
Bears & Bulls

332:452 Software Engineering
Report 3

Group 6:
William Pan, Aaron Sun, Pratik Ringshia

Dean Douvikas, Omar Raja, Noah Silow-Carroll

URL: https://apps.facebook.com/bearsandbulls/

May 3, 2012

Contributions Breakdown

Task William Aaron Pratik Dean Omar Noah

Statement of Requirements x x x x x x

Glossary of Terms x x x x x x

Functional Requirements x x x x x x

Effort Estimation x x x x x x

Domain Analysis x x x x x x

Interaction Diagrams x x x x x x

Class Diagrams x x x x x x

System Architecture and Design x x x x x x

Algorithms and Data Structures x x x x x x

UI Design and Implementation x x x x x x

Design of Tests x x x x x x

History of Work x x x x x x

Project Management x x x x x x

1

The above chart summarizes the contributions from various team members in
terms of effort. Based on the course website, our grades would normally be calcu-
lated by using a point breakdown for each section. However, we, the group, would
much appreciate it if you could distribute the total points for this report as the
chart dictates, where all team members have contributed equally. Many of the
contributions from the team members cannot be quantified by the grading scheme,
and we all worked equally.
Thank you.

2

Contents

1 Customer Statement of Requirements 9

2 Glossary of Terms 11

3 System Requirements 12
3.1 Functional Requirements . 12
3.2 Nonfunctional Requirements . 13
3.3 On-Screen Appearance Requirements 14

4 Functional Requirements 14
4.1 Stakeholder . 14
4.2 Actors and Goals . 14
4.3 Use Cases . 15

4.3.1 Casual Description . 15
4.3.2 Use Case Diagram . 18
4.3.3 Traceability Matrix . 19
4.3.4 Fully-Dressed Use Cases . 20

4.4 System Sequence Diagrams . 28

5 Effort Estimation using Use Case Points 38
5.1 Unadjusted Use Case Points . 38

5.1.1 Unadjusted Actor Weight 38
5.1.2 Unadjusted Use Case Weight 40
5.1.3 Computing Unadjusted Use Case Points 41

5.2 Technical Complexity Factor . 42
5.3 Environment Complexity Factor . 44
5.4 Calculating the Use Case Points . 45
5.5 Deriving Project Duration from Use-Case Points 45

6 Domain Analysis 47
6.1 Domain Model . 47

6.1.1 Concept Definitions . 54
6.1.2 Association Definitions . 56
6.1.3 Attribute Definitions . 57
6.1.4 Traceability Matrix . 58

6.2 System Operation Contracts . 59
6.3 Mathematical Model . 61

3

7 Interaction Diagrams 64
7.1 Use Case 1/2: Buy/Sell Stocks . 64
7.2 Use Case 3: Query Stocks . 66
7.3 Use Case 5: View Portfolio . 67
7.4 Use Case 7: Register . 68
7.5 Use Case 7/11: Create League/Fund

Use Case 9/15: Manage League/Fund 69

8 Class Diagram and Interface Specification 72
8.1 Class Diagram . 72
8.2 Data Types and Operation Signatures 73

8.2.1 Controller . 74
8.2.2 PageRenderer . 76
8.2.3 DataHandler . 77
8.2.4 StockQuery . 77
8.2.5 ValidityChecker . 78
8.2.6 LiquidityModel . 78
8.2.7 WebPage . 79
8.2.8 FundHandler . 79
8.2.9 Leaderboard . 79
8.2.10 LeagueHandler . 80
8.2.11 Ticket . 80
8.2.12 Shares . 80
8.2.13 Portfolio . 81
8.2.14 StopOrder . 81
8.2.15 LimitOrder . 82
8.2.16 MarketOrder . 82
8.2.17 OrderList . 82
8.2.18 History . 82
8.2.19 FundManager . 82
8.2.20 LeagueCoordinator . 82
8.2.21 InvestorAccount . 83
8.2.22 Fund . 83
8.2.23 League . 83

8.3 Traceability Matrix . 84
8.4 Design Patterns . 85

8.4.1 Command Pattern . 85
8.4.2 Strategy Pattern . 85

4

8.4.3 Uses of Design Patterns . 86
8.5 Object Contraint Language . 86

9 System Architecture and System Design 91
9.1 Architectural Styles . 91

9.1.1 Model/View/Controller . 91
9.1.2 Front and Back Ends . 91
9.1.3 Event-driven Architecture 91
9.1.4 Object-oriented . 92

9.2 Identifying Subsystems . 92
9.3 Mapping Subsystems to Hardware 93
9.4 Persistent Data Storage . 94
9.5 Network Protocol . 95
9.6 Global Control Flow . 95
9.7 Hardware Requirements . 95

10 Algorithms and Data Structures 96
10.1 Algorithms . 96
10.2 Data Structures . 96

11 User Interface Design and Implementation 97

12 Design of Tests 101
12.1 State Diagrams . 101
12.2 Unit Tests . 102

12.2.1 Controller . 102
12.2.2 PageRenderer . 105
12.2.3 DataHandler . 108
12.2.4 ValidityChecker . 112
12.2.5 StockQuery . 113
12.2.6 LiquidityModel . 114
12.2.7 FundHandler . 114
12.2.8 LeagueHandler . 115

12.3 Test Coverage . 115
12.4 Integration Testing . 116
12.5 Non-functional Requirements Testing 116

13 History of Work, Current Status, Future Work 117
13.1 History of Work . 117

5

13.2 Current Status . 118
13.2.1 Key Accomplishments . 118

13.3 Use Cases . 118
13.4 Future Work . 119

14 Appendix 120
14.1 Original Domain Model . 120

14.1.1 Original Concept Definitions 125
14.1.2 Original Association Definitions 128
14.1.3 Original Attribute Definitions 129
14.1.4 Original Traceability Matrix 130

6

Summary of Changes

System Requirements - Functional
REQ-5: Removed League fees and prizes
REQ-6: Removed technical and fundamental indicators
REQ-8: Removed use of Facebook credits

System Requirements - Nonfunctional
REQ-15: Removed performance constraint

System Requirements - On-screen
Requirements enumerated

Stakeholders
Sponsors no longer listed

Actors and Goals
Investor - removed adding stocks to watchlist
League Coordinator - removed adding coordinators and deleting members
Fund Manager - added actor
System Administrator - removed payments

Use Cases
UC-4: Removed player ranking history
UC-6: Removed Watchlist use case
UC-9: Removed Pay League use case
UC-10: Change to comments on leaderboard
UC-15: Removed Add Coordinator use case
UC-16: Removed Remove User use case
UC-17: Removed Update Models use case
UC-19: Removed Manage Money use case

Use Case Diagram
Diagram and description updated
Stock info provider no participates in use cases

7

Alternatives omitted

Fully Dressed Descriptions
Updated descriptions
Removed deprecated use cases

Use Case Points
Section completely redone

Domain Analysis
Section updated to reflect changes in requirements

Class Diagram and Interface Specifications
Design patterns included
Object constraint language included

User Interface Design and Implementation
New section with updated interface

Design of Tests
Tests for deprecated features removed

8

1 Customer Statement of Requirements

Investing has long been the activity of the wealthy. The advent of the discount
broker has lowered the barriers of entry so that almost anyone can become an active
participant in the stock market. Nevertheless commission costs, the risk of losing
money, and a lack of capital can still drive off would-be investors. Bears & Bulls
strives to remove these remaining deterrents by simulating a discount broker and
allowing users to practice investing in a risk-free environment. Most importantly,
in keeping in line with what the investor wants, Bears & Bulls will simulate the
real-life stock market.

To fulfill the investor’s requirements, Bears & Bulls provides many of the services
of a real-life broker. It allows investors to create and manage portfolios through its
user friendly interface. The investor has the ability to buy and sell stocks through
market, limit, buy stop and stop loss orders. Bears & Bulls also supports margin
accounts, and allows investors to buy on margin, providing capabilities that an
investor might not ordinarily have the means to afford. Bears & Bulls will use
real world data by retrieving actual stock information and executing the orders
based on these prices. Since no real assets are being exchanged, Bears & Bulls will
determine price slippage for large trades or volatile markets to better simulate a
real transaction.

