and efficient. Here we have two roles: student and
professor. They have their own id, name, username and password. Student has a extra grade
item to keep their scores.

9.5 Network Protocol

We will be using the Firebase SDK to help us set up a connection to the firebase server.
The SDK will facilitate setting up the connection in C#, which is the programming language of
choice for the Unity Engine Framework.

9.6 Global Control Flow

9.6.1 Execution Orderness

Our system is event-driven, as once users enter each individual lab, they are
responsible for the circuits that are created, and they can use any combination of
materials that they choose. It is likely that many students will have circuits that consist of
different pieces, or are presented in a different layout. Every action that the user makes
while constructing the circuit affects the outcome and the functioning of the circuit, which
can impact the grade that they receive. In the end, multiple users may end up with the
same results, but they will not have necessarily taken the exact same steps, as their
circuits can differ in chip placement, or the way that they went about constructing the
circuit. Along with the virtual laboratory section, the user interface is also loop based -

67

event driven. It waits for a particular action from the user, and updates the UI
accordingly.

9.6.2 Time Dependency

There is a timer in a system, but it is only used as a reference for students and
teachers to see how long it takes to complete a lab. A longer completion time may be an
indicator that the students do not understand the material well as they should. However,
the timer does not force the user to exit the program or any type of execution at any
time. In fact, we allow the user to save their progress to come back to it later.

9.6.3 Concurrency
We do not have a concurrency model for this project.

9.7 Hardware Requirements
Listed below are specific requirements for our system:

● OS: Windows XP SP2+, Mac OS X 10.9+, Ubuntu 12.04+, SteamOS+
● Graphics card: DX9 (shader model 3.0) or DX11 with feature level 9.3 capabilities
● CPU: SSE2 instruction set support
● Screen: minimum resolution of 720p
● Minimum network bandwidth: 56k
● Minimum hard drive space: 100 megabytes

68

10. Algorithms and Data Structures
10.1 Algorithms

Many of our complex algorithms reside in getting the Virtual Laboratory section of the

application working. What this means is that the logic between the circuit equipments, such as
the Protoboard, Chips, Wires, and other components are computed in conjunction with each
other. Each digital logic component is filled with objects that we call “Logic Nodes” positioned in
critical locations in the chip, such as the output pins in the following 74LS00 Double NAND chip:

Figure 10.1: A 74LS00 NAND gate chip

The interaction between the Logic Nodes of this NAND gate (figure 10.1) and other

digital circuit equipment is facilitated by the Unity Engine’s collision detection system (when one
Logic Node object is positionally overlapping another Logic Node object). When the device is
‘set’, meaning the user has stopped moving the device via the mouse, the collided nodes are
detected and the device is forced to evaluate the ‘Logic States’ (Logic LOW, Logic HIGH, or
INVALID) of any external Logic Nodes. Based on the particular device specification (a NAND
device object would follow the logic of the NAND gate configurations), the device will set its own
Logic Node in reaction to the inputs. Some devices may have outputs, which will force the
external collided node’s Logic State to change.

To facilitate this algorithm, we force the equipment objects to implement an interface that
has the method ReactToLogic(). When a state in the Logic Node changes, the ReactToLogic()
method is called for the respective devices. What this means is that we don’t have to
continuously check the states of all Logic Nodes in the system, but can efficiently compute any
changes for any devices that may be affected by any new collisions, or state changes.

The following is a basic breakdown of the individual algorithmic operations going on with

our GameObjects:

Logic Nodes:

Digital Logic Design, in the most basic form, is based on two states for every logic circuit
input and output, a logic high (usually 5V), and a logic low (ground). Every Digital Logic device
has this “State” property on it’s input and output nodes. It was important to make a system to
easily detect these, and create a reliable interaction between different nodes within the system.
Using this idea, we created a GameObject called conceptually “Logic Node” that have several

69

properties. We represent a Logic Node graphically with a small circle that has three different
colors: green for logic high, red for logic low, and white for neutral. These states are kept by
each Logic Node as an integer that is predefined statically. Outside of testing scenarios, every
single Logic Node is a child of a GameObject that implements an interface called Logic Device.
We will expand upon this further down in the document.

