
0

Rutgers University Investing

Report #3

Group Members:

Daniel Su Thanh Do Huu Micah Moore

Jason Scatena

Basak Takimci

Boris Hazanov Tam Duong

1

Table of Contents

1 Table of Contents

 2-3 Responsibility Matrix and Allocation Chart

4 Summary of changes

5-7 Customer Statement of Requirements.

8-9 Glossary

10-16 System Requirements

18-21 On Screen appearance requirements

25-31 Use Cases

32-40 User Interface

41-44 User effort estimation

45-49 Domain Model

50-54 Concept Definition

55 Tractability Matrix

58 Interaction Diagrams

65 Design Principals

67 Class Diagram and Interface Specifications

70 Domain Model

71 OCL

75 Architecture Styles

77 Mapping Subsystems to Hardware

79 Persistent Data Storage

83 Algorithm and Data Structure

 84 User Interface Design

 94 Test Cases

 100 Integration Testing

103 History of Work

104 Current Status

105 References

2

Daniel
Su

Jason
Scatena

Micah
Moore

Boris
Hazanov

Tam
Duong

Thanh Do
Huu

Basak
Takimci

Summary of Changes (5) 20% 20%

60%

CSR (6) 50% 50%

Glossary of Terms (4) 100%

System Req. (6) 100%

Functional Req. (30) 50% 50%

Effort Estimation (4) 50% 50%

Domain Analysis (25) 50% 50%

Interaction Diagrams (40)

 50% 50%

Class Diagrams (20) 50% 50%

System Architecture (15)

 100%

Algorithms and Data
Structures (4)

100%

UI Design and
Implementation (11) 31.8% 50%

 18.2%

Design of Tests (12) 50% 50%

History of Work (5) 100%

Project Management (13)

100%

Point allocation:
Daniel Su: 1+15+12.5+5.5 = 32
Jason Scatena: 1+15+12.5+5.5 = 34
Micah Moore: 4+20+10 = 34
Boris Hazanov: 2+20+10 = 32
Tam Duong: 3+6+2+6+5 = 22
Thanh Do Huu: 3+15+4 = 22
Bassak Takimici: 3+6+13+2 = 24

3

0

5

10

15

20

25

30

35

40

Daniel Su Jason
Scatena

Micah
Moore

Boris
Hazanov

Tam
Duong

Thanh Do
Huu

Basak
Takimci

Point Allocation

Point Allocation

4

Summary of Changes

 Added effort estimation

 Modified the domain analysis to reflect changes in the design of our buying and

selling system

 Modified the interaction diagrams to reflect our switch to the broker design pattern

 Created new classes in the class diagram to reflect the change to a broker design

pattern

 Updated the user interface design to reflect changes made during development

 Changed Plan of Work to History of work

 Described the current status of the project and future work that we did not get the

chance to implement.

 Added new references

5

Customer Statement of Requirements

Problem Statement

To Whom It May Concern,
 As you no doubt know already, your team has been contracted to develop a stock
market fantasy league software system for the Rutgers School of Business. Our
department has decided to pursue this venture as a means of furthering our mission:
“Rutgers Business School serves New Jersey and the world by cultivating business
knowledge, ethical judgment, and global perspective in our students, scholarship, and
society through innovative research and teaching and robust partnerships with
businesses across our diverse communities.” We have decided that the best way to
“cultivate business knowledge…and global perspective” in our students is to employ a
stock market game.

There is great value in experience, especially in a topic such as investing in the
stock market. The complexity of reading the market and making wise investments makes
first-hand experience an extremely valuable learning tool. Students often times don’t have
disposable income that they can afford to risk playing the market. In order to address this,
the concept of a stock market game has come about, in which contestants are given a set
amount of fictional money to “invest” in real stocks. At the end of the game, the participant
with the most money wins. While disguised as a game, this activity provides students of
finance an opportunity to make use of concepts learned in class and hone their abilities.
The financial industry has changed considerably in recent times. While a trader a mere 20
years ago would rely on television, newspapers and telephones to gather market
information traders today have the entire internet at their disposal. The birth of the modern
web has allowed the populace to become generators of media in addition to consumers. It
is now more possible than ever to gauge public opinion on companies and products. A
myriad of online services exist that will allow a user to set up a stock market game at no
cost. None of these other services, however, stress the importance of using the modern
internet and social media as an information gathering tool. A stock market game that
addresses this can better prepare students for real life trading. This can be done by
building a stock market game service that integrates, at it’s very core, tools to make sense
of the flood of information being posted to social media at all times. To not train students
to use such a readily available source of pertinent information, would put our them at a
major disadvantage.

In order for a stock market game to be usable, certain key functionalities will need
to be included. There are three main roles users of our system will take: system
administrator, league administrator, and player. The role of system administrator should
be designed so that it can be undertaken by a professor or a member of the department
who is assigned this extra responsibility. Whomever this role falls upon will, obviously,
need a working understanding of the system at a fairly low-level since they will be the first

6

resource in the event of a system malfunction. We understand that this role, in it’s nature,
requires a fairly large base of knowledge. We expect your team to either train personally,
or provide documentation for the benefit of that individual. The system administrator will
manage day to day activities relating to the hosting of the system, updates to the system,
adding and removing league administrators, and monitoring system resource usage.

Each professor, that teaches one or more sections of a relevant course, will take
on the role of league administrator. Extensive computer literacy cannot be assumed, and
as such the user interface must put a heavy focus on being intuitive and easy to use.
From this interface the professor must be able to control the entire game for his class
sections. He or she will be able to manage player interaction, help players troubleshoot
issues they may encounter, create a new league, and manually add or remove player
accounts. The professor will have tools at his or her disposal that allow him or her to gain
a big picture overview of the league. For example leaderboards and other league
statistics. The league administrator will also be able to adjust rules and policies for his or
her specific league so as to help it align more closely with the course syllabus.

Students will take on the role of system player. To avoid unnecessary work on the
part of the league administrator, the system should allow players to register a new
account and join the appropriate league with no administrator interaction. When a player
accesses the web interface they will be presented with the functionality needed to
research, buy, and sell stocks. The players will need to have options for data visualization
and statistics tracking. A host of options for alerting the player of pertinent information
using products they are already comfortable with should be explored, such as: twitter,
SMS, and email.

As primarily an education tool, the game must attempt to train student players to
best make use of the resources available to them. The market value of a company isn’t
exclusively based on how they are doing economically; public opinion greatly influences
stock prices. As of last summer, twitter had over 210 million active users. The flood of
tweets posted daily act as a free source of market research giving a survey of public
opinion. Using this freely available market information, we want students, using our
system, to be able to make use of functionality unavailable in previous stock market
simulations and become more broadly informed investors.

We would like you to build a system that gives players a twitter-sourced sentiment
score for all the stocks in their portfolio. In addition, players should be able to manually
ask the system to watch the sentiment of prospective stocks. To further improve the
player’s experience, the game should also allow players to follow certain organizations,
groups or fields of interest using public twitter accounts. The goal of this feature is to
quickly and accurately inform players of recent changes in stocks that they own or are
researching. This information will help players make informed decisions, using the public
opinion of a company’s success, as opposed to solely the news and financial data
available through more traditional media.

In order to make the system easily accessible, we would like to make the game a
web application, not requiring professors or students to download and install anything to
their personal devices. Professors and students should interact with the game through a
pragmatic and clean web interface that looks good and is easily usable across a host of
devices. We would like this interface to be hosted on a server owned by the department

7

and handled by the system administrator. We expect the interface to provide access to all
the functionality of the system in a clear and intuitive way.

