

Rutgers University Investing

Report #1

Group Members:

Daniel Su Thanh Do Huu Micah Moore

Jason Scatena Boris Hazanov Tam Duong

1

Table of Contents

1 Table of Contents

2 Responsibility Matrix

3 Responsibility Allocation Chart

Customer Statement of Requirements

4-6 Problem Statement

7-8 Glossary of Terms

System Requirements

9-10 Functional Requirements

11-14 Functional Requirement Analysis

15 Non-Functional Requirements

16-19 On-Screen Appearance Requirements

 Functional Requirements Specification

20 Stakeholders

21 Actors and goals

22-27 Use Cases

 User Interface Specification

28-35 Preliminary Design

36 User Effort Specification

Domain Model

37-41 Domain Analysis

47-49 System Operation Contracts

50 Plan of Work

51 References

2

 Team Members
Daniel

Su
Micah
Moore

Jason
Scatena

Boris
Hazanov

Tam
Duong

Thanh Do
Huu

Project Management (10 pts)

50% 25% 25%

Customer Statement of
Requirements (9 pts)

50% 5.6% 27.8% 5.6% 5.6% 5.6%

System Requirements (6 pts)

50% 16.7% 16.7% 16.7%

Functional Requirements
Specification (30 pts)

50% 43.3% 6.7%

User Interface Specs (15 pts)

 36.7% 26.7% 36.7%

Domain Analysis (25 pts)

 40% 20% 40%

Plan of Work (5 pts)

 100%

3

Point Allocation:
Boris Hazanov: (2.5+.5+1+2) = 6

Daniel Su: (5+0.5+4+1+1+1+5+5+5) = 27.5

Thanh Do Huu: (.5+1+5.5+5+2.5+2.5) = 17

Micah Moore: (2.5+.5+5.5+5+2.5+2.5) = 18.5

Tam Duong : (.5+1+4+5) = 10.5

Jason Scatena: (2.5+8+5+5) = 20.5

0

5

10

15

20

25

30

Boris Hazanov Daniel Su Thanh Do Huu Micah Moore Tam Duong Jason Scatena

R
e

sp
o

n
si

b
ili

ty
 L

e
ve

ls

4

Customer Statement of Requirements

Problem Statement

To Whom It May Concern,

 As you no doubt know already, your team has been contracted to develop a stock market
fantasy league software system for the Rutgers School of Business. Our department has decided to
pursue this venture as a means of furthering our mission: “Rutgers Business School serves New
Jersey and the world by cultivating business knowledge, ethical judgment, and global perspective
in our students, scholarship, and society through innovative research and teaching and robust
partnerships with businesses across our diverse communities.” We have decided that the best way
to “cultivate business knowledge…and global perspective” in our students is to employ a stock
market game.

There is great value in experience, especially in a topic such as investing in the stock
market. The complexity of reading the market and making wise investments makes first-hand
experience an extremely valuable learning tool. Students often times don’t have disposable income
that they can afford to risk playing the market. In order to address this, the concept of a stock
market game has come about, in which contestants are given a set amount of fictional money to
“invest” in real stocks. At the end of the game, the participant with the most money wins. While
disguised as a game, this activity provides students of finance an opportunity to make use of
concepts learned in class and hone their abilities. The financial industry has changed considerably
in recent times. While a trader a mere 20 years ago would rely on television, newspapers and
telephones to gather market information traders today have the entire internet at their disposal.
The birth of the modern web has allowed the populace to become generators of media in addition
to consumers. It is now more possible than ever to gauge public opinion on companies and
products. A myriad of online services exist that will allow a user to set up a stock market game at
no cost. None of these other services, however, stress the importance of using the modern internet
and social media as an information gathering tool. A stock market game that addresses this can
better prepare students for real life trading. This can be done by building a stock market game
service that integrates, at it’s very core, tools to make sense of the flood of information being
posted to social media at all times. To not train students to use such a readily available source of
pertinent information, would put our them at a major disadvantage.

In order for a stock market game to be usable, certain key functionalities will need to be
included. There are three main roles users of our system will take: system administrator, league
administrator, and player. The role of system administrator should be designed so that it can be
undertaken by a professor or a member of the department who is assigned this extra
responsibility. Whomever this role falls upon will, obviously, need a working understanding of the
system at a fairly low-level since they will be the first resource in the event of a system
malfunction. We understand that this role, in it’s nature, requires a fairly large base of knowledge.
We expect your team to either train personally, or provide documentation for the benefit of that
individual. The system administrator will manage day to day activities relating to the hosting of
the system, updates to the system, adding and removing league administrators, and monitoring
system resource usage.

