Table of Contents

Notes………………………………………………………………………………………1

Summary of Changes……………………………………………………………………2-3

Customer Statement of Requirements…………………………………………..………4-7

Glossary of Terms…………………………………………………………………………8

Functional Requirements Specification…………………………………………….….9-14

Nonfunctional Requirements……………………………………………………...….15-17

Domain Analysis…………………………………………………………………..…18-22

Interaction Diagrams .…………………………………………………………..……23-37

Class Diagram and Interface Specification……………………………………..……38-44

System Architecture and System Design…………………………………………….45-47

Algorithms and Data Structures…………………………………………………...…48-49

User Interface Design and Implementation………………………………………..…50-53

History of Work & Current Status of Implementation……………………….………54-55

Conclusions and Future Work…………………………………………………..……56-57

References……………………………………………………………………………….58

Notes

IMPORTANT:

Note that in this report many of the phases in mitosis will be call by another name the following has a table with the mitosis phase and it’s possible names.

	Build the parent cell
	Step0a
	Frame0a

	Interphase
	Step0b
	Frame0b

	Prophase
	Step1
	Frame1

	Metaphase
	Step2
	Frame2

	Anaphase
	Step3
	Frame3

	Telophase
	Step4
	Frame4

Also note that student is also called user.

Summary of Changes

In this section we will prepare an overview of the changes made from the previous two reports. Essentially we will outline the sections provided for report 3 and then itemize any changes made. Mostly key changes will be described in detail whereas minor changes will be briefly annotated.

1. Cover Page and Individual Contributions Break

2. Table of Contents

3. Summary of Changes

4. Customer Statement of Requirements

a. We updated figure numbers that were incorrect and got rid of unclear figures

5. Glossary of Terms

6. Functional Requirements Specification

a. We updated the stakeholders to reflect all of them rather than just the main stakeholder.

b. Goals were made more specific and included updated stakeholders

c. Our use cases needed to be overhauled into the correct use case format with actor’s action with system’s reaction

d. Use cases reflect Flash format now being used

e. Included use case diagram which was not present in report 1

f. System sequence diagram was updated to reflect changes in use case and moved into correct section (opposed to report 1).

g. System sequence diagram also includes alternative scenarios

7. Nonfunctional Requirements

a. Clarification of functional portion of nonfunctional requirements (realism, etc.)

b. Usability part reflects usability described in book.

8. Domain Analysis

a. Revision to domain model to mirror changes made to use case.

b. Included system operation contracts (omitted from report 1).

c. Updated mathematical model – previous formula was incorrect so arc length was re-derived and new formula describes motion better

9. Interaction Diagrams

a. All interaction diagrams were updated with new functions and variables

b. Previous diagrams were designed using java interface whereas the new diagrams reflect the Flash interface (Actionscript language) that was adopted.

c. Main control ‘state machine’ was abandoned

d. Design patterns were added to interaction diagrams with description and justification

10. Class Diagram and Interface Specification

a. Class diagram updated to reflect new Flash implementation and Actionscript functions

b. Added Flash Event Models which act as event listeners – integral part of new design

c. Updated OCL contracts that use proper OCL format

11. System Architecture and System Design

a. Minor changes made reflecting change to Flash

12. Algorithms and Data Structures

a. Algorithm changed to represent new bending (arc length) formula used

13. User Interface Design and Implementation

a. Updated navigation student follows

b. Included screen shots from project

14. History of Work & Current Status of Implementation

a. Detailed history of work compared to previous plan of work described in earlier reports

15. Conlusions and Future Work

16. References

As outlined in the list above, major components had to be revised in order to incorporate our switch from java implementation to Adobe Flash’s native actionscript language. As we started coding we realized that the functionality of Flash was very different from other languages we previously used. This lead to many changes in how our use cases were depicted and how the diagrams were displayed. We also decided to get rid of the state machine that was described in earlier reports. The realization of trying to make the state machine work in Flash led to hardships that required us to abandon it.

Customer Statement of Requirements

Purpose

The purpose of this project is to help students who are taking general or upper level biology courses learn about mitosis in a more interactive way. This project will create a virtual lab for the student so that they can understand mitosis before they even perform the actual lab. The virtual lab will be created by making a program that is somewhat like a game in the sense that it asks the student questions about the mitosis process. The questions will have different formats. Some will ask the student where a certain piece of the cell should be placed, some will ask the student what a specific piece of the cell is called, and some will ask the student what stage will be next. After every stage there will be some animation to keep the student interested in the whole mitosis process.

Mitosis is “the usual method of cell division, characterized typically by the resolving of the chromatin of the nucleus into a threadlike form, which condenses into chromosomes, each of which separates longitudinally into two parts, one part of each chromosome being retained in each of two new cells resulting from the original cell.”1

Statement of Requirements

The program begins with a picture of a cell that only contains a nucleus. At the bottom of the applet are some red and yellow “beads” (small ovals). Through the program the student encounters various animations, which show him/her what, the cell would look like dynamically. The student must perform a special task before he/she is able to continue to the next stage, if the student is not able to complete the task then he/she may not move on. In each stage the student will be given information about the stage so he/she can get an even better understanding about each specific stage of mitosis.

Step 0a (Build Parent Cell)

At the beginning of the program a parent will be made. The student will use the “beads” and centromere at the bottom of the page to create two chromosomes he/she will use guidelines to help them in this task. To create the string the student will click on a “beads” and centromere drag it to the appropriate location and release the mouse button. The student must not mix and match the “beads” which means the two chromosomes must be a uniform color. After a chromosome is completed, its guideline should automatically disappear.

The beads have diameter of about 10 pixels, the centromere ellipse is 20 × 10 pixels, the nucleus diameter is 200 pixels, and the cell diameter is 400 pixels. To start the beads and the centromere are just scattered at the bottom of the page. In order for the student to click on the “Next” button he/she must put all the pieces within a target place so the program automatically snaps the pieces in the correct location to create an accurate picture of the cell. The student is not allowed to click on the button until this has been completed (the button doesn’t appear till then). Once the student is allowed to click the “Next” button the next stage will begin.

building of the chromosomes, but it is not expected that this functionality will be readily available to the student since that would defeat the purpose of this learning experience.

Step 0b (Interphase)

This phase occurs before mitosis begins. During this phase, the chromosomes will merely duplicate themselves. The system should automatically duplicate the chromosomes and let the mitosis process start.

[image: image36.png]
Step 1 (Prophase)

In prophase, the chromosomes change somewhat but in the program they will not. At the end of prophase the nucleus disappears. In the program this will happen by the student clicking the “Next” button. The program uses animation make the nucleus disappear form the picture of the cell. This is the end of prophase; it is also known as prometaphase. The student clicks “Next” button to proceed into metaphase.

Step 2 (Metaphase)

In this phase the chromosomes line up in the center of the cell, which is called the equatorial plane. When this phase starts there will be a guideline that will appear to indicate where the equatorial plane is. The student then has to drag the two chromosomes over to the guideline. Once that is done the student must then click and drag the red chromosome to the lower part of the guideline. Once these chromosomes are placed in their appropriate location the “Next” button will be enable. The centromeres of each sister chromatid become attached by spindle fibers to opposite poles of the cell. The lines representing the spindle fibers should appear now, but they should be disabled, so the student cannot manipulate the chromosomes. The student clicks “Next” button to proceed into anaphase.

Step 3 (Anaphase)

In this phase a sister centromere moves to the opposite side of the original centromere. Chromatids that are attached are carried along and create a V-shape. The student will be allowed to manually simulate this motion by clicking on the centromere and dragging it on the guideline, left or right. As the student makes this movement, the V-shape is created by the chromatids. The chromosomes that are opposite to the original one mirror the same action in a synchronized manner.

The student can release the mouse button at any time and the chromosomes would freeze in the current position. The student can resume the process by clicking the centromere once again and drag it. Once the centromere reaches one end of the cell the program will allow the student to click the “Next button.

[image: image2.png]
Step 4 (Telophase)

In telophase, first the spindle fibers disappear and then chromosomes start to decondense although this part is not shown in the simulation. Once the spindle fibers have disappeared, the student may click “Next” to watch the cell split and form two nuclei through automatic system animation. This concludes the process of mitosis.

In anaphase,depending on the direction that the student drags a chromosome, the chromosome will bend accordingly. The chromosome opposite that is opposite to it will automatically mirror this action. A series of parabolas is used to model the chromosome’s shape during this dragging process.

The equation for the arclength of a function f(y), which in our case is f(y) = −a * y2, is:

[image: image3.wmf](

)

(

)

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

+

+

+

+

1

2

2

ln

1

2

2

4

1

2

2

ay

ay

ay

ay

a

Glossary of Terms

1. Prophase— “The first stage of mitosis, during which the chromosomes condense and become visible, the nuclear membrane breaks down, and the spindle apparatus forms at opposite poles of the cell.”1
2. Metaphase— “the stage in mitosis or meiosis in which the duplicated chromosomes line up along the equatorial plate of the spindle.”1
3. Anaphase— “the stage in mitosis or meiosis following metaphase in which the daughter chromosomes move away from each other to opposite ends of the cell.”1
4. Telophase—“ the final stage of meiosis or mitosis, in which the separated chromosomes reach the opposite poles of the dividing cell and the nuclei of the daughter cells form around the two sets of chromosomes.”

