
 
 

SOFTWARE ENGINEERING GROUP#5 PART #2 

Spectrophotometer 
Bio Lab Part #2 

 

Bingbing Xu, Chao Han, Junwei Zhao, Xueyuan Song 

  
 

 

 

  



Software Engineering 2012 

- 1 - 
 

 

Content 
Contribution Breakdown........................................................................................................................... - 3 - 

1. Interaction Diagrams......................................................................................................................... - 4 - 

1.1 ID1 SwitchON ............................................................................................................................ - 4 - 

1.2 ID2 AdjustBlank ......................................................................................................................... - 4 - 

1.3 ID3 AdjustZero .......................................................................................................................... - 5 - 

1.4 ID4 SelectWaveLength .............................................................................................................. - 7 - 

1.5 ID5 UpdateInfoBoard ................................................................................................................ - 7 - 

1.6 ID6 OpenLid ............................................................................................................................... - 8 - 

1.7 ID7 CloseLid ............................................................................................................................... - 9 - 

1.8 ID8 SelectTestTube ................................................................................................................. - 10 - 

1.9 ID9 InsertTestTube .................................................................................................................. - 11 - 

1.10 ID10 RemoveTestTube ............................................................................................................ - 13 - 

1.11 ID11 SetSample ....................................................................................................................... - 14 - 

1.12 ID12 Login ............................................................................................................................... - 14 - 

2 Class Diagram and Interface Specification ...................................................................................... - 16 - 

2.1 Class Diagram .......................................................................................................................... - 16 - 

2.2 Data Types and Operation Signatures .................................................................................... - 18 - 

2.2.1 Account ........................................................................................................................... - 18 - 

2.2.2 Login ................................................................................................................................ - 19 - 

2.2.3 AccountStorage ............................................................................................................... - 19 - 

2.2.4 AccountChecker .............................................................................................................. - 19 - 

2.2.5 TeacherOperationController ........................................................................................... - 19 - 

2.2.6 LabObject ........................................................................................................................ - 20 - 

2.2.7 PowerSwitch ................................................................................................................... - 20 - 

2.2.8 IndicateLamp ................................................................................................................... - 21 - 

2.2.9 Dial .................................................................................................................................. - 21 - 

2.2.10 TestTube .......................................................................................................................... - 22 - 

2.2.11 WaveDial ......................................................................................................................... - 22 - 



Software Engineering 2012 

- 2 - 
 

2.2.12 Needle ............................................................................................................................. - 22 - 

2.2.13 Lid .................................................................................................................................... - 23 - 

2.2.14 SampleHolder .................................................................................................................. - 23 - 

2.2.15 SpectroState .................................................................................................................... - 23 - 

2.3 Traceability Matrix .................................................................................................................. - 25 - 

3 System Architecture and System Design ........................................................................................ - 26 - 

3.1 Architectural Styles ................................................................................................................. - 26 - 

3.2 Identifying Subsystems ........................................................................................................... - 27 - 

3.3 Mapping Subsystems to Hardware ......................................................................................... - 27 - 

3.4 Persistent Data Storage .......................................................................................................... - 28 - 

3.5 Hardware Requirements ......................................................................................................... - 29 - 

4 User Interface Design and Implementation .................................................................................... - 30 - 

4.1 GUI overview ........................................................................................................................... - 30 - 

4.2 GUI Design ............................................................................................................................... - 31 - 

4.2.1 The use of cross-platform color ...................................................................................... - 31 - 

4.2.2 The design of application graphics .................................................................................. - 32 - 

4.2.3 The use of graphics for product identity. ........................................................................ - 32 - 

4.3 Ease-of-use Design .................................................................................................................. - 32 - 

5 Design of test .................................................................................................................................. - 33 - 

5.1 Use Cases will be tested .......................................................................................................... - 33 - 

5.2 Unit Testing test cases ............................................................................................................ - 37 - 

5.3 Test Coverage .......................................................................................................................... - 39 - 

5.4 Integration Test Strategy ........................................................................................................ - 40 - 

6 Management and Plan of Work ...................................................................................................... - 41 - 

6.1 Problems and Progress Report ............................................................................................... - 41 - 

6.2 Plan of Work............................................................................................................................ - 41 - 

6.3 Breakdown of Responsibilities ................................................................................................ - 41 - 

Reference ................................................................................................................................................ - 43 - 

 

 

  



Software Engineering 2012 

- 3 - 
 

Contribution Breakdown 
 

 
Bingbing Xu Chao Han Junwei Zhao Xueyuan Song Total 

Section 1 
Interaction 
Diagrams 20 20 40 20 

100 

Section 2 
Classes + Specs  100   

100 

Section 3 
Sys Arch& 

Design 10  60 30 

100 

Section 4 
User Interface 50   50 

100 

Section 5 
Testing Design   100  

100 

Section 6 
Project 

management  100   

100 

Reference 25 25 25 25 100 
Team 

Management 25 25 25 25 
100 

 

  



Software Engineering 2012 

- 4 - 
 

1. Interaction Diagrams 
1.1 ID1 SwitchON 

In use case UC-1: SwitchOn, according to Expert Doer design principle, Interface should send 
TurnOnRequest and receive the state of switch sent by StudentOperationController. After that, 
it sends LigntOn and MeterRead to IndicateLamp and Meter, respectively, in order to make the 
device start to work.  

Therefore, responsibility R1 for sending turn on request should be assigned to Interface. The 
object Interface must know the state of switch when responding, according to Expert Doer 
principle, the Interface should be assigned responsibility R2 responding results with 
IndicateLamp and R3 MeterRead. Moreover, R4 which is updating power state should be 
assigned to StudentOperationController, and R5 which is Archivedata should be assigned to 
DatabaseConnnection. Figure 1-1 is the interaction Diagram of Use Case SwithOn.  

 

1.2 ID2 AdjustBlank 
Interaction Diagram of AdjustBlank is shown in Figure 1-2. Responsibility R1 (SendResult: 
MeterRead) can be assigned to ResultCalculator. In addition, there are two feasible alternatives 
as following: 

1. ResultCalculator sends the result to Database 

Figure 1-1 ID1 SwitchOn 



Software Engineering 2012 

- 5 - 
 

2. Database then returns the result to Interface 

According to the High Cohesion principle, we assign this responsibility to ResultCalculator. 

