
14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Traffic Monitoring Service

Group No. 7

Report 2

Team Members

Name

Email

Kevin Hsieh hsieh63@eden.rutgers.edu
John Reed johnreed@eden.rutgers.edu
Geoff Oh geoffrey.oh@rutgers.edu
Mike Simio michaelsimio@gmail.com
Peter Lin Peterlin741@gmail.com
Matt Araneta maraneta@eden.rutgers.edu

Instructor: Prof. Ivan Marsic

Project URL: http://traffichistory.co.nf/

Revision History:

Version No. Date of Revision

v.1 03/03/2013

v.2 10/03/2013

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

2

Breakdown of Contributions

All members contributed equally for this report.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

3

Table of Contents

Page Title Page No.

Cover Page…………………………………………………………………. 1

Breakdown of Contributions……………………………………………….. 2

Table of Contents…………………………………………………………... 3

Interaction Diagrams……………………………………………………….. 4

Class Diagram and Interface Specification………………………………… 9

System Architecture and System Design…………………………………... 18

Project Management………………………………………………………. 26

References…………………………………………………………………. 28

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

4

Interaction Diagrams

Use Case 1:

This use case has the responsibility of analyzing the inputs entered by the user to show the

relevant traffic history for the area they desire. The web Application receives the data entered by

the user, and using the Expert Doer principle, sends the data to the Controller. Using the High

Cohesion principle, DatabaseConnect is used as an intermediate between the controller and the

database. This ensures that the controller does not do too many computations when attempting to

access data from the Database. The Database then returns the information through

DatabaseConnect back to the Controller. The Controller sends the Database information to the

Mapping service, and it returns a map overlay with the information posted. The Controller posts

the map on the web Application, and the information is made available for the user.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

5

Use Case 2:

The methodology for the second use case is similar to that of Use Case 1. It employs the Expert

Doer principle for the information sent, and it uses the High Cohesion principle in the form of

DatabaseConnect. The difference from the first use case is the addition of a DirectionService.

After the Database information is sent back to the Controller, the Controller then accesses the

DirectionService to get the route information desired by the user. A list of directions is sent back

to the Controller, and the Controller then adds the list of the directions to the object it sends to

the Mapping service. The Mapping service returns the overlay of traffic history along with a

route the user can follow to reach his or her destination. This information is sent to the web

Application so that it can be viewed by the user.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

6

Use Case 4 and 5:

These use cases have the responsibility of accessing the Traffic and Weather Service websites to

retrieve data at constant intervals. At every time interval, the Controller is told to update the

traffic and weather data. Through the High Cohesion principle, the Controller sends for the

TrafficReceiver or WeatherReceiver to access the data from the web services. This data is then

sent back to the Controller via the TrafficReceiver and WeatherReceiver. Using the High

Cohesion principle again, the Controller sends the data to a Parser to format the data in a fashion

that is easier to use. The Controller then uses this parsed data and sends it to the

DatabaseConnect. The Low Coupling principle is used, to ensure that the Database has the least

number of connections possible. The only pieces of the system that should interact with the

Database should be those specifically made to do so. With the database storage, this use case is

complete.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

7

Use Case 6:

This use case has the responsibility of getting traffic history data shown to a mobile user. Similar

to Use Case 1, it employs the Expert Doer principle. The user enters his or her data to the Mobile

Application and sends it to the controller of this system, DataCollection. The DataCollection

uses the data sent by the user to retrieve the Database information relevant to his or her request.

The data is sent back to DataCollection, and this data is then sent to the MappingService. The

MappingService uses the data sent by DataCollection to show a map overlay that shows the

relevant traffic history requested by the user. This overlay is sent to the Mobile Application to be

seen by the user.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

8

Use Case 7:

This use case handles the responsibility of receiving the traffic intensity data entered by the user.