For each Logic Node, it is incredibly important to determine if it is positionally
overlapping with another Logic Node, analogous to a digital logic component connecting to
another digital logic component via physical contact. This is only detected when a collider
component in the shape of the GameObject’s collision perimeter is added to the Logic Node
GameObject on object instantiation. Whenever this overlap happens between two Logic Nodes,
a collision is detected by the Unity engine, and a callback function called OnTriggerEnter() is
called, which notifies the programmer to react to this collision. For Logic Nodes, we notify the
object that a collision has been detected recently and keep note of the Logic Node that collided.
The Logic Node object does not immediately react to any collisions as the user may be actively
moving the Logic Node’s position. Upon reaching the next Update loop, responsibility of how to
change the Logic State is given to the owning device of the Logic Node.

Devices:

Every device in this system is implemented as a Device interface that implements a few
functions. The most relevant one right now is the ReactToLogic() function. What this allows us
to do is it lets every logic node access it’s owning device’s specific logic configuration without
code duplication and let’s every device handle it’s logic data structures in anyway that it wants.
Once the ReactToLogic() function is called, all the Logic Nodes that the device owns, and have
two important things checked: their Logic States, and the states for any colliding Logic Nodes.

Usually, most devices handle inputs and outputs during Logic computation in the
following way: The device’s input logic are never set to a specific state, but rather they keep
their state’s neutral to ensure that their colliding nodes aren’t influenced by their states. This is
particularly important when a device is colliding with the Protoboard device as the logic
calculation on a set of rows/columns in the Protoboard’s Logic Nodes are based on a priority
system. The priority system prioritizes a logic low, then a logic high, and finally a logic neutral. If
an input Logic Node on a colliding device is set to low, and the Protoboard’s set of Logic Nodes
are requested to change to a logic of high, it will refuse to change as it detects that a colliding
node has a state of low.
The device’s output are always set to the state that it needs to be, to let the output Logic Node
communicate to it’s colliding Logic Node to request the owning device to change states. This is
the pattern followed for all devices outside of special cases such as the Protoboard.

Typically, devices are movable (with exceptions), and the device’s position based on the
mouse position are controlled by the OnMouseClick() and OnMouseDrag() callback functions
from Unity. Here, the current position of the device, and the offset from the device and the
mouse position is calculated to move the device to the correct mouse position.

70

Protoboard -
The Protoboard acts as both an input and output device on all of it’s Logic Nodes. A

crucial data structure for the Protoboard is the hash table, due to the way the data is structured,
and the speed of the retrieval of data. As specific rows, and specific columns of Logic Nodes
have the relationship of representing one Logic Nodes, they need to represented in a way
where a list of Logic Nodes is retrieved for a specific column/row request. A Hash Table is the
perfect data structure for this as a key can be assigned to every set of related nodes, and a List
(Array) data structure of Logic Node GameObjects can be assigned as the value for the key
value pair. During the ReactToLogic() function, the relevant list of of Logic Nodes can be
received by knowing the calling Logic Node’s key in a time complexity of O(1). As mentioned
earlier, a priority system is used to update the list of Logic Node’s state as a set must all have
the same state. All colliding Logic Node’s with the set are checked for their Logic States, and
based on a priority system, the set as a whole is assigned one logic state. The priority system
assigns the logic low first, logic high second, and assigns logic neutral last. The protoboard is an
immovable device as for the protoboard to be clickable, it would need to have a Box Collider
component for the mouse input callbacks to be registered. However, since the Logic Nodes
contained inside it also have Colliders, the Unity engine has a difficult time distinguishing which
GameObject is colliding with which other GameObject. We decided to remove the movable
functionality from the protoboard due to this.