The functionality we expect from this system can be summarized as follows:

 For every user
o Pre-login info page
o Login
o Registration
o Account management

 Change password
 Change contact information

 For the system administrator
o Add or remove professors as league administrators
o View system usage statistics
o Manually reset user passwords

 For the League administrators
o Start, manage and end a league
o Set league rules and policies

 starting capital
 start date
 end date
 league name

o Manually add or remove players
o View league statistics

 For the Player
o View their portfolio
o View competitor portfolios through a profile page
o Initiate market orders

 Short
 Cover

o Initiate conditional orders
 Stop orders
 Limit Orders

o View twitter feeds of relevant organizations
o View twitter sentiment scores of various organizations
o View stock price history of any public company
o view leaderboard and other league statistics
o Communicate with league administrator
o Access public league chat room

We are looking forward to seeing the system that your team develops and encourage you
to contact us if you have any questions or updates.

Regards,
The Rutgers School of Business Development Board

8

Glossary of Terms

Stock Market League - A market simulation that allows users to practice trading and learn
how the market works

Stock - A type of security that represents a claim on part of corporation’s assets and
earnings

Ask Price - The minimum price that a seller or sellers are willing to receive for the security

Bid Price - The maximum price that a buyer or buyers are willing to pay for a security

Ticker Symbol - A stock symbol or ticker symbol is an abbreviation used to uniquely
identify publicly traded shares of a particular stock on a particular stock market

User Groups:

Player - A standard user that participates in the leagues and has control over their
personal profile and settings

League Administrator - The league administrator manages leagues that they have created
and the players that participate in those leagues

System Administrator - The system administrator is the super user who has the highest
privileges and can manage all other users as well as system settings

Orders:
Market Orders (Immediately executed):

9

Buy Order - An order to purchase a specific amount of stock

Sell Order - An order to sell a specific amount of stock

Short Order - An order where a sell is performed using borrowed stocks. The trader then
expects the value to decrease and to profit by performing a cover order to return the
loaned stocks at a lower price

Cover Order - An order where a buy is performed in order to cover / return stocks that
were previously loaned to the trader

Conditional Orders (Executed on met condition):

Stop Order - An order that activates only when the security you want to buy or sell
reaches the stop price

Limit Order - An order that sets the maximum or minimum at which to buy or sell a stock

*Limit orders guarantee the trade will be made at particular price while a stop order does
not

Below is an image that allows better understanding of these terms

Additional information can be found at http://www.investopedia.com/

System Requirements

Functional Requirements

10

PW = Priority Weight (from 1 to 5)

ID PW Requirement

REQ-1 5 The system will provide an information page pre-login.

REQ-2 5 The system will allow users to log-in.

REQ-3 5 The system will provide a registration page for new users.

REQ-4 5 The system will allow users to change their password.

REQ-5 4 The system will allow users to change their contact information.

REQ-6 5 The system will allow the system administrator to add or remove
professors as league administrators.

REQ-7 5 The system will allow the system administrator to view system usage
statistics.

REQ-8 5 The system will allow systems administrator to manually change a user’s
password.

REQ-9 5 The system will allow to the league administrator to start, manage and
end a league.

REQ-10 5 The system will allow to the league administrator to set league rules,
including:

 Starting capital.
 Start date.
 End date.
 League name.

REQ-11 4 System will allow league administrator to add/remove players within their
league manually.

REQ-12 3 System will allow league administrator to view leagues statistics.

REQ-13 3 System will allow to each user view his statistics.

REQ-14 3 System will allow to each user View competitor portfolios through a profile
page

11

REQ-15 3 System will allow to each user Initiate market orders such as:
 Short
 Cover

REQ-16 2 System will allow to each user Initiate market orders such as:
 Stop orders
 Limit Orders

REQ-17 3 The system will allow users to View twitter feeds of relevant organizations

REQ-18 2 The system will allow users to View twitter sentiment scores of various
organizations

REQ-19 3 The system will allow users to View stock price history of any public
company

REQ-20 2 The system will allow users to View leaderboard and other league
statistics

REQ-21 5 The system will allow for low latency real-time trades

REQ-22 5 The system will allow for scalability

12

Analysis on REQ-22

Stock market simulation systems done by previous groups all had one thing in common.
They utilized the HTTP protocol to accomplish market orders. While this works fine in
small scale deployments, when these systems are rolled into high volume environments,
they will start to require massive costs to maintain. What we are proposing is to use a
WebSocket implementation that reduces the overhead for each trade from up to kilobytes
of data, down to just a few bytes. With a high enough volume of trading, this
implementation can save a very significant amount of money.

http://blog.kaazing.com/2010/02/24/5-signs-you-need-html5-web-sockets-part-2/

13

Analysis on REQ-21

By using the WebSocket implementation, we also reduce the latency response down.
This can have huge ramifications for a high frequency trading simulation.
InformationWeek (http://www.informationweek.com/wall-streets-quest-to-process-data-at-
the-speed-of-light/d/d-id/1054287) estimates that 1ms of latency can be worth up to $100
million per year to a major brokerage firm. The quest for low latency is so high, that firms
are willing to lay down private fiber lines to improve latency response by just
microseconds. (http://spreadnetworks.com/press-releases/10-04-2012-latency-
improvements/)

While our implementation is not to conduct real world market trades, a low latency
response does allow for more simulation options.

Below are simulations on the two different protocols that demonstrates the advantage of
WebSocket

http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287
http://spreadnetworks.com/press-releases/10-04-2012-latency-improvements/
http://spreadnetworks.com/press-releases/10-04-2012-latency-improvements/

14

15

16

Non Functional Requirements

Functional
The big three web browsers will be supported so compatibility with a majority of users will
be achieved. User security will be a major priority with features for authentication and
encryption for sensitive data such as passkeys.

Usability
We will focus on providing a clean and consistent interface through CSS that will appeal
to the user. AJAX will also be used to allow for immediate responses for user actions.

Reliability
Users will be given a confirmation message for sales transactions to allow for detection of
user error. Error messages will be displayed to the user to notify failure of completing the
proposed action.

Performance
There will be a focus on scalability and an efficient system for passing message between
the client and the server (ie. for transactions).

Supportability
The front end will support access from mobile devices or devices with smaller resolutions.
Maintenance support is also included through the admin control system.

 PW = Priority Weight (from 1 to 5)

ID PW Requirement

REQ-23 3 Inter browser compatibility

REQ-24 5 User Security

REQ-25 2 Graphical Design

REQ-26 4 Responsiveness

REQ-27 3 Error Response

REQ-28 4 Scaling and Efficiency

REQ-29 3 Front End Interface

REQ-30 4 Maintenance Control

17

On-Screen Appearance Requirements

The on screen appearance design will primarily cater to those with a laptop and desktop
system, for resolutions of 720p and greater. There will also be support for handheld and
tablet devices through the use of responsive CSS in order provide these users with a
functional interface. Dynamic data loading through JavaScript will also be used in order to
minimize wait time for the user.

Technologies used will be restricted to those that are universally compatible. Flash and
Java will not be utilized due to their limited compatibility and massive resource drain.

ID PW Requirement

REQ-31 3 Responsive CSS / Cross Device Compatibility

REQ-32 4 Rapid dynamic data updates

18

Home page

19

Signup Page

20

User’s Page

21

Functional Requirements Specification

Stakeholders:

Internal stakeholders:

 Owners: people who legally have the right to possess the web application. Owners’
goals is contributing the software to multiple universities across the world, keep low
cost maintenance and customer satisfaction.

 Managers: person who is in charge of affairs, , resources and expenditures of the
web application. They interests include performance, growth, customer
satisfaction, profit, cost, employees, and demand.

 Employees: person who is in charge of maintaining the web application, they will
provide support to system administrators (university professors) , they will perform
software updates to minimize troubleshooting. Their interests are reliability,
working conditions, salary, working hours, job security, and benefits.

External stakeholders:

 Customers (Universities, students and professors): A person who is registered in
the web application and creates his own stock portfolio, a system administrator
(professor) can register without having stock portfolio and universities that will host
the web application on their web page. . The customer’s interests include software
value, quality, reliability and service.

 Advertisers: An academic institute who calls the attention of the students to
participate in daily activities. Finance companies who want to address students.

 Advertiser’s interests are number of customers, detecting leading players.

