

332:452: Software Engineering

Report 2: System Design

Group 7
Aditya Devarakonda

Vamshi Chilukamari

Akhilesh Madalli

Vladimir Samokhin

Sanket Wagle

Project: Traffic Monitoring
URL: https://sites.google.com/site/452trafficmonitor/

3/11/2011

https://sites.google.com/site/452trafficmonitor/

Breakdown of Contributions

All members contributed equally for this report.

3

Table of Contents

 Page Title Pg. No

1. Cover Page………………………………………………………… 1

2. Breakdown of Contributions………………………………………. 2

3. Table of Contents………………………………………………….. 3

4. Interaction Diagrams………………………………….................. 4

5. Class Diagrams and Interface Specifications……………………… 7

6. System Architecture and System Design……………..…………. 11

7. Algorithms and Data Structures...........…………………………... 14

8. User Interface Design and Implementation...…………………... 15

9. Progress Report and Plan of Work…………………………….... 18

10. References................……………………………………………. 20

4

Interaction Diagrams

5

6

Interaction Diagram Descriptions:

When the web page is first loaded the init() function is called to initialize the map display and

create the GUI. The user fills in the form with the criteria for the traffic query and when a region

is selected the radioButtonEvent() function is called which displays the region. When a road is

selected the menuSelectEvent() function is called. When these functions are called UI processes

the input with the the processEvent() function and calls analyzeSector(). The analyzer queries

the database using getEntries() for appropriate entries which in turn uses queryTerms() to access

the database. Then the analyzer analyzes the data and calls getRoadMap() or getRegionMap()

depending on the query. The geocoder then clears the map (clearMap()), sets the view to the

road or the region (setRoad() or setRegion()), and places markers(placeMarker()).

Method Description

radioButtonEvent() Called when the user changes the radio button

options for the regions (North, Central, and

South)

menuSelectEvent() Called when the user selects a road option

from the drop-down menu.

analyzeSector () It analyzes the historical data for that sector of

the road selected and predicts the traffic pattern

for the user based on region and road selected

from the button/menu events.

getEntries() Form the database key terms based on the user

inputs and differ control to the database

interface class.

queryTerms() Interfaces with the database and returns the

database tables containing the entries matching

the user options.

Init() It initializes Google maps and displays it on

user interface.

getRoadMap() It gets the map of the road user wants to view.

getRegionMap() It gets the map of the region user wants to

view.

clearMap() It is used to clear the map of all previous

markers and roads.

setRoadMap() Sets the map returned by the geocoder to the

road specified by the user.

setRegionMap() Sets the map returned by the geocoder to the

region specified by the user.

placeMarkers() It places colored markers on the map based on

the severity algorithm with appropriate colors.

processEvent() Takes the users criteria and retrieves the

relevant traffic information.

7

Class Diagrams and Interface Specification
Class Diagrams:

Data Collection System:

User Interface System:

8

Activity Diagram for Traffic Collection:

Activity Diagram for Weather Collection:

Activity Diagram for Admin Configuration:

9

Data Types and Operation Signatures

User Interface System

UserInterface

To be determined during implementation

- processRequest()

- radioButtonEvent()

- menuSelectEvent()

Analyzer

To be determined during implementation

- analyzeRoad()

- analyzeSector()

- getRouteMap()

- getRegionMap()

GeoCoder

To be determined during implementation

- placeMarker()

- clearMap()

- setRegion()

- setRoad()

- Init()

DatabaseInteraction

To be determined during implementation

- queryTerms()

- getEntries()

As of this moment, we do not have a web server to begin implementation of the user interface

portion of the system. However, we have a clear idea of the main methods we need to implement

and foresee the above methods as absolutely essential to the user interface, data

processing/analysis and database interactions. We will be updating this section frequently once

the web server is setup and we have begun implementation of this process.