An investor’s portfolio will contain information about the stocks that he currently
owns, such as quantity, current market price, total gain and ticker symbol. This
will give the investor a clear overview of his holdings, and allow him to evaluate his
current standings. Bears & Bulls will keep a history of the investor’s transactions
so that he can refer back to them to reevaluate his strategies.

As with all major brokers today, Bears & Bulls will give the investor access to a
wide range of market data. Investors can use Bears & Bulls to access critical market
information, such as charts, fundamental indicators and technical indicators. Bears
& Bulls will also support watchlists, which give investors a quick summary of stocks
they are interested in. Overall, Bears & Bulls’ goal is to strike a balance between
ease of use and depth in order to appeal to beginners and veteran traders alike.

Unlike other market simulators, Bears & Bulls will be introduced as a Facebook
application to take advantage of Facebook’s large user base and the growing trend
of social networking. Integrating Bears & Bulls into Facebook will streamline the
login progress and allow users to access the application directly from their Facebook
account. This eliminates the need for a lengthy registration process and will also
allow users to keep tabs on their friends and exchange trading ideas.

To create a more compelling user experience, Bears & Bulls introduces the ability

9

to create, join and compete in leagues. Leagues provide users a way to test their
investing mettle against friends or other players within Bears & Bulls. Leagues
can be public or private, and the creator can decide the rules of the league, as well
as who can and cannot participate in it. The ability to place entrance fees and
payouts to winners adds an additional dimension of competitiveness.

In order to include everyone in the social aspect of the game, Bears & Bulls offers
it own public leagues. Every portfolio an investor manages will be associated with
a league. Bears & Bulls’ Public leagues are open ended and provide investors an
environment to invest in without the pressure of competition. The best performing
portfolios will still be ranked so skilled investors can demonstrate their investing
acumen.

Perhaps the most exciting feature that Bears & Bulls introduces is the concept
of Funds. Bears & Bulls allows investors to create their own funds, either a hedge
fund or a mutual fund, and manage other investors’ money. This feature has not
been found in any existing stock market simulator and is completely unique to
Bears & Bulls. Investors confident in their abilities can set up a fund and try to
entice other investors to invest in it. The fund managers will be able to set the
rules of the fund, including who they accept money from, what their management
fees are, and what strategies they will employ.

Communication is central to the design of Bears & Bulls. By encapsulating
it within Facebook, users are provided a suite of tools to share their thoughts
on various trades. As the only application of its kind in Facebook, it is unlikely
that users will be perfectly satisfied with Bears & Bulls. As such, Bears & Bulls
also facilitates communication between users and system developers by including a
convenient comment submission system. This will help Bears & Bulls’ developers
make improvements as the program grows.

10

2 Glossary of Terms

Fund – A pooled investment vehicle. funds are run by managers who recieve either
a maintenance fee, performance fee or both. Investors may invest in a fund if
they believe the fund’s manager can help them realize greater gains.

Investor – A person who commits capital expecting to see his/her capital grow in
value. Players in our system are investors.

League – A league is a registered group with a particular set of rules. Leagues are
comprised of players. There are multiple types of leagues.

• Global – A league comprised of all players of the game. Upon joining the
Bears & Bulls, players are automatically added to this league. There is only
one global league.

• Private – A private league can only be joined through invitation.

• Public – A league that can be joined by an user.

League Coordinator – A player who acts as an administrator of a league. Re-
sponsibilities include inviting users and managing details of the league.

Order Ticket – Form players must complete to place an order for the sale or
purchase of stock.

Player – A user of Bears & Bulls. This member joins leagues and competes with
existing members. Synonomous with investor and user.

Portfolio – Detailed account of stocks associated with each of a league’s players.
A player will have a unique portfolio per league and per fund. The player’s
goal is to maximize the value of his portfolio in comparison with the rest of the
league’s members.

Slippage – Price difference between what a trade executes at and the price of the
previously executed trade.[7]

Stock – A type of asset that represents ownership of a corporation. Players will
be able to purchase and sell stocks for their portfolios.

Stop Order – A type of order used to protect gains or limit losses. Stop loss
orders are activated if a stock drops below the stop price and buy stop orders
are activated if a stock rises above the stop price.

Ticker Symbol – A unique series of letters assigned to a stock for the purpose of
trading.

User – A person who would use the system. Synonomous with investor.
Volatility – The tendency for a stock’s price to make drastic moves.

11

3 System Requirements

3.1 Functional Requirements

PW = Priority Weight

ID PW Requirement

REQ-1 5 The system shall allow new users to register an account with
their Facebook profile.

REQ-2 5 The system shall support order placement by filling out an
order ticket. The order ticket shall include order type, quan-
tity, symbol, price type and term. The order ticket shall be
placed in an order queue to be processed.

REQ-3 5 The system shall review the order queue periodically and:
• Immediately execute market orders.
• Convert order to market order if order conditions are

met.
• Remove canceled or expired orders
• If none of the above, leave order untouched.

REQ-4 5 The system shall maintain a database of user portfolios and
transactions. The database will also include league rankings
for each player

REQ-5 4 The system shall support investing leagues. Users shall be
allowed to create leagues and specify duration, capital lim-
its, allowed sectores and entrance fees. The system shall also
support official leagues and rankings based on return on in-
vestment.

REQ-6 4 The system shall provide market data, including price data,
bid/ask sizes, volume and a news feed of relevant articles.

REQ-7 4 The system shall allow users to create and manage Funds.
The rules of a Fund are specified when the Fund is created.
These rules include the types of trades they are allowed to
do and the types of assets they are allowed to hold. Investors
can choose to invest money in Funds and Fund managers can
choose to accept or decline investors.

REQ-8 3 The system shall simulate market liquidity when trading high
volumes of stocks

12

REQ-9 2 The system shall support trading on the margin. The system
shall require an initial and mainentance margin for assets
purchased on margin. The system shall automatically exit
positions that fall below maintenance margin. The user shall
be notified that his position has been exited.

REQ-10 1 The system shall allow users to submit comments to the sys-
tem administrators.

3.2 Nonfunctional Requirements

ID PW Requirement

REQ-11 5 The system shall be simple to use and have a minimal learn-
ing curve. Data shall be presented in such a way that the
user’s focus is automatically drawn to it when the user views
the page. Whenever a user navigates to a page the main con-
tent of the page shall be placed at the center of the screen
and the user shall not have to scroll to view the data or access
the majority of the options on the page.

REQ-12 5 All user data shall be stored in the system’s database. No
user information shall be stored on the user’s device. User’s
shall not be able to directly modify any data. There must be
at least two copies of every record in case of system failure.

REQ-13 4 The system shall have a common aesthetic theme and any
two pages shall be separated by no more than 4 links.

REQ-14 3 The sytem shall be platform independent and should run
equally well on Windows, Mac and ∗nix systems. The system
shall have consistent appearance between browsers.

REQ-15 2 The system shall maintain function in the event of any
changes to Facebook’s API.

13

3.3 On-Screen Appearance Requirements

ID PW Requirement

REQ-16 5 The system must fit within a Facebook iframe with no clip-
ping. The maximum width of any page must be 760 pixels.

REQ-17 3 The system must have a consistent look across different
browsers and screen resolutions.

REQ-18 3 Advertisements must adhere to Facebook’s Advertising
Guidelines.

4 Functional Requirements

4.1 Stakeholder

• Facebook Users who wish to use the system for entertainment.
• Novice Investors who wish to use the system to practice investing.
• System Administrators who will maintain the system as well as manage the

global league.