 Ministry of Education- The executive policy making body in the United States.
Ministry of education goal is to provide better finance studies platform in
universities without putting in risk student money.

 Competitors: A company providing the identical products to universities. Their
interests include profit, demand, customers and quality.

 Stock Researcher: An individual who researches the human behavior in the field of
investment in stocks. His or her interests include investors, human behavior, and
investing strategies.

22

 Actors and Goals:

 User: Any student which enrolled to Finance class.
 Type: Initiating
 Goal: Create an account

 Investor: A student who is authenticated using the login system and is interacting
with the system, portfolio.

 Type: Initiating
Goal: Login,join a league, monitor stocks and portfolio, buy and sell.

 League Administrator: Class professor who is authenticated using the login
system and is interacting with the system.
Type: Initiating.
Goal: Login,create new league, monitor students portfolios, create and delete
accounts.

 Yahoo Finance: The external source where real-world stock quotes are obtained at
periodic time intervals.
Type: Participating
 Goals: None.

 Database: A place where information about the various stocks such as price
quotes,ticker symbols, and market name, are stored. Also, it stores a list of
investors currently part of the system and their settings such as user id,
passwords, email address, and other personal details.
Type: Participating
Goal: None.

 Email Server: A machine responsible for sending messages to investors via E-mail
and SMS.

 Type: Participating
 Goal: None.

 Advertiser: An individual who interacts with the system through a user account and
posts university related activities. Finance companies who interacts with the
system through a user account and posts job openings.
Type: Initiating

23

Goals: Login. Post Advertisements. Remove Advertisements.

24

Use Cases

UC-1: Register -- Allows a student to register an account and enter a game by filling out a
form and entering a class code given out by a professor/league administrator
Derived from REQ-3

UC-2: Make Trades -- Allows a player to initiate trade orders, the system will then respond
appropriately based on market conditions and status
Derived from REQ-15 & REQ-16

UC-3: Setup League -- Allow a league administrator to start a game and initialize settings
Derived from REQ-9 & REQ-10

UC-4: View Profile -- Allows all users in a league to view the profiles of all other players in
the league.
Derived from REQ-13 & REQ-14

UC-5: Manually add player to League -- Allow a league administrator to manually add a
student’s account.
Derived from REQ-11

UC-6: Player Joining a League -- Allow a student account to join a league using a
password supplied to them by their teacher, the league administrator.
Derived from REQ-11

UC-7: View League Stats -- Allow a player to exam a statistics and leaderboard page for
the league they are in.
Derived from REQ-20

UC-8: Twitter Research -- Allows a user to make use of twitter streams for market
research through a custom tool.
Derived from REQ-17 and REQ-18

25

26

Req’t PW UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

REQ1
REQ2
REQ3
REQ4
REQ5
REQ6
REQ7
REQ8
REQ9
REQ10
REQ11
REQ12
REQ13
REQ14
REQ15
REQ16
REQ17
REQ18
REQ19
REQ20
REQ21
REQ22

5
5
5
5
4
5
5
5
5
5
4
3
3
3
3
2
3
2
3
2
2
1

X
X
X
X
X

X

X
X

X
X

X
X

X
X

X

X

X

X
X

X

X
X

MAX PW

5 5 5 3 4 5 3 3

Total PW

25 20 10 6 4 9 8 5

27

Use Case UC-2: Make Trades

Related Requirements: REQ-10, REQ-15, REQ-16
Initiating Actor: Player
Actor’s Goal: Initiate a trade of some sort in a simulated stock market
Participating Actors: Database, Finance API
Preconditions: Player is a registered student
Successful End Condition: Database is updated to reflect portfolio and capital
changes
Failed End Condition: Player is notified their trade could not be made and is not
charged
Extension Points:

Flow of Events for Main Success Scenario
 include::Login (UC-XX)

← 1. System displays an interface for the player to enter a stock ticker, share
amount and select a market order type
→ 2. Player makes their selections on the market order screen
← 3. System polls the Finance API for market status
→ 4. Finance API indicates last known market price for ticker and market status
← 5. System writes trade to database, completing it if market is open and user
has enough money (charging users account and adding to their portfolio). If market is
closed it adds it to a pending trades list, to be completed when the market is open.
← 6. System outputs to display indicating to player the status of their trade.

Flow of Events for Extensions (Alternate Scenarios):

step 5a: User didn’t have enough money
← 6. System indicates to user that they had insufficient funds through main

28

display and informs them the market order could not be made.

step 4a: Finance API couldn’t be reached
← 6. System emails system administrator informing them of the error. Then
indicates to user that stock prices are temporarily unavailable, and ask if they want to
leave order pending or cancel it.
→ 7. User chooses one of two options.
← 8. System either cancels order or adds it to pending list on server.
← 9. System indicates to user that it has completed their choice successfully

Use Case UC-5: Administration- Manually Add Player to League

Related Requirements: REQ-11
Initiating Actor: League Administrator (LA)
Actor’s Goal: Add a player to the league
Participating Actors: Database, Player
Preconditions: Player exists
 Player is not in league database
Successful End Condition: Player is added to league database

Flow of Events for Main Success Scenario:
← 1. System notifies league admin of add request and provides the player’s profile
and ID
→ 2. LA goes to the admin panel of the requested league, inputs player ID into
“ADD PLAYER” functionality and submits
← 3. System verifies player ID is valid and sends player a join league request.
→ 4. Player verifies request
← 5. System enrolls player in the specified league, and notifies LA of confirmation

Flow of Events for Extensions (Alternate Scenarios):
2a. LA inputs invalid player ID
← 1. System detects invalid ID and displays an error

29

2b. LA inputs valid player ID that is already enrolled
← 1. System detects player is already enrolled and displays an error

4a. Player denies request
← 1. System notifies LA of rejected request

Use Case UC-6: Player requests to join league

Related Requirements: REQ-21
Initiating Actor: Player
Actor’s Goal: Automatically enroll in specified league
Participating Actors: Database, League Admin
Preconditions: Player is logged in
 Failed password attempts is zero
Successful End Condition: Player is added to league database

Flow of Events for Main Success Scenario:
← 1. System queries user for league ID
→ 2. Player inputs a league ID
← 3. System verifies league ID and queries user for league password
→ 4. Player inputs a league password and confirms action
← 5. System verifies password and enrolls player in league

30

Flow of Events for Extensions (Alternate Scenarios):
2a. Player enters invalid ID
← 1. System detects invalid ID, displays error, and prompts for re-entry of league
ID

2b. Player enters valid ID, however is already enrolled in league
← 1. System detects valid ID and erroneous request. Error message is displayed

4a. Player enters invalid league password
← 1. System detects invalid password and gives the player the following options
 - Re-enter league password
 - Message League Admin for Administrative Manual Add

 ← 1a. System detects failed password attempts has reached limit.
 - The event and offending player info is logged.

 → 1b. Player re-enters league password, return to main success state 3

 → 1c. Player request to contact league Admin
 ← a. System provides player with request form
 → b. Player writes and submits message

 c. Refer to Use Case 5

31

User Interface Specification

Preliminary Design

UC1 - User Registration:

For the first time user, they can click Signup on the welcome page which redirects him/her
to the signup page.

32

The player enters his/her first and last name, desired user name, email and password
(and verify). The player will also be given a league code by the league
administrator. The player must click the: I have read and agree with the terms and
conditions before enabling the signup button. Alternatively the player can click signup
with Facebook or signup with twitter, and the first 7 fields will be swapped with just their
Facebook login and password.

33

When the league administrator signs up, he/she will enter the identical information to a

player, but leave the league code blank, and click the box “I have a league admin code”,

which will bring up another text box field ‘League Admin Code’, in which he/she will enter

the league administrator code given to them by the system administrator. This will entitle

the league administrator to be a super user and have access to the extra administrative

options.

