
The Paramount Investments League

Final Report
Software Engineering

14:332:452

Webapp Link
Project Repository
Reports Repository

Team 1:
David Patrzeba

Eric Jacob
Evan Arbeitman

Christopher Mancuso
David Karivalis

Jesse Ziegler

May 8, 2014

http://192.241.248.91
https://github.com/dkarivalis/SEP_SMIFL
https://github.com/dkarivalis/SEP_SMIFL_reports
mailto:david.patrzeba@gmail.com
mailto:eric.jacob.10@gmail.com
mailto:evanarbeitman@gmail.edu
mailto:christopher.a.mancuso@gmail.com
mailto:dkarivalis@gmail.edu
mailto:jdlziegler@gmail.com

2

3

Hyperlinks:

Webapp Link
Project Repository
Reports Repository

Revision History:

Version No. Date of Revision
v.1.1 2/7/2014

v.1.2 2/16/2014

v.1.3 2/23/2014

v.2.1 3/2/2014

v.2.2 3/9/2014

v.2.3 3/16/2014

v.2.4 3/19/2014

v.3.1 4/19/2014

v.3.2 5/8/2014

http://192.241.248.91
https://github.com/dkarivalis/SEP_SMIFL
https://github.com/dkarivalis/SEP_SMIFL_reports

Summary Of Changes

1. Our problem statement has been changed to more accurately reflect the view of the customer.
That is, the problem statement now more accurately represents the needs and desires of the
customer. Moreover, we have chosen to elaborate on a good deal of our details of execution
and motivation for each design solution.

2. The glossary of terms has been updated to more properly cite resources and to provide a
more clean, easy to understand resource for the crucial terms being used after.

3. Relevant citations have been added in all areas of the document to give proper mention to
any and all referenced items.

4. Figure 2.1 has been elaborated. We believe this will clarify any confusion regarding its
presence and intention as well as relevance to the UI requirements.

5. Specific stakeholders have been identified, and supporting actors such as those in the admin-
istrator role have been elaborated and expanded upon.

6. Use case casual descriptions have been added. These represent a general, modest overview
of the specifications of each use case, such as to provide a basic reference in addition to the
fully dressed model.

7. Use case diagram has been remodeled for clarity and a detailed description has been added
for it.

8. Alternative scenarios for use cases have been added or updated where necessary. If not
alternative use case was necessary, this was specified and reasoning was elaborated.

9. Preliminary design items have been revised. All headers and images have been updated
to properly reflect true performance on the website. Further, the labeling of figures and
document logistics have been updated.

10. Concept has been updated to illustrate specific necessity for certain items and illuminate
design choices such as the DB connection. Diagram descriptions have been added and general
theory and reasoning behind design implementation have been provided.

11. Use case 3 contract has had a post-condition added.

12. Class diagrams and method signatures have been given descriptions. All methods and at-
tributes have been clarified and the diagram has been properly digitized and revised to reflect
most recent design.

4

5

13. New design patterns have been added and implemented to show updated, second half of the
course design patterns.

14. Traceability matrix has been added in report 2.

15. Report 2 user interface design and implementation has been added, revised, and updated to
reflect most recent work on the software design.

Contents

Contents 6

1 Customer Statement of Requirements 8
1.1 Problem Statement . 8
1.2 Glossary of Terms . 10

2 System Requirements 12
2.1 User Stories . 12
2.2 Nonfunctional Requirements . 15
2.3 On-Screen Appearance Requirements . 16

3 Functional Requirements Specification 18
3.1 Stakeholders . 18
3.2 Actors and Goals . 18
3.3 Use Cases . 21
3.4 System Sequence Diagrams . 30

4 User Interface Specification 37
4.1 Preliminary Design . 37
4.2 User Effort Estimation . 41

5 Effort Estimation 45
5.1 Background . 45
5.2 Unadjusted Use Case Points . 46
5.3 Technical Complexity Factors . 47
5.4 Environmental Complexity Factors . 48
5.5 Calculations . 48

6 Domain Model 49
6.1 Concept Definitions . 49
6.2 Association Definitions . 52
6.3 Attributes Definitions . 53
6.4 Traceability Matrix . 54
6.5 System Operation Contracts . 55
6.6 Economic and Mathematical Models . 56

7 System Interaction Diagrams 59

6

CONTENTS 7

7.1 Introduction . 59
7.2 Diagrams . 59
7.3 Alternate Solution Diagramming . 65
7.4 Design Patterns . 69
7.5 Design Patterns . 69

8 Class Diagrams and Interface Specifications 71
8.1 Class Diagram . 71
8.2 Class Data Types and Operation Signatures . 72
8.3 Traceability Matrix . 76
8.4 Object Constraint Language . 77

9 System Architecture and System Design 78
9.1 Architectural Styles . 78
9.2 Identifying Subsystems . 79
9.3 Mapping Hardware to Subsystems . 80
9.4 Persistent Data Storage . 80
9.5 Network Protocol . 81
9.6 Global Control Flow . 81
9.7 Hardware Requirements . 83

10 Data Structures & Algorithms 85
10.1 Data Structures . 85
10.2 Algorithms . 86

11 User Interface Design & Implementation 88
11.1 Updated Pages . 88
11.2 Efficiency of the Views . 92
11.3 Home Page . 93

12 Design of Tests 94
12.1 Test Cases . 94
12.2 Unit Tests . 95
12.3 Test Coverage . 104
12.4 Integration Testing . 104

13 History of Work, Current Status, & Future Work 105
13.1 History of Work . 105
13.2 Current Status . 106
13.3 Key Accomplishments . 106
13.4 Future Work . 107
13.5 Project Management . 108

References 109

1 Customer Statement of Requirements

1.1 Problem Statement

The stock market, more specifically the New York Stock Exchange(NYSE) and the Nasdaq play
a pivotal role in the American economy today. Both are signals of the strength of the private sector
and consumer confidence. It is thus no surprise that more and more people want to be involved in
these markets and attempt to increase their own wealth.

There is however a barrier to entry for many people, both young and old in participating. That
is why with Paramount Investments League we are interested in a platform for interacting with
these markets and providing educational interfaces for breaking down these barriers. Users should
be able to easily register with the system and begin participating immediately. They should be
given an imaginary cash portfolio where they can perform basic market orders such as buy and sell.
These orders to should mimic real market orders as closely as possible and should include a brokers
fee. More sophisticated market maneuvers should be unlocked as the user progresses through an
achievements ladder.

Paramount Investments League is geared towards a wide array of audiences and expects a vari-
ety of users with varying knowledge levels to participate. In order to maintain appeal amongst these
users the platform should provide rewards to users for acheiving particular goals. We would like to
replicate the idea of achievements or trophies similar to the Microsoft xBox and Sony Playstation
family of systems. These achievements can award users with new abilities or additional cash to
their portfolio as they rise up the achievements ladder. Users should also be able to create leagues
to help further enhance the competitiveness of the game.

Leagues exist to allow multiple users to compete against a subset of the global user base with in-
dividual league rules. This allows leagues to set particular goals in order to be declared the winner.
Leagues will require a cash buy-in that will be pooled together and distributed to the winner(s) as
seen fit by the league creator. To help facilitate these leagues, a leader board will be created for
each individual league such that users can see their progress. In addition to league leader boards,
mutliple global leaderboards will be available providing specific metrics of comparison.

To help facilitate a better understanding of markets, market metrics should be available to
the user through news feeds of companies in their portfolio, interactive charts, and a live ticker of
current trades happening on our platform. Users should be able to have granular control of email
and social media updates.

8

CHAPTER 1. CUSTOMER STATEMENT OF REQUIREMENTS 9

The entire experience should be unified across mobile, tablet, and the desktop and combined
with the above features provide an enthralling core experience for users to learn about the stock
market.

CHAPTER 1. CUSTOMER STATEMENT OF REQUIREMENTS 10

1.2 Glossary of Terms

The following terms give a small overview of some of the items which will be necessary for fully
understanding of the purpose of this software’s design. The details provided should encapsulate
the idealogy which is important to gaining full understanding of the goals and processes within the
software designed. Further, the terms will also describe features and functionality as well as the
important financial terms which are crucial to comprehension of the software and how it works.

Achievement – Any set goal reached by an investor. Achievement rewards can be managed by a
league manager and may include badges, capital, equity, etc.

Transaction Ticker – Constantly updating scroll of most recent trades across the market. Users
can observe market trends from global equities which may or may not already be in their portfolio.

Leaderboard – Global or league based ranking system determined by overall net worth of player.

Security – A tradable asset of any kind. Can include debts, equities, or derivatives. For the
purpose of this game, we will be dealing primarily with equities.

Dividend – A payment made by a corporation to its shareholders, generally as a distribution of
profit. It is usually distributed as a fixed percent of shareholder value.

Derivative – Any financial contract which derives its value from another asset or index.

• Option – Gives the user the option to buy or sell an asset at a specified price on or before
a given date. The buyer and seller are both obligated to fulfill the transaction on the given
date if the option is taken.

• Future - Allows the buyer to buy an asset at its current price and pay for it at that price in
the future. A future is generally exchange traded. The buyer and seller are both obligated
to fulfill the transaction on the given date if the future is taken.

• Forward – Allows the buyer to buy an asset at its current price and pay for it at that price in
the future. A forward is a private agreement between buyer and seller not necessarily based
around market equity. The buyer and seller are both obligated to fulfill the transaction on
the given date if the future is taken.

League – A market simulation with a pre-determined rule set and several investors with a com-
mon goal to determine a winner. Goals can vary across leagues as determined by league managers.
Investors can choose to opt into a private league, public league, or no league at all.

Portfolio – A detailed account of assets associated with a particular investor in a given league.
Portfolios are unique to each user and will contain specific details such as earnings, losses, perfor-
mance, averages, as well as detailed asset performances of equities within the given portfolio.

CHAPTER 1. CUSTOMER STATEMENT OF REQUIREMENTS 11

League manager – The league manager will have the responsibility of adding and/or removing
investors from the league. League managers control settings, and victory conditions for a particular
league. League managers maintain their manager status only for the league in which they have
created.

Order – An investor must place an order for the purchase or sale of an asset.

Stock – A type of asset that represents equity in a company.

• Ask Price – The price at which a trader is willing to sell a stock.

• Bid Price – The price a trader is willing to pay for a stock.

• Bid-Ask Spread – The bid-ask spread describes the difference in price between the bid and
the ask. These two prices are marginally different, but always with the ask being the more
expensive of the two. It represents the friction inherent in trading a stock.[1]

Ticker Symbol – an abbreviation used to uniquely identify publicly traded shares of a particular
stock on a particular stock market.

Symbol List – a list of a market/several market’s ticker symbols.

Market Order – Any order placed for immediate market transaction.

• Buy – User has elected to purchase a particular stock and has placed a bid for that stock.

• Sell – User has elected to sell a particular stock and has posted an ask price for it.

• Short – Typically used by an investor who expects the value of a stock to decrease. The
investors borrows shares of a particular stock and sells them at market price. The investor
can then buy back the stock at a lower price profiting the difference. The investor is still
responsible for the stock should its value increase.[2]

Limit - An investment which will only take place at a given price. An investor placing a buy limit
will place a maximum amount the pay and an investor place a sell limit will place a minimum value
for which the stock be sold. Limit orders are not guaranteed to ever process, and only do when the
particular limit is reached.[3]

Stop – Orders which are activated if a particular stop falls below or rises above a particular price.
It is used to minimize gains and losses for the investor.[4]

Share – A small percentage of a given company which can purchased or sold from other traders.

2 System Requirements

2.1 User Stories

The user stories written and elaborated below demonstrate several particular instances and
requirements for program functionality, as well as a weight to measure relative importance of each
requirement. In particular these functions are not necessarily written in order of particular weight
or functional precedence but are simply a list of end user story requirements and relative weighted
importance. It is important to observe that these cases will be elaborated on and referenced in
further sections of this document. The following are told from the perspective of the user from his
or her view with the intention of fully encapsulating what he or she should expect to be able to see
or do upon entering and regularly using the referenced software.

Identifier User Story Weight

ST-1 As a user, I can create an account without registering with the website
in order to participate in Paramount Investment League.

10 pts

ST-2 As a user, I can access the application across multiple platform
paradigms so that I may continue to participate when I don’t have
access to a desktop computer.

10 pts

ST-3 As a user, I can join or create leagues with self-selected goals so that
I may compete with others in a simulated stock market environment
based on near real-time stock data.

10 pts

ST-4 As a user, I can search for companies by stock symbol and be presented
with their current financial information so that I may research future
investments.

6 pts

ST-5 As a user, I can browse a companies profile and view the performance
data over a configurable span of time so that I may determine whether
or not I want to invest in them.

6 pts

ST-6 As a user, I can buy or sell stocks so I may build my portfolio. 10 pts

12

CHAPTER 2. SYSTEM REQUIREMENTS 13

ST-7 As a user, I can earn badges(achievements) that reward me with ad-
ditional capital or new features for accomplishing predefined tasks.

10 pts

ST-8 As a user, I can manage my portfolio within a league to track my
investments.

8 pts

ST-9 As a user, I can visually track my finances via graphs and charts so I
may more easily manage my portfolio.

4 pts

ST-10 As a user new to the stock market, I will have access to an educational
interface that teaches me about the stock market via pop-up dialogues.

6 pts

ST-11 As a user, I can see trades being made by all other users in real-time via
a stock-ticker like marquee so I may have a quick overview of current
trends.

3 pts

ST-12 As a user, I can see the performance of other users’ portfolios so I may
observe the investment habits of others.

2 pts

ST-13 As a user, I can view a portfolio leader board so I may have a summary
of relative performance between users in my league.

1 pt

ST-14 As a user, I can opt to receive periodic e-mail notifications of my
stock performance or trades so I may be kept up to date even when
not actively viewing the site.

3 pts

ST-15 As a user, I can additionally link my account with social media sites
so I may share my fantasy league experience with friends.

1 pt

ST-16 As a league manager, I can add league rules, a league name, and a
league logo to personalize my league.

8 pts

ST-17 As a league manager, I may invit who I want to join. 8 pts

ST-18 As a league manager, I can create league announcements. 4 pts

ST-19 As a site administrator, I can view reports of and delete leagues that
are inactive.

2 pts

ST-20 As a site administrator, I may post front page news or announcements. 3 pts

ST-21 As a site administrator, I may have access to a user count, number
of active leagues, total leagues, quantity of daily transactions, the
most/least popular stocks, and newly created so I may have reliable
site statistics.

9 pts

CHAPTER 2. SYSTEM REQUIREMENTS 14

ST-22 As a league manager, I can choose the specific victory conditions for a
particular game (eg: first to a certain capital, net gain, or overall gain
within a time). As a user I can view this condition and my progress
toward victory.