Functional Requirements Specification

Stake Holders
We have defined our system to be the whole Flash product that makes decisions based on what the student does in the program. The system therefore includes all the animations, buttons, and objects included in our program.

This system can have several different stakeholders such as students, teachers, and random people interested in the process of mitosis.

The users of the system are students who want to learn about the process of Mitosis. So students can get a better understanding of this process by going through the animations that we have in our system.

Teachers may want to assign a reading on the process of mitosis to their students. So they can use our website as a source for the students to refer to.

Random viewers could access our website to understand the process of mitosis through interesting animations.

Actors and Goals
Students are the only actors in our system. They are the ones who directly interact with the system. Since the students initiate the process of mitosis from our website, they are defined as the initiating actors of our system.

System administrator does not have to be defined in our system, since our system is basically a public website that people can only view. So the system admin does not need to change or update anything on the website.

The students have one major goal that they would want to achieve by using our system. Their main goal is to understand the whole process of mitosis. Each step in the system would teach them something about this process that they could use in order to do well in their quizzes, exams, classes and etc. If the students need to better understand how interphase, prophase, metaphase, anaphase, and telophase work, they can use our system to learn about each through animations.

Use Cases
Casual Description

Students initiate the applet in an effort to learn about cell division and the process of mitosis. The applet guides the student step by step through all the phases of mitosis. For each of the five phases interphase, prophase, metaphase, anaphase, and telophase, the student is given a visual representation of the process. In some cases the student is given instructions of what to do in order to complete each phase and move on to the next phase. After completing the process, it is hoped that the student would be able to fully understand all the different phases involved in mitosis. That is why we have designed a quiz in order to test their understanding of the process.

Fully-Dressed Description

Use case name and number: Start Mitosis (UC-1)

Initiating actor: Student

Actor’s goal: To understand the process of mitosis and to learn about the different phases of mitosis such as interphase, prophase, metaphase, anaphase, and telophase.

Participating actor: None

Preconditions: Student has internet connection. Student has access to the link that starts the process. Student has Flash or Shockwave applet installed on his/her computer.

Post-conditions: Student is taken back to the main page.

Flow of events (Main success scenarios):

1. Student clicks the “start mitosis” link.

2. System brings up the “build” page with instructions on how to build the chromosomes
3. Student drags and drops the beads and the centromeres to build the two chromosomes.

4. Once completed correctly, the student clicks the next button.

5. System then starts and completes the interphase step by showing the animation of the chromosomes duplicating.

6. Student clicks next.

7. System displays the prophase step and completes the phase by showing an animation of the nucleus fading.

8. Student clicks next.

9. System displays the metaphase step with instructions on how to proceed.

10. Student places the yellow chromosome at the top and the red chromosome at the bottom of the equatorial plane, and clicks next.

11. System displays the spindle fibers and instructions on how to complete the anaphase.

12. Student drags the centromeres toward the end of the spindle fibers

13. System bends the chromosomes while they are being dragged. The bending is based on a mathematical model which is described later on.

14. Student clicks next.

15. System starts and completes the telophase step by showing an animation of the cell splitting in two.

16. Student clicks finish.

Extensions (Alternate scenarios):

4a. The student tries to click next before placing the beads on the guideline

1. System detects that some of the beads are not placed on the guideline, so it knows not to move to the next phase.

10a. Students try to place the red chromosome on the top and the yellow chromosome at the buttom

1. System checks and sees that the chromosomes aren’t in the right place, so it does not snap them into place.

Use case name and number: Start Quiz (UC-2)

Initiating actor: Student

Actor’s goal: To test his/her understanding of the material covered in the mitosis process.

Participating actor: None

Preconditions: Student has internet connection. Student has access to the link that starts the quiz. Student has Flash or Shockwave applet installed on his/her computer.

Post-conditions: Student is taken back to the main page.

Flow of events (Main success scenarios):

1. Student clicks the “start quiz” link.

2. System brings up the first multiple-choice question.
3. Student clicks on one of the choices.

4. System brings up the second multiple-choice question.

5. Student clicks on one of the choices.

6. System brings up the third multiple-choice question.
7. Student clicks on one of the choices.

8. System brings up the fourth multiple-choice question.

9. Student clicks on one of the choices.

10. System displays how many questions the student answered right or wrong.

11. Student clicks finish.

Extensions (Alternate scenarios):

None

Use Case Diagram
The use case diagram is very simple since we only have two use cases. So the student has two choices. One is to initiate the mitosis process and the other one is to initiate the quiz. These are separate and can be selected by the student without any conditions.

[image: image4.emf]Student

UC-1: Start Mitosis

System

UC-2: Start Quiz

<<initiates>>

<<initiates>>

System Sequence Diagrams
Once again we want to emphasize that we have defined our system to be the whole Flash product. This product has the ability to make decisions based on what the student does in the program. The system therefore includes all the animations, buttons, and objects included in our program.

The alternating scenarios case is also included in the sequence diagram for “start mitosis”. We can see that for the alternating scenarios, the system realizes that if the next button is clicked before the placements of items are complete, the system stays in the same phase and does not move to the next one.

[image: image5.emf]Student

System

select "start mitosis"

place items and click next

verify placement of chromosomes

display animation of chromosomes duplicating (Interphase)

Student click next

display animation of nucleus fading (Prophase)

Student click next

display metaphase step with instructions

place chromosomes correctly (Metaphase) and click next

display spindle fibers with instructions (Anaphase)

select "finish"

verify placement of beads and centromeres

drag centromeres toward the end of fibers

Student click next

display animation of cell splitting (Telophase)

bends chromosomes while they are dragged

display "build" page

Start Mitosis (UC-1)

if placement is not complete, it stays in

the same phase and does not move to

the next step.

if placement is not complete, it stays in

the same phase and does not move to

the next step.

[image: image6.emf]Student

System

select "start quiz"

select one of the choices

display second question

select one of the choices

display third question

select one of the choices

display fourth question

select one of the choices

display results of the quiz

select "finish"

display first question

Nonfunctional Requirements

Functionality
The functionality for the nonfunctional requirements will be treated in those terms outside of the use cases. For example, realism is to be considered in this portion. Our main objective is to help the student learn about mitosis. Since we cannot provide a microscopic movie for the student to watch we employ the virtual biology lab to allow the student to witness and interact with the processes that take place at the cellular level. However, this provides us with a hurdle where we need to make sure the components in the animation resemble those of an actual cell. We decided that simple animations could take the place of actual pictures of the inner workings of a cell. It can be assumed that the student will have additional resources such as a textbook or online photo gallery to provide realistic pictures. Our concern is with assisting the student to learn the process and steps involved while also including some interactivity. In similar fashion, the actions that take place within the cell are not realistically accurate. The nucleus dissolving and the chromosomes bending are representations of what is actually happening rather than the authentic cell processes.

Usability

The usability component of FURPS+ deals with the student interacting with the interface provided for them. We hope to provide a help page on the main screen to help assist the student getting to know how the lab works and the basic layout. The different screens will all be roughly similar. There will be a central animation that takes center stage in the flash window with a next button in one of the bottom corners. If the student attempts to advance screens without finishing a required part first, an error message will alert them to what needs to be completed before advancing. We also hope to provide instructions for those parts of our lab that require user input. The user input that will be required will involve mouse dragging and mouse clicking. Since this lab requires only the most basic of input from students it is safe to assume that simple instructions will provide enough information. Therefore it is unnecessary to have user documentation or online help beyond what has already been described. If so desired all flash programs have an embedded link to adobe’s website explaining ‘About Flash Player’ with links to an FAQ and system requirements for Flash.

Reliability

One of the main advantages of making the Virtual Biology Lab available online is in the fact that it can be accessed by anyone at any time and at any place as long as the student has an internet connection. The maintenance of the lab would be done once everyday to ensure its safety from viruses and server downtimes. Multiple copies of the code would be stored to prevent the risk from file corruption. In addition, the code for the virtual biology lab would also feature a lot of exception handling code which would make sure the program does not ‘freeze’ or ‘crash’ altogether. For example, in the preliminary stage of mitosis, the student is asked to build the parent cell by dragging beads (different colored centromeres) onto two strings. To avoid any possible errors during the drag and drop feature, the code will include special exception handling code which would make sure that if the student drops the bead anywhere else except for on the string (with fixed drop area range), the beads would return back to its original position. This is just one of the many built in fault tolerant strategies which will be used to ensure reliability.

Performance

The sole factor for measuring the system performance would be the student’s internet connection speed. Since the virtual biology lab would be an applet which needs to be loaded from a server, the student’s internet connection speed would decide the amount of time it takes for the virtual biology lab to load. For example, a student with a dial connection could experience more delay in loading times than a student with broadband connection. Even though we would recommend that a student have a broadband connection, a dial connection should still be able to load the applet relatively quickly. All in all, the performance of the system would depend largely on the student’s connection speed and system specifications.