Each professor, that teaches one or more sections of a relevant course, will take on the role
of league administrator. Extensive computer literacy cannot be assumed, and as such the user

5

interface must put a heavy focus on being intuitive and easy to use. From this interface the
professor must be able to control the entire game for his class sections. He or she will be able to
manage player interaction, help players troubleshoot issues they may encounter, create a new
league, and manually add or remove player accounts. The professor will have tools at his or her
disposal that allow him or her to gain a big picture overview of the league. For example
leaderboards and other league statistics. The league administrator will also be able to adjust rules
and policies for his or her specific league so as to help it align more closely with the course
syllabus.

Students will take on the role of system player. To avoid unnecessary work on the part of
the league administrator, the system should allow players to register a new account and join the
appropriate league with no administrator interaction. When a player accesses the web interface
they will be presented with the functionality needed to research, buy, and sell stocks. The players
will need to have options for data visualization and statistics tracking. A host of options for
alerting the player of pertinent information using products they are already comfortable with
should be explored, such as: twitter, SMS, and email.

As primarily an education tool, the game must attempt to train student players to best
make use of the resources available to them. The market value of a company isn’t exclusively
based on how they are doing economically; public opinion greatly influences stock prices. As of
last summer, twitter had over 210 million active users. The flood of tweets posted daily act as a
free source of market research giving a survey of public opinion. Using this freely available
market information, we want students, using our system, to be able to make use of functionality
unavailable in previous stock market simulations and become more broadly informed investors.

We would like you to build a system that gives players a twitter-sourced sentiment score
for all the stocks in their portfolio. In addition, players should be able to manually ask the system
to watch the sentiment of prospective stocks. To further improve the player’s experience, the
game should also allow players to follow certain organizations, groups or fields of interest using
public twitter accounts. The goal of this feature is to quickly and accurately inform players of
recent changes in stocks that they own or are researching. This information will help players make
informed decisions, using the public opinion of a company’s success, as opposed to solely the news
and financial data available through more traditional media.

In order to make the system easily accessible, we would like to make the game a web
application, not requiring professors or students to download and install anything to their
personal devices. Professors and students should interact with the game through a pragmatic and
clean web interface that looks good and is easily usable across a host of devices. We would like
this interface to be hosted on a server owned by the department and handled by the system
administrator. We expect the interface to provide access to all the functionality of the system in a
clear and intuitive way.

6

The functionality we expect from this system can be summarized as follows:
 For every user

o Pre-login info page
o Login
o Registration
o Account management

 Change password
 Change contact information

 For the system administrator
o Add or remove professors as league administrators
o View system usage statistics
o Manually reset user passwords

 For the League administrators
o Start, manage and end a league
o Set league rules and policies

 starting capital
 start date
 end date
 league name

o Manually add or remove players
o View league statistics

 For the Player
o View their portfolio
o View competitor portfolios through a profile page
o Initiate market orders

 Short
 Cover

o Initiate conditional orders
 Stop orders
 Limit Orders

o View twitter feeds of relevant organizations
o View twitter sentiment scores of various organizations
o View stock price history of any public company
o view leaderboard and other league statistics
o Communicate with league administrator
o Access public league chat room

We are looking forward to seeing the system that your team develops and encourage you to
contact us if you have any questions or updates.

Regards,
The Rutgers School of Business Development Board

7

Glossary of Terms

Stock Market League - A market simulation that allows users to practice trading and learn how the
market works

Stock - A type of security that represents a claim on part of corporation’s assets and earnings

Ask Price - The minimum price that a seller or sellers are willing to receive for the security

Bid Price - The maximum price that a buyer or buyers are willing to pay for a security

Ticker Symbol - A stock symbol or ticker symbol is an abbreviation used to uniquely identify
publicly traded shares of a particular stock on a particular stock market

User Groups:

Player - A standard user that participates in the leagues and has control over their personal profile
and settings

League Administrator - The league administrator manages leagues that they have created and the
players that participate in those leagues

System Administrator - The system administrator is the super user who has the highest privileges
and can manage all other users as well as system settings

8

Orders:
Market Orders (Immediately executed):

