
User & Design Specifications
for

“Capital Games”

Report 3: Part 1
Software Engineering

14:332:452

Team 2:
Jeff Adler
Eric Cuiffo

Nick Palumbo
Jeff Rabinowitz

Val Red
Dario Rethage

May 3, 2013
Version: 1

1

mailto:jultimate123@gmail.com
mailto:ecuiffo@gmail.com
mailto:nickpal@eden.rutgers.edu
mailto:rabinowitzjeffc@gmail.com
mailto:vred@scarletmail.rutgers.edu
mailto:dario@rethage.net


CONTENTS 2

Contents

Contents 2

1 Customer Statement of Requirements 4
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 System Requirements 8
2.1 User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Nonfunctional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 On-Screen Appearance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Functional Requirements Specification 13
3.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Actors and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 System Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 User Interface Specification 28
4.1 Preliminary Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 User Effort Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Effort Estimation 44
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Unadjusted Use Case Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Technical Complexity Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Environmental Complexity Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Domain Model 48
6.1 Concept Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Association Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Attribute Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 System Operation Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Economic and Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 System Interaction Diagrams 56
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



CONTENTS 3

7.2 Financial Data Retrieval Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Asynchronous Processing Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Class Diagrams and Interface Specifications 67
8.1 Financial Adaptor Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Financial Adaptor Data Types and Operation Signatures . . . . . . . . . . . . . . . 68
8.3 Financial Adaptor Traceability Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5 Asynchronous Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 System Architecture and System Design 76
9.1 Architectural Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.2 Identifying Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.3 Mapping To Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.4 Persistent Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.5 Network Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.6 Global Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.7 Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10 Data Structures 85
10.1 Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.2 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 User Interface Design and Implementation 86
11.1 Finilized Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

12 Design of Tests 94
12.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.2 Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.3 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
12.4 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

13 History of Work, Current Status, & Future Work 98
13.1 History of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
13.2 Current Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.3 Key Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.5 Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

References 102



1 Customer Statement of Requirements

1.1 Problem Statement

Perhaps nothing portrays capitalism better than the Stock Market. The ability for individuals and
collectives to gain equity in international corporations, trade that equity, and perhaps even gain
a profit, has piqued the imagination of a nation for well over a century. One could even say that
owning stock is part and parcel of The American Dream.

However, there is a barrier that separates this dream from reality for many would-be investors:
an understanding of the market. The stock market has myriad intricate ways of bundling and ex-
changing instruments, most of which will be beyond the ken of an economic novice. An economist
may be interested in the differences between Mutual Funds and Exchange-Traded Funds; a banker
may have the judgment to decide between a Stop Order and a Market Order. These financial tech-
niques offer greater flexibility and control over investments to experienced investors and scientists,
who are masters of the field. The beginner does not care to be bothered by these techniques, as
they can turn a straightforward process into an overwhelming headache.

With Capital Games we are interested in developing a learning platform for these students - a
stock market simulation program.

Capital Games is marketed at two primary classes of user; students and novice investors, each of
whom have different needs. Students require a social aspect to their experience - shared simulation
instances with global rules and social features. Novice investors require performance metrics and
research tools. Both require interactive tutorials, visualization tools, and email updates, in addition
to the core requirement of being able to execute various types of trades.

At its simplest, Capital Games is about exchanging stocks and managing investments. This is
done through the respective menus for each Research, Trading, and Managing Portfolios. Research
allows investors to analyze relevant financial metrics of publically traded corporations. Trading
allows investors to place market, stop, and limit orders for their various portfolios. Managing
Portfolios allows investors to view their investments and performance metrics for each of their
simulations. In all menus, data can be visualized and interactively examined, in addition to being
tabulated. This unprecedented level of accessibility will ease accessibility to market trend analysis.

Portfolios and trades only exist in the context of leagues, or market simulation instances.
Each league has with its own rules, administrators, and varying privacy levels. Investors can
participate in both public leagues, which anyone can join but offer less social interactivity, and
private leagues, which require private email or Facebook invitations but which have expanded
social features. Leagues are social because they include Trade Streams of executed trades from
league members, Investor Profiles containing trade history and portfolio performance of investors,
and a Comments Board. Additionally, each league will have a scoreboard for its members portfolio
performances. Top investors will have their names and net worth displayed prominently on league

4



CHAPTER 1. CUSTOMER STATEMENT OF REQUIREMENTS 5

pages.
As a site with social content, it is also important to have the ability to moderate and review

submissions by users. This is provided by having two classes of moderators, League Managers and
Site Administrators. League Managers are, by default, the users who create a given league, and
can ban, invite, and promote users within their leagues, as well as being able to delete comments
and create league-wide announcements. League Managers, by default, are also participating in a
given league. Site Administrators can delete leagues, ban users and delete comments, add front
page announcements, view reports about abusive users, and view other various statistics about
users, trades, and leagues. As mentioned previously, even tighter social network integration is a
long-term goal.

With the continuing influx of mobile browsing and computing devices to the personal computing
market, it is increasingly important to have a single unified interface for users. This is accomplished
through the use of Responsive Design, in which a single web page automatically and intelligently
reflows itself to accomodate devices of any screen size. This revolutionizes the trading experience
– users don’t want to use a dozen odd applications and browsers to access their favorite sites, they
want to just click-and-go. These changes are made possible by improvements in mobile browsers,
which now universally support Javascript. Therefore one site really will be enough for all users.

As alluded to previously, a strong emphasis of this platform is the use of interactive portfolio
graphs. Previous systems have failed to speak directly to users because they presented static images
that were impossible to manipulate or interact with. This is a core design feature of Capital Games.
We employ the newest, most state-of-the-art graphing tools to allow a user to see any and every
stock and portfolio over an indefinite time span with the finest degree of granularity.

Another way of enhancing user experience is by letting users opt to receive daily or weekly
email updates about their portfolio performance. This is a feature set that all financial investors
have access to and therefore is something that novice investors who use our platform should not
be denied. Previous learning platforms have failed to develop a respectable e-mail service – their
demos barely covered assets, and certainly didn’t mention trends. We will provide the first fully
functional e-mail system.

These features, together with other core capabilities such as email updates and interactive
tutorials, provide the most cutting-edge and modern platform for both individual and collaborative
efforts to conduct financial simulations.



CHAPTER 1. CUSTOMER STATEMENT OF REQUIREMENTS 6

1.2 Glossary of Terms

Margin – Borrowed capital used to execute trades, i.e. “buy on margin”. Although leveraging
margin is possible for normal buy and sell orders, they are critical to short orders, in which the
entire stock is sold without actually being owned. [1] Margin can refer to both the act of
purchasing a stock on credit, and to the percentage of a stock’s equity value required to be held
in capital against the risk of the stock decreasing in value. [2]
League – an instance of a market simulation with a predefined rule-set and containing many
investors. All leagues are created by a League Manager There are two types of leagues:

• Public – Any Investor can join this type of League

• Private – A private league can only be seen by its members and administrators. A User
does not join this league, rather they are placed into it by a League Manager.

Order – An investor must place an order for the purchase or sale of a stock.

• Stop Order – A type of order used to protect gains or limit losses. Stop loss orders are
activated if a stock drops below the stop price and buy stop orders are activated if a stock
rises above the stop price. [3] When activated, a Stop Order becomes a Market Order.

• Limit Order – A type of order used to prevent trades from occurring except at indicated
prices. Buy limit orders will only be executed at or below the indicated price, and sell limit
orders will be executed at or above the indicated price. Limit orders are not guaranteed to
ever be executed and expire after a specified duration. [4]

• Market Order – An order to be executed as soon as possible at current market prices.[5]

– Short Order – A type of transaction in which an Investor symbolically borrows a
certain number of stocks (using their existing Margin) and sells them at market price,
expecting the stock value to decrease and to make a profit when exiting the position.
Exiting is called a cover. [6]

– Cover Order – A type of transaction in which an Investor purchases stocks to cover
the symbolic loan of stocks created by a short order. [7]

Portfolio – A detailed account of the stocks associated with an investor in a given league.
Portfolios are unique.
Stock – A type of asset that represents equity in a company.

• Ask Price – The price at which a trader is willing to sell a stock.

• Bid Price – The price a trader is willing to pay for a stock.

• Bid-Ask Spread – The bid-ask spread describes the difference in price between the bid
and the ask. These two prices are marginally different, but always with the ask being the
more expensive of the two. It represents the friction inherent in trading a stock. [8]

• Ticker Symbol – an abbreviation used to uniquely identify publicly traded shares of a
particular stock on a particular stock market.

• Symbol List – a list of a market/several market’s ticker symbols.

User Roles – Each user with an account can have one or more of the following roles:



CHAPTER 1. CUSTOMER STATEMENT OF REQUIREMENTS 7

• Investor – A instance of the User, who commits capital expecting to see it grow in value.
Users Instances are referred to as investors.

• League Manager – A League Manager is an investor. A user does not necessarily have
this role for every league they are in. Only ones in which they created the League or were
given a League Manager role from another League Manager of that League. League
Managers control settings of leagues.

• Site Administrator – This is the most powerful role. A Site Administrator is a user with
elevated privileges, to ban users and delete offensive comments.

• Suspended – A user with this role is currently pending losing their Suspended Role, or
granted a Banned role. While suspended an Investor cannot do anything with their
Account other then login and view the duration of their suspension, The reasoning behind
their ban, and an appeal form if the situation permits.

• Banned – A banned user can never be unbanned, this occurs after a rejected suspension
appeal.



2 System Requirements

2.1 User Stories

Identifier User Story Weight

ST-1 As a user, I can register an account so that I may participate in Capital
Games.

10 pts

ST-2 As a user, I can join or create leagues so that I may compete with
others in a simulated stock market environment based on real-time
stock data.

10 pts

ST-3 As a user, I can search for companies both by company name and
stock symbol so I may scout companies I would like to invest in.

6 pts

ST-4 As a user, I can browse a companies profile and view the performance
data over a configurable span of time so that I may determine whether
or not I want to invest in them.

6 pts

ST-5 As a user, I can buy or sell stocks within a fantasy league I am a
member of so I may build my fantasy league portfolio.

10 pts

ST-6 As a user, I can manage my portfolio within a league to track my
investments.

8 pts

ST-7 As a user, I can visually track my finances via graphs and charts so I
may more easily manage my portfolio.

4 pts

ST-8 As a user new to the stock market, I will have access to tutorials that
teach about the stock market via a specially created novice fantasy
league.

6 pts

ST-9 As a user, I can see the performance of stocks I invested in via a stock-
ticker like marquee so I may have a quick overview of my day-to-day
performance.

3 pts

8



CHAPTER 2. SYSTEM REQUIREMENTS 9

ST-10 As a user, I can see an activity stream of recently executed trades by
other users in my leagues so I am always up to date.

5 pts

ST-11 As a user, I can see the performance of other users’ portfolios so I may
observe the investment habits of others.

2 pts

ST-12 As a user, I can view a list of all members in each of my leagues so I
know how many others I am competing with.

1 pt

ST-13 As a user, I can view a portfolio leaderboard so I may have a summary
of relative performance between users in my league.

1 pt

ST-14 As a user, I can submit abuse reports on users so I may continue having
a positive fantasy league experience. See section 6.5 for details.

5 pts

ST-15 As a user, I can message other users so I may interact with people I
am playing within and out of my league.

4 pts

ST-16 As a user, I can post, edit, or delete comments to league pages so I
may communicate with leagues en masse.

2 pts

ST-17 As a user, I can opt to receive periodic e-mail notifications of my
stock performance or trades so I may be kept up to date even when
not actively viewing the site.

3 pts

ST-18 As a user, I can additionally link my account with Facebook so I may
share my fantasy league experience with friends.

1 pt

ST-19 As a user, I can recover or change my password so I may always have
access to my own account.

5 pts

ST-20 As a user, I can access my profile and settings on a dashboard on the
top of every page within the site.

8 pts

ST-21 As a user, I may opt to create a league and become a league manager
so I may have my own personal league.

10 pts

ST-22 As a league manager, I can add league rules, a league name, and a
league logo to personalize my league.

8 pts

ST-23 As a league manager, I may manage players within the league so I may
invite players I want to join, ban players that are being abusive, and
assign other league managers.

8 pts



CHAPTER 2. SYSTEM REQUIREMENTS 10

ST-24 As a league manager, I can moderate and delete comments in the
league page.

5 pts

ST-25 As a league manager, I can create league announcements. 4 pts

ST-26 As a site administrator, I can view reports of and delete leagues that
are abusive in nature.

2 pts

ST-27 As a site administrator, I can delete abusive/offensive comments and
ban users or IP addresses so the website remains a clean, positive stock
market fantasy league experience.

6 pts

ST-28 As a site administrator, I may post front page news or announcements. 3 pts

ST-29 As a site administrator, I may have access to a user count, number
of active leagues, total leagues, quantity of daily transactions, the
most/least popular stocks, and newly created or banned users so I
may have reliable site statistics.

9 pts

Notes
For representations of use cases that relate to visual requirements, see: 4.
ST-18: ”Experience” refers to things such as stock purchases, current capital, position within the
league, etc.
For other details on the specifications of these user stories, refer to 3.3.

2.2 Nonfunctional Requirements

Functional

Additional features for security could be enabled through the use of various third-party plugins.
There exists several packages for the purpose of authentication and authorization of applications.
Key authentication features to are the the ability to encrypt and store passwords, provide recovery
options for users that have forgotten their password and store a cookie to validate the session.
Other plugins may provide authorization features. These will allow for a user to perform different
actions based on their position. For example, a user will be able to comment and delete their own
comment, but an admin will be able to comment and delete all comments on the league they are
an admin of.

Usability

A key point in the design of this application is ease of use and appeal to the users. Through the
use of CSS and Bootstrap, we will be able to make the theme of our application consistant and
pleasing. With CSS, we will create a universal header and navigation bar that each page will build
off of. Javascript will provide for responsiveness and it will be the key framework for which we
build our interactive tutorials upon. The interactive tutorials are meant for inexperienced users in



CHAPTER 2. SYSTEM REQUIREMENTS 11

the topic of stocks to learn the fundamentals of the game. Any user that finds themselves lost later
on can always view these tutorials again or browse through any specific topic.

Reliability

In order to ensure that there is no confusion to the user in the case of the internet or server failure,
all transactions end with a final confirmation, and no changes to the account are made until after
this confirmation. A user that leaves the application and returns later will still be logged in. Server
failures should be dealt with by the application’s host.

