

Money Machine

Report #2

Group No. 6

Team Members

Name

Email

Rylan Uherek rylan@scarletmail.rutgers.edu
Avinash Oza avioza@scarletmail.rutgers.edu
Aakash Patel Aak4shpatel@gmail.com
Mozam Todiwala tmozam@scarletmail.rutgers.edu
Mandeep Desai Mandeep.desai111@gmail.com
Pintu Patel Php28@scarletmail.rutgers.edu

Instructor: Prof. Ivan Marsic

Project URL: https://sites.google.com/site/sespring13/

Revision History:

Version No. Date of Revision

v.1 – Part #1 3/1/2013

v.2 – Part #2 3/9/2013

v.3 – Final Report #2 3/16/2013

mailto:rylan@scarletmail.rutgers.edu
mailto:avioza@scarletmail.rutgers.edu
mailto:Aak4shpatel@gmail.com
mailto:tmozam@scarletmail.rutgers.edu
mailto:Mandeep.desai111@gmail.com
mailto:Php28@scarletmail.rutgers.edu

2

Individual Contributions Breakdown

Task/Group Member Rylan Avinash Aakash Mozam Mandeep Pintu

Interaction Diagrams (30
Points)

 50% 50%

Class Diagram and Interface
Specification (10 Points)

 50% 50%

System Architecture and
System Design (15 Points)

 50% 50%

Algorithms and Data
Structures (0 Points)1

--- --- --- --- --- ---

User Interface Design and
Implementation (15 Points)

 100%

Design of Tests (12 Points) 20% 20% 20% 20% 20%

Project Management and Plan
of Work & References (18

Points)
90% 10%

** Underlined & Italicized Percentages indicate that the team member will in the future produce the specified

work indicated in the box. Boxes which are not italicized or underlined indicate that the team member has

already completed the specified work.

Individual Point Allocation

Team Member Points / Estimated Points

Rylan 17

Avinash 17

Aakash 16

Mozam 16

Mandeep 16

Pintu 16

1 Our project does not any real algorithms or data structures. Therefore, we moved those points to the UI section.

3

Individual Work Description, Project Management, & Notes

The following is a brief description of what each team member completed for Report #2:

Rylan:

 Project Management
o Coordinated meetings / meeting times
o Collated reports, documents, etc.
o Dropbox / Document Control management
o Represented group / contact point with TA & Dr. Marsic
o Edited, modified styling, etc. on submitted documents

 Project Management & Plan of Work Sections of Report

Avinash:
 Developed interaction diagram captions and descriptions
 Wrote test cases as needed

Aakash:

 Created documentation and updates for UI Spec & Implementation
 Updated team website with new documents & updates as needed
 Wrote test cases as needed and developed Test Coverage and Integration Testing sections of Test

Section

Mozam:

 Developed interaction diagrams and coordinated with Avinash for descriptions
 Wrote test cases as needed

Mandeep:

 Worked on System Architecture and System Design, and Class Diagram and Interface Specification
 Updated references list
 Wrote test cases as needed and assisted in Test Coverage and Integration Testing sections by doing

research on sections
 Developed Testing State Diagrams

Pintu:

 Worked on Class Diagram and Interface Specification, and System Architecture and System Design
 Wrote test cases as needed
 Developed Testing State Diagrams

4

NOTES:

- As project is coded, modifications will be made to the diagrams and documentation provided in this
report. The fully updated documentation will be reflected in Report #3. The documentation
contained in this report is current as of early March, 2013.

- Our project does not any real algorithms or data structures. Therefore, we moved those points to the
UI section.

- All team members played a role in document review before the report was submitted.

5

Table of Contents

INDIVIDUAL CONTRIBUTIONS BREAKDOWN 2

INDIVIDUAL POINT ALLOCATION 2

INDIVIDUAL WORK DESCRIPTION, PROJECT MANAGEMENT, & NOTES 3

TABLE OF CONTENTS 5

1.0 INTERACTION DIAGRAMS 7

2.0 CLASS DIAGRAM & INTERFACE SPECIFICATION 13

2.1 CLASS DIAGRAM 13

2.2 DATA TYPES & OPERATION SIGNATURES 14

2.3 TRACEABILITY MATRIX 26

2.3.1 OBJECT CONSTRAIN LANGUAGE (OCL) 27

3.0 SYSTEM ARCHITECTURE & SYSTEM DESIGN 31

3.1 ARCHITECTURAL STYLES 31

3.1.1 MODEL/VIEW/CONTROLLER 31

3.1.2 FRONT AND BACK ENDS 31

3.1.3 EVENT-DRIVEN ARCHITECTURE 31

3.1.4 OBJECT-ORIENTED 31

3.2 IDENTIFYING SUBSYSTEMS 32

3.3 MAPPING SUBSYSTEMS TO HARDWARE 33

3.4 PERSISTENT DATA STORAGE 33

3.5 NETWORK PROTOCOL 33

3.6 GLOBAL CONTROL FLOW 33

3.7 HARDWARE REQUIREMENTS 34

4.0 ALGORITHMS & DATA STRUCTURES 35

5.0 USER INTERFACE DESIGN & SPECIFICATION 36

5.1 HOME PAGE 36

5.2 HEADER LAYOUT 37

5.3 REGISTRATION PAGE 38

5.4 ABOUT US PAGE 39

5.5 PLAYER STATS PAGE 40

6

5.6 TRADE PAGE 41

5.7 PORTFOLIO PAGE 42

5.8 LEAGUE PAGE 43

6.0 DESIGN OF TESTS 44

6.1 TEST CASES 44

6.2 COVERAGE OF TESTS 48

6.3 INTEGRATION TESTING PLAN 48

6.4 TESTING STATE DIAGRAMS 49

7.0 PROJECT MANAGEMENT & PLAN OF WORK 51

7.1 MERGING THE CONTRIBUTIONS OF INDIVIDUAL TEAM MEMBERS 51

7.2 PROJECT COORDINATION & PROGRESS REPORT 52

7.2.1 PROJECT COORDINATION 52

7.2.2 PROJECT PROGRESS 53

7.3 PLAN OF WORK 57

7.3.1 GANTT CHART 58

7.3.2 TASK LIST 59

7.4 BREAKDOWN OF RESPONSIBILITIES 60

7.4.1 RESPONSIBILITY TABLE 60

8.0 REFERENCES 62

7

1.0 Interaction Diagrams

UC-1: Register

In this system sequence diagram, the visitor first navigates to the website. After reaching the website, the
visitor clicks “Register”. After this, the visitor is presented with the registration page.

Once the user has submitted the registration page, the information provided is validated and is sent to the
Player Database. The system then requests for a new player profile to be created for the visitor. The system
then returns to the visitor that their profile creation was complete, and that they are now logged into the
system.

The only alternate scenario to the main success scenario would be if any of the information entered by the
user was invalid. In this situation, the system would return an error to the Visitor letting them know that
there was an error in their submission. It would give the user another chance to submit the registration
form.

As of now, no other implementations have been discussed, as the current one seems to be the most logical

flow of events.

UC-1 System Sequence Diagram:

Visitor Player DatabaseWeb Server

Clicks Register

Direct to Registration Page

Submits Registration Form

Requests to create new Player Profile

Display Confirmation and Profile

Return New Profile

8

UC-3: Buy Security

In this system, the player selects a security of interest and in return the system should display the latest data

of the security. This is done when the web server connects to the security data provider to read the data. The

data is then displayed to the player. Then, the player must fill out order form which most importantly

includes the buying price of the security. Upon clicking submit, the web server verifies if the player has

enough balance to purchase. If the player has enough balance then the system requests an order ticket from

the trade database for the particular security (securities). The player is displayed with a confirmation of

order and order ticket number. The Web Server constantly reads the data of the particular security through

the security data provider. Once, the parameters of the player match the current data, the system requests

the trade database to process the order. Order is then processed and player’s portfolio is updated. A

notification is also sent to the player informing that the transaction is completed.

UC-3 System Sequence Diagram:

Player Security Data ProviderPlayer DatabaseWeb Server

Submit Security

Trade Database

Request Security Data

Return Security Data

Display Security Data

Submit order

Forward Order Ticket

Request Player's Balance

Display Ticket Number
Request buy at price

Return buy at price

Order Processed

Request Update Portfolio/Debit Amount

Display Transaction Completed

Return Balance

Return Order Ticket

Request Order proccess

Return updates

9

UC-4: Sell Security

In this system, the player selects a security of interest and in return the system should display the latest data

of the security. This is done when the web server connects to the security data provider to read the data. The

data is displayed to the player. Then, the player must fill out order form which most importantly includes the

selling price of the security. A request for generating an order ticket is then sent out to the trade database.