This use case employs the Expert Doer principle, as the user inputs the traffic intensity for his or

her location, and sends it to the controller of this system, the PhoneInterface. The PhoneInterface

must then retrieve the user’s location, so it accesses the MappingService to do so. After the

user’s location is returned, the PhoneInterface can send the traffic intensity and user’s location to

the Database to be stored for future use. The user is sent a confirmation message to show that his

or her data has been received.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

9

Class Diagram and Interface Specification

Use Case 1:

The controller class is the class that calls other classes to be executed and holds the data

from the website. The controller will hold data sent from the website in the array of inputData

which could become a hash if it is more convenient. The displayOverlay operation will use the

object mapParameters and display the contained information to display an overlap.

The mapping class will get parameters to show the traffic information and return an

object of that information. The method getMap will use mapParameters and get the mapping

overlay based on the parameters.

The DatabaseConnector class will get the website input data and get the traffic

information based on the data. The getTrafficData will get the traffic information and return an

object of the data.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

10

Use Case 2:

The controller class is the class that calls other classes to be executed and holds the data

from the website. The controller will hold data sent from the website in the array of inputData

which could become a hash if it is more convenient. It will have a directionInfo attribute to hold

the route information. The displayOverlay operation will use the object mapParameters and

directionInfo and display the contained information to display an overlap.

The mapping class will get parameters to show the traffic information and return an

object of that information. The method getMap will use mapParameters and get the mapping

overlay based on the parameters.

The DatabaseConnector class will get the website input data and get the traffic

information based on the data. The getTrafficData will get the traffic information and return an

object of the data.

The DirectionService class is to get the optimal route based on the start and end locations.

The locations attribute will those values. The getRoute method will use an algorithm based on

the traffic information to calculate a route.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

11

Use Case 4,5:

The controller class calls the other classes to execute their respective functions. Initially

containing the desired data parameters as an object, the controller passes these parameters, along

with an executable Javascript file, to either the traffic receiver or weather receiver. Once given

the required data parameters, the receivers will run the scripts.

The traffic receiver will take data from the traffic sites, using the getTrafficData()

function, and the weather receiver will take data from weather sides, with the getWeatherData()

function. These functions will save the data in a text file.

Afterwards, the controller gives the data to the parser, which extracts the necessary

information. The controller then gives this information to the database connector, which have

been correctly formatted by the parseData() function. The data is then stored in the database for

future use, with storeData().

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

12

Use Case 6:

The PhoneInterface class is the mobile application that offers two options to the user. It

holds data that is used both for obtaining traffic reports and updating the database. When

getReport is invoked, the parameters for gpsLocation and time are collected along with the user

input for destination, which are sent to the website to get directions. This leads into UC2.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

13

Use Case 7:

The PhoneInterface class is the mobile application that offers two options to the user. It

holds data that is used both for obtaining traffic reports and updating the database. When

sendInput is invoked, the parameters for gpsLocation and time are collected along with the user

input for trafficSeverity, which are sent to the database to be stored.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

14

Relational Database:

 The information that is stored in the database can be viewed in the diagram above. The

Administrator is in charge of controlling when the weather and traffic measurements will be

taking place (See Use Case 4 and 5). For weather, the database holds the location, date, time, and

location of the particular occurrence. For traffic, the database stores the location, date, time, and

traffic intensity for each traffic congestion that occurs. The database also stores the traffic reports

given by mobile users. The Administrator can access these reports, but controlling them is not

the Administrator’s primary concern. The mobile reports connect to the traffic section of the

database to combine web service data with the user data given.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

15

Data Types and Operation Signatures

Controller:

• Attributes

-String inputData[]

-Object mapOverlay

• Operation

+displayOverlay(Object map) (displays the overlay given to the controller by the

mapping class)

Mapping:

• Attributes

-JSON mapAttributes (contains the attributes given to the mapping class by the

controller. These attributes help the mapping class decide which items to display on the

overlay given to the controller)

• Operation

+getMap(JSON mapAttributes) (Uses the Google Maps API to generate a map based on

the requirements given in the parameters)

DatabaseConnector:

• Attributes

-JSON dataParam (contains the parameters requested by the controller)

• Operation

getTrafficData(JSON dataParam)

storeData(JSON dataParam)

DirectionService:

• Attributes

-String location[]

-Object dataParam

• Operation

getRoute(String location[], Object dataParam) (uses the locations given along with the

dataParameters needed to generate a route.)