Performance

The performance of the site is mostly maintained by an appropriate technology stack consisting of
a web framework, database, web server, and assets server. Performance management tools are built
into the server for maintenance by application developers (not necessarily site administrators).

Supportability

Various measures and plugins exist for supportability. Between a combination of plugins enabling
test-driven and behavior-driven development, supporting and modifying should be relatively pain-
less. The project should be highly portable in the sense that a user will be able to access the
website on all major browsers and mobile devices, and have a specilized appearance for both. For
maintainability, there is the option of a user to be a site admin. These users can view details
about the entire site, such as activity and user feedback. There also exists an internationalization
framework for translating to provide multi-language support.

2.3 On-Screen Appearance Requirements

The on-screen appearance requirements fall into three general areas including utilizing responsive
design, conforming to most popular screen resolutions and refraining from the use of non-universally
supported client-side technologies. [9] As more and more devices are becoming capable of browsing
the web, one of the main on-screen requirements is to implement responsive client-side markup
that can intelligently adapt to the clients UI capabilities. As shown in Figure 2.1, a single page
intelligently redistributes its elements to provide a unified interface across devices (in this case, a
desktop browser and a smartphone). These capabilities include screen size, screen resolution and
input methods. With these points in mind, Capital Games will be built to be usable on traditional
desktop browser environments as well as mobile platforms. Javascript will be used to determine
the best presentation of a page depending on the users browser.

While a number of standards are emerging in the mobile market in regards to standard screen
resolutions, there is still great variability present in conventional monitor sizes and resolutions.
According to w3schools.com, as of February 2013, less than 10% of Internet users have a screen
resolution less than 1024x768. Therefore, an additional on-screen appearance requirement make
Capital Games usable with screen resolutions greater than or equal to 1024 x 768. Finally, client
side technologies must also be restricted to ones that are universally supported. Adobe Flash
technology will not be used, as it isnt universally supported. Flash can also become pretty sluggish
on the clients browser. This constraint will most likely lead to faster content loading and a more
fluid user experience. Instead, HTML5, CSS and Javascript will be used to facilitate interactivity
and determine the most suitable presentation of content.



CHAPTER 2. SYSTEM REQUIREMENTS 12

Figure 2.1: This mockup illustrates the concept of Responsive Design with our initial UI mockup.
The Responsive Design provides a single unified page which reflows content to match the size of
various user devices. Preliminary design elements include interactive graph, scrolling marquee, and
persistent navigation bar, corresponding with ST-4, ST-7, and ST-9.



3 Functional Requirements Specification

3.1 Stakeholders

As identified previously, the primary parties interested in this platform would be students and
novice investors. However, due to the popularity of related platforms, it is not unrealistic that
a future incarnation of this application could be marketed actively towards target groups. For
instance, students would be promoted to this service to host various competitions; introductory
texts on finance could also place references here. To that end, it behooves us to cater to those
primary demographics.

At the same time, gaining a sufficient user base would also open the possibility of discreetly
placed advertisements throughout the application. Therefore, we can consider marketing agents to
be stakeholders as well, with the caveat that the site will not initially be designed with commercial
product placement in mind. Our decision reflects a popular business model for firms today, in
which an easily monetizable application does not compromise its rollout with commercials which
can easily be implemented later. Yet another reason is the consideration of the various business
expenses associated with a commercial rollout – notably the licenses and fees associated with having
a commercial (as opposed to free) service.

3.2 Actors and Goals

User

A visitor who has registered and logged in to an account.

– Join/create leagues

– Take part in competitions

– Change personal settings

League Manager

A user who created or controls a league.

– Create a league competition

– Edit league settings

13



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 14

Site Administrator

A user who can control key aspects of the site

– Change global settings

– Create/edit global events

– View statistics of site

Database

The unit that holds all site-relevant data

– Push data back to views about users/events

– Store new data about about users/events

Browser

The middleman between user and system

– Present data to the user

– Retrieve data from the user

Yahoo! Finance

The unit that knows about current financial statistics

– Retrieve data about stocks

Queueing System

A subsystem for scheduling orders so as not to block user interactions.

– Place orders to be executed or canceled asynchronously

– Schedule events and mailings for system

3.3 Use Cases

Preface

From our user stories, we have derived seven use cases to be fully elaborated upon. These use cases
do not necessarily fully encompass all of the requirements for our application, but they touch upon
the most important functionalities while also covering a breadth of different aspects. Justification
for why each use case was included is written along with it. Another thing worth noting is that the
browser is an actor in each of the use cases as it is the medium through which the user interacts
with the system. As such, it will be included under the term ”System” for the fully-dressed use
cases to avoid redudancy and superfluous or wordy additions to the flow of each event.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 15

Figure 3.1: This graphic illustrates the relationships between the core actors of our platform.

Fully-Dressed Use Cases

Before a user can participate in most of the functionality of our site, the user must first join or
create a league. To the user, creating a league is very similar to joining a league, the notable
differences being that the user becomes League Manager of a league that they create and then
must also invite users to join said league. Therefore, we detail joining/creation as a single use case.
User invitation, as a responsibility of the League Manager, will be explored in a later use case.
One relevant aspect of the responsibily of a League Manager to the use case though, is whether a
league is made public or private; that is, whether it shows up in a public league listing page or can
only be joined by direct invitiation from the League Manager. Thus, our first use case involves a
business policy:

CG-BP01: So that a user may create a join leagues with only their friends, leagues marked
as private will not show up on the league listings unless a user is a current or pending member.

Thus, a user will only be able to browse listings of public leagues or private leagues to which
they have access.

Use Case UC-1 Join or Create League



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 16

Related Require-
ments:

ST-2, ST-21

Initiating Actor: User

Actor’s Goal: To join or create a fantasy finance league

Participating Ac-
tors:

Database, Other Users, League Managers

Preconditions: -If joining a league, either a public league exists and has open positions or
player has been invited to a private league

-User is logged in

Postconditions: -The Database is updated to reflect the creation of or addition to the league

Flow of Events for Main Success Scenario:

→ 1. User navigates to leagues listing page

← 2. System displays public and pending private leagues available for the
User, sorted by date created

→ 3. User selects join on a league in which they are interesting in joining and
to which they have access

← 4. System authorizes user and registers User into that league, notifying
Database to update to reflect this change

Flow of Events for Extensions (Alternate Scenarios):

3a. The user selects create league rather than join league

→ 1. User inputs desired league name and settings

← 2. System (a) creates the league and inputs it to the Database and (b)
registers the User into that league as League Manager

4a. The user attempts to join or create a league without permission

← 1. System rejects request and delivers reason for rejection

It is important here to note another business policy of our site relevant to the user’s experience:

CG-BP02: A user is able to join an unlimited number of leagues and become League Man-
ager for as many leagues as the user wishes to create.

Though the settings are selected when creating the league, any League Manager can change
certain settings of their league at any time. These settings are comprehensive, including such
items as name, privacy, number of spots, and duration. In addition, the League Manager can also
manage members from the settings. However, certain settings cannot be changed after the league
enters active competition, such as starting capital, commission rate, and margin, because changing
primary competition rules mid-game would be unfair.

Use Case UC-2 Change League Settings



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 17

Related Require-
ments:

ST-22, ST-23

Initiating Actor: League Manager

Actor’s Goal: To change the settings of a league and manage its members

Participating Ac-
tors:

Database, other Users

Preconditions: -User is the League Manager of the league

-User is logged in

Postconditions: -The league settings have been changed as desired and the Database reflects
the changes

Flow of Events for Main Success Scenario:

→ 1. League Manager selects the league settings option from the league page

← 2. System requests the current settings from the Database and presents
them to the League Manager along with options to change select settings

→ 3. League Manager updates the settings, such as privacy, league name,
number of spots, and managing users

← 4. System sends the updated settings to the Database

Flow of Events for Extensions (Alternate Scenarios):

1a. The User selecting league settings is not the League Manager

← 1. System requests the current settings from the Database and displays
them, but does not provide ways to change them

4a. The League Manager has altered the status of a league member

← 1. System will request the Database to update the User’s status in the
league, be it becoming league manager or removing that User’s instance
from this league (banned)

It is of some concern that League Managers may become abusive of their powers, and therefore
it is important to create on a policy to explicitly state how this power is treated. In modern fantasy
leagues (such as football, baseball, etc.), the League Manager does not typically have their power
moderated, and this has not caused any problems in the success of these fantasy websites. The
ability to leave a league and join another is left to the users if they feel that their league manager
has become abusive. Their joining of the league acts as an implicit contract to accept of the League
Manager’s settings. However, if this League Manager becomes a problem and users bring it to an
administrator’s attention, disciplinary action may be taken. Thus we generate the next site policy:

CG-BP03: A League Manager is able to change the status of users in their league without
moderation. However, if a League Manager is deemed abusive, a site administrator may take dis-
ciplinary action against them.

Core to our site is the ability of the user to have access to information about companies so
that the user may make informed decisions on how he would like to invest. As this is so crucial
to the functionality of this project, it is absolutely necessary to make information easily available



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 18

to the user and presented in a way that is clear and easy to understand. Therefore, the search of
companies as mentioned in ST-3 should be simple to use and intuitive and the display of company
profiles as mentioned in ST-4 should be such that a user can easily access any desired information
about the company’s financial performance.

Use Case UC-3 Browse Companies

Related Require-
ments:

ST-3, ST-4

Initiating Actor: User

Actor’s Goal: To bring up information on a desired company

Participating Ac-
tors:

Database, Yahoo! Finance

Preconditions: -Yahoo! Finance is accepting inquiries

-User is logged in

Postconditions: -None worth mentioning

Flow of Events for Main Success Scenario:

→ 1. User begins entering a search term

← 2. System makes suggestions for companies in real-time

→ 3. User enters search term or selects a suggestion

← 4. System (a) requests information from Yahoo! Finance and (b) displays
the information to the user in a clear and interactive manner

Flow of Events for Extensions (Alternate Scenarios):

1a. The User selects a direct link to a company rather than enter a search term

← 1. Same as step 4 above

3a. The search term is invalid, i.e. the company does not exist

← 1. System informs user company does not exist and offers similarly titled
companies as links

Note that the exact way in which the information requested from the Yahoo! Finance is dis-
played to the user is not specified in this use case. This will be described instead in later sections
about on-screen appearance requirements as to try to separate the functionality of the site and
design of the site as separate as possible.

The goal of browsing companies ultimately is for the user to gain the knowledge needed to place
market orders. Market orders are the atomic action of our site; i.e. the center point of every league
is the user’s ability to initiate transactions in an attempt to invest their money as best they can.

Use Case UC-4 Place Market Order

Related Require-
ments:

ST-5



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 19

Initiating Actor: User

Actor’s Goal: To place a market, stop, or limit order

Participating Ac-
tors:

Database, Yahoo! Finance

Preconditions: -Yahoo! Finance is accepting inquiries

-User is logged in

-User is a member of a league

Postconditions: -User’s portfolio is updated to reflect change in position

Flow of Events for Main Success Scenario:

→ 1. User selects the league in which they would like to place the order

← 2. System displays prompt for market order, including type, amount, and
company

→ 3. User fills out form and requests the order be placed

← 4. System (a) requests market price from Yahoo! Finance and (b) places
the order into the Database

← 5. The order either resolves or expires, and the System updates the User’s
position in the Database accordingly

Flow of Events for Extensions (Alternate Scenarios):

1a. The User chooses to place a market order from a company’s profile rather than from the
league page

→ 1. The User selects which league in which to place the order

← 2. The System takes the User to league marker order prompt as described
in Step 2 above, with the prompt for company already filled out

→ 3. Go to Step 3 above

4a. The User does not have enough money or margin to place the order

← 1. System informs the User that they do not have enough money or margin
to place the order and returns them to the market order prompt

The potential kinds of orders referenced in the above use case are defined in the glossary. The
details on the necessary computations to enact these orders will be defined in a section later on.

In order to keep track of their own finances and any of their fellow league member’s finances,
a user must be able to view member portfolios. This keeps with the competitive nature of our site
in addition to allowing the user to track their own progress.

Use Case UC-5 View Portfolio

Related Require-
ments:

ST-6, ST-7, ST-11

Initiating Actor: User

Actor’s Goal: To view one’s own finances or another’s finances



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 20

Participating Ac-
tors:

Database, other Users

Preconditions: -User is a member of a league

-User is logged in

-Database is tracking user’s position

Postconditions: -None worth mentioning

Flow of Events for Main Success Scenario:

→ 1. User selects a league member’s profile

← 2. System requests that member’s information from the Database and
displays it in an organized and graphical manner to the User

Flow of Events for Extensions (Alternate Scenarios):

2a. User is viewing their own portfolio

← 1. System gives the User options to place market orders related to their
existing positions

Once again, the exact display of information is not defined in the use case, but rather will be
explored further in the section about user interface specifications. Next to discuss is the tutorial as
referenced in ST-8. We consider this to be one of the main aspects that separates us from previous
iterations of fantasy stock leagues; our site will educate users new to finance and enable them to
learn all about the world of finance and how to invest, in addition to how to these subjects relate
to the use of our site.

Use Case UC-6 Access Tutorials

Related Require-
ments:

ST-8

Initiating Actor: User

Actor’s Goal: To become educated in finance

Participating Ac-
tors:

None

Preconditions: -User is logged in

Postconditions: -None worth mentioning

Flow of Events for Main Success Scenario:

→ 1. User selects the tutorial option from the site’s main page

← 2. System displays possible topics on which the User may be educated on

→ 3. User selects topic

← 4. System presents an interactive tutorial to the User, which will be further
elaborated upon in a later section

In order to maintain a clean fantasy finance experience for our regular users, site administra-
tors will reserve the ability to moderate other users–issuing warnings, suspensions, or even bans



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 21

for abusive activity. To put it explicitly:
CG-BP04: Site administrators will warn, suspend, or ban users for abusive activity–this in-
cludes aggressive behavior on league comments or user messages, spamming users, joining numer-
ous leagues without active participation, and anything else that is deemed to harm the experience
for other users.