10

Data Collection System

Timer

- tParse : Traffic Parser

- wParse : Weather Parser

The timer method uses built in function and will not create new function utilized anywhere else.

It will contain instances of the traffic parser and weather parser. This design decision was made

with the consideration of portability. We can instantiate new Traffic Parsers or Weather Parsers

anywhere else without worrying about having a pre-configured hourly data collector. Now, the

callee program can instigate the collection based on other factors and events rather than just time.

Traffic Parser

- myhtml : string

- htmlTag : string

- tagCount : int

- incidentList : string

- roadName : string

- incidentDesc: string

- Latitude : float

- Longitude : float

- sock : http socket

+ parseTraffic()

- dbAdd()

Weather Parser

- myhtml : string

- htmlTag : string

- tagCount : int

- parseList : string

- cityName : string

- condition: string

- Temperature : float

- precipitationType: string

- sock : http socket

+ parseWeather()

- dbAdd()

The data collection system is currently functional. If any changes are to be made, the

corresponding updates will be made to the tables above to incorporate any additional data types

and/or methods. Currently both parsers only retrieve and parse data, if we feel that additional

functionality is needed the corresponding changes will be made to these tables.

11

System Architecture and System Design

Architecture style:

Traffic monitoring system follows client/server software architecture. There is a database server

used to save data for traffic along the route and weather. Client communicates with the database

server using the web page, which is saved in the database server. Server verifies the user criteria

and processes the request to generate result and is displayed on the web page. The architecture

has three subsystems: User Interface Subsystem, Collector Subsystem and Database. The User

Interface Subsystem is used to display the output to user. The Collector Subsystem is to collect

and parse weather and traffic data. The Database Subsystem stores the database tables for the

collected traffic and weather data.
User Subsystem has following classes associated with it:

 class UserInterface , class Analyzer , class GeoCoder , and class DataInterface.
Collector Subsystem class has following classes associated with it:

 class TrafficParser , class WeatherParser.
Benefits of Client/Server architecture in Traffic Monitoring System:

 Since data is stored on a server, it offers greater security and there will not be that many

errors in the data.

 Traffic monitoring system requires constant updates in weather and traffic data, with

client/server architecture, it is easier to access the data on server and update it rather than

constantly downloading and processing data on a local user machine.
 Client/server architecture provides ease of maintenance so that client is not affected by

server maintenance and upgrade.

Identifying Subsystems:

12

Mapping Subsystems to Hardware:

The data collected in the “Traffic Monitoring System” will be stored in a database, which will be

located in a server. In addition to the database, the graphical user interface will also be stored in

the server. The server we are going to be using to store all our data as well as the GUI is a web-

hosting service. The client will be able to access the GUI from the server and run the “Traffic

Monitoring System” on the server. The client opens a TCP/UDP socket to access and

communicate the server.

Persistent Data Storage:

The following database schemas correspond to the stored database tables for the collected

weather data and traffic data.

Traffic Database Schema

Field Name Type NULL Default

Create_Time timestamp YES 0000-00-00(date)

 00:00:00(time)

Latitude decimal(0,0) NO 0.000000

Longitude decimal(0,0) NO 0.000000

Road Name varchar(255) NO -------------

Weather Database Schema

Field Name Type NULL Default

Create_Time timestamp YES 0000-00-00(date)

 00:00:00(time)

City Name varchar(255) NO -------------

Temperature decimal(5,2) NO 0.00000

Condition varchar(255) NO -------------

The design decision to implement a database instead of a flat file arose due to performance

concerns. We will potentially have megabytes of data and the database lookup will be computed

much faster than parsing a file. We feel that once we collect significant amounts of data, the

decision to use a database will be justified.

13

Network Protocol:

In Order for the “Traffic Monitoring System” to interact with the server and the client a HTTP

protocol must be used. The same protocol is used to access “Google Maps” for the map images,

“511nj.org” to collect the traffic information, and “Weather.com” to collected the weather

information. An IPC socket connection is opened so that the server can interact with database.