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

16

TrafficReceiver:

• Attributes

-long

• Operation

getTrafficData(JSON dataParam) (gets traffic data from web service)

WeatherReceiver:

• Attributes

-JSON dataParam

• Operation

getWeatherData(JSON dataParam) (gets weather data from web service)

Parser:

• Attributes

-JSON dataParam

-Object data[] (the final parsed version of the data collection)

• Operation

parseData(JSON dataParam)

PhoneInterface:

• Attributes

-long time

-String gpsLocation

-String destination

-integer trafficSeverity

-String inputData[]

• Operation

getInput()

sendInput(String inputData[])

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

17

Traceability Matrix

 Because the class diagrams are based wholly on the use cases, the Traceability Matrix in

Report 1 should provide sufficient information as to how the classes act. [In the full report, we

can reference the page number it is on. For now, here is the diagram again.]

 UC 1 UC 2 UC 3 UC 4 UC 5 UC 6 UC 7

REQ 1 X

REQ 2

X

REQ 3 X

X X

REQ 4

 X

REQ 5

 X

REQ 6

 X X

REQ 7

 X

REQ 8 X

X X

REQ 9

X X

REQ 10

 X

REQ 11

 X

REQ 12

X X

REQ 13

 X X

REQ 14

 X

REQ 15 X

X X

REQ 16

 X X

Total

PW:

15 20 10 14 9 21 14

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

18

System Architecture and System Design

Architectural Styles

 The most important architectural style in this project is the Client/Server style. The user

is only meant to interact with the basic user interfaces of the Web and Mobile Applications.

After the user inputs their relevant information, it is the server’s job to process all of the

information given in order to display what the user needs. The server sends requests to server-

side classes which the user will never interact with. This type of architectural style is ideal in this

situation, for it makes it the easiest for the user. All the user will control are a series of inputs

(text boxes, dropdown menus, radio buttons, etc.) which are all very simple to interact with.

Through using these simple inputs, a complex output is displayed for the user.

 The Client/Server architectural style is most reliable when the classes execute in a similar

way each time. If there were many possibilities for function use when the inputs are given,

another architectural style should be used. However, the same functions and classes are used

every time, so the Client/Server style is a good fit.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

19

Identifying Subsystems

 The traffic monitoring service will be a website that the clients will interact with. These

users will access the web Application through the browser of their choice. The network protocol

in this case is HTTP. This allows us to reach the highest number of users through a web

Application. All user interaction with the system takes place in the User subsystem. The user

subsystem contains all of the user inputs, the map output, and the directions output given by the

system. These are all of the objects the user will interact with during their use of the Application.

This subsystem connects directly to the database of the system. The database holds all of the

information necessary to achieve the output the user desires.

 The second subsystem is the Data Collection subsystem. This system involves the traffic

and weather gathering services. The traffic and weather receivers access the relevant web

services in order to find more data to store into the database. Because it stores data into the

database, this subsystem clearly also connects to the database.

 The final subsystem is the database. Its functions are shown through its interactions with

the previous two subsystems.

UML Package Diagram

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

20

Mapping Systems to Hardware

The data stored in the traffic monitoring system is stored in a database. Preferably we will

have a server to deploy the website and another server or multiple servers to store all of the data

in the database. Currently we are relying on outside web hosting that may host deployment and

data storage on the same server.

Persistent Data Storage

 MYSQL is the chosen language to control database storage. There are three tables that

the database stores: Traffic, Weather, and MobileReports.