Once the order ticket has been generated the player is displayed confirmation of the order and the ticket

number. The system constantly reads the data through the security data provider and once the price to sell

his matched with the user’s parameters the order is sent to be processed to the trade database.

Order is then processed and player’s portfolio is updated. A notification is also sent to the player informing

that the transaction is completed.

UC-4 System Sequence Diagram:

Player Security Data ProviderPlayer DatabaseWeb Server

Submit Security

Trade Database

Request Security Data

Return Security Data

Display Security Data

Submit order

Forward Order Ticket

Display Ticket Number

Request sell at price

Return sell price

Return Sale Confirmation

Request Update Portfolio/Credit Amount

Display transaction completed

Return Order Ticket

Request to sell

Return updates

10

UC-7: Create Game

In this system sequence diagram, the Player requests for a new game to be created. The system then

presents the user with the Create Game page. One the user has submitted the registration page, the

information is validated and a request to create a new game is sent to the Player Database. The system then

updated required fields in the Player Database and signals a success to the Web Server. The Web Server

signals this back to the user with a confirmation that their game has successfully been create.

The only alternate scenario to the main success scenario would be if the game name the Player is trying to

make is already taken. In this situation, the system would return an error after form submission letting the

user know that their game name is already taken. It would ask the Player to choose another game name and

go through the same process of revalidating.

As of now, no other implementations have been discussed, as the current one seems to be the most logical

flow of events.

UC-7 System Sequence Diagram:

Player Player DatabaseWeb Server

Clicks Create Game

Direct to Create Game Page

Submits Create Game form

Display Confirmation and Game Home Page

Requests to add new game

Returns success of adding a new game

11

UC-14: Suggest Security

Each player has to select a risk appetite and submit to the user. This risk appetite is added to the player’s

database. Then, the system requests for security suggestions depending on the latest news, technical and

fundamental analysis etc. through the Security Data Provider. A collection of the data is fed to the trade

database. The system then reaches out to the player database to read the risk appetite and requests the trade

database to filter out suggestions according to priority and the risk type requested. Finally, the suggestions

are displayed to the user.

UC-14 System Sequence Diagram:

Player Security Data ProviderPlayer DatabaseWeb Server

Submit Risk Type

Trade Database

Returns Security Suggestions

Returns filter Suggested Securities

Display Suggested Securities

Request to filter suggested securities

Requests to update risk appetite

Confirms update of risk appetite

Request Security Suggestions

Request to populate Security Suggestion

Returns confirmation of adding Security Suggestion

Reads Risk Apetite

Returns Risk Apetite

12

UC-15: Challenge User

A player should be able to challenge other player(s). When the player requests to challenge another player,
the system prompts the username of the player. The system verifies if the player exists in the player
database. Once the verification is done the system sends a notification of challenge to Player 2. The portfolio
of the two players get updated to yet another inner game (Closed Game) between the two. A notification is
sent out to the initiating player saying that the challenge has started.

UC-15 System Sequence Diagram:

Player Player DatabaseWeb Server

Requests Challenge User

Requests Verification of Username provided

Returns Confirmation of User Profile

Prompts to enter Username

Submits Username

Request to Add 'Closed' Game

Confirm User is Challenged

Returns Confirmation of adding 'Closed' game

Requests to send Invitation Query to Player 2

Confirms Inivitation Sent to Player 2

13

2.0 Class Diagram & Interface Specification

2.1 Class Diagram

A summary of important classes, their variables, and functions are shown in the Data Types & Operation
Signatures.

14

2.2 Data Types & Operation Signatures

Controller

 ticket : Ticket

 data : StockData

 fields : Fields

 player : string

 portfolio : Portfolio

 history : TransactionHistory

 stock : String

 league : String

 Render (Integer : type, void* : data) : Boolean

 RenderError (Integer : type, void* : data) : Boolean

+ RequestBuy (Ticket : ticket)

+ RequestSell (Ticket : ticket)

+ RequestPortfolio (String : player) : void

+ RequestCreateLeague (Fields : fields) : void

+ RequestEditLeague (Fields : fields) : void

+ RequestCreateFund (Fields : fields) : void

+ RequestEditFund (Fields : fields) : void

+ RequestHistory (String : player) : void

+ RequestJoin (String : player, String : league) : void

+ RequestChallenge (String : player) : void

+ RequestInvite (String : player, String : league) : void

+ RequestShare (String : player) : void

+ RequestAddCoord (String : player) : void

PageRenderer

 page :Page

 generatePageOrder (Ticket : ticket, Integer : valid) : boolean

 generatePageSecurity (SecurityData : data, Integer : valid) : boolean

 generatePagePortfolio (Portfolio : portfolio, SecurityData* : data, Integer :

valid) : boolean

 generatePageFront (PlayerInfo : playerinfo, Integer : valid) : boolean

 generatePageLeague_Fund (Fields : fields, Integer : valid) : boolean

 generatePageTutorial (Fields : fields, Integer : valid) : boolean

 generatePageAdvertisement (Fields : fields, Integer : valid) : boolean

 generatePageJoin (String : league, Integer : valid) : boolean

 generatePageInvite (Player : player, String : league, Integer : valid, String :

which) :boolean

 generatePageShare (Player : player, Integer : valid, String : which) :

boolean

+ pageType (Integer : Type, void* : data, Integer : valid) : boolean

+ getPage() : Page

SecurityQuery

+ Query (String : security) : SecurityData

AdvertiserAccount

advertiser : String

balance : Double

fields : Fields

 setAd() : void

 payBalance(balance : Double) : void

 editSettings(fields : String) : void

Validity Checker

 data : SecurityData

 ticket : Ticket

 pricepershare : Double

 balance : Double

+ ValidateBuy (Ticket : ticket) : void

 VerifyFunds() : void

+ ValidateSell (Ticket : ticket) : void

Securties

pricepaid : Double

executiondate : Date

lasttrade : Double

change : Double

changepercent : Double

daysgain : Double

quantity : Double

totalgain : Double

totalgainpercent : Double

League

player : List

ranking : List

fields : Fields

15

DataHandler

+ ExecuteOrder (Ticket : ticket) : boolean

+ RequestPortfoliio (String : player) : Portfolio

+ CreateAccount (PlayerInfo : playerinfo) : Boolean

+ CreateLeague (Fields : fields) : boolean

+ EditLeague (Fields : fields) : boolean

+ CreateFund (Fields : fields) : boolean

+ EditFund (Fields : fields) : boolean

+ RequestHistory (String : player) : History

+ JoinLeague (String : player, String : league) : boolean

+ SendInvite (String : player) : void

+ EditAdvertisement (Fields : advertiser) : void

+ RequestTutorial (String : player) : Tutorial

Ticket

player : String

security : String

numsecurity : Double

pricepershare : Double

valid : Integer

time : Date

#type : Integer

SecurityDatabase

 fields : Fields

+ verifyFields (Fields : fields) : Fields

+ AdjustPrice (SecurityData : data,

Ticket : ticket) : Integer

WebPage

 ticket : Ticket

 fields : Fields

 playerinfo : PlayerInfo

 player : String

 security : String

 league : String

LeagueHandler

 fields : Fields

+ verifyFields (Fields : fields) : Fields

PlayerAccount

name : String

globalRank : unsignedLong

portfolio : Portfolio

history : History

playerinfo : PlayerInfo

leagues : List

LimitOrder

limitprice : Double

StopOrder

StopPercentage : Double

HighWaterMark : Double

StopPriceChange : Double

trailing : Boolean

Portfolio

cash : Double

sharesheld : List
LeaderBoard

 playerList : List

OrderList

ticket : List

FundManager

 portfolio : Portfolio

History

ticket : List

Fund

portfolio : Portfolio

fields :Fields

16

1. Controller

Attributes

The controller plays the role of a town center, conveying messages back and forth between different

domain concepts in the domain model. The role of controller is best accomplished, if the controller

has a copy of all data that it handles as an attribute. Doing so will lower the chance of corrupting data.

 ticket : Ticket

This is a copy of the order ticket that the player has just submitted.

 data : StockData

 This is a copy of the data that the system queries from the Security Info Provider.

 fields : Fields

This is a copy of the fields that a Player or League Coordinator fills out during a creation /

editing request.

 player : string

This a copy of the player’s username that the controller passes along to the data handler. It is

used to find the Player object from inside the database.

 portfolio : Portfolio

 This a copy of a Portfolio object that the controller passes along.

 history : TransactionHistory

 This is a copy of a TransactionHistory object that the controller passes along.

 stock : String

This is a copy of the security symbol that is passed to the Security Query for it ot get info on

the security.

 league : String

 This is a copy of the name of the league that the controller passes along

Methods

The controller has many methods which the web page calls in order to let the controller know that it

has a request (all except for Render and RenderError). The controller will subsequently convey the

message by calling another function.