5 pts

The above requirements outline a general list of requirements which we expect to reflect the
core functionality of our software (with higher weighted items acting as higher priority and being
implemented first). The ultimate goal of the software is to simulate that of a real world stock
market with users having the options to perform and carry out the important and basic trading
actions (see ST-6). We plan to add increased functionality when compared to years prior, how-
ever. With the addition of achievements, varied victory conditions, as well as increased leaderboard
functionality Paramount Investments will appeal to a larger audience than that of years past (see
ST-7, ST-13, ST-22). Notice that items such as administrative privileges as well as league creation
and stock execution are prioritized with substantially higher priority with relation to our newly
added functionality. This is because the core functionality of the software is absolutely crucial to
it working. We will expand on the core as well Supplement requirements.

Core requirements

These requirements are absolutely crucial to the viability and progression of the software. That
is the user can create and log into an account on a daily basis. We will use a basic authentication
system to implement this. Importantly the user will be able to access this UI on multiple different
platforms to ensure complete and smooth transitional access to the system with zero down time.
(ST-1, ST-2)

The user will be able to access his or portfolio. (ST-6) From this portfolio, they can view
their currently owned stocks as well as monitor the performance of their portfolio. They can view
progress toward goal requirements and badges. (ST-8) From this location they can take action to
buy and sell stock or perform short, stop, limits, etc.

League managers will have access to a specific configuration setup where they can choose victory
conditions, league settings, and monitor progress of investors within the league. This functionality
is core to the formation of leagues within the game. (ST-3, ST-16)

This project will NOT be its own market. In order to maintain the idea of perfect competition
and unbiased market prices, all data will be taken from Yahoo! Finance to submit data and trades
will be taken from here. This software is not intended to be a way for people to trade actual stock,
rather just a resource for learning the market and tools of trade.

Supplemental Requirements

The user will be able to access social media integrated applications, and decide whether or not
to keep their social media profile updated and informed with updates on progress from their fantasy
league. (ST-15) They may also receive email updates with various progressions in the game (ST-14)

CHAPTER 2. SYSTEM REQUIREMENTS 15

The user will be kept updated on the progress of other users to view their trades as well as
recent market trades and trends. (ST-12, ST-11)

Users will also have access to on-site term explanation similar to that seen on Wikipedia. That
is, they may scroll over an underlined term to find a brief definition and additional resources. (ST-
10)

2.2 Nonfunctional Requirements

Functionality

Additional features for security will be enabled through the use of a OpenID and OAuth through
a third-party library. There exists several packages for the purpose of authentication and authoriza-
tion of users. Key authentication features are the ability to encrypt and store passwords, provide
recovery options for users that have forgotten their password, and store a cookie to validate the
session.

Usability

A key point in the design of this application is ease of use and appeal to the users. The
application should be interactive, informative and consistent across multiple platform paradigms.
Additionally the application will be used to provide the educational interfaces noted in ST-9 which
should be able to be toggled on and off so that users can always view the information again.

Reliability

In order to ensure that there is no confusion to the user in the case of the internet or server
failure, all transactions end with a final confirmation, and no changes to the account are made
until after this confirmation. The user’s portfolio will thus always be in a consistent state and will
be restored when the user is able to log back in. A user that leaves the application and returns
later will still be logged in. Server failure should also be dealt with by keeping backups of user
data. Proper care should also be taken to handle a situation where a particular stock source is not
available (i.e. Yahoo Finance).

Performance

In order to have a great performance, the website should be as lightweight as possible by keeping
hardware demands to a minimum on both the client and server sides. For it to be efficient, any task
initiated by the user should be completed in a timely manner. The web server should be able to
serve concurrent requests especially when a large number of users are logged in. Any frameworks
used should be lightweight but consideration should be taken not to prematurely optimize.

Supportability

It should be feasible to extend pr update any server components and include improved versions
of modules which can be installed only by administrators. For scaling purposes, it should be made
easy to include an additional number of servers to achieve load balancing. The system should
be platform independent so that it is easy to move to newer technologies or the next versions of

CHAPTER 2. SYSTEM REQUIREMENTS 16

web server. The system itself should also be backed up to a remote server for the sole purpose of
extending functionality and testing new features in a controlled environment.

2.3 On-Screen Appearance Requirements

There are a few on screen requirements that will be universal to the entire site:

Identifier Requirement

OSR-1 Every page has a scrolling ticker across the bottom of the page to
update the user on stock movement.

OSR-2 Every page, with the exception of the login page, will have navigational
links across the top, the user’s username and their current position in
the leaderboard.

There are also the following requirements for specific pages:

Identifier Requirement

OSR-3 A custom 404 not found page will be displayed to a user when they try
to access a URL/URI that doesn’t exist or is not designed for them to
be accessing.

OSR-4 On the portfolio page users will find currently owned stocks, charts
and graphs, trade transcations, and a news feed.

OSR-5 The leaderboard view will contain users ranked by the top networth
from their respective portfolios.

OSR-6 The login page will present the user with login icons representing the
service they can use to log into our system, eg: google+, facebook,
etc.

CHAPTER 2. SYSTEM REQUIREMENTS 17

The below image gives a general representation of the on-screen requirements for the login
page. You will note here that this is a general design strategy where a background image and login
pattern will be debuted upon final release. The idea, however, is to demonstrate a framework for
what the user can expect to see upon entering our webpage. More importantly, this framework will
be the first impression the user has of our site and will be retouched and refined as necessary. The
outline is shown above.

Figure 2.1: Basic on screen requirements of login page

3 Functional Requirements Specification

3.1 Stakeholders

In general, a stakeholder is someone in an organization or group that is affects or is affected
by the decision made by that particular organization or group. For the Paramount Investments
League, any user (investor) in a league will be considered a primary stakeholder because any trans-
action made within their league, will influence other users investors.

The target demographic for the software described tends to be centered on students and first
time investors, as a result, it is unlikely that novice investors will participate in real trade without
any experience. That being said, it is likely to see the software expand to take a large role in
both university and pre-university classrooms, as a means of teaching general financial concepts. It
would not be unlikely to see the game further expand to a larger range of users than other similar
software due to increased functionality, addition of achievement and leaderboards, and ability to
join with or without league functionality. Specifically, the addition of achievements leaves the user
with the desire to return and spend additional time trading on the software.

The league will be a free service with the intention of eventually moving to a subtle-advertisement
platform which will have no impact on the user. Once a substantial enough user-base is generated,
it will not be unlikely to see advertisements begin to commence in order to bring revenue to the
company. As a free service (with eventual advertisements) we expect the platform to attract the
greatest number of users, and due to increased functionality, keep said users on the platform for
the greatest amount of time. The software is targeted not only at students and potential investors,
but at nearly everyone who desires to gain a greater understanding of the financial industry as well
as those who would simply like to practice trading before executing in the real market.

3.2 Actors and Goals

Investor

A user who has an account in our servers and is logged in to their account. These will be
regarded as our primary stakeholders.[5]

– Research the latest updates in the market

– View their portfolio

18

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 19

– Execute orders of any kind

– Join/create a league

– Take part in competitions

Guest

A visitor to the website who has either not logged in or just a simple visitor. Visitors will be
regarded as secondary stakeholders.[5]

– Register and create an account using OpenID/OAuth2

– View the latest trades

Administrator

Also referred to as an Admin, is the person in charge of managing the operation of their
respective field. For instance, a League admin is in charge of maintaining league settings.

League Administrator

Manages the leagues that they have created

– Can set league to be public/private

– Set the rules for the league

Site Administrator

Manages the overall website

– Ensure fair competition between leagues/players

Database System

Holds the information for the accounts of all users

– Insert information as accounts are created

– Push data back to views about users/events

– Store new data about about users/events

Financial API

Gives the stocks in our database up to date prices

– Fetch real world information and update our database accordingly

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 20

Browser

The middleman between user and system

– Present data to the user

– Retrieve data from the user

Yahoo! Finance

The unit that knows about current financial statistics

– Retrieve data about stocks

Queueing System

A subsystem for scheduling orders so as not to block user interactions.

– Place orders to be executed or canceled asynchronously

– Schedule events and mailings for system

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 21

Figure 3.1: This graphic illustrates the relationships between the core actors of our platform.

3.3 Use Cases

Preface

Users will have instant access to the functionality of the site as soon as they have created an
account and logged in. That is, they can perform all of the functions that an investor can perform.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 22

They will also have the ability to choose to create or join a league, though they are not required to
in order to experience the full functionality of the software. This will give our software a broader
demographic when compared to that of years prior. That being said, league creation and admin-
istrative user delegation will be an important part of the functionality of the program and will be
described its own use case. Core functionalities of respect user types will be elaborated below.

Use Case Casual Descriptions

UC-1

Register/Create an account using OpenID/OAuth2 Allows a new user to register and/or create
an account on the website server using OpenID/OAuth2. This should let players easily log in with
their social media accounts (Facebook, Twitter, Instagram).

Derived from: ST-1, ST-2

Note: A player does not have to reauthorize if logging in from a computer they have previously
logged in from, as long as the social media service theyre using is logged in to their account.

UC-2

Create/Join a League Allows a registered user to create a league according to their preferences.
This use case should give the player creating the league freedom to chose many options that affect
how the league functions, according to their liking. It makes the player creating the league the
leagues administrator. If the user is not creating a league, this use case should allow them to join
a league that already exists.

Derived from: ST-3

UC-3

View Market Data Allows a registered user to view market data for a given time period. The
user should be allowed to view data on stocks, companies, and trades. If the user is viewing data
after the markets have closed, the data returned is the last updated information. Otherwise, the
data returned is live.

Derived From: ST-4, ST-5, ST-11

UC-4

Manage Portfolio Allows a registered user to manage their portfolio. This use case should let
players view their position in the different leagues they are participating in. This can either be the
global league or any player-created league they have joined.

Derived From: ST-8

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 23

UC-5

Place a Market Order Allows a registered user to place an order to buy/sell stocks, or any
other advanced moves theyd like to make. The order must be placed within the operating hours
of the market to obtain accurate quotes. The changes made to the portfolio after orders have been
placed will be reflected immediately.

Derived From: ST-6

UC-6

Take Administrative Actions Allows the site administrator to take actions to promote the
well being of the website. This use case could entail anything from kicking players out of leagues
to deleting dormant leagues. There can only be one entity to take administrative actions on the
website.

Derived From: ST-19, ST-20, ST-21

UC-7

Manage League Settings Allows the registered user who is also the manager of a league to
take actions to maintain the well being of the league. This use case allows the league manager to
change the league rules, kick players out of the league, or a multitude of other options given to
league managers.

Derived From: ST-16, ST-17, ST-18

Fully-Dressed Use Cases

Having an account within our database is necessary for the user to experience functionality
within the software. That being said, the user can create an account in different ways. They can
choose to have the information imported by logging in through any OpenID/OAuth service service
(eg: google, facebook, twitter, etc.) This will populate the database fields automatically with data
driven from the external resources. Once the user has created an account, they can log in through
OpenID/OAuth and will generally remain logged into the system as long as they remain logged
into their service of their choice.

CG-BP01 A user can create an account such to access the full features of the game. They
can return and log in with minimal burden and access all of the information previously stored.

Use Case UC-1 Register/Create an account using OpenID/OAuth2

Related Require-
ments:

ST-1, ST-2

Initiating Actor: Guest

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 24

Actor’s Goal: Register with our servers

Participating Ac-
tors:

Guest, Database

Preconditions: -Guest must not be a registered user

Postconditions: -The Database is updated with guests information and logs the guess in as
an Investor

Flow of Events for Main Success Scenario:

→ 1. Guest navigates to Paramount Investment League and logs in

← 2. System checks database for investor and isn’t found

← 3. System retrieves OpenID/OAuth info and registers guest in database
as an investor

→ 4. System sends out confimation to user and displays starter portfolio

Flow of Events for Alternate Scenarios:

→ 1. Investor attempts to login

← 2. System checks Database and finds investor

← 3. System loads investor info from database

→ 4. System displays users portfolio

Any user has the option at any time to create or join a league. The user who has requested to
create a league will have elevated privileges versus a standard user. The league manager will be
prompted to make a league with various setting options for victory condition, badges, achievements,
etc. The league manager can also choose whether or not to make the league private. A private
league will restrict users to those invited by the league manager, and will require a password to
join. After initial setup, league managers will have minimal access to settings. That is, halfway
through a league, the manager cannot decide to change the victory conditions. This prevents the
league manager from abusing power to tip the scales in his or her favor.

CG-BP02 A user can create a league or join a league if he or she desires. Note that users
may trade without a league, but has access to create or join a new league at any time. Leagues
may be private or public.

Use Case UC-2 Create/Join a League

Related Require-
ments:

ST-3, ST-8, ST-16, ST-17, ST-18

Initiating Actor: Investor

Actor’s Goal: Create or join a league to compete in

Participating Ac-
tors:

Database, other Investors

Preconditions: -Investor is logged in

-league is not created or user hasn’t joined league

Postconditions: -The league is created with the appropriate settings or

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 25

-The Investor has joined the league

-The Database has been updated

Flow of Events for Main Success Scenario:

→ 1. Investor navigates to and clicks on the create league dialogue.

→ 2. System displays to the Investor the available options for creating a
league.

→ 3. Investor updates the settings, such as privacy, league name, number of
spots, and managing users

← 4. System sends the updated settings to the Database

→ 5. System sends confimation to the Investor

Flow of Events for Alternate Scenarios:

3a. The Investor selects league settings that are disallowed, such as a league name that
already exists.

→ 4. System informs user what settings are incorrect.

Investor wishes to join a league

→ 1. Investor navigates to league listing.

← 2. System updates database with investors info.

→ 3. System confirms investor as part of league and displays league site.

Users can view raw market data which will be pulled from Yahoo Finance in near real time.
Users can view company data either on their own portfolio page or through the companys spe-
cific info page. That is, the user can view detailed information of each stock or company before
committing to a trade from a variety of sources. Users will be able to compare their portfolios
performance to typical market trends from the Nasdaq, S&P 500, and DJIA. There will also be a
stock ticker ribbon on the bottom of the screen for users to receive constant real time feeds of most
recent trades happening within the market.

CG-BP03 A user can view market data in near-real time. They will have access to data taken
from the Yahoo! Finance API and can view this data in their portfolio or by searching for stocks
using tickers.

Use Case UC-3 View Market Data

Related Require-
ments:

ST-4, ST-5, ST-10, ST-11

Initiating Actor: Investor

Actor’s Goal: View the latest information about stocks, companies, and trades

Participating Ac-
tors:

Database, Yahoo! Finance

Preconditions: -Yahoo! Finance is accepting inquiries

-Investor is logged in

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 26

Postconditions: -None worth mentioning

Flow of Events for Main Success Scenario:

→ 1. Investor searches for a market term

← 2. System sends request to database

→ 3. System returns suggested terms

→ 4. Investor selects a term from suggested terms list and sends request

← 5. System sends request to Yahoo! Finance

← 6. database is updated.