4.2 Actors and Goals

Investor – Initiating Actor, Participating Actor

1. To create an account
2. To make trades
3. To research stocks
4. To view transaction and player ranking history
5. To view and edit account information
6. To view porfolios and balances
7. To create and/or join investment leagues
8. To create and/or join a Fund
9. To submit comments to system administrators

League Coordinator – Initiating Actor

1. Invite other users to the investment league
2. Manage league details

Fund Manager – Initiating Actor

14

1. Invite other users to the fund league
2. Manage fund details

System Administrator – Initiating Actor, Participating Actor

1. To maintain the database and website
2. To view messages from users

Stock Info Provider – Participating Actor
Database Server – Participating Actor
Web Server – Participating Actor
Facebook – Participating Actor

4.3 Use Cases

4.3.1 Casual Description

Use Case UC-1: Buy Stock

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To buy a stock. This involves filling out and submitting an order ticket
and includes market, limit, buy to cover and buy stop orders. Buy orders
may use margin if the investor’s account is a margin account. Market prices
will be queried from Stock Info Provider.

Use Case UC-2: Sell Stock

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To sell a stock. This involves filling out and submitting an order ticket
and includes, limit short sell and stop loss orders. Market prices will be
queried from Stock Info Provider.

Use Case UC-3: Query Stock

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To search ticker symbols and view market information for specified
stock. Information will include prices, charts, fundamentals, news articles,
etc. Information will be queried from Stock Info Provider.

15

Use Case UC-4: View History

Actor: Investor (Initiating), Database (Participating)
Goal: To view transaction history. Transaction history is a compilation of

previous trades within a league.

Use Case UC-5: View Portfolio

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To view portfolio and balances. This includes all currently owned stocks
as well as monetary balances.

Use Case UC-6: Register

Actor: Investor (Initiating), Database (Participating), Facebook (Participat-
ing)

Goal: To register for an account. This creates a game account that will retrieve
user information from Facebook.

Use Case UC-7: Create League

Actor: Investor (Initiating), Database (Participating)
Goal: Create an investment league. Upon creating a league, the investor is

given the position of coordinator within the league.

Use Case UC-8: Submit Comment

Actor: Investor (Initiating), Database (Participating), Facebook (Participat-
ing)

Goal: To submit comments to system administrators or on leaderboards. This
allows investor to provide feedback to system admins, as well as allowing
for discussion amongst traders.

Use Case UC-9: Create Fund

Actor: Investor (Initiating), Database (Participating)
Goal: To create a Fund (hedge/mutual fund). Upon creating the Fund, the

investor becomes the Fund’s manager.

Use Case UC-10: Join League

Actor: Investor (Initiating), Investor (Participating), Database (Participating)

16

Goal: To join a league and participate in it.

Use Case UC-11: Manage League

Actor: League Coordinator (Initiating), Database (Participating)
Goal: To manage league details such as adding users and setting league rules.

Use Case UC-12: Invite to League

Actor: League Coordinator (Initiating), Investor (Participating)
Goal: To invite other investors to joing the league. Invitations are the only

way to joing private leagues.

Use Case UC-13: Update Models

Actor: Sys Admin (Initiating)
Goal: To update liquidity model that simulates price slippage during high

volatility and block trades.

Use Case UC-14: View Comment

Actor: Sys Admin (Initiating), Facebook (Participating)
Goal: View user comments. Comments will be logged and taken into consid-

eration for future patches to the system.

Use Case UC-15: Manage Fund

Actor: Fund Manager (Initiating), Database (Participating)
Goal: To accept and decline investors who wish to invest in the Fund and edit

settings.

17

4.3.2 Use Case Diagram

Figure 1: Use Case Diagram [12]

Figure 1 shows the relations between actors and the use cases. The investor,
system admin, league coordinator, and fund manager are the only initiating actors
in this diagram, and there are no non-human initiating actors. The database is seen
to participate in almost every use case except some of those that are initiated by
the system admin. The majority of the use cases are also initiated by the investor,
with some use cases being initiated by the more specialized league coordinator and
fund manager. In this design, we have that the Fund manager only has one other
use case than the regular investor because his duties reflect very closely to those of
the investor. The League Coordinator assumes many more responsibilities than a
normal investor (like Invite to League and Manage League). Facebook participates
in login and registration, pulling account information such as names and profile
pictures, and also it provides the comment functionality. The stock info provider

18

only participates in 4 use cases, all of which query it at some point in their action.
The use case diagram here shows that there is low coupling within the system
because almost all use cases have only a total of two actors either initiating or
participating.

As an alternate scheme (not depicted), the stock info provider is regularly queried
by the system, and the system sends the data to the database where it is stored.
This makes the stock info provider assume much less responsibilities, and it would
only be a participating actor in potentially one use case (something along the lines
of System Query). Also, the fund manager has his own set of use cases in managing
a fund (like Fund Buy and Fund Sell) in order to reflect that it is a fund that is
carrying out these duties. This alternate scheme was not chosen because we did not
wish for the database to hold that much information, and also the fund manager
duties seemed too similar to the investor’s duties to warrant a new set of use cases.

4.3.3 Traceability Matrix

R# = REQ-#

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

PW 5 5 5 5 4 4 4 3 2 1 Max Total

UC01 x x x x 5 15
UC02 x x x x 5 15
UC03 x x x 5 14
UC04 x 5 5
UC05 x x x x 5 17
UC06 x x x x x x x 5 26
UC07 x 4 4
UC08 x 1 1
UC09 x x 5 9
UC10 x 4 4
UC11 x 4 4
UC12 x 4 4
UC13 x 3 3
UC14 x 1 1
UC15 x 4 4

19

4.3.4 Fully-Dressed Use Cases

Use Case UC-1: Buy Stock

Related Requirements: REQ-2, REQ-3, REQ-8, REQ-9
Initiating Actor: Investor
Actor’s Goal: To buy a stock and add it to his portfolio
Participating Actors: Database, Stock Info Provider
Precondition: The user must have an account and have enough money for

the purchase.
Postcondition: The user’s portfolio must be debited the amount of the pur-

chase and the stock must be added to the user’s portfolio. Information
about the stock must be updated for the lifetime of the stock in the port-
folio.

Flow of Events for Main Success Scenario:

1 → The investor searches for a ticker symbol and fills out and submits an
order ticket with the amount he wishes to buy.

2 → The system adds the order ticket to the order queue, and when the
system reaches the ticket, the system queries the stock info provider for
the price of the stock.

3 ← Stock info provider sends the price of the stock to the system.
4 → The system determines the price of the buy and if order conditions are

met it queries the database for the investor’s balance.
5 ← The database sends the investor’s balance to the system.
6 → The system determines that the balance is enough to satisfy the buy and

the system signals the database to perform the transaction.
7 ← The database adds the stock to the investor’s portfolio, his balance is

decreased by the buy amount, and the transaction is recroded in the
transaction history. The database signals to system that the transaction
is complete.

8 ← The system signals to the player: “Transaction Completed”.

Flow of Events for Not Enough Money:

1 → The investor searches for a ticker symbol and fills out and submits an
order ticket with the amount he wishes to buy.

2 → The system adds the order ticket to the order queue, and when the
system reaches the ticket, the system queries the stock info provider for
the price of the stock.

3 ← Stock info provider sends the price of the stock to the system.
4 → The system determines the price of the buy and if order conditions are

20

met it queries the database for the investor’s balance.
5 ← The database sends the investor’s balance to the system.
6 ← The system signals to the player: “Error in transaction: Balance too

low”. The order ticket is removed from the list.

Use Case UC-2: Sell Stock

Related Requirements: REQ-2, REQ-3, REQ-8, REQ-9
Initiating Actor: Investor
Actor’s Goal: To sell a stock from his portfolio and receive cash from it.
Participating Actors: Database, Stock Info Provider
Precondition: The user must have an account and have enough of the par-

ticular stock for the sell.
Postcondition: The user’s credited the amount of the sale and the stock must

be removed from the user’s portfolio.
Flow of Events for Main Success Scenario:

1 → The investor searches for a ticker symbol and submits an order ticket
with the amount he wishes to sell. (The order ticket will display the
stocks the investor currently has when he chooses the option “sell”).