Database Tables
Field Type NULL Default

Traffic

Time Timestamp YES 00-00-0000 (Date)

00:00:00 (Time)

Latitude Decimal(0,0) NO 0.00

Longitude Decimal(0,0) NO 0.00

Traffic Intensity int NO 0

Weather

Time Timestamp YES 00-00-0000 (Date)

00:00:00 (Time)

City varchar(255) NO ----------

Condition varchar(255) NO ----------

Mobile Report

Time Timestamp YES 00-00-0000 (Date)

00:00:00 (Time)

Latitude Decimal(0,0) NO 0.00

Longitude Decimal(0,0) NO 0.00

Traffic Intensity int NO 0

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

21

Global Control Flow

Execution Orderness

Our system is two- fold, both procedure- driven and event- driven. The system is procedure-

driven in that the user can request to use the traffic data any time. All information from the time

of request as well as previously stored information is immediately retrieved. It is also event-

driven because the weather and traffic receivers take available data from websites and store

them, and must wait one hour to repeat their functions.

Time Dependency:

Our system is an event- response type, with no concern for real time. The user can request to use

traffic data at any point. All information from the time of request as well as previously stored

information is immediately retrieved. The only timers in the system are for the weather and

traffic receivers, which take available data from websites and store it into a database, every hour.

However, this is not a constraint on the system.

Concurrency:

No, our system does not use multiple threads.

Hardware Requirements

User is required to have a functional computer, with a screen resolution of at least 800 x

600. The user must be able to use a browser compatible with the web Application.

Alternatively, in order to use the mobile application, the user must have an Android

mobile device, capable of accessing the internet.

The database requires 2 GB in order to store traffic and weather data gathered from web

services.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

22

Algorithms and Data Structures

The most important algorithm to implement involves the calculations of average traffic

intensities at certain times. The current traffic websites (511nj.org and Mapquest.com) give

generic descriptions of the incidents that have occurred. We need to develop a way to parse this

generic information into a statistic that can be used in displaying traffic intensities.

The SQL database table for traffic will contain information (latitude, longitude, and road

name) which will differentiate the incidents based on the sectors of the road they occur on. We

count the number of incidents which occur within one sector of the road by querying the

database with the conditions, lat = sector_lat and long = sector_long and road_name = highway

being queried. We will parse traffic descriptions for key words, such as “closed” or “speed

restriction” to determine the severity level of the incident. More words will be added as

identifiers as other websites are explored. We will also keep track of how long an incident has

been taking place, by keeping a counter of days in the database. The counter will be multiplied

with the category level, listed below in the charts, to find the severity level, which will be used in

the final equation.

Once the matching results are gathered, we count the number of incidents (length of the

array), multiply this with the severity level of each incident, and then divide this by the total

number of days since data collection started. This takes into account the roads that have

negligible traffic, so that the averaging will not be skewed.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

23

∑ Number	of	Incidents	in	Secttor	 ∗ Severity	of	Incidents

�����	����	��	����	���� !�"�#

Category Level Key Words

3 Closed, closure, detour

2 Traffic Shift, congestion, delay

1 Speed Restriction, maintenance

This Project has been tackled in past years, and we decided that last year’s algorithms were

sufficient. Here is one of their charts detailing the relationship between when a traffic incident

occurred and its category level.

 No complex data structures are used in this project. The majority of the complexity deals

with manipulation of the data stored in the database.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

24

User Interface Design and Implementation

The website user interface in report 1 used the Google Maps interface to display routes

and traffic. Our current implementation will also make use of static maps. For traffic history

display, we will either make use of points on the dynamic Google Maps or display a static map

of the requested area and use an overlay to show which areas have a high chance of accidents

and traffic. For directions, we will display the route on static maps of the areas the route goes

through. The maps will also show traffic history in that area. Using static maps allows us to have

more control in explicitly showing only the data we want the user to see.

The initial screen mock-ups for the mobile application were changed to focus on ease-of-

use. The time and day of week dropdown boxes were removed to reduce the user effort. The user

effort was reduced to providing only four pieces of information before getting their traffic report.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

25

Design of Tests

The user will input the area of traffic history they desire, the weather, the time of day, and

day of the week. The output will construct a map with the traffic history overlay points on the

map. The test cases will test the code’s output with an expected result, and check to see if they

match. The test cases should also be aware of empty or null data entries

Test Case 1: User will input:

Area: New Jersey

Weather: Sunny

Time: 5:00 PM

Day of Week: Weekday

Test Case 2: User will input:

Area: Pennsylvania

Weather: Rain

Time: 10:00 PM

Day of Week: Weekend

The Mobile Application should be able to implement the same test cases as the website

Application with additional integration testing.