Flow of Events for Alternate Scenarios:

Search Fails

← 6. Yahoo! Finance returns no results

→ 7. System informs investor of search failure

User will be able to view all major items within their portfolio as well as place trades from
their portfolio page. From this page, a user can view detailed analysis and graphs of each of their
respective stocks as well as their current rank within their league (if applicable) and globally. Users
will also be able to place trades for respective companies through their portfolio page. Users can
buy, sell, short, or carry out any additional action on any stock or security within the limits of their
finances and league settings through this page (See UC-5). Users will also be able to customize
and change views as well as add stock index comparisons to monitor their success vs market success.

CG-BP04 All users will have a portfolio which will house detailed information regarding all
of their stocks and performance. They will be able to perform trades from this location and will
also have access to the core functionality of the site through this page. It will essentially be the
users home page.

Use Case UC-4 Manage Portfolio

Related Require-
ments:

ST-8, ST-9, ST-10, ST-12, ST-13, ST-14

Initiating Actor: Investor

Actor’s Goal: Manage portfolio by viewing current standings/stocks/securities

Participating Ac-
tors:

Database, Yahoo! Finance

Preconditions: -Yahoo! Finance is accepting inquiries

-User is logged in

Postconditions: -Investor’s portfolio is updated to reflect change in position

Flow of Events for Main Success Scenario:

→ 1. Investor navigates to their portfolio

← 2. System requests users portfolio from database

→ 3. System displays portfolio to investor

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 27

→ 4. Investor adjusts their portfolio

← 5. System updates the database

→ 6. System displays confirmation of portfolio update

User should be able to place trades from various locations. That is, they may place it through
their portfolio by typing in the ticker and quantity of shares. They may also navigate to a certain
companys page and elect to purchase shares there. Selling shares should be done through the users
portfolio where they may see the exact quantity of shares of each respective companies they own.
Error messages will be thrown and orders not processed should a user request to buy more shares
of a company the he or she can afford or the user attempts to sell more than he or she has. Main
transactions will occur through the users portfolio.

CG-BP05 A user can place any market order he or she wishes to place (I.E. buy, sell, short,
limit, stop, etc). These trades can be executed from multiple locations and at the prohibitions of
the league rules.

Use Case UC-5 Place a Market Order

Related Require-
ments:

ST-6, ST-11

Initiating Actor: Investor

Actor’s Goal: Place orders to buy/sell/short stocks, or place a stop/limit order

Participating Ac-
tors:

Database, Yahoo! Finance API

Preconditions: -Investor is logged in

-Yahoo! Finance is accepting inquiries

Postconditions: -Database us updated with the users position

Flow of Events for Main Success Scenario:

→ 1. Investor enters a market order

← 2. System attempts to get update from Yahoo! Finance

← 3. System receives information back from Yahoo! Finance

← 4. System validates and records trade in database

→ 5. System confirms trades and displays changes in investor portfolio

Flow of Events for Alternate Scenarios:

3a. System doesn’t recieve information back from Yahoo! Finance

← 4. System notifies investor of failed request

Of the 3 user types, administrator is the highest and reserved only for developers and adminis-
trators of the software. Administrators have the ability to modify or delete leagues or specific users
if the administrator feels that power is being abused. The administrator will also have elevated
privileges to makes changes to the site. Their main purpose will be to suspend or ban users or
leagues and ensure that the site is not being abused. This includes but is not limited to robot or

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 28

AI users or user account spamming or advertising rather than trading properly.

CG-BP06 Administrators will have access to suspend, ban, or remove leagues or players
completely. Administrators will have elevated privileges relative to other users and will use these
privileges with the sole intention of maintaining the integrity of the software.

Use Case UC-6 Take Administrative Actions

Related Require-
ments:

ST-19, ST-20, ST-21

Initiating Actor: Site Administrator

Actor’s Goal: Perform administrative work for the website, manage database

Participating Ac-
tors:

Database, Investors, League Manager

Preconditions: -User is the site Administrator

-Administrative actions need to be taken

Postconditions: -Conflicts/Issues have been resolved

Flow of Events for Main Success Scenario:

→ 1. Site Administrator requests logs from system

← 2. System closes saves log file and returns log report

Depending on the specific role of the user. (I.e. investor, league manager), users should be able
to customize several different items. That is, the league manager will have ultimate customization
of the rules of his or her league, including but not limited to: victory conditions, achievements,
and starting capital. These rules are to be established prior to the beginning of the league and not
touched for the duration. League manager will also have a few other elevated privileges depending
on whether he or she also falls into the investor role as well. Investors will be allowed to manage
their own personal settings including but not limited to: email alerts, social media integration, and
notifications.

CG-BP07 League managers will have access to a list of settings which they may select before
the initiation of the league competition. They will have slightly elevated privileges from basic
investors, but not enough to abuse power.

Use Case UC-7 Manage League Settings

Related Require-
ments:

ST-16, ST-17, ST-18

Initiating Actor: League Manager

Actor’s Goal: Change league settings to the League Mangers preference

Participating Ac-
tors:

Database, other Investors

Preconditions: -Initiating actor is the League Manager

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 29

Figure 3.2: The traceability matrix for the given use cases.

-There are outstanding abuse reports

Postconditions: -The Database is updated to reflect the chagnes made.

The abuse report shows that it has been resolved on the administration page

Flow of Events for Main Success Scenario:

→ 1. League Manager makes adjustment to league settings

← 2. System makes a update to the Database

→ 3. System displays updated settings to the league manager

Traceability Matrix

The traceability matrix presented in Figure 3.2 is based on only the full dressed use cases above
and thus is only a partial representation of the complete project.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 30

3.4 System Sequence Diagrams

In the following sequence diagrams, we describe exactly the interactions between the key actors
our system. It is important to note that most of the interaction between the user and system is
facilitated by the browser. The user, through filling forms and button clicks, instructs the browser
which requests to make to the system. In turn, the system communicates with the database to
request the desired data, takes any required actions, and delivers the data to the browser for pre-
sentation to the user.

Figure 3.3: See UC-1 on page 23. When the user navigates to the login/register accounts page, this
use case is triggered. The system makes it necessary to have an account before using Paramount
Investments leagues. The System then takes the information that the user has input and sends
them to the database, which then sends it back to the system to display on the screen to the user.
If the system finds that the user that is registering with the same credentials as an existing account,
the system throws up an error appropriately.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 31

Figure 3.4: See UC-2 on page 24. This use case is triggered when the user navigates to the create
league page. The user requests the system to create a league, which then sends appropriate data to
the database. Once the data is stored successfully, the database sends a confirmation back to the
system, which then displays an appropriate message to the user. If the user wants to join a league,
the user requests the system appropriately, which then sends the data to the database regarding
the right league and if successful sends the confirmation to the user.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 32

Figure 3.5: See UC-3 on page 53. When the user navigates to the research stock page, this use case
is triggered. The user specifies to the system exactly what market data they would like to view. If
the user wants to research off the companys website, then user will click on the hyperlink present
in the system. If the user wants to view the data through the interface that Paramount Investment
Provides, the system then pulls information from the Yahoo Finance API and then sends it back
to the system to display to the user.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 33

Figure 3.6: See UC-4 on page 26. This use case is triggered when the user goes to his/her own
portfolio page. The user navigates to the view portfolio page. The system then requests the
database to retrieve the users information. Once the database sends this data back to the system,
the system displays it to the user. The user is now free to modify aspects of his/her portfolio.
Once the user is finished modifying/updating their portfolio, the system will send the changes to
the database, which will then store the information and save it.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 34

Figure 3.7: See UC-5 on page 27. This use case is triggered when the user goes to place a market
order in the place order page. The user selects a league to place the order into. The system then
displays the information to the user, who then requests to place a market order. The system then
queries to Yahoo Finance API to retrieve information about the stock prices. The system then
takes that information and processes it with what the user wants to do. If the order is completed
successfully, it is appropriately displayed.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 35

Figure 3.8: See UC-6 on page 28. This use case is triggered when the administrator of the website/
league wants to take action. The system first checks if the user logging in has administrative
privileges in their respective group. If so, the system then looks in the database to check for any
logged conflicts. If there are unresolved conflicts, the database returns them and then user can
then view the conflicts. If there are no conflicts to be resolved, then display so appropriately to
the administrator/logged in user.

CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 36

Figure 3.9: See UC-7 on page 28. This use case is triggered when the manager of a league wants to
change the league settings. The system first checks to see if the user that is logged in, is the league
manager and if so, the grants the user privilege to change league settings. The user then requests
to change the league settings. The system retrieves the league data and modifies it as the user has
requested.

4 User Interface Specification

4.1 Preliminary Design

The user interface (UI) for Paramount Invesments Leagues will act as a command center for
users to interact with their portfolio, leagues they are a part of, and conduct research on potential
orders. More specifically, the command center will act as the primary; but not the only; view
for users to interact with the system. The command center will provide a snapshot of the users
current portfolio and its value, their global rank, a dash to perform market orders, a news feed, and
a graphing dash in order to quick analysis of stock performance. The UI will persist a users global
rank across all views as well as a ticker of current trades being placed through the Paramount
Investment League.

The UI should be lightweight so as not to burden our more restrictive target platforms of mobile
and tablet. The colorscheme will be chosen to be easy on the viewer, though this is subjective,
the colorscheme will be a basic pallet of grey/black/white/blue, tending toward pastel and web
supported colors.

The UI will be built on top of Twitter’s open source Bootstrap CSS[6] framework to help fa-
cilitate deleriving content to the three target platforms, desktop, mobile, and tablet. Bootstrap
provides a mobile first design philosophy, but can be customized to target specific platforms.

Landing Page and Login

Paramount Invesment League is designed around allowing users to easily begin using the ser-
vice, also know as ”zero effort” resgistration. In order to accomplish this, the system does not
require the user to register a new user name/account with our system, but instead piggybacks
on OpenID[7] and OAuth[8] allowing users to use their Google, Facebook, Twitter, and other
OpenID/OAuth accounts to login. You’ll also notice that upon initial visit, the header is empty
providing no navigation, this may be relaxed in the future to allow the user to explore some of the
features of the website that don’t require user authentication such as stock research. (See figure 4.1)

Global Header

The header (see Figure 4.2)across the website will remain persistant across the website once the
user is logged into the system. Navigation is done between essentially 4 views in the following order,
My Portfolio, Stock, League, Leaderboard,. These names are placeholders and will most likely be

37

CHAPTER 4. USER INTERFACE SPECIFICATION 38

Figure 4.1: First iteration of Landing/Login page.

Figure 4.2: Preliminary design for a global header. This users is up 50 spots for the day.

My Portfolio, My Leauges, Leaderboards, Analyze Assets. The ’My Leagues’ and ’Leaderboards’
will be turned into drop downs as users expand into leagues to allow quick navigation.

The website name will also navigate to My Portfolio. The username will be replaced by the
users actual username, and below it will be the users global rank. The rank will be highlighted in
red or green depending on whether they have improved their position on the day, or it has declined.
It will also indicate how many spots they have moved.

Global Ticker

One interesting feature of Paramount Investment Leagues will be its active ticker at the bot-
tom of the website. This ticker will be seen in all views, including the Landing Page once there is
enough volume to keep the ticker full. The ticker serves two goals, one for new users, and one for
existing users. The first goal is to entice new users to participate by demonstrating that the app
is being widely used. The second goal is to give a snapshot to existing users of assets that are ”on

CHAPTER 4. USER INTERFACE SPECIFICATION 39

Figure 4.3: The preliminary design of the ’My Portfolio’ view.

the move” so that they can attempt to remain competetive. The ticker can be seen at the bottom
of all the figures.

My Portfolio

The ’My Portfolio’ (see Figure 4.3) view of the website will act as the command center for a
user wanting to get news about companies/assets in their portfolio, perform an order, or conduct
quick graphical anaylsis of assets in their portfolio and compare them to any other asset available
for trade through the platform.

More importantly, it provides a snapshot of the users portfolio including a scrollable list of all
the assets inside the portfolio and a summary of said assets. In the future, assets will be ’clickable’
and will take the user to a summary page of that asset, but that is not planned for the initial 2
iterations.

Leagues

The ’League’ (see Figure 4.4) view will present a user that isn’t a part of a league the ability
to create a new league of join an existing league. Not shown in Figure 4.4 is the view that a user

CHAPTER 4. USER INTERFACE SPECIFICATION 40

Figure 4.4: This is the league creation/join view. This would be the view presented to a user that
is a part of no league yet.

who is a part of a league. This view will still persist the join/create dialogues, but will also present
a list of all the leagues that user is a part of, their rank within said league, and their movement
within said league.

Leaderboards

The ’Leaderboards’ (see Figure 4.5) view will present the user with a partial view of the full
leaderboard for a given league, or for every user. It will show their rank, their movement, the
value of their portfolio as well as the same stats for all other users around them. The view will be
scrollable if there are more records then can be displayed, and will center the user in the middle of
the view unless they are at the top or bottom of the board.

Asset Analysis

The ’Stocks’ view (see Figure 4.5) will be renamed to more align its function with its name,
which is to analyze assets. It will a more in depth way of anaylzing an asset versus what is available
in the ’My Portfolio’ view. There will be a news feed at the bottom of assets that you are searching
for. There will also be a more formal analysis of asset data presented including P/E ratio, 52 week

CHAPTER 4. USER INTERFACE SPECIFICATION 41

Figure 4.5: Here is the leaderboard view which will be the same for both leagues and global
leaderboards. This view represents a global leader board. The colorscheme of this view here is
incomplete and will fall inline with the remainder of the site.

range, Volume, EPS, etc. This isn’t shown in the figure, but will one-half to two-thirds of the space
that has been set aside for the news feed.

This is also one of the views and functionalities that has been identified to not require the user
to be logged in. While it will not be availble to non-users in the intial product, it can be made
available in future releases.

4.2 User Effort Estimation

Several of the most common usage scenarios for Paramount Investment Leagues:

CHAPTER 4. USER INTERFACE SPECIFICATION 42

Figure 4.6: The preliminary view for asset anaylsis.