 

1.3 ID3 AdjustZero 
Figure 1-3 is the interaction diagram of AdjustZero. In this case, responsibility R1 is assigned for 
sending the request to AdjustZero. The information request first is given to 
StudentOperationController, so by Expert Doer Principle, responsibility R1 should be assigned to 
the StudentOperationController. We assigned the responsibility R2 for updating the information 
of point in the database. According to Expert Doer Principle, the information first is given to 
Database connection, so the Database connection should be assigned for responsibility R2.  

Figure 1-2 ID2 AdjustBlank 



Software Engineering 2012 

- 6 - 
 

 

As for responsibility R3 (calculate and update the meter information), there are alternative 
options: 

1. Database Connection and Result Calculator, both can be the first to get hold of meter 
information. 

2. Data calculator can directly compare the meter information and send MeterRead request to 
the interface. 

The Database connection has the responsibility to update the information in database, and by 
High Cohesion principle, it favors assigning the responsibility R3 to the Database connection. 
This solution violates the Low Coupling Principle, because Database connection acquires 
relatively large number of associations. On the other hand, by Expert Doer Principle, it favors 
assigning responsibility R3 for Data Calculator. So we assign the responsibility R3 to Data 
calculator. 

Figure 1-3 ID3 AdjustZero 



Software Engineering 2012 

- 7 - 
 

At last, we define responsibility R4 for sending the result to interface. The result first is given to 
interface, so by Expert Doer Principle, the interface should be assigned responsibility R4. 

1.4 ID4 SelectWaveLength 
In the UC-4: SelectWavelength. In this case, as Figure 1-4 shows, responsibility R1 is assigned for 
sending the request to adjust wavelength. The information request first is given to 
StudentOperationController, so by Expert Doer Principle, the StudentOperation Controller 
should be assigned responsibility R1. The responsibility R2 is updating the wavelength status, 
and still by Expert Doer principle, the information is first given to DatabaseConnection. And by 
High Cohesion principle, it favors assigning the responsibility R2 to the Database connection. 
Responsibility R2 was assigned for DatabaseConnection. Then we define responsibility R3 for 
sending the result to interface. The result first is given to interface, so by Expert Doer Principle, 
the interface should be assigned responsibility R3. 

 

 

1.5 ID5 UpdateInfoBoard 
In the UC-5: UpdataInfoBoard. In this case, as Figure 1-5 shows,responsibility R1 is assigned for 
sending the request to update information board. By Expert Doer Principle, the request is first 
send to TeacherOperationController. By High Cohesion principle, the 
TeacherOperationController has the responsibility to update the information board. So both 

Figure 1-4 ID4 SelectWaveLength 



Software Engineering 2012 

- 8 - 
 

principles favor assigning responsibility R1 for TeacherOperationController. Then we assigned 
the responsibility R2 for updating the information board in the database. By Expert Doer 
Principle, the information first is given to Database connection, and by High Cohesion Principle, 
it favors assigning the responsibility R2 to the Database connection. So the Database connection 
should be assigned for responsibility R2. We define responsibility R3 for sending the result to 
interface. The result first is given to interface, so by Expert Doer Principle, the interface should 
be assigned responsibility R4. 

 

 

1.6 ID6 OpenLid 
In use case UC-6: OpenLid, assigning responsibilities R1 (get(query: LidTag)), R2(retrieve data), 
and R9(send back data) to StudentOperationController and DatabaseConnection, and Database 
is straightforward, as Figure 1-6 shows. ResultCalculator provides a data comparing and 
computing function. So after processing the data from Database, it will be assigned with 
responsibility R3 (send the decision). Then SudentOperationController will act its responsibility 
R4 (open the lid). These assignments all follow Expert Doer design principle. 

Figure 1-5 ID5 UpdateInfoBoard 



Software Engineering 2012 

- 9 - 
 

 

 

1.7 ID7 CloseLid 
The UC-7: CloseLid is very similar to UC-6. R1, R2, R3, and R4 are the same with UC-6.  After 
updating, the StudentOperationController will act responsibility R5 (open the lid). Figure 1-7 
shows the interaction diagram of it.  

Figure 1-6 ID6 OpenLid 



Software Engineering 2012 

- 10 - 
 

 

Figure 1-7 ID7 Interaction Diagram 

 

 

1.8 ID8 SelectTestTube 



Software Engineering 2012 

- 11 - 
 

When designing this interaction diagram (Figure 1-8),  we apply Expert Doer Principal to 
Interface object. Interface takes responsibility of accept user SelectTestTube request, send it to 
StudentOperationController, receive the result and display it on screen (TestTube) to student. 

 

Considering the low coupling and high cohesion principal, we derive two objects 
StudentOperationController and DatabaseConnection. StudentOperationController takes 
responsibility of respond to SelectTestTube request, reference DatabaseConnection calls for 
Database operations (here it is update), and reference ResultCalculator (not used in this 
diagram). At last, it generates a result and sends it back to Interface. 

Communication Responsibilities are shown in Table 1-1, as following 

Responsibility Description 
Send message to StudentOperationController to notify the operation type 
Send message to DatabaseConnection to require an update request. 
Send message to Interface to Deliver the result. 

Table 1-1 Communication Responsibilies of ID8 

1.9 ID9 InsertTestTube 
In this interaction diagram (Figure 1-9),  we also use Expert Doer Principal to Interface object. 
Interface takes responsibility of accept user Insert request, send it to 
StudentOperationController, receive the result and display it on screen (Meter) to student. 

Figure 1-8 ID8 SelectTestTube 



Software Engineering 2012 

- 12 - 
 

 

Figure 1-9 ID9 InsertTestTube 

Considering the low coupling and high cohesion principal, we derive three objects 
StudentOperationController, DatabaseConnection and ResultCalculator. 
StudentOperationController takes responsibility of respond to InsertTestTube request, 
reference DatabaseConnection call for Database operations (here it is update), and reference 
ResultCalculator, respectively. At last, it generates a result and sends it back to Interface. 
ResultCalculator will first of all use the HolderTag retrieved from Database to make a decision 
(pass or reject). If the Insert operation is valid (which means the HolderTag=empty), it will 
proceed to calculate and send back the result. At the same time StudentOperationController will 
reference DatabaseConnection to update the HolderTag in Database. 