Buy Order - An order to purchase a specific amount of stock

Sell Order - An order to sell a specific amount of stock

Short Order - An order where a sell is performed using borrowed stocks. The trader then expects
the value to decrease and to profit by performing a cover order to return the loaned stocks at a
lower price

Cover Order - An order where a buy is performed in order to cover / return stocks that were
previously loaned to the trader

Conditional Orders (Executed on met condition):

Stop Order - An order that activates only when the security you want to buy or sell reaches the
stop price

Limit Order - An order that sets the maximum or minimum at which to buy or sell a stock

*Limit orders guarantee the trade will be made at particular price while a stop order does not

Below is an image that allows better understanding of these terms

Additional information can be found at http://www.investopedia.com/

9

System Requirements

Functional Requirements

PW = Priority Weight (from 1 to 5)

ID PW Requirement

REQ-1 5 The system will provide an information page pre-login.

REQ-2 5 The system will allow users to log-in.

REQ-3 5 The system will provide a registration page for new users.

REQ-4 5 The system will allow users to change their password.

REQ-5 4 The system will allow users to change their contact information.

REQ-6 5 The system will allow the system administrator to add or remove professors as
league administrators.

REQ-7 5 The system will allow the system administrator to view system usage statistics.

REQ-8 5 The system will allow systems administrator to manually change a user’s
password.

REQ-9 5 The system will allow to the league administrator to start, manage and end a
league.

REQ-10 5 The system will allow to the league administrator to set league rules, including:
 Starting capital.
 Start date.
 End date.
 League name.

REQ-11 4 System will allow league administrator to add/remove players within their
league manually.

REQ-12 3 System will allow league administrator to view leagues statistics.

REQ-13 3 System will allow to each user view his statistics.

REQ-14 3 System will allow to each user View competitor portfolios through a profile page

10

REQ-15 3 System will allow to each user Initiate market orders such as:
 Short
 Cover

REQ-16 2 System will allow to each user Initiate market orders such as:
 Stop orders
 Limit Orders

REQ-17 3 The system will allow users to View twitter feeds of relevant organizations

REQ-18 2 The system will allow users to View twitter sentiment scores of various
organizations

REQ-19 3 The system will allow users to View stock price history of any public company

REQ-20 2 The system will allow users to View leaderboard and other league statistics

REQ-21 5 The system will allow for low latency real-time trades

REQ-22 5 The system will allow for scalability

11

Analysis on REQ-22

Stock market simulation systems done by previous groups all had one thing in common. They
utilized the HTTP protocol to accomplish market orders. While this works fine in small scale
deployments, when these systems are rolled into high volume environments, they will start to
require massive costs to maintain. What we are proposing is to use a WebSocket implementation
that reduces the overhead for each trade from up to kilobytes of data, down to just a few bytes.
With a high enough volume of trading, this implementation can save a very significant amount of
money.

http://blog.kaazing.com/2010/02/24/5-signs-you-need-html5-web-sockets-part-2/

12

Analysis on REQ-21

By using the WebSocket implementation, we also reduce the latency response down. This can have
huge ramifications for a high frequency trading simulation. InformationWeek
(http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-
light/d/d-id/1054287) estimates that 1ms of latency can be worth up to $100 million per year to
a major brokerage firm. The quest for low latency is so high, that firms are willing to lay down
private fiber lines to improve latency response by just microseconds.
(http://spreadnetworks.com/press-releases/10-04-2012-latency-improvements/)

While our implementation is not to conduct real world market trades, a low latency response does
allow for more simulation options.

Below are simulations on the two different protocols that demonstrates the advantage of
WebSocket

http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287
http://spreadnetworks.com/press-releases/10-04-2012-latency-improvements/

13

14

15

Non Functional Requirements

Functional
The big three web browsers will be supported so compatibility with a majority of users will be
achieved. User security will be a major priority with features for authentication and encryption for
sensitive data such as passkeys.

Usability
We will focus on providing a clean and consistent interface through CSS that will appeal to the
user. AJAX will also be used to allow for immediate responses for user actions.

Reliability
Users will be given a confirmation message for sales transactions to allow for detection of user
error. Error messages will be displayed to the user to notify failure of completing the proposed
action.

Performance
There will be a focus on scalability and an efficient system for passing message between the client
and the server (ie. for transactions).

Supportability
The front end will support access from mobile devices or devices with smaller resolutions.
Maintenance support is also included through the admin control system.