Supportability

As mentioned previously, the virtual biology lab would undergo an error check (done by website administrator) once everyday in order to maintain its operation. The main website would be maintained by one of the group members throughout the year. Any updates to the virtual biology lab would be mentioned on the main website. The main site would also feature the system requirements to run the virtual biology lab. The links for installing the software needed to view the desired applet format would also be made available on the main website. In addition, a customer service email would be provided on main website which could be referred to incase of any questions. The virtual biology lab would most likely require the student to have the specific (not yet finalized) runtime environment installed to view the applet-based interface.

The + acronym of FURPS+ classification allows us to specify constraints including design, implementation, interface, and physical constraints.

Design Constraints

The virtual biology lab would be an internet based graphical student interface. Since the interface would rely heavily on graphics, we have a couple of options before us. One of the options is to use the java platform and create a java applet based interface. The advantages of this type of design would be in terms of complexity. Unlike other languages, the applet coding in java is relatively straightforward. However, the downside of using a java applet is limited number of resources available to make the interface look more appealing and interactive. From an aesthetic point of view, a java-based applet is relatively simple and cannot use utilities such as complex fading patterns and flashing etc. Keeping this in mind, we have decided to build the virtual biology lab using adobe ‘flash’. Our goal is to make the interface as student friendly and interactive as possible. The use of flash allows the design team to make use of several utilities such as ‘complex color patterns’ and ‘fading’ which otherwise would be hard to implement using java. However, the downside of using a flash based program is that flash relies heavily on complex vector patterns, which, puts an intense load on the CPU compared to traditional java applets. Also, flash applets have varying loading times depending on the student’s internet connection. A survey of most internet websites would show that the internet today is moving towards flash based animation keeping in mind that the average student is slowly migrating away from the standard dial-up connection. Weighing in all these factors, we have made a choice to implement the design using the adobe ‘flash’.

Implementation Constraints

To implement the virtual biology lab, we are using the ‘flex’ program from adobe. The ‘flex’ lets us animate using macromedia flash, which has a comparative advantage over using a traditional java applet. To generate the visual’s of the virtual biology lab, the code would be first written in a specific scripting language (not finalized yet). From here the code would be imported using flex, which would translate the code into its built in flash visual generator. In other words, the visuals for the virtual biology lab would be made using ‘flex’, however, the ‘back end coding’ would be done using some form of scripting language compatible with adobe ‘flex’.

Interface Constraints

Since the virtual biology would be an online interactive simulation. It would require a program, which is powerful as well as compatible with most of the internet browsers. Keeping this in mind, we have decided to use the ‘flex’ program from adobe since it uses macromedia flash. The only interface constraint in this case is the student’s web browser. The use of the ‘flex’ program helps us work around this type of compatibility. However, it requires the student to download a version of the macromedia flash player on his/her computer to be able to view the virtual biology lab.

Physical Constraints
The nature of this project is such that it requires no physical elements. The program is software based and does not need to be transferred onto any hardware. Hence, there are no physical constraints regarding the virtual biology lab.

Domain Analysis

[image: image7.emf]Student

**

<<boundary>>

Button

<<control>>

System

*

*

a

d

v

a

n

c

e

s

p

h

a

s

e

>

<<entity>>

Red Bead

x

y

<<entity>>

Yellow Bead

x

y

<<entity>>

Red Centromere

x

y

<<entity>>

Yellow Centromere

x

y

1

*

1

*

11

*

*

contains >

c

o

n

t

a

i

n

s

>

contains >

contains >

<<entity>>

Nucleus

x

y

transparency

1

1

contains >

Domain Model

<<entity>>

interphase

<<entity>>

prophase

*

*

M

a

k

e

t

r

a

n

s

p

a

r

e

n

t

>

<<entity>>

telophase

*

*

*

*

<animation

<

a

n

i

m

a

t

i

o

n

The domain model provided gives a simple description of the flow of the virtual lab. The entities that contain a note graphic are referred in our book as “thing-type” concepts. The beads and centromeres are created by the system when the program is initiated. They contain x and y attributes which refer to their position. A special case, in which these entities behave like boundaries, is described in the figure below. The nucleus also falls into the “thing-type” category with attributes that are changed by “worker-type” concepts. “Thing-type” entities do not do any work but are manipulated by the “worker-type” concepts, which are described by the smiley faces. These concepts perform animations that either describe a phase or transition between phases. For example, the prophase concept will change the transparency of the nucleus until it blends in with the cytoplasm color. Also the phase0bloader and telophase perform animations on the concepts. These animations may appear to directly change the x and y positions of the beads and centromeres but they are actually movie clips embedded in flash. The system keeps track of the x and y positions of the concepts being moved.

The Button concept acts as the main boundary between the system and the student. A phase can only advance when the student clicks the next button and all the requirements to change phase are completed. For example, the student must correctly build the chromosomes before they can move on. While some of these requirements involve student interaction, some only require an animation to play. The student requirements often involve dragging the beads or centromeres which a more specific domain model can be seen below. To be precise, we will use if statements to check the x and y position to determine if they are within predefined constraints. If the statement returns true then we stop the student interaction of dragging and snap the objects into place. The system requirements for the button to activate are easier to implement since most of the animations are just called as functions. Therefore sequential programming allows the function to completely run then activate the button.

Essentially, the system refers to the system in our program that is the backbone of the entire program. This keeps track of all the objects that it contains and has global functions that may be used by its contained entities. The system is the control concept that brings all the elements together. It has complex relationships with some of the other concepts. The buttons purpose is explained above but only becomes active if the system determines that certain conditions are met. Also in the next model we can see that the student can drag the beads or centromeres but the system updates the x and y positions and will snap them into place when they come within the predefined boundaries. Also in the bending portion the system has the responsibility to update all of the bead and chromosome positions relative to the centromere being dragged.

[image: image8.emf]<<boundary>>

Red Bead

x

y

<<boundary>>

Yellow Bead

x

y

<<boundary>>

Red Centromere

x

y

<<boundary>>

Yellow Centromere

x

y

Student

1

*

1

*

1

1

1

1

d

r

a

g

s

>

d

r

a

g

s

>

drags>

d

r

a

g

s

>

<<control>>

System

*

1

*

1

1

1

1

1

<

u

p

d

a

t

e

s

>

<updates>

<

u

p

d

a

t

e

s

>

<

u

p

d

a

t

e

s

>

In some phases certain entity models will act as boundaries. In these cases the student will drag the beads and centromeres. It is hard to model the elements as both so this is a specification from the above model. The student will drag the beads or centromeres and there is a possibility of different things to happen depending on the specific phase. In the cell builder portion of the lab, the student drag one bead and the dragging will update the x and y coordinates to the system. This also happens when the student drags a centromere. In the bending part of the virtual lab, the student will drag one centromere, which will trigger a function in the system to update all the beads and centromeres based on a mathematical formula consistent with bending. This requires the flow to go from the system to all of the beads and centromeres.

Mathematical Model

This project used one important mathematical model during the Anaphase stage. During this stage, a user must click on a central centromere and drag it to the end of a spindle fiber. When any of the four centromeres (big ovular beads shown below) are dragged, the chromosome bend with the direction of movement. The process is shown again below.

[image: image1.png][image: image9.wmf]
A geometric model must be used to model the bending shown above. To be exact, the bending may be modeled using a series of changing parabolas. Refering to the figure below, let us consider that the right chromosome is being manipulated (dragged horizontally to the right). If x represents the amount of displacement in the horizontal axis, then the vertical displacement is represented by y, as in:

x = −a ◦ y2, where 0 ≤ a ≤ 1 (P1-1)

Initially, the shape of the chromosome is a straight line, so the curvature a = 0. As the user drags the centromere to the right, the line begins to curve, so the curvature of the parabola depends on the x-position of the centromere. When the chromosome is pulled all the way to the end of the spindle fiber, a will be much closer to 1. The specific scale used depends on programmer preference.

In order for the animation to look correct, the individual beads must remain equidistant from each

other on the curve as the curvature changes (see Figure below). In other words, if two adjacent

beads are db units apart when the chromosome is in its initial straight line position, when the

chromosome reaches its final position, the distance on the curve, or the arclength between the two

adjacent beads should remain db units. To find the x and y position beads of each of these smaller beads with respect to the centromere, the arclength equation for (P1-1) must be .

 System Operation Contracts

	Operation
	Drag

	Preconditions
	bead\centromere must be created by system

	
	

	Postconditions
	x > 0, y > 0

	
	boundary relationship of bead\centromere is destroyed

	
	

	Operation
	Update

	Preconditions
	centromere or bead is being dragged

	
	

	Postconditions
	x > 0, y > 0

	
	optional: object is snapped into place

	
	

	Operation
	Interphase Animation

	Preconditions
	requirements have been met

	
	next button has been clicked

	Postconditions
	animation is stopped

	
	

	
	

	Operation
	Prophase Animation

	Preconditions
	requirements have been met

	
	next button has been clicked

	Postconditions
	nucleus faded into cytoplasm (transparent)

	
	animation is stopped

	
	

	Operation
	Telophase Animation

	Preconditions
	requirements have been met

	
	next button has been clicked

	Postconditions
	animation has stopped

	
	

	
	

	Operation
	Advance Phase

	Preconditions
	requirements have been met

	
	next button has been clicked

	Postconditions
	system advances to the next phase

	
	

Interaction Diagrams

Discussion:

Each phase starts off with the assumption that the user is now clicking the next button from the previous phase. For example, at the end of Interphase stage, the user is asked to click the next button and move on to the next stage. We show that the Next button was clicked in the previous stage (Interphase) at the start of Prophase. Also it assumed the user has already clicked on the link to this page from the website.