Communication Responsibilities are shown in Table1-2 

Responsibility Description 
Send message to StudentOperationController to notify the operation type 
Send message to DatabaseConnection to query HolderTag. 
Send message to StudentOperationController to inform the operation decision.  
Send message to DatabaseConnection to require an update request. 
Send message to Interface to Deliver the result. 

Table 1-2 Communication Responsibility of ID9 



Software Engineering 2012 

- 13 - 
 

1.10 ID10 RemoveTestTube 
When designing this interaction diagram (Figure 1-10), we apply Expert Doer Principal to 
Interface object. Interface takes responsibility of accept user Remove request, send it to 
StudentOperationController, receive the result and display it on screen (Meter) to student. 

 

Considering the low coupling and high cohesion principal, we derive three objects 
StudentOperationController, DatabaseConnection and ResultCalculator. 
StudentOperationController takes responsibility of respond to RemoveTestTube request, 
reference DatabaseConnection call for Database operations (here it is update), and reference 
ResultCalculator. At last, it generates a result and sends it back to Interface. ResultCalculator will 
first of all use the HolderTag retrieved from Database to make a decision (pass or reject). If the 
Insert operation is valid (which means the HolderTag=full), it will proceed to send back the result. 
At the same time StudentOperationController will reference DatabaseConnection to update the 
HolderTag in Database. 

Communication Responsibilities are shown in Table 1-3 

Figure 1-10 ID10 RemvoveTestTube 



Software Engineering 2012 

- 14 - 
 

Responsibility Description 
Send message to StudentOperationController to notify the operation type 
Send message to DatabaseConnection to query HolderTag. 
Send message to StudentOperationController to inform the operation decision.  
Send message to DatabaseConnection to require an update request. 
Send message to Interface to Deliver the result. 

Table 1-3 Communication Responsibilities of ID 10 

 

1.11 ID11 SetSample 
Figure 1-11 is the interaction diagram that shows the how teachers set Sample’s value. Teachers 
send SetSample Requst() through interface.  After inputting SampleValue at 
TecherOpeartionController, the SampleValue is sent to the Database Connection, and then it is 
saved in database. At the same time, TeacherOperationController send a SetSuccess() message 
to Interface. 

 

Figure 1-11 ID11 SetSample 

1.12 ID12 Login 
Figure 1-12 shows how the system authorize users’ login.  The user send LoginRequst() in the 
interface, then the interface send the LoginRequst() to the database. In the database, there is a 
list which stores information of all user. By camparing with the information sent by interface, 
the database gives appvoral or rejection to the users’ request.  



Software Engineering 2012 

- 15 - 
 

 

 

 
 

  

Figure 1-12 ID12 Login 



Software Engineering 2012 

- 16 - 
 

2 Class Diagram and Interface Specification 
2.1 Class Diagram 

The following diagrams are class diagrams of this software.  

Figure 2-1 shows the login mechanism, and classes related to enter teachers’ and students’ 
interface.  

Figure 2-1 class diagram #1 

Figure 2-2 shows the major components of spectrophotometer, which contain all classes of 
operations, and the relationship of all objects of the spectrophotometer.  



Software Engineering 2012 

- 17 - 
 

 

Figure 2-2 class diagram #2 

Figure 2-3 is the internal structure of spectrophotometer. It includes the part that store states of 
components. And by using these states, the software can compute the result of the experiment.  



Software Engineering 2012 

- 18 - 
 

 

Figure 2-3 class diagram #3 

2.2 Data Types and Operation Signatures 

2.2.1 Account 
An Account class (as Figure 2-1 shows) contains three parts, an ID, a password and an 
accountType. Because all attributes are private, the operations of this class are all Getters and 
Setters which are used to get and modify these attributes, respectively.  

Class 
Name: Account   

Attributes: 
-ID: string Account ID 
-password: string password related to Account ID 
-accountType: int types of account 

Operations: 

+getID():string 

Getters and Setters 

+setID(ID): void 
+getPassword():string 
+setPassword(Password: string)void 
+getAccountType():int 
+setAccountType(accountType: 
int):void 



Software Engineering 2012 

- 19 - 
 

2.2.2 Login 
This class (as Figure 2-1 shows) is used for login.   

Class Name: Login   

Attributes: 
#numOfAttempts: int Number of login Attempts 
#maxNumOfAttempts:int the max number of login Attempts 

Operations: 
+enterAccount(ac: Account) input ID, password and select account type  
-denyMoreAttempts() system refuses account that reaches max attempts to login 

2.2.3 AccountStorage 
This class (as Figure 2-1 shows) is used to authorize account. It returns the next Account in the 
List of Account.  

Class Name: AccountStorage   

Attributes:     

Operations: +getNext(): Account move to the next Account and return it 

2.2.4 AccountChecker 
It is the class (as Figure 2-1 shows) that checks for the account validity. The mechanism of 
authorization is compare the Account input by user with each Account stored in the List. If there 
is an Account exists in the AccountStorage, it returns 1, otherwise, it returns 0.  

Class Name:  AccountChecker   

Attributes:     

Operations: 
+checkAccount(ac:Account):boolean check the format of the Account input 

+compareAcccount(ac:Account,sac:Account):boolean compare the Account user input with 
Account got from AccountStorage 

2.2.5 TeacherOperationController 
This class (as Figure 2-1 shows) is designed teachers who can modify some value and 
information of the system.  

Class Name: TeacherOperationController   

Attributes: 
-sampleValue: double The sample's concentration value 

-infoBoard:string information that will be posted on the 
infoBoard 

Operations: 

+getSampleValue():double 

Getter and Setter 
+setSampleValue(sampleValue:double):void 
+getInfoBoard():string 
+setInfoBoard(infoBoard:string):void 



Software Engineering 2012 

- 20 - 
 

2.2.6 LabObject 
This is an abstract base class for all parts of the spectrophotometer (shown as Figure 2-2). This is 
a graphical figure base class that can be manipulated by mouse pointer. The manipulations 
include click and drag. A dragging manipulation is converted into an affine transformation that 
will be applied to the corresponding figure. 

Class Name: LabObject  
Attributes: # transform : AffineTransform Represents the current affine 

transformation of the object, relative 
to its non-transformed prototype. 

# stateListeners : HashSet Listener objects interested in state 
changes of this lab object. 

Operations: + transform(at : AffineTransform) Applies an affine transformation to 
this object. 