Usage Scenario Clicks Keystrokes

Login & Register 2-3 0-1

Place an Order 4-6 2-12

Join a League 3-4 0-50

Create a new League 6-7 11-100

Analyze Asset 2 2-5

View Leaderboard 2 0

Login & Register

Assume the user has come to the domain and wishes to Login if already registered, or register
if already a user:

CHAPTER 4. USER INTERFACE SPECIFICATION 43

• Navigation:

1. Click on OAuth provider icon (Google, Facebook, Twitter, etc).

2. Click on your account (optional for multiaccounts).

3. Click on login, or hit enter.

Place an Order

Assume the user has already logged in and they wish to place an order:

• Navigation:

1. Navigate to ’My Portfolio’, 0-1 clicks.

• Data Entry:

1. Select order type from drop down, 2 clicks

2. Click textbox to enter asset name. 1 click

3. Enter assets name eg: ’G’, ’O’, ’O’, ’G’, 1-4 keystrokes

4. Press tab to specify number of shares, 1 keystroke (user could also execute 1 click)

5. Enter the number of shares, 1-7 keystrokes

6. Click execute, 1 click

Join a League

Assume that the user wishes to join a league and is logged in:

• Navigation:

1. Click on League, 1 click

2. Click on Join, 1 click

• Data Entry:

1. Click on a League, or enter its name, 1 click or up to 50 keystrokes

2. Click on confirmation dialogue, 1 click

Create a League

Assume that the user wishes to create a league and is logged in:

• Navigation:

1. Click on League, 1 click

2. Click on Create, 1 click

CHAPTER 4. USER INTERFACE SPECIFICATION 44

• Data Entry:

1. Enter its name, 1-50 keystrokes

2. Select ruleset from dropdown, 2 clicks

3. Fill in parameters, 1-2 clicks and 10-50 keystrokes

4. Click on confirmation dialogue, 1 click

Analyze an Asset

Assume that the user is logged in and they want to start an in depth analysis of an asset:

• Navigation:

1. Click on Stock, 1 click

• Data Entry:

1. Click on the textbox for entering an asset name, 1 click

2. Enter an asset name, 1-4 keystrokes

3. Hit enter, 1 keystroke

View Leaderboard

Assume that the user has logged in and wants to veiw a leaderboard:

• Navigation:

1. Click on Leaderboard, 1 click

2. Click on Select Legue/Global, 1 click

5 Effort Estimation

The “Use Case Points” system of estimating the effort necessary to create the system will be
employed. This is motivated by a need to have a metric on the complexity of the design of the
system in order to properly motivate resource allocation, with the acceptance that any created
metric will be necessarily subjective and arbitrary.

5.1 Background

The estimation of effort is a factor representing the product of sums of various weighting factors.
This can also be used to estimate the number of man-hours which will be devoted to completing
the project. The factor representing the total weighting factor is:

UCP = UUCP × TCF × ECF (5.1)

UUCP = UAW + UUCW represents the Unadjusted Use Case Weight as a sum of Unadjusted
Actor Weight, the weighted complexity of actor involvement, and Unadjusted Use Case Weight,
the weighted complexity of the various use cases of the system.

There are two complexity factors: technical, and environmental.

CF = C1 + C2

13∑
i=1

WiFi (5.2)

TCF , the Technical Complexity Factor, is a heuristic index representing the challenges posed
in implementing nonfunctional requirements of a system and is specified by interviews with expe-
rienced developers. C1 = .6, C2 = .01, Wi ∈ {.5, 1, 2}, and Fi ∈ [0, 5]. ECF , the Environmental
Complexity Factor, is another heuristic index representing miscellaneus factors including experience
and stafffing. C1 = 1.4, C2 = −0.03, Wi ∈ {−1, .5, 1, 1.5, 2}, and Fi ∈ [0, 5].

The UCP can be interpreted as weighted count of the various requirements and specifications
needed to implement a system. Therefore, the duration of a project can be estimated by multiplying
the UCP by a productivity factor PF representing the average development man-hour needed per
use case point.

45

CHAPTER 5. EFFORT ESTIMATION 46

5.2 Unadjusted Use Case Points

Actor Description Complexity Weight

Investor A normal user is interacting with the site through a graph-
ical user interface.

Complex 3 pts

League Man-
ager

League Manager requires a graphical user interface. Complex 3 pts

Site Adminis-
trator

Admin requires private GUI as well. Complex 3 pts

Database System interacts with database layer through a predefined
framework.

Average 2 pts

Web Browser Browser interfaces with application through RESTful API
over HTTP to navigate and submit forms.

Simple 1 pt

Finance Adap-
tor

System interacts with Yahoo! Finance through its web API. Simple 1 pt

Use Case Description Complexity Weight

Register Simple user interface, 4 steps for main success scenario. 2
participating actors (Database, Manager).

Average 10 pts

Join League Average user interface, 5 steps for main success scenario. 2
participating actor (Database, Investors).

Average 10 pts

view Data Simple user interface, 6 steps for main success scenario, 2
participating actors (Database, Yahoo Finance).

Complex 10 pts

Manage Port-
folio

Simple user interface, 6 main steps for main success sce-
nario. 2 participating actors (Database, Finance).

Complex 15 pts

Place Order Complex user interface, 5 steps for main success scenario.
2 participating actors (Database, Investors)

Complex 15 pts

Admin Actions Average user interface, 2 steps for main success scenario. 2
participating actors (Database, Site Admin).

Simple 5 pts

Manage
League

Average user interface, 3 main steps for success scenario. 2
participating actors (Database, League Manager).

Complex 15 pts

CHAPTER 5. EFFORT ESTIMATION 47

5.3 Technical Complexity Factors

Technical Factor Description Weight Perceived
Complex-
ity

Distributed Sys-
tem

System is distributed between end users having access
through web and main server(s)

2 3

System Perfor-
mance

Users expect good performance but nothing excep-
tional

1 3

User Efficiency End users expect efficiency but there are no exceptional
demands

1 3

Complex Internal
Processing

System needs to track performance of various user in-
stances both day-to-day and over extended intervals

1 4

Reusability No requirements for system to be reusable 1 0

Ease of Installa-
tion

Ease of installation is low because only one host ma-
chine is used in implementation

.5 2

Ease of Use Ease of use for users is imperative .5 5

Portability Portability is only high enough to allow for ease of de-
velopment on various platforms

2 2

Ease of Change System will only change marginally, so ease of change
is low priority

1 1

Concurrent Use Concurrence is an issue because users have access to
activity, and history feeds, and system needs to poll
finance data in approximately real-time

1 4

Security Security of users is important but Herculean measures
are not necessary

1 3

Third Party Ac-
cess

Because of RESTful interface, third party support is
possible but not currently supported

1 2

Training Require-
ments

System is relatively easy to use, but basic tutorials are
offered to users

1 1

CHAPTER 5. EFFORT ESTIMATION 48

5.4 Environmental Complexity Factors

Environmental
Factor

Description Weight Perceived
Impact

Development Ex-
perience

Beginners with UML-based development and the Con-
struction process

1.5 1.5

Application Expe-
rience

Complete novices to the field of finance .5 0

Paradigm Experi-
ence

Beginners to the use of databases and web frameworks 1 1.5

Lead Capabilities Leads have no prior leadership experience .5 0

Motivation Motivation is high but fluctuates over semester 1 3

Stable Require-
ments

Requirements are well-known but only approximate 2 3

Part Time All developers are working with very few hours a week -1 5

Language Developers are using a collection of modern languages,
some familiar, some not

-1 2

5.5 Calculations

UUCP = 3× 3 + 2× 2 + 1× 2 + 10× 3 + 15× 3 + 5 = 95

TCF = .6 + .01× (34.5) = .945

ECF = 1.4− 0.03× (5.75) = 1.23

UCP = 95× .945× 1.23 = 110.4

Duration = UCP × PF = 110.4× 28 = 3091

6 Domain Model

6.1 Concept Definitions

The Domain Model Concepts are derived from responsibilities contained in the Use Cases from
Chapter 3.

Responsibility Type Concept

R1:Allow new user to create an account to partake in stock
trading game as an Investor. And Login existing user.

D Account Controller

R2: Initialize accounts with fixed amount of capital. D Account Controller

R3: Check if Investor is in a league or not. K League Controller

R4: Update new leagues at set interval and display to correct
Investors.

K League Controller

R5: Retrieve information about Stocks, Trades, and Com-
panies.

K Yahoo! Finanace
Adapter

R6: Display information about users Stocks, Trades and
Leagues

K Player Profile View

R7: Record and Execute Buy/Sell/Short Stock trades D Order System Con-
troller

R8: Display Welcome screen to create an account or log-in. K Login View

49

CHAPTER 6. DOMAIN MODEL 50

Domain Diagram

The shown figure (our domain model) illustrates how our system is broken down into different
subsystems and how they interact with each other. Each box represents an entity in our system
and each arrow represents a function that allows the entity to communicate with other entries in
the system.

Figure 6.1: The domain model.

Account Controller

The first step for anyone using this system is to gain access by creating an Account. Account
Creator is an interface that allows a player to create a new Investor account. It will check with
the database for an account with the same details, and if not found it will proceed to create the
account and store the details into the database.

Player Profile View

The Player Profile displays statistics and saved settings for the user that logs into The Paramount
Investments League. Player Profile should query Yahoo! Finance Adaptor API to get data about
Watchlist stocks, and any searched Target stock.

Login View

The Login View displays a UI to allow the user to login with OpenID. This will send a request
to the account controller. If it fails the Login View will be updated to reflect this. If this succeeds

CHAPTER 6. DOMAIN MODEL 51

the user will now see the Player Profile View.

League Controller

League Manager will proceed to keep up to date display of rankings of every player in each
league. These will be fetched from a database and displayed in the Player Profile. League Manager
will allow Investors to join open leagues that they are not already in. This will require querying the
database and updating if necessary. League manager may give our achievements based on certain
accomplishments within the leagues.

Yahoo! Finance API Adapter

Yahoo! Finance API provides the almost real time stock data that our application is dependent
on. Any downtime Yahoo! Finance experiences will affect our application. Yahoo! Finance API
Adaptor serves as a translation between the CSV file that Yahoo! Finance produces through their
API, and our application. Our Adaptor will take the spreadsheet Yahoo! Produces and convert
the data into syntax that our application can understand. This adaptor is modular in order to
allow multiple subsystems to make queries for live stock updates.

Order System Controller

Any order placed by an investor will go through the Order System which will sum the cost of the
transaction and check that the account balance is satisfied. This will require communication with
the Yahoo! Finance API Adaptor to get the current price of the target stock to be purchased/sold.
If the order is a limit trade, we must define a way to check if the current price of the stock matches
the limit price and execute the order.

Database Connection

We want to have a single subsystem maintain control of accessing the database to make retriev-
ing information modular. This will allow expansion of the application to add additional function-
ality later, which may also need access to the database. This should provide a layer of security so
each subsystem does not access the database directly. Additionally, the single subsystem will give
us an interface for interacting with the database, without worrying about the underlying implemen-
tation of the database. In the long run, this will allow us to insert data to a different database (Ex.
NoSQL) without spending time to refactor the code. Using a database connection will also help
to increase security within our system by helping to prevent against attacks, such as SQL injections.

CHAPTER 6. DOMAIN MODEL 52

6.2 Association Definitions

Concept Pair Association description Association name

Login View <> Account
Controller

Login View sends a login request. Account
Controller can respond with Success or Fail-
ure.

sends

Account Controller <>
DB Connection

Account Controller sends user login details.
DB Connection sends account info or failure.

sends

Account Controller <>
Player Profile View

Account Controller updates view to be the
Player Profile View. (Profile View may also
allow user to change some account settings).

updates

Player Profile View <>
League Controller

User may send request to League Controller to
update, join, or leave a league. League con-
troller can update view with information.

sends

League Controller <> DB
Connection

League controller request league statistics
from DB Connection. DB Connection sends
statistics

sends

Player Profile View <>
Order System Controller

Player Profile View sends requests to the Or-
der System Controller. Order System Con-
troller updates the Profile View.

sends,

Order System Controller
<> Yahoo! Finance API
Adaptor

Order System Controller sends requests to
API Adaptor about stock prices. API Adap-
tor returns information about the stock info.

sends

Order System Controller
<> Limit Order Queue

Order System Controller creates the limit or-
der queue when a limit order is placed but
cannot be executed immediately.

creates

The associations of domain concepts are derived from the table above. The Account Controller
takes information that a user enters into the Login View. This information is sent to check with
the Database. The Account Controller can change the view to the Player Profile based on what
information is stored in the database. From the Player Profile View a user can access account
settings, leagues, and portfolio details. The league details are managed by the League Controller,
which can allow requests to create/join a certain league. The league controller should also peri-
odically update the Player Profile Views statistics of the leagues they are in. The Order System
Controller allows the user to search market data, and attempt buy/sell/short trades. The Order
System Controller must communicate to see if the user has sufficient funds. Limit trade may not
be executed until the stock price reaches a certain value. If the limit trade cannot be executed
immediately a Limit Order Queue is created and these orders will be placed in here. The Order
System Controller communicates with the Yahoo! Finance API Adaptor to retrieve current quotes
for stocks. Yahoo! Finance Servers must be online for this to work correctly.

CHAPTER 6. DOMAIN MODEL 53

6.3 Attributes Definitions

Responsibility Attribute Concept

R9: Know if user login failed LoginFailed Login View

R10: Player’s name and OpenID Name/OpenID Player Profile View

R11: Players Account Balances (Cash Balance, Money In-
vested, Daily Change).

Account Sum-
mary

Player Profile View

R12: Stocks User added to WatchList. WatchList Player Profile View

R13: Stocks User owns. Owned Stocks Player Profile View

R14: Leagues and Rankings leagueID/rank Player Profile View

R15: Know if user is logged in isLoggedIn Account Controller

R16: Know which leagues user is in. isInLeague League Controller

R17: Know if user is creating a league isCreatingLeague League Controller

At the Login View it is good to know if a Login attempt failed so we can display the correct
information to the user. When a Login is successful the Account Controller will set the isLoggedIn
attribute, then interacts with the DB Connection to retrieve all information to populate the Player
Profile Views attributes such as Name, OpenID, Account Summary, Owned Stocks, LeagueIDs,
and rankings.

At the Player Profile View the user may attempt a variation of things such as changing account
settings, joining/creating a league, making an order, or viewing market data. The League Con-
troller has attributes isInLeague so it knows how to update data for the Profile view. It also has
attribute isCreatingLeague, to submit this data through the Database Connection after a successful
league creation.

The Player Profile View can also interact with the Order System Controller to view market
data and place an order. The Order System Controller will use isValidValue to check if the account
balance is sufficient to perform the operation. isValidStock checks to see if the symbol entered is a
valid inquiry.

Yahoo! Finance API Adaptor communicates between the Order System Controller and the
Yahoo Finance Server to deliver information about a particular stock. retrieveData is the attribute
to search a stock value and then return it to the Order System Controller to perform a useful
operation on it.

Database Connection has a retrieveData attribute to be able to read data from the database.
There is also a writeData attribute to be able to store all information about the Players of the game.

CHAPTER 6. DOMAIN MODEL 54

6.4 Traceability Matrix

Figure 6.2: The traceability matrix.

CHAPTER 6. DOMAIN MODEL 55

6.5 System Operation Contracts

UC-1 Register/Create an Account

• Preconditions

– (join) If a new user is visiting the Paramount Investments League website (guest), they
must first register with either OpenID/OAuth2 account before joining/creating a league
with Paramounts Investments.

• Postconditions

– After registration, the database is updated and logs the once previous guest, as an
investor of Paramount Investments League.

UC-2 Create/Join League

• Preconditions

– Investor must be logged into the Paramount Investments League website.