The following lists the brief breakdown of the of each Interaction diagram. Due to the complexity of the system, the system had to be broken down into individual interaction diagrams for each stage of mitosis.

 Build Cell 1 (refer to figure 9 and 10 for the following):

· The system calls the function stop() on step0aFrame.

· The actor initiates the mouseDown() function.

· The system check to see if the mouse button is still held down with if(hitTest(_root._xmouse,_root._ymouse)).

· If the above statement is true the bead is allowed to be dragged.

· The next step check to see if the mouse button is no longer being held. This is done with the mouseUp() function, if so the object is no longer dragable with the stopDrag() function.

· The next step uses the function ._x on the redBead object this returns the value of the current redBead x position and placed in x.

· Here the function ._y is used this function does the same as the ._x function with the difference that it returns the y position of the redBead and is placed in y.

· An IF statement follows to check the values that were just received. if(x >= 120 && x <= 250 && y >= 60 && y <= 225){ x = ?;
y = ?;}

· If the above statement is true then the phase0acompletearray piece corresponding to the bead is set to 1 and the x and y are also updated to a give value. Else it is set to 0 and the x and y are not updated.

· Once this is done the updated x (or not) is set to be the new x position for the redBead.

· The above process if repeated for yellowBead object, red_cen object, and yellow_cen object.

· If at anytime the user presses the next button it calls the phase0adoneChecker() if this returns a 1 then the next frame is played else it does nothing.

Interphase (refer to figure 11 for the following):

· This step begin with the function call play() from the previous frame.

· A flash video is played until the stop() function is called.

· The user is not allowed to press the next button because there is no next button until stop() is called.

· The user then initiates the function .onPress the function play() is then called from the nextbutton object.

Prophase (refer to figure 12 for the following):

· To start this step the play() function was called by the last nextButton object that was pressed.

· The animation is then stopped by the system using the stop() function

· The done variable is also initialized to equal 0 at the beginning.

· The user then processed to call the .onPress function by click the nextButton.

· The nextButton object then calls the makeBigger() function. The makeBigger function makes a animation happen (the nucleus gets bigger and slowly disappears).

· The makebigger() then calls the function ._yscale, ._xscale, and ._alpha for the object nuc (nucleus), and has predetermined values which we have given.

· Once the makeBigger() is call the done variable is then increased by 1.

· A IF statement then follows to see if the nextButton has been pressed 12 times if so the play() function is called. And the step follows

Metaphase (refer to figure 13 for the following):

· This step begins with the play() function from the previous nextButton

· The animation is then stopped by the system using the stop() function

· The system check to see if the mouse button is still held down with if(hitTest(_root._xmouse,_root._ymouse)).

· If the above statement is true the bead is allowed to be dragged.

· The next step check to see if the mouse button is no longer being held. This is done with the mouseUp() function, if so the object is no longer dragable with the stopDrag() function.

· The next step uses the function ._x on the redChromo object this returns the value of the current redChromo position and placed in x.

· Here the function ._y is used this function it returns the y position of the redChromo and is placed in y.

· An IF statement follows to check the values that were just recived. if(x>=220&&x<=y>=280&&red_chy<=360){ x = ?;
y = ?;}

· If the above statement is true then the phase2completearray piece corresponding to the bead is set to 1 and the x and y are also updated to a give value. Else it is set to 0 and the x and y are not updated.

· Once this is done the updated x (or not) is set to be the new x position for the redChromo.

· The above process if repeated for yellowChromo.

· If at anytime the user presses the next button it calls the phase2doneChecker() if this returns a 1 then the next frame is played else it does nothing.

Anaphase (refer to figure 14 and 15 for the following):

· The system calls the function stop() on step0aFrame

· The actor initiates the mouseDown() function.

· The system check to see if the mouse button is still held down with if(hitTest(_root._xmouse,_root._ymouse)).

· If the above statement is true the bead is allowed to be dragged.

· Once this is done the system uses a IF statem to check if the centemere has be moved up or down if so it puts it back in the original position.

· The system also check if the centermere has been moved left or right if so it moves the other centermeres.

· If there has been a movement in the x position the small bead are given there new x y position with the alginbead() function

· If the centermere is in a certain stop the nextButton is activated and the user may now press it to call the play() function.

Telophase (refer to figure 16 for the following):

· This step begin with the function call play() from the previous frame.

· A flash video is played until the stop() function is called.

· The user is not allowed to press the next button because there is no next button until stop() is called.

· The user then initiates the function .onPress which send them back to the original webpage.

· The next step check to see if the mouse button is no longer being held. This is done with the mouseUp() function, if so the object is no longer dragable with the stopDrag() function.

· Once this is done the

For the quiz we has a different interaction diagram which follows.

Quiz (refer to figure 17 and 18 for the following):

· This program begins with the user clicking the main webpage to start it.

· The user must then click one the answer buttons

· This then causes the system to compare the user’s answer with the one in the answer array.

· When the user is done with the last question it call the play() function which sends them to the last frame.

· Once this happens the user click the return to main page button.

Build Cell

[image: image10.wmf]Actor

:

redBead

:

yellowBead

:

red

_

cen

:

yellow

_

cen

:

phase

0

acompletearray

:

nextButton

:

step

0

aFrame

mouseDown

()

.

_

x

.

_

x

.

_

y

startDrag

(

false

)

stopDrag

()

mouseUp

.

_

y

phase

0

acompletearray

[

i

]=

1

;

play

()

mouseDown

()

startDrag

(

false

)

mouseUp

()

stopDrag

()

phase

0

acompletearray

[

i

]=

1

if

(

hitTest

(

_

root

.

_

xmouse

,_

root

.

_

ymouse

))

if

(

x

>

=

120

&&

x

<

=

250

&&

y

>

=

60

&&

y

<

=

225

)

{

x

=

?;

y

=

?;}

x

y

.

_

x

=

x

.

_

y

=

y

x

y

.

_

x

=

x

.

_

y

=

y

else

phase

0

acompletearray

[

i

]=

0

;

else

phase

0

acompletearray

[

i

]=

0

;

The reason for the question marks is because

each bead and centremer has their corisponding

x and y position that we want

if

(

x

>

=

120

&&

x

<

=

250

&&

y

>

=

60

&&

y

<

=

225

)

{

x

=

?;

y

=

?;}

stop

()

[image: image11.wmf]:

redBead

:

yellowBead

:

red

_

cen

:

yellow

_

cen

:

phase

0

acompletearray

:

nextButton

:

step

0

aFrame

.

onPress

phase

0

adoneChecker

()

play

()

.

_

x

.

_

y

.

_

y

.

_

x

phase

0

acompletearray

[

i

] =

1

phase

0

acompletearray

[

i

] =

1

x

y

.

_

x

=

x

.

_

y

=

y

Actor

if

(

x

>

=

120

&&

x

<

=

250

&&

y

>

=

60

&&

y

<

=

225

)

{

x

=

?;

y

=

?;}

if

(

x

>

=

120

&&

x

<

=

250

&&

y

>

=

60

&&

y

<

=

225

)

{

x

=

?;

y

=

?;}

else

phase

0

acompletearray

[

i

]=

0

;

else

phase

0

acompletearray

[

i

]=

0

;

If

(

phase

0

adoneChecker

()==

1

)

Interphase

[image: image12.wmf]:

step

0

bFrame

:

play

()

play

()

:

nextButton

stop

()

.

onPress

Actor

Flash video is played util stop

()

is called

Prophase

[image: image13.wmf]:

step

1

Frame

:

nextButton

play

()

onPress

play

()

:

done

done

=

0

;

done

++

if

(

done

>

11

)

Actor

stop

()

:

nuc

makeBigger

()

.

_

yscale

=

1

.

5

.

_

xscale

=

1

.

5

.

_

alpha

=

-

5

Metaphase

[image: image14.wmf]:

step

2

Frame

:

redchromo

yellowchromo

:

phase

2

completearray

:

nextButton

startDrag

(

false

)

mouseDown

()

mouseDown

()

startDrag

(

false

)

mouseUp

()

mouseUp

()

.

_

x

stopDrag

()

.

_

y

stopDrag

()

phase

2

completearray

[

i

] =

1

.

_

x

.

_

y

if

(

hitTest

(

_

root

.

_

xmouse

,_

root

.

_

ymouse

))

x

y

if

(

x

>

=

220

&&

x

<

=

y

>

=

280

&&

red

_

chy

<

=

360

)

{

x

=

?;

y

=

?;}

.

_

x

=

x

.

_

y

=

y

x

y

Actor

else

phase

2

completearray

[

i

] =

0

play

()

stop

()

[image: image15.wmf]:

step

2

Frame

:

redchromo

yellowchromo

:

phase

2

completearray

:

nextButton

.

onPress

phase

2

doneChecker

()

play

()

.

_

x

=

x

.