Chips (74LS00 (NAND), 74LS04 (INVERTER), 74LS08 (AND), 74LS32 (OR)) -
The chips are all movable devices that contain 14 Logic Nodes. These Logic Nodes are

stored in Hash Tables, but the implementation can easily be changed to Lists as well. To
function correctly, they must be ‘snapped’ to 14 other nodes, typically this means a collision
between all of the chip’s Logic Nodes and the Protoboard’s Logic Nodes are detected
simultaneously. Once the chip detect that all 14 nodes are collided with, and the user lifts the
mouse, the OnMouseUp() callback is recorded, and the position of the chip is snapped to the
top left Logic Node’s collided Logic Node’s position (arbitrarily chosen), a green indicator is
shown to show potential snappings. Once the device is snapped, before any logic calculation is
done, the chip must detect a collided node on both the 7th pin, and the 14th pin, with a logic low
and a logic high going to the respective nodes. After that, based on the datasheet, the collided
input Logic Node’s states are taken, and the output is set.

LED -
The LED is an important movable device, and similar to the ‘chips’, they can be

snapped. The LED takes in two inputs by detecting collision on both of it’s ‘legs’. If the shorter
leg’s collided Logic Node has a state of logic low and the longer leg’s collided Logic Node has a
state of logic high, then the LED has a state of being “On”. This also means that the sprite of the
LED is modified to show that it is emitting a light source. In every other situation, the LED is in
the state of being “Off” and has a sprite that reflects that. The importance of the LED doesn’t
only come from being a good debugging device for the user, but also is important in a technical
aspect as it is used to check the input and output states of the overall circuit of the lab. This will
be further expanded on.

71

Switch -
The switch is another important movable device, similar to the LED. It contains three

Logic Nodes, two of which are inputs, and one of which is an output. It can be toggled up or
down, and will prioritize the output to reflect the top, or bottom Logic Node input. Similar to the
LED, they play an important role when analyzing the built in circuit as they can be designated as
an overall input to the system.

Wires -
Wires are generated using the ‘w’ key on the keyboard, or can be accessed via the

dropdown menu. After initializing them, a click on a Logic Node is listened for on a callback,
after the first click, the Wire ‘Line’ is rendered to follow the mouse from the specified Logic
Node. Every click after ward creates an inflection point for the wire, if the clicked point is not a
Logic Node, in which another ‘Line’ is rendered from that point to the mouse. Only when a Logic
Node is clicked is the wire sequence is done executing within the Wire object’s Update function,
and two new Logic Nodes are created at each end of the wire. The wire follows a similar priority
system to that of the Protoboard by analyzing the colliding Logic Nodes of both ends of the wire.

Magnifying Glass-
The magnifying glass allows the user to access information about components that may

be useful while conducting the lab, such as datasheets, instructions, and animations. This
information can be uncovered by hovering the magnifying glass over the object of interest (Logic
Chips, LED, Switch, Wires, etc). When this occurs, a collision is detected between the
magnifying glass and the object of interest, which triggers a function in the ​MagnifierBehavior
script. This function passes a collision parameter which provides information on the collision,
allowing the corresponding information to be displayed. When the magnifying glass exits a
collision with an object, a different function in the ​MagnifierBehavior​ script executes, which in
turn hides the corresponding information.

Trash -
Since an unlimited number of components can be generated by the user, there must be

a system of deletion in order to prevent unnecessary pile up of unwanted components. The
trash feature allows the user to delete components by dragging and dropping the component to
be deleted over the trash icon. Once a component is hovering over the trash icon, the resulting
collision triggers a function that alerts the user by allowing the trash icon to glow. As the trash
icon is glowing, an update loop checks if the user has let go of the left mouse button. If so, then
the component is destroyed and memory is freed.

Power Supply -
The power supply device is unique as it does nothing with the ReactToLogic() interface

even though it implements it. This device’s only job is to continually set it’s Logic Node’s to logic
high, and logic low through the Update loop. This way, even if there is a mechanism that
changes it’s states (it will be discussed further down), the Power Supply will force it’s logic state

72

to its proper value and permeate the value through the collision system through the rest of the
circuit.