 Render (Integer : type, void* : data) : Boolean

The controller calls this method when it is ready to render a page. The arguments Integer

represents the type of page that is displayed, and the pointer, points to a data structure

containing the data necessary to construct the page.

 RenderError (Integer : type, void* : data) : Boolean

The purpose of this method is same as Render method, but instead of rendering the correct

page it renders an error version of the page.

17

+ RequestBuy (Ticket : ticket)

 Method used to request a buy security.

+ RequestSell (Ticket : ticket)

 Method used to request a sell security.

+ RequestPortfolio (String : player) : void

 Method used to view a portfolio.

+ RequestCreateLeague (Fields : fields) : void

 Method used to create a league.

+ RequestEditLeague (Fields : fields) : void

 Method used to edit league settings.

+ RequestCreateFund (Fields : fields) : void

 Method used to create a fund.

+ RequestEditFund (Fields : fields) : void

 Method used to edit fund settings.

+ RequestHistory (String : player) : void

 Method used to obtain/view transaction history.

+ RequestJoin (String : player, String : league) : void

 Method used to request, join a league/game.

+ RequestChallenge (String : player) : void

 Method used to challenge another player.

+ RequestInvite (String : player, String : league) : void

Method used to invite a player into the league/game. This method will also be used to invite

non-registered players to the investment game.

+ RequestShare (String : player) : void

Method used to share player current standings and game statistics to registered and non-

registered players.

+ RequestAddCoord (String : player) : void

 Method used to add a coordinator to a league.

2. PageRenderer

Attributes

 page :Page

 This is the current page that the web browser is displaying/will be displayed.

18

Methods

The valid parameter lets the page rendered know if the page that it should be generating is a success

page or an error page.

 generatePageOrder (Ticket : ticket, Integer : valid) : boolean

 Method called to render a page displaying the results of an order.

 generatePageSecurity (SecurityData : data, Integer : valid) : boolean

 Method called to render a page displaying result of a security data query.

 generatePagePortfolio (Portfolio : portfolio, SecurityData* : data, Integer : valid) : boolean

 Method called to render a page displaying the results of a portfolio viewing.

 generatePageFront (PlayerInfo : playerinfo, Integer : valid) : boolean

 Method called to render a page displaying the result of an account creation.

 generatePageLeague_Fund (Fields : fields, Integer : valid) : boolean

Method called to render a page displaying the results of a creation of a fund or league or

editing of a fund or league.

 generatePageJoin (String : league, Integer : valid) : boolean

 Method called to render a page displaying the results of joining of a league.

 generatePageInvite (Player : player, String : league, Integer : valid, String : which) : boolean

Method called to render a page displaying the results of inviting a player or non-player to a

league.

 generatePageShare (Player : player, Integer : valid, String : which) : boolean

Method called to render a page displaying the results of sharing of game statistics to other

players and non-players.

+ pageType (Integer : Type, void* : data, Integer : valid) : boolean

Method called by the controller in order to render a page with the given type, data, and

whether it is an error or not.

+ getPage() : Page

 Method called by the web page in order to retrieve the page it must display.

3. DataHandler

Methods

Methods called by the controller to access the information in the database.

+ ExecuteOrder (Ticket : ticket) : boolean

 Method executes the ticket order by updating the player’s portfolio accordingly.

+ RequestPortfoliio (String : player) : Portfolio

 Method called to request the portfolio data from the database.

19

+ CreateAccount (PlayerInfo : playerinfo) : Boolean

Method called to request creation of new account and data to be stored in the database.

+ CreateLeague (Fields : fields) : boolean

Method called to request a new league creation and data to be stored in the database.

+ EditLeague (Fields : fields) : boolean

 Method called to request the league settings be modified in the database.

+ CreateFund (Fields : fields) : boolean

 Method called to request a new fund creation and data to be stored in the database.

+ EditFund (Fields : fields) : boolean

 Method called to request the fund settings be modified in the database.

+ RequestHistory (String : player) : History

 Method called to request the transaction history from the database.

+ JoinLeague (String : player, String : league) : boolean

 Method called to request that a player be added to a league in the database.

+ SendInvite (String : player) : void

 Method called to request that a invite to be send a player or non-player.

4. SecurityQuery

Methods

+ Query (String : security) : SecurityData

Method called to request security data from the Security Info Provider. The data is forwarded

straight to the class requesting it, and a copy is made within the Security Query.

5. Validity Checker

Attributes

The validity checker holds the below attributes that it uses in calculations to determine if an order is

valid.

 data : SecurityData

 Copy of the stock data obtained from Security Query.

 ticket : Ticket

 Copy of the order ticket that the player fills out.

 pricepershare : Double

 Copy of the price per share of the security, which the TradeDatabase determines.

 balance : Double

 Copy of the investor’s current account balance.

20

Methods

+ ValidateBuy (Ticket : ticket) : void

 Method called by the controller to determine if a buy is valid or not.

- VerifyFunds() : void

Method called by the Validity Checker in order to determine if the investor has sufficient

funds for the transaction.

+ ValidateSell (Ticket : ticket) : void

 Method called by the controller to determine if a sell is valid or not.

6. SecurityDatabase

Methods

+ AdjustPrice (SecurityData : data, Ticket : ticket) : Integer

Method called by the Validity Checker to modify the security price per share in accordance to

how many the player plans to buy or sell.

7. WebPage

The web page contains a copy of various attributes that it receives from the player and forwards it on

to the controller.

Attributes

 ticket : Ticket

 This is a copy of an order ticket that the player fills out.

 fields : Fields

 This is a copy of the league or fund settings the player fills out.

 playerinfo : PlayerInfo

 This is a copy of the player info that the database provides.

 player : String

 This is a copy of the player’s username.

 security : String

 This is a copy of the particular security that is requested by the player.

 league : String

 This is a copy of the league name that the player enters.

21

8. TutorialDatabase

This class contains list of tutorials available to the player.

9. LeaderBoard

Attributes

 playerList : List

 This is a list of the top ranked players in the game.

10. LeagueHandler

Attributes

 fields : Fields

 This is a copy of the fields for the league

Methods

+ verifyFields (Fields : fields) : Fields

 Method the controller calls that verifies that the settings for the league are all valid.

11. Ticket

Attributes

player : String

 This is the player’s username.

security : String

 This is the stock symbol.

numsecurity : Double

 This is the amount of security that is being exchanged.

pricepershare : Double

 This the price per share of the security.

valid : Integer

 This a valid bit: it lets the controller know if the ticket is valid or not.

time : Date

 This is the time and date of the ticket submission.

#type : Integer

 This is the type of transaction (example being stop order).

22

12. Securities

This class contains the number of shares of stock that an investor owns, and information about them.

Attributes

pricepaid : Double

 This the price paid for the stock.

executiondate : Date

 This is the date of execution of the trade.

lasttrade : Double

 This is the price of the latest trade on the market for the stock.

change : Double

 This is the change in the stock form the beginning of the day.

changepercent : Double

 This is the percentage change in the stock from the beginning of the day.

daysgain : Double

 This is the gain from the security in the current day.

quantity : Double

 This is the amount of security that is owned.

totalgain : Double

 This is the total gain from the security when it was first bought.

totalgainpercent : Double

This is the percentage gain from the security out of the gains from all security the player

holds.

13. Portfolio

Attributes

cash : Double

 This is the player’s balance.

sharesheld : List

 This is a list of class shares that the player owns.

14. StopOrder

Attributes

StopPercentage : Double

 This is the threshold percent change of the stock before the order is executed.

23

HighWaterMark : Double

This is the highest price reached (or lowest for a buy). This is used for trailing orders.

StopPriceChange : Double

 This is the threshold change in price of the stock before the order is executed.

trailing : Boolean

 This specifies if the stop order is a trailing stop or not.

15. LimitOrder

Attributes

limitprice : Double

 This is the threshold price for a stock before the order is executed.

16. MarketOrder

This class is the default order type and has no special requirements.

17. OrderList

Attributes

ticket : List

This is a list of tickets that have yet to be executed because conditions for execution have not

been met.

18. History

Attributes

ticket : List

This is a list of class tickets in chronologically backwards order, with the most recent

transaction first.

19. FundManager

Attributes

 portfolio : Portfolio

 This is the portfolio of the fund, which the fund manager maintains.