We are using an HTTP protocol because it is the most commonly used protocol and it is a

standard protocol in any server as well as browser.

Global Control Flow:

- Execution Order: The execution of the Traffic Monitoring System begins with some sort

of an event, in the form of a user selecting options from the standard GUI. The User

Interface PHP class will react to the user options and begin calling respective function in

Analyzer and GeoCoder. So in our architecture User Interface is event-driven and

everything else is procedure-driven. Both of the parsers (Traffic Parser and Weather

Parser) is procedure-driven. It might seem like event-driven because of the Timer, but the

Timer itself is written by us and uses system calls to sleep and call the parsers.

- Time Dependency:The Traffic Monitoring System is a real-time program in that it does

the computations and processing when the user selects options to view statistics along a

route or statistics in a region. Naturally, there will be a delay between the user request and

the final processed display however we are very early in the implementation stage and

will measure these statistics when appropriate. The two Parsers, which primarily collect

and parse weather and traffic data are event-response. They respond to the Timer and

collect and parse data when woken up. We have initially set the delay time to 1 hour but

this can be re-configured easily buy modifying the Timer sleep time.

- Concurrency: We do not intend to use multiple threads in the User Interface or the Data

Collection systems. We assume single threads for each system.

Hardware Requirements:

 Traffic monitoring system requires user to have a minimum bandwidth of 56 Kbps

 Screen resolution of 800 x 600
 We recommend user to have Microsoft Internet Explorer 7.0 and higher, Firefox 3.6

onwards, safari 3.1 and later, Google chrome because we are using Google maps and it

supports only these web browser.
 2 GB of free disc space per month for storing historical data

 Server provides following services:

PHP, MYSQL, Python with standard libraries and Apache HTTP server.

14

Algorithms and Data Structures

Algorithms

The most important algorithm we intend to implement involves the calculations of average

traffic, severity and other metrics such as delay times, if supported. The current traffic website

(511nj.org) uses very generic descriptions and simply states whether an incident has occurred or

not. Based on these generic descriptions we need to develop a systematic way of deriving

severity and average number of incidents statistics.

1) Average Incidents Statistics: The SQL database table for traffic will contain information

(latitude, longitude and highway) which will differentiate the incidents based on the

sectors of the highway they occur on. We count the number of incidents which occur

within one sector of the highway by querying the database with the conditions, lat =

sector_lat and long = sector_long and road_name = highway being queried. Once the

matching results are gathered, we count the length of the array returned and then divide

this by the total number of incidents on the highway in question. The resulting answer

represents the average number of incidents which occurred within a particular sector of

the highway. However this does not take into account cases where a highway has

negligible traffic. If such a case is encountered then the averaging will be skewed. To

remedy this we introduce time into the averaging. This way as more days go by without

incidents the lower the calculated probability of encountering traffic. This model will

now incorporate the number of days since the data collection started. Our final statistical

averaging model will be formulated as follows:

This gives a true estimate of the traffic and takes into account the days when there is no

traffic, in order to preserve accuracy.

2) Severity: The severity of various sectors of the highway will be displayed by placing

colored markers for each sector of the highway. Determining which color is used requires

an effect algorithm which chooses color accurately and deterministically, meaning there

is no ambiguity in determining a severity. We intend to implement a scale with cut off for

color. However, this depends heavily on the data collected and the average incident

statistics (above). So we intend to address this issue once we have enough data and have

seen the outputs of the average incidents statistics for a set of data.

Data Structures

The main data structure in our Traffic Monitoring system is the database. The database will hold

all the collected weather data and all the collected traffic data. The contents of the database are

outlined in the database schema. We will be implementing lookup tables (Multi-dimensional

arrays) in order to lookup the sectors for each highway. This way we can match incidents to their

corresponding sectors. We do not anticipate any other major data structures (trees, linked list

etc.)