Prelab / Postlab -
For the prelabs and postlabs, the user is asked to enter inputs in the respective fields of

the k-map. Once those inputs are entered, the user hits the “Check” button. For the text fields,
the program restricts inputs to single digit integers. This minimizes any issues that could be
caused by inappropriate spacing or text input in the fields. When the user hits the “Check”
button, they system checks the user’s inputs, which are all stored in variables, compared to the
answers that should have been inputted. If the answers inputted and the correct answers are
the same, a message appears saying and it goes onto the next lab within 5 seconds. If the user
inputs an incorrect answer, a message will display to the user informing them to try again.

10.2 Data Structures

A lot of the discussion on the specific data structures we used are stated in the above
discussion (section 10.1).

Our application makes use of many data structures, ranging from Hash Tables (called

Dictionaries in C#), and Lists. Many of our data structures are implemented in the Device
objects that hold Logic Nodes. The data structures are chosen based on the quantity of
information needed to store, and efficient method of getting such objects. Digital Logic devices
such as the Protoboard requires hundreds Logic Nodes to serve its purpose whilst devices such
as the 74LS00 (NAND Chip) require exactly 14.

For cases such as the protoboard, we decided to store all the nodes in a Hash Table

with a designated key. The rows of the Protoboard all represent the same logic state, as do the
columns of the far left and far right of the protoboard. We can store key-value pair based on
Lists of Logic Nodes that have the same Logic ID (manually assigned based on the row and or
column). In addition to the numerous number of Logic Nodes, the Get operation on the Hash
Table usually has a complexity of O(1) which allowed us to quickly retrieve any set of Logic
Nodes incredibly fast.

73

Figure 10.2: Our protoboard image with visible nodes. Green represents logic high.

Red represents logic low. White indicates that it is currently neither high nor low.

74

11. User Interface Design and Implementation

11.1 Login Page

Our project uses Amazon AWS service as an database that can communicate with our

clients. PHPMyAdmin was used for the database setup. A table which can handle all the
information of our users was made. It has the following attributes:

uid: int (as the primary key)
username: varchar(20)
Password: varchar(20)

Since all we need is a simple DLD lab system. We assume professors have a maximum

number of 10 (uid 1 to uid 10). Their credentials are previously set into the database. We also
have students whose uids go from 11 to 999. Students are not previously built in our database
but it can be created by the professor. The student’s uid increments as new user is created

Enter the wrong credentials will prompt a wrong credentials error. Enter the right
credentials of professors, the system will redirect the user to admin subsystem. Enter the right
credentials of students, the system will redirect the user to student subsystem.

11.2 Admin Subsystem

After entering the admin subsystem, the client make a inquiry to the database server for
all users’ uids and usernames. All information will be shown as a table, with a delete icon on the
right hand side. The interface has several buttons: create user, delete user. Click create user
will prompt a new window to let the user enter the credentials of the new user. After that, a new
student user is created and added to the end of the table. Click delete user icon will prompt a
new window to let the professor confirm if he/she really wants to do that. Please note that
Professors cannot delete other professors.

11.3 Changes from previous UI design

Our completed user interfaces may be viewed in section 3.3 of this report, beginning on
page 14. There, we show pictures of each of the interfaces, and we break down exactly what
each button does and how the user can interact with them. Below, we will show the evolution of
these UIs, beginning from the initial drawings, then progressing from the initial drawing (Figure
11.3.1), to the computer-aided design (figure 11.3.2) to the final product (figure 11.3.3).

75

Figure 11.3.1: Initial UI drawing for Lab 2, along with prelab and postlab

76

Figure 11.3.2: Computer-aided Design of Lab UI

Figure 11.3.3: Finalized Lab UI

As is evident from the development of the three figures above, the UI design changed a

lot during the project, as new needs arose, and ease-of-use became the forefront of our design.
We feel that this development kept the interface simple, but also allowed a wide range of tools
that the user may need at any point.