24

20. LeagueCoordinator

The league coordinator does not have any special attributes or methods that make it different from a

player.

21. PlayerAccount

Attributes

name : String

 This is the username of the player.

globalRank : unsignedLong

 This is the global rank of the player.

portfolio : Portfolio

 This is the player’s portfolio.

history : History

 This is the investor’s transaction history.

playerinfo : PlayerInfo

 This the player’s personal info.

leagues : List

 This is the list of leagues that the player is currently a member of.

22. Fund

Attributes

portfolio : Portfolio

 This is the fund’s portfolio

fields :Fields

 This the various settings of the fund, including fund name.

23. League

Attributes

investor : List

 This is the list of players that currently in the league

ranking : List

 This is the list of rankings for each player (it runs parallel to the player list).

fields : Fields

 This is the various settings of the league, including the league name.

25

24. AdvertiserAccount

Attributes

advertiser : String

 This is the username of the advertiser.

balance : Double

 This is the balance that the advertiser owes (unpaid balance).

fields : Fields

 This are the fields that the advertiser fills out when editing settings.

Methods

 setAd() : void

 payBalance(balance : Double) : void

 editSettings(fields : String) : void

25. AdvertisementManager

This class contains all the advertisements that need to be displayed for a given advertiser.

26. NewsFeeder

This class contains all the recent news feeds relating to financial sector, economy, and world.

27. MessageBoard

This class contains all the messages, or posts that other players have posted on the message board.

26

2.3 Traceability Matrix

Class / Domain Concept

W
eb

P
ag

e

P
ag

eR
en

d
er

V
al

id
it

y
C

h
ec

k
er

St
o

ck
Q

u
er

y

D
at

aH
an

d
le

r

G
am

eH
an

d
le

r

T
ra

d
eD

at
ab

as
e

A
d

v
er

ti
se

m
en

tH
an

le
r

WebPage X

PageRender X

Controller X X

ValidityChecker X

StockQuery X

SecurityDatabase X

DataHandler X

LeagueHandler X

League X

LeaderBoard X

PlayerAccount X

Portfolio X

FundManager X

Fund X

Securities X

History X

OrderList X

Ticket X

Market Order X

Limit Order X

Stop Order X

MarketOrderProcessor X

LimitOrderProcessor X

StopOrderProcessor X

TutorialDatabase X

AdvertiserAccount X

AdvertisementManger X

MessageBoard X

27

Many of the classes map back to the DataHandler concept they contain data that is queried by the

DataHandler. The domain model represented the all the classes in single entity, but now they are show as

separate entities in the class diagram. The class diagram gives more insight on the inner workings and

details of our program.

2.3.1 Object Constrain Language (OCL)

context Controller::RequestPortfolio(string : investor) void

pre: (investor  InvestorAccount.portfolio = this.portfolio)

- You can only view your own portfolios

context Controller::RequestEditLeague(Fields : fields) void

pre: (InvestorAccount  LeagueCoordinator = true)

- You can only edit a league if you are the league coordinator

context Controller::RequestEditFund(Fields : fields) void

pre: (InvestorAccount  FundManager = true)

- You can only edit a fund if you are the fund manager

context Controller::RequestInvite(String : investor, String : league) : void

pre: (InvestorAccount  LeagueCoordinator = true)

- You can only invite people to a league if you are the league coordinator

context DataHandler::ExecuteOrder(Ticket : ticket) : Boolean

pre: (ValidateSell())

post: (InvestorAccount.Update())

- The Investor's portfolio must be updated to accommodate bought/sold stocks

context DataHandler::CreateAccount(PlayerInfo : playerinfo) : Boolean

post: (hasPortfolio = true AND inGlobalLeague = 1)

- The investor will have a portfolio for the Global Public League upon registration

context DataHandler::CreateLeague(Fields : _elds) : Boolean

post: (league  name = field:League Name AND league ! this.member AND update())

28

- The league will be stored in our database (update), and the league coordinator will have a portfolio

for that league.

context DataHandler::CreateFund(Fields : fields) : Boolean

post: (fund  name = field:Fund_Name AND fund  this.member AND update())

- The find will be stored in our database (update), and the fund manager will have a portfolio for that

fund

context DataHandler::EditLeague(Fields : fields) : Boolean

post: (league  settings.update(fields))

- League settings will be updated in the database

context DataHandler::EditFund(Fields : fields) : Boolean

post: (fund  settings.update(fields))

- Fund settings will be updated in the database

context DataHandler::JoinLeague(String : investor, String : league) : Boolean

post: (league  this.member AND update())

- The User will now have a portfolio for the league

context ValidityChecker inv:

if(League)

self.balance ≥ 0

- The User will not have a negative balance

context ValidityChecker::ValidateBuy(Ticket : ticket)

pre: (ticket  fields.isValid())

post: ValidityChecker::VerifyFunds is called

- The fields of the order form must be valid for the specified order

- Upon validation, the amount of funds compared to the price must be checked next

context ValidityChecker::ValidateSell(Ticket : ticket)

pre: (ValidateBuy() AND VerifyFunds())

post: DataHandler::ExecuteOrder is called

- The fields of the order form must be confirmed by Validate Buy

29

- The request to update the database must be called

context ValidityChecker::VerifyFunds inv:

InvestorAccount.portfolio.cash _ for(I = stock; I < stocknum; i++)

cash += ticket[i].pricepershare*numstock

- The User must have more funds than the cost of the order, or an error is returned

context ValidityChecker::VerifyFunds() : void

pre: (ValidateBuy())

post: DataHandler::ExecuteOrder is called

- The request to update the database must be called

context LeagueHandler::verifyFields inv:

self!_elds.isValid()

- The league filled out for fund settings must be valid, or an error is returned

context Ticket inv:

self.numstock > 0

-A ticket can only exist for at least one share of a stock, as orders must include at least one share

context Ticket inv:

pricepershare > 0

- The price of a share is always greater than zero

context Shares inv:

pricepaid > 0

- The price of a share is always greater than zero

context Shares inv:

lasttrade!pricepaid > 0

- The price of a share is always greater than zero

context Shares inv:

changepercent ≥ -100

- Value of a stock can never go below zero, so the percent change will never be less than -100%

30

context Shares inv:

quantity > 0

- If there were no shares of the stock, it would not be kept track of context Shares inv:

totalgainpercent ≥ -100

- Value of a stock can never go below zero, so the percent change will never be less than -100%

context StopOrder inv:

self.StopPriceChange < self.HighWaterMark

- The stop price change needs to be less than the high water mark

context StopOrder inv:

self.StopPriceChange > 0

- Stop price change cannot be zero or less than zero

context StopOrder inv:

(self.StopPercentage > 0) AND (self.StopPercentage < 100)

- Stop percentage has to be a valid number between 0 and 100

context LimitOrder inv:

self.limitprice > 0

- User cannot purchase a stock at a price of zero

31

3.0 System Architecture & System Design

3.1 Architectural Styles

Money machine utilizes architectural styles with a main focus on Model/View/Controller approach. In this
part, we will take closer look in to how Money machine incorporates these techniques in its
implementation.

3.1.1 Model/View/Controller
Money Machine relies heavily on the Model/View/Controller architecture. The main view is the web
interface that the user interacts with. Through this interface the user carries out various tasks as
enumerated by our Use Cases. Various controllers will help the user interface with the two main models
which are the site database and the stocks model provided by the stock information provider. The view will
be represented by HTML, CSS, and Javascript. The controller logic will be implemented using Python. For
the models, the site database will be created using Django (Sqlite abstraction) and the stock model will be
made accessible by API calls to an external stock information provider. Most of our concepts fall into the
controller category.

3.1.2 Front and Back Ends
The front end component mainly involves Web UI, which will be mainly seen by public. The back end
consists of all the behind the scenes business logic for our application. For example, the controller to
communicate with the database, controller must go through DataHandler. So, in that situation, we can
conclude that DataHandler is working as front end of the database to controller.

3.1.3 Event-driven Architecture
A Player acts as an event generator. A Player can buy securities, sell securities, create new leagues, and
participate in different leagues. Another type of event is driven when the stock prices changes, or a
company merges into another company or a company doesn’t have enough securities to sell. In addition,
there will be another event/feature called tutorial, in which our players choose their skill levels and based
on their skill level, they will be able to learn more about the different types of securities and their behavior.
Players can send referral to join our game by providing E-mail address of the other people and E-mail will
be sent out to other people.

3.1.4 Object-oriented
In object-oriented design, the responsibilities are divided into different objects, which contains relevant
information/data and behavior. In our application, we are planning to use object oriented approach,
because it will make our work easier as well as efficient. We can represent Portfolio, Securities, League, and
Orders as objects. These objects are most important things in our project.