UC-2: Make Trades:

The player can make purchases by selecting PORTFOLIOS/ BUY tab. In the Buying
page, they can search for a stock by typing its name into the search box. Clicking the B
button on the left of the result will make the program receive the information of the stock.
Player will then proceed with the transaction by typing in the amount they want to buy.
Finally they can either make an immediate order by clicking “Trade for a total of __” button
or select “Place this order as a Stop/Limit order” which they can later view in transaction
history.

34

Similarly for Selling, players can click the “S” button left to an owned stock to sell them.
They can trade it immediately with the market price or place a Stop/Limit order with an
additional fee

UC-4: Allows all users in a league to view the profiles of all other players in the league.

35

Once the player has logged in they can click the league tab on the left then select “View
My League” button, which will bring up the current league admin’s name, the league id,
the start and end date of the league, and rankings of all the players in the league. Aligned
with each of these players will be a button to view their individual profile. Whichever
profile button is selected, that players profile will be displayed underneath the
rankings. This profile will contain the players ranking, their total funds, their largest day

36

for gain/loss and a graph of their overall performance for the whole league period. By
default the league leader’s profile will be displayed when the league page is first loaded.

UC-3: Setup League -- Allow a league administrator to start a game and initialize settings
Since a league can have a large number of member, say 100 for a class, having a
member’s profile displayed at the bottom of the page may give the admin a frustrating
experience, especially moving back and forth viewing different users’ profile(player 30
and player 70 for example). Instead, i suggest that the profile button will lead the user to
the player’s profile page in which they can see the mentioned profile in details

Selecting Manage League/Members , the league admin can get an overview of the
league’s members, he/she can view any member’s profile by click the profile button next

37

to the member on the member’s list. The admin can also find a specific player quickly by
typing the name into the search box.
The league’s admin can also invite people to join the league by typing the player’s
username into the box next to invite. There is a pending list which list the players that
want to join the league, the league admin can either accept or reject the request by click
the corresponding button. (this seems to meet UC-5)

And if the league admin wants to change the league’s name, privacy, membership

approval setting and write a description for the league, he/she can choose the setting tab.

38

Use Case UC-6: Player requests to join league

Players can also request to join a league by first searching for the league using its name
then click the “Request to join” button next to the result to send the request

User Effort Estimation

39

1. Sign Up: 4 mouse clicks, 86 keystrokes
a. Click Sign Up on the right corner of header
b. Data of Users : 20 keystrokes of first name and last name, 10 keystrokes of user name,
15 keystrokes of email,15 keystrokes of verify email, 11 keystrokes of password, 11
keystrokes of verify password.
c. Click League admin code
d. Input the league admin code, 4 keystrokes
e. Click to agree with terms and conditions
f. Click sign up to be done.

2. Login: 1 click, 21 keystrokes
a. Click Login on the right corner of header
b. 10 keystrokes of user name, 11 keystrokes of password.

3. League Portfolio: 2 clicks, 10 keystrokes
a. Click Portfolio at home page on left side.
b. put amount of shares want to sell/buy
c. click confirm what we did.

4. Setting: 2 clicks,
a. Click Setting at home page on left side
b. Click parts you want to setting.

5. Trade: 2 clicks, 10 keystrokes
a. click the company
b. choose buy/sell
c. put amount of shares you want to buy/sell, 10 keystrokes
d. click confirm

6. Profile: 1 click
a. click profile to see information
b. Edit information

7. Create new League: 2 clicks, 15 keystrokes
a. Click League tab
b. Enter league name
c. Click confirm

UCP = UUCP * TCF * ECF

40

Where UUCP = UAW + UUCW

Unadjusted Actor Weight:

Actor Name Description of Relevant Characteristics Complexity Weight

Admin User Admin user is using administrative web pages to
interact with the system which is a form of GUI

Complex 3

Player User The player is using the standard web pages of our
application to make trades, a GUI

Complex 3

Yahoo!
Finance

The service is accessed for market data using a
provided API

Simple 1

MySQL
Database

Database is interacted with through a database
protocol

Average 2

Twitter Twitter is accessed through a provided API Simple 1

UAW = 2*complex+1*average+2*simple = 2*3+1*2+2*1 = 10

Unadjusted Use Case Weight:

Use Case Description Complexity Weight

Register (UC-1) Simple user interface. 5 steps to main
success. 3 participating actors

Simple 5

Make Trades (UC-2) Complex user interface. 15 steps to main
success. 4 participating actors

Complex 15

Setup League (UC-3) Complex user interface. 10 steps to main
success. 3 participating actors

Complex 15

View Profile (UC-4) Moderate user interface. 4 steps to main
success. 2 participating actors

Average 10

Manually Add Player to
League (UC-5)

Simple user interface. 3 steps to main
success. 2 participating actors

Simple 5

Player Joining a League
(UC-6)

Moderate user interface. 7 steps to main
success. 3 participating actors

Average 10

View League Stats
(UC-7)

Moderate user interface. 7 steps to main
success. 2 participating actors

Average 10

Twitter Research (UC-8) Complex user interface. 15 steps to main
success. 3 participating actors

Complex 15

UUCW = 3*complex+3*average+2*simple = 3*15+3*10+2*5=85

Therefore:
UUCP = UAW+UUCW = 10+85=95

41

Technical Complexity Factor

Technical
Factor

Description Weight Perceived
Complexity

Calculated
Factor

T1 Distributed due to web based nature 2 3 6

T2 Good performance is critical in order
for trades to be accurate

1 4 4

T3 End-user expects efficiency but there
are no exceptional demands

1 3 3

T4 Significant complexity in trade
processing and twitter integration

1 4 4

T5 No reusability requirement 1 0 0

T6 Not very important only done once 0.5 2 1

T7 Very important since it is targeting
non technical users

0.5 5 2.5

T8 Must work across a wide range of
browsers and devices

2 4 8

T9 Must be easy to upgrade 1 3 3

T10 Concurrent use is required 1 5 5

T11 Security is of reasonable concern 1 3 3

T12 No third party usage 1 0 0

T13 No significant training necessary 1 2 2

TCF = 0.6+0.01*41.5=1.015

Environmental Complexity Factor

Environmental
Factor

Description Weight Perceived
Impact

Calculated
Factor

E1 Unfamiliar with the development
process; all first timers

1.5 0 0

E2 Very little familiarity with the
stock market

0.5 1 0.5

42

E3 Moderate knowledge of Object
oriented approach

1 2 2

E4 First time lead analyst 0.5 0 0

E5 Motivated within reason of other
assignments

1 2 2

E6 Requirements evolving with time 2 3 6

E7 Team entirely consist of part time
workers

-1 5 -5

E8 Programming languages used
are complex and unfamiliar

-1 4 -4

ECF = 1.4+(-0.03*1.5) = 1.355

UCP = UUCP*TCF*ECF = 95*1.015*1.355 = 130.66

Project Duration = UCP*PF = 130.66 use case points *28 hours per point = 3,658.36

43

Domain Model

Domain Analysis

Figure 1: Domain Model

This is our general domain model which shows important objects and their interactions
with others.

44

Figure 2 - Make Trade Model

Figure 2 represents our UC-2 Make Trades. When a player make a trade order on the
web page, the order is sent to the controller, which directs the request to Validity Checker
to check whether the request is valid and the player has enough funds or has enough
stocks to sell. If all of above conditions are met, the validity sends a request to Data
Handler to make the transaction by updating the player’s data. The controller notified by
Validity Checker that the transactions are made successfully, then send the updated data
about player to Page Renderer to generate updated info displayed on user’s web page.

45

Figure 3 - Register/Login Model

Figure 3 represents UC-1 Register/Login
Register: Player fill in the form and send a register request through web page to the
Controller. The Controller conveys the request to Player Handler, whom first verifies
player’s data validity and availability before sending creating new profile request to data
handler. After the data processing processes are finished, the result is sent to the
controllers whom relay the data to Page Renderer to generate a page displayed later on
Player’s web page.

Login: Similar to Register, player fills in form and sends a login request to controller.

Controller relay the request to Player Handler to verify username and password. If the

player typed in the

correct combination, the player is granted access to the system.