_

y

=

y

phase

2

completearray

[

i

] =

1

if

(

x

>

=

220

&&

x

<

=

y

>

=

280

&&

red

_

chy

<

=

360

)

{

x

=

?;

y

=

?;}

Actor

If

(

phase

2

doneChecker

()==

1

)

Anaphase

[image: image16.wmf]:

Actor

:

redCen

:

redBead

:

yellowCen

:

yellowBead

:

nextButton

:

step

0

aFrame

play

()

stop

()

mouseDown

()

startDrag

(

false

)

mouseDown

()

startDrag

(

false

)

if

(

hitTest

(

_

root

.

_

xmouse

,_

root

.

_

ymouse

))

.

_

y

y

1

.

_

y

y

2

if

(

redCen

.

_

y

!=

y

1

| |

yellowCen

.

_

y

!=

y

2

)

.

_

y

=

y

1

.

_

y

=

y

2

.

_

x

x

1

.

_

x

x

2

.

_

y

.

_

x

.

_

y

.

_

x

yy

[

i

]

xy

[

i

]

yr

[

i

]

xr

[

i

]

Note that an

[

i

]

is used

because there are

8

yellow beads and

8

red beads

.

[image: image17.wmf]:

Actor

:

redCen

:

redBead

:

yellowCen

:

yellowBead

:

nextButton

:

step

0

aFrame

if

(

redCen

.

_

x

!=

x

1

| |

yellowCen

.

_

x

!=

x

2

)

bindCurrent

()

bindCurrent

()

bindCurrent

()

causes all the

centermere to move the same

distance as the one

just moved by user

alignbeads

()

alignbeads

()

alignbeads

()

uses our equation

to give a curve look to the

chromosome

.

it also ativates

the next button with a certain x

distance

.

onPress

play

()

If button active

Telophase

[image: image18.wmf]:

step

4

Frame

:

play

()

return to website

:

nextButton

stop

()

.

onPress

Actor

Flash video is played util stop

()

is called

Quiz

[image: image19.wmf]:

answerButton

Actor Selected the Quiz function on the main page

User selected certain answer

while

(

question

!=

lastQuestion

)

CorrectAnswerCounter

++

:

nextButton

User will keep doing the quiz

,

while a

correctAnswerCounter will keep track

of the number of correct answer

User will click on the nextButton

when they are done

,

and will then

show the quiz result by playing a

flash animation

:

answer

answerButton request the correctAnswer from answer

answer return the correctAnswer to answerButton

play

()

:

Actor

Quiz cont.

[image: image20.wmf]:

nextButton

:

frame

play

()

.

onPress

()

:

frame will show the result of the quiz

return to main page

:

Actor

Patterns:

[image: image21.wmf]+

play

()

Next Button

-

reciever

Actor

Execute

+

play

()

stepofFrame

-

reciever

End

1

End

2

End

3

End

4

End

5

End

6

+

play

()

Play

+

play

()

Play

End

7

End

8

End

9

End

10

command

.

execute

()

End

11

End

12

void Play

()

{

receiver

.

action

()

}

void Play

()

{

receiver

.

action

()

}

End

13

End

14

End

15

End

16

[image: image22.wmf]+

play

()

-

reciever

Next Button

Actor

Execute

+

play

()

-

reciever

stepofFrame

End

1

End

2

End

3

End

4

End

5

End

6

+

play

()

Play

+

play

()

Play

End

7

End

8

End

9

End

10

command

.

execute

()

End

11

End

12

void Play

()

{

receiver

.

action

()

}

void Play

()

{

receiver

.

action

()

}

End

13

End

14

Done

End

15

End

16

+.

_

xscale

()

+.

_

yscale

()

+.

_

alpha

()

-

done

>

11

nuc

End

17

End

18

+

play

()

Play

End

19

End

20

End

21

End

22

The Command design pattern encapsulates the concept of the command into an object. The issuer holds a reference to the command object rather than to the recipient. The issuer sends the command to the command object by executing a specific method on it. The command object is then responsible for dispatching the command to a specific recipient to get the job done.

In the above diagram, the invoker holds an abstract command and issues a command by calling the abstract execute() method. This command is translated into a specific action on a specific receiver by the various concrete command objects.

Class Diagram and Interface Specification

[image: image23.wmf]+

_

x

(

in

:

double

(

idl

)) :

double

(

idl

)

+

_

y

(

in

:

double

(

idl

)) :

double

(

idl

)

+

mouseUp

() :

boolean

(

idl

)

+

mouseDown

() :

boolean

(

idl

)

+

StartDrag

()

+

StopDrag

()

+

stop

()

+

play

()

+

onPress

()

System

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Red Bead

1

*

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Yellow Bead

1

*

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Red Centromere

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Yellow Centromere

1

1

1

1

+

phase

0

adoneChecker

() :

boolean

(

idl

)

+

phase

0

banimation

()

+

phase

1

loader

()

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Button

1

*

Mitosis Class Diagram

+

yScale

(

in

:

double

(

idl

))

+

xScale

(

in

:

double

(

idl

))

+

alpha

(

in

:

double

(

idl

))

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Nucleus

1

1

· Note on the class diagram – I combined all the use cases into a single class diagram since each use case utilized a function

· The functions listed under System are global functions that are accessible by all classes in flash.

· The idl tags stand for interface description language, which was defaulted from UML description in Visio.

Data Types and Operation Signatures

[image: image33.wmf]Red Bead

type

description

x

double

x position of bead

y

double

y position of bead

	Yellow Bead
	type
	description

	x
	double
	x position of bead

	y
	double
	y position of bead

	Red Centromere
	type
	description

	x
	double
	x position of centromere

	y
	double
	y position of centromere

	Yellow Centromere
	type
	description

	x
	double
	x position of centroemere

	y
	double
	y position of centroemere

	Nucleus
	type
	return type
	description

	x
	double
	
	x position of nucleus

	y
	double
	
	y position of nucleus

	yScale(double)
	
	void
	Scales y position by input param

	xScale(double)
	
	void
	Scales x position by input param

	alpha(double)
	
	void
	Changes transparency of nucleus

	Button
	type
	return type
	description

	x
	double
	
	

	y
	double
	
	

	phase0adoneChecker
	
	boolean
	Checks to see if all the beads are in place

	phase0banimation
	
	void
	Begins the animation for phase 0b

	phase1loader
	
	void
	Loads phase 1

	System
	return type
	description

	_x
	double
	returns x position of mouse

	_y
	double
	returns y position of mouse

	mouseUp
	boolean
	Event listener when mouse is released

	mouseDown
	boolean
	Event listener when mouse is depressed

	StartDrag
	void
	Event listener when an object is being dragged

	StopDrag
	void
	Event listener when an object is stopped being dragged

	stop
	void
	stop animation

	play
	void
	play animation

	onPress
	void
	Event listener when button is pressed

· System functions are global functions that are accessible to all objects.

· “Event listeners” are actually considered Flash Event Model but they act very similar to event listeners in Java. Often Flash Event Models (often known as FLEMs) will trigger a function after they are invoked.

[image: image24.wmf]+

stop

()

+

play

()

+

onPress

()

System

-

answers

Answers

1

1

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Button

1

*

Quiz Class Diagram

	System
	return type
	description

	stop
	void
	stop animation

	play
	void
	play animation

	onPress
	void
	Event listener when button is pressed

	Answers
	return type
	description

	Button
	type
	return type
	description

	x
	double
	
	

	y
	double
	
	

	phase0adoneChecker
	
	boolean
	Checks to see if all the beads are in place

	phase0banimation
	
	void
	Begins the animation for phase 0b

	phase1loader
	
	void
	Loads phase 1

Object Constraint Language (OCL) Contracts

Context Red Bead inv:

x > 0

y > 0

Context Red Bead pre:

None

Context Red Bead post:

None

Context Yellow Bead inv:

x > 0

y > 0

Context Yellow Bead pre:

None

Context Yellow Bead post:

None

Context Red Centromere inv:

x > 0

y > 0

Context Red Centromere pre:

None

Context Red Centromere post:

None

Context Yellow Centromere inv:

x > 0

y > 0

Context Yellow Centromere pre:

None

Context Yellow Centromere post:

None

Context Nucleus inv:

x > 0

y > 0

Conext Nucleus::yScale pre:
None

Conext Nucleus::yScale post:
None

Conext Nucleus::xScale pre:
None

Context Nucleus::xScale post:
None

Context Nucleus::alpha pre:
None

Context Nucleus::alpha post:
None

Context Button inv:

x > 0

y > 0

Context next_button_0b::phase0adoneChecker() pre:

next_button_0b.onPress

-- Button must be pressed

Context next_button_0b::phase0adoneChecker() post:
if (forall(x | correctx) and (y | correcty) then -- if all the x and y variables are in

play()

-- the correct position play animation

else

stop()

-- else stop animation

endif

Context next_button_0b::phase0banimation() pre:

next_button_0b.onPress

-- Button must be pressed

Context next_button_0b::phase0banimation() post:

next_button_0b.play()

-- post condition, animation is played

Context next_button_1::phase1loader() pre:

next_button_1.onPress

-- Button must be pressed

Context next_button_1::phase1loader() post:

next_button_1.play()

-- post condition, animation is played

Context System inv:

None

Context System::_x pre:

None

Context System::_x post:

None

Context System::_y pre:

None

Context System::_y post:

None

Context System::mouseUp pre:

None

Context System::mouseUp post:

None

Context System::mouseDown pre:

None

Context System::mouseDown post:

None

Context System::StartDrag pre:

None

Context System::StartDrag post:

None

Context System::StopDrag pre:

None

Context System::StopDrag post:

None

Context System::stop pre:

None

Context System::stop post:

None

Context System::play pre:

None

Context System::play post:

None

Context System::onPress pre:

None

Context System::onPress post:

None

System Architecture and System Design

Mitosis Architecture

[image: image25.wmf]Model Subsystem

Controller System

+

_

x

(

in

:

double

(

idl

)) :

double

(

idl

)

+

_

y

(

in

:

double

(

idl

)) :

double

(

idl

)

+

mouseUp

() :

boolean

(

idl

)

+

mouseDown

() :

boolean

(

idl

)

+

StartDrag

()

+

StopDrag

()

+

stop

()

+

play

()

+

onPress

()

System

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Red Bead

1

*

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Yellow Bead

1

*

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Red Centromere

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Yellow Centromere

1

1

1

1

+

phase

0

adoneChecker

() :

boolean

(

idl

)

+

phase

0

banimation

()

+

phase

1

loader

()

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Button

1

*

+

yScale

(

in

:

double

(

idl

))

+

xScale

(

in

:

double

(

idl

))

+

alpha

(

in

:

double

(

idl

))

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Nucleus

1

1

View System

Quiz Architecture

[image: image26.wmf]+

stop

()

+

play

()

+

onPress

()

System

-

answers

Answers

1

1

-

x

:

double

(

idl

)

-

y

:

double

(

idl

)

Button

1

*

View System

Controller System

Model System

Architectural Styles

The architectural style used for this application is a Model/View/Controller. The Controller subsystem includes the next button. The next button moves the user on to the next phase of the animation and facilitates the smooth execution of the application. The Model subsystem contains the main System, which keeps track of all objects’ positions, performs all calculations and keeps track of ending conditions. The View subsystem ensures that all objects are placed on the screen correctly and are visible to the student.

Identifying Subsystems

[image: image27.emf]Model SubsystemController SubsystemView Subsystem

A detailed UML Package diagram is shown on the next page containing all subsystems and all classes contained within each. The Model Subsystem contains all objects positions (smallreadbeadl0._x etc.) and the different functions used to perform the required task (alignbeads) all contained in the System class. The View subsystem contains all the beads (redcen, yellowcen, etc.), the spindle fibers, etc. that appear on the screen to the student. The Controller subsystem as noted above, is simply the next button which ensures the correct flow of the phases.

Mapping Subsystems to Hardware

The Virtual Biology Lab simulation will be hosted on our simple class web server so that students may access it from any computer, which has Adobe Flash Player 9 installed. The application will be precompiled and a wrapper will be written that embeds the Flex application's SWF file in an HTML page. It will only respond to simple requests from HTML pages.

Persistent Data Storage

No storage will be required. No password is required for running the application and therefore no user verification database is needed. The simulation itself uses no database either.

Network Protocol

This application is a standalone one and therefore does not require any Network Protocols (except for being able to accept the standard http request when a student requests to open the web page)

Global Control Flow

Execution Orderness: The system is procedure-driven. All students must complete the steps in the correct order to be able to successfully complete the Lab.

Time Dependency: The system is not time dependent. It is entirely event-driven. Students may take as long as they wish on each step. In some steps, they will not be allowed to proceed to the next step before they have successfully completed a task.

Concurrency: This application is not a multi-threaded application.

Hardware Requirements

The application must be hosted on a server capable of holding all the written application executables. This size may be approximated to be around 500 MB. The application requires that Adobe Flash Player 9 be installed on the student’s computer. Adobe Flash Player 9 runs on Windows, Macintosh, and Linux. If run using Windows, it requires an Intel® Pentium® II 450MHz or faster processor (or equivalent) and 128 MB of RAM. If run on Macintosh, it requires either a PowerPC® G3 500MHz, Intel Core™ Duo 1.83GHz, or faster processor and 128MB of RAM. If run on Linux, It requires an 800MHz or faster processor, with 512 MB of RAM, and 128 MB of Graphics memory.

Algorithms and Data Structures

Step 0a:Build the parent cell

In this step the program must be able to detect that the user has clicked on one of the “beads” dragged it to an appropriate spot and has released in that area. For example the screen is 500x500 and each “bead” is about 10x10. The program will have 1 designated zone for everything. In this zone if a bead or centermere is place it the system will organize them to create two a straight vertical line (which will be the chromosomes) of a single color (read or yellow) . This zone is preinstalled in the program and can not be changed by the user. The user must put the appropriate all the “beads” in this zone or the program will adjust the “bead” to make the chromosomes.

Step 0b: Interphase

In this step the program will show a flash animation of the two chromosome being copied.

Step1: Prophase

This step will have an animation where the nucleus will disappear in to the background. The user will make the animation happen by pressing the “next “ button a certain amount of times. The program will make the nucleus exapand and more transparent as the user keeps pressing the “next” button, the nucleus starts off at about 100x100 on the screen and fading it into the background.

Step2: Metaphase

In this part the program will once again detect the user’s action by motion detection. The user will have to place either the red or the yellow chromosomes at the top or bottom of the cell, while having the dotted line in between the original and the copy. If the user does place them in the correct zone the program will simply place them more neatly. Once the user has done this correctly 2 dotted horizontal lines will appear, they will going through the centromeres of the red and yellow chromosomes.

Step 3: Anaphase

In this step the user will pull apart the chromosomes by click and dragging the centromeres, either the red or yellow one along the dotted line. The program will constantly be updating where each “bead” should be as the centromere is dragged along the dotted line give by the program previously. It is worth saying that the program will only detect left and right movement of the mouse because if it detects up and down movement this part would be destroyed. The equation that will be used to update the “bead” located is give by this equation:

[image: image28.wmf](

)

(

)

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

+

+

+

+

1

2

2

ln

1

2

2

4

1

2

2

ay

ay

ay

ay

a

Step 4:Telophase

In this step, the final step the cell will split and the chromosomes will be given their new respective nucleus.

User Interface Design and Implementation

To start the program the user will have a displayed a screen that contains at the title of lab and the option of the mitosis quiz and the mitosis lab. The user will choose one to begin either program.

Mitosis

NAVIGATION: total 1 mouse clicks, as follows

Click "Mitosis Lab"

Once the program has loaded the first step named “Step 0a: Build the parent cell” the user will be asked to place the “beads” and centromere in the correct positions by means of click, drag and release.

If done correctly by user (refer to figure 24)

NAVIGATION: total 19 mouse clicks, 18 drags and 18 release as follows

Click 1 "bead" red or yellow

Drag “bead” to it's appropriate location

Users releases “bead”

This is done for all the “beads” so this is done a total of 16 times

Click 1 centromere yellow or red

Drag centromere to it's appropriate location

Click the other centromere

Drag it to it's appropriate location

User releases centromere

Click button labeled “Next”

Once the “Next” button has be click and the user has satisfied the requirements need to pass the program will load step 0b which is an animation of the chromosomes copying each other. A next button will also be load which the user must click to proceed to step 1 “Prophase”.

NAVIGATION: total 1 mouse clicks

User clicks next button when it appears (after animation)

In the Prophase there will be an animation where the nucleas disapperas. This is done by the user pressing the “Next” button 12 times on the 12th the user goes to the next step.

NAVIGATION: total 12 mouse clicks (refer to figure 25)

User clicks next button 11 times causing the nucleus to grow and disapper.

User clicks next button and goes to the next frame

Once this done the program will load the metaphase, step 2. The program will draw the equatorial plane and the user must then place the yellow and red chromosomes in their appropriate positions. Once this is done the user is allowed to click the next button and go to the next step.

If the user does this correctly (refer to figure 26)

NAVIGATION: total 3 mouse clicks, 2 drags, and 2 releases

User clicks red or yellow chromosome

User drags chromosome to it's appropriate position

User releases chromosome

User clicks the other chromosome

User drags chromosome to it's appropriate position

User releases chromosome

User click button labeled “Next”

In this step the program will load a 2 dot guidelines in which the user will be allowed to click and drag any of the 4 centromeres along. While the user is dragging one of the centromeres all of them will be effected causing all 4 chromosomes to bent simultaneously. Once the user has dragged anyone of the 4 centromeres to it's final location the user is allowed to click the next button.

If the user does this correctly(refer to figure 27)

NAVIGATION: total 2 mouse clicks, 1 drags, 1 releases

User clicks one centromere

User drags centromere to a specified loaction

User releases centromere

User clicks button labeled “Next”

In this step the program loads the telophase animation and the program is done. The user will then click the return to main page button.

NAVIGATION: total 1 mouse clicks

User clicks button labeled “Main Page”

Mitosis

NAVIGATION: total 1 mouse clicks, as follows

Click "Quiz”

Once the program start the user will do the same thing 4 times, read the question and pick the correct answer until they reach the end. The follow will so the navigation for all the frames that have a question

NAVIGATION: total 1 mouse clicks

User clicks one answerbox

Here the user has reached he end of the quiz and his/her score will appear on the screen along with a return to main page button which is the only thing the user can interact with.