32

3.2 Identifying Subsystems

Page: (WebPage, PageRenderer, Controller)

Page is responsible for taking Player’s requests and executing or transferring those requests to
other subsystems. Page is subsystem which has broad relationship with the Player.

League: (PlayerList, LeagueHandler,LeagueRankings)

League is subsystem that is responsible for creating as well as maintaining /updating all the things
that are associated with the League such as, updating information about different kind of Leagues
and their Players.

Portfolio: (Portfolio, TransactionHistory, Securities)

This subsystem is responsible for keeping track of Player’s portfolio, securities, account balance and
their past transactions.

Orders: (OrderType, OrderList, LimitOrder, StopOrder, ValidityChecker)

Orders keep track of the all the orders that have been placed in the past. In addition, It lets Player to
stop order when the Player does not want to sell or buy Securities which he planned to buy for that
price. In addition, this subsystem is responsible for validating the Player’s buying securities request
based upon available balance in Player’s account. In addition, Players will have to choose the order
type such as stocks, bonds, funds etc.

StockPrice: (StockQuery, LiquidityManager)

This subsystem is mainly responsible for getting the updated stock prices and alter them based on
liquidity.

33

3.3 Mapping Subsystems to Hardware

The capabilities allow Django and Sqlite which will be utilized to display the user interface. Processes are
first initiated by the Web Browser when the user requests an action to occur. The DataHandler, Controller,
Stock Query, and Page Renderer will all be managed via the server.

3.4 Persistent Data Storage

Our database will store user’s name, user’s account balance, current stock prices and history of user’s past
transactions. For current stocks, the database will save current stock name, stock’s ticker symbol, price and
available quantity, price, date and time of the transaction. The system will be able to calculate Player’s net
worth, his stock holdings, his account balance, his standing in league, and his past transactions. In addition,
the system will also suggest Player some securities based on his stock holdings. The database will store the
information about the past transactions and different types of stocks sold as well as bought.

Name: Ivan Marsic

CashBalance: $26,615.00

Market Value: $73385.00

Stocks

Symbol Qty Price Paid Date Bought Current
Price

GOOG 100 652.55 11/14/12 806.19

YHOO 100 19.35 12/20/12 21.94

XOM 70 88.50 2/27/13 89.23

Transaction History

Symbol Transaction Type Price Quantity Date

YHOO Buy 19.35 100 12/20/12

 XOM Buy 88.50 70 2/27/13

F Sell 34.83 200 2 /24/ 12

GOOG Buy 652.55 100 11/14/12

3.5 Network Protocol

Money Machine will communicate with our application via HTTP. If the user is at our website, then they will
be able to get the latest updates about the United States markets as well as some International markets. In
addition, if the user scrolls down on the home page, then they will be able to get the latest news related to
stock markets. If the user are registered with our system then they can log in and then will be directed to
their game, and if the user are not registered with our system then user will be asked to register with their
background information. The system will validate the log in information and upon successful completion,
login cookie stored on the user’s browser which authenticates the user to experience game.

3.6 Global Control Flow

Our system is an event driven system in which it will wait for certain actions and then responds
accordingly. A Player’s portfolio will be updated every time webpage is updated. The database will be

34

updated every time it will receive request for StockInfoProvider and then Player’s portfolio will be updated.
This process is similar for League updates. If a Player wants know about the securities then
StockInfoProvider will be requested and then up to date information will be sent based on Player’s request.
In addition, there will be additional feature called Invite, in which Players will be able to send the referral to
join the game. Most of the events in our system are related to each other. Players’ request are executed in
the order they were received, which is like putting them in queue, and when the orders are executed then
they will be removed from queue.

3.7 Hardware Requirements

Our system will require only Internet connection and web browsers from our users. Our system will run on
any web browser. Our system won’t require any hardware space for this application. It will save all the
information on our ‘MoneyMachine’ servers. Using their preferred browsers, without installing any
software, Users easily connecting to their Internet, and enjoy and experience real life Stocks, and It will be
an amazing experience for our users. In addition, our application will be accessible by any mobile device
platforms such as iOS, Android, and Blackberry.

35

4.0 Algorithms & Data Structures

Our project does not have any true algorithms or data structures. We have chosen to forgo this section.
Points for this section have been re-allocated into the User Interface Design & Implementation section as
required. Please see the breakdown of responsibility to note the changes.

36

5.0 User Interface Design & Specification

5.1 Home Page

This is the home page of Money Machine, this is the first page that will be loaded when a user visits the site at
first. The new UI offers a much cleaner look and provides quick access to stock ticker information directly
from the home page which the previous UI design was not meant to do. The buttons have changed as well
providing a more intuitive design. The original mockup of the home page was used as a skeleton for the
content that was going to be displayed on the home page, major change in this UI is the layout of the content.
Originally the News feeds were on the left half of the webpage while the stock prices and world markets
information was on the right half of the page, but this has been changed with news feeds being on the bottom
half of the page while displaying the welcome message and the stock information on the top half of the page.

37

5.2 Header Layout

The header has been changed which provides a log in system directly accessible within any page on the
website given that the user is not currently logged in. Next change is the drop-down menu which has the
options: Players Stats, Trade, Portfolio, and League. The drop-down menu appears whenever the cursor is
hovered over the “My Profile” button. This is different than the originally planned mockup of having just a
single “My Profile” page which just had the tabbed panels that showed the 4 information tabs. The amount of
clicks necessary with the new UI is the same as the previous UI; the user still has to click on 1 of the 4 options
within the menu to perform the desired task. To access the subpages within the “My Profile” page it will only
take 1 click from anywhere on the “Home” page or the “About Us” page. The “Register” button has also been
added next to the “Login” button which has reduced the number of clicks required for the user to access the
registration page from 2 clicks to 1 click.

38

5.3 Registration Page

The registration page has been revised that provides more fields of input. The user has to enter an extra

field, “User Name” and the “Confirm Password” from the previous UI Design has been changed to “Confirm

Email” instead. This change has been made because the user can type the wrong password at first which can

be recoverable via email, but if the user enters the wrong email address then that account can potentially

belong to someone else or the user unable to access their account. So it is very important that the user enters

the correct email address and have it be verified. A “Reset” button has been implemented should the user

choose not to register for Money Machine. Once the user has registered he/she will be brought to the “My

Profile” page which will implement Use Case 2, Use case 5 and Use Case 16.

HOW TO ACCESS THIS PAGE:

1) From the Home page, click on the Register button.

39

5.4 About Us Page

The “Help” page from the mockup has been changed to the “About Us” page instead which has the teams

email addresses so it is easier for the player to contact one of the site administrators.

All the other changes that have been made are pure aesthetic changes which still provide the same number
of clicks and menu traversals as before. UI minimizes the user effort in the sense that it is a simple interface
while providing the tools necessary for the player to go through the registration process and enter a league
in little to no time.

HOW TO ACCESS THIS PAGE:

1) From the Home page (or any page), click on the About Us button at the top.

40

5.5 Player Stats Page

Player Stats Page: This view is created for demonstration purposes only; the actual table has not been coded yet.

The “Player Stats” page can be viewed by hovering over the “My Profile” button and clicking on the “Player

Stats” page or via 1 click by simply clicking on the “My Profile” button. This page shows the statistics of a

player based on the league the player has joined and the players name, league name, league rank, net worth

and the over gains for that particular league.

HOW TO ACCESS THIS PAGE:

1) From the Home page (or any page), hover over the My Profile button.
2) Click on Player Stats.

41

5.6 Trade Page

Trade Page: This view is created for demonstration purposes only; the actual table has not been coded yet.

The “Trade” page can be accessed from the “My Profile” button and selecting the Trade option. This page

provides access to the stock ticker prices as well as the amount of shares the player wishes to trade or

purchase. In example shown it can be seen that the player is trying to make a purchase of 3 Google shares

priced at $825.34 per share making the total $2,476.02.

HOW TO ACCESS THIS PAGE:

1) From the Home page (or any page), hover over the My Profile button.
2) Click on Trade.

42

5.7 Portfolio Page

Portfolio Page: This view is created for demonstration purposes only; the actual table has not been coded yet.

The portfolio page offers the player to maintain a stock portfolio for demonstration purposes a sample

portfolio has been created called Portfolio 1 which contains the following stocks, Google Inc, Apple Inc, and

Microsoft Corporation. Each name shows the associated symbol along with its price and the market change

price in percentage. Within this page multiple portfolios can be managed and viewed. The add symbol allows

the player to search for a symbol and add it to the portfolio.