46

Figure 4 - League Model

Figure 4 represents UC-3 Setup League. To create a new league, the administrator (user)
fill out a form then send the form via web page to controller. The controller replays the
request to create a new league to League Handler, whom checks the validity) of the info
(by comparing with data from database with help of Data Handler, then request an update
in data. If the creating new league process is successful, the administrator will receive the
updated info on web page with the data generated using page renderer

47

.

Figure 5 - View Profile Model

Figure 5 represents UC-4: Viewing player’s profile. The player first sends the request to
the system through Web Page. The request is directed to Controller. The Controller then
request profile info from Data Handler. Data Handler conveys the request to Database
and receive data back. The data is later sent to Page Renderer to Render the web pages
contain for the player.

48

Concept Definitions

Player:
Definition: Somebody who wants to interact with the system
Responsibilities:

 Research stocks
 Request trades
 Manage Portfolios
 Manage League (League Administrator only)
 Navigate through website
 Request League info/ Player profile

Web Page:
Definition: a web document that is suitable for the World Wide Web and the web
browsers.
Responsibilities:

 Receive player requests
 Send requests to Controller
 Send request for pages to PageRenderer
 Receive pages from the PageRenderer
 Pass data to the browsers to display to players

Page Renderer:
Definition: objects that process player’s requests and render web pages from data
accordingly
Responsibilities:

 Receive page data from the controller
 Process the data into easily viewable format
 Send the results to the Web Page

Controller
Definition: Objects that control the operations of the system base on the player’s requests

http://en.wikipedia.org/wiki/Web_document
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser

49

Responsibilities:
 Receive player’s requests from the web page
 Send the page data to the Page Renderer
 Request/Receive Player Data from the Player Handler
 Send/Receive updated data to the Data Handler
 Send the player’s input to the Input Handler to verify

Validity Checker
Definition: Objects that test whether the inputs/ requests are valid before send the
requests to other objects
Responsibilities:

 Receive requests/ orders from Controller and Verify them
 Send the requests/ orders to Stock query or Database handler depend on the

requests/orders

Stock Query
Definition: Objects that fetch real-time stock info along with sentiment results
Responsibilities:

 Receive stock data request from Validity Checker
 Request/Receive stock data from stock data provider

Data Handler
Definition: Objects that deal with data related processes
Responsibilities:

 Receive requests and send data to controllers, League Handler and Player
Handler

 Send request, retrieve and update data in database

League Handler
Definition: Objects that handle league related processes
Responsibilities:

 Receive league related requests and verify them
 Send requests to database handler
 Receive data from data handler

50

Stock Data Provider
Definition: Sources of real-time stock data that is accessible by the system
Responsibilities:

 Receive requests from Stock Query
 Send Data to Stock Query

Association Definitions

Concept Pair Association Description Association
Name

Web Page ↔
Controller

Web page sends the user request to the
controller to be processed and
distributed. Controller sends return to web page
to signify completion of process.

Send user
request,
return

Web Page ↔
Page Renderer

When the web page is signalled by the controller
that the controller is finished processing the user
request, the web page signals the page renderer
to request the page. The page renderer sends
the rendered page to the web page to be
displayed.

Request
page, send
page

Controller→Page
Renderer

Controller sends requests to Page Renderer Convey
requests

Controller ↔
League Handler

The controller sends the data inputted by the
user (in this case a league admin) to the league
handler to verify the validity (Correct data types,

Verify fields,
Return fields

51

valid dates etc.) and checks that it doesn’t
conflict with other previous leagues in the
database (conflicting league names for
example).

Controller ↔
Player Handler

controller sends requests for player data, send request,
receive data

Controller ↔ Data
Handler

controller sends data requests from players to
data handler and receive data back from data
handler

send request,
receive data

Data Handler ↔
Database

Request and retrieve data from database, store
data

Convey
requests

Validity Checker ↔
Stock Query

Validity Checker send validated requests to
Stock Query and receive stock data back

Request data

Stock Query ↔
Stock Data
Provider

Stock Query passess request to Stock Data
Provider and receive back stocks data

Convey
requests

Attribute Definitions

Concept Attribute Meaning

PageRenderer sufficientRenderData Used to determine whether
the data retrieved is sufficient
to generate web pages

InputHandler inputValid Used to determine whether
the player’s input is valid(no
special characters,
appropriate length)

DataHandler databaseHandle Communicates back and forth
between the database to

52

handle requests.

Validity
Checker

fieldsValid,fundsValid,tradeSuccess Used to determine if the input
fields are valid, if the player
has enough funds to make the
purchase and whether the
trade is a success.

PlayerHandler accountInformation Player name, Role(whether
the user is a league
administrator), funds,
transaction history,
performance

LeagueHandler leagueInformation League’s name, members,
status

53

Traceability Matrix

System Operation Contracts:

UC-1: Register:

 Preconditions:
-Players who have code given out by professor/league administration

 postconditions:
- Users have portfolio which contains users’ information in the database

Operation: Joining a league
 Precondition:

- The league exists
- The player has the league’s password

54

Postcondition:
 - Player successfully join in the league

UC-2: Make Trades:

 Buy stocks
 Preconditions:

- Users must have enough money to purchase stocks and bonds.
- There are Stocks that is available to purchase
- Transaction date is valid

 postconditions:

- Database has been updated with these changes
- Update Stocks inventory in database.

 Sell Stocks
 Preconditions:

- Users must have stocks that are available to sell
-

 postconditions:
- Database is updated with these changes
- Transaction date is valid

UC-3: Setup League :

 Preconditions:

55

- Input settings are valid

 postconditions:
- league informations are stored in database

Operation: manage league
 Preconditions:

- Users can control league privileges.
 Postconditions:

- League informations are valid in the database.

Operation: invite to League:
 Preconditions:

- Invitee must have account (users ID, league ID)
- invitee has valid portfolio

 Postconditions:
- None

Operation: View transaction:
 Preconditions:

- Initiating players is logged into the system

 Postconditions:
- Display information of players transaction

Operation: Administration and maintain website:

56

 preconditions:
- Player is league administration
- System administration is log in often

 -Postconditions:
- system administration control what website changing.

UC-4: View other player’s profile
 preconditions:

- Player is logged in
-The profile of the other player is available for viewing

 postconditions:
 - Display the profile of the other player

Interaction Diagrams

Administration- Manually Add Player to League UC-5:

 To manually add a player to a league, the league administrator first requests the
web server to view the player’s league joining request. The Web server returns the
request list. After viewing the list, the League Administrator inputs the player ID of the
players he/she wants to add to the league. The Web Server sends verification requests to
the database handler(who deals with the database). The database handler then sends
the join requests to players. After each player has accepted a request, the Web Server
sends a data update request to the database handler. The database handler then sends
the updated info(that the player has been successfully been added to the league) back to
the web server to be viewed by the league administrator(and player if they want to). If the
league admin fails to input a valid player ID, the web server will notify him/her of the
problem and request him/her to input a different player ID until he/she inputs a valid one.
If the player has already joined the league, the web server will notify the league
administrator of the error that the player is already in the league. If the player rejects the
request, the Web Server will then send a notification to the league administrator that the
player rejected.

57

58

UC-6 Player Requests to Join League:

The league admin will have a unique code/password when they have set the league up. It

is assumed that the administrator will email each player in his league this ID/password.

The player clicks the sign up button. The web server loads, and sends the sign up page

back to the player to fill out. The player enters his information along with the league

ID/password given by the administrator. If this league ID/password is entered incorrectly 3

times, a button will appear to email the league administrator to manually add you to the

league (which corresponds to the ‘Manually Add Player to League’ sequence diagram).

The web server verifies the player’s data. Once verified, the server sends a request for a

new player profile to

be created in the database. The database then returns this new profile information to the

web server, which then in turn displays this information to the player, showing he’s logged

in.UC-6 System Sequence Diagram:

UC-2 Make Trades -- Buy (1 of 2):

The player clicks Portfolio->Buy Stocks. The server displays the buy page(just the stock

ticker

name field at first). The player enters the stock ticker name. The server requests the stock

information, and market status (whether the market is open or closed) from the a broker

module TargetEndpoint, which marshals the request and forwards it to Yahoo! Finance.