2 → The system adds the ticket to the order queue, and after the system
reaches the ticket in the queue the system queries the stock info provider
for the price of the stock.

3 ← Stock info provider sends the price of the stock to the system.
5 → The system determines the price of the sell and when order conditions

are met it queries the database for the number of shares of the stock in
the investor’s portfolio.

6 ← The database sends the number of stocks to the system.
7 → The system determines that the number of shares is greater than or

equal to the amount he wishes to sell. The system signals the database
to perform the transaction.

9 ← The database subtracts the number of shares from the investor’s port-
folio, his balance is credited by the sell amount and the transaction is
recorded in the transaction history. The database signals to the system
that the transaction is complete.

10 ← The system signals to the player: “Transaction Complete”.

Flow of Events for Not Enough Stock:

1 → The investor searches for a ticker symbol and fills out and submits an
order ticket with the amount he wishes to sell. (The order ticket will
display the stocks the investor currently has when he chooses the option

21

“sell”);
2 → The system adds the ticket to the queue, and after the system reaches

the ticket in the queue the system queries the stock info provider for the
price of the stock.

3 ← The stock info provider sends the price of the stock to the system.
4 → The system determines the price of the sell and when order conditions

are met it queries the database for the number of shares of the stock in
the investor’s portfolio.

5 ← The database sends the number of stocks to the system.
6 ← The system determines that the number of stocks is less than the number

he wishes to sell.
7 ← The system signals to the player: “Error in Transaction: Not enough

shares held”. The order ticket is removed from the queue.

Use Case UC-3: Query Stocks

Related Requirements: REQ-2, REQ-3, REQ-6
Initiating Actor: Investor
Actor’s Goal: To search ticker symbols and view market information for the

stock
Participating Actors: Stock Info Provider, Database
Precondition: The user must have an account
Postcondition: The market information for the stock must be displayed on

the screen.
Flow of Events for Main Success Scenario:

1 → The investor clicks the “Markets” link and searches a ticker symbol and
queries a stock.

2 → The system queries market data from the stock info provider
3 ← The stock info provider sends the data to the system.
4 ← The system displays the market data on the page.

Flow of Events for Error in Retrieving Data:

1 → The investor browses to the “Markets” section and searches a ticker
symbol and queries a stock.

2 → The system queries the market data from the stock info provider.
3 ← The stock info provider fails to send data to the system, and notifies the

system that there was an error.
4 ← The system displays “Error retrieving data”.

22

Use Case UC-5: View Portfolio

Related Requirements: REQ-4, REQ-5, REQ-6, REQ-7
Initiating Actor: Investor
Actor’s Goal: To view his current portfolio and cash balances
Participating Actors: Database, Stock Info Provider
Precondition: The investor must have an account.
Postcondition: The investor’s portfolio and balances must be displayed on

the screen.
Flow of Events for Main Success Scenario:

1 → The investor navigates to “Portfolio & Balances”.
2 → The system queries the database for the investor’s portfolio and bal-

ances.
3 ← The database sends the investor portfolio and balances to the system.
4 → The system queries the stock info provider for the price information for

the stocks held in the portfolio.
5 ← The stock info provider sends the requested data to the sytem.
6 ← The system displays the portfolio and balances with the stock informa-

tion provided by the stock info provider.

Flow of Events for Error in Retrieving Data:

1 → The investor navigates to “Portfolio & Balances”
2 → The system quesries the database for the investor’s portfolio and bal-

ances
3 ← The database sends the investor’s portfolio and balances to the system.
4 → The system queries for stock information for the stocks held in the in-

vestor’s portfolio.
5 ← The stock info provider fails to send the requested data to the system,

and notifies the system that there was an error.
6 ← The system displays the portfolio and balances without the data pro-

vided by the stock info provider and displays without the data provided
by the stock info provider and displays “Error Retrieving Data”.

Use Case UC-6: Register

Related Requirements: REQ-1
Initiating Actor: Investor
Actor’s Goal: To create an account
Participating Actors: Database, Facebook
Precondition: The system must support account creation.

23

Postcondition: A new account is in place for the user. This account will hold
information such as name, portfolio holdings, balances, etc.

Flow of Events for Main Success Scenario:

1 → The investor navigates to the application Facebook’s website and clicks
“Get App”

2 ← Facebook displays page asking if the investor will allow the app to access
information.

3 → The investor clicks “Allow”.
4 ← Facebook authenticates the user.
5 ← The system signals to the database to create a new account with the

above information.
6 ← The database creates the user account and signals to the system that

the account was created.
7 ← The system signals to the user that an account has been created.

Use Case UC-7: Create League

Related Requirements: REQ-5
Initiating Actor: Investor
Actor’s Goal: To create an investment league
Participating Actors: Database, Webmail Server
Precondition: The investor must have an account
Postcondition: The new league must be created, with the initiating investor

as the League Coordinator.
Flow of Events for Main Success Scenario:

1 → The investor navigates to “Investment Leagues” and fills out a form with
league name, entrance fee, starting funds, etc.

2 → The system determines that the league name is unique, and signals to
the database to create a new league with the above information.

3 ← The database creates the stated league, and signals to the system that
it has suceeded.

4 ← The system signals to the user “League Creation Successful!”

Flow of Events for Duplicate League Name:

1 → The investor navigates to “Investment Leagues” and fills out a form with
league name, entrance fee, starting funds, etc.

2 ← The system determines that the league name is not unique, and the
system signals to the user “League Name is Already Taken”.

3 → Loop back to step 2 and continue to either main success scenario or
alternate scenario.

24

Use Case UC-9: Create Fund

Related Requirements: REQ-4, REQ-7
Initiating Actor: Investor
Actor’s Goal: To create a Fund
Participating Actors: Database
Precondition: The investor must have an account
Postcondition: The new Fund must be created, with the initiating investor

as the Fund manager.
Flow of Events for Main Success Scenario:

1 → The investor navigates to “Funds” and fills out a form with Fund name,
rules, restrictions, and description.

2 → The system determines that the Fund name is unique, and signals to the
database to create a new league with the above information.

3 ← The database creates the stated Fund, and signals to the system that it
has suceeded.

4 ← The system signals to the user “Fund Creation Successful!”

Flow of Events for Duplicate Fund Name:

1 → The investor navigates to “Funds” and fills out a form with Fund name,
rules, restrictions, and description.

2 ← The system determines that the Fund name is not unique, and the system
signals to the user “Fund Name is Already Taken”.

3 → Loop back to step 2, and continue to either main success scenario or
alternative scenario.

Use Case UC-11: Manage League

Related Requirements: REQ-5
Initiating Actor: League Coordinator
Actor’s Goal: To manage league details such as starting balance, entry fee,

duration, limiting capital, etc.
Participating Actors: Database
Precondition: The user changing league details must be the League Coordi-

nator
Postcondition: The league details are successfully modified.
Flow of Events for Main Success Scenario:

1 → The league coordinator navigates to “Manage League”.He then fills out
the league information form and submits it to the system.

25

2 → The system determines that all changes are valid, and the system signals
to the database to implement the changes.

3 ← The database implements the changes in league settings, and signals to
the system that the changes were made successfully.

4 ← The system signals to the league coordinator that the settings were suc-
cessfully saved.

Flow of Events for Invalid Changes:

1 → The league coordinator navigates to “Manage League”.He then fills out
the league information form and submits it to the system.

2 → The system determines that one or more changes are invalid, and the
system signals to the user “Invalid Changes”.

3 → Loop back to step 2, and continue to either the main success scenario or
alternate scenario.

Use Case UC-12: Invite to League

Related Requirements: REQ-5
Initiating Actor: League Coordinator
Actor’s Goal: To invite other investors to join the league.
Participating Actors: Database, Investor
Precondition: The inviter and invitee must have an account, and the inviter

must be a league coordinator.
Precondition: The investor becomes a member of the league.
Flow of Events for Main Success Scenario:

1 → The coordinator chooses “Invite to League” and selects the appropriate
investor.