HOW TO ACCESS THIS PAGE:

1) From the Home page (or any page), hover over the My Profile button.
2) Click on Portfolio.

43

5.8 League Page

League Page: This view is created for demonstration purposes only; the actual table has not been coded yet.

The league page offers players the ability to join different leagues and view the statistics of the currently

joined league. To get to the league page the player has to hover over the My Profile button and selecting the

League option. There is a search option on the right side of the League page and it also shows the player if the

league is joinable or if it is full, meaning that the host of that particular league has set a cap on the amount of

players allowed in the league.

HOW TO ACCESS THIS PAGE:

1) From the Home page (or any page), hover over the My Profile button.
2) Click on League.

44

6.0 Design of Tests

The following are the tests designed for our system. We plan on updating the tests as we continue to develop
our software. These tests primarily encompass our unit testing scheme, however, there is a brief discussion
of our integration testing technique.

6.1 Test Cases

Test Case: TC-01 [Log-In Page]

View Tested: virtualstockmark.views.login

Pass/Fail Criteria: This test case will check if the Player has provided correct user name and
password successfully. However, the user must be registered with system.

Test Procedure Results Actions

Call Function Pass User should be able to log in to the system and able to see his
portfolio.

Call Function Fail If user haven’t provided correct user name and password that
is registered with the system. This can also be a case when
user click log-in button without providing any information. As
results, it should notify user and request for the correct
information showing (*) next to mandatory fields.

Test-case TC-02: [Validity Checker]
Function Tested: ticket_system.valid()
Pass/Fail Criteria: This test determines if Player has been able to successfully place an order in the
market.

Test Procedure Results Actions

Call Function Pass Player has been successfully able to place an order in the
market. The order will be placed only if Player has enough
cash balance.

Call Function Fail If Player doesn’t have enough cash balance, then it won’t let
Player to place an order.

45

Test Case: TC-03 [Create League]

View Tested: league.views.create_league

Pass/Fail Criteria: This test case will check to see if the inputs provided by the Player are valid or not.

Test Procedure Results Actions

Pass League
Name Input

Pass
Player should be presented with the manage league page for
the newly created league.

Fail
The Player will be presented with an error page letting them
know that the league name is already taken and will be given
an opportunity to try again.

Test Case: TC-04 [Registration Page]

View Tested: virtualstockmark.views.register

Pass/Fail Criteria: This test case will check if the Player has provided correct values for the specified
fields.

Test Procedure Results Actions

Pass Inputs for
First Name

Pass
Player has entered correct values and can proceed to the next
field.

Fail Display error message and player has to modify the field.

Pass Inputs for
Last Name

Pass
Player has entered correct values and can proceed to the next
field.

Fail Display error message and player has to modify the field.

Pass Inputs for
User Name

Pass
Player has entered a unique username and can proceed to the
next field.

Fail
User name is taken and Player must choose a different
username

Pass Inputs for
Password

Pass
Player has entered a valid password and can proceed to the
next field.

Fail Display error message and player has to modify the field.

Pass Inputs for
Email

Pass
Player has entered correct email address and can proceed to
the next field.

Fail Display error message and player has to modify the field.

Pass Inputs for
Confirm Email

Pass
Player has re-entered the correct email address and can
proceed to the next field.

Fail
Display error message, player has not entered the same email
address as in the previous field and player has to modify the
field.

Click Register
button

Pass
Player has entered all correct information and account is
created and is forwarded to the Portfolio screen.

46

Test Case: TC-05 [Challenge Player]

View Tested: virtualstockmark.views.league

Pass/Fail Criteria: This test case will check if a challenge player request is successful or unsuccessful.

Test Procedure Results Actions

Pass Input
Challenge

Pass
Player should be presented with a page with time until
challenge begins and challenged player’s name.

Fail
The Player will be presented with an error page stating the
player is already in a challenge with another player, or invalid
challenge request.

Test Case: TC-06 [Data Handler]

View Tested: virtualstockmark.views.orderticket

Pass/Fail Criteria: The test passes if the test stub executes the ticket by updating the investor’s
portfolio accordingly

Test Procedure Results Actions

Execute Order
Pass

DataHandler executes order and updates investors portfolio
and returns tree

Fail If unable to execute order, return false.

Test Case: TC-07 [Data Handler]

View Tested: virtualstockmark.views.portfolio

Pass/Fail Criteria: The test passes if the test stub request for portfolio data and it is retrieved from
the database.

Test Procedure Results Actions

Request
Portfolio Data

Pass
DataHandler request portfolio data and returns it from the
database.

Fail
If there is an error retrieving the data from the database, it
should display an error that no data was returned.

Test Case: TC-08 [Data Handler]

View Tested: virtualstockmark.views.league

Pass/Fail Criteria: This test case will check if a challenge player request is successful or unsuccessful.

Test Procedure Results Actions

Request to Edit
League Settings

Pass DataHandler modifies league settings and returns true.

Fail DataHandler unable to modify league settings, returns false.

47

Test Case: TC-09 [DataHandler]

View Tested: virtualstockmark.views.portfolio

Pass/Fail Criteria: The test passes if the test stub request to view transaction history from the
database is successful.

Test Procedure Results Actions

Request to
View

Transaction
History

Pass DataHandler returns the transaction history.

Fail
DataHandler displays an error message, unable to retrieve
transaction history.

Test Case: TC-10 [Data Handler]

View Tested: virtualstockmark.views.league

Pass/Fail Criteria: This test case will check if a challenge player request is successful or unsuccessful.

Test Procedure Results Actions

Request To Join
League

Pass
DataHandler updates information in database about the league
and returns true.

Fail DataHandler returns false if joining league encounters problem.

Test Case: TC-11 [Data Handler]

View Tested: virtualstockmark.views.league

Pass/Fail Criteria: This test case will check if a challenge player request is successful or unsuccessful.

Test Procedure Results Actions

Send invite
Player to
League

Pass DataHandler adds the invite to the Players account in database.

Fail
If fails, displays message unable to send or add invite the
player.

Test Case: TC-12 [Validate Login]

View Tested: virtualstockmarket.views.login

Pass/Fail Criteria: To verify that the player has entered either or both username/password and
either of these fields are not left blank.

Test Procedure Results Actions

Pass input
Username/Password

Pass
Player has entered the username/password and is able to
login.

Fail
The Player will be presented with an error on the login
page stating the player username and password fields are
left blank.

48

Test Case: TC-13 [Validate Logout]

View Tested: virtualstockmarket.views.logout

Pass/Fail Criteria: To verify that the player is not able to click the back button after clicking the
logout button.

Test Procedure Results Actions

Pass input
Logout

Pass
Player has clicked on logout and is not able to click back after
arriving at the logout page.

Fail
The player is able to click on the back button in the browser
even after successfully logging out.

6.2 Coverage of Tests

The test cases are planned to cover all of the possible models and views for every “app” in the Money
Machine Project. However, due to the nature of the language being a MVC style language, it is very hard to
test individual classes. Nonetheless, it is envisioned that all of the test cases will address all aspects of the
application. It is planned that about 75% of the test cases will focus on transition states (ex- making sure that
the application transitions from the league app to the portfolio app when the user wants to view a portfolio
in a league.) The remaining 25% will be devoted to creating tests that test the UI specification.

6.3 Integration Testing Plan

The integration testing will be done with each component individually at first and then with other
components for the project. The basic template of the website was written to make sure that each individual
page can be accessed from another page. Once the templates for the sites are done, the team will begin to
develop the actually methods and models that will be used for the project such as the Portfolio System,
League System, Ticker System, Login System, and Registration System. The Registration system was first
developed separately to test if the databases are working properly and then it was integrated into the
website templates that were originally created so any visitor to the website can register for Money Machine.
Once the Registration System is working it can be used in conjunction with the Login System for user
authentication. After the Login System is created, testing is done on the system to see if a player is able to
register properly and also able to login using the username that was created. Further testing of the
authentication of the system has to be done to maintain a secure logout. For example, if an authenticated
user clicks on the Logout button then the player must be brought back to the home page of the website and
must be re-authenticated if the player decides to click on the Back button in the web browser.