Upon receiving he data TargetEndpoint unmarshals it and sends the requested

information to the server. The server requests sentiment data from twitter. Twitter sends

the raw data to the server which analyzes it, using the NLTK library. The server then

displays all the stock’s information to the player. The player enters his desired buy share

amount, boundaries, and order type. The server takes this information and first checks if

the player has sufficient available funds by querying the player database. The player

database then returns the player balance to the server. If the balance is enough, the

server writes the trade request to the trade database.

The trade database verifies the buy request was received and sends the verification to

the server, which relays it to display the confirmation of receipt to the player. The server

then requests the stock price/market status again from the stock data provider through

the TargetEnpoint broker module. This is to check whether the stock prices/market status

has changed since the order had been submitted. The newly retrieved market status and

stock price are returned to the server and as long as the market status hasn’t changed

and the stock price hasn’t changed more than 0.5%(If the stock price has changed more

than 0.5% it will send the user back to the Portfolio->Buy page to query for a stock ticker

again) the server will send a order request to the trade database to execute the order.

The trade database will send a confirmation of the order being processed to the server.

The server will then update the player’s portfolio/balance in the player database. The

player database then sends the update portfolio/balance back to the server, which then,

in turn, displays it to the player on his portfolio page.

UC-2 Make Trades -- Sell (2 of 2):

The player clicks Portfolio->Sell Stocks. The server displays the Sell page(just the stock

ticker name field at first). The player enters the stock ticker name. The server requests

verification of the stock presence and number of shares from the player

database(portfolio). This information is returned to the server. If the stock is present in the

player portfolio the server requests the stock information and market status(whether the

market is open or closed) from TargetEndpoint. The server then requests the sentiment

from Twitter. Twitter sends the raw data to the server, which analyzes it, using NLTK

library. The server displays all the stock’s information to the player. The player enters his

desired sell share amounts, boundaries, and order type. The server then writes the trade

to the trade database. The trade database verifies the sell request was received and

sends the verification to the server, which relays it to display the confirmation of receipt to

the player. The server then requests the stock price/market status again from

TargetEndpoint. This is to check whether the stock prices/market status has changed

since the order had been submitted. The newly retrieved market status and stock price is

returned to the server and as long as the market status hasn’t changed and the stock

price hasn’t changed more than 0.5%(If the stock price has changed more than 0.5% it

will send the user back to the Portfolio->Sell page to query for a stock ticker again) the

server will send a sell request to the trade database to execute the order. The trade

database will send a confirmation of the sale being processed to the server. The server

will then update the player’s portfolio/balance in the player database. The player

database then sends the update portfolio/balance back to the server, which then, in turn,

displays it to the player on his portfolio page.

Design Principles and Patterns:

In order best formulate our design we used a combination of deductive and

inductive analyses. At the top down global level we wanted to ensure that the

overarching architecture of our system was efficient. While our system isn’t particularly

large, merely using a bottom up approach would not lead to an optimal design. We let

the abilities of our team and our time constraint guide our design. For instance we

knew from the start that we would be employing the “communication through a

common data element” communication pattern. This is because we could use a

master database through which all our sub-systems can interact. We determined this

to be more appropriate, at least partially, because we have multiple team members

that have worked with database design in the past.

 This top-down approach, in isolation, is not sufficient for a well designed

system. This is why we employed inductive analysis for the design as well. This

allowed us to analyze the problem, and come up with a solution that employees good

design principles. Our design focuses primarily on incorporating high cohesion with an

inclination towards low coupling. We incorporate various classes and objects to

perform specialized roles and functions. Then these objects all communicate with the

main controller in either returning values, requesting computations from other objects,

etc.

 For example, we plan to have an object responsible for data visualization. The

main controller would receive the user data from the data request object, then this

data would be fed to the data visualization object in order to generate user friendly

data images / graphs. We will also have objects responsible for conducting trades and

storing the trade results in the database. So in the case where a user has just

conducted a trade and wishes to visualize his/her new portfolio data.

The flow would be like this:

1. Object 1 performs trade and returns trade results to controller.

2. Controller calls object 2 to store trade results.

3. (User requests data visualization)

4. Object 3 fetches portfolio data, and feeds it to object

5. Object 4 then finishes the task and provides the user with the

 visualizations.

 As for coupling, the goal is to have only the main controller communicating

between all objects. The individual objects may need to communicate with each other,

but it will be through the main controller. By adhering to these concepts, our product

code will be easily read and maintained. Addition of new objects will also be

streamlined due to the low coupling concept of having a main controller negotiate on

the behalf of individual objects.

After learning about design patterns in lecture we began to look at how we could apply

those to our project to improve it's over all design. The pattern that seemed most

applicable to our software system was the broker pattern outline in section 5.4.1 of the

text. In our new design rather than have the individual web pages that require stock

data communicate directly with the source of this data the request is instead routed

through a broker module. This module, which we know as TargetEndpoint provides

multiple benefits to the system namely it provides greater flexibility, maintainability,

and adaptability to the overall system. Additionally it affords us greater level of

security. By moving the data gathering operations to the back end they become less

accessible to a potential attacker. In the old design it would be significantly easier for

someone to spoof a response from Yahoo! Fiance since all the buy and sell

operations were taking place on the web page itself.

Class Diagrams and Interface Specification

 Main Diagram

New domain model:

Add an external query object that interacts through an api endpoint which goes through
the controller to perform queries / purchases.

Explanation:
We decided to improve our project by including an API which allows for extensibility and
the ability for 3rd parties to use our functionality remotely. The way the API works is that
queries are generated from the 3rd party and are collected at our target endpoint. The
queries then are then validated and processed by the controller which then performs the
relevant action. The benefit that this allows is users no longer are forced to go through our
webpage to instruct the controller to perform operations on their account, instead they can
now develop their own clients and their own user interface to connect with us. This is a
much better design that is both robust and elegant.

class diagram:
add the external query + api endpoint.
Also add another object called endpoint authenticator

explanation:
The endpoint authenticator determines if the user has the credentials to perform the
requested operation. This validates the user query to ensure that security is enforced and
the user has permission to perform the operation.

also add:

data visualization:
objects:

data fetcher
data processor
data renderer
explanation:
Data from the user’s portfolio is retrieved and processed in order to generate a graphical
chart that displays the user’s performance over time. Fetcher queries the database to
obtain the relevant information using the user’s id. The processor takes the database
entries and formats them for the data renderer. Then the renderer processes the data and
formulates data points which are then displayed graphically with a Javascript wrapper
function.

OCL:

Data processor

Pre condition: data is fed in as an associative array where the corresponding column
entry matches the column name

Post condition:
data is processed and converted into a direct format consisting of an associative array for
the data point. The format is data value, time.