PW = Priority Weight (from 1 to 5)

ID PW Requirement

REQ-23 3 Inter browser compatibility

REQ-24 5 User Security

REQ-25 2 Graphical Design

REQ-26 4 Responsiveness

REQ-27 3 Error Response

REQ-28 4 Scaling and Efficiency

REQ-29 3 Front End Interface

REQ-30 4 Maintenance Control

16

On-Screen Appearance Requirements

The on screen appearance design will primarily cater to those with a laptop and desktop system,
for resolutions of 720p and greater. There will also be support for handheld and tablet devices
through the use of responsive CSS in order provide these users with a functional interface.
Dynamic data loading through JavaScript will also be used in order to minimize wait time for the
user.

Technologies used will be restricted to those that are universally compatible. Flash and Java will
not be utilized due to their limited compatibility and massive resource drain.

ID PW Requirement

REQ-31 3 Responsive CSS / Cross Device Compatibility

REQ-32 4 Rapid dynamic data updates

17

Home Page

18

Signup Page

19

User’s Page

20

Functional Requirements Specification

Stakeholders:

Internal stakeholders:

 Owners: people who legally have the right to possess the web application. Owners’ goals is
contributing the software to multiple universities across the world, keep low cost
maintenance and customer satisfaction.

 Managers: person who is in charge of affairs, , resources and expenditures of the
web application. They interests include performance, growth, customer satisfaction, profit,
cost, employees, and demand.

 Employees: person who is in charge of maintaining the web application, they will provide
support to system administrators (university professors) , they will perform software
updates to minimize troubleshooting. Their interests are reliability, working conditions,
salary, working hours, job security, and benefits.

External stakeholders:

 Customers (Universities, students and professors): A person who is registered in the web
application and creates his own stock portfolio, a system administrator(professor)
can register without having stock portfolio and universities that will host the web
application on their web page. . The customer’s interests include software value, quality,
reliability and service.

 Advertisers: An academic institute who calls the attention of the students to participate in
daily activities. Finance companies who want to address students.

 Advertiser’s interests are number of customers, detecting leading players.

 Ministry of Education- The executive policy making body in the united states. Ministry of
education goal is to provide better finance studies platform in universities without putting
in risk student money.

 Competitors: A company providing the identical products to universities. Their interests
include profit, demand, customers and quality.

 Stock Researcher: An individual who researches the human behavior in the field of
investment in stocks. His or her interests include investors, human behavior, and investing
strategies.

21

Actors and Goals:

 User: Any student which enrolled to Finance class.
 Type: Initiating
 Goal: Create an account

 Investor: A student who is authenticated using the login system and is interacting with the
system, portfolio.

 Type: Initiating
Goal: Login,join a league, monitor stocks and portfolio, buy and sell.

 League Administrator: Class professor who is authenticated using the login system and is
interacting with the system.
Type: Initiating.
Goal: Login,create new league, monitor students portfolios, create and delete accounts.

 Yahoo Finance: The external source where real-world stock quotes are obtained at periodic
time intervals.
Type: Participating
 Goals: None.

 Database: A place where information about the various stocks such as price quotes,ticker
symbols, and market name, are stored. Also, it stores a list of investors currently part of the
system and their settings such as user id, passwords, email address, and other personal
details.
Type: Participating
Goal: None.

 Email Server: A machine responsible for sending messages to investors via E-mail and SMS.
 Type: Participating
 Goal: None.

 Advertiser: An individual who interacts with the system through a user account and posts
university related activities. Finance companies who interacts with the system through a
user account and posts job openings.
Type: Initiating
Goals: Login. Post Advertisements. Remove Advertisements.

22

Use Cases

UC-1: Register -- Allows a student to register an account and enter a game by filling out a form
and entering a class code given out by a professor/league administrator
Derived from REQ-3

UC-2: Make Trades -- Allows a player to initiate trade orders, the system will then respond
appropriately based on market conditions and status
Derived from REQ-15 & REQ-16

UC-3: Setup League -- Allow a league administrator to start a game and initialize settings
Derived from REQ-9 & REQ-10

UC-4: View Profile -- Allows all users in a league to view the profiles of all other players in the
league.
Derived from REQ-13 & REQ-14

UC-5: Manually add player to Leauge -- Allow a league administrator to manually add a student’s
account.
Derived from REQ-11

UC-6: Player Joining a League -- Allow a student account to join a league using a password
supplied to them by their teacher, the league administrator.
Derived from REQ-11