2 ← The system notifies the invitee that he has been invited to join the
league.

3 ← The system notifies the inviter that the invitation was sent.

Use Case UC-15: Manage Fund

Related Requirements: REQ-7
Initiating Actor: Fund Manager
Actor’s Goal: To manage Fund details such as rules, restrictions, and descrip-

tions.
Participating Actors:
Precondition:
Flow of Events for Main Success Scenario:

26

1 → The league coordinator navigates to “Manage Fund”.He then fills out
the Fund information form and submits it to the system.

2 → The system determines that all changes are valid, and the system signals
to the database to implement the changes.

3 ← The database implements the changes in Fund settings, and signals to
the system that the changes were made successfully.

4 ← The system signals to the Fund manager that the settings were success-
fully saved.

Flow of Events for Invalid Changes:

1 → The league coordinator navigates to “Manage Fund”.He then fills out
the Fund information form and submits it to the system.

2 → The system determines that one or more changes are invalid, and the
system signals to the user “Invalid Changes”.

3 → Loop back to step 2, and continue to either the main success scenario or
alternate scenario.

27

4.4 System Sequence Diagrams

Note: Diagrams of alternative implementations are in the appendix.

Figure 2: UC-1: Buy Stock

In this sequence diagram, the investor starts by submitting a buy to the web
server. The system then requests the stock information from the stock info provider.
Following this, the system requests the investor’s balance from the database, and
if the investor has enough money for the transaction, the system requests that the
database complete the transaction. Lastly, the system returns a confirmation of
the buy to the investor.

For the alternate scenario where the investor does not have enough money, the
system does not request the database to carry out the transaction and instead sends
an error back to the investor.

An alternative implementation for this use case was discussed, where instead of
the system querying the stock info provider for the stock prices, it would query the
database for the stock prices. In this model the database would have up to date
information on the stock price info (from periodic queries from the system), and
thus the stock info provider is left out of the transaction. However, this idea was
not implemented because we decided it would be too much information to cache
and would not be too practical.

28

Figure 3: UC-2: Sell Stock

In this sequence diagram, the investor starts by submitting a sell to the web
server. The system then requests the stock information from the stock info provider.
Following this, the system requests the amount the stock that the investor holds
from the database, and if the investor has enough stocks for the transaction, the
system requests that the database complete the transaction. Lastly, the system
returns a confirmation of the sell to the investor.

For the alternate scenario where the investor does not have enough stocks, the
system does not request the database to carry out the transaction and instead sends
an error back to the investor.

An alternative implementation for this use case was discussed, where instead of
the system querying the stock info provider for the stock prices, it would query the
database for the stock prices. In this model the database would have up to date
information on the stock price info, and thus the stock info provider is left out of
the transaction. However, this idea was not implemented because we decided it
would be too much information to cache and would not be too practical.

29

Figure 4: UC-3 Query Stock

In this sequence diagram, the Investor first requests stock information from the
system. The system then queries the stock information from the stock info provider,
and then feeds it back to the Investor.

For the alternate scenario where the request from the stock info provider fails,
the system sends an error back to the user that it was not able to retrieve the data.

As discussed in the buy and sell use cases, an alternative implementation would
have been that the system queries the database instead for the information. (Please
see Sequence Diagram for Buy Stock for full discussion on it).

30

Figure 5: UC-5 View Portfolio

In this sequence diagram, the investor starts off by navigating to his portfolio
and in this way requests the portfolio from the system. The system then requests
the portfolio from the database, and when the portolio is returned to the system,
the system then queries the stock info provider for the current stock prices for the
stocks in the portfolio. The system then sends back to the user the portfolio with
the stock prices.

For the alternate scenario where the system is unable to retrieve data from the
stock info provider, it will instead return an incomplete portfolio to the investor
where the stock names and quantities are displayed, but no information on the
stock is given.

As discussed in the buy and sell use cases, an alternative implementation would
have been that the database stores the stock prices. When the system makes the
call to the database, the database compiles both the portfolio as well as the prices
before sending it off to the system. This implementation cuts out the step of the
system querying the stock info provider, but again it was determined that this
would not be the most efficient strategy because the system would have to query
the stock info provider periodically for the price updates and store it in the database
cache. (Please see the Sequence Diagram Buy Stock above for full discussion on
it).

31

Figure 6: UC-6 Register

In this sequence diagram, the investor first navigates to the app and clicks ”Get
App” on the Facebook website. Folowing this, Facbook returns the App page to
the investor, prompting the investor to make a choice of whether to allow the app
to access information or not allow it. The investor clicks ”Allow” and Facebook
authenticates the investor. The system then requests from the database that an
account be created, and when this is done the system provides access the investor
access to the site.

An alternate implementation for this use case was discussed where instead of cre-
ating an account directly for the investor, the investor would have to first navigate
within the system and click ”Register” within the system after being authenticated
by Facebook. However, this idea was discarded because it seemed unnecessary for
the investor to go through that route.

32

Figure 7: UC-7 Create League

In this sequence diagram, the investor requests a new league from the system,
which in turn requests a league from the Database to be created. After the account
is created, the Database signals to the system that is has been created, and the
system signals back to the investor that the league has been created.

For the alternate scenario, if the database detects that there is a duplicate name,
it will return an error to the system, which in turn will give an error back to the
investor.

There were no real alternative implementations that we discussed, since this
seemed the only logical procession of events.

33

Figure 8: UC-9: Create Fund

In this sequence diagram, the investor requests a new Fund Account from the
system, which in turn requests a Fund Account from the Database to be created.
After the account is created, the Database signals to the system that is has been
created, and the system signals back to the investor that the account has been
created.

For the alternate scenario, if the database detects that there is a duplicate name,
it will return an error to the system, which in turn will give an error back to the
investor.

There were no real alternate implementations that we discussed, since this seemed
the only logical procession of events.

34

Figure 9: UC-11 Manage League

In this sequence diagram, the League Coordinator requests that changes be made
to the league settings, and after the system has verified the changes are valid, it
sends a request to the database to implement these changes. After these changes
have been made, the database signals to the system that the changes have been
made, and the system then signals to the League Coordinator that the changes have
been made.

For the alternate scenario, if the database detects that there is an error in the
changes (for example an invalid value entered in a field), it will return an error to
the system, which in turn will give an error back to the investor.

There was no alternative implementation of this use case that was discussed since
this one seemed to be the only logical way to do it given the actors that we had.

35

Figure 10: UC-12 Invite to League

In this sequence diagram, the League Coordinator requests that the system sends
an invitation to the investor, and after the system has sent it to the investor, the
system returns a confirmation to the League Coordinator that an invitation was
sent.

There was an alternative implementation of this use case where we discussed the
possibility that league members could also invite other investors. However, this
seemed to be an unwise choice since it could cause a mass of unwanted invitations,
thus this functionality was restricted to the League Coordinator.

36

Figure 11: UC-15 Manage Fund

In this sequence diagram, the Fund Manager requests that changes be made to
the Fund settings, and after the system has verified the changes are valid, it sends a
request to the database to implement these changes. After these changes have been
made, the database signals to the system that the changes have been made, and
the system then signals to the Fund Manager that the changes have been made.

For the alternate scenario, if the database detects that there is an error in the
changes (for example an invalid value entered in a field), it will return an error to
the system, which in turn will give an error back to the investor.

There was no alternative implementation of this use case that was discussed since
this one seemed to be the only logical way to do it given the actors that we had.

37

5 Effort Estimation using Use Case Points

Use Case Points (UCP) method provides the ability to estimate the person-hours
a software project requires based on its use cases. UCP method analyzes the use
case actors, scenarios, nonfunctional requirements, and environmental factors and
joins them in a simple equation: UCP = UUCP ∗ TCF ∗ ECF.