Once the login system is working properly, the Portfolio System and the Ticker System are going to be
developed separately, with a higher priority on the Ticker System. The Ticker System is one of the most
important aspects of this project because it will handle all the queries for buying and selling stocks. The
Ticker System has to be tested thoroughly to make sure that each buy and sell query is handled properly.
Once this system is working properly it can be integrated with the Portfolio System, League System, and
Registration System. At first, it will be tested with the Registration/Login System to make sure that each
individual player is able to buy or sell stocks and if the Ticker System is able to reflect the transactions to the

49

individual player. Once this test is done, it will be integrated with the Portfolio System, so the player can start
building his/her portfolio. While this testing and debugging of the integrated system is being done, the
League System will also start to be developed by 2-3 group members so there is no delay in the software
development. By the time the League System is done, it is expected that the integration between the Ticker
System, Portfolio System, and the Login System are working in unison. The League System will be tested at
first if it can handle faux data that the team will generate, such as, player names, net worth, rank, and daily
loss or gain. If this test passes then it will be integrated with the all the previous systems to full complete the
project. In the end, if all the systems are working, a player should be able to register for Money Machine
account, create and maintain a portfolio, join a league, obtain statistics about currently joined leagues, and
buy and sell shares and have the transactions reflect within a portfolio.

At first, each system will be tested individually with some sort of faux data that will be generated to make
sure that individual system is working properly before being integrated with other systems. Testing and
debugging is a major component of software development, however, if the debugging time is far too great
than some aspects of the project might not get properly debugged due to project deadlines. Since each stage
of the application development is being tested individually, hopefully this reduces the amount of errors
when each system is integrated with one another.

6.4 Testing State Diagrams

State Diagram: Registration / Login

The following state diagram below shows how registration and login by a player could be tested.

50

State Diagram: Challenge Player

The following state diagram below shows how the function challenge a player is tested.

State Diagram: Order Ticket

The following state diagram below shows how a order ticket is tested.

51

7.0 Project Management & Plan of Work

7.1 Merging the Contributions of Individual Team Members

Merging documentation between team members has been especially challenging. However, since Report
#1, our team has developed a system to merge documents faster. Previously, our team was writing each
different document in different styles and spending copious amounts of time attempting to find a default
formatting, etc.

In order to better speed up the editing process, Avi suggested we use the ‘Merge’ feature within Microsoft
Word. At the beginning of each document, a template is created. The template contains the cover sheet, a
table of contents, and some blank headers for each section of work to be completed. This document is
placed on Dropbox for each team member to reference, and is usually titled along the lines of ‘Report #2 –
Part #1 – MASTER’. The ‘MASTER’ tag within the document name signifies that it is not to be edited. As each
team member works on a section, they create a copy of the ‘MASTER’ file and name it ‘Report #2 - Part #1 –
Rev 1’. Via e-mail, they denote the changes they made in Rev 1. When all individual contributions are
complete, the editor (usually Rylan) will collate the reports. The MS Word ‘Compare’ feature is similar to
‘diff’ on a UNIX system. It will show changes between two files. The ‘MASTER’ file is tagged as the original,
and the ‘Rev’ as the changed. Each line/section is reviewed and changes are ‘Accepted’ or committed into
the MASTER copy. Usually there are formatting changes to be made, the table of contents to be updated, and
grammatical and spelling errors to be checked. This is handled by the editor.

Once the report is updated, it is published in PDF and sent to each team member to review. Any revisions
are made using the Dropbox / merge system we have in place. Within 6 hours of the due date, we send in
the report.

At the start of the next Part / Report, we move the old documentation into a different folder, and create a
new / updated ‘MASTER’ file.

52

If you notice in the above picture, you can see the blue text, which denotes a change to the original
document. The markup on the right side shows which contributor made the change and which formatting
differences exist. At the top of the document, an ‘Accept’ and ‘Reject’ button allow the editor to make the
changes.

Team members have been using both Microsoft Word & Google Documents (a shared folder for our group)
to complete their work. This doesn’t matter, as both can export to the ‘doc’ file format for merging.

This document merging technique has sped up the merging and editing process for our team significantly.
Because members have a copy of the formatting when they write their documents, as much time isn’t spent
reformatting pages to meet the visual consistency needed.

In terms of ensuring consistency, our team has a set format table of contents, cover page, and style for
within the documents. This setup was created by Rylan and is periodically edited as needed. During the
editing process, he ensures that all styles match, and the pages have a clean, consistent, and professional
look to them.

7.2 Project Coordination & Progress Report

7.2.1 Project Coordination

Project coordination has been mainly Rylan’s responsibility, however, all team members are a part of the
coordination process. A brief description of the main responsibilities undertaken by the Project Manager
(PM):

1. Coordinating Meetings – The PM is responsible for coordinating meetings. There are two different
kinds of meetings, coding meetings (where coding and functionality changes are discussed) and
report meetings, which focus on reports. At times, these topics are discussed in single meetings. For
the most part, meetings are coordinated to be on Friday mornings, and Monday nights, with e-mail
interchange facilitated throughout the week. We are currently experimenting with new meeting
times to better coordinate our teams. Meeting coordination involves planning the meeting times,
developing meeting agendas (usually pertinent upcoming due date tasks), and sending out ‘meeting
minutes’ or a summary of meeting discussions for each member to have a copy of post-meeting.

2. Document Control – The document control task involves editing each member’s contributions to

reflect the template and styling elements of each report. After all, each report must look as though it
came from one person. The PM also handles Dropbox & Google documents version tracking as
needed. During the revision process, the PM assures that each individual contribution matches the
requirements from the course website and notifies each contributor of any discrepancies.

3. Interface to Instructors – The PM serves as the point of contact for the instructors to the group. The

PM is a group representative to contact the instructors with e-mail questions, report submitting, etc.

4. Group Status & Planning – The PM is also tasked with ensuring the schedule as set forth in Report #1

is met. This means working with the group to divide work amongst members, and setting up ‘soft’
due dates well before the due date. While each section is being worked on, the PM facilitates group

53

interaction, ensuring that each part will be completed in time, adjusting timelines as needed, and
ensuring each group member is comfortable with the other’s contributions. The PM ensures that all
grade-related tasks are visible to each group member, and asks for a general consensus on all work
before submitting. This allows each group member to voice pointed or general concerns, and make
modifications as needed. In turn, our group works well together since open communication is
fostered at each stage of the project process.

5. Code Planning – The PM has some background experience with Django and Python coding. This

enables the PM to work with team members to develop a project execution process and work on
developing the sections needed for coding. Tackling a large project in coding requires building in
stages. Because testing needs to be completed at each stage, the PM has been working to schedule
coding in stages which can be built off one another. For example, our team could have developed a
portfolio and stock selling procedure first. However, we found it easiest to start by building a
registration and login system. Next, a portfolio system will be developed in parallel with a league
system. These systems will later be integrated. Developing such a timeline and implementation
strategy is one of the responsibilities of the PM. The PM doesn’t do this alone, but has a large say in
this portion of project strategy.

6. Version Control – The PM works to ensure the version control systems are setup and initialized with

the needed code. This involved setting up the needed CVS (BitBucket [similar to GitHub]) was ready
for team members, and published the initial code to it. The code was setup for development, as well
as the database. This allowed team members to make a ‘pull’ from the repository, and begin coding
without wasting time developing a configuration. The PM is tasked with administrating the CVS as
needed.

These are not the only tasks of the PM. The PM has a variety of other functions within the group to facilitate
the project development process (PDP). However, these tasks are a bulk of the PM’s responsibility.

7.2.2 Project Progress

Our team has begun coding and is currently following the project timeline developed for Report #1. One of
the largest challenges so far has been learning Python and learning the Django framework (all of us are new
to Python and to Django). However, there is a tutorial every member of the team completed (the link to the
tutorial can be found in the references section for this report).

The greatest features of the Django framework for us have been the tools included in Django, and how data
has been abstracted. As opposed to using vanilla PHP or vanilla Python, Django abstracts data for the user
and handles all connections to and from the database. Similarly, Django formulates all SQL queries for the
user. For example, instead of saying ‘SELECT * from users’, you can say Users.objects.all(). This OOP
approach is much easier than handling raw data. Likewise, our group is using the sqlite database which
stores data in a local file. This enables us to quickly share the database structure with each other (as opposed
to using MySQL and sending SQL dumps to each other). Django also handles creating tables for data once
each object is defined as a ‘Model’. We’ve found this to limit SQL development time, and overall development
time.

So far our team has a template in Django, and a Registration and Login system built. We are currently
experimenting with development options for each of the subsystems we are planning on developing: the

54

leagues and portfolios. Our goal is to have a basic, simple stock market league application ready for Demo
#1. We plan on implementing our Proposed features with Demo #2. This is because most of our Proposed
features rely on the basic features of the project. Likewise, if we spent most of our time preparing for the
Demo #1 by developing proposed features it would be difficult to show any working project during the
Demo.