UC-7: View League Stats -- Allow a player to exam a statistics and leaderboard page for the league
they are in.
Derived from REQ-20

UC-8: Twitter Research -- Allows a user to make use of twitter streams for market research
through a custom tool.
Derived from REQ-17 and REQ-18

23

24

Req’t PW UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

REQ1
REQ2
REQ3
REQ4
REQ5
REQ6
REQ7
REQ8
REQ9
REQ10
REQ11
REQ12
REQ13
REQ14
REQ15
REQ16
REQ17
REQ18
REQ19
REQ20
REQ21
REQ22

5
5
5
5
4
5
5
5
5
5
4
3
3
3
3
2
3
2
3
2
2
1

X
X
X
X
X

X

X
X

X
X

X
X

X
X

X

X

X

X
X

X

X
X

MAX PW

5 5 5 3 4 5 3 3

Total PW

25 20 10 6 4 9 8 5

25

Use Case UC-2: Make Trades

Related Requirements: REQ-10, REQ-15, REQ-16
Initiating Actor: Player
Actor’s Goal: Initiate a trade of some sort in a simulated stock market
Participating Actors: Database, Finance API
Preconditions: Player is a registered student
Successful End Condition: Database is updated to reflect portfolio and capital changes
Failed End Condition: Player is notified their trade could not be made and is not
charged
Extension Points:

Flow of Events for Main Success Scenario
 include::Login (UC-XX)

← 1. System displays an interface for the player to enter a stock ticker, share
amount and select a market order type
→ 2. Player makes their selections on the market order screen
← 3. System polls the Finance API for market status
→ 4. Finance API indicates last known market price for ticker and market status
← 5. System writes trade to database, completing it if market is open and user has
enough money (charging users account and adding to their portfolio). If market is closed it
adds it to a pending trades list, to be completed when the market is open.
← 6. System outputs to display indicating to player the status of their trade.

Flow of Events for Extensions (Alternate Scenarios):

step 5a: User didn’t have enough money
← 6. System indicates to user that they had insufficient funds through main display
and informs them the market order could not be made.

step 4a: Finance API couldn’t be reached
← 6. System emails system administrator informing them of the error. Then indicates
to user that stock prices are temporarily unavailable, and ask if they want to leave order
pending or cancel it.
→ 7. User chooses one of two options.
← 8. System either cancels order or adds it to pending list on server.
← 9. System indicates to user that it has completed their choice succesfully

26

Use Case UC-5: Administration- Manually Add Player to League

Related Requirements: REQ-11
Initiating Actor: League Administrator (LA)
Actor’s Goal: Add a player to the league
Participating Actors: Database, Player
Preconditions: Player exists
 Player is not in league database
Successful End Condition: Player is added to league database

Flow of Events for Main Success Scenario:
← 1. System notifies league admin of add request and provides the player’s profile
and ID
→ 2. LA goes to the admin panel of the requested league, inputs player ID into “ADD
PLAYER” functionality and submits
← 3. System verifies player ID is valid and sends player a join league request.
→ 4. Player verifies request
← 5. System enrolls player in the specified league, and notifies LA of confirmation

Flow of Events for Extensions (Alternate Scenarios):
2a. LA inputs invalid player ID
← 1. System detects invalid ID and displays an error

2b. LA inputs valid player ID that is already enrolled
← 1. System detects player is already enrolled and displays an error

4a. Player denies request
← 1. System notifies LA of rejected request

27

Use Case UC-6: Player requests to join league

Related Requirements: REQ-21
Initiating Actor: Player
Actor’s Goal: Automatically enroll in specified league
Participating Actors: Database, League Admin
Preconditions: Player is logged in
 Failed password attempts is zero
Successful End Condition: Player is added to league database

Flow of Events for Main Success Scenario:
← 1. System queries user for league ID
→ 2. Player inputs a league ID
← 3. System verifies league ID and queries user for league password
→ 4. Player inputs a league password and confirms action
← 5. System verifies password and enrolls player in league

Flow of Events for Extensions (Alternate Scenarios):
2a. Player enters invalid ID
← 1. System detects invalid ID, displays error, and prompts for re-entry of league ID

2b. Player enters valid ID, however is already enrolled in league
← 1. System detects valid ID and erroneous request. Error message is displayed

4a. Player enters invalid league password
← 1. System detects invalid password and gives the player the following options
 - Re-enter league password
 - Message League Admin for Administrative Manual Add

 ← 1a. System detects failed password attempts has reached limit.
 - The event and offending player info is logged.