+ addStateListener(sl : StateListener) Adds the listener sl to the list of 
listeners. 

+ removeStateListener(sl : StateListener) Removes the listener sl. 
# fireMeasureEvent( ) Calls the method measure() on all 

listener objects. 
All objects are in a non-transformed prototype, which means zero translation, zero rotation, and 
scale is 1 for both x and y dimension (i.e., resized to 100%). To change the object’s translation, 
rotation, or scale (resizing), just call the method transform() with the appropriate 
transformation parameter. 

protected transient HashSet stateListeners; 

protected void fireMeasureEvent()  

{ 

 HashSet listeners = (HashSet) stateListeners_.clone(); 

 for (Iterator i = listeners.iterator(); i.hasNext(); ) { 

  ((StateListener)i.next()).measure(); 

 } 

} 

2.2.7 PowerSwitch 
Extends LabObject 

This object is on/off switch (shown as Figure 2-2). It turns on or off the IndicateLamp when the 
spectrophotometer is turned on or off (see section 2.2.8). When the switch is “OFF”, the device 
cannot work, which means that the indicateLamp is off, and, in any case, the needle on the 
meter cannot move.   



Software Engineering 2012 

- 21 - 
 

Class Name: PowerSwitch  
Attributes:   
Operations: on mouse click When mouse pointer is clicked on this object, 

this method calls 
fireFlipSwitchEvent(). 

# fireFlipSwitchEvent( ) Calls the method flipSwitch() on all 
listener objects. 

The list of listeners used in the method fireFlipSwitchEvent() is inherited from the 
base LabObject. 

2.2.8 IndicateLamp 
Extends LabObject, shown as Figure 2-2. 

The indicateLamp (also known as ON/OFF indicator) indicates when the spectrophotometer 
instrument is turned on (using the on/off switch). It is a part of the absorbance meter. The light 
is shown as a green oval in the upper right corner of the absorbance meter scale. 

Class Name: indicateLamp  
Attributes:   
Operations: + setOn( ) Turns the green light ON or OFF. 

2.2.9 Dial 
Extends LabObject, shown as Figure 2-2. 

There are two dial knobs on the front side of spectrophotometer: 

(a) The zero-control dial (also known as “AdjustZero”).  
(b) The light control dial (also known as “AdjustBlank”). 
 

Class Name: Dial  
Attributes: # minAngle : float 

# maxAngle : float 
Dial's minimum rotation angle. 
Dial's maximum rotation angle. 

Operations: + transform(at : AffineTransform) Applies a rotation transformation. 
 

A knob is shown graphically as a figure consisting of a circle and a line, which represent the knob 
and the reference mark. 

The operation transform() allows the user to rotate the knob and set it in the desired 
position. This operation first calls the operation transform() on LabObject (its superclass), 
and then it informs all the listeners that a measurement should be performed for the new 
position of the dial. The operation fireMeasureEvent() is described in Section  2.2.6. 

The code transform(at : AffineTransform): 

 



Software Engineering 2012 

- 22 - 
 

{ 

    super.transform(at); 

    fireMeasureEvent(); 

} 

Behavior "measuring" performs the calculations based on the solution's density and the light 
wavelength and calls the transform() method on the instrument needle (described in 
Section 2.2.12) to display the wavelength. It also turns on or off the pilot lamp when the 
spectrophotometer is turned on or off. The knob "turning" behavior causes the "measuring" 
behavior to redo the measurement when a dial is rotated. Similarly, the lid "opening" behavior 
causes the "measuring" behavior to redo the measurement when the sample holder’s lid is 
opened or closed (described in Section  2.2.13). 

2.2.10 TestTube 
Extends LabObject 

It has an attribute named SampleValue (shown as Figure 2-2), which can be modified by teacher 
in teachers interface.  

Class Name: TestTube   

Attributes: -SampleValue:double Concentration of the sample in the test tube 

Operations: 
+getSampleValue():double 

Getter and Setter +setSampleValue(SampleValue: 
double):void 

 

2.2.11 WaveDial 
Extends LabObject 

This object (shown as Figure 2-2) is the wavelength control dial for setting the color of the 
illumination light. Because this object is normally seen in a side projection but the main view is 
from the top, there will also be a magnified view of the wavelength dial (shown as top view). 

Class Name: WaveDial  
Attributes: # minAngle : float 

# maxAngle : float 
Dial's minimum rotation angle. 
Dial's maximum rotation angle. 

Operations:   

2.2.12 Needle 
Extends LabObject 

This class is the object that displays result in term of spinning the needle by calculation, shown 
as Figure 2-2.  



Software Engineering 2012 

- 23 - 
 

Class Name: Needle   

Attributes: 
-minAngle:float shows the smallest value on the meter 
-maxAngle:float shows the largest value on the meter 

Operations: +transform(at: AffineTransform) spin the needle 

2.2.13 Lid 
Extends LabObject 

The Lid has two states open and close. The state is highly related to the correctness of result. 
When the lid is open, measuring the concentration will cause the incorrectness because some 
day light may leak in to the sample holder.  The states of the lid are changed between open and 
close by clicking the lid.  

Class Name: Lid   

Attributes: -LidState: boolean the lid is open or close 

Operations: 
+getLidState():boolean 

Getter and Setter 
+setLidState(LidState: boolean):void 

 

2.2.14 SampleHolder 
Extends LabObject 

This object is the sample holder for the test tube. It is a hole where the test tube is inserted for 
measuring the light absorbed by the substance contained in the test tube. There is also a lid on 
top of the sample holder (See Section 2.2.13). Several facts should be observed: 

• The sample holder can be either empty or hold one test tube 
• The holder’s lid can be open (lifted) or closed 
• The test tube cannot be inserted or removed when the lid is closed 
• The measurement should not be correct while the lid is open, because the external light 

will interfere with the measurement light that illuminates the test tube. 
Class Name: SampleHolder   

Attributes: -HolderState:boolean the states of the sample holder, open or close 

Operations:     
 

2.2.15 SpectroState 
The following events can be identified for user interaction with the spectrophotometer: 

1. Flip the power switch ON or OFF  
Event: “flipSwitch” 

2. Flip the lid of the sample holder OPEN or COSED  
Event: “flipLid” 

3. Rotate the dial knob 



Software Engineering 2012 

- 24 - 
 

Event “measure” 
4. INSERT or REMOVE the test tube to/from the sample holder 

Events: “setTestTube” and “removeTestTube” 
 