– No more than one instance of the same League name can exist.

– User hasnt joined a league yet.

• Postconditions

– Investor has joined a league

– Database has been updated

– League has been set with selected settings.

UC-3 View Market Data

• Preconditions

– Investor is logged in

– Yahoo Finance is accepting inquiries.

• Postconditions

– Query Stock Market Data

UC-4 Manage Portfolio

• Preconditions

– User is logged into their Paramount Investments League account.

– Yahoo Finance is accepting inquiries.

• Postconditions

– Any adjustments made to the investors portfolio have been updated in the database.

UC-5 Place a Market Order

CHAPTER 6. DOMAIN MODEL 56

• Preconditions

– User is logged into their Paramount Investments League account.

– Investor has enough funds in their account to place a market order

– Yahoo Finance is accepting inquiries.

• Postconditions

– User profile is reflected with any change to funds or position.

– Database has been updated with these changes.

UC-6 Take Administrative Actions

• Preconditions

– User is the site administrator

– An issue/conflict occurs and needs to be resolved.

– There are outstanding abuse reports.

• Postconditions

– Conflicts/Issues have been resolved

– The reported user has been notified of any actions taken against them.

UC-7 Manage League Setting

• Preconditions

– Initiating actor is the league manager.

– League Manager is logged into their Paramount Investments League account.

• Postconditions

– Database is updated to reflect any changes made to their account.

– All users are notified of any changes made in their league.

6.6 Economic and Mathematical Models

Perfect Competition

One of the prevalent concepts in the stock market is the economic concept of perfect competition,
which says that not any single participant has enough resources/power to control the market. To
apply the concept of perfect competition to our project we will need the following requirements:

• Not one person can control the market or industries, segment, etc.

• Users can feel free to execute trades at their convenience without having to worry about extra
costs

• Every individual has access to same stock information as other investors

CHAPTER 6. DOMAIN MODEL 57

• The selling price is the same as the buying price.

In the real world, none of these requirements can be met, as there is always some problem
that prevents the market from being in perfect competition. The following are just some of the
problems:

• There are high net worth individuals/companies who have enough capital to change the tide
of a certain sector of the market. If one of these individuals suddenly decides to leave a
particular market, the move may suddenly shift the market and effect other investors in that
market.

• In the real world, users typically dont have direct access to stocks. They have a broker
(electronic or human) who they interact with, who then have direct access to stocks. Users
cant usually execute trades/buy stocks without worrying about extra costs because of the
commissions charged by brokers when trading stocks.

• The world is not a fair place, and neither is the stock market. There are individuals who
because of the field that they work in, have much more insight into a particular industry/stock.
These individuals then sell this information to potential buyers in hopes that it gives them
an edge in trading. This gives a huge disadvantage to those that dont have access to more
information bout stocks.

• Lastly, in the real world, the selling price is never usually the same as the bid price. The
Bid-Ask spread, the difference between the buying and selling price tends to be greater than
0.

All these factors lead the stock market away from perfect competition.

How do we plan to fix these issues to ensure a near-perfect competition?

• All investors start with the same amount of money, this way no one person by default has
more power than anyone else

• No commission will be charged when the trades are executed for any investor

• Insider trading will be avoided by standardizing the stock information across the board

• The ask-bid spread will be 0, so the selling price is the same as the buying price

Mathematical Model:

• Stock Prices

– There are no complicated mathematical models behind how the stock prices are deter-
mined in our platform. The market prices that are retrieved from Yahoo Finance are
the prices that are available to users in Paramount Investments

• Achievements

– Achievements in Paramount Investments each have their own mathematical model.
There are no complicated algorithms behind how these achievements are attained. If
the user has met the required conditions for a certain achievement, then they will be
given that specific award.

CHAPTER 6. DOMAIN MODEL 58

– For example: Buy stocks whose P/E Ratio > 1

7 System Interaction Diagrams

7.1 Introduction

The interaction diagrams in the following section will outline the system interactions in the
most important parts of our software. For each particular use case, we will outline the interactions
among the systems and databases. Further, we will analyze multiple cases in which the systems will
handle different scenarios. That is, it will show how the system handles both failure and success
conditions. In the following scenarios, you will see the database, controller, and Yahoo! Finance
API used in nearly every situation. Because this is a web-based and data based application, the
database and controller become heavily prevalent. Users will need to log in and constantly access
data pulled from the Yahoo! Finance API to have constantly refreshed and updated information.
The diagrams below will accurately detail how this will be accomplished within the system.

7.2 Diagrams

Use Case 1

Shown in the sequence diagram for UC-1 begins with two options for the Guest. Either login
or register an account. If a user attempts to register a new account the Account Controller is
contacted with the users information. Then the Account Controller can attempt to check to make
sure no duplicate login information exists in the database via the DB Connection module and if
not it will store the new user information into the database. After this happens the user will be
sent a confirmation email. Then the Account Controller will update the Login View.

If a user attempts to login, the Account Controller will attempt to authenticate the login details
with details found in the database via the DB Connection module. If the details match correctly
then the Account Controller will send the guest into investor mode and therefore displaying them
the Player Profile View.

59

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 60

Figure 7.1: UC-1

Use Case 2

Shown in the sequence diagram for UC-2 is the flow of how to create an investment league.
When an investor selects to create a league the League Controller will be contacted. This will
update the Player Profile View display the available options for creating a league. After, there
is a function updateSettings() which will create the league and process it in the database via the
DB Connection and also allow settings to be updated for a league. Not shown in the diagram is
the alternative case of joining a league. The process to join a league is straightforward, where the
league controller will show available leagues and then if an investor chooses to join they will be
entered into the list in the database to associate with this league.

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 61

Figure 7.2: UC-2

Use Case 3

Viewing market data is accomplished by an investor searching a term. The Order System Con-
troller then finds this term which is most likely a company name or stock symbol. The system
will fetch matches from the database via the DB Connection module and display them from the
user. The investor will choose a match. The Order System Controller takes the chosen term and
requests its data from the Yahoo! Finance API via the Yahoo! Finance Adapter. The Order
System Controller will update the database via the DB Connection module for this term, and then
continue to show the Market Data View.

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 62

Figure 7.3: UC-3

Use Case 4

The investor should be able to view and make changes to their Portfolio View. When the user
clicks to show portfolio, the Portfolio Controller will fetch the investors portfolio stocks from the
database via the DB Connection module. The investor can also update their view of the portfolio
and other settings.

Figure 7.4: UC-4

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 63

Use Case 5

The investor needs to be able to place market orders. As soon as the investor places an order
the Order System Controller contacts Yahoo! Finance API via the Yahoo! Finance Adapter to
retrieve the current price of the stock. After the current price is found the Order System Controller
must confirm with the database via the DB Connection module that the user has enough funds to
make a buy order or enough stock to make the sell order. After the trade is confirmed information
will be stored about it in the database via the DB Connection module and the changes will be
displayed in the investors portfolio.

Figure 7.5: UC-5

Pub/Sub for Achievements

We decided to us a Publisher/Subscribe pattern to handle achievements on the server, and use
that to update the user interface and database. This will allow us to handle all the achievement
handling in one location, instead of spreading the logic throughout the code. This will greatly ease
our ability to introduce additional achievements as the application matures, as well as easily fix
bugs in our achievement handling system.

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 64

Figure 7.6: UC-5

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 65

7.3 Alternate Solution Diagramming

Software design shouldn’t be about picking your first idea and going with it. You need to con-
sider alternative solutions to the task at hand and pick the best one based on the known criteria.
For this reason we are documenting some of our alternative solutions for historical reference.

Figure 7.7: UC-1 alternate solution considered

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 66

Figure 7.8: UC-2 alternate solution considered

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 67

Figure 7.9: UC-3 alternate solution considered

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 68

Figure 7.10: UC-4 alternate solution considered

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 69

Figure 7.11: UC-5 alternate solution considered

7.4 Design Patterns

7.5 Design Patterns

Various standard and non-standard design patterns were utilized to provide functionality for
things such as authentication, efficient page rendering and object modeling.

Model-View-Controller

The Model-View-Controller (MVC) pattern was heavily used throughout the system to properly
organize model logic, business logic and presentation logic. This very intuitive pattern allowed the
team to easily delegate work on different levels of the system. Frequently, a selection of team
members would develop front-end functionality which required only the views to be altered, while

CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 70

other members implemented backend functionality which was done either in controllers or models.
This pattern resulted in a more efficient development lifecycle overall, while also providing some
performance gains. Namely, the MVC pattern calls on resources only when they are actually
needed which prevents unnecessary overhead. For example, methods developed to be called only
programmatically don’t attempt to display a view which results in faster responses.

Publisher Subscribe

The Publisher/Subscribe pattern allows us to easily decouple our handling of business logic
from that of our game logic, most notably, our achievements system. This allows us to easily
change business logic without having to read through code dedicated to achievement handling.
More importantly, it allows us to be able to easily add, update, and delete achievement handling
code within the confines of a single class. We also believe that we can use the Publish/Subscribe
model in the future to extend functionality to limit and stop orders, allowing actors to be updated
once an order has been completed.

Object Relational Model Pattern

The Object Relational Model (ORM) pattern, an intelligent implementation of a database
access design pattern, was used exclusively to interact with persistent storage technologies used in
the system. This pattern offered the major advantage of not needing to hard code any database-
specific queries. All requests made through the ORM are translated to the currently used DB
system’s language and data is returned in directly its object form. The lack of need to write direct
queries also lead to a great side effect, namely database agnosticism which allowed various database
implementations to be tested during different stages of development. During development SQLite
was used for its lightweight footprint on the developers machine, then for production MySQL was
used as it is considerably more efficient when dealing with larger amounts of data. This design
certainly improved our development by saving countless hours of development time.

RESTful Design

The RESTful design pattern being used more and more now on the web allowed us to implement
our asynchronous order processing system. The RESTful design of some internal functionality
allowed it to be accessed programmatically and securely through a simple API. As RESTful services
are at the heart of the Play Framework, it did not require a lot of effort to expose some internal
functionality without creating major security holes. Future iterations will continue to rely on the
stateful communication that our RESTful API offers.

Responsive UI Pattern

The Bootstrap UI framework implemented a design pattern completely segregating visual pre-
sentation from content and user experience. This provided a beautiful responsive design which
adapted to different client devices ranging from desktops to smart devices. The pattern takes ad-
vantage of the flexible markup of HTML5 to customize it on the fly when the page is rendering
in the browser using Javascript and CSS. This allowed our team to target the rapidly growing
mobile users without much extra implementation effort. It also inherently produced a faster user
experience since minimal processing is done during initial page rendering and mostly done asyn-
chronously once the page is already viewable to the user. We actively strived to achieve both of
these goals.

8 Class Diagrams and Interface Specifications

8.1 Class Diagram

71

CHAPTER 8. CLASS DIAGRAMS AND INTERFACE SPECIFICATIONS 72

8.2 Class Data Types and Operation Signatures

Database Manager

Our database manager performs the function of managing the database. This can mean any-
thing from adding user information into the database, retrieving information from the database
and updating information in the database, regardless of whether the information deals with user-
s/accounts, leagues, orders.

Methods

+ get player info(in user id : long) : class User
This method is used when information needs to be retrieved for a specifc player

+ update player info(in user id : int, in upd: class user) : bool
This method is used to update a users information, whether it be administrative or game related.

+ get order info(in transaction id : int) : class transaction
This method takes in a transaction id and returns the information associated with that specific
transaction.

+ update league(in league id : int, in leagueInfo : class league) : bool
This method returns the latest updates in the league

+ return league updates(in league id : int) : class league
This method is used when a league needs to be updated with the newest information provided in
the league in the input

Order Manager

Our order manager class is responsible for handling all the tasks related to orders/transactions.
It is responsible for placing the order in the system and for moving old orders to the archive trans-
actions table.

Methods

+ Check order(in symbols: class Order) : bool
This method is simple used to check and make sure that the input order can be processed. It will
check the users balance, etc.

+ place order(in symbols: class Order) : bool
As the name suggests, this method is used to place an order in the system, with the information
given by the input Stock class.

+ delete order(in symbols: transaction id): bool
As the name suggests, this method deletes an order from the system, assuming that it hasnt already

CHAPTER 8. CLASS DIAGRAMS AND INTERFACE SPECIFICATIONS 73

been processed. If it has then this function will return a false value.

+ Execute order(in transaction id : int) : bool
This method is responsible for actually getting the stock information from Yahoo Finance API and
then changing the account/portfolios to reflect it accordingly.

League Manager

This class is responsible for managing all the leagues in the system. It has the authority to
create leagues, delete leagues, and modify leagues as it is instruction to do so.

Methods

+ Create league () : Class league
This function is used to create a league from scratch so that the user can create a league.

+ Delete leagues(in league id : int) : bool
As the name suggests, this method will delete the league matching the input

+ change league name(in league id : int) : bool
This method is here solely for the purpose implied by its name. Its only function is to change the
name of the league.

+ Change league manager (in league id : int, in usr : class User) : bool
This function replaces the current league manager stored in the input league with the user specified
in the input.

+ add rules(in league id : int) : bool
This function is here for the reason its name suggests. It is here just to add rules to a given league.

+ Delete rules(in league id : int) : bool
This method exists just to delete the rules in a league.

Account Controller

This class exists to take care of any function that relates to accounts. This can mean creating
an account, modifying an account, or even deleting

Methods

+ Login(in user id : int) : bool
This function is used by the user to log into the system

CHAPTER 8. CLASS DIAGRAMS AND INTERFACE SPECIFICATIONS 74

+ logout(in user id : int) : bool
This function is the opposite to the one above it, it is used by the User to log out of the system.

+ Verify User(in User id : int) : bool
Method to make sure that the person logging in or that the person who is logged in is not an
imposter/fake.

+ Create account() : class User
Creates an account with the current user

+ delete account(in suser id : int) : bool
Used to delete an account from the database system.

Yahoo Finanace Adapter

This class is responsible for obtaining market data from Yahoo Finance API. It consists of 3
functions to get quotes, get company information, and to get sector information.

Methods

+ Get quote(in stock ticker id : string) : class quote
As the name suggests, this method is responsible for obtaining quote information about a given
stock ticker

+ get company info(in stock ticker id : string) : class Company
This method is responsible for getting market information about a specified company.

Stock

This class is responsible for representing a Stock. It has the authority to hold a ticker symbol,
price, daily high price, and daily low price.

Attributes

+ String:stock ticker
This attribute holds the ticker symbol as a character array.
+ double:price
This attribute holds the current value of stock corresponding to the ticker symbol.
+ double:high
This attribute holds the current High price of the stock on the market.
+ double:low
This attribute holds the current Low price of the stock on the market.

CHAPTER 8. CLASS DIAGRAMS AND INTERFACE SPECIFICATIONS 75

User

This class is responsible for representing a User. It has the authority to hold first name, last
name, email address, and userId.