 → 1b. Player re-enters league password, return to main success state 3

 → 1c. Player request to contact league Admin
 ← a. System provides player with request form
 → b. Player writes and submits message

 c. Refer to Use Case 5

28

User Interface Specification

Preliminary Design

UC1 - User Registration:

For the first time user, they can click Signup on the welcome page which redirects him/her to the
signup page.

29

The player enters his/her first and last name, desired user name, email and password (and
verify). The player will also be given a league code by the league administrator. The player must
click the: I have read and agree with the terms and conditions before enabling the signup
button. Alternatively the player can click signup with Facebook or signup with twitter, and the first 7
fields will be swapped with just their Facebook login and password.
When the league administrator signs up, he/she will enter the identical information to a player, but

leave the league code blank, and click the box “I have a league admin code”, which will bring up

30

another text box field ‘League Admin Code’, in which he/she will enter the league administrator

code given to them by the system administrator. This will entitle the league administrator to be a

super user and have access to the extra administrative options.

UC-2: Make Trades:

The player can make purchases by selecting PORTFOLIOS/ BUY tab. In the Buying page, they
can search for a stock by typing its name into the search box. Clicking the B button on the left of
the result will make the program receive the information of the stock. Player will then proceed with
the transaction by typing in the amount they want to buy. Finally they can either make an
immediate order by clicking “Trade for a total of __” button or select “Place this order as a
Stop/Limit order” which they can later view in transaction history.

Similarly for Selling, players can click the “S” button left to an owned stock to sell them. They can
trade it immediately with the market price or place a Stop/Limit order with an additional fee

31

UC-4: Allows all users in a league to view the profiles of all other players in the league.

32

Once the player has logged in they can click the league tab on the left then select “View My
League” button, which will bring up the current league admin’s name, the league id, the start and
end date of the league, and rankings of all the players in the league. Aligned with each of these
players will be a button to view their individual profile. Whichever profile button is selected, that
players profile will be displayed underneath the rankings. This profile will contain the players
ranking, their total funds, their largest day for gain/loss and a graph of their overall performance for
the whole league period. By default the league leader’s profile will be displayed when the league
page is first loaded.

33

UC-3: Setup League -- Allow a league administrator to start a game and initialize settings
Since a league can have a large number of member, say 100 for a class, having a member’s
profile displayed at the bottom of the page may give the admin a frustrating experience, especially
moving back and forth viewing different users’ profile(player 30 and player 70 for example).
Instead, i suggest that the profile button will lead the user to the player’s profile page in which they
can see the mentioned profile in details

Selecting Manage League/Members , the league admin can get an overview of the league’s
members, he/she can view any member’s profile by click the profile button next to the member on
the member’s list. The admin can also find a specific player quickly by typing the name into the
search box.
The league’s admin can also invite people to join the league by typing the player’s username into
the box next to invite. There is a pending list which list the players that want to join the league, the
league admin can either accept or reject the request by click the corresponding button. (this seems
to meet UC-5)

34

And if the league admin wants to change the league’s name, privacy, membership approval setting

and write a description for the league, he/she can choose the setting tab.

35

Use Case UC-6: Player requests to join league

Players can also request to join a league by first searching for the league using its name then click
the “Request to join” button next to the result to send the request

36

User Effort Estimation

1. Sign Up: 4 mouse clicks, 86 keystrokes
a. Click Sign Up on the right corner of header
b. Data of Users : 20 keystrokes of first name and last name, 10 keystrokes of user name, 15
keystrokes of email,15 keystrokes of verify email, 11 keystrokes of password, 11 keystrokes of
verify password.
c. Click League admin code
d. Input the league admin code, 4 keystrokes
e. Click to agree with terms and conditions
f. Click sign up to be done.

2. Login: 1 click, 21 keystrokes
a. Click Login on the right corner of header
b. 10 keystrokes of user name, 11 keystrokes of password.

3. League Portfolio: 2 clicks, 10 keystrokes
a. Click Portfolio at home page on left side.
b. put amount of shares want to sell/buy
c. click confirm what we did.