Use Case UC-7 Take Disciplinary Action

Related Require-
ments:

ST-27

Initiating Actor: Site Administrator

Actor’s Goal: To take action against an abusive User

Participating Ac-
tors:

Database, Users

Preconditions: -Initiating actor is a Site Administrator

-There are outstanding abuse reports

Postconditions: -The Database is updated to reflect any actions taken against the User

The abuse report shows that it has been resolved on the administration page

Flow of Events for Main Success Scenario:

→ 1. Site Administrator selects the site administration page option from
the main screen (only viewable by Site Administrators)

← 2. System makes a request to the Database and displays all outstanding
abuse reports

→ 3. Site Administrator (a) selects an abuse report, (b) reviews the report,
and (c) selects what action is to be taken (if any)

← 4. System implements the action selected by the Site Administrator and
updates the Database accordingly

← 5. System notifies the offending User of any actions taken against them

3.4 System Sequence Diagrams

In the following sequence diagrams, we describe exactly the interactions between the key actors
our system. It is important to note that most of the interaction between the user (or league
manager or site administrator) and system is facilitated by the browser. The user, through filling
forms and button clicks, instructs the browser which requests to make to the system. In turn, the
system communicates with the database to request the desired data, takes any required actions,
and delivers the data to the browser for presentation to the user.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 22

Figure 3.2: See UC-1 on page 15. When the user navigates to the league listing page, they invoke
this use case. The user initiates a request to view all the public leagues and the system retrieves
them from the database. Then, they are presented to the user who is given the option to join any
valid league.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 23

Figure 3.3: See UC-2 on page 16. This is sequence of events that occur when a league manager
alters the league settings. The system fetches the current settings from the database and returns
them to the browser. It also ensures that the user attempting this change is a league manager.
Then, the user can initiate a request to change the settings which will be enacted out by the system.
If the league manager changes the status of a user within the league, the system notifies that user.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 24

Figure 3.4: See UC-3 on page 18. When the user desires to research companies, this is the sequence
that follows. The user is able to search and browse for companies. They can also get to a company’s
page through a direct link. Yahoo! Finance responds to requests and delivers data to our system
which is then transferred to the browser and fills out a company profile.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 25

Figure 3.5: See for UC-4 on page 18. This sequence encompasses the bread and butter of our
application–market orders. The user selects a league in which to place an order, fills out a prompt
in the browser which then submits the request to the system. The system inserts the order into the
database and enqueues it (the queuing system will be elaborated upon in a later section). Once
the order resolves or expires, the database notifies the system and the user’s portfolio is updated
accordingly.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 26

Figure 3.6: See UC-5 on page 19. This use case is relatively straightforward. The user browses to
a league member’s portfolio, and the browser submits a request to the database for that portfolio’s
inormation.

Figure 3.7: See UC-6 on page 20. Another simple use case. The user simply navigates to the
tutorial page, which is populated by the system.



CHAPTER 3. FUNCTIONAL REQUIREMENTS SPECIFICATION 27

Figure 3.8: See UC-7 on page 21. When a site administrator navigates to observe any outstanding
abuse reports, this flow of events is initiated. The database delivers all outstanding reports to the
system which then populates them in the browser. If the administrator decides to take an action,
the status change is reflected in the database, and the system notifies the user of whatever action
was taken against them.



4 User Interface Specification

4.1 Preliminary Design

The user interface of CapitalGames emphasizes easy to understand graphical representations of
financial metrics pertaining to various aspects of trading and the economy in general. In addition,
color harmony and adequate space distribution is a priority to provide a pleasant user experience.
A UI design built on top of the responsive Bootstrap UI framework was chosen due to its exten-
sive support for many UI components needed in the application. The center of the CapitalGames
experience is the dashboard where a user can quickly see an overview of his/her performance in all
leagues, join new leagues and learn more about finance. Each primary view is presented below with
particular attention having been put into a consistant and uniform user experience. Each view is
annotated with applicable use cases so that a sequence of views can be determined for each use case.

4.2 User Effort Estimation

Capital Games will utilize a streamlined user interface that has become rampant in modern web
design. Essentially, all user interaction regarding login/sign-up and even actual interactions with
their fantasy leagues and league portfolios can all be done within at most ten clicks and 50 keystrokes
for data entry, and most of these interactions are in the registration process.

1. Login/Registration: 2 mouse clicks and 50 keystrokes

a) Click Login/Register on the corner of the header.

b) Data entry (20 keystrokes for username and password). (In addition, for registration, 10
to confirm password, 15 for e-mail address, and 5 for CAPTCHA for spambot control
over the login/registration interfaces) In addition, all these keystrokes can be simplified

Figure 4.1: The header was designed to provide a persistant area for search and account manage-
ment. It also establishes the branding of our application which is important for future recognition.
It features the search field with auto-complete functionality.

28



CHAPTER 4. USER INTERFACE SPECIFICATION 29

Figure 4.2: The dashboard was designed to conveniently notify the user of his/her performance in
all leagues. This is done with the prominent graphic at the top of the content body as well as with
all the brief views of active portfolios.

in one click with Facebook integration, in which the site will pull their Facebook login
data and use it for Capital Games.

2. League Portfolio Interaction: Buy/Sell, 3 clicks and 10 keystrokes

a) Click Portfolio tab in navigation menu header.

b) Hover over any company listing on the page with your cursor and click Buy/Sell.

c) Input amount of shares you want to buy/sell.

d) Click to confirm.

3. Create Fantasy League: 10 clicks and 10 keystrokes

a) Click League tab in navigation menu header.

b) Click Create New League in submenu.



CHAPTER 4. USER INTERFACE SPECIFICATION 30

Figure 4.3: The leagues view was designed to cleanly display all leagues which a user might be
interested in. It is used both when browsing and when searchiing for a particular league.

c) Enter League Name and Click Checkboxes for desired rules.

d) Click to confirm.

4. Company: 3 clicks and 4 keystrokes

a) Press the Trade button

b) Select Buy/Sell

c) Type in number of stocks

d) Click to accept

5. League Users: One click

a) To view all members of the league, click See All Members

b) As an Administrator or League Manager, deleting comments is one click on the delete
button next to a comment



CHAPTER 4. USER INTERFACE SPECIFICATION 31

Figure 4.4: The administration area is a multi view component enabling administrators to manage
all aspects of the system from user management to viewing overall system statistics.

6. League Manager: Four clicks

a) Click League Settings

b) Click Users tab

c) Edit anything

d) Click Save Changes

7. Messages: 2 clicks plus message

a) Click friend from drop down list

b) Enter message

c) Click send



CHAPTER 4. USER INTERFACE SPECIFICATION 32

Figure 4.5: This portion of the administration area contains a top-down view of comments posted
by users in various locations, and the ability to ban them with a single click.



CHAPTER 4. USER INTERFACE SPECIFICATION 33

Figure 4.6: This portion of the administration area contains a top-down view of comments posted
by users in various locations, and the ability to delete them with a single click.



CHAPTER 4. USER INTERFACE SPECIFICATION 34

Figure 4.7: This section of the administration area contains statistics of interest.



CHAPTER 4. USER INTERFACE SPECIFICATION 35

Figure 4.8: From the Company page, you are able to view details statistics about certain companies
after being linked to it or searching for it. Major details, such as the quote, are up at the top while
further details are at the bottom. A user can comment on the company on the bottom right. If
you decide that you want to trade, you simply press the trade button and a box will pop-up, giving
you options for the trade.



CHAPTER 4. USER INTERFACE SPECIFICATION 36

Figure 4.9: From this page, you are able to view a certain league. Up at the top are the main facts
about the league as well as a button to join/quit the league and the icon for it. In the middle,
there is a ranking system to show the users in the highest standing. Down at the bottom, you can
see the activity and also comment on the league itself.



CHAPTER 4. USER INTERFACE SPECIFICATION 37

Figure 4.10: A league admin will see the join/quit button on a league as the settings page for
them. When they click on that, they are brought to a page that gives them many settings they
can change for the league, the most typical being the name, description and icon.



CHAPTER 4. USER INTERFACE SPECIFICATION 38

Figure 4.11: A league admin will see the join/quit button on a league as the settings page for
them. When they click on that, they are brought to a page that gives them many settings they
can change for the league, the most typical being the name, description and icon.



CHAPTER 4. USER INTERFACE SPECIFICATION 39

Figure 4.12: Users would be able to login simply by clicking a login button on the top-right hand
corner of the screen, which would take them to a prompt in which they can enter their username
and password. This would only require one click and about 20 keystrokes from any page of the
website. Users logged in to facebook may also take advantage of Facebook integration and instantly
log in with 1 click.



CHAPTER 4. USER INTERFACE SPECIFICATION 40

Figure 4.13: Users who are not logged in will also have the “Sign Up” button available to them in
the header that will enable them to register for Capital Games. This can be accomplished within
1 click and 50 keystrokes. A user logged in to facebook may also instantly register within 1 click.



CHAPTER 4. USER INTERFACE SPECIFICATION 41

Figure 4.14: Users may access their Portfolio by clicking a menu tab in the top header of the
website. This view enables them to conveniently see a summary of their return, active league,
portfolio value, stock, and other data pertaining to their stock. They would be able to edit it in
one click via the edit button.



CHAPTER 4. USER INTERFACE SPECIFICATION 42

Figure 4.15: Upon clicking the “Edit” button on their portfolio page, users will also be able to
manage profile items such as their display name, e-mail address, and other optional information
they may choose to disclose, such as their name.



CHAPTER 4. USER INTERFACE SPECIFICATION 43

Figure 4.16: Users may choose to view a summary report of a league portfolio, only requiring one
click from the portfolio page which would sum to two clicks.



5 Effort Estimation

The “Use Case Points” system of estimating the effort necessary to create the system will be
employed. This is motivated by a need to have a metric on the complexity of the design of the
system in order to properly motivate resource allocation, with the acceptance that any created
metric will be necessarily subjective and arbitrary.[10]

5.1 Background

The estimation of effort is a factor representing the product of sums of various weighting factors.
This can also be used to estimate the number of man-hours which will be devoted to completing
the project. The factor representing the total weighting factor is:

UCP = UUCP × TCF × ECF (5.1)

UUCP = UAW +UUCW represents the Unadjusted Use Case Weight as a sum of Unadjusted
Actor Weight, the weighted complexity of actor involvement, and Unadjusted Use Case Weight,
the weighted complexity of the various use cases of the system.

There are two complexity factors: technical, and environmental.

CF = C1 + C2

13∑
i=1

WiFi (5.2)

TCF , the Technical Complexity Factor, is a heuristic index representing the challenges posed
in implementing nonfunctional requirements of a system and is specified by interviews with expe-
rienced developers. C1 = .6, C2 = .01, Wi ∈ {.5, 1, 2}, and Fi ∈ [0, 5]. ECF , the Environmental
Complexity Factor, is another heuristic index representing miscellaneus factors including experience
and stafffing. C1 = 1.4, C2 = −0.03, Wi ∈ {−1, .5, 1, 1.5, 2}, and Fi ∈ [0, 5].

The UCP can be interpreted as weighted count of the various requirements and specifications
needed to implement a system. Therefore, the duration of a project can be estimated by multiplying
the UCP by a productivity factor PF representing the average development man-hour needed per
use case point.

5.2 Unadjusted Use Case Points

Actor Description Complexity Weight

44



CHAPTER 5. EFFORT ESTIMATION 45

Investor A normal user is interacting with the site through a graph-
ical user interface.

Complex 3 pts

League Man-
ager

League Manager requires a graphical user interface. Complex 3 pts

Site Adminis-
trator

Admin requires private GUI as well. Complex 3 pts

Database System interacts with database layer through a predefined
framework.

Average 2 pts

Web Browser Browser interfaces with application through RESTful API
over HTTP to navigate and submit forms.

Simple 1 pt

Finance Adap-
tor

System interacts with Yahoo! Finance through its web API. Simple 1 pt

Queueing Sys-
tem

System invokes queueing system to schedule events through
a predefined API.

Average 2 pts

Use Case Description Complexity Weight

Join (UC-1) Simple user interface, 4 steps for main success scenario. 2
participating actors (Database, Manager).

Average 10 pts

Change (UC-2) Average user interface, 4 steps for main success scnario.
One participating actor (Database).

Average 10 pts

Browse (UC-3) Simple user interface, 4 steps for main success scenario, one
participating actor (database).

Average 10 pts

Order (UC-4) Advanced user interface, 5 main steps for main success sce-
nario. Three participating actors (Database, Finance Adap-
tor, Queueing System).

Complex 15 pts

View (UC-5) Simple user interface, 3 steps for main success scenario, but
complicated display logic involved. One participating actor
(Database)

Complex 15 pts

Tutorial (UC-
6)

Simple user interface, 4 steps for main success scenario. No
participating actors.

Simple 5 pts



CHAPTER 5. EFFORT ESTIMATION 46

Report (UC-7) Advanced user interface, 5 main steps for success scenario.
Up to three participating actors (Database, User, Manager).

Complex 15 pts

5.3 Technical Complexity Factors

Technical Factor Description Weight Perceived
Complex-
ity

Distributed Sys-
tem

System is distributed between end users having access
through web and main server(s)

2 3

System Perfor-
mance

Users expect good performance but nothing excep-
tional

1 3

User Efficiency End users expect efficiency but there are no exceptional
demands

1 3

Complex Internal
Processing

System needs to track performance of various user in-
stances both day-to-day and over extended intervals

1 4

Reusability No requirements for system to be reusable 1 0

Ease of Installa-
tion

Ease of installation is low because only one host ma-
chine is used in implementation

.5 2

Ease of Use Ease of use for users is imperative .5 5

Portability Portability is only high enough to allow for ease of de-
velopment on various platforms

2 2

Ease of Change System will only change marginally, so ease of change
is low priority

1 1

Concurrent Use Concurrence is an issue because users have access to
chat, activity, and history feeds, and system needs to
poll finance data in approximately real-time

1 4

Security Security of users is important but Herculean measures
are not necessary

1 3

Third Party Ac-
cess

Because of RESTful interface, limited third party sup-
port is possible but not currently supported

1 2



CHAPTER 5. EFFORT ESTIMATION 47

Training Require-
ments

System is relatively easy to use, but basic tutorials are
offered to users

1 1

5.4 Environmental Complexity Factors

Environmental
Factor

Description Weight Perceived
Impact

Development Ex-
perience

Beginners with UML-based development and the Con-
struction process

1.5 1.5

Application Expe-
rience

Complete novices to the field of finance .5 0

Paradigm Experi-
ence

Beginners to the use of databases and web frameworks 1 1.5

Lead Capabilities Leads have no prior leadership experience .5 0

Motivation Motivation is high but fluctuates over semester 1 3

Stable Require-
ments

Requirements are well-known but only approximate 2 3

Part Time All developers are working with very few hours a week -1 5

Language Developers are using a modern but unfamiliar language -1 2

5.5 Calculations

UUCP = 3× 3 + 2× 2 + 1× 2 + 10× 3 + 15× 3 + 5 = 95

TCF = .6 + .01× (34.5) = .945

ECF = 1.4− 0.03× (5.75) = 1.23

UCP = 95× .945× 1.23 = 110.4

Duration = UCP × PF = 110.4× 28 = 3091



6 Domain Model

At its highest level, Capital Games consists of a few subsystems working together and coordinated
by an internal controller. The end user interacts with the application through either a web browser
or by directly submitting HTTP requests to the server. These actions are equivalent because
user actions are translated into RESTful actions and interpreted equivalently by an appropriate
RESTful controller. [11] Once a controller is invoked, it consults the internal subsystems before
responding to the request. Each of the subsystems can be identified by the purpose they serve in
relation to the application.