Endpoint authenticator

Pre condition:

Query is made at target endpoint and collected

Postcondition:
Query is authenticated and a return value of valid or invalid.

context Controller::RequestPortfolio(Char:player): Portfolio

 pre: (player Player.Account.Portfolio = pageRenderer)

- A player can see only his or her own portfolio

context Controller::RequestEdit(Fields: fields): void

 pre: (LeaguePlayer updatePersonalInfo = true)

- A player can update information

context DataHandler::CreateAccount(Fields: fields): Boolean

 post: (hasPortfolio true AND inLeague)

- The player will have portfolio for the league when register

context DataHandler::CreateLeague(Fields: fields): Boolean

 pre: (league name =field:_Name AND league the.player AND update())

- The league coordinator will have portfolio

context DataHandler::joinLeague(char; player, char:league): Portfolio

 pre: (portfolioEntry username: char the.player AND update())

- The league coordinator will have portfolio

context TradeEntry inv:

if (playerBalance>= 0)

 player Balance!= negative

 else

 playerBalance = negative

- the player have either negative or not negative balance

context TradeEntry::orderAction((“BUY”, ‘Buy’),(“SELL”,’Sell’))

pre: (orderActionbuyOrder, AND orderAction sellOrder)

post: (tradeEntry::orderStatus pending OR completed OR cancelled)

- the balance must be valid for the specific order

- when the request occurs (buy or sell) data must be called

context LeaguePlayer:: username (CharField)

player updatePersonalInfo

- the player can update information

context LeaguePlayer:: updateValue(user, Fields: fields)

 player cashBalance

- the player can update value

context LeaguePlayer inv:

 total value decimalField

context LeaguePlayer inv:

 player league charField

context PortfolioEntry inv:

 if (portfolioEntryentry != stuck)

 stuck>=0

-a portfolio entry cannot have negative stuck

context portfolioEntry inv:

buyEntryboolean()

context portfolioEntry inv:

sellEntryboolean()

context entry inv:

tickerSymbol charField

context entry inv:

quantity decimalField

- entry uses for the number of stock the players buys

context TradeEntry inv:

 portfolioEntry boolean

context TradeEntry inv:

 stopPrice DecimalField

context TradeEntry inv:

stopPrice decimalField

context TradeEntry inv:

limitPrice decimalField

context TradeEntry inv:

executePrice decimalField

context TradeEntry inv:

orderType charField

context TradeEntry inv:

orderStatuscharField

W
e
b

P
a
g

e

P
a
g

e
R

e
n
d
e
re

r

In
p

u
tH

a
n
d

le
r

S
to

c
k
Q

u
e
ry

S
to

c
k
 D

a
ta

P
ro

v
id

r

P
la

y
e
rH

a
n
d

le
r

le
a
g

u
e
H

a
n
d

le
r

V
a
li
d
it

y
C

h
e
c
k
e
r

D
a
ta

H
a
n
d

le
r

D
a
ta

B
a
s
e

Traceability Matrix

Class/Domain

Concept

Webpage X

PageRender X

Controller X X

DataHandler X

TwitterQuery X

TweetDataBase X X

StockQuery X

Trade Entry X X

StockDatabase X

League X X

League Form X

League Admin X X

League Player X

TradeForm X X

PortfolioEntry X X X

Entry X

Many of the classes are matching with DataHandler concept. It is because classes

are interrogated by the DataHandler. In the domain model it is easy to see how each

class is in the single entity. However, in the class diagram everything is more detailed

because the class diagram gives more information. It is more understandable why

classes are evolved from a single concept.

Architectural Styles

RU Investing uses architectural style with focus on Model/View/Controller
approach.
3.1.1 Model/View/Controller

Model contains user information and communicates between several
systems over a network. A client may initiate a communication session, while the server
waits for requests from any client. The site database will be created using Django and
the stock model will be made accessible by API calls to an external stock information
provider.
View requests from the model the information it needs to generate an output.
The view will be represented by HTML, CSS, and JavaScript. Controller is the
controller logic will be implemented using Python.

3.1.2 Front and Back Ends:

Both the frontend and the backend are using the component-based architectural style
by using design and development languages that allows them to be run independent
of the platform they are on. And, The front-end component of our system is our Web
UI. This is what the public will see. The back end consists of all the behind the scenes
business logic for our app.

3.1.3 Event-driven Architecture

A software architecture pattern promoting the production, detection, consumption of, and
reaction to events. Any change to the equilibrium of our system by the user is an event.
In this way, the user acts as an event emitter (i.e. initiating buy, sells, creating
leagues,etc.). The events are handled by
the controller logic, which serves as the event consumer for these events. Another type
of event that drives our application are changes in stock price. This is used to execute
limit, stop, and stop limited orders.

3.1.4 Object-oriented

The responsibilities are divided into different objects, which contain relevant

information/data and behavior. In our application, we are planning to use object

oriented approach, because it will make our work easier as well as efficient. We can

represent Portfolio, Securities, League, and Orders as objects.

Identifying Subsystems

RU investing works as an educational game for finance classes at Rutgers
University. The website contains three main subsystems: the visible side to the user
which will be the front end of the website, the back end of the system where the
technical operations take place and the external end which is used as data source.

We can see that most of the essential operation occurs in the back end of the
system. Essential part of the back end system is the controller which links requests from
the queue as buying, selling and show statistics from the user and then assigning those
requests to the request handler. The queue
will store all requests from the user then transfer them the controller which will assign
those operations to the appropriate subsystems. Other
subsystems will have the ability to communicate with external databases like yahoo
finance and social media networks.

The UML package diagram

Mapping to Hardware

When running software that is based on a web page there is a standard used on
how the hardware is mapped. The front end system will run on the user machine and the
back end will run on the server.

Persistent Data Storage

Our project requires quite a bit of persistent storage. We will need to store records of
every user and their portfolio, every valid stock, and every league. In order to make
sure our system is robust, secure, and easily managed we will be using a time tested
industry standard storage scheme. Specifically we will be using MySQL in order to
implement a relational database. MySQL which is currently the most popular open-
source database software in the world*. After careful analysis of our domain model, we
have developed the following model for our planned database. Most of the model
should be self-explanatory, to clarify one of the trickier aspects however, the
stockInPortfolio table is used to implement a many to many function between stocks
and users, while also allowing us to store the purchase time and date, to determine
gains and losses over time. The reason we do not keep track of a current net worth, or
rank is because all of this is highly variable and can

be computed using information already stored with minimal computation.

*source: http://www.mysql.com/

http://www.mysql.com/

Network Protocols

We will be using two different network protocols to implement our market simulation.
We will be using both HTTP and Websockets. We will have a web server that will serve
HTML and PHP content to the user through the HTTP protocol. Most basic operations
will be through HTTP such as displaying user information and profile data.

However we will implement our trading operations by using the Websocket Protocol.
The Websocket Protocol allows for lower overhead as well as lower latency response.
Both of which will make our system more efficient and robust in large scale operations.

Global Control Flow

Our system will be both procedure and event driven, depending on which modules
are being in use. For example, registering an account will be a procedure driven
process. On the other hand, performing real time transactions will be an event
driven process where the communication channels are initiated upon the event
generated by the user.

Our system will be a time dependent system. For one thing, the stock market opens and
closes on a timer. Also a major part of our system will be the
event driven real time transactions.

On the topic of threading, our system will be a multi-threaded system. We
will need multi-threading to achieve optimal performance during times where there are
multiple concurrent connections.

Hardware Requirements

We will be using an online hosting provider that will provide us with a PHP backend and
a MYSQL database. The server must include the ZMQ library as we will be using it for
passing messages between the client and the server.

The host server also must have a minimum of 1 TB storage space with options to

expand upon new users. The network connection must also be extremely stable and

at least 50Mbps in order to meet the demand for real time market transactions.

Algorithms and Data Structures

One of the key benefits of the architecture of our design is that it avoids using any sort

of complex data structures. By using a database as a central communication hub we

can simply use SQL request to pull arbitrary data, based on all sorts of variables. This

avoids the need for trees and linked list and other complex data structures. Our php

code will merely have to work in primitives, mainly the associative array. Like wise our

algorithmic requirements are fairly simple. Most of our requirements such as keeping

track of net worth and making trade involve simple addition and subtraction across

entries returned from a SQL query.

Home/Login Page

User Interface Design

When the users first visits the website, this is the homepage that they

will be greeted with. The home page allows people to log in and create a

new account. The home page also will allow users to request their password

if they forget it.

Create New Account:

The sign up page can be accessed from the home page by clicking “create

a new account” link. The users will then be instructed to create a new

account. The requirements for the creation are username, email

address and password.

Home

When users click on the home page, he or she will get information about

the home page..

Portfolio Page

Portfolio page has general information about the user. User can see his or

her balance, the day that the user joined the website, a performance graph

that shows the user’s performance.

Market Operations:

When user clicking this button a sliding bar with useful trading operations appear.