NAVIGATION: total 1 mouse clicks

User clicks “main page” button.

The following show figures of some of the step in our program.

[image: image29.png]

[image: image30.png]

[image: image31.png]

[image: image32.png]

History of Work & Current Status of Implemenation

To accomplish the task building the virtual biology lab, the project was broken down into various sections. One of the first goals of the project was to develop a project website which could be routinely updated by every individual of the group. The goal took about one day and was set up using our Rutgers student homepage. The next step was for everyone in the group to start learning ‘Action Script’ and to familiarize oneself with software’s such as ‘Flash MX’ and ‘FlexBuilder’. Our first deadline was related to our first project proposal on January 26, 2007. As the proposal was relatively simple, it took only a couple of people from the group to document it. Next, followed the deadline of our first project report on February 16, 2007.

The first report consisted of various part relating to how the program was suppose to work and an overview of what we wanted to do. The parts were: Customer Statement of Requirements, Glossary of Terms, Functional Requirements Specification, Nonfunctional Requirements, Domain Analysis, User Interface Design, and Plan of Work. In our experience we felt that by far the most difficult part was Functional Requirements Specification.

The next deadline was the report 2 submission on March 9th, 2007. Up, until this point the whole group was still learning action script and getting familiar with the software’s to be used. The report2 was based more from a design perspective and did not have us code anything in particular. However, the immediate milestones were set in accordance to our first demo on March 23. For this deadline we decided to have at least the first three phases of mitosis running. Each phase was assigned to at most two people leaving one person for oversight. The initial coding phase started on February 19, 2007 and lasted through March 9th, 2007. During the final days leading up to the first demo, we had the extra person work ahead and gather material to be used for the second report.

The final phase of this project consisted of the current report (report 3) and follow up demo on May 3, 2007. The milestones for the last segment were to design a quiz, analyzer report 1 and 2 to make report 3, and to complete the rest of the phases. Since, there were in all three milestones in the last design phase, we broke the group down into 3 subgroups. In here, we had 3 people working on final report, two people working on completing the rest of the phases and remaining 2 people designing a ‘student quiz’. We estimated that 2 individuals working on the quiz would be done relatively quickly as it was far less complex compared to the mitosis phases.

The main strategy to tackle various milestones and deadlines from report 2 onwards was the dynamic distribution of work. In other words, originally we started the project dividing milestones and deadline responsibilities among various members of the group and wanted them to be static. However, over the course of the semester we realized that a better way would be to plan ahead. For example, we assigned responsibilities for the report 3 and demo3 a little differently from before as the members were free to help out other struggling members or to continue on to develop additional features for the project. We used the example in the mitosis example, where we planned ahead and assigned them another module (quiz) keeping in mind that the current module (mitosis) assigned to them would take a relatively short time to complete.

Some of the key accomplishments as a result of the complete of this project include:

· All members able to write programs using Action Script to code flash based animations.

· Constructing a truly interactive and user friendly Mitosis phases.

· Adding a quiz functionality for the user to take after going through the virtual biology lab.

Conclusions and Future Work

Up to this point, we pretty much have most of our major functions fully functional and are concentrating finalizing the report and fixing minor errors. We are foreseeing to finish almost everything for our project by this weekend so that we can have several days to check and setup everything that’s need for our demo and e-archive submission. Now lets discuss about the technical challenges encountered and techniques we used in this project.

The biggest challenges that we never thought of at the beginning of our project is the using of action script; as we were debating about whether to use java or C# at the very early phase of our project implementation. That was actually an endless argument between our members. Stuff goes much better when we went through some of the lecture materials that give us a better idea about the process and how to pick the right language to start with. Also, we went through the same project done by last year’s class, and we found that it is not so efficient to implement in both any sort of C language or JAVA. We then accidentally found some sort of flash applications that are similar to our project in certain extends; for example dragging objects, and some animations. So after all of us did some researches on flash’s algorithm and their ability, we decided to implement our project on flash, and Flex. Flash gives us the ability to create objects make animations, connections, and linkages between the frames. Flex allows us to beautify our interface. We decided to use flex if we have extra time, but sadly action script took us more time to learn than we expected, so we implemented some other extra functions that might give us extra credit compare to last year’s project. The other challenging part that we encountered is the bending of the chromosomes, which is in the Anaphase. The Anaphase will get the copied pair of chromosomes and bend them with a certain curvature. We had a really hard time on extracting and deriving the formula from the class lecture notes, even with the help from Professor Marsic’s JAVA code from last year. It is still not working. We either have all the centromeres and beads falling apart or it is dramatically slowing down our program, due to the huge amount of loops that the bending algorithm has. After going through several frustrations, we figured out that there are some mistakes on the equations provided by the lecture notes, so that we were not able to use it. We finally fixed the error by doing some researches on the internet and flipping some biology textbooks. For the techniques that we learned, we now have better idea about most of the Adobe program creation tools, such as flash, flex, macromedia. These are all very power tool which connected closely to each other, which makes life so much easier. Let’s say if someone wants to create a website with some sort of animations and a rather handsome interface, flash will definitely do the job. We all have a feeling that action script is somewhat different than the other algorithms that we learned before, such as C++ or JAVA. Action script focuses more on a particular object’s movement and its condition. While flash will take the x and y coordinate of an object and will be able to keep tracks its action easily for some functions provided. For example onPress() will check whether if there is a mouse click or not on an object.

For our future plan, we are trying to concentrate on testing and maybe also debugging so that we will be in perfect shape for our demo on May third. In the mean time, we will also try to make our interface more handsome than before, without losing or adding any functionality. To be exact, we are already done will whatever goals we set at the very beginning when we decided to switch from the Restaurant Automation System to the Biology Laboratory. We are happy about that we did not cut off any of our goals and are able to finish all of them on time.
References

Marsic, Ivan, Software Engineering

http://www.caip.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://dictionary.reference.com
UML 2.0OCL Specification

http://www.omg.org/docs/ptc/03-10-14.pdf
OMG – Object Management Group Oct. 2003

� EMBED Excel.Sheet.8 ���

� EMBED PBrush ���

� � HYPERLINK "http://dictionary.reference.com" ��http://dictionary.reference.com�

PAGE
1

[image: image34.png][image: image35.wmf]Red Bead

type

description

x

double

x position of bead

y

double

y position of bead

_1239188619

_1239193007.vsd
Student

System

select "start mitosis"

Start Mitosis (UC-1)

place items and click next

verify placement of chromosomes

display animation of chromosomes duplicating (Interphase)

Student click next

display animation of nucleus fading (Prophase)

Student click next

display metaphase step with instructions

place chromosomes correctly (Metaphase) and click next

display spindle fibers with instructions (Anaphase)

select "finish"

verify placement of beads and centromeres

display "build" page

drag centromeres toward the end of fibers

Student click next

display animation of cell splitting (Telophase)

bends chromosomes while they are dragged

if placement is not complete, it stays in the same phase and does not move to the next step.

if placement is not complete, it stays in the same phase and does not move to the next step.

_1239196647.vsd
:Actor

Sequence

:redCen

:redBead

:yellowCen

:yellowBead

:nextButton

:step0aFrame

play()

stop()

mouseDown()

startDrag(false)

mouseDown()

startDrag(false)

if(hitTest(_root._xmouse,_root._ymouse))

._y

y1

._y

y2

if(redCen._y!=y1 | |yellowCen._y!=y2)

._y = y1

._y = y2

._x

x1

._x

x2

._y

._x

._y

._x

yy[i]

xy[i]

yr[i]

xr[i]

Note that an [i] is used
because there are 8
yellow beads and 8
red beads.

Sequence

if(redCen._x!=x1 | |yellowCen._x!=x2)

:Actor

Sequence

:redCen

:redBead

:yellowCen

:yellowBead

:nextButton

:step0aFrame

bindCurrent()

bindCurrent()

bindCurrent() causes all the
centermere to move the same
distance as the one
just moved by user

alignbeads()

alignbeads()

alignbeads() uses our equation
to give a curve look to the
chromosome. it also ativates
the next button with a certain x
distance

.onPress

play()

If button active

_1239196675.vsd
:Actor

Sequence

:redCen

:redBead

:yellowCen

:yellowBead

:nextButton

:step0aFrame

play()

stop()

mouseDown()

startDrag(false)

mouseDown()

startDrag(false)

if(hitTest(_root._xmouse,_root._ymouse))

._y

y1

._y

y2

if(redCen._y!=y1 | |yellowCen._y!=y2)

._y = y1

._y = y2

._x

x1

._x

x2

._y

._x

._y

._x

yy[i]

xy[i]

yr[i]

xr[i]

Note that an [i] is used
because there are 8
yellow beads and 8
red beads.