• Unadjusted Use Case Points (UUCP) – Measures complexity of functional re-
quirements
• Technical Complexity Factor (TCF) – Measures complexity of nonfunctional

requirements
• Environmental Complexity Factor (ECF) – Asseses development teams expe-

rience and their development environment

5.1 Unadjusted Use Case Points

UUCP are computer as a sum of the following two components:

• Unadjusted Actor Weight (UAW) – Combined complexity of all the actors in
all the use cases
• Unadjusted Use Case Weight (UUCW) – Total number of activities contained

in all the use case scenarios

UUCP = UAW + UUCW

5.1.1 Unadjusted Actor Weight

The weights for Actor classification are computed via the following table: Actor
classification and associated weights

Actor Description of Actor Type Weight

Simple The actor is another system which interacts with our system
through a defined application programming interface (API)

1

Average The actor is a person interacting through a text-based user
interface, or another system interacting through a protocol,
such as a network communication protocol

2

Complex The actor is a person interacting via a graphical user interface 3

38

Actor Classification for Bears & Bulls

Actor Description of Characteristics Complexity Weight

Investor Investor is interacting with the system through
a graphical user interface.

Complex 3

League Co-
ordinator

League Coordinator is interacting with the sys-
tem through a graphical user interface.

Complex 3

Fund Man-
ager

Fund Manager is interacting with the system
through a graphical user interface.

Complex 3

System Ad-
min.

System Administrator is interacting with the
system via a graphical user interface. (Cre-
ators of Bears & Bulls)

Complex 3

Stock Info.
Provider

Stock Information Provider (Yahoo Finance) is
interacting with the system through a network
protocol.

Average 2

Database
Server

Database is another system interacting
through a protocol.

Average 2

Web Server Web Server is another system interacting
through HTTP

Average 2

Facebook Facebook is the system interacting through a
protocol which is the website used to host our
entire application.

Average 2

UAW (Bears & Bulls) = 4 ∗ Average + 4 ∗ Complex = 20

39

5.1.2 Unadjusted Use Case Weight

The weights for use cases are computer via the following table:

Use Case
Category

Description of Category Weight

Simple Simple user interface. Up to one participating actor (plus
initiating actor). Number of steps for the success scenario:
no more than 3. If presently available, its domain model
includes no more than 3 concepts.

5

Average Moderate interface design. Two or more participating actors.
Number of steps for the success scenario: 4 to 7. If presently
available, its domain model includes between 5 and 10 con-
cepts.

10

Complex Complex user interface or processing. Three or more partic-
ipating actors. Number of steps for the success scenario: at
least 7. If available, its domain model includes at least 10
concepts.

15

Use case classification for Bears & Bulls

Use Case Description Category Weight

Buy Stock
(UC-1)

Simple user interface. 8 steps for main success
scenario. Three participating actors (Investor,
Database, Stock Info Provider).

Complex 15

Sell Stock
(UC-2)

Simple user interface. 10 steps for main success
scenario. Three participating actors (Investor,
Database, Stock Info Provider).

Complex 15

Query
Stock
(UC-3)

Simple user interface. 4 steps for main success
scenario. Three participating actors (Investor,
Database, Stock Info Provider).

Average 10

View
History
(UC-4)

Simple user interface. 6 steps for main success
scenario. Two participating actors (Investor,
Database).

Average 10

View Port-
folio (UC-
5)

Simple user interface. 6 steps for main success
scenario. Three participating actors (Investor,
Database, Stock Info Provider).

Average 10

40

Register
(UC-6)

Simple user interface. 7 steps for main success
scenario. Three participating actors (Investor,
Database, Facebook).

Average 10

Create
League
(UC-7)

Simple user interface. 4 steps for main success
scenario. Three participating actors (Investor,
Database, Web Server).

Average 10

Submit
Comment
(UC-8)

Simple user interface. 4 steps for main success
scenario. Three participating actors (Investor,
Database, Web Server).

Simple 5

Create
Fund (UC-
9)

Simple user interface. 3 steps for main success
scenario. Two participating actors (Investor,
Database).

Simple 5

Join
League
(UC-10)

Simple user interface. 5 steps for main success
scenario. Three participating actors (Investor,
Database, Web Server).

Average 10

Manage
League
(UC-11)

Moderate user interface. 4 steps for main
success scenario. Two participating actors
(League Coordinator, Database).

Average 10

Invite to
League
(UC-12)

Simple user interface. 3 steps for main success
scenario. Three participating actors (League
Coordinator, Database, Investor).

Average 10

Update
Models
(UC-13)

Moderate user interface. 7 steps for main suc-
cess scenario. One participating actor (System
Administrator).

Average 10

View Com-
ment (UC-
14)

Simple user interface. 3 steps for main success
scenario. Two participating actors (Investor,
Database).

Simple 5

Manage
Fund (UC-
15)

Moderate user interface. 4 steps for main suc-
cess scenario. Two participating actors (Fund
Manager, Database).

Average 10

5.1.3 Computing Unadjusted Use Case Points

UUCW(Bears & Bulls) = 3 ∗ Simple + 10 ∗ Complex = 145
UUCP(Bears & Bulls) = UAW + UUCW = 20 + 145 = 165

41

5.2 Technical Complexity Factor

Technical Complexity Factor (TCF) is computed using thirteen standard techni-
cal factors to estimate the impact of productivity of the nonfunctional requirements
for the application. We then need to assess the perceived complexity of each tech-
nical factor in the context of the project. A perceived complexity value is between
0 and 5, with 0 meaning trivial effort, 3 meaning average effort and 5 meaning
major effort. Each factors weight is then multiplied by perceived complexity factor
to produce calculated factor. Two constants are used with TCF. The constants
utilized are C1 = 0.6 and C2 = 0.01.

TCF = Constant1 + Constant2× TechnicalFactorTotal = C1 + C2 ·
13∑
i=1

Wi · Fi

Technical complexity factors and their weights:

Technical

Factor

Description Weight

T1 Distributed system 2

T2 Performance objectives 1

T3 End-user efficiency 1

T4 Complex internal processing 1

T5 Reusable design or code 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent use 1

T11 Special security features 1

T12 Provides direct access for third parties 1

T13 Special user training facilities are required 1

42

Technical complexity factors for Bears & Bulls:
PC = Perceived Complexity, CF = Calculated Factor

Technical
Factor

Description Weight PC CF

T1 Distributed, web-based system 2 3 6

T2 User expects good performance, but will
tolerate network latency

1 3 3

T3 End-user expects efficiency, which is
achieved through caching

1 4 4

T4 Internal processing required multiple in-
teractions with other subsystems

1 4 4

T5 No requriement for reusability 1 0 0

T6 No user installation required 0.5 2 1

T7 Ease of use was very important 0.5 5 2.5

T8 Portable since it runs in a browser 2 2 4

T9 Relatively simple to add new features 1 2 2

T10 Concurrent use is required 1 4 4

T11 Security handled by Facebook 1 0 0

T12 No direct access for third parties 1 0 0

T13 No training required 1 0 0

TCF = 0.6 + (0.01 × 32.5) = 0.925.
This results in a decrease of the UCP by 7.5 %.

43

5.3 Environment Complexity Factor

The Environment Complexity Factor (ECF) is computed utilizing eight standard
environmental factors to measure the experience level of the people on the project
and the stability of the project. We then need to assess the perceived impact based
on perception that factor has on projects success. 1 means strong negative impact,
3 is average and 5 means strong positive impact.

TCF is computed utilizing thirteen standard technical factors to estimate the
impact of productivity of the nonfunctional requirements for the application. We
then need to assess the perceived complexity of each technical factor in the context
of the project. A perceived complexity value is between 0 and 5 with 0 meaning
that it is irrelevant, 3 means average effort and 5 means major effort. Each factors
weight is then multiplied by perceived complexity factor to produce calculated
factor. Two constants are used with ECF. The constants utilized are C1 = 1.4 and
C2 = -0.03.