There are three state variables that define the spectrophotometer state: 

1. Power switch value: ON or OFF 
2. Sample holder’s lid value: OPEN or CLOSED 
3. Sample holder’s occupancy value: OCCUPIED or EMPTY 
 

Based on these state variables, we define the following states (Table 2-1) of the 
spectrophotometer: 

State Name State Variable Values Java Class 

OnEmptyClosed {Switch=ON, Sample-holder=EMPTY, 
Lid=CLOSED} OnEmptyClosed.java 

OnEmptyOpen {Switch=ON, Sample-holder=EMPTY, 
Lid=OPEN} OnEmptyOpen.java 

OffOccupiedClosed {Switch=OFF, Sample-holder=OCCUPIED, 
Lid=CLOSED} OffOccupiedClosed.java 

OffOccupiedOpen {Switch=OFF, Sample-holder=OCCUPIED, 
Lid=OPEN} OffOccupiedOpen.java 

OffEmptyClosed {Switch=OFF, Sample-holder=EMPTY, 
Lid=CLOSED} OffEmptyClosed.java 

OffEmptyOpen {Switch=OFF, Sample-holder=EMPTY, 
Lid=OPEN} OffEmptyOpen.java 

OnOccupiedClosed {Switch=ON, Sample-holder=OCCUPIED, 
Lid=CLOSED} OnOccupiedClosed.java 

OnOccupiedOpen {Switch=ON, Sample-holder=OCCUPIED, 
Lid=OPEN} OnOccupiedOpen.java 

Table 2-1 States of Spectrophotometer 

 

Class Name: SpectroState  
Attributes: m_spectro : SpectroPhotometer 

number: double 
 
The number shown by default is 5.67 

Operations: + measure( ) : double 
+ flipSwitch( ) // abstract 
+ flipLid( ) // abstract 
+ setTestTube( ) // abstract 
+ removeTestTube( ) // abstract 
# setState(state : SpectroState) 

Returns the current value of "number". 
 
 
 
 
 

Note: this is an abstract class. Any specific state has a class that extends the SpectroState in 
order to get the result.  



Software Engineering 2012 

- 25 - 
 

protected  void setState (SpectroState state) 

{ 

 m_spectro.setState(state); 

 m_spectro.measure(); 

} 

 

2.3 Traceability Matrix 
 

 

  



Software Engineering 2012 

- 26 - 
 

3 System Architecture and System Design 
3.1 Architectural Styles  

The main components in our application are the interface and the data processing part. The 
interface is designed for displaying a virtual Spectrophotometer, providing all the operation dials 
and returning results of the experiment. While the data processing part is responsible for the 
user’s commands and running the right subsystem model. The architectural styles of our 
application use service-oriented architectures. Figure 3-1 gives the detailed illustration. 

 

Figure 3-1 Service-Oriented Architectural Styles of Virtual Spectrophotometer 



Software Engineering 2012 

- 27 - 
 

3.2 Identifying Subsystems 

 

Figure 3-2 Subsystems 

Figure 3-1 shows the subsystems in our project. They are StudentOperation, Databse and 
TeacherOperation. 

The first subsystem is StudentOperation Subysystem. It presents a real spectrum like interface 
to students. Aiming at make student become more familiar with spectrum, this subsystem 
allows students have operations like switch on, adjust to blank, insert test tube and so on. As for 
its purpose, it is not a linear process system. It allows students make mistakes which will result 
in inaccurate result of test sample. 

The second subsystem is named Database. As its name, its main function is to maintain the data 
interaction between interface and database. When students behave like (open/close lid, 
insert/remove test tube), the information (lid status tag, tube status tag and so on) will be 
updated in database via this subsystem. Furthermore, this subsystem deliver teacher updated 
information (like information board and sample value) as well. 

The third subsystem is TeacherOpeartion. It allows teacher to update information board which 
displays tips for students. Also teacher can set up sample value in this subsystem, so that they 
can see whether student can use this virtual device in a correct way. 

3.3 Mapping Subsystems to Hardware 
Our system need to store data into database in order to ensure the normal interaction between 
users and interface. The database can be divided into two parts which are login database, 
experiment database. 

Login database provide a way to valid the username and password of both student and teacher, 
and update the system status which decide next interface will be students or teachers interface. 



Software Engineering 2012 

- 28 - 
 

When students log into the students interface, they will see our virtual device and do the 
experiment steps. Then these steps will generate a corresponding data, after that these data will 
be sent to the experiment database and update the database value. DataCalculator will get this 
data from experiment database. By comparing the data table, the DataCalculator will find the 
final result which was influence by sequence of operation. As a teacher, when he login our 
system, he will see the administration interface. On this interface he can change the value of our 
test tube meanwhile he can update the database immediately. 

We choose flat (table) model as our database model. The flat (or table) model consists of a 
single, two-dimensional array of data elements, where all members of a given column are 
assumed to be similar values, and all members of a row are assumed to be related to one 
another. In our login database Columns are for account type, ID and password (shown as table 
3-1). Each row would have the specific password associated with an individual user. Columns of 
the table often have a type associated with them, defining them as character data, date or time 
information, integers, or floating point numbers.  

 Account type ID password 
1 00001 aaaa 
1 00002 aaaa 

…… …… …… 
2 147001234 abcd 
2 147003456 Abcd1234 

Table 3-1 account 

In database for experiment columns represent for adjustZero, adjustWavelength, adjustBlank, 
lipStatus and tubeValue.  Each row will have the specific value associated with different 
operation. Table 3-2 illustrates data model.  

  adjustZero adjustWavelength adjustBlank lipStatus tubeValue 
147001234 1 380 1 1 580 
147007864 0 450 1 1 390 
147004532 1 350 0 0 750 

…… …… …… …… …… …… 
Table 3-2 Datebase  structure 

3.4 Persistent Data Storage  
We design our system as an event-driven system that user can do whatever they want in the 
real lab. Each event will change the associated value in the database as we mentioned before. In 
real lab, the sequence of operations has great influence on experiment result. Identifying these 
different sequences and responding reasonable results are big issues when considering the 
execution orders. Each event may change the value in database. However, the value will be not 
only depended on the kind of event, but also on the sequence of the event. For instance, when 
you first adjusting zero then selecting the tube and first selecting the tube then adjusting zero, 

http://en.wikipedia.org/wiki/Flat_file_database
http://en.wikipedia.org/wiki/Data


Software Engineering 2012 

- 29 - 
 

both methods can generate the value updating in database. But the value is totally different, 
because the second sequence will lead to a correct result and the first sequence will not.   