6.1 Concept Definitions

Database

By its nature as a data-driven site, data persistence is core to Capital Games. Therefore, a database
subsystem is necessary. A challenge often encountered when using databases in an application is
the translation of database-native datatypes to the more varied datatypes employed by dynamic
applications. [12] To simplify this, Capital Games uses the ActiveRecord object-relational mapper
to abstract the logic between the database and the system as a whole. Only privileged portions of
the system have access to the database. This maintains the safety of the data while also allowing it
to be manipulated more precisely. Per the convention of MVC-style application style architecture
(upon which we base our application, described in more detail later), these are known as the Models.
The database is explored in more detail in the Data Structures section.

Finance API Adaptor

The data for the application comes from a third party source, Yahoo! Inc. Yahoo! provides both
nearly-real-time and historical data on most U.S.-traded stocks. Yahoo! exposes this data through
a web API service in which a party can make up to several thousand requests against Yahoo!’s
databases daily. The party simply enters arguments into an HTTP request which is interpreted by
Yahoo! as a database search, runs the query, and returns the results in CSV format. [13]

In order to interact with the web service, we employ an adaptor plugin which translates between
the various syntaxes used by Yahoo! and our own system. Any and all parts of the application
which require access to a live data-stream invoke the Finance Adaptor subsystem, which in turn
queries Yahoo!. This modularity enables multiple subsystems of the application to have access to
live data when necessary.

48



CHAPTER 6. DOMAIN MODEL 49

Queueing (Asynchronous Task) System

Fundamentally, Capital Games is about placing trading orders for various stocks. Though the
simplest type, market orders, are executed almost immediately after being placed, stop and limit
orders may not be executed for quite some time. [5] [3] [4] This begs the question of how to perform
a trade at some undetermined time after the order is placed. Upon further inspection, a few other
functions of the site depend on a similar capability. In order to update the user portfolio database
regularly or send out newsletters, the system must be able to asynchronously execute certain tasks.
Enter a Queueing System.

Whenever a task needs to be performed asynchronously, the task is entered into a designated
portion of a Redis database, configured as a queue. Background ”workers” (processes) perform
tasks as they arrive. Tasks can also be scheduled to occur at specific times or intervals. In this
way, everything from polling the datastream for stock updates to performing scheduled updates
and e-mails can be coordinated by a single system.

Views Generator

Finally, when all data have been collected and a response needs to be rendered, those data are
delivered to a subsystem which dynamically generates the content which are served up to the
end-user. The Views Generator contains various modules which simplify translating the data to
web-standard HTML and Javascript.

Mailer System

Capital Games is designed to periodically alert users as to their portfolio performance. This is
performed by the Queueing System in conjunction with the Mailer system. The framework we
employ natively contains a robust mailing system called Action Mailer, which generates content
dynamically at runtime. [14] This allows us to perform calculations on leagues and then include
that into emails, in addition to raw data.

6.2 Association Definitions

As indicated in Figure 6.2, there are 6 components which are core to our system: Controller, Views,
Models, Finance Adaptor, Queueing System, and Mailer.

The Controller acts as the single point-of-entry for all user interactions. It interpretes requests
and accordingly accesses the Models, the Finance Adaptor, and the Queueing System, before
delivering the necessary data to the Views Generator. By definition, the Controller is the most
prviliged system component.

The Queueing System is possibly more privileged than the Controller. It has a great deal of
autonomy, functioning without the Controller and being able to invoke other systems on its own.
Compare this to the Controller, which is only invoked upon requests from a user. The Queueing
System communicates with Models, the Finance Adaptor, and the Mailer as necessary to perform
its tasks.

Conversely, the Views Generator is the least privileged subsystem. It cannot externally com-
municate and only responds to to the actor which called it.

The Finance Adaptor, Mailer, and Models are each afforded limited privileges, in that the
Models and Mailer need to communicate with the database and Views, respectively, while the



CHAPTER 6. DOMAIN MODEL 50

Ticker Name Date Time

Change % Previous Close Open Volume

Day High Day Low Day Range Ticker Trend

Bid Ask Average Daily Volume Price-to-Earnings Ratio

Table 6.1: These are some of the data that Yahoo! Finance provides upon request, and which the
adaptor we employ can convert.

Finance Adaptor needs to communicate with external data sources through the Internet. They
each respond directly to requests from the componenets which invoke them.

6.3 Attribute Definitions

Though the application is a whole is not entirely object-oriented, and thus not all parts (ie the
Controller) have true attributes, the Models, Queueing System, and Financial Adaptor all do.

Models possess basic attributes for the data they contain, such as user names, email addresses,
stocks possessed, etc. These are contained in Figure ??. Similarly, Orders to be performed in the
Queue have similar identifiers, as shown in Figure 6.3.

Validation on the data saved by the Models layer is performed automatically by the object-
relational mapper, which can enforce data typing rules built into the database. This happens
automatically.

Orders data is proxied through the database, and so its data is also validated before being
entered. Though a remote edge case is the possibility of an order being valid while placed but
being invalidated (for example by a stock no longer being on the market) while in the queue, we
do not consider it at this time.

The Queueing System utilizes entities called “background workers”. As the name implies, these
are persistent entities which wait for work in the form of queued tasks to hit the Redis database.
When this happens, the first available worker pulls the task from the queue.

The Financial Adaptor possesses a set of financial metrics, a brief list of which is tabulated
in Table 6.3. When data is retrieved by the adaptor, it is tabulated with some of the parameters
shown in the table.



CHAPTER 6. DOMAIN MODEL 51

End User

Browser

Controller

Views

Models

Queue

Finance Adaptor

Yahoo! 
Finance

Mailer

E-mail

Figure 6.1: This high-level overview of the domain model of our application shows the separation
between the external actors User, Browser, and Yahoo! Finance, as well as how the internal
component subsystems relate to each other.



CHAPTER 6. DOMAIN MODEL 52

Resque Background Processing Library

Worker 1 (Process) Worker 2 (Process)

Redis -
Backed 
Order 
Queue

Redis-
Backed 
Email 
Queue

Order Handling Process, 
5 minute intervals

Email Sending Process, 
Daily Interval

Orders Package Mailer Package

Order

OrderID
LeagueID
….

+perform()

OrderHandler

+placeOrder(OrderID)
+getOrder(OrderID)
+deleteOrder(OrderID)
+updateOrder(OrderID)

ActionMailer

-view:String
+headers()
+attachments()
+mail()

NewsletterController

-processAllUsers()
+perform()

Resque Background Process Structural Model

Figure 6.2: The structural model of the Resque Queueing System. Market Orders to be placed are
bundled as Orders and served to the queue to be processed every few minutes. Newsletters are
performed daily and bundled and served every night. Background workers wait for updates to the
Redis database and upon seeing a valid task, pull it and begin processing.



CHAPTER 6. DOMAIN MODEL 53

6.4 System Operation Contracts

UC-1 Join or Create League

• Preconditions

– (join) There are open spots available in the league to be joined

– (join) The league to be joined is public

– (create) The desired league settings are valid

• Postconditions

– League creation and/or user membership are reflected in database

UC-2 Change League Settings

• Preconditions

– User is league manager for the league to be changed

– The desired league settings are valid

– If any users are banned, there is justification

• Postconditions

– League setting changes are reflected in database

– User status changes are reflected in database

– League members are notified of all changes made

UC-3 Browse Companies

• Preconditions

– Financial API is currently accepting requests

• Postconditions

– None

UC-4 Place Market Order

• Preconditions

– Financial API is currently accepting requests

– User is a member of the league in which they are placing order

– User currently has enough funds or margin to place order

• Postconditions

– User’s portfolio reflects changes made to funds, margin, and position

– Database has been updated with these changes

UC-5 View Portfolio



CHAPTER 6. DOMAIN MODEL 54

• Preconditions

– User is member of the league in which the portfolio to be viewed is

• Postconditions

– None

UC-6 Access Tutorials

• Preconditions

– None

• Postconditions

– None

UC-7 Take Disciplinary Action

• Preconditions

– Initiating actor is a site administrator

– There are outstanding abuse reports

– Any actions taken against users are justified

• Postconditions

– User’s status is updated in the database

– User is notified of action taken against them

6.5 Economic and Mathematical Models

Perfect Competition

One important concept of the stock market is the idea of perfect competition. Perfect competition
is a theory in economics that states that it is not possible for any one participant to have enough
resources to control the entire market. In terms of our project, that boils down to the following:

1. One single person cannot control the stock market.[15]

2. Anyone should be able to enter or exit the market with ease.

3. Buyers know the full details of any stock they are to trade.

4. There is no difference in the buying and selling price.[16]

The problem with this model is that it is not entirely perfect or plausible. In reality, exception-
ally wealthy individuals can dominate entire sectors of the market; entering or exiting markets is
hindered by commission charged by brokers; certain traders may know more about certain stocks
than other traders (also known as insider trading); and buying and selling prices differ, according
to the bid-ask-spread. Nevertheless, our platform makes simplifying assumptions about the market
to avoid most of these issues, and when unavoidable, compromises with the economic reality.



CHAPTER 6. DOMAIN MODEL 55

The economic assumption of perfect competition states that one person cannot control an entire
market. This assumption is reasonable for normal investors with significantly less capital than the
market capitalization of companies or markets, and therefore it is reasonable to assume that in our
platform, individuals cannot shift the market price of stocks by their participation. However, in
reality, exceptionally wealthy individuals may have more assets than the market capitalization of
certain small and even medium size corporations. If such an individual were to attempt to enter
or leave a market suddenly, the entire market would experience a shift. To avoid the complication
of having to model the effect of such actions by such parties (which is exceptionally unusual and
not the intended purpose of this simulation platform), we constrain users’ initial seed capital to be
below a certain level to prevent them from achieving this level of market domination.

The assumption of being able to freely enter or exit a market is somewhat unrealistic when it
comes to the stock market. In general, brokers charge commission to execute any trade on behalf
of an investor, which contradicts the stipulation of freedom to enter or exit. Nevertheless, we
constrain users’ seed capital to be above a certain level, to the point where commission should be
nearly negligible.

Though it is impossible to resolve an issue of information disparity (the very nature of which
stems from third party sources), we make the assumption it is a non-issue. We assume that all
users gain all their information exclusively from the information exposed by our Research tools.

Bid-Ask Spread

Similarly, it is difficult to challenge the bid-ask spread, the difference between the sale and purchase
price listed for a stock because the many underlying factors. [17] In certain circumstances, a fairly
large bid-ask spread can occur. Although this happens naturally in the stock market, we do not
factor it in. We make the simplifying assumption that the bid-ask spread is zero dollars, that being
that the bid and the ask are of equal amount, with the ability to program that functionality into
future versions of the platform.

Reporting Abuse

There are many algorithmic approaches to the functionality of reporting abuse. We decided to
make reporting in a very simple manner, for the sake of keeping this part of the project more
lightweight. When someone is reported by a user, it is put on a notification list of the admins.
These notifications are listed in a database, listing the users along with the reason for the report.
If enough notifications are given, the status of the user’s account is at the descretion of the admin.
Some possible tracks an admin can take when they run into this problem would be to message the
user in order to try to come to an agreement, ban the user forever or take a deduction from the
account as a warning to show that they have done wrong. Our reason for this model is that rather
than relying on an algorithm is that it will take the pain off of us, the programmers. There are
many factors in the process of creating an algorithm to deal with reported users, and leaving it up
to an admin to personally solve the problem is a much simpler solution that having to deal with
all the different factors that could be taking part in the process. This solution won’t always solve
the problem. For example, if the site becomes a large success, there will either have to be many
admins working on the site or the algorithmic approach will have to be implemented, but it will
do for our purposes to keep it simple.



7 System Interaction Diagrams

7.1 Introduction

Following is an analysis of the interactions of the two most important internal subsystems in our sys-
tem as identified in our domain model, the financial data retrieval subsystem and the asynchronous
processing subsystem. The interaction diagrams included clearly describe the interactions that
occur within each of these subsystems. They elaborate upon the mechanics behind our use cases,
but do not necessarily correspond to them one-to-one. This is because several of our use cases are
completely facilitated through the browser and controller to generate views for the users, and as
such it would not be interesting or worthwhile to explore the internal interactions. The following
analysis clearly describes how market orders are placed and processes, how information is retrieved
from Yahoo! Finance, and how we manage asynchronous processes (i.e. a queue) in order to process
market orders and enact our mailer system.

7.2 Financial Data Retrieval Subsystem

Enter the Capital Games Financial Adaptor

For the querying and retrieval of real time and historical financial data and stock quotes in a form
that is both familiar and friendly to players of Capital Games, we will utilize the Yahoo! Finance
Application Programming Interface (API), which allows for easy access of Yahoo! Finance stock
data via data served via URLs that our system can retrieve, parse, and then translate for the use
of Capital Games fantasy leagues platform. Since we will be drawing data from Yahoo! Finance ,
it will be represented as external to the system of Capital Games. Internal to our system, however,
will be the financial adaptor module that will automatically handle data retrieval from Yahoo!
Finance based on user queries.

We chose this route over either option of having financial data querying and retrieval built-in
to our system or taken from any other API because attempting to construct a built-in, live stock-
querying system within Capital Games itself would have been both expensive and impractical —
much akin to reinventing the wheel — and because Yahoo! Finance has proven itself as stable
and reliable versus other available APIs. Thus, this section will explain our intended financial
adaptor module for seamlessly delivering Yahoo! Finance data for use within Capital Games.

Essentially, by us deploying the a financial adaptor module into Capital Games, users will be
able to easily search for stock data within our website and have it near-instantly displayed on the
web page they are viewing without the user even being cognizant of all the work being done in the
background via our financial adaptor module existing in our server. The financial adaptor module
will have all the functionality for making requests for data from Yahoo! Finance based on user

56



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 57

input and will actively draw and translate the raw data from Yahoo! Finance into a form that
can be delivered within our own views ergo the data will be displayed on our web pages.