Attributes

+ long:id
A unique id to distinguish different users from one another.
+ String:first
This attribute holds the first name of the user.
+ String:last
This attribute holds the last name of the user.
+ double:low
This attribute holds the email address of the user.

Position

This class is responsible for representing a Position, which is a stock that a user owns. It has
the authority to hold the user Id, portfolio Id, ticker symbol, quantity and price.

Attributes

+ long:id
A unique id to distinguish different users from one another.
+ long:portfolioId
A unique id to distinguish different users from one another.
+ String:ticker
This attribute holds the first name of the user.
+ long:qty
This attribute holds the quantity of the certain position.
+ double:price
This attribute holds the price that the position was purchased at.

Portfolio

This class is responsible for representing a Portfolio, which is the set of stocks that a user owns.
It has the authority to hold the user Id, portfolio Id, ticker symbol, quantity and price.

Attributes

CHAPTER 8. CLASS DIAGRAMS AND INTERFACE SPECIFICATIONS 76

+ long:id
A unique ID to distinguish different portfolios from one another.
+ long:userId
A unique ID to distinguish who owns the portfolio.
+ String:leagueId
A unique ID to distinguish what league this portfolio is a part of.

League

This class is responsible for representing a League, which is a group that users can belong to,
to compete with each other.

Attributes

+ long:id
A unique ID to distinguish different portfolios from one another.
+ String:name
This attribute holds the name of the league.
+ String:goal
This attribute holds the necessary requirement for a person to be declared the winner of a league.

8.3 Traceability Matrix

Figure 8.1: The database manager is in connection with all other controllers. This is because all
data is maintained in the database. The database also deals with object classes such as Stock,
Portfolio, User, and League. The order controller only deals with Stocks and which portfolios to
place them. The League Controller only deals with leagues. The Account Controller deals with
user objects. The Yahoo Finance Adaptor returns Stock objects to the Order Controller when
requested.

CHAPTER 8. CLASS DIAGRAMS AND INTERFACE SPECIFICATIONS 77

8.4 Object Constraint Language

In order to separate ideas in OCL, we will split it up descriptions by each class in the class
diagram.

Database Manager

The data base manager is the central point where all data is recorded and accessed. The
existing constraints are as follows. When using a get[x]info() function, the associated long id value
must be available to be provided. This allows access into the database tables to be able to return
information about a class. When using an update[x]() function, the associated long id must be
included, and also an object containing the information that you want to update.

Order Controller

The order controller handles placing orders. The current constraint involved with its functions
require a portfolio id and Stock object.

Yahoo! Finanace Class

The Yahoo Finance Adapter is responsible for creating and returning a Stock object based on
the input data. The Yahoo Finance Server is contacted to retrieve data. The constraint of this
class is that proper Ticker symbols must be input.

Account Controller

The account controller is able to create and delete accounts. The only constraint to the account
controller is that to delete an account the user id must be available.

League Controller

The league controller is capable of creating and deleting leagues. There are no constraints to
creating a league. The only constraint to deleting a league is that the league id must be available
in the database, or in other words, the league must exist.

9 System Architecture and System Design

9.1 Architectural Styles

In order to make the most efficient use of our software, we will couple several known software
tools and principles into our design. The follow architecture types will be expanded in detail to
not only reflect general functionality, but also to reflect functionality of the software as a whole.
As explained, each will play a crucial role in the success of our software and will be largely derived
from the necessities of the software. That being said, architectural systems will include (and may
be expanded upon in the future) the Model View Controller, Data-Centric Design, Client-Server
access, and RESTful design, with each architecture serving a small part of the whole result.

Model-View-Controller

The Model View Controller is a User Interface implementation method which will separate the
software into 3 specific groups; that is: the model, view, and controller subsections. The view
category is typically limited to UI specific output, i.e. a webpage with stock information. That
being said, the model remains the core component of the MVC method which holds all of the data,
functions, and tools. The controller simply takes the input and converts it into a command for
either the model or the view.

The MVC method is ideal for this particular software because it allows the design to be broken
down into smaller sub-problems. By splitting into 3 parts, we can separate UI functions, from
database functions, and have all of them handled ultimately by the controller. Thus in terms of
fluidity of the design, adding in the MVC allows each to be distinct and allows for the programming
to be made far easier.

Data-Centric Design

Data is the fundamental backbone of Paramount investments. Stored within our database, will
be numerous bouts of data, which will be necessary for all aspects of the software. The database
needs to contain not only data pulled from the Yahoo! Finance API, but more importantly user
specific data. Whenever the user logs in, they need to have access to a personal host of their own
data. That includes but is not limited to complete portfolio, leagues, achievements, leaderboard,
and settings. More importantly, the data needs to be stored in a way that it can be accessed by
multiple subsystems whenever necessary. So in using this method, we can keep the data specific
parts in the software abstract and easily accessible.

78

CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 79

Client-Server Access

The user will be constantly interacting with the interface. All of the interactions are occurring,
thus, on a client server basis. The user remains the primary client, and as such, constantly must
interact with the other subsystems. All of the infrastructure provided by Paramount Investments
will need to be accessed by the user. This ensures a smooth communication between each of the
parts of the MVC and between client and infrastructure. Further, the infrastructure provided by
Paramount investments will be able to access infrastructure of non-associative systems.

Representational State Transfer

As a software implementing a client server Access system, a REST system is also inherently
implied. The RESTful design principles state that in addition to having a Client-Server Access
system, the system has a scalability of components, that the interface is uniform, stateless, and
cacheable. Using this method will employ a smooth, modular set of code. Using the interface
specifications within the RESTful outline allows both the user and the designers to have streamline
interactions with the interface. That is the user knows quite clearly what he or she is doing when
say a link is clicked on a web page. The request is converted and sent out to the controller.

Importantly, the RESTful implementation can be implemented on multiple levels. And as
is desired, this system will be able to work on Android and iOS as well as through standard
web interfaces. Thus a smooth transition between these mediums is incredibly important. Thus
whether a user places an order on his cell phone or online, he should be able to experience a uniform
experience across all mediums. Using the RESTful system will help in this process.

9.2 Identifying Subsystems

Paramount investments aims to set its platform on multiple interfaces. As such, subsystem
identification becomes an integral part of initial analysis of the software. On a thick layer, our
platform exists with a front-end system and a back-end system. But on a much deeper level, we
can see that, each of these subsystems can be broken down into still greater detail. Front end
systems typically involve user interface, and object interactions with the user. Back-end will refer
to all database schema, implementation and interactions with relevant hardware. Also included
are non-associative items which are necessary to the success of our system.

Front-end systems are formally plain. The user interface which displays views and specific data
to the user on multiple platform is included here. That is, it will contain different mappings and
specific implementations for iOS and Android as well as natively for the Web. The front-end system
will have to maintain constant communication with the back-end system to maintain consistency
and retrieve data regularly. It needs to be able to successfully communicate information from
commands given by the user and communicate them to the back end. The back end system will
retrieve necessary data and information and return the data to the UI and user to project the page
or information requested.

Our back end system will be broken down further and is easily considered the most important
part of our infrastructure. Since we are using the MVC framework, the back end system is to
be broken down into controller and database subsystems. Additionally, we will have the financial

CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 80

retrieval system and queuing systems as previously outline. Thus, the bulk of the command pro-
cessing is handled by our back-end subsystem. The back-end system must not only communicate
among the subsystems within itself, but it must also communicate with the front-end UI system
to respond to commands and also communicate with the non-associate systems as well.

Breaking down the subsystem further, we highlight the importance of the financial retrieval sys-
tem, and the queue system. The financial retrieval system will communicate with Yahoo! Finance
to retrieve relevant information as requested by the controller (whenever the controller receives
an input from the front-end user). The queuing system will handle other processes and largely
communication with non-associative systems. It will also be involved in queuing and handling all
back-end processes and monitors to ensure that the correct commands are processed at the correct
time. The success of these modules, the success of the entire back-end system, and the success of
communication amongst the systems will be crucial for the overall success of the software.

9.3 Mapping Hardware to Subsystems

The Paramount Investments League is contained on a MySQL database server, which is stored
on one machine. However, the system as a whole is spread across several machines. The system
to be is divided into two separate sections: a front-end side that is run on the clients web browser
of choice, and a back-end that runs on the server side of the database. The front-end is the main
graphical user interface (GUI) between the system and the client. The front-end is responsible for
communication between the GUI and the database for purposes such as confirming market orders
and updating an investors portfolio. These changes in the front-end are reflected in the back-end
side of the server. The back-end will handle proper execution of market orders and will updates
users on each of their transactions.

9.4 Persistent Data Storage

The plan for data storage exists at the core of Paramount Investments. Since so much of our
software depends on properly developed and updated data, it is of the utmost important that our
database schema represent accurately all objects involved. That is, the data must accurately (at
all times) reflect all relevant user data, stock information, ticker variables, league settings, achieve-
ments, leaderboards, and all other relevant objects.

Paramount Investments will make heavy use of the relational database MySQL. Relational
databases are far more practical for the needs of this particular software. That is, relational
databases consist of several indexed tables filled with various object attributes. As can be viewed
in the class diagrams on the previous page, this is necessary for the large quantity of objects which
will be present in the software. Tables will need to exist not only for user data and settings such
as log in and league profiles, but also for stock and portfolio information. Further, these databases
need to be constantly written and rewritten to ensure constantly updated and accurate informa-
tion. Items such as leaderboards, and information which will be able to be viewed on each users
portfolio need to constantly reflect accurate data.

The data will be retrieved from the respective database table in the form of a query. When
a user inputs a command to retrieve data, a query must be placed, the table searched, and the
eventual correct data value (or values) returned. For example if a user requests his or her settings,

CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 81

it can query currently selected settings and return those values to the UI and to the user. If the
user elects to make a change this will be sent back to the database, updated and saved for further
access later. The same process can be mirrored and applied to all facets of the software. Several
tables will be used for varying data as has been outlined in the diagrams above. The success of
the software is dependent on the values being returned accurately and in the most updated form
at all times. Because of that, the database must receive a regular feed from the Yahoo! Finance
API in order to constantly update and reflect data when queries are placed. In doing so, users will
have constantly accurate views of their portfolio performance, leaderboards, achievements, stock
tickers, and recent trades going on throughout the league and entire user base. It is in this way
that the Paramount Investment software will distinguish itself from others and retain functionality
and efficient realization of its ultimate goals and requirements.

9.5 Network Protocol

As is standard for software of this type, Paramount Investments will uses the standard Hypertext
Transfer Protocal (HTTP). HTTP acts by structuring text which is uses hyperlinks to communicate
messages through text between nodes. While not necessarily unique or particular to our situation,
it is still important to note that this will be the primary protocol between user and software
interface. More importantly, the HTTP protocol will be used not only on web-based devices but
also on Android and iOS devices as well. From any of these mediums, the users can access various
webpages and links from the Paramount Investment website. They will be able to access, through
this protocol, all relevant stock, portfolio, and relevant information through these pages and by
using the HTTP protocol.

9.6 Global Control Flow

Execution Order

In general, the implementation of the system at Paramount Investments is for the most part,
event-driven. All the features that the system has to offer must be triggered by some entity,
whether it be the user themselves or some other part of the system. Overall, most of the event-
driven characteristic comes from the user end of the system. Many of the functionalities (stock
trading, portfolio viewing, league joining, etc..) can only be triggered by the user. There are
however, some event-driven functionality that are initiated by the system. When the user places
an order, it is processed and added into the database. From here, the system initiates the process
of checking the order and then it uses Yahoo Finance API to retrieve market information about
the stock, obtain a quote and then actually process the order.

There is some functionality that have to be executed in a defined order. Before the user starts
investing, they must a few steps:

– Registration/creating an account: any user must register within our website before joining a
league.

– Join a league: any user must first join a league before they can start investing.

– Achievements: any user must first complete the required criteria before they can be awarded
with the achievement trophy.

CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 82

Figure 9.1: Diagram of the network protocol.

However, on the whole, our system is still definitively an event-driven one.

Time Dependency

In general, the system at Paramount Investments is very much a real-time system, but there
are features that do not depend on time. The real-time system is very reliant on the stock market,
which itself has certain times of operation. As the user is browsing the website, there are real-time
timers that help the system process information that it is receiving.

CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 83

– Achievement Timer: This timer is used at the end of the day to check for achievement specs
for all the users. Achievements/ rewards will then be dished out accordingly.

– Stock Market open and close: The stock market has a time interval between when its open
and when it is closed.

– Queuing system: the orders placed by users are placed into a queue. Depending on market
conditions, this can place high loads on the server. To balance the server load, we must split
the orders effectively. The timer in this system helps to check for unexecuted/ outstanding
orders and then processes them.

Concurrency

There are sub-systems in our main system which have to be carefully thought of due to concur-
rency. The biggest of these is the queuing subsystem. This produces a concurrency issue because
we have to make sure that no more than 1 order is being inserted into the queue at any given time.
Likewise, we also have to make sure that no more than 1 order is being dequeued from a given
queue. Other than this our system really does not need any synchronization. However, this may
change as we are implementing our system.

9.7 Hardware Requirements

The hardware requirements on the server side are the main contribution to the operation of
Paramount Investments League, leaving the client-side with minimal requirements. In fact, the
only requirement of a client will that it runs a browser that is capable of running a modern web
browswer.

Internet Connection

In order for Paramount Investments League to use any of its core functions (trading stocks,
updating user portfolio, tracking administrative actions, etc.), an internet connection is required.
Since most of the data being transferred is text (executable instructions), a low band of frequency
is required. Note that a complete scalable analysis has not been performed on the system, so a low
band of frequency is based off of the needs of the current website. For ideal performance, higher
bandwidths of frequency should be used in order to reduce any overhead. A network connection
between the server and the Yahoo Finance API is necessary during trade hours (9:30am - 4:00pm
Monday through Friday), otherwise, no investors can perform a transaction.

Disk Space

The server must have adequate hard drive space to be able to store all of the database informa-
tion. All data being stored is the sum of all program instructions for the system. 10 GB of storage
space should be sufficient for the system.

System Memory

Since this system is in active development, there is limited concrete evidence that supports the
overall performance of the system. The system will load copies of database stored information in
order to operate over it. For better throughput, the memory should be managed using a Least

CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 84

Recently Used scheme (LRU) in order to keep the system memory populated with useful informa-
tion. A LRU scheme will release any bits of memory that havent been accessed in a long time, and
it will replace it with information that is used more often. Also, any operations used on loaded
information will also use up system memory. A minimum of 512 MB should be used for testing
our system. In addition, as our user based expands, it is obvious that the system memory will also
have to grow with it.

Client-side Hardware Requirements

The core hardware requirement on the client-side of the system will be an internet connection.
This is essential for the client to be able to remotely connect to the server in order to access the
database. Without an internet connection, no client will be able to use a web browser to visit the
Paramount Investments League website. In addition to an internet connection, and for a friendly
user experience, anyone on the client-side should have a functional mouse and keyboard, as well as
a graphic display to see their portfolio. To display the Paramount Investments League website, a
screen with a minimum resolution of 800x600 pixels is adequate.