3.5 Hardware Requirements  
Since this is a small application developed by using Java, a computer that supports JRE can run 
this application. On the official website of Java, we found requirement of java are described as 
“Intel and 100% compatible processors are supported. A Pentium 166MHz or faster processor 
with at least 64MB of physical RAM is recommended. You will also need a minimum of 98MB of 
free disk space”. Therefore, we take this as the Hardware Requirements for this application. 

 

 

  



Software Engineering 2012 

- 30 - 
 

4 User Interface Design and Implementation 
 

4.1 GUI overview 
As we mentioned before, three interfaces compose our virtual device, and they are login 
interface, and student interface and teacher interface.   

 

Figure 4-1 loginGUI 

The login interface consists three parts as it is showed in the figure1.1.  The first part is the 
blanks of the username and password as it is usually be. Account selection and two buttons are 
the second part and last part. We design the login interface as simple as it could be in order to 
reduce the user effort. In the second demo we will add background on the interface and make it 
more beautiful. 

 

Figure 4-2 TecherGUI 



Software Engineering 2012 

- 31 - 
 

When entering the teacher interface, you will see the teacher interface. This interface is used for 
updating the information board and setting the test value.  Compared with the teacher interface 
we designed before, the new one changes the distribution of blanks and make it more friendly and 
accessible.  We change the button ‘reset’ with the button cancel. Because by pressing backspace 
you can easily delete the word you just typed in. This allows you to retype in a word instead of 
deleting a sentence. 

 

Figure 4-3 TeacherGUI 

Student interface design is the most difficulty and importance among the three interfaces. 
According to our design principle, we will design our virtual machine as students see in the real lab. 
Unfortunately, in the first demo, we change the meter with a screen and the tube area with a 
scroll pane because of the time limits. We has realize the first step that trying to realize what 
students do in the real lab, and next we will focus on realizing what students see in the real lab. 
These will include the knob animation and the meter design.  We haven’t reduced the user effort, 
since we design our user effort according to what they do in the real lab. 

4.2 GUI Design 

4.2.1 The use of cross-platform color 
The number of colors on our system should be considered before GUI design: 8 bits (256 colors), 
16 bits (thousands of colors); and 24 bits (millions of colors). There might be dithering each time 
our java application is run. In order to get the best results, we will optimize our graphics on 
platforms as many as possible. 



Software Engineering 2012 

- 32 - 
 

 

4.2.2  The design of application graphics 
As for graphic file format choosing, we chose PNG (Portable Network Graphic) format. 
Compared with GIF format, PNG gives a much wider range of transparency options and color 
depths and it is usually used in java programs. 

Application graphics that we design fall into three broad categories: Icons, Button graphics and 
Symbols. In icons design, there are several principles: a) Icons should be designed to identify 
clearly the object or concepts they represent; b) Make sure that large and small icons have 
similar shape, color, and detail if they represent the same object; c)Specify tool tips for each 
icon. In button graphics design, there are two principles: a) Use tool tips to help clarify meaning 
of toolbar buttons; b) Clearly show the action, state, or mode that the button initiates. Symbols 
include any graphic that stands for a state or a concept. In our application, they appear in alert 
box, question box, etc. Another important factor is all the graphics should use the same design 
style.  

Some application graphics are not shown in our first demo, which will be shown in second demo. 

4.2.3 The use of graphics for product identity. 
The graphics for product identity include visual identifier of our application, product logo, 
information box about the application, etc. We haven’t done this work until now but we will 
design these graphics after finishing all the functions of the application. 

 

4.3 Ease-of-use Design 
As we mention before, we will design our virtual device as they do in the real lab. That’s also the 
principle when we considering the user effort. On the login interface, we design this interface as 
it is common being. We make the teacher’s inter face easier to understand and operate, and as 
a teacher, you can just type in the information on the corresponding place. We change the 
button ‘reset’ with the button ‘cancel’ for the reason the reset function can be realized by 
pressing backspace on the keyboard. In the student’s interface also called device interface, we 
design our user effort strongly in accord with operation steps which will help students be 
familiar with the real operation. The only user effort we add is the button ‘update’, we still 
design this button on the screen because by clicking this button, we will ensure students will see 
and pay attention to the information board. 

 

  



Software Engineering 2012 

- 33 - 
 

5 Design of test 
5.1 Use Cases will be tested 
Test-case Identifier: TC-1a 
Use-case Tested: UC-1 SwitchOn , main 
success scenario 
Complete/Fail Criteria: Everything works 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step2 
Turn on the switch 

 
System display student interface 
 
 
Everything (zero adjust knob, blank adjust 
knob, wavelength select knob)on virtual 
spectrophotometer works 

 

Test-case Identifier: TC-1b 
Use-case Tested: UC-1 SwitchOn , main fail 
scenario 
Complete/Fail Criteria: Everything does not 
work 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step2 
With the switch not be turned on 

 
System display student interface 
 
 
Everything (zero adjust knob, blank adjust 
knob, wavelength select knob)on virtual 
spectrophotometer does not work 

 

Test-case Identifier:TC-2 
Use-case Tested:UC-2 Adjust Blank, main 
success scenario 
Complete/Fail Criteria: The meter display 
the largest scale 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step2 
Turn on the switch 
 
Step3 
Click lid 

 
System display student interface 
 
 
Machine starts work 
 
 
Lid opened 



Software Engineering 2012 

- 34 - 
 

 
Step4 
Insert blank tube (0) into sample holder 
 
Step5 
Rotate blank adjust knob 

 
 
Tube inserted 
 
 
The meter display the largest scale 

 

Test-case Identifier: TC-3 
Use-case Tested:UC-3 AdjustZero, main 
success scenario 
Complete/Fail Criteria: The meter display 
the smallest scale 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step2 
Turn on the switch 
 