One consideration we need to take from our end for the building of our financial data is validating
user queries for stock symbols. In other words, what would happen in the case that a user attempts
to query a stock symbol, company name, industry, or sector that does not exist? To resolve such
issues, our adaptor will also draw from our own database built into the website that keeps an
updated list of valid stock symbols and names that is drawn from a source similar to Yahoo!
Finance , EODData. We are using EODData to supplement our use of the Yahoo! Finance
API as EODData offers easy retrieval of all stock symbols and names in a method that is similar
to Yahoo! Finance . Yahoo! Finance unfortunately does not offer that particular feature, so
we will be using EODData as a supplement to that, in that respect. We will essentially update
our database via EODData and our financial adaptor module at each market opening and closure
to account for any mergers, acquisitions, or any other major changes involving companies in the
stock market.

Once user queries are validated by our financial adaptor module, our financial adaptor module
will then parse the user query into a URL format that will allow for the retrieval of data via Yahoo!
Finance . Upon completing this, the URL will then be passed through our financial adaptor to
Yahoo! Finance , from which data will be returned to our financial adaptor module via a comma-
separated values format (.csv, a container for easily passing volumes of data), which our financial
adaptor will then translate into an arrangement that our views can utilize to deliver to the content
to the webpage the user made the query from. From there, the user can then view the data and
choose whether they would like to interact with the queried stock within Capital Games.

To elaborate on the technical specifications of our financial adaptor, the rest of this section will
incorporate and explain interaction diagrams of methods used by our financial adaptor, illustrating
the process I summarized regarding how our financial adaptor will go through interacting with
Yahoo! Finance , EODData, and the Capital Games platform.

All interaction diagrams will begin in the following page.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 58

Financial Adaptor Interaction Diagrams

Figure 7.1: When a user buys a stock, the browser will inform the system of the transaction so
that it can be approved. The system passes over the process to the finance adaptor who will check
if the company is accepting trades, the current price from Yahoo! Finance, and if the user is able
to afford the purchase from the database. If all goes well, the transaction will be recorded in the
database and the balance will be changed. After all that is complete, the transaction will marked
as a success and the system will be notified. (Related use case: UC-4)



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 59

Figure 7.2: When a user wants to view a company page, the company data must be loaded from our
finance API. Once the process is passed to the finance adaptor, the quotes and the historical quotes
will be pulled from Yahoo! Finance and brought back to the system, who will prepare the page for
the user. This is also the process by which user portfolios will be generated, via aggregating the
value of all their stocks. (Related use cases: UC-3, UC-5



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 60

Figure 7.3: We need to keep a local copy of the current companies in our database so we can do
rapid processes sing of all of the companies. In order to do this, there will be a timer that is set
to update the database every once in a while. When the timer goes off, the system will pass the
process onto the finance adaptor. The finance adaptor will then call data from EODData, who
knows all of the current companies in the stock market. The finance adaptor will then scan the
data for any new/deleted companies and change the database accordingly. After this is complete,
the timer will start again so this process can loop.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 61

7.3 Asynchronous Processing Subsystem

Introduction

One of Capital Games’ primary requirements is to have an asynchronous processing subsystem.
This requirement exists both due to the nature of our system, which involves events conditionally
occurring at certain time intervals, and the pursuit to build a scalable product. In an attempt to
build a system that most closely represents the real stock market, the decision was made to have a
pending order queuing system which processes orders at 5 minute intervals. Many orders are pro-
cessed directly, however some such as short sales and limit orders have conditions associated with
them which determine when exactly they are processed. In addition, as the system involves send-
ing summarized reports of player performance metrics at certain time intervals an asynchronous,
non-event driven subsystem is highly necessary.

Nature of the Subsystem

The asynchronous processing subsystem features three primary components. First, the ability to
spawn multiple, independent processes to handle the different kinds of asynchronous tasks. Second,
the ability to handle arbitrary object types. And finally, the ability to queue tasks that are waiting
to be processed. This is why the Resque Background Process Library built in Ruby was an ideal
pick. It allows for the creation of customizable background processes known as ”workers”. Each
worker processes a unique queue. Moreover, each queue can have objects of vastly different types,
as long as they implement the function ”perform”. This is very intuitive as it allows each object
to posses the code which acts on it. Lastly, it implements a very smart technique of only storing
references to objects in the queue as opposed to the objects themselves so that outdated objects
are never processed. This forces the worker to request the most recent version of the object from
the DB when it starts being processed. Of course this comes at the slight expense of higher load
on the DB when a worker is not sleeping. It is possible that this subsystem will be expanded
to incorporate caching techniques. However, they are currently not a requirement. Finally, the
queues are stored in RAM for the fastest possible performance. Nevertheless, queues are persisted
in JSON encoded flat files to ensure redundancy.

Structural Model

The structural model below depicts the overall structure of this subsystem. Namely, the Resque
Library and two packages or modules which each are responsible for one kind of task. On the left, the
orders package displays a relevant subset of all classes that pertain to placing and processing orders.
As previously mentioned, the Order object itself implements the perform method. Therefore, it
knows how to process its data when it get gets placed in worker 1’s queue. While the OrderHandler
class isn’t directly involved in the asynchronous processing of orders, it is still relevant in this scope
and therefore included in the diagram. It is ultimately the class responsible for placing the order
object on the queue when an order is placed. Similarly, the mailer package is depicted with a subset
of classes which aggregate data about user performance and send out periodic summarizations of
performance metrics to all users on the site. Worker 2 is dedicated to processing email related tasks
daily. In this case, the architecture is slightly different as the worker doesn’t directly call perform
on each ActionMailer object, but instead on a NewsletterController which populates the worker’s
queue with customized ActionMailer Objects.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 62

Interaction Diagrams

There are two interaction diagrams displayed below, each associated with one worker. Due to
the inherent background nature of this subsystem, there are relatively few actors involved in this
subsystem.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 63

Figure 7.4: The interaction diagram above is roughly divided into two areas, when the process is
working and when it is sleeping. This portrays the typical polling behavior of such a background
running process. After initialization, when the worker wakes up it attempts to dequeue all objects
and call the ”perform” method on the object. Since the actual nature of the ”perform” method
is unique to every object, it is not depicted in this diagram. It is relevant to mention that this
individualized execution design allows conditional orders to be processed very easily since the object
has all the information needed to make the decision of whether to process at its disposal. Once
the queue becomes empty again, the process goes back to sleep. This occurs continually after the
spawning of the process.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 64

Figure 7.5: Worker 2 behaves a bit differently than worker 1 which results in having an additional
state. This ”prepare” state is when all the customizing of user-specific emails is done. Afterwards,
the process enters the working state where it attempts to fire off all customized emails which
were placed onto the queue during the ”prepare” state. As in the previous diagram, the diagram
incorporates the base case when the worker’s queue has been emptied and when the process is
sleeping.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 65

7.4 Design Patterns

Various standard design patterns were utilized to provide functionality for things such as authen-
tication, efficient page rendering and object modeling.

Model-View-Controller

The Model-View-Controller (MVC) pattern was heavily used throughout the CapitalGames system
to properly organize model logic, business logic and presentation logic. This very intuitive pattern
allowed the team to easily delegate work on different levels of the system. Frequently, a selection of
team members would develop front-end functionality which required only the views to be altered,
while other members implemented backend functionality which was done either in controllers or
models. This pattern resulted in a more efficient development lifecycle overall, while also providing
some performance gains. Namely, the MVC pattern calls on resources only when they are actually
needed which prevents unnecessary overhead. For example, methods developed to be called only
programmatically don’t attempt to display a view which results in faster responses.

Security Proxy

The security proxy pattern was the core of our secure authentication system. This proxy pattern
allowed us to easily protect content based on user role or other variables. The security proxy
was implemented very similarly to that described in the textbook. Particularly, it behaved as a
transparent filter between an HTTP request and a controllers method. Authentication requirements
could easily be chained onto each other making it possible to create custom controller prerequisites.
Finally, because the security proxy filtered every request made on a controller instead of just
requests made upon login, all sensitive features of the site had a very robust shell which no user
could easily bypass. This improved our design by providing solid, system-wide security.

ActiveRecord Pattern

The ActiveRecord pattern, an intelligent implementation of a database access design pattern,
was used exclusively to interact with persistant storage technologies used in the CapitalGames
system. This pattern offered the major advantage of not needing to hard code any database-specific
queries. All requests made to the ActiveRecord Pattern are translated to the currently used DB
system’s language and data is returned in directly its object form. The lack of need to write direct
queries also lead to a great side effect, namely database agnosticism which allowed various database
implementations to be used during different stages of development. During developmnt SQLite was
used for its lightweight footprint on the developers machine, then for production MySQL was used
as it is considerably more efficient when dealing with larger amounts of data. This design certainly
improved our development by saving countless hours of development time.

RESTful Design

The RESTful design pattern being used more and more now on the web allowed us to implement our
asynchronous order processing system. The RESTful design of some internal functionality allowed
it to be accessed programmatically and securily through a simple API. As RESTful services are at
the heart of Ruby on Rails, it did not require a lot of effort to expose some internal functionality
without creating major security holes. Future iterations of CapitalGames will continue to rely on
the stateful communication that our RESTful API offers.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 66

Responsive UI Pattern

The Bootstrap UI framework implemented a design pattern completely segregating visual pres-
ntation from content and user experience. This provided in a beautiful responsive design which
adapted to different client devices ranging from desktops to smartphones. The pattern takes ad-
vantage of the flexible markup of HTML5 to customize it on the fly when the page is rendering in
the browser using Javascript and CSS. This allowed our team to target the rapidly growing mobile
users without much extra implemetation effort. It also inherently produced a faster user experience
since minimal processing is done during initial page rendering and mostly done asynchronously once
the page is already viewable to the user. We actively strived to achieve both of these goals.



8 Class Diagrams and Interface Specifications

8.1 Financial Adaptor Class Diagram

67



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 68

8.2 Financial Adaptor Data Types and Operation Signatures

Finance Adaptor

Attributes
Our Finance Adaptor performs the functions of validating user queries with existing stock sym-
bols, companies, and/or sectors, then mediating between the Capital Games web server and Yahoo!
Finance, enabling our fantasy league to be playable in real time. To accomplish data validation,
a portion of the Capital Games database is updated regularly to keep our fantasy stock market
league up to date based off of EODData, an API allowing for the reference to an up-to-date list of
all stock-symbols, company names, and sector/industries.

— current companies : CurrentCompanies
This is a reference to a database table updated via an external website, EoDdata, that verifies user
queries with actual stock symbols, and/or company/sector/inddustry names depending on the user
query.

Methods
Most methods are boolean, returning either success or failure regardng data retrieval. All other
methods are voids, with no arguments, used for executing a specific function.

+ buy stock (in symbols : String, in amount : int, in userID : String) : bool
Method called to buy stock; a typical method that would require the user to query up-to-date stock
market information via our adaptor.
+ sell stock (in symbols : String, in amount : int, in userID : String) : bool
Method called to sell stock; a typical method that would require the user to query up-to-date stock
market information via our adaptor.
+ get company data()
This method returns all information available on Yahoo! Finance regarding a user’s queried stock.
+ update timer callback() : bool
An internal timer signaling the stock query from Yahoo! Finance.
+ scan list()
This method checks against the Capital Games’ database.
+ update companies() : bool

This method updates the information in the Caital Games’ database from both Yahoo! Finance
and EODData.

Current Companies

Attributes
Current Companies is the database table that our Finance Adaptor actually checks against when
validating user queries. At a regular interval (based on method update timer callback from the
Finance Adaptor, the Finance Adaptor retrieves data from EODData to update the Current Com-
panies database table.) This is done to maximize efficiency by minimizing the amount of time the



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 69

adaptor must retrieve data from EODData.

— symbols : String
This is all stock symbols.
— length : integer
This defines how many total stock symbols are on the list.

Methods
All of these methods are invoked after the stock symbol or company name has been validated. All
methods perform queries regarding updating the Current Companies tabe.

+ check company ()
This method returns all informaton regarding a stock, to be parsed by the Finance Adaptor to
retrieve what the user is querying for.
+ add company ()
Method called to add a company to the database in cases such as Initial Public Offering of shares.
+ remove company()
Method called to remove a company from the database in case of acquisition.

EODData

Attributes EODData is an external web app, much like Yahoo! Finance, that contains data re-
garding stocks in bulk. Essentially we are using it to validate stock user queries as it enables us to
have a database of all stock symbols and company names.

Methods

+ get updated companies ()
This method updates the Current Comapnies database table based on the EODData API.

Yahoo! Finance

Attributes
Yahoo! Finance is the main external API we are utilizing for up-to-date stock market information
for our fantasy stock market league. It is highly reliable and enables to make several, serparate
queries of individual or multiple stocks at once.

Methods

+ get quotes(in symbols : String) : Quote
This method returns quotes from a stock symbol based on Yahoo! Finance. + get hist quotes(in
symbols : String) : Quote
This method returns historical quotes from a stock symbol based on Yahoo! Finance that spans a



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 70

larger period of time a user may draw specific information from in a predefined period of time.
+ get sectors() : Sector
Gets information similar to quotes on a financial sector
+ get industries() : Sector
Get information in industries that fall under financial sectors.
+ get companies() : String
Retrieves all company information from Yahoo! Finance.

Sector

Attributes
US Market Sectors are essentially an umbrella category for certain groups of stocks. For example,
technology stocks such as Google and Microsoft would belong to the technology sector. These have
attributes similar to a stock quote. Essentially all attributes are the stock information one would
find searching the sector on Yahoo! Finance.

Quote

Attributes
Quotes will essentially return a list of all data that has been retrieved from Yahoo! Finrance,
similar to above.

8.3 Financial Adaptor Traceability Matrix

Class F
in

an
ce

A
d

ap
to

r

C
u

rr
en

t
C

om
p

an
ie

s

E
O

D
D

at
a

Y
ah

o
o!

F
In

an
ce

Finance Adaptor X

Current Companies X X X

EODData X

Yahoo Finance X

Sector X X

Quote X X

Our Financial Adaptor practically handles all querying of data. As a result, most classes trace to
the Financial Adaptor. While EODData and Yahoo! Finance are external to the database in which
all items subordinate to the Financial Adaptor exists, the fact that our FInancial Adaptor queries



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 71

them for data validation and retrieval makes them essential conceptual entities in our Traceability
Matrix.