10 Data Structures & Algorithms

10.1 Data Structures

In the implementation of the system at Paramount Investments League, there will be 3 main
data structures in use. These 3 data structures are a Queue, ArrayList, and the HashMap.

Queue

The system at Paramount Investments league uses a queue data structure to hold all the
orders/transactions that users may place during in the system during the day. Because of the
FIFO (First in First out) property of the queue the orders that were placed first will the ones that
are executed/processed first. This mimics the real world scenarios and will help capture part of
the essence of stock market trading. At this stage in the implementation, we will be trying to
accomplish this using the interface provided to use by the Queue Interface in Java. One of the
requirements we require of this queue is that it be thread safe since there can be multiple users
placing their orders at the same time into the same queue. If we find that there is a space limitation
or lack of thread synchronization of this queue implementation, we will make an attempt to code
the queue ourselves.

ArrayList

The system at Paramount Investments league will also be using an array data structure to keep
track of the positions that an investor might have in a single stock. In most case, investors will
have only one position per stock but there are scenarios where this is not true and the investor may
have more than one position in a single stock. Because we are unsure of how many positions the
investor might want, we need to be able to account for this using a data structure that has quick
random reads but also has the capability to grow in size without restriction. This is achieved using
the ArrayList class provided in Java. The ArrayList class has random read capability just like an
array, but it also has the capability to grow indefinitely just like a linked list. Hence we will be
using the ArrayList to keep track of the positions per stock.

HashMap

The system at Paramount Investments League will be using a HashMap to keep track of all the
stocks that a user chooses to invest in for a given portfolio. This data structure needs to have quick
insertion, delete, and read times. We chose the HashMap to accomplish this task because of the
speed at which it is possible to insert, delete, and access information in a HashMap. Because there

85

CHAPTER 10. DATA STRUCTURES & ALGORITHMS 86

are hundreds of different stocks, quick access to information is a necessity. We plan to accomplish
this task using the HashMap class in Java.

10.2 Algorithms

At the time of this report there is only one interesting algorithm that has been designed and
implemented. We expect as the project progress for this section to flesh out more and more, and
include additional algorithms.

A Method For Reducing API Calls in a Highly Concurrent Environment

Our system relies on external API’s[9] in order to accomplish the most central tasks, namely
retrieving up-to-date stock data. Since we are using a free API, their are limits to the number of
times that we can request information from the API without having our IP address[10] blocked. In
order to limit the number of calls that are made, we need to cache the results on our servers.

In order to accomplish this we wrote a service that is concurrent and maintains a cache of stocks
values on our server updating them periodically. Here is a brief overview of the algorithm:

Algorithm 1: Retrieve and Cache Stock Values

1 stockT icker ← End user does an operation that requires a stock value;
2 stock ← HashMap.get(stockT icker);
3 if stock exists then
4 return stock;
5 Synchronize;
6 if stock exists then
7 return stock;
8 stockV alues← Y ahooAPICall(stockT icker);
9 stock ← newStock(stockV alues);

10 HashMap.put(stockT icker, stock);
11 return Stock;

In order to make the above algorithm work in a Concurrent environment, we synchronize[11]
it in the critical section, that is, we only allow one user at a time to add something to the HashMap.

A Method For Invalidating and Updating an In Memory Data Structure in a
Highly Concurrent Environment

In order to update the HashMap periodically, we run a background thread that sleeps for some
defined amount of time, then runs. This background process, builds an entirely new HashMap, and
once complete, replaces the out of date HashMap.

CHAPTER 10. DATA STRUCTURES & ALGORITHMS 87

Algorithm 2: Update In Memory Data Structure

1 newStructure← generate a new empty data structure;
2 oldStructure← get a reference to the old structure;
3 for every object o : oldStructure do
4 newStructure.add(o.update());
5 oldStructure = newStructure;

11 User Interface Design & Implementation

11.1 Updated Pages

Home Page

Figure 11.1: When a user firsts visits our website, they will have the ability to register through
Facebook. A visitor can also view the about tab of our website.

88

CHAPTER 11. USER INTERFACE DESIGN & IMPLEMENTATION 89

About Page

Figure 11.2: The figure above is our about page.

Main Page

Figure 11.3: Once registered, the user will be brought to the main page. Here there are several
things they can do.

CHAPTER 11. USER INTERFACE DESIGN & IMPLEMENTATION 90

Buy/Sell Stock

Figure 11.4: By pressing the purchase stock button on the main page, a small pop up window will
appear and the user can enter the stock they want and the amount they want to purchase. The
same pop up window will appear if the user clicks the sell stock option. This is shown in the figure
above.

View Leagues

Figure 11.5: From the front page, the user can click the leaderboard tab and view all active members
in a current league.

CHAPTER 11. USER INTERFACE DESIGN & IMPLEMENTATION 91

Create a Public League

Figure 11.6: From the main page, the user can click the leagues tab and have the option to view,
create, or join a league. In the figure above, the user who wants to create a league can choose to
make the league public or private and set certain league rules.

Create a Private League

Figure 11.7: This is what the page will look like when they want to create a private league.

CHAPTER 11. USER INTERFACE DESIGN & IMPLEMENTATION 92

View Leagues

Figure 11.8: Users can view all relevant leagues as shown above.

Query Stock

Figure 11.9: By querying a stock, user can see various features of that stock as well as graph
displaying the value of stock over a time.

11.2 Efficiency of the Views

One thing that we need to concentrate on is ensuring that the website is fast for all users no
matter what kind of device or connection the end user is using. For this reason, you will see a
logical breakdown of the website which will allow us to cache elements of the site on the client side
that generally won’t change. We do this be separating the header, ticker, and the content of a given
page. Since the header and ticker are the same across the entire site, they only need be loaded
on the client a single time, and can be cached on the client side for the duration of the visit or longer.

CHAPTER 11. USER INTERFACE DESIGN & IMPLEMENTATION 93

The content of each individual page is dynamic, but by harnessing technologies like AJAX[12]
and Comet[13], we are able to indicate to the user that the page is always reacting to their inputs
without reloading the page. This again allows us to cache the resulting page on the client side, an
perform updates as needed with minimal delay.

To further assist with reducing the load on clients, we will be using HTML[14] and CSS[15] to
present our User Interface relying very minimally on pictures. Any picture that is displayed will
be resized to the maximum allowed size and contained in an appropriate web format.

Finally, as discussed much throughout these reports, our goal is to be able to present our ap-
plication across as many device as possible, including mobile, tablet, and desktop. We accomplish
this by relying on the Twitter Bootstrap[6] CSS framework to help facilitate creating a responsive
website.

Of course this all comes with a trade off, that is we won’t support older browsers incapable
of displaying and parsing HTML5/CSS3/JS or aren’t web compliant with modern web standards.
This should have minimal impact however, since most devices and users have a modern web browser,
and those that don’t generally don’t fall into our target audience.

11.3 Home Page

12 Design of Tests

No application is ever complete, but a big part of driving a project to a viable project is test-
ing. Testing allows us to ensure expected functionality, check for possible security vulnerabilities,
and prevent regression as the project moves forward. Attempting to launch a product without
performing unit and integration testing, as well as ”dog fooding”[16] an alpha version is a guar-
antee to have to putting out a buggy and sub par product. However, even with performing all
the aforementioned, it is not possible to find and resolve every flaw before shipment. To this end,
developers utilize testing suites in order to perform integration and unit testing in an efficient and
effective manner.

A modern approach to this trade off is to build the feature set of an application around mea-
surable, predefined tests. In this technique, known as Test-driven Development[17], developers
iteratively define tests for intended future features, confirm that those features are not yet im-
plemented (by running those tests), and then implementing the solutions. Though this approach
does not test for all possible interplay between components, it is usually employed in high-paced
development environments such as ours, where the coverage provided is usually respectable enough
to prevent most problems.

Accordingly, we first define the features and tests we plan on developing around, proceed to
analyze the coverage offered by these tests, and then briefly discuss how we intend to test the
integration of the components.

12.1 Test Cases

The Paramount Investments League application is in active development, therefore, each test
case specified is only applicable to existing functions during this stage of development. For the
most thorough testing, we will perform unit tests on each component of the system currently in
existence. The Paramount Investment League requires communication between Yahoo! Finance,
our MySQL database, and our server, but unit testing these components in not efficient. Instead,
we will perform integration tests on these units to see how they interact with each other.

Paramount Investments League will be using a Java/Scala Play Framework to develop our web
application. The main reason for choosing Play Framework provides minimal resource consumption
(CPU, memory, threads) and also supports big databases. Also, most of the team members are
proficient in C++, so the transition to Java is doable.

94

CHAPTER 12. DESIGN OF TESTS 95

12.2 Unit Tests

Database Manager

The tests listed below interact with our MySQL database, however they have no correlation to
the implementation of the database.

1. Test Case Identifier TC-1:

Function Tested: get player info(in user id : int) : class User

Success/Fail Criteria A successful test is one that retrieves information about the requested
player.

Test Procedure: Expected Results

Call Function (Success) Information requested matches the search criteria.

Call Function (Failure) Information requested does not match the search criteria.

2. Test Case Identifier TC-2:

Function Tested: update player info(in user id : int, in upd : class user):bool

Success/Fail Criteria - A successful test is one that updates a player’s information, whether
it be an administrative action or game related.

Test Procedure: Expected Results

Call Function (Success) Player’s profile is updated with new information. A value of true is
returned after the function call.

Call Function (Failure) Player’s profile is not affected after attempted update. A value of
false is returned after the function call.

3. Test Case Identifier TC-3:

Function Tested: get order info(in transaction id : int):class transaction

CHAPTER 12. DESIGN OF TESTS 96

Success/Fail Criteria - A successful test is one that returns the information associated with
a specific transaction.

Test Procedure: Expected Results

Call Function (Success) Transaction information returned corresponds to transaction.id.

Call Function (Failure) Transaction information isn’t returned to the user.

4. Test Case Identifier TC-4:

Function Tested: update league(in leagueInfo : class league):bool

Success/Fail Criteria - This method is used when a league needs to be updated with the
newest information provided.

Test Procedure: Expected Results

Call Function (Success) League information has been successfully updated. A value of true
is returned after the function call.

Call Function (Failure) League information has not changed from before. A value of false is
returned after the function call.

5. Test Case Identifier TC-5:

Function Tested: return league updates(in league id:int):class league

Success/Fail Criteria - A successful test will return any league updates to the requested user.

Test Procedure: Expected Results

Call Function (Success) League updates are presented to the requesting user.

Call Function (Failure) No data is presented to the user after function call.

CHAPTER 12. DESIGN OF TESTS 97

Order Manager

The Order Manager is responsible for handling all tasks related to orders and transactions.
The Order Manager is responsible for placing new orders in the system, as well as archiving old
transactions in a table.

1. Test Case Identifier TC-6:

Function Tested:Check order(in symbols: class Order) : bool

Success/Fail Criteria A successful test will return a Boolean value of true corresponding to
a valid user trade requests (buy, sell short, stop etc.).

Test Procedure: Expected Results

Call Function (Success) User is able to perform a valid transaction. A value of true is returned
after the function call.

Call Function (Failure) User will be notified that he/she will not be able to perform a valid
transaction. (Ex. Not enough funds in their account). A value of
false is returned after the function call.

2. Test Case Identifier TC-7:

Function Tested: place order(in symbols: class Order) : bool

Success/Fail Criteria - A successful test will allow the user to place a market order.

Test Procedure: Expected Results

Call Function (Success) Market order is placed, and a confirmation is sent to user. A value
of true is returned after the function call.

Call Function (Failure) Market order is not placed, and the user will be notified. A value of
false is returned after the function call.

3. Test Case Identifier TC-8:

CHAPTER 12. DESIGN OF TESTS 98

Function Tested: delete order(in symbols: transaction id): bool

Success/Fail Criteria - For a successful test, this method should delete an order from the sys-
tem, assuming that it hasnt already been processed. If it has then this function will return a
false value.

Test Procedure: Expected Results

Call Function (Success) Market order has been deleted from the queue. A value of true is
returned after the function call.

Call Function (Failure) Market order has already been recorded, user will be notified of the
invalid transaction. A value of false is returned after the function
call.

4. Test Case Identifier TC-9:

Function Tested: Execute order(in transaction id : int) : bool

Success/Fail Criteria - For a successful test, the system will obtain information from Yahoo!
Finance and update a users portfolio accordingly.

Test Procedure: Expected Results

Call Function (Success) System retrieves data and updates the users portfolio. A value of
true is returned after the function call.

Call Function (Failure) System either does not retrieve information from database and or
the users portfolio is not updated. A value of false is returned after
the function call.

League Manager

This class is responsible for managing all the leagues in the system. It has the authority to
create leagues, delete leagues, and modify leagues as it is instruction to do so.

1. Test Case Identifier TC-10:

CHAPTER 12. DESIGN OF TESTS 99

Function Tested:Create league () : Class league

Success/Fail Criteria - A successful test is when the user can create a league from scratch.

Test Procedure: Expected Results

Call Function (Success) User is now the league manager, and their new league is added to
their list of current leagues.

Call Function (Failure) No new league is recorded in the system and the user will be notified
that their attempt to create league has failed.

2. Test Case Identifier TC-11:

Function Tested: reaturn league updates(in league id:int):class league

Success/Fail Criteria - A successful test will delete the selected league.

Test Procedure: Expected Results

Call Function (Success) Selected league is deleted from the users list of league. A value of
true is returned after the function call.

Call Function (Failure) League will remain in the users list of league. A value of false is
returned after the function call.

3. Test Case Identifier TC-12:

Function Tested: change league name(in league id : int) : bool

Success/Fail Criteria - A successful test will update the current league name with a modified
one.

Test Procedure: Expected Results

Call Function (Success) League name has been changed and is reflected in the database. A
value of true is returned after the function call.

CHAPTER 12. DESIGN OF TESTS 100

Call Function (Failure) League name has remained unchanged. A value of false is returned
after the function call.

4. Test Case Identifier TC-13:

Function Tested: Change league manager (in league id : int, in usr : class User) : bool

Success/Fail Criteria - A successful test will change the current league manager with the new
input league manager.

Test Procedure: Expected Results

Call Function (Success) League has a new manager, and all changes are reflected in database.
A value of true is returned after the function call.

Call Function (Failure) League manager remains unchanged. A value of false is returned
after the function call.

5. Test Case Identifier TC-14:

Function Tested:add rules(in league id : int) : bool

Success/Fail Criteria -A successful test will add a new rule to the list of league rules already
established.

Test Procedure: Expected Results

Call Function (Success) The newly added rule is reflected in the database. A value of true is
returned after the function call.

Call Function (Failure) The new rule to be added has not been added, and the database sees
no changes in the list of rules. A value of false is returned after the
function call.