Buy

The user can access this page by clicking on the buy button from the sliding

bar. This page main purpose is for the user to search and buy stocks. After

selecting the stocks and type in the trade amount, the users can either make

an immediate transaction by clicking “Trade for a total of ….” or place a limit of

order for a better profit by fill in the form and selecting the corresponding

button.

Sell

When the users select the sell button, they will be able to see their owned stocks.

Similar to functions in “Buy”, you can make an immediate transaction by clicking

“Sell for …” or place a limit/stop order buy fill in the form and selecting the

corresponding button.

Short Sell:

By clicking this button the user can use short sale function.

League Leader Board

This page will display the ranking of the users.

Administrator Page:

Contain operations needed for running a league.

Test Cases Design

Test-case: TC-5
Function Tested: InvalidSymbol
Pass/Fail criteria: The test passes if
the user enters an invalid ticker
symbol and the web page displays
“Invalid Ticker Symbol”. The test fails
if the user enters an invalid ticker
symbol and the
web page doesn’t display
anything, or the web page

displays a stock price.

Test Procedure Expected Results

Pass:

• The user enters an invalid ticker
symbol in the text box in the buy
page of the website

Fail:

• The user enters an invalid ticker
symbol in the text box in the buy
page of the website

Pass:

• The page displays the stock
ticker symbol entered followed by
“Invalid Ticker Symbol” message.

Fail:

• The page displays nothing, or it
displays the stock ticker symbol
entered and an invalid price

Test-case: TC-6
Function tested: FetchStockData

Pass/Fail criteria: The test passes if
the web page accurately displays
the ticker symbol entered and the
current stock price of that ticker next
to it. The test fails if the web page
displays the incorrect price or
displays nothing.

Test Procedure Expected Results

Pass:

• User enters a valid stock ticker
symbol in the text box in the buy tab
of the web page.

Fail:

• User enters a valid stock ticker
symbol in the text box in the buy tab
of the web page.

Pass:

• Web page displays the stock ticker
symbol followed by the current
market price next to it.

Fail:

• Web page displays nothing,
“Invalid Ticker Symbol”, the
incorrect ticker symbol, or the
incorrect price.

45

Integration Testing

RUInvesting will be tested using the bottom up strategy. Each part will be tested

individually first, then after integration(in case race conditions occur). Each test must

also be run in each possible state and time(to make sure it behaves properly whether

the market is open or closed). We implemented this strategy in hopes it will allow us to

catch bugs at a lower level and pre-emptively fix the bugs at the top level.

mouseOver:

The mouseOver test will verify the mouseOver function is working properly (when the

mouse is hovered over a certain field the field should become highlighted). This is

important if there are many small fields close to each other, the user could have difficulty

distinguishing between them, so the mouseOver functionality will help them differentiate.

sendRequest:

The sendRequest test will verify that our http request handler is working properly. If the

user is unable to navigate throughout our website, they will not be able to access

information, make trades, or even register for that matter.

checkMarketTime:

The checkMarketTime test will ensure that our system will be able to know when the

market is open and when it is closed. This is critical because regular trades cannot

occur when the market is closed.

formSend:

The formSend test will verify that the relevant form is sent to the correct address and

verify that sent data is received.This test is critical because communication between

user-system, system-server and system-system need to work accurately and fast.

InvalidSymbol:

The InvalidSymbol test will verify that if an invalid symbol is entered in the text field of

the market transaction tab the web page will display an “Invalid Ticker Symbol”

message. This test is important because we only want to display prices of valid

stocks.

FetchStockData:

The FetchStockData test will confirm that when a valid stock ticker symbol is entered in

46

the text box of the market transaction tab of the web page, the current market price per

share of that stock will be displayed. This is very important because it’s at the heart of

our fantasy game. If the user is unable to view current stock prices, he/she will not be

able to make informed buying decisions.

History of Work

Our group managed to accomplish our goals in a timely, organized, and consistent
fashion.
 The first goal of our group was to formulate a project idea and determine a system that
would allow us to coordinate our efforts. We successfully accomplished this by creating the
user interface and functional specifications that were included in report one. These
specifications allowed us to have a clear idea as to how our project was to be approached on a
high level. We also established a system where parts of the project would be broken up in to
modules to which we assigned to pre-determined sub teams. These sub teams would work
individually to complete their assigned module, and afterwards integration would be performed
to combine modules and ensure compatibility. We also established a communication network
through the use of Facebook, Email, and SMS. All of this was done from Feb 17 to Feb 23 .

As we finished the first report and established our vision for the project, we also started
to deploy our web server. During the first week of March, we obtained hosting through the use
of a free online hosting service and set up a PHP installation with MYSQL support. The next
step was to determine version control and member permissions. We decided to opt for a
modular local testing system where each team worked on their assigned module locally.
Changes were only to be made on the remote server when functionality of the module was
guaranteed. This allowed each individual sub team to have control as to how they wanted to
approach the development of their module.

After preparing our remote server and determining access permissions, we then
proceeded to work on the second report. This would still be during the first week of March,
specifically the weekend of March 1st and 2nd. We accomplished many of our milestones
during this time. We established a system for obtaining stock data from the Yahoo Finance API
through the use of asynchronous XMLHttpRequests by using built in Javascript AJAX
functions. Requests were made by using MYSQL queries to the Yahoo Finance API endpoint
to retrieve relevant information. We also managed to implement all of the Market Operations
as well as produce a working prototype of the leaderboard functionality. In the next week, we
then collated all of our modules and integrated them together to produce the working
application that was demonstrated during the first demo. We also had implemented our high
quality user interface that gave our application a professional look.

In the month of April, we continued to progress in developing key functionality in our
application such as the leaderboard and API endpoint. We also made progress toward Report
3 by reviewing our work and determining how our progress had evolved over the semester.
Currently where we stand, our project is near the end of completion and there is only minor
tweaks that need to be made in order to perfect it.

Current Status:

Our greatest strength was our ability to establish a clear communication network that
allowed us to consistently meet deadlines. Our approach at partitioning the project into
modules also proved to be a great idea as it allowed for project ownership as well as
implementation of low coupling. We have met all of our goals and deadlines, and as a result
we have produced a high quality product that we are proud of.

Key Accomplishments:

 Designed a user permission system for league users, league administrators, and
system administrators

 Designed a functional and extendable API
 Designed a backend database system that stores entries for league functionality, user

permissions, and user data
 Created working market operations that interact with the Yahoo Finance API to perform

operations on our backend database structures
 Implemented a data visualization system that allows users to obtain a graphical

representation of their performance
 Implemented Clean and Professional User Interface

Future Work:
 We have a few ideas that we believe would be beneficial extensions to our core system.
One of these ideas is to implement Twitter Sentiment analysis which would be a unique way to
incorporate high level data interpretation algorithms into the application. Due to the fact that we
believe this is a very promising idea, we have already established the implementation details
and included Twitter sentiment in our interaction diagrams in the previous reports. However,
because this is such an abstract and complex feature, we felt that we did not want to produce
a low quality implementation. A great future goal would be to perform detailed analysis as to
how we could use such a feature to improve our system and implement the feature in a well
documented fashion.
 We would also like to incorporate market analysis tools in the future. These tools are
proven to be extremely useful in real world trading activities. Since the goal of our users are to
obtain a simulation of real world trading, it would be a good idea to try to fully immerse them
and provide them with all the resources that a real trader would have.
 A very important feature of our system however was the API, we believe that it can
prove to be immensely useful as future work will be crowd-sourced which allows anyone to
improve our system and extend our work.

References

http://blog.kaazing.com/2010/02/24/5-signs-you-need-html5-web-sockets-part-2/

http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-
id/1054287

https://webtide.intalio.com/2011/09/cometd-2-4-0-websocket-benchmarks/

http://spreadnetworks.com/press-releases/10-04-2012-latency-improvements/

http://www.investopedia.com/ - Used for financial term definition

http://www.umlet.com/

http://www.umlet.com/