ECF = Constant1+Constant2×EnvironmentalFactorTotal = C1+C2·
8∑
i=1

Wi·Fi

Environmental complexity factors and their weights:

Environmental

Factor

Description Weight

E1 Familiar with the development process 1.5

E2 Application problem experience 0.5

E3 Paradigm experience 1

E4 Lead analyst capability 0.5

E5 Motivation 1

E6 Stable requirements 1

E7 Part-time staff -1

E8 Difficult programming language -1

44

Environmental Complexity Factors for Bears & Bulls:
PI = Perceived Impact, CF = Calculated Factor

Environment
Factor

Description Weight PI CF

E1 Beginner familiarity with UML-based de-
velopment

1.5 1 1.5

E2 Half of team has familiarity 0.5 3 1.7

E3 Some knowledge of object-oriented ap-
proach

1 3 3

E4 Average lead analyst 0.5 2 1

E5 Highly motivated overall 1 4 4

E6 Requirements were stable 2 5 10

E7 Student staff (part-time) -1 4 -4

E8 Used new programming languages but re-
sources were readily available

-1 5 -5

ECF = 1.4 - (0.03 × 12) = 1.04
This results in an increase of UDP by 4%.

5.4 Calculating the Use Case Points

As mentioned earlier, UCP = UUCP × TCF × ECF.
From above calculations, UCP variables have the following values:
UUCP = 165
TCF = 0.925
ECF = 1.04
UCP = 165 × 0.925 × 1.04 = 158.73 or 159 use case points.

5.5 Deriving Project Duration from Use-Case Points

UCP is a measure of software size. We need to know the teams rate of progress
through the use cases. We need to utilize the UCP and Productivity Factor (PF)
to determine duration. The equation for computing Duration is:

Duration = UCP × PF

45

Productivity Factor is the ratio of development person-hours needed per use case
point. Assuming a PF = 28, the duration of our system is computed as follows:

Duration = UCPXPF = 159 ∗ 28 = 4452

4452 person-hours for the development of the system.
This does not imply that the project will be completed in 4452/24 = 185 days

12 hours. A reasonable assumption is that each developer on average spent 20
hours per week on project tasks. With a team of six developers, this means the
team makes 6 *20 = 120 hours per week. Dividing 4452 person-hours by 120 hours
per week, we obtain the total of approximately 37 weeks to complete this project.
Weve spent 15 weeks approximately on the project so far which gives us 21 weeks
left to complete this project according to our estimation. The reason for the large
estimate is due to the highly over-estimated productivity factor.

46

6 Domain Analysis

The old domain model is in the appendix.

6.1 Domain Model

Figure 12: Domain Model

Figure 12 shows Bears & Bulls’ new, updated Domain Model. The subsequent
diagrams give insight into how the concepts work to satisfy the key use cases
of our updated website. We will not show any alternate models, as we are no
longer considering options on how to implement the design; the implementation is
already done. The only major change from our old model is the addition of the
Controller concept, which is now central to the flow of our processes, taking a lot
of responsibility off of other concepts. Additionally, minor changes include the way
some of our concepts interact, and how we have replaced web server, web browser,
and web framework with just web page. We’ve added the Facebook concept as
well, to show its involvment in the Registration use case.

47

Figure 13: Place Order

Figure 13 represent both our buy (UC-1) and sell (UC-2) use cases since they
behave in the same way. The User fills out order information on the web page, and
sends to request to order to the Controller. The controller relays the order to the
Validity Checker so that it can send the corresponding stock query to the Stock
Query concept, which fetches the necessary information from the remote Stock Info
Provider. The Validity Checker then sends a request to the Liquidity Manager to
adjust the stock price based on our liquidity model. Now the Validity Checker must
retrieve the User’s balance in order to verify the transaction is valid; it requests
for the Data Handler to get this information from the Database. If the transaction
is successful, the Controller tells the Data Handler to update the User’s portfolio.
Then the Controller will let the Page Renderer know what page to generate and
pass necessary data. The Web Page is informed of the completion of the order and
knows to request the page to be viewed from the Page Renderer.

48

Figure 14: View Portfolio

Figure 14 shows the UC-5 View Portfolio. The User queries about a portfolio
from the Web Page, and this request gets sent to the Controller. To get the
necessary data, the Controller will send a request for the portfolio info to the Data
Handler, which obtains this data from the Database. The Controller will then
query Stock Query for each stock held by the User, which will obtain the necessary
information from Stock Info Provider. The portfolio is now ready to be viewed, so
Controller gives the Page Renderer all necessary data and then lets the Web Page
know the process has been finished. The Web Page requests the Page Renderer to
create the required page to be viewed.

49

Figure 15: Create League

The creation and management of leagues are represented in Figure 15, which
correspond to UC-7 and UC-11. The User fills in the necessary fields in order to
create or change a league on the Web Page, then submits this info. The Controller
will receive the request and call on the League Handler to verify the validity of the
fields. If there are no errors, the Controller will inform the Data Handler to store
the new league or its new settings. Then (regardless of the validity of the fields),
the Controller provides the necessary page data to the Page Renderer and informs
the Web Page of the completion of the process. The Web Page calls for the Page
Render to create the necessary page to be viewed.

50

Figure 16: Create Fund

Figure 16 is identical to figure 15, replacing the League Handler with a Fund
Handler. It corresponds to UC-9 and UC-15, the creation and maintenance of
Funds. For insight on the process flow, please refer to figure 15.

51

Figure 17: Query Stocks

Figure 17 shows the UC-3 Query Stocks. The stock is requested through the
Web Page by the User, which tells Controller to inform the Stock Query to fetch
the correct stock data from Stock Info Provider. Note that even an invalid ticker
symbol will go through the same steps, the Stock Query will just return N/A or 0
for all the fields. The Controller now sends the data to be rendered to the Page
Renderer and then notifies the Web Page that the process is complete. The Web
Page knows to request the page from the Page Renderer, which then services the
request and generates the correct page to be viewed by the User.

52

Figure 18: Register

The UC-6 Register is represented in Figure 18. This is a new use case the was not
covered in the old Domain Model, as we now have more insight into how registration
works with Facebook. First, the User tries to access the Home Page(Web Page),
but since he is not yet registered, after an authorize check by Facebook, he is
redirected to a page generated by Facebook’s server. Once he chooses to add our
application, our Web Page will request user info from Facebook, and upon obtaining
this information, pass the data to our Controller. The Controller will then send
instructions to the Data Handler to a new account in our Database. The Controller
then passes necessary data to the Page Renderer and informs Web Page that the
process is complete. The Web Page will call for the Page Renderer to generate the
home page to be viewed by the User.

53

6.1.1 Concept Definitions

Our concept definitions have been updated to reflect a better understanding of
how our concepts work together. Some concepts have been added, some removed,
and the responsibilities of each have slightly changed since our original Domain
Model.

User
Definition: A player playing Bears & Bulls.
Responsibilities:

• Manage portfolio
• Make requests for trades
• Research stocks
• Manage leagues
• Manage funds
• Navigate through website

Web Page
Definition: The page that the User is currently viewing, which runs from the
User’s device.
Responsibilities:

• Take requests from the User
• Send requests to the Controller
• Send page requests to the Page Renderer
• Update page to be displayed when new page is rendered

Page Renderer
Definition: Takes User requests and creates a page which is User-friendly
Responsibilities:

• Receive the required data to generate new page
• Convert the data into user-friendly format
• Send rendered pages to the Web Page

Controller
Definition: Takes User requests and creates a page which is User-friendly
Responsibilities:

• Receive user requests from the Web Page
• Inform Web Page when process is complete
• Send page data to be rendered

54

• Send League and Fund settings to be validated
• Send updated portfolio info
• Request stock queries
• Request account creation
• Request an order

Stock Query
Definition: Fetch real-time stock prices
Responsibilities:

• Receive requests for stock data
• Request information from Stock Info Provider
• Retrieve information from Stock Info Provider
• Send updated stock data

Validity Checker
Definition: Checks if a trade is valid
Responsibilities:

• Request updated stock price based on liquidity model
• Request and receive portfolio data
• Determine if sufficient funds are available for the transaction
• Send updated portfolio information if necessary
• Send queries for stock data

Liquidity Manager
Definition: Manipulates price to realistic real world prices for slippage
Responsibilities:

• Receive stock and order data
• Utilize algorithm to reflect realistic trades in the market
• Determine new price
• Send out updated stock information

Data Handler
Definition: Communicates with Database to service data requests
Responsibilities:

• Receive and send every kind of data used in system
• Request data from Database
• Send data to be stored in Database

55

League Handler
Definition: Can create and upkeep Leagues
Responsibilities:

• Receive initial or modified settings input for desired League
• Determine if settings are valid

Fund Handler
Definition: Can create and upkeep Funds
Responsibilities:

• Receive initial or modified settings input for desired Funds
• Determine if settings are valid

6.1.2 Association Definitions

The following association definitions have been updated to reflect the revamped
Domain Model.