As with any progress, there are some drawbacks. So far we’ve also developed a simple stock quote class,
SecurityDataProvider. One of our major proposed features involved the ability to buy and sell stock options.
However, we found that finding retrievable information on stock options is not easy. Because options change
very frequently, the only way to access options data is to pay for it. Our team was considering footing the bill
(if it were maybe $5 for 10,000 API calls), but it’s over $200 a month for a contract to get basic options
values. We looked into alternative methods such as downloading the HTML of a page, and parsing it for data.
Yet, providers such as Yahoo Finance and Google Finance kept such data locked away from peering eyes.
Therefore, we have no option but to forgo the inclusion of options from our project. Depending on our
project timeline, we will either develop an alternative feature, or enhance the implemented features.

Great strides have been made with the UI development. Even though the project is meant to be functional
(functionality is more important than visuals), the visuals our team has developed are of professional quality.
The updates can be seen in the UI section of this report. However, here are some of the screenshots of pages
which have already been implemented:

Home Page

55

User Registration Page

As mentioned earlier, our team has also made strides in coding. Below is our SecurityDataProvider code. We
plan on expanding the code to provide full documented functionality as we continue development.

#!/usr/bin/python

Broker API

Written by Rylan Uherek

"""

NOTES:

API Makes calls to Yahoo Finance API for Stock Quotes

reference sheet: http://greenido.wordpress.com/2009/12/22/yahoo-finance-hidden-

api/

USAGE:

import broker

print broker.get_data('AAPL', 'p')

"""

import urllib

s_get_data(symbol, stat)

symbol -- ticker symbol (e.g. 'AAPL')

stat -- statistic on ticker (see the yahoo finance API)

RET: the data requested by the stat

56

def s_get_data(symbol, stat):

 # make a call to the yahoo finance api

 url = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (symbol, stat)

 return urllib.urlopen(url).read().strip().strip('"')

s_get_all_data(symbol)

symbol -- ticker symbol (e.g. 'AAPL')

RET: all relevant data requested by the stat in a dictionary

def s_get_all_data(symbol):

 # get all of the relevant data for the stock / etf

 stock_info = s_get_data(symbol, 'l1nghopxt8').split(',')

 data = {}

 data['price'] = stock_info[0]

 data['name'] = stock_info[1]

 data['low'] = stock_info[2]

 data['high'] = stock_info[3]

 data['open'] = stock_info[4]

 data['close'] = stock_info[5]

 data['exchange'] = stock_info[6]

 data['1y-target'] = stock_info[7]

 return data

dict = s_get_all_data('MSFT')

for entry in dict:

 print "%s %s" % (entry, dict[entry])

Some of our code used to generation the user registration page:

from django.template import Context, loader

from django.http import HttpResponse, HttpResponseRedirect

from django.shortcuts import render_to_response, get_object_or_404

from django.template import RequestContext

from django.contrib.auth.models import User

from django.contrib.auth import authenticate

from django.contrib.auth import logout as auth_logout

from django.contrib.auth import login as auth_login

from django import forms

from django.http import HttpResponseRedirect, HttpResponse

from django.core.urlresolvers import reverse

from registration import RegistrationForm

from datetime import datetime

from django.utils.timezone import utc

from calendar import monthrange

import calendar

def home(request):

 context = RequestContext(request)

 return render_to_response('home.html', context)

57

register view

def register(request):

 context = RequestContext(request)

 newForm = RegistrationForm()

 if request.POST:

 form = RegistrationForm(request.POST)

 if form.is_valid():

 new_user = form.create_user()

 return render_to_response('home.html', context)

 else:

 # return the old form and any errors

 newForm = form

 return render_to_response('register.html', {'form':newForm} , context)

Overall our team is working together well. We have implemented the basic features we’ve needed for our
site and are now working on implementing more complex features. We are very proud of the UI and the
features we have implemented so far.

7.3 Plan of Work

Below is our plan of work. It is a modification of the plan of work provided at the end of Report #1. Because
report #2 is now complete, the roadmap is primarily concerned with coding and development. Report #3 is
simply a collation and modification of Reports #1 & #2. It will be updated at the end of the development
phase (the end of April before the project is due). This will allow the last Report to have the most accurate
project documentation.

The Gantt chart has 4 Sections. The first section involves the completion of Report #2 (minimal). The second
section involves Round #1 of coding. This is our ‘base’. All proposed features will be implemented once this
base works correctly. The Round #2 of coding is the next section, and involves the implementation of
features we’ve proposed, such as a tutorial system, watch list, suggest-a-stock functionality, etc. Finally, the
last section spans about 1 week, which will give us the time needed to update Reports #1 and #2 to meet the
system we actually designed, and document it correctly.

Of course, this diagram is subject to change depending on how the project schedule plays out.

As much as possible, there are two major tasks being developed at each time. This allows our team of 6 to
divide into 2 sub-teams and code independently of each other. At milestones in the project (TBD), we plan on
meeting together, and merging our completed code as needed. This strategy is entirely different from the one
in our group proposal. However, by separating into two teams, and now having a much more refined view of
the work needed to complete this project, we see that having these split teams will benefit us in completing
the most amount of work in the shortest time possible.

7.3.1 Gantt Chart

7.3.2 Task List

This task list goes with the Gantt chart of 7.3.1.

60

7.4 Breakdown of Responsibilities

The following table illustrates the responsibilities of each group member. The contents of the table are
subject to change as coding continues. We have tried to provide as many links to the classes each section
envelops. The classes each team member will implement are to be determined at the start of the coding
section. Under the table are footnotes which denote the classes each Task requires for implementation.
These classes can be found in Section 2.2 of this report. At times, multiple tasks may need to interface with
the same classes. Some classes are extensions of Django classes.

7.4.1 Responsibility Table

Task Rylan Avi Aakash Mozam Mandeep Pintu

Project (March - May) X X X X X X

 Report #2 (Remaining as of 3/15) X X X X X X

 PM / Editing / References X X

 Report #2 Due X X X X X X

 Coding - Round #1 (Base) X X X X X X

 Begin Coding (Everyone Ready w/ Django,
Git, etc.)

X X X X X X

 Setup simple Django Site2 X X

 Templates3 X

 Registration System4 X X X

 Login System5 X X

 Security Model (Stock Price Fetch)6 X X

 Portfolio Model (Buying / Selling Stock,
Portfolio Views)7

X X X

 League Model (Creating Leagues, League
Administration, League Rules)8

 X X X

 Merge of League & Portfolio Modules X X X X X X

 Tweaking / Adjustments X X X X X X

 Demo #1 X X X X X X

 Coding - Round #2 (Beyond) X X X X X X

 Suggest Security / Quiz Functionality9 X X X

 Tutorial System (1-2 Simple Tutorials)10 X X X

 Security Watch List X X X

 Challenge Player X X X

2 WebPage, PageRenderer, AdministratorAccount
3 NewsFeeder
4 DataHandler, PlayerAccount, FundManager
5 Controller
6 Controller, SecurityQuery, ValidityQuery, SecurityDatabase, Ticket, OrderList, History
7 Shares, Portfolio, StopOrder, LimitOrder, MarketOrder
8 LeagueHandler, League
9 Fund
10 TutorialDatabase

61

Task Rylan Avi Aakash Mozam Mandeep Pintu

 Administrative & Advertiser Functionality11 X X X

 Mobile Application X X X

 Tweaking / Adjustments X X X X X X

 Demo #2 X X X X X X

 Report #3 X X X X X X

 Updating Documentation As Changed X X X X X X

Integration testing will be performed by the team as a whole. Each coder will be responsible for debugging
their own code. When the code comes together within their branch (e.g. the Portfolio sub-team), the sub-
team will designate one of their members to perform overall testing. Before the branch is merged into the
master branch, the team will meet together and work together for integration. Integration testing will be
performed by the PM under the supervision of the team.

Integration coordination will fall under the role of the PM. The PM has already developed a schedule for
when coding blocks are to be completed. When the blocks are complete, the PM will work with the sub-
teams to schedule integration before moving onto the next project phase.

11 AdvertiserAccount, AdvertisementManager

62

8.0 References

1. Marsic, Ivan. Software Engineering. Rutgers University, unpublished. 2012. Web

2. “UML Class Diagram Help”, Class Draw. Macrospark Solutions, n. d. Web. 03 Feb. 2013.

3. MarketWatch. MarketWatch, 18 Oct. 2011. Web. 29 Jan. 2013.

4. Group 6. Bears & Bulls. 03 May. 2012. PDF file

5. Group 2. Stockhop: The Stock Market fantasy League Game. n. d. PDF file

6. “Create Great Diagrams”, Gliffy. Gliffy. Web. 2012

7. Django Documentation, Django, Django Software Foundation, 24 Feb. 2013.