The integration testing will comprise of linking the code to the website and testing the

site and comparing the output to an expected output. We will also try to pass bad data values

back and make sure the code can handle errors in inputting bad initialization values.

Integration Testing will first be done between the website Application and the Database.

The Database will have sets of traffic data that the Application needs to perform actions on.

Testing will be done to make sure the Application can decipher each kind of traffic output that

the Database tables contain. The Application will also be tested to ignore incomplete or NULL

values for the Database tables.

Additional Testing will be done between the website Application and the Mobile

Application. At first, we were unsure as to how to allow the Mobile Application to access the

Database tables. We concluded that it makes the most sense to work through the website

Application to access all of the information. To accomplish this, data must be sent from the

Mobile Application to the website Application. We decided to make the Mobile Application send

an object containing all of the user inputs, and to create a method in the website Application that

can parse the object that is being sent. The website Application can then function as normal to

get the necessary data, and it can then send the map overlay to the Mobile Application.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

26

Project Management and Plan of Work

 Compiling the report from everyone’s individual contributions proved to be somewhat

difficult for this report. Specifically, achieving uniform formatting for all diagrams took some

time to figure out once we had all submitted our work. Additionally, the PDF writer that was

used was giving us difficulties in the way it showed the diagrams. We concluded that the Eclipse

UML diagram plugin that we had been using was exporting bad .JPG files, and the diagrams

would have to be reworked if they were to be used in the report. We are still testing to see if the

Eclipse UML diagram plugin can export any other file formats that our PDF file writer would

agree with.

 Currently, Use Cases 1, 4, and 5 have been completed. Use Case 7 should be simple as

soon as we begin complex integration testing between the web and mobile applications. Use

Case 6 should take some time to complete, with a great deal of integration testing involved. Use

Case 2 will be tackled as soon as Use Cases 1 and 6 are tested and checked for errors.

 Peter Lin and Matt Araneta are the team working on database storage and website

development. It is their job to access the data from traffic and weather services and to store it in a

simple, easy to access format. It is also their job to create parts of the GUI for the website

Application. They will do integration testing between the database and website Application,

mainly testing for consistency.

Kevin Hsieh and John Reed are working on how to show the user the traffic history they desire

using the User’s inputs. They are creating the code that accesses the database and places traffic

concentration points onto the map overlay. They are also working on the directions service, in

which they will show the user a possible route that they can take to avoid traffic on reaching their

destination.

Geoff Oh and Michael Simio are the team working on the Mobile Application. They are working

on sending data in different forms to the website Application in order to display data for the

mobile user. They are working on integration testing with Kevin and John to smooth the data

accesses with the Mobile Application.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

27

Plan of Work

� Integration testing between the Database and the website Application must be done during the

week of 3/17 for Use Case 1.

� The GUI for the website should be completed by around 3/24. Completing the website is not

crucial for testing, so it can be put off until the demo if absolutely necessary. The website must

be completed before the first demo.

� The mobile application team should be working on sending data to the web application around

3/24. This includes both sending user input objects along with user submitted traffic reports.

� After Use Case 1 is deemed completed, work on Use Case 2 can begin in full. This should be

started around the week of 3/31, or after the first demo.

� Constant work should be done to improve efficiency, to ease user-experience, and to improve

the GUIs of the web and mobile applications.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

28

References

1. Marsic, Ivan. Software Engineering. 2012.

2. View Traffic Incidents. <511nj.org /IncidentList.aspx>.

3. View weather. <weather.com>.

4. Google Maps. <maps.google.com>.

5. Yahoo! Live Maps. <maps.yahoo.com>.

6. Mapquest Live Maps <Mapquest.com>.

7. View Traffic Reports. <traffic.com>.

8. Project: Traffic Monitoring 2011

< http://www.ece.rutgers.edu/~marsic/books/SE/projects/Traffic/2011-g7-report3.pdf>.