4. Setting: 2 clicks,
a. Click Setting at home page on left side
b. Click parts you want to setting.

5. Trade: 2 clicks, 10 keystrokes
a. click the company
b. choose buy/sell
c. put amount of shares you want to buy/sell, 10 keystrokes
d. click confirm

6. Profile: 1 click
a. click profile to see information
b. Edit information

7. Create new League: 2 clicks, 15 keystrokes
a. Click League tab
b. Enter league name
c. Click confirm

37

Domain Model

Domain Analysis

Figure 1: Domain Model

This is our general domain model which shows important objects and their interactions with others.

38

Figure 2 - Make Trade Model

Figure 2 represents our UC-2 Make Trades. When a player make a trade order on the web page,
the order is sent to the controller, which directs the request to Validity Checker to check whether
the request is valid and the player has enough funds or has enough stocks to sell. If all of above
conditions are met, the validity sends a request to Data Handler to make the transaction by
updating the player’s data. The controller notified by Validity Checker that the transactions are
made successfully, then send the updated data about player to Page Renderer to generate
updated info displayed on user’s web page.

39

Figure 3 - Register/Login Model

Figure 3 represents UC-1 Register/Login
Register: Player fill in the form and send a register request through web page to the Controller. The
Controller conveys the request to Player Handler, whom first verifies player’s data validity and
availability before sending creating new profile request to data handler. After the data processing
processes are finished, the result is sent to the controllers whom relay the data to Page Renderer
to generate a page displayed later on Player’s web page.

Login: Similar to Register, player fills in form and sends a login request to controller. Controller

relay the request to Player Handler to verify username and password. If the player typed in the

correct combination, the player is granted access to the system.

40

Figure 4 - League Model

Figure 4 represents UC-3 Setup League. To create a new league, the administrator (user) fill out a
form then send the form via web page to controller. The controller replays the request to create a
new league to League Handler, whom checks the validity) of the info (by comparing with data from
database with help of Data Handler, then request an update in data. If the creating new league
process is successful, the administrator will receive the updated info on web page with the data
generated using page renderer

41

.

Figure 5 - View Profile Model

Figure 5 represents UC-4: Viewing player’s profile. The player first sends the request to the system
through Web Page. The request is directed to Controller. The Controller then request profile info
from Data Handler. Data Handler conveys the request to Database and receive data back. The
data is later sent to Page Renderer to Render the web pages contain for the player.

42

Concept Definitions

Player:
Definition: Somebody who wants to interact with the system
Responsibilities:

 Research stocks
 Request trades
 Manage Portfolios
 Manage League (League Administrator only)
 Navigate through website
 Request League info/ Player profile

Web Page:
Definition: a web document that is suitable for the World Wide Web and the web browsers.
Responsibilities:

 Receive player requests
 Send requests to Controller
 Send request for pages to PageRenderer
 Receive pages from the PageRenderer
 Pass data to the browsers to display to players

Page Renderer:
Definition: objects that process player’s requests and render web pages from data accordingly
Responsibilities:

 Receive page data from the controller
 Process the data into easily viewable format
 Send the results to the Web Page

Controller
Definition: Objects that control the operations of the system base on the player’s requests
Responsibilities:

 Receive player’s requests from the web page
 Send the page data to the Page Renderer
 Request/Receive Player Data from the Player Handler
 Send/Receive updated data to the Data Handler
 Send the player’s input to the Input Handler to verify

http://en.wikipedia.org/wiki/Web_document
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Web_browser

43

Validity Checker
Definition: Objects that test whether the inputs/ requests are valid before send the requests to
other objects
Responsibilities:

 Receive requests/ orders from Controller and Verify them
 Send the requests/ orders to Stock query or Database handler depend on the

requests/orders

Stock Query
Definition: Objects that fetch real-time stock info along with sentiment results
Responsibilities:

 Receive stock data request from Validity Checker
 Request/Receive stock data from stock data provider

Data Handler
Definition: Objects that deal with data related processes
Responsibilities:

 Receive requests and send data to controllers, League Handler and Player Handler
 Send request, retrieve and update data in database

League Handler
Definition: Objects that handle league related processes
Responsibilities:

 Receive league related requests and verify them
 Send requests to database handler
 Receive data from data handler

Stock Data Provider
Definition: Sources of real-time stock data that is accessible by the system
Responsibilities:

 Receive requests from Stock Query
 Send Data to Stock Query

44

Association Definitions

Concept Pair Association Description Association
Name

Web Page ↔
Controller

Web page sends the user request to the controller
to be processed and distributed. Controller sends
return to web page to signify completion of process.