15

User Interface Design and Implementation

The user will select a region, time, weather, and optionally a road. Then the website will display

a map plotting markers in sectors of the roads. These sectors represent a segment of the road that

will have similar traffic conditions throughout. In rural areas the sectors are larger and they are

small in urban areas. The map will display a marker of a certain color depending on the traffic

prediction for that sector. The user interface has not changed visually since the last report.

However, now it will be implemented in PHP and not Java or JavaScript because Google maps

does not support Java.

The north, central, and south regions of NJ with pre-determined road partitions.

16

17

User effort estimation:

The effort put in by the user to get all the information required, including mouse clicks and

keystrokes. (Using an example time period of 9:00A.M.)

 NAVIGATION: Total of two mouse clicks, as follows

o Open preferred web browser to load project website

---After completing data entries as shown below---

o Click “Show Traffic” to display the traffic in the selected region.

 DATA ENTRY: Total of 5 mouse clicks and 6 keystrokes

o Click the radio button to select region to travel in.

o Press the “Tab” key to move to the text field ("Time").

o Press the keys “9”, “0”, “0”, “A”, “M” (Enter time in a 12-hour format

without the colon for nine in the morning).

o Click the drop down menu named “Weather” and select a weather condition

by clicking on a choice.

o Click on the preferred highway OR click on ALL to select all roads.

o Click the radio button to display which map the user wants to see.

Note: The same procedure was used as described in Report 1. The reason for the same

procedure is because we are awaiting approval of the ECE server to implement our website.

18

Progress Report and Plan of Work

Progress Report:

- All the use cases, Traffic and Weather Collection, are functional. They have been through

an implementation test period and are functioning as per planned.

- The group is awaiting the approval of an ECE server. All the use case(s) implementation

and data collection will be set-up once all information has been migrated to the provided

server.

- The group has decided consensually to use php to program/code all necessary database

collection methods. We are all simultaneously working on tutorials on learning this

language as well as programming the collection methods.

Plan of work:

Breakdown of Responsibilites:

- All group members will perform testing of the integrated system.

- All group members will coordinate the integration.

- At the present moment:

o Aditya Devarakonda has been working on the database interface, traffic and

weather parsers and the timer. This part of the program deals with data collection.

o Vladimir Samokhin is working on the GUI. This part of the program deals with

taking the user input(s) and transmitting each input to the appropriate classes and

methods in order for data analyses to begin.

o Sanket Wagle is working on creating the analyzer module class. This part of

program deals with traffic prediction.

3/8 3/15 3/22 3/29 4/5 4/12 4/19 4/26 5/3

Database Collection

User Interface GUI Design/Implementation

Integrate User Interface GUI with Collection System

Migrate All data to provided Server

Develop Statistical Averaging Model for Traffic Pattern

Report 3

Map Navigation Running

Project Fixes after First Demo

19

o Akhilesh Maddali is working on creating the geocoder module class. This part of

the program deals with taking user inputs and translating the selected region into

latitude and longitude. This helps in the data collection.

o Vamshidhar Chilukamari is working on the database interface. This part of the

program helps in interaction between all the methods and the database for

collection all necessary data.

20

Resources

- Gantt Chart Tutorial video on youtube:

http://www.youtube.com/watch?v=HQwE0Xv1lAA&feature=relmfu

- Google Maps API: www.code.google.com/apis/maps/index.html

- Weather information: www.weather.com

- Traffic Information: www.511nj.org

- PHP Tutorial: www.w3schools.com/php/default.asp

- SQL Database documentation: www.mysql.com

- PHP 5 for Dummies by Janet Valade

http://www.youtube.com/watch?v=HQwE0Xv1lAA&feature=relmfu
http://www.code.google.com/apis/maps/index.html
http://www.weather.com/
http://www.511nj.org/
http://www.w3schools.com/php/default.asp
http://www.mysql.com/