For example, sectors and Quotes as mapped to the Financial Adaptor exist in their original
form inside Yahoo! Finance’s respective APIs, hence they map to Yahoo! Finance. Also, Current
Companies is also a database table queried by the Financial Adaptor and updated via EODData,
hence it maps to both the Financial Adaptor and EODData.

Object Constraint Language

In order to separate ideas in OCL, we will split it up descriptions by each class in the class diagram.

Finanace Adaptor Class

In this class, we have a few constraints that deal with this class being kind of central to all of the
other classes that make up our financial adaptor. The function to buy or sell stocks are the same
in their constraints. You must have a symbol name which is not equivalent to NULL and is the
symbol of a company that exists. The amount must be a positive integer and if you are buying you
must have enough to spend on this. Lastly, the userID must be plugged in, so that must also not
be NULL and it should hold the username of someone who exists. The function get company data
must have a symbol passed in that exists and is not NULL. The function scan list must be called
after the list already exists, or there will be an error. Lastly, the update companies function must
have a return from EoDdata that is valid and not corrupted.

Current Companies

All three of the functions in this class have the same constraint, that the symbol passed in must
exist. On top of that, the “length” variable must always be equal to the amount of symbols in the
“symbols” variable.

Yahoo! Finanace Class

Fortunately for us, this is another simple addition for it is dealt with completely by Yahoo! Finance.
Something that we do have to be careful of is making sure that if we are calling the get quotes
or get hist quotes, we have to make sure that we are passing in a valid string. For example, if we
passed in a NULL string, we would have an error returned.

EoDdata Class

This is the simplest class out of any of the ones we deal with, as there are no variables and only one
function that returns a large list of stocks without us having to pass in anything. No constraints
in this class.

Sector and Quote Class

The constraints on these classes will work as long as Yahoo! Finanace returned results that are
valid. These results are checked in the Finance Adaptor Class, and if it did make it past that point,
the data that is passed in is fine, and therefore there are no actual constraints on these classes.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 72

8.4 Design Patterns

Various standard design patterns were utilized to provide functionality for things such as authen-
tication, efficient page rendering and object modeling.

Model-View-Controller

The Model-View-Controller (MVC) pattern was heavily used throughout the CapitalGames system
to properly organize model logic, business logic and presentation logic. This very intuitive pattern
allowed the team to easily delegate work on different levels of the system. Frequently, a selection of
team members would develop front-end functionality which required only the views to be altered,
while other members implemented backend functionality which was done either in controllers or
models. This pattern resulted in a more efficient development lifecycle overall, while also providing
some performance gains. Namely, the MVC pattern calls on resources only when they are actually
needed which prevents unnecessary overhead. For example, methods developed to be called only
programmatically don’t attempt to display a view which results in faster responses.

Security Proxy

The security proxy pattern was the core of our secure authentication system. This proxy pattern
allowed us to easily protect content based on user role or other variables. The security proxy
was implemented very similarly to that described in the textbook. Particularly, it behaved as a
transparent filter between an HTTP request and a controllers method. Authentication requirements
could easily be chained onto each other making it possible to create custom controller prerequisites.
Finally, because the security proxy filtered every request made on a controller instead of just
requests made upon login, all sensitive features of the site had a very robust shell which no user
could easily bypass. This improved our design by providing solid, system-wide security.

ActiveRecord Pattern

The ActiveRecord pattern, an intelligent implementation of a database access design pattern,
was used exclusively to interact with persistant storage technologies used in the CapitalGames
system. This pattern offered the major advantage of not needing to hard code any database-specific
queries. All requests made to the ActiveRecord Pattern are translated to the currently used DB
system’s language and data is returned in directly its object form. The lack of need to write direct
queries also lead to a great side effect, namely database agnosticism which allowed various database
implementations to be used during different stages of development. During developmnt SQLite was
used for its lightweight footprint on the developers machine, then for production MySQL was used
as it is considerably more efficient when dealing with larger amounts of data. This design certainly
improved our development by saving countless hours of development time.

RESTful Design

The RESTful design pattern being used more and more now on the web allowed us to implement our
asynchronous order processing system. The RESTful design of some internal functionality allowed
it to be accessed programmatically and securily through a simple API. As RESTful services are at
the heart of Ruby on Rails, it did not require a lot of effort to expose some internal functionality
without creating major security holes. Future iterations of CapitalGames will continue to rely on
the stateful communication that our RESTful API offers.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 73

Responsive UI Pattern

The Bootstrap UI framework implemented a design pattern completely segregating visual pres-
ntation from content and user experience. This provided in a beautiful responsive design which
adapted to different client devices ranging from desktops to smartphones. The pattern takes ad-
vantage of the flexible markup of HTML5 to customize it on the fly when the page is rendering in
the browser using Javascript and CSS. This allowed our team to target the rapidly growing mobile
users without much extra implemetation effort. It also inherently produced a faster user experience
since minimal processing is done during initial page rendering and mostly done asynchronously once
the page is already viewable to the user. We actively strived to achieve both of these goals.

8.5 Asynchronous Subsystems

The nature of Order’s requires a vary particular type of asynchronous handling. Lucky for us we
were able to find a ruby gem that makes this messy process quite elegant. Resque allows one to
queue up tasks and execute them in ”first in first out”(FIFO) order by dequeueing the next enabled
task in-line and performing it. For our application we need to be able to wait before processing
certain orders based on their dependencies and characteristics. Rather then have a different data-
type and handler for every type of order, we took the approach to consolidate all order types into
a single order data-type that has a field that specifies the transactionType. The orderHandler can
be considered more of a wrapper function as it checks the transactionType of the order it is to
perform and send it off to be handled uniquely based on the checked value. While market orders,
are executed almost immediately after being placed, stop and limit orders may not be executed for
quite some time. Whenever a task needs to be performed asynchronously, the task is entered into a
designated portion of a Redis database, configured as a queue. Background ”workers” (processes)
perform tasks as they arrive. There are specifically two dedicated processes named Worker1 and
Worker2, dedicated to order processing and UserSummary sending respectfully. Worker two runs
every 24 hours and is responsible for populating a list of one UserSummary task for each user.
In order for the UserSummaryController to obtain all necessary information on user and league
performance information. The Performance Summarization objects are invoked to handle the
retrieval of those specific stats, with the retrieval being handled by the DatabaseInterface object.

Asynchronous Subsystem Diagram

Object Constraint Language

To separate topics in this section, we will talk about each grouping of classes one at a time.

Order Package

The first section of the “Order Package” stub is a class that deals with handling orders. The
constraints for this class are the usual – the function will work as long as they are given a correct
order. That means that it has to be from a league that is in the boundary of it’s date, if the order
is a buy it must be under the constraint of how much money the user has and if it is a sell they
must already own that much stock.
As of the actual order class, most of the variables in the class are but integers. The constraint on
these integers is that all of them are positive, and league id and portfolio id must already exist.
Also, once both variables are filled, placedDateTime must be before filledDateTime.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 74

Resque

Resque is the simplest class in the asynchronous system as its only constraint is that it must have
a valid order passed in.

Performance Summarization

The performance class has constraints on the variables startDate and endDate. These two variables
only have the constraint that startDate must be earlier than endDate. It also has the constraint
that the numTransactions variable must be a non-negative integer. The rest of the variables related
to Performance Summarization are integers that must also be non-negative.

Mailer Package

The mailer package class is a simple class that will succeed as long as the orders constraints went
well. All of the variables in UserSummaryMailer are simple to check if they are correct, they are
all strings that should not be NULL or they are integers that should represent an ID so they must
be non-negative.

Database Interface

Every function in this class can do a simple check to see if the object that was passed in exists. All
of the functions deal with operations on an object so checking for existance is all they will need as
constraints.

Figure 8.1: Asynchronous Class Diagrams.



CHAPTER 7. SYSTEM INTERACTION DIAGRAMS 75

Attribute Table

Concept Attribute Meaning

Task Queue resque resque is a ruby gem that queue’s Order Han-
dling jobs and processes them first in first out.

Order Handler orderHandler function responsible for processing orders.

Order order data type that contains order details to be
processed by the orderHandler.

Mail Controller UserSummaryController handles queueing userSummaryMailer tasks
and then executing them.

Mail Sender UserSummaryMailer handles the generation and sending of a single
User Summary.

User Performance Re-
triever

Performance retreives a user’s performance for the User
Summary.

League Performance
Retriever

LeaguePerformance retreives a leagues performance for the User
Summary.

Table 8.1: Attribute Table.



9 System Architecture and System Design

9.1 Architectural Styles

Capital Games was designed to conform with several well-established software design principles.
Some were chosen because of the software technologies employed (ie an MVC-based web framework),
others represent a natural evolution of the needs of the system.

Model-View-Controller

Our philosophy in designing our website is to maintain a separation between the subsystems re-
sponsible for maintaining user information and those responsible for presenting it, in comformation
with modern software engineering practice.

Therefore, we employ the Model-View-Controller (MVC) architecture pattern. In MVC, a View
requests from the model the information it needs to generate an output; the Model contains user
information; and the Controller can send commands to both the views and the models [18].

This approach has made site design easier, by abstracting the interface specifications from
the system responsibilities. The Views and Models each know only what they need, while the
Controller and associated subsystems perform all the “business logic”. The only complexity added
by the decision to employ MVC is that updates to system components often have a ripple effect
and require numerous modifications elsewhere in the system.

Representational State Transfer

As a well-designed web application, Capital Games conforms with the universal practice of em-
ploying RESTful design principles. RESTful design dictates, amongst other constraints, that a
platform have a client-server relationship with the user (see below), that the interface is uniform,
and that all information necessary for a request can be understood from the request sent to the
server [11].

We strive to keep the interface as uniform as possible so that it is clear to the user how he is
interacting with Capital Games, on a multitude of levels. For example, when purchasing a group
of stocks, a user may graphically “click on” a submit button for a certain order, but in effect he is
also submitting an HTTP POST request with appropriate form data to the Orders resource.

This identificaiton of resources creates a tradeoff. On the one hand, all RESTful architecture
must be designed at once, so that all resources are identified simultaneously, and the state transfers
are possible to each of them. On the other hand, once resources are properly identified, the
distribution of responsibilities is trivial for every possible interaction.

76



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 77

Data-centric

As a financial trading platform, Capital Games revolves around user data. To simplify access
to that information from a variety of systems and to organize the data coherently and with the
possibility of rapid retrieval, we eventually store all user data in a relational database. In this way,
advanced queries can be performed on sets of data, both in application layer logic as well as by
database administrators. Additionally, storing user data outside of a particular program’s memory
space enables subsystems which exist outside of the current application layer to also have access
to the data. This additionally presents greater flexibility in terms of scaling site infrastructure.

Client-Server

By its definition as a web application, Capital Games follows a client-server model. The client, a
user, interacts with the server, the various systems encapsulated by Capital Games.

9.2 Identifying Subsystems

As Capital Games exists as a website, a natural divison of subsystems arises: front end and back
end. Front end essentially describes all the computations and objects that exist on the user’s side
of interaction with our application, and back end describes all the computations and objects that
exist on the server’s side. It is exceedingly simple to determine which parts of our system belong
in the front end in the back end. We will also define another subsystem called ”External” which
will contain all the pieces necessary to our application but not technically a part of it. A high-level
view of our system in the form of “packages” or subsystems follows on one of the next few pages.

As it turns out, we can go deeper into our system to define subsystems within the back end.
Though the front end is relatively simple, the back end of our system is where most of the com-
putation and interesting events occur. There are two major subsystems as have been described
in previous sections of this report: financial data retrieval and the queueing subsystems. In ad-
dition to these two subsystems, the database and the controller exist within the back end, but it
does not seem appropriate to further include them in another subsystem, as they are essentially
separate, stand-alone packages that interact with or call upon the other packages within the system.

The financial data retrievial subsystem is the simpler of our two subsystems. It only requires
the ability to handle requests given to it by the controller (requests ultimately generated by a user)
and the ability to fetch data from Yahoo! Finance in response to a valid request. The queuing
system is only somewhat more complicated, needing background processes to monitor outstanding
tasks, an Action Mailer object to handle sending e-mails to users, and an order handler that can
understand and process orders. Though the controller facilitates all their interactions with the rest
of the system, these two packages dominate most of our application design and are the backbone
of its functionality.



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 78

Figure 9.1: The UML package diagram for our system.

9.3 Mapping To Hardware

When it comes to web design, there is a standard on how hardware is mapped. All front end parts
of the system run on the user’s machine (be it a computer, tablet, or smart phone), and all back
end parts of the system will run on a server owned by the developer or the developer’s company.
This follows from the architecture of the web, and there is really no way to deviate from it. To
clarify the hardware mapping of our system, a diagram is included within the next few pages.

9.4 Persistent Data Storage

As described previously, Capital Games is data-centric and therefore cannot exist without a robust
mechanism for persisting user data between “uses” of the system.



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 79

Figure 9.2: The hardware mapping for our system.

Various methods exist for the persisting of data. They range from serialization of system
state variables into files to storing all data in the form of elaborate relational database systems,
and anything in between. Capital Games primarily makes use of relational and non-relational
databases.

In a relational database, stand-alone sets of data are placed into indexed tables stored in
computer memory, with each row in a table representing a single set and each column representing
a single attribute. A table can have a very large (sometimes even infinite) number of columns and
rows. A database possesses many interrelated tables which are cross referenced by their indices
(called primary and foreign keys). These relations allow complex queries against tabulated data
[19].

For example, consider the figure shown previously, repeated here. A league is the most funda-
mental data structure of Capital games, yet it is not aware of its users, their portfolios, or of any
orders associated with them. To retrieve these data, a query can be performed which pivots around
the indices relating the tables. To find out a list of users participating in a league, one could take
that league’s index (not shown in figure for brevity) and search for all investors with that index;
then take the user indices contained in the resulting query and dereference them to identify the
original users.

Additionally, Capital Games makes use of a so-called “NoSQL”, or non-relational database.
The format of such a database is practically unrestricted, and data need not belong in tabular
format. This approach exchanges speed and scalability for querying power [20]. Capital Games
utilizes the Redis NoSQL database to store outstanding queued jobs. This structure was chosen so
that the database store can be seamlessly scaled across many machines if need be, and because of



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 80

its light weight.