77

12. Design of Tests
12.1 Test Cases

Because our system is an interactive one, many of our tests will involve working
with the circuits and GUIs, making sure that everything executes as expected. The
most basic unit tests that we will complete are tests of the equipment, making sure that
each piece looks like it should, reacts to clicking and dragging properly, connects to the
protoboard, and functions the way that it should. We will also need to complete tests to
see that the system correctly creates and deletes users, and allows them to log in to
their accounts. These are the most basic functions of our system, so these are the
things that we must test rigorously in order to ensure that there are no faults with them.
Once our basic components are properly implemented and tested, we can begin to
construct and test the more complex functions of our system. The labs will require a
large amount of testing as well, as we will need to make sure that the system reacts
properly to every circuit that is submitted.

Element testing:

The boxes below contain the element testing to be done with our lab. Each box
has an action, then the successful and unsuccessful outputs that may result from
completing that action. All of these tests will be used when debugging our code and
making sure everything run properly.

Action Output

Clicks and drags circuit
element

SUCCESS:​ Circuit element moves along with user’s click

FAILURE:​ Circuit element does not move or moves
independently of user’s click

Places circuit element on
protoboard

SUCCESS: ​Element connects with protoboard, and
collision of nodes is detected

FAILURE:​ Element will not attach to protoboard, or
collision of nodes in not detected, impairing functioning of
the circuit

Test circuit interactions
by connecting power
source, chips, and wires

SUCCESS:​ Logic “HI” and “LOW” appear where
expected, based on circuit configuration

FAILURE:​ Logic “HI” and “LOW” do not appear where
expected, based on circuit configuration

78

Lab Testing

Action Output

User completes lab
according to the desired
requirements and clicks the
“Finish” button

SUCCESS: ​The system analyzes the user’s circuit and
determines if the correct output is received

FAILURE: ​The system fails to, or incorrectly analyzes
the user’s circuit

Quiz Testing

Action Output

User completes given quiz
and clicks the “Finish”
button

SUCCESS:​ The system correctly grades the user’s quiz
by comparing his/her answers to the correct version

FAILURE:​The system incorrectly grades the user’s quiz,
mistaking wrong answers for correct ones, or vice versa

UI Testing

Action Output

The user clicks on the
button to take them to the
desired lab

SUCCESS: ​The user is taken to the lab, where they are
given instructions and allowed to complete the tasks

FAILURE:​ The system does not respond to the click, or
takes the user to the incorrect place

The user clicks on a button
to view grades

SUCCESS: ​The user is given access to view grades
received on previous labs and quizzes

FAILURE: ​The user is unable to view previous grades,
or the grades that they are able to view are incorrect

User Management/Login Testing

Action Output

User is created SUCCESS: ​User is created and entered into the
database, along with password

FAILURE: ​User is not created successfully, or is not
associated with the correct password

79

User enters
username/password to log
in

SUCCESS: ​The user is admitted into the system after
entering correct credentials, or denied access if
incorrect

FAILURE: ​The user is denied access after entering the
correct credentials, or admitted access after entering
incorrectly

12.2 Test Coverage of Test Cases
The system testing is a very crucial part of our project, as it serves the purpose of

letting us know when a particular piece of code is not acting as expected, or where we
may have made faults in design or implementation. Through the use of a wide range of
testing, we can ensure that each and every fault is met early on and corrected, and that
every invalid input given by a user is handled efficiently by the system, rather than
having it react in an unpredicted manner. Our test coverage must not just include
inputting the correct answers, but also requires that we input every combination of
invalid and incorrect inputs possible, to ensure that the system can handle them and
react appropriately.