Sequence

if(redCen._x!=x1 | |yellowCen._x!=x2)

:Actor

Sequence

:redCen

:redBead

:yellowCen

:yellowBead

:nextButton

:step0aFrame

bindCurrent()

bindCurrent()

bindCurrent() causes all the
centermere to move the same
distance as the one
just moved by user

alignbeads()

alignbeads()

alignbeads() uses our equation
to give a curve look to the
chromosome. it also ativates
the next button with a certain x
distance

.onPress

play()

If button active

_1239197270.vsd
Actor

Static Structure

+play()

-reciever

Next Button

Execute

+play()

-reciever

stepofFrame

End1

End2

End3

End4

End5

End6

+play()

Play

+play()

Play

End7

End8

End9

End10

 command.execute()

End11

End12

void Play()
{
 receiver.action()
}

void Play()
{
 receiver.action()
}

End13

End14

End15

End16

Component

Static Structure

_1239198092.vsd
Actor

+play()

-reciever

Next Button

Execute

+play()

-reciever

stepofFrame

End1

End2

End3

End4

End5

End6

+play()

Play

+play()

Play

End7

End8

End9

End10

 command.execute()

End11

End12

void Play()
{
 receiver.action()
}

void Play()
{
 receiver.action()
}

End13

End14

End15

End16

Done

+._xscale()
+._yscale()
+._alpha()

-done>11

nuc

End17

End18

+play()

Play

End19

End20

End21

End22

_1239193328.vsd
�

�

�

Student

<<boundary>> Button

<<control>> System

*

*

*

*

advances phase >

<<entity>> Red Bead

x
y

<<entity>> Yellow Bead

x
y

<<entity>> Red Centromere

x
y

<<entity>> Yellow Centromere

x
y

1

*

1

*

1

1

*

*

contains >

contains >

contains >

contains >

<<entity>> Nucleus

x
y
transparency

1

1

contains >

Domain Model

<<entity>> interphase

<<entity>> telophase

*

*

*

*

<animation

<animation

<<entity>> prophase

*

*

Make transparent >

_1239196592.unknown

_1239193208

_1239191934.vsd
System

Student

UC-1: Start Mitosis

UC-2: Start Quiz

<<initiates>>

<<initiates>>

_1239192155.vsd
Student

System

select "start quiz"

select one of the choices

display second question

select one of the choices

display third question

select one of the choices

display fourth question

select one of the choices

display results of the quiz

select "finish"

display first question

_1239190379.vsd
:nextButton

:frame

play()

_1239190753.vsd
:answerButton

_1239189406.vsd
+stop()
+play()
+onPress()

System

-answers

Answers

1

1

-x : double(idl)
-y : double(idl)

Button

1

*

Quiz Class Diagram

_1239189616.vsd
+stop()
+play()
+onPress()

System

View System

Controller System

Model System

-answers

Answers

1

1

-x : double(idl)
-y : double(idl)

Button

1

*

_1239134301.vsd
Sequence

else

Sequence

:step2Frame

:redchromo

yellowchromo

:phase2completearray

:nextButton

startDrag(false)

mouseDown()

mouseDown()

startDrag(false)

mouseUp()

mouseUp()

._x

stopDrag()

._y

stopDrag()

phase2completearray[i] = 1

._x

._y

phase2completearray[i] = 0

play()

stop()

if(hitTest(_root._xmouse,_root._ymouse))

x

y

if(x>=220&&x<=y>=280&&red_chy<=360){
x = ?;	y = ?;}

._x = x

._y = y

x

y

Actor

Sequence

If(phase2doneChecker()==1)

:step2Frame

:redchromo

yellowchromo

:phase2completearray

:nextButton

.onPress

phase2doneChecker()

play()

._x = x

._y = y

phase2completearray[i] = 1

if(x>=220&&x<=y>=280&&red_chy<=360)
{x = ?;	 y = ?;}

Actor

_1239178452

_1239185015

_1239187824.vsd
+_x(in : double(idl)) : double(idl)
+_y(in : double(idl)) : double(idl)
+mouseUp() : boolean(idl)
+mouseDown() : boolean(idl)
+StartDrag()
+StopDrag()
+stop()
+play()
+onPress()

System

-x : double(idl)
-y : double(idl)

Red Bead

1

*

-x : double(idl)
-y : double(idl)

Yellow Bead

1

*

-x : double(idl)
-y : double(idl)

Red Centromere

-x : double(idl)
-y : double(idl)

Yellow Centromere

1

1

1

1

+phase0adoneChecker() : boolean(idl)
+phase0banimation()
+phase1loader()

-x : double(idl)
-y : double(idl)

Button

1

*

Static Structure

+yScale(in : double(idl))
+xScale(in : double(idl))
+alpha(in : double(idl))

-x : double(idl)
-y : double(idl)

Nucleus

1

1

Controller System

View System

Model Subsystem

Static Structure

_1239188375.vsd
+_x(in : double(idl)) : double(idl)
+_y(in : double(idl)) : double(idl)
+mouseUp() : boolean(idl)
+mouseDown() : boolean(idl)
+StartDrag()
+StopDrag()
+stop()
+play()
+onPress()

System

-x : double(idl)
-y : double(idl)

Red Bead

1

*

-x : double(idl)
-y : double(idl)

Yellow Bead

1

*

-x : double(idl)
-y : double(idl)

Red Centromere

-x : double(idl)
-y : double(idl)

Yellow Centromere

1

1

1

1

+phase0adoneChecker() : boolean(idl)
+phase0banimation()
+phase1loader()

-x : double(idl)
-y : double(idl)

Button

1

*

Mitosis Class Diagram

+yScale(in : double(idl))
+xScale(in : double(idl))
+alpha(in : double(idl))

-x : double(idl)
-y : double(idl)

Nucleus

1

1

_1239186379.vsd
<<boundary>> Red Bead

x
y

<<boundary>> Yellow Bead

x
y

<<boundary>> Red Centromere

x
y

<<boundary>> Yellow Centromere

x
y

Student

1

*

1

*

1

1

1

1

drags>

drags>

drags>

drags>

<<control>> System

*

1

*

1

1

1

1

1

<updates>

<updates>

<updates>

<updates>

_1239178519

_1239183599

_1239178482

_1239172586.vsd
:step1Frame

Sequence

:nextButton

play()

onPress

play()

:done

done = 0;

done++

if(done>11)

Actor

stop()

:nuc

makeBigger()

._yscale = 1.5

._xscale = 1.5

._alpha = -5

_1239173908.vsd
:step4Frame

:play()

return to website

:nextButton

stop()

.onPress

Actor

Flash video is played util stop() is called

Static Structure

_1239134327.vsd
Sequence

else

Sequence

:step2Frame

:redchromo

yellowchromo

:phase2completearray

:nextButton

startDrag(false)

mouseDown()

mouseDown()

startDrag(false)

mouseUp()

mouseUp()

._x

stopDrag()

._y

stopDrag()

phase2completearray[i] = 1

._x

._y

phase2completearray[i] = 0

play()

stop()

if(hitTest(_root._xmouse,_root._ymouse))

x

y

if(x>=220&&x<=y>=280&&red_chy<=360){
x = ?;	y = ?;}

._x = x

._y = y

x

y

Actor

Sequence

If(phase2doneChecker()==1)

:step2Frame

:redchromo

yellowchromo

:phase2completearray

:nextButton

.onPress

phase2doneChecker()

play()

._x = x

._y = y

phase2completearray[i] = 1

if(x>=220&&x<=y>=280&&red_chy<=360)
{x = ?;	 y = ?;}

Actor

_1239132492.vsd
Use Case

:redBead

:yellowBead

:red_cen

:yellow_cen

:phase0acompletearray

:nextButton

:step0aFrame

mouseDown()

._x

._x

._y

._x = x

startDrag(false)

._x = x

stopDrag()

mouseUp

if(x>=120&&x<=250&&y>=60&&y<=225){
x = ?;	y = ?;}

x

y

._y = y

._y

phase0acompletearray[i]=1;

play()

mouseDown()

startDrag(false)

mouseUp()

x

stopDrag()

phase0acompletearray[i]=1

._y = y

y

Use Case

x

y

if(x>=120&&x<=250&&y>=60&&y<=225){
x = ?;	y = ?;}

Use Case

:redBead

:yellowBead

:red_cen

:yellow_cen

:phase0acompletearray

:nextButton

:step0aFrame

_1239132755.vsd
.onPress

:step0bFrame

:play()

play()

:nextButton

Flash video is played util stop() is called

Static Structure

stop()

Actor

_1238788123.xls
Sheet1

		Red Bead		type		description

		x		double		x position of bead

		y		double		y position of bead

_1239131281.vsd
Use Case

:redBead

:yellowBead

:red_cen

:yellow_cen

:phase0acompletearray

:nextButton

:step0aFrame

mouseDown()

._x

._x

._y

._x = x

startDrag(false)

._x = x

stopDrag()

mouseUp

if(x>=120&&x<=250&&y>=60&&y<=225){
x = ?;	y = ?;}

x

y

._y = y

._y

phase0acompletearray[i]=1;

stop()

mouseDown()

startDrag(false)

mouseUp()

x

stopDrag()

phase0acompletearray[i]=1

._y = y

y

Use Case

x

y

if(x>=120&&x<=250&&y>=60&&y<=225){
x = ?;	y = ?;}

Use Case

:redBead

:yellowBead

:red_cen

:yellow_cen

:phase0acompletearray

:nextButton

:step0aFrame

_1234962250.vsd