9.5 Network Protocol

Though it is not necessarily an interesting topic to discuss for our project, it is none the less
important to take note of. Because Hypertext Transfer Protocol (HTTP) is the predominate com-
munication protocol distributed throughout the internet, it is critical that our website relies on it
to make requests and send information between our user and system. Really, there is no other
option if we desire Capital Games to be successful. HTTP is already a strictly and well defined
protocol; for a description, see this reference.

9.6 Global Control Flow

Execution Order

In general, our system is event-driven in terms of execution. As far as the user is concerned, our
server sits and waits for a request to be made by a user accessing some part of our website. Though
this is a simplification of the actual model, it is a good description of the general order of events
within our system. The users can, nearly in any order, access different parts of our websites, search
different companies, place different orders, etc., at their will. Any of these actions generate a re-
quest to our server, which then creates the necessary views, enacts the necessary computations,
and takes any other necessary actions to facilitate the request.

To some degree, however, there are some procedures that drive our system as well, which force
users to experience certain things in a predefined order. I will identify a few of these procedures
hence:

– Registration: Before any user can begin browsing our site and joining leagues, they need to
make an account.

– Order placement: Before a user can place an order, they need to join a league.

– Tutorials: When a tutorial is initiated, each user will experience the tutorial in the same
order as all other users, excepting them terminating the tutorial prematurely.

However, on the whole, our system is still definitively an event-driven one.

Time Dependency

Real-time is very important to our system, though it does not entirely define it. While the user
browsing our website is a real-time experience, there are a lot of back-end computation and pro-
cessing that occur on our server based on real-time timers. In addition, as our system is strongly
reliant on the stock market, which has certain times of operation, real-time matters quite a bit. I
shall identify the timers present in our system:

– E-mail Timer: Based on the user’s set preferences, they can receive periodic e-mails from our
system describing their portfolios’ progress over the last period, which can be set to daily or
weekly.

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol


CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 81

– Market Open and Close: The stock market is only open and closed during certain times of
the day, so our system must rely on these times to limit the placement of orders by users.

– Resque Process Check: As described earlier in our report, many of our system’s tasks are
carried out by a queueing subsystem. In short periods, this queueing process must check if
there are any outstanding tasks to operate upon. The period is as yet defined, but will be
chosen for a balance between ensuring quick execution and reasonable server load.

Concurrency

There is a bit of concurrency within our system. Outside the main stream of execution with
potentially parallel gets and posts from users’ browsers, this concurrency occurs mostly within the
queueing system earlier mentioned. It is relativey simple; there are persistent processes that handle
order processing and e-mail updates. As these are entirely separate functions, there is no need for
synchronization between these two threads of control. Synchronization between these threads and
the rest of our system (i.e. the user interactions with the browser and the browser’s interactions
with the controller) to ensure that no data is being altered by separate entities at the same time is
enacting through Ruby’s including protection functions–mainly flock (file lock).

9.7 Hardware Requirements

The hardware requirements for Capital Games are minimal on the client side, and moderate on the
server side.

Internet Connection

The server needs to have an internet connection. Because all data are transmitted as text, it is
technically possible for the server to function on even a low-bandwidth connection. Obviously this
is not ideal and low bandwidth can increase server latency during peak use hours.

Disk Space

Under the current configuration, Capital Games does not commit any additional resources to the
server’s disk storage during runtime. Rather, all data are stored to memory, and only backed up
to the disk. Therefore, the disk requirements for Capital Games is simply the sum of the storage
occupied by all program instructions for the system, or approximately 1GB at the time of this
writing.

System Memory

Because all runtime data are stored to the server’s memory, as well as the space in memory occupied
by the actual system runtime, having a large amount of “headroom” is vital to the performance of
the application. Although it is hard to analyze performance requirements of an application that
is still in active development, empirical evidence from users of similar technology make a few key
observations. First, the amount of memory consumed by an idle application can work out to be
over 100MB. Next, the active application will load copies of its database-stored information into
memory in order to operate over it, which can result in large spikes in memory usage. Finally,
operating over the loaded data itself can consume a large amount of memory. This is in addition to
any memory occupied by the databases and worker processes [21]. Therefore, having at least 200MB



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 82

should be the minimum required for internal testing of our application. Obviously, increasing user
base will exponentially increase the memory requirements of our application.

Client-side Hardware Requirements

The user needs to have an internet connection in order to interact with the server remotely. Al-
though the intended use of the system entailing the use of a graphical web browser strongly encour-
ages the use of a monitor (as mentioned previously, the responsive nature of the application means
that screen resolution is not a limiting factor), it is also possible for technically proficient users to
interact with the server through its RESTful resources. At some future date, we may publish the
official RESTful API for Capital Games, but at this point, interacting purely through a command
line interface is discouraged.



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 83

-Name : String
-E-mail : String
-Password : String
-Admin : Boolean
-Banned : Boolean

-Manager : Boolean
-League ID : Integer
-User ID : Integer
-Capital : Double
-Margin : Double

-Start Date : Date
-End Date : Date
-Captial : Double
-Margin : Double
-Commission : Double
-Privacy : Boolean

-League ID : Integer
-Investor ID : Integer
-Time Ordered : Date
-Time Executed : Integer
-Ticker : String
-Order Type : String
-Transaction Type : String
-Quantity : Integer
-Duration Valid : Date

-Date : Date
-Ticker : String
-Price : Double

1 *

1

*

1

*

Figure 9.3: The old design for the database for Capital Games.)



CHAPTER 9. SYSTEM ARCHITECTURE AND SYSTEM DESIGN 84

Figure 9.4: The format of the relational database schema implemented by Capital Games for its
core features. Notice that the ”Stocks” table has been removed and a ”Performances” table has
been added. Originally, the plan had been to store the historical performance of stocks as a way of
caching data to later perform quick calculations of a portfolio’s historical worth for the purpose of
graphing and displaying it to users. However, we decided instead to cache the daily performance of
portfolios directly in the Performance table as it was both more efficient and simplified calculations.



10 Data Structures

10.1 Table

By design, databases used for web apps are stored in tables. Via SQL querying, tables are relatively
efficient for both time and space. For each object “type”, there a single table used with relationships
as depicted in the diagram above. Each row in a table represents an instance of that object and each
column represents an attribute of that object. For storing and retrieving data over the Internet, a
table is pretty much the only way to go when integrating with a website.

10.2 Queue

The nature and description of our queue is discussed in the asynchronous processing section de-
scribed in an earlier section.

10.3 Tree

One more data structure that will be implemented for our system is a tree. As described earlier,
the finance adaptor will need to make use of the information on EoDdata so that companies can
be validated for existance before going through a trade. EoDdata does not come with a simple
solution to find out if a single company is in existance and neither does Yahoo! Finance, therefore
we must build a function that will do this for us. We could scan through every company on
EoDdata everytime we need to validate, but that would waste too many resources. Instead, we
decided to keep a local copy that will have very fast lookup of companies. The way that this will
be implemented is to keep a tree in which the nth level of the tree represents the nth letter of the
company symbol. For example, if the company with symbol “GOOG” exists, the head will point
to G, which will point to O and so on. The last letter in the symbol will also have a boolean value
to denote that this is the end of a symbol so that there could be companies with the same letters
but one with an extra letter at the end. The reason for using a tree is because it will have a time
complexity equal to the length of the symbol, which is a very small value, and a space complexity
much smaller than if we used a structure such as a hash table. All we need for this tree is the
ability to add a symbol, remove a symbol and check if a symbol exists. With these three simple
commands, we can create our tree and maintain it to stay up-to-date.

85



11 User Interface Design and Implementation

11.1 Finilized Product

Here, we reflect on the changes that were ultimitly made to simplify our design.

Pages for a visitor

When a user first comes to see our website, they will be greeted with this page:

Figure 11.1: Homepage of the website

If they click on the sign-in option, they will be taken to this page:

86



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 87

Figure 11.2: The login page

Alternatively, if they click on the sign-up page, they wil be greeted with this page:

Figure 11.3: The sign-up page

Lastly, if they click on the ”Take a Tour” button, they will be taken to our ”Learn” section of
the website. It’s a simple text guided tour through our website that lets the user learn a little bit
about the way our site works before (or after) signing up.



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 88

Figure 11.4: The first tutorial

The Dashboard

Once a user is logged in, they will be greeted with their dashboard. This is a customized page
that thells them information about some events that have been going on in the site as well as the
progress in all of thier leagues.

Figure 11.5: The Dashboard



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 89

Leagues

The final design for leagues was simplified the most. If you want to find a league, you visit the
leagues page. There you can search, filter through, or create a league.

Figure 11.6: The leagues page

If you want to create a league, you will be greeted with a very simple page for making a league.

Figure 11.7: The create a league page

Once you have a league or are in it, you can check out how users are doing by checking out the
table with users sorted by their rank or see comments that other users have posted.



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 90

Figure 11.8: A league page

If you’re an admin of the page, you can check out the league settings, where you can change the
name, description and league picture in the ”Basic Settings” tab, and you can delete the league in
the ”Delete League” tab. The others were not implemented yet.

Figure 11.9: The league settings page

If you want to check out a user’s performance in the league, you just have to click on their
name on the table in the league page. Here, you can see their rank, worth, and recent orders they
have made.



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 91

Figure 11.10: The portfolio page

Users

With our specialized social system, it’s easy to keep in touch with other users. One way you can
do that is by dropping a comment on their wall. Their wall is a place that displays their profile
picture, their leagues and their comments.

Figure 11.11: The user page

If one wants to change their settings, they can look up at the top bar in the header and click on
”Account” and then ”Settings”. This will allow you to change your name and your profile picture.



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 92

Figure 11.12: The user settings page

Companies

The last part of the website that we will highlight is the companies pages. You can go to the
”Companies” page of the website and you will be greeted with recent news about the market and
the ability to search for a company by symbol.

Figure 11.13: The companies page

Once you search for a company, you will find a lot of relevant information about that company
to help you in your purchase of stocks.



CHAPTER 11. USER INTERFACE DESIGN AND IMPLEMENTATION 93

Figure 11.14: A company page

If you want to buy/sell a stock, you can press on the ”Trade” button, which bring up this
dialogue:

Figure 11.15: Buying or selling stocks

There are a lot of options to choose from there and they all work as the usual market does.



12 Design of Tests

No application is complete until it has been tested as thoroughly as possible for security holes,
broken functionality, and any other lacking features. Shipping without testing is a guarantee to
have all manner of bugs and security holes. However, even with thorough testing, it is not usually
possible to find and resolve every flaw before shipment. To this end, developers utilize testing suites
to try and test programs efficiently and effectively. Tests can be designed for individual units and
components as well as the broader system and the integration of the units. While not perfect for
finding all flaws in a program (usually errors are discovered by looking for them, which generally
requires either knowledge of an existing error or “luck” in an error making itself apparent during
development), testing can serve to find almost all errors and flaws in an application.

However, developers face a dilemma. Developing an evolving application can cause existing
tests to become outdated, while designing and running tests is time taken away from actually
building the application.

A modern approach to this tradeoff is to build the feature set of an application around mea-
surable, predefined tests [22]. In this technique, known as Test-driven Development, developers
iteratively define tests for intended future features, confirm that those features are not yet imple-
mented (by running those tests), and then implementing the solutions. Though this approach does
not (generally) test for all possible interplay between components, it is usually employed in high-
paced development environments such as ours, where the coverage provided is usually respectable
enough to prevent most problems.

Accordingly, we first define the features and tests we plan on developing around, proceed to
analyze the coverage offered by these tests, and then briefly discuss how we intend to test the
integration of the components.

12.1 Test Cases

Due to project constraints, we cannot afford to thoroughly test existing packages for functionality
we incorporated to streamline the design process. These packages include Ruby on Rails as well as
Ruby gems (packages) for interfacing with Yahoo! Finance, various databases (ie MySQL, SQLite),
the Resque queueing system, and other auxilliary package for Rails. Likewise, we cannot unit test
the HTTP server we are using (Apache) and its Ruby extension (Phusion Passenger) or any of the
databases. Rather we will focus on testing just the units of our application and their integration
with each other.

94



CHAPTER 12. DESIGN OF TESTS 95

Routing

As described earlier, Capital Games contains models for users, managers, administrators, trades,
etc. Intrinsic to the Rails web framework we employ, most of these models are represented internally
to the controller as “resources” [23]. At any point in time, any user (even a non-user!) could
attempt to gain access to a resource to which they are not privileged, such as an administrator
panel. Routing unit tests will confirm that only authorized users will be able to access restricted
pages. As an extension of this premise, Routing unit tests will also confirm that pages with low
privileges are accessible to all users and front-facing pages can be seen even without being logged
in.

Database Models

Because of the data-centric design of Capital Games, protecting the integrity of the database entries
is of the utmost importance. The Ruby on Rails framework has safeguards and validation for this
purpose, but we still need to thoroughly unit test each of the models to ensure that only permissible
combinations of attributes are able to be entered, and that proper error handling occurs to resolve
attempts at improper attribute definition.

Queueing System

Capital Games heavily relies upon the queueing system to act as a computational highway for all
asynchronous tasks. Due to the nature of this system we must prepare for race conditions; the
different ways our data can be effected based upon the order of executing processes that are acting
upon the queue. We will need to prepare a set of tests to express how the queue performs when
open orders are altered by other processes during different phases of the queueing system. Based
on our test results it might be necessary to implement data locking.

Finance Adapter

Whenever using external resources it is vital to understand the different ways in which they com-
municate not just when functioning as expected, but also when failing to perform properly. Since
we do not have the ability to shut down the external Financial Adapter’s Servers we can not run
tests that give us feedback on what functionality to expect on failure. This leaves us without the
ability to test the Financial Adapter and instead pro-actively safeguard against failure. Due to
this we must build a wrapper that anticipates all perceivable failures coming from the Financial
Adapter.

12.2 Test Coverage

In order to attain full functionality of Capital Games without bugs, we must be sure that none of its
parts have errors themselves. Due to many dependencies such as other running processes, system
states, and transitions, the same test will need to be preformed for each possible configuration to
make sure that each part works in every possible scenario that it can be ran. This will require
extending certain tests to run at the same time as background processes, and having parts called
from all possible initiating parts. When working with integrated parts it is not simply enough to
assume that parts will work once integrated just because they work independently. By extensively
testing each possible run case we ensure that there are no points of failure once the system is
launched.