Send user
request,
return

Web Page ↔ Page
Renderer

When the web page is signalled by the controller
that the controller is finished processing the user
request, the web page signals the page renderer to
request the page. The page renderer sends the
rendered page to the web page to be displayed.

Request
page, send
page

Controller→Page
Renderer

Controller sends requests to Page Renderer Convey
requests

Controller ↔
League Handler

The controller sends the data inputted by the user
(in this case a league admin) to the league handler
to verify the validity (Correct data types, valid dates
etc.) and checks that it doesn’t conflict with other
previous leagues in the database (conflicting
league names for example).

Verify fields,
Return fields

Controller ↔
Player Handler

controller sends requests for player data, send request,
receive data

Controller ↔ Data
Handler

controller sends data requests from players to data
handler and receive data back from data handler

send request,
receive data

Data Handler ↔
Database

Request and retrieve data from database, store
data

Convey
requests

Validity Checker ↔
Stock Query

Validity Checker send validated requests to Stock
Query and receive stock data back

Request data

Stock Query ↔
Stock Data
Provider

Stock Query passess request to Stock Data
Provider and receive back stocks data

Convey
requests

45

Attribute Definitions

Concept Attribute Meaning

PageRenderer sufficientRenderData Used to determine whether the
data retrieved is sufficient to
generate web pages

InputHandler inputValid Used to determine whether the
player’s input is valid(no special
characters, appropriate length)

DataHandler databaseHandle Communicates back and forth
between the database to handle
requests.

Validity
Checker

fieldsValid,fundsValid,tradeSuccess Used to determine if the input
fields are valid, if the player has
enough funds to make the
purchase and whether the trade is
a success.

PlayerHandler accountInformation Player name, Role(whether the
user is a league administrator),
funds, transaction history,
performance

LeagueHandler leagueInformation League’s name, members, status

46

Traceability Matrix

47

System Operation Contracts:

UC-1: Register:

 Preconditions:
-Players who have code given out by professor/league administration

 postconditions:
- Users have portfolio which contains users’ information in the database

Operation: Joining a league
 Precondition:

- The league exists
- The player has the league’s password

Postcondition:
 - Player successfully join in the league

UC-2: Make Trades:

 Buy stocks
 Preconditions:

- Users must have enough money to purchase stocks and bonds.
- There are Stocks that is available to purchase
- Transaction date is valid

 postconditions:

- Database has been updated with these changes

48

- Update Stocks inventory in database.

 Sell Stocks
 Preconditions:

- Users must have stocks that are available to sell
-

 postconditions:
- Database is updated with these changes
- Transaction date is valid

UC-3: Setup League :

 Preconditions:
- Input settings are valid

 postconditions:
- league informations are stored in database

Operation: manage league
 Preconditions:

- Users can control league privileges.
 Postconditions:

- League informations are valid in the database.

Operation: invite to League:
 Preconditions:

- Invitee must have account (users ID, league ID)
- invitee has valid portfolio

 Postconditions:
- None

49

Operation: View transaction:
 Preconditions:

- Initiating players is logged into the system

 Postconditions:
- Display information of players transaction

Operation: Administration and maintain website:
 preconditions:

- Player is league administration
- System administration is log in often

 -Postconditions:
- system administration control what website changing.

UC-4: View other player’s profile
 preconditions:

- Player is logged in
-The profile of the other player is available for viewing

 postconditions:
 - Display the profile of the other player

50

Plan of Work

As can be seen in the Gantt chart we have decided that we will begin coding the core backend of

our project well before working on the UI. We have made this decision because a pretty UI is

useless if a robust system isn’t backing it up. If time becomes an issue this will allow us to write a

more basic pragmatic UI, as opposed to not having a working system. We have already begun the

process of designing the system architecture, as shown in the chart, but will continue to iron out

details in the design leading into coding and while coding. The timing we have laid out focus

heavily on agile software development, where coding and design are practiced at the same time.

51

References

http://blog.kaazing.com/2010/02/24/5-signs-you-need-html5-web-sockets-part-2/

http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-
id/1054287

https://webtide.intalio.com/2011/09/cometd-2-4-0-websocket-benchmarks/

http://spreadnetworks.com/press-releases/10-04-2012-latency-improvements/

http://www.investopedia.com/ - Used for financial term definition

http://www.umlet.com/