Step5 
Rotate zero adjust knob 

 
System display student interface 
 
 
Machine starts work 
 
 
The meter display the smallest scale 

 

Test-case Identifier:TC-4 
Use-case Tested: UC-4 SelectWavelength, 
main success scenario 
Complete/Fail Criteria: Meter displays 
corresponding selected wavelength 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step2 
Turn on the switch 
 
Step3 
Rotate the wavelength select knob 

 
System display student interface 
 
 
Machine starts work 
 
 
Meter displays corresponding selected 
wavelength 

 

 

Test-case Identifier:TC-5 
Use-case Tested: UC-5 UpdateInfoBoard 
main success scenario 
Complete/Fail Criteria: get the newest 
information 

 



Software Engineering 2012 

- 35 - 
 

Input Data: Information stored in system 
Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step 2 
Click update button on the right top of the 
screen 

 
System display student interface 
 
 
The text field will display latest information 

 

Test-case Identifier: TC-6 
Use-case Tested: UC-6, Open lid main 
success scenario 
Complete/Fail Criteria: The lid is opened 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step 2 
Click the lid of sample holder 

 
System display student interface 
 
 
The lid is opened 

 

Test-case Identifier: TC-7-a 
Use-case Tested: UC-9 Insert test tube, main 
success scenario 
Complete/Fail Criteria: test tube be inserted 
successfully 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 
 
Step 2 
Click the lid of sample holder 
 
Step 3 
Choice the number of test tube, and click on 
OK button 

 
System display student interface 
 
 
The lid is opened 
 
 
The test tube is inserted into the sample 
holder 

 

Test-case Identifier: TC-7-b 
Use-case Tested: UC-9 Insert test tube, main 
fail scenario 
Complete/Fail Criteria: test tube can not be 
inserted 

 

Test Procedure Expected Result 
Step 1 
Select student check box and login 

 
System display student interface 



Software Engineering 2012 

- 36 - 
 

 
Step 2 
Choice the number of test tube, and click on 
OK button 

 
 
The test tube can not be inserted into the 
sample holder. 

 

Test-case Identifier: TC-7-a 
Use-case Tested: UC-13 Login, main success 
scenario 
 
Complete/Fail Criteria: log into the system 
Input Data: valid user name and password 

 

Test Procedure Expected Result 
Step1 
Type in the user name and password and 
select corresponding check box 

 
Log into the system successfully. 

 

Test-case Identifier: TC-7-b 
Use-case Tested: UC-13 Login, main failure 
scenario 
Complete/Fail Criteria: login failed 
Input Data: invalid user name and password 
Valid user name and password/wrong type 

 

Test Procedure Expected Result 
Step1 
Type in the invalid user name and password 
and select corresponding check box 
 
Step2 
Type in the valid user name and password 
but choice the wrong checkbox (if it is a 
student account choose the teacher 
checkbox). 

 
Login failed. 
 
 
 
Login failed 

 

Test-case Identifier: TC-8 
Use-case Tested: UC-12 SetSampleValue, 
main success scenario 
Complete/Fail Criteria: The value stored in 
system is updated by teacher 
Input Data: Sample Value 

 

Test Procedure Expected Result 
Step 1 
Select teacher check box and login 
Step 2 
Type in the sample value in corresponding 
field 

 
Teacher login success. 
 
The sample value stored in system is 
updated. 



Software Engineering 2012 

- 37 - 
 

 

Test-case Identifier: TC-9 
Use-case Tested: UC-11 SetInfoBoard 
Complete/Fail Criteria: The InfoBoard is 
updated 
Input Data: board information 

 

Test Procedure Expected Result 
Step 1 
Select teacher check box and login 
 
Step 2 
Type in the information in corresponding 
field 

 
Teacher login success. 
 
 
The infoboard information stored in system 
is updated. 

 

5.2 Unit Testing test cases 
In this section, 3 important objects will be tested. 

StudentGUI 

Input Action Result 

Valid student username and password Login Login Success 

Invalid student username and 

password 

Login Login Fail 

 

TeacherGUI 

Input Action Result 

Valid teacher username and password Login Login Success 

Invalid acher username and password Login Login Fail 
 

Select TestTube 

Input Action Result 

click on test tube#1 select select value=1 

click on test tube#2 select select value=2 

click on test tube#3 select select value=3 

click on test tube#4 select select value=4 

click on test tube#5 select select value=5 

click on test tube#6 select select value=6 

click on test tube#7 select select value=7 

click on test tube#8 select select value=8 



Software Engineering 2012 

- 38 - 
 

 

Insert TestTube 

Input Action Result 

lid = open insert test 

tube 

Insert Success 

lid = closed insert test 

tube 

Insert Fail 

 

Blank Adjust 

Input Action Result 

switch=off rotate blank 

adjust knob 

meter displays 

nothing 

switch=on holder = 0 tube rotate blank 

adjust knob 

meter displays 

largest scale 

switch=on holder = 

{ 1,2,3,4,5,6,7,8 tube} 

rotate blank 

adjust knob 

system runs 

inaccurateresul

t() 
 

Zero Adjust 

Input Action Result 

switch=on rotate zero 

adjust knob 

meter displays 

smallest scale 

switch=off rotate zero 

adjust knob 

meter displays 

nothing 
 

Wavelength Select 

Input Action Result 

switch=on rotate 

wavelength 

knob 

meter displays 

the selected 

wavelength 

switch=off rotate 

wavelength 

knob 

meter displays 

nothing 

 

 



Software Engineering 2012 

- 39 - 
 

 

5.3 Test Coverage 
These 9 .java files listed below will be covered. They possess about 85% of our whole project. 

 

Unit 1  Login in test 

In this unit, a Login program is used to test the login in function. In this program, user could 
choose to login in as student or teacher. The user need to input ID and password which are 
stored in the database. If the ID and password are not match with the database, the user cannot 
login in. When the ID, password and teacher/student are all right, it will display “Teacher login in” 
or “Student login in”, otherwise it will display ”invalid ID or password”. 

Unit 2  Adjust Zero 

In this unit, a adjustZero program is used to test the adjust zero function. When running this 
program, the user could set the initial value with zero. 

Unit 3  Select Wavalength 

In this unit, a selectWave program is used to test selectwavelength function. User could set the 
wanted wavelength. 

Unit 4  Adjust Blank 

In this unit, a adjust blank program is used to test adjust blank function. User could set blank 
state with the given sample solution. 