CHAPTER 12. DESIGN OF TESTS 96

12.3 Integration Testing

In order to achieve the most thorough testing, Capital Games will be tested using the bottom-
up strategy. Each part of Capital Games that we wrote will be extensively tested individually
first. However simply testing each part individually is not enough due to race conditions and other
integration issues that may exist in the systems described above. Because of this, parts must be
tested after integration as well. Knowing that functionality is state specific and transition specific
for any state machine, each test must also be ran in all possible states. In addition to all previously
listed conditions, tests need to be preformed at different times to make sure that functionality
during backend asynchronous tasks do not have any bugs. We have chosen the bottom-up testing
strategy based on the principle that bugs at the bottom level will dictate bugs at the top level,
while bugs at the top level may very well be independent of bottom level performance. By carefully
analyzing every part to part integration we can work our way up to a flawless design.

12.4 Test Cases

Figure 12.1: Test Case 1.



CHAPTER 12. DESIGN OF TESTS 97

Figure 12.2: Test Case 2.

Figure 12.3: Test Case 3.

Figure 12.4: Test Case 4.



13 History of Work, Current Status, & Future Work

13.1 History of Work

Throughout the semester we completed several of our planned milestones in a punctual, thorough,
and consistent manner.

Our first planned milestone, completing the Report 1 Part 1 prior to 12 February 2013, was
met on time. We continued to meet our report deadlines for Report 1 Part 2 and the full, com-
piled Report 1 by 18 February 2013 and 22 February 2013, respectively. For the second report, we
successfully met our deadlines for Report 2 Part 1 (consisting of Sequence Diagrams, timing and
communication diagrams) and Report 2 Part 2 (consisting of Class Diagrams, Interface, Architec-
ture design, data structures, UI, tests and implementations) on 1 March 2013 and 8 March 2013,
respectively.

As we met our initial Report deadlines, we also simultaneously began work on the initial build
of Capital Games. We began with deploying our server environment, which took place between
22 February and 2 March 2013. While we were initially weighing our options between dedicated
virtual private server (VPS) and Heroku, we determined that a dedicated virtual private server
would better suit our needs and we successfully deployed it by 2 March 2013. In this time, we also
finalized our plan for mockup-based views and the CSS/HTML plan.

Populating the server with Ruby on Rails and Gem plugins, however, took a little longer than
anticipated. This is because we needed to confirm and test for full compatibility between our
server’s Ubuntu operating system, Debian 6 “Squeeze” before deploying Ruby on Rails and begin
programming on it. This extended beyond our initial range of 1 March 2013 to 8 March 2013 and
was completed by 13 March 2013.

We completed our full Report 2 deadline by 17 March 2013. After this point we shifted gears
and committed to having Capital Games Alpha build prepared for our demo. In the weeks between
17 March 2013 and 2 April 2013 we met several of our objectives. The Yahoo! Finance API was
implemented, the MySQL database structure was deployed and populated. Our routing plan was
completed, our views (webpage layouts via the “Dashboard Admin” theme) were implemented, and
we successfully got users, leagues, and portfolios at a working state in which data could be utilized
between them in our routing structure. We even had our graphs via Highcharts and responsive UI
at a working state! Thus we met our 2 April 2013 deadline and were able to present Demo 1 with
a stable, presentable, and functional Alpha build.

Our biggest strength was establishing manageable goals that still built on the strengths and fail-
ures of our predecessors. We chose a superior UI but were not overly-ambitious with functionality,
otherwise; this enabled us to meet our goals in a punctual manner. We almost fully implemented
our orders system, in addition, so we were actually ahead of our initial goals for our Capital Games
Alpha build!

98



CHAPTER 13. HISTORY OF WORK, CURRENT STATUS, & FUTURE WORK 99

13.2 Current Status

Currently, Capital Games is a functioning Rails application. We have an online version of our
latest builds on the domain http://capitalgam.es/ based on our Virtual Private server. It features
working orders, leagues, portfolios, and user systems with a fully-functional and responsive UI that
can be used in tablets and phones in addition to personal computer to be user friendly for anyone
on a smart device. Most core functionalities have been deployed and the current status is debugging
and optimizing our website to address orders in an asynchronous fashion to maximize the efficiency
of our application.

13.3 Key Accomplishments

Capital Games unlocked the following achievements:

• A Ruby on Rails-based Framework for core Web Application functionality

• A responsive UI usable on smart devices based on the “Dashboard Admin” theme.

• A minimalistic and easy-to-use system for users, portfolios, and leagues

• A research page that draws news feeds pertinent to investment options

• An implementation of highcharts that presentably showed candlestick and line-graph data

Capital Games also deployed the following use cases:

• Buy Stock

• Sell Stock

• Query Stock

• View History

• View Portfolio

• Register

• Create League

• Submit Comment

• Join League

• Change League Settings

• Browse Companies



CHAPTER 13. HISTORY OF WORK, CURRENT STATUS, & FUTURE WORK 100

13.4 Future Work

The final stretch for a release-build Capital Games would be an immersive tutorial system activat-
ing upon user registration. This would have extensively took advantage of AJAX and our Rails
framework but also is the most complex type of functionality to deploy on a live version of Capital
Games, hence it would have required careful, slow, and surgical-level development. This was one
of our major post-demonstration goals, but the level of sophistication for a fully-functional live
tutorial upon user registration was highly impractical for the remaining time we had.

We also would like to perfect our asynchronous processing system for orders so that the stop
and short options would work as true-to-life as possible. This was also one of our major post-demo
goals, and while this is one of the major portions of our final demo updates, there are many more
efficient practices in the field of asynchronous processing systems that would be able to expand our
Capital Games long after we complete our final demonstration build.

While we intended to implement a full Reporting and Disciplinary functionality within a Site
Administration suite, development on this fell in favor of the core functionality and orders, which
required a lot more dedicated manpower and hours than anticipated with the problems of asyn-
chronous processing as well as communicating with the Yahoo! Finance API and the Highcharts
implementation.

Finally, to maximize user retention, another future work goal would have been to implement
social media and e-mail notification options so users can be reminded to check and update their
portfolios and leagues on a regular basis. A mailer system was intended, however, development
on that particular item fell in favor of on-site notification and chat options, which were fully
implemented by the Alpha into final demo release.

Our Rails framework for Capital Games was deployed so well, however, that it’s expandability
lends itself to a swift transition to these Future Work goals!



CHAPTER 13. HISTORY OF WORK, CURRENT STATUS, & FUTURE WORK 101

13.5 Project Management

Names

Category Points Jeff A Eric C Nick P Jeff R Val R Dario R

Customer Statement 6 Points 20% 0% 0% 80% 0% 0%

Glossary of Terms 4 Points 50% 0% 0% 50% 0% 0%

System Requirements 6 Points 0% 33% 0% 0% 33% 33%

Functional Req. Spec. 30 Points 30% 10% 35% 0% 5% 20%

Effort Estimation 4 Points 0% 25% 0% 75% 0% 0%

Domain Analysis 25 Points 25% 25% 10% 20% 20% 0%

Interaction Diagrams 40 Points 10% 15% 15% 20% 10% 30%

System Arch. and Des. 15 Points 16.67% 16.67% 16.67% 16.67% 16.67% 16.67%

Data Structures 25 Points 0% 25% 0% 0% 75% 0%

History of Work 5 Points 0% 0% 5% 5% 90% 0%

Project Management 13 Points 3.85% 26.92% 30.77% 0% 19.23% 19.23%



References

[1] Investopedia, “What are the minimum margin requirements for a short sale account?.”
http://www.investopedia.com/ask/answers/05/shortmarginrequirements.asp. [Online;
accessed 22 February 2013].

[2] Investopedia, “Margin definition — Investopedia.” http://www.investopedia.com/terms/

m/margin.asp. [Online; accessed 22 February 2013].

[3] Investopedia, “Stop order definition — Investopedia.” http://www.investopedia.com/

terms/s/stoporder.asp. [Online; accessed 22 February 2013].

[4] Investopedia, “Limit order definition — Investopedia.” http://www.investopedia.com/

terms/l/limitorder.asp. [Online; accessed 22 Febrauary 2013].

[5] Investopedia, “Limit order definition — Investopedia.” http://www.investopedia.com/

terms/m/marketorder.asp. [Online; accessed 22 February 2013].

[6] Investopedia, “Short (or Short Position) definition — Investopedia.” http://www.

investopedia.com/terms/s/short.asp. [Online; accessed 18 February 2013].

[7] Investopedia, “Buy to cover definition — Investopedia.” http://www.investopedia.com/

terms/b/buytocover.asp. [Online; accessed 22 February 2013].

[8] Investopedia, “Bid-ask spread — Investopedia.” http://www.investopedia.com/terms/b/

bid-askspread.asp. [Online; accessed 23 February 2013].

[9] Wikipedia, “Responsive web design - Wikipedia, the free encyclopedia.” http://www.

investopedia.com/terms/m/marketorder.asp. [Online; accessed 22 February 2013].

[10] I. Marsic, Software Engineering. New Brunswick, USA: Ivan Marsic, 2012.

[11] Wikipedia, “Representational state transfer - Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Representational_state_transfer. [Online; accessed 3 March 2013].

[12] Wikipedia, “Object relational mapper - Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Object_relational_mapper. [Online; accessed 3 March 2013].

[13] P. Ponzo, “Yahoo data download.” www.gummy-stuff.org/Yahoo-data.htm, 2004. [Online;
accessed 3 March 2013].

[14] Rails Guides, “Ruby on rails guides: Action mailer basics.” guides.rubyonrails.org/

action_mailer_basics.html. [Online; accessed 3 March 2013].

102

http://www.investopedia.com/ask/answers/05/shortmarginrequirements.asp
http://www.investopedia.com/terms/m/margin.asp
http://www.investopedia.com/terms/m/margin.asp
http://www.investopedia.com/terms/s/stoporder.asp
http://www.investopedia.com/terms/s/stoporder.asp
http://www.investopedia.com/terms/l/limitorder.asp
http://www.investopedia.com/terms/l/limitorder.asp
http://www.investopedia.com/terms/m/marketorder.asp
http://www.investopedia.com/terms/m/marketorder.asp
http://www.investopedia.com/terms/s/short.asp
http://www.investopedia.com/terms/s/short.asp
http://www.investopedia.com/terms/b/buytocover.asp
http://www.investopedia.com/terms/b/buytocover.asp
http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/m/marketorder.asp
http://www.investopedia.com/terms/m/marketorder.asp
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Object_relational_mapper
http://en.wikipedia.org/wiki/Object_relational_mapper
www.gummy-stuff.org/Yahoo-data.htm
guides.rubyonrails.org/action_mailer_basics.html
guides.rubyonrails.org/action_mailer_basics.html


REFERENCES 103

[15] Investopedia, “Perfect competition — Investopedia.” http://www.investopedia.com/terms/
p/perfectcompetition.asp. [Online; accessed 23 February 2013].

[16] Wikipedia, “Perfect competition - Wikipedia, the free encyclopedia.” http://en.wikipedia.

org/wiki/Perfect_competition. [Online; accessed 23 February 2013].

[17] Investopedia, “What are determinants of the bid-ask spread? — Investopedia.” http://

www.investopedia.com/ask/answers/06/bidaskspread.asp. [Online; accessed 23 February
2013].

[18] Wikipedia, “Model-view-controller - Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Model-view-controller. [Online; accessed 10 March 2013].

[19] Wikipedia, “Relational database - Wikipedia, the free encyclopedia.” http://en.wikipedia.

org/wiki/Relational_database. [Online; accessed 10 March 2013].

[20] Wikipedia, “NoSQL - Wikipedia, the free encyclopedia.” http://en.wikipedia.org/wiki/

NoSQL. [Online; accessed 10 March 2013].

[21] D. Collective, “How much memory should a ruby on rails application con-
sume? - Stack Overflow.” http://stackoverflow.com/questions/2971812/

how-much-memory-should-a-ruby-on-rails-application-consume. [Online; accessed 10
March 2013].

[22] Wikipedia, “Test-driven development - Wikipedia, the free encyclopdia.” en.wikipedia.org/

wiki/Test_driven_development. [Online; accessed 12 March 2013].

[23] Rails Guides, “Ruby on rails guides: Rails routing from the outside in.” guides.rubyonrails.

org/routing.html. [Online; accessed 13 March 2013].

http://www.investopedia.com/terms/p/perfectcompetition.asp
http://www.investopedia.com/terms/p/perfectcompetition.asp
http://en.wikipedia.org/wiki/Perfect_competition
http://en.wikipedia.org/wiki/Perfect_competition
http://www.investopedia.com/ask/answers/06/bidaskspread.asp
http://www.investopedia.com/ask/answers/06/bidaskspread.asp
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/NoSQL
http://stackoverflow.com/questions/2971812/how-much-memory-should-a-ruby-on-rails-application-consume
http://stackoverflow.com/questions/2971812/how-much-memory-should-a-ruby-on-rails-application-consume
en.wikipedia.org/wiki/Test_driven_development
en.wikipedia.org/wiki/Test_driven_development
guides.rubyonrails.org/routing.html
guides.rubyonrails.org/routing.html

	Contents
	Customer Statement of Requirements
	Problem Statement
	Glossary of Terms

	System Requirements
	User Stories
	Nonfunctional Requirements
	On-Screen Appearance Requirements

	Functional Requirements Specification
	Stakeholders
	Actors and Goals
	Use Cases
	System Sequence Diagrams

	User Interface Specification
	Preliminary Design
	User Effort Estimation

	Effort Estimation
	Background
	Unadjusted Use Case Points
	Technical Complexity Factors
	Environmental Complexity Factors
	Calculations

	Domain Model
	Concept Definitions
	Association Definitions
	Attribute Definitions
	System Operation Contracts
	Economic and Mathematical Models

	System Interaction Diagrams
	Introduction
	Financial Data Retrieval Subsystem
	Asynchronous Processing Subsystem
	Design Patterns

	Class Diagrams and Interface Specifications
	Financial Adaptor Class Diagram
	Financial Adaptor Data Types and Operation Signatures
	Financial Adaptor Traceability Matrix
	Design Patterns
	Asynchronous Subsystems

	System Architecture and System Design
	Architectural Styles
	Identifying Subsystems
	Mapping To Hardware
	Persistent Data Storage
	Network Protocol
	Global Control Flow
	Hardware Requirements

	Data Structures
	Table
	Queue
	Tree

	User Interface Design and Implementation
	Finilized Product

	Design of Tests
	Test Cases
	Test Coverage
	Integration Testing
	Test Cases

	History of Work, Current Status, & Future Work
	History of Work
	Current Status
	Key Accomplishments
	Future Work
	Project Management

	References