12.3 Integration Testing Strategy

Our integration strategy will be top-down approach. Because our project is so
large and consists of so many different sections, there will often be pieces that are
ready for integration, while others are still being modified. Using a top-down approach
will allow us to test the interactions of the specific sections that have been integrated,
and this will allow us to find faults in the communication between classes, which is
heavily relied upon. Errors in communication between classes would not be as simple
to see if we were taking an approach that focused more on smaller, individual sections
of the the system.

An example of the top-down testing method that we use is when we test the

equipment. The protoboard is an example of an upper integrated module, and once
that is integrated, we can test the branches (in this case, the wires and chips) step by
step, until they too are integrated. After we verify that the protoboard is functioning
properly, we test the other objects (the branches in this case) to see if they interact
correctly with the protoboard (the main module). Once this has been deemed correct
and properly integrated, we can test the functioning of even smaller modules that
branch from the chips, such as whether they output the correct logic states in certain
scenarios.

80

13. History of Work

January 25-28: ​Finalized project focus, developed project proposal
February 1-4: ​Developed statement of work and requirements
February 5-11: ​Developed functional requirement specification, and developed desired UI
layouts
February 12-18: ​Compiled report 1; decided on a platform to develop the application; began
collecting images to be used to represent objects in the application
February 19-25: ​Developed interaction diagrams; began coding; began development of
interaction between objects and nodes in the Unity interface
February 26 - March 4: ​Designed class diagrams and system architecture; began development
of user interfaces; wrote scripts for circuit elements (chips, wires, power source) that cause them
to behave as they would in a normal lab setting
March 5-11: ​Compiled report 2; began development of each individual lab; added magnifying
glass and trash bin features, as well as drop-down parts menu
March 12-19: ​Further development of labs and UI; setup of database; login functionality and
ability to create users are added; began unit testing
March 19-23: ​Further development of labs and UI; added sandbox mode; began integration
testing; completed user documentation; completed technical documentation
March 23-28: ​Preparation for demo 1; decided which parts to present and who would present
them; designed brochure; designed presentation slides
March 29: ​Demo 1
March 30-April 8: ​began work on user chat; began development of CheatDetector; completed
implementation of the labs; began working on save state functionality
April 8-22: ​Continued development of above features; completed required sections of report 3
April 22-30: ​Completion of report 3; finalized work with CheatDetector and Chat system
May 2: ​Demo 2

81

14. References

1. Professor Marsic’s website, detailing the requirements for report 2
http://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html

 2. A past project of the same topic, that was used as a guide

http://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html

 3. Used to detail the interaction diagrams:

https://medium.com/omarelgabrys-blog/object-oriented-analysis-and-design-desi
gn-principles-part-6-b78e2b9da023

 4. A good overview of top-down testing

http://extremesoftwaretesting.com/Techniques/TopDownTesting.html

 5. A site that was used to develop an understanding of Unity

https://unity3d.com/learn

 6. Used to gather information about the SN74LS00 chip that we will be simulating

http://www.ti.com/product/SN74LS00/technicaldocuments

 7. Provided information about several gates that will be used in our simulations

http://www.futurlec.com/74LS/74LS04.shtml
http://www.futurlec.com/74LS/74LS08.shtml
http://www.futurlec.com/74LS/74LS32.shtml

 8. Provided information about data structures that will be used in this project
https://www.geeksforgeeks.org/data-structures/

82

http://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html
http://www.ece.rutgers.edu/~marsic/Teaching/SE/report2.html
https://medium.com/omarelgabrys-blog/object-oriented-analysis-and-design-design-principles-part-6-b78e2b9da023
https://medium.com/omarelgabrys-blog/object-oriented-analysis-and-design-design-principles-part-6-b78e2b9da023
http://extremesoftwaretesting.com/Techniques/TopDownTesting.html
https://unity3d.com/learn
http://www.ti.com/product/SN74LS00/technicaldocuments
http://www.futurlec.com/74LS/74LS04.shtml
http://www.futurlec.com/74LS/74LS08.shtml
http://www.futurlec.com/74LS/74LS32.shtml
https://www.geeksforgeeks.org/data-structures/