Unit 5  Open/Close Lid 

User could open or close the lid by clicking the cover with mouse in this unit. And the program 
could return a state of the lid. 

Unit 6  Change Sample Value 



Software Engineering 2012 

- 40 - 
 

User could set the sample solution with different values. And these values will be saved by 
clicking ‘’save’’ button. 

Unit 7  Update Information board 

User can input text in the text box. And by clicking save button, the information can be updated. 

5.4 Integration Test Strategy 
Our integration test will apply top-down integration path. As our project is a interactive system 
between human and system, every operation will result in different results. It is very common to 
a class call another class. Therefore the whole programing logic in our project is very crucial. 
Therefore, by implementing top-down integration test path, we could find faults easier than to 
separate them into small pieces.  

 

Figure 5-1 Interaction 

 
  

Virtural 
Spectrophotometer 

Student Interface 

SwitchOn ZeroAdjust SelectWavelength Openlid 

SelectTube InsertTube 

BlankAdjust 

Login Teacher Interface 

SetInfoBoard SetSampleValue 



Software Engineering 2012 

- 41 - 
 

6 Management and Plan of Work 
6.1 Problems and Progress Report 

Our project has three parts, LoginGUI, TeacherGUI, and StudentGUI(main part). Our group is 
divided into two subgroups, one is responsible for coding and the other is responsible for 
debugging and testing. The first two parts has been finished. Users, teacher and student, can log 
in their system, respectively, by inputting correct ID, password and account type, which is saved 
in the AccountStorage file. Teacher can change the information board and save it in a file named 
infoboard.txt. Student can see what teacher input after they enter their GUI. Also teacher can 
change the values of samples in the tubes. We are now concentrated on implementing the main 
part of our project, student GUI. By now, our Demo1 has been finished. We meet some 
problems, and we are trying our best to fix it. Since our project is based on a previous unfinished 
work, we have a part of source code of this program. However, we find that some source file is 
missing. For some classes, we only have .class file but not .java file, which makes us hard to 
continue to work. We are now facing dilemma that using plug-in to decompile the original file 
and re-write it, or design a new framework by ourselves.  

6.2 Plan of Work 
The next step of our work is to complete StudentGUI. Firstly, we are planning to divide our 
group into two directions, one is to study on the previous works and figure out solution of the 
problems mentioned above, and the other one is to do some research in order to make our 
Virtual Device works as a real one. Secondly, we will keep doing programming and testing work. 
We will try our best to implement all functions of Demo 2 before Dec. 7. We will collect all 
documents related to this project and finish the third report by Dec. 12 (as figure 5-1 shows). 

 

Figure 6-1 Plan of work 

6.3 Breakdown of Responsibilities 
There are four team members in our team. Their responsibilities is shown as following.  

Bingbing Xu : scientific research, testing code and debugging.  

Chao Han: Programming (Interaction) and Integration. 



Software Engineering 2012 

- 42 - 
 

Junwei Zhao: Programming(Animation) and Testing.  

Xueyuan Song: Programming (GUI).  

 

 

 

  



Software Engineering 2012 

- 43 - 
 

Reference 
[1] Marsic, Ivan. Software Engineering, Sep. 10, 2012. 
URL:http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf 

[2] Rajaram Subramanian and Ivan Marsic, ViBE: Virtual Biology Experiments 

[3] UML Sequence Diagram Tutorial. http://www.sequencediagrameditor.com/uml/sequence-
diagram.htm 

[4] UML Sequence Diagrams: Guidelines. http://msdn.microsoft.com/en-us/library/dd409389.aspx 

[5] Russ Miles and Kim Hamilton Learning UML 2.0  

[6] Java look and feel design guidelinesURL: http://www.oracle.com/technetwork/java/index-
136139.html 

[7] User interface design URL: http://en.wikipedia.org/wiki/User_interface_design 
[8]Java Testing and DesignURL: http://pttdownloads.s3.amazonaws.com/JavaTestAndDesign_Cohe
n.pdf 
[9]Usability URL: http://en.wikipedia.org/wiki/Usability 

 

 

http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://www.sequencediagrameditor.com/uml/sequence-diagram.htm
http://www.sequencediagrameditor.com/uml/sequence-diagram.htm
http://msdn.microsoft.com/en-us/library/dd409389.aspx

	Contribution Breakdown
	1. Interaction Diagrams
	1.1 ID1 SwitchON
	1.2 ID2 AdjustBlank
	1.3 ID3 AdjustZero
	1.4 ID4 SelectWaveLength
	1.5 ID5 UpdateInfoBoard
	1.6 ID6 OpenLid
	1.7 ID7 CloseLid
	1.8 ID8 SelectTestTube
	1.9 ID9 InsertTestTube
	1.10 ID10 RemoveTestTube
	1.11 ID11 SetSample
	1.12 ID12 Login

	2 Class Diagram and Interface Specification
	2.1 Class Diagram
	2.2 Data Types and Operation Signatures
	2.2.1 Account
	2.2.2 Login
	2.2.3 AccountStorage
	2.2.4 AccountChecker
	2.2.5 TeacherOperationController
	2.2.6 LabObject
	2.2.7 PowerSwitch
	2.2.8 IndicateLamp
	2.2.9 Dial
	2.2.10 TestTube
	2.2.11 WaveDial
	2.2.12 Needle
	2.2.13 Lid
	2.2.14 SampleHolder
	2.2.15 SpectroState

	2.3 Traceability Matrix

	3 System Architecture and System Design
	3.1 Architectural Styles
	3.2 Identifying Subsystems
	3.3 Mapping Subsystems to Hardware
	3.4 Persistent Data Storage
	3.5 Hardware Requirements
	3.6

	4 User Interface Design and Implementation
	4.1 GUI overview
	4.2 GUI Design
	4.2.1 The use of cross-platform color
	4.2.2  The design of application graphics
	4.2.3 The use of graphics for product identity.

	4.3 Ease-of-use Design

	5 Design of test
	5.1 Use Cases will be tested
	5.2 Unit Testing test cases
	5.3 Test Coverage
	5.4 Integration Test Strategy

	6 Management and Plan of Work
	6.1 Problems and Progress Report
	6.2 Plan of Work
	6.3 Breakdown of Responsibilities

	Reference