6. Test Case Identifier TC-15:

CHAPTER 12. DESIGN OF TESTS 101

Function Tested: Delete rules(in league id : int) : bool

Success/Fail Criteria - A successful test will delete a rule in the leagues list of rules.

Test Procedure: Expected Results

Call Function (Success) The selected rule is deleted, and the database is updated of the
change. A value of true is returned after the function call.

Call Function (Failure) The selected rule has not been removed and the database sees no
changes. A value of false is returned after the function call.

Account Controller

This class exists to take care of any functions that involve any user accounts. Functions include,
adding, modifying, or deleting an account.

1. Test Case Identifier TC-16:

Function Tested: Login(in user id : int) : bool

Success/Fail Criteria - A successful test will allow the user to visit their Paramount Invest-
ments League global portfolio.

Test Procedure: Expected Results

Call Function (Success) User is logged into the system and they can view their account. A
value of true is returned after the function call.

Call Function (Failure) User is not logged into the website. User may not have entered
password correctly, or is not a registered user. A value of false is
returned after the function call.

2. Test Case Identifier TC-17:

Function Tested: logout(in user id : int) : bool

CHAPTER 12. DESIGN OF TESTS 102

Success/Fail Criteria - A successful test will all the user to logout of their Paramount Invest-
ments League account.

Test Procedure: Expected Results

Call Function (Success) User is logged into the system and they can view their account. A
value of true is returned after the function call.

Call Function (Failure) User is not logged into the website. User may not have entered
password correctly, or is not a registered user. A value of false is
returned after the function call.

3. Test Case Identifier TC-18:

Function Tested: Create account() : class User

Success/Fail Criteria - A successful test will create a new user account.

Test Procedure: Expected Results

Call Function (Success) A former visitor to the Paramount Investments League website will
now be a registered investor. A value of true is returned after the
function call.

Call Function (Failure) The request to make a new account has failed, and no new account
will be reflected in the database. A value of false is returned after
the function call.

4. Test Case Identifier TC-19:

Function Tested: delete account(in user id : int) : bool

Success/Fail Criteria - A successful test will delete the selected user account.

Test Procedure: Expected Results

CHAPTER 12. DESIGN OF TESTS 103

Call Function (Success) An investor chooses to delete their account, and all portfolios will
be deleted from the database. A value of true is returned after the
function call.

Call Function (Failure) The selected account remains in the system, the database doesnt lose
the association with that user. A value of false is returned after the
function call.

Yahoo Finance Adapter

This class is responsible for obtaining market data from Yahoo Finance API. It consists of three
functions to get quotes, get company information, and to get sector information.

1. Test Case Identifier TC-20:

Function Tested: Get quote(in stock ticker id : string) : class quote

Success/Fail Criteria - A successful test will return the requested quote (stock) information
to the user.

Test Procedure: Expected Results

Call Function (Success) Quote information is presented to the user. System requests to access
information from Yahoo! Finance.

Call Function (Failure) Quote information request does not go through and the user is noti-
fied of the error. System was not able to communicate with Yahoo!
Finance.

2. Test Case Identifier TC-21:

Function Tested: get company info(in stock ticker id : string) : class Company

Success/Fail Criteria - A successful test will return the company information that the user
requested.

Test Procedure: Expected Results

CHAPTER 12. DESIGN OF TESTS 104

Call Function (Success) Company information is presented to the user. System can access
company information from either database or link the user to the
requested companys website.

Call Function (Failure) Company information is not presented to the user. System failed to
retrieve information from the database, or the company page link is
invalid.

12.3 Test Coverage

The ideal test coverage would be to have a test that covers every edge case of every method.
This is not only not feasible, it is impossible since it is not possible to actually know all the edge
cases. Because of this we plan to test core functionality to provide a core amount of testing. Then
through the use of alpha and beta build interactions with end users, we will be able to identify
ways that user interact with the system that were not foreseen. We can then add additional testing
to cover these new edge and use cases which will also help debug and prevent regression in the future.

12.4 Integration Testing

Integration testing will be done on a local developer machine by emulating the server environ-
ment. The system may not go live until the current system works in the integration environment.
We accomplish this by having two branches of source code, master and dev. dev is the branch that
all new work will be done on. From there, it will be pulled down into the local integration machine,
tested and debugged. Once the system has been debugged, being sure to keep 1detailed logs of any
system config changes needed, the source code will be pushed to master. Once pushed to master,
any system config changes will be made on the production server in order to accomodate the new
branch. Once those changes are made, master will be pulled into the production machine and a
second round of integration testing will begin by launching the service on a developer port. If it
passes all the tests, then the developer port will be shut down, and the system will relaunch the
website on the normal http port.

13 History of Work, Current Status, & Future Work

13.1 History of Work

Throughout the semester we completed several of our planned milestones in a punctual, thor-
ough, and consistent manner.

Our first planned milestone, completing the Report 1 Part 1 prior to 9 February 2014, was met
on time. We continued to meet our report deadlines for Report 1 Part 2 and the full, compiled
Report 1 by 16 February 2014 and 23 February 2013, respectively. For the second report, we
successfully met our deadlines for Report 2 Part 1 (consisting of Sequence Diagrams, timing and
communication diagrams) and Report 2 Part 2 (consisting of Class Diagrams, Interface, Architec-
ture design, data structures, UI, tests and implementations) on 2 March 2014 and 9 March 2014,
respectively.

As we met our initial Report deadlines, we also simultaneously began work on the initial build
of The Paramount Investment League. We began with deploying our server environment, which
took place between 22 February and 2 March 2014. While we were initially weighing our options
between dedicated virtual private server (VPS) on Digital Ocean and Heroku, we determined that
a dedicated virtual private server would better suit our needs and we successfully deployed it by 2
March 2013. In this time, we also finalized our plan for mockup-based views and the CSS/HTML
plan.

Populating the server with Ubuntu 12.04.4, Play Framework, Twitter Bootstrap, and other
supporting software, however, took a longer than anticipated. This is because we needed to not
just deploy it to the live server, but also set up the enviornment on our local machines so that
we could develop and test our code without running in production. We also documented all these
details on our github wiki, which will allow future developers a walkthrough for getting setup with
the project. This extended beyond our initial range of 1 March 2014 to 8 March 2013 and was
completed by 13 March 2014.

We completed our full Report 2 deadline by 15 March 2014. After this point we shifted gears
and committed to having The Paramount Investmets League Alpha build prepared for Demo 1. In
the days between 13 March 2014 and 28 March 2014 we met several of our objectives. The Yahoo!
Finance API was implemented, the MySQL database structure was deployed and populated. Our
routing plan was completed, our views theme were implemented, and we successfully got users, and
portfolios at a working state in which data could be utilized between them in our routing structure.

105

CHAPTER 13. HISTORY OF WORK, CURRENT STATUS, & FUTURE WORK 106

Our biggest strength was establishing manageable goals that still built on the strengths and
failures of our predecessors. We chose a functional UI but were not overly-ambitious with func-
tionality, otherwise; this enabled us to meet our goals in a punctual manner. We almost fully
implemented our achievements system with unlockable functionality features is.

13.2 Current Status

Currently, The Paramount Investments League is a functioning web application. We have an on-
line version of our latest builds on the domain http://192.241.248.22/ based on our Virtual Private
server hosted on Digital Ocean. It features working orders, leagues, portfolios, and user systems
with a fully-functional and responsive UI that can be used in tablets and phones in addition to
personal computer to be user friendly for anyone on a smart device. Most core functionalities have
been deployed and the current status is debugging and optimizing our website to address orders in
an asynchronous fashion to maximize the efficiency of our application.

We have added graphs via Highcharts as well as leagues, improved pagination support, en-
hanced the UI based on user feedback, increased the amount of available achievements and will be
able to demonstrate the ability to unlock functionality as one becomes an experienced investor.

13.3 Key Accomplishments

The Paramount Investment League unlocked the following achievements:

• Play Framework application for core Web Application functionality

• A barrier free site registration process through the use of OAuth

• A responsive UI usable on smart devices based on our custom flat theme

• A minimalistic and easy-to-use system for users, portfolios, and leagues

• An implementation of highcharts that presentably showed line-graph data

The Paramount Investment League also satisfied the following user stories:

• ST-1

• ST-2

• ST-3

• ST-4

• ST-5

• ST-6

CHAPTER 13. HISTORY OF WORK, CURRENT STATUS, & FUTURE WORK 107

• ST-7

• ST-8

• ST-10

• ST-12

• ST-13

• ST-17

• ST-22

The Paramount Investment League also implemented the following use cases:

• UC-1

• UC-2

• UC-3

• UC-4

• UC-5

13.4 Future Work

The final stretch for a release-build The Paramount Investments League would be an immersive
tutorial system activating upon user registration. This would have extensively took advantage of
AJAX and is the most complex type of functionality to deploy on a live version of The Paramount
Investment League, hence it would have required careful, slow, and surgical-level development. This
was one of our major post-demonstration goals, but the level of sophistication for a fully-functional
live tutorial upon user registration was highly impractical for the remaining time we had.

We also would like to add an asynchronous processing system for orders so that we can support
stop and limit options. This would be unlockable functionality but requires someone with the
appropriate domain knowledge so that we can implement it as true-to-life as possible.

Finally, to maximize user retention, another future work goal would have been to implement
social media and e-mail notification options so users can be reminded to check and update their
portfolios and leagues on a regular basis. A mailer system was intended, however, development on
that particular item fell in favor of achievemnets, which were implemented by the Alpha.

CHAPTER 13. HISTORY OF WORK, CURRENT STATUS, & FUTURE WORK 108

13.5 Project Management

As this project evolved, our contributions and interactions became more complex and inter-
twined. It would be impossible for us to break down the work and contributions that each individ-
ual did. It is for these reasons that we feel as a team it is safe to say that we equally contributed
to the project and therefore request that equal contributions be applied for all members of this
project.

References

[1] Investopedia, “Bid-ask spread — Investopedia.” http://www.investopedia.com/terms/b/

bid-askspread.asp. [Online; accessed 18 February 2013].

[2] Investopedia, “Short (or Short Position) definition — Investopedia.” http://www.

investopedia.com/terms/s/short.asp. [Online; accessed 22 February 2013].

[3] Investopedia, “Limit order definition — Investopedia.” http://www.investopedia.com/

terms/l/limitorder.asp. [Online; accessed 23 February 2013].

[4] Investopedia, “Stop order definition — Investopedia.” http://www.investopedia.com/

terms/s/stoporder.asp. [Online; accessed 22 Febrauary 2013].

[5] Wikipedia, “Stakeholder.” http://en.wikipedia.org/wiki/Stakeholder_(corporate).
[Online; accessed 19 March 2014].

[6] Wikipedia, “Bootstrap (front-end framework).” http://en.wikipedia.org/wiki/

Bootstrap_(front-end_framework). [Online; accessed 23 February 2014].

[7] Wikipedia, “Openid.” http://en.wikipedia.org/wiki/Openid. [Online; accessed 19 March
2014].

[8] Wikipedia, “Oauth.” http://en.wikipedia.org/wiki/OAuth. [Online; accessed 23 February
2014].

[9] Wikipedia, “Application programming interface.” http://en.wikipedia.org/wiki/

Application_programming_interface. [Online; accessed 19 March 2014].

[10] Wikipedia, “Ip address.” http://en.wikipedia.org/wiki/Ip_address. [Online; accessed 19
March 2014].

[11] Wikipedia, “Java concurrency - synchronization.” http://en.wikipedia.org/wiki/Java_

concurrency#Synchronization. [Online; accessed 19 March 2014].

[12] Wikipedia, “Ajax.” http://en.wikipedia.org/wiki/Ajax_(programming). [Online; ac-
cessed 19 March 2014].

[13] Wikipedia, “Comet.” http://en.wikipedia.org/wiki/Comet_(programming). [Online; ac-
cessed 19 March 2014].

[14] Wikipedia, “Html.” http://en.wikipedia.org/wiki/Html. [Online; accessed 19 March
2014].

109

http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/s/short.asp
http://www.investopedia.com/terms/s/short.asp
http://www.investopedia.com/terms/l/limitorder.asp
http://www.investopedia.com/terms/l/limitorder.asp
http://www.investopedia.com/terms/s/stoporder.asp
http://www.investopedia.com/terms/s/stoporder.asp
http://en.wikipedia.org/wiki/Stakeholder_(corporate)
http://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
http://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
http://en.wikipedia.org/wiki/Openid
http://en.wikipedia.org/wiki/OAuth
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Ip_address
http://en.wikipedia.org/wiki/Java_concurrency#Synchronization
http://en.wikipedia.org/wiki/Java_concurrency#Synchronization
http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Comet_(programming)
http://en.wikipedia.org/wiki/Html

REFERENCES 110

[15] Wikipedia, “Css.” http://en.wikipedia.org/wiki/Css. [Online; accessed 19 March 2014].

[16] Wikipedia, “Eating your own dog food.” http://en.wikipedia.org/wiki/Eating_your_

own_dog_food. [Online; accessed 15 March 2014].

[17] Wikipedia, “Test-driven development.” http://en.wikipedia.org/wiki/Test-driven_

development. [Online; accessed 16 March 2014].

http://en.wikipedia.org/wiki/Css
http://en.wikipedia.org/wiki/Eating_your_own_dog_food
http://en.wikipedia.org/wiki/Eating_your_own_dog_food
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

	Contents
	Customer Statement of Requirements
	Problem Statement
	Glossary of Terms

	System Requirements
	User Stories
	Nonfunctional Requirements
	On-Screen Appearance Requirements

	Functional Requirements Specification
	Stakeholders
	Actors and Goals
	Use Cases
	System Sequence Diagrams

	User Interface Specification
	Preliminary Design
	User Effort Estimation

	Effort Estimation
	Background
	Unadjusted Use Case Points
	Technical Complexity Factors
	Environmental Complexity Factors
	Calculations

	Domain Model
	Concept Definitions
	Association Definitions
	Attributes Definitions
	Traceability Matrix
	System Operation Contracts
	Economic and Mathematical Models

	System Interaction Diagrams
	Introduction
	Diagrams
	Alternate Solution Diagramming
	Design Patterns
	Design Patterns

	Class Diagrams and Interface Specifications
	Class Diagram
	Class Data Types and Operation Signatures
	Traceability Matrix
	Object Constraint Language

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Mapping Hardware to Subsystems
	Persistent Data Storage
	Network Protocol
	Global Control Flow
	Hardware Requirements

	Data Structures & Algorithms
	Data Structures
	Algorithms

	User Interface Design & Implementation
	Updated Pages
	Efficiency of the Views
	Home Page

	Design of Tests
	Test Cases
	Unit Tests
	Test Coverage
	Integration Testing

	History of Work, Current Status, & Future Work
	History of Work
	Current Status
	Key Accomplishments
	Future Work
	Project Management

	References