Concept Pair Association Description Association Name

Web Page ↔ Page
Renderer

Request to visit page, sends
rendered page

request page, send
page

Web Page ↔
Controller

Passes the user’s desired action,
informs of process completion

send user request,
return

Controller ↔ Page
Renderer

Passes necessary data for page
rendering

send page data

Controller ↔
Stock Query

Asks for data on specific stock,
send data on specific stock

send stock query,
return stock data

Controller ↔
Validity Checker

Requests order to be carried
out, passes new portfolio data

send order, send
portfolio data

Controller ↔
League Handler

Passes updated league settings,
validates updated settings

verify fields, return
fields

Controller ↔ Fund
Handler

Passes updated fund settings,
validates updated settings

verify fields, return
fields

Controller ↔ Data
Handler

Passes updated data, ask for
portfolio data to perform
process, return altered portfolio
data

send updated data,
request portfolio info,
return portfolio info

56

Stock Query ↔
Stock Info Provider

Asks for stock data, return
stock data

send stock data
request, service stock
data request

Stock Query ↔
Validity Checker

Asks for to query specific stock,
return retrieved stock data

send stock query,
return stock data

Validity Checker
↔ Data Handler

Asks for user’s portfolio
information for validity
purposes, passes user’s portfolio
information

request portfolio data,
return portfolio data

Validity Checker
↔ Liquidity
Manager

Sends order information to
determine adjusted price, return
updated price

request adjustment,
update price

Data Handler ↔
Database

Stores incoming data, request
certain data, retrieve needed
data

store data, request
data, retrieve data

6.1.3 Attribute Definitions

Most of our concepts do not need to hold their own data, as our website is
dynamic and web-based. We also have decided to not cache data, and thus we do
not require an internal timer for our Stock Query concept. Thus, nearly all data
is stored in a single database. In our Class Diagram, the types of data stored are
shown separately. The sparse attributes that must be accounted for are as follows:

Concept Attribute Meaning

Data Handler databaseHandle Interacts with the database.

Database data Stores data for future use. Includes all
data used in the system, including
League ID, User ID, stock volume and
price data, league settings, fund
settings, and portfolio data such as
transaction history.

57

Facebook accountInformation We don’t need to keep detailed account
of user information as Facebook has
already done it for us. Also we don’t
need to create new login information
as that is handled by Facebook.

Page Renderer sufficientRenderData Determines if the required data to
render the page is there.

Liquidity Manager priceUpdate Generates a new price value of the
ordered stock.

League Handler settingsValid Determines if the User’s settings input
are valid for the given League.

Fund Handler settingsValid Determines if the User’s settings input
are valid for the given Fund.

Validity Checker fieldsValid,
fundsValid,
tradeSuccess

Compares funds and price and checks
all required fields to make sure a
transaction is valid. Determines if
trade is a success.

6.1.4 Traceability Matrix

Use Case PW U
se

r

W
eb

P
ag

e

P
ag

e
R

en
d

er
er

C
on

tr
ol

le
r

V
al

id
it

y
C

h
ec

ke
r

S
to

ck
Q

u
er

y

L
ea

gu
e

H
an

d
le

r

F
u

n
d

H
an

d
le

r

L
iq

u
id

it
y

M
an

ag
er

D
at

a
H

an
d

le
r

UC01-02 17 x x x x x x x x

UC03 15 x x x x x

UC05 14 x x x x x x

UC06 9 x x x x x

UC07-11 13 x x x x x x

UC09-15 16 x x x x x x

58

6.2 System Operation Contracts

Register User
Preconditions:

• None

Postconditions:

• User has a portfolio associated with the league
• User’s name, portfolio holdings and other information are stored in the

database

Buy Stocks
Preconditions:

• Investor’s intended transaction is less than available cash balances
• Stock provider has the stocks available for purchase
• Transaction is valid under league settings
• Transaction data is valid

Postconditions:

• Update database with user’s new stock holdings

Sell Stocks
Preconditions:

• Investor has the assets he is attempting to sell
• Transaction is valid under league settings
• Transaction data is valid

Postconditions:

• Investor’s portfolio is adjusted in database to reflect transaction
• Stock inventory is updated in database

Query Stocks
Preconditions:

• None

Postconditions:

• None

59

View Portfolio
Preconditions:

• Initiating investor owns the portfolio

Postconditions:

• None

Create Fund
Preconditions:

• Input settings are valid

Postconditions:

• New fund’s information stored in the database

Create League
Preconditions:

• Input settings are valid

Postconditions:

• League information stored in the database

Invite to League
Preconditions:

• Valid invitee User ID and League ID

Postconditions:

• None

Manage League
Preconditions:

• User has league coordinator privileges
• Input settings are valid

Postconditions:

• League information is up to date and is reflected in the database

60

Manage Fund
Preconditions:

• User is a fund manager
• Input settings are valid

Postconditions:

• Any updated information is updated in the database

View League Standings
Preconditions:

• User has access privileges to the league
• League exists

Postconditions:

• None

6.3 Mathematical Model

Bears & Bulls’ sole mathematical model is the model used to calculate price
slippage when executing block trades. Slippage is usually associated with large
equity Funds and institutional investors [11] since their actions tend to flood the
exchange with an abundance of buy or sell orders. This puts pressure on the price
of the security to move up in the case of a buy or to move down in the case of a
sell. Slippage is usually not an issue for highly liquid markets with low volatility.
Traders buying and selling blue chip stocks would therefore experience very little
slippage, even when the volume is very high. On the other hand, a trader buying
huge volumes of penny stocks can easily cause price movements through his actions
alone. Thus Bears & Bulls provides a mathematical model for estimating price
slippage.

The two factors that determine slippage are volatility and liquidity. High volatil-
ity by definition implies high price swings and so more slippage. Highly liquid
markets have many buyers and sellers and so a large trade can be made without
affecting price to the same extent as in an illiquid market. Let v represent the
volatility of a security, l represent its liquidity, and p the average price. It is clear
the that average price of a trade should be directly related to v and inversely related
to l. Let us examine what would happen to the average price an investor pays if
he were to buy a large block of shares.

61

In a completely involatile market (v = 0), the trader would experience no slippage
based on his trading action since no volatility implies no price movement. Likewise,
in a perfectly liquid market (l =∞), there is always a willing counterparty for the
trade at the given price and quantity. Let s be the current ask price for security
and z be the current ask size. From the above relation, we can see that

p = (1 +
v

l
)× s

satisfies the conditions that there is no price movement from the current ask price.
The equation also preserves the relationship between p, v and l. Let N = 1 + v

l

and assume that it is greater than 1. If the block size the buyer wishes to buy is
less than the ask size, then the buyer only needs to buy from that seller to fill his
order. Thus the price would not deviate from the seller’s ask price. If the buyer
wants to buy more than the current ask size, he must buy from additional seller
to complete his order. A simplifying assumption will be made that the next seller
sells the same block size as the previous seller. The price per share for the next
seller is N × s. Continuing this pattern, the nth block will sell at Nn−1 × s. The
last block may not be filled as the buyer may not want to buy in multiples of the
current ask size. Thus if we let b be the total number of shares the buyer wishes
to buy and n = b bzc be the number of whole blocks bought, then the total price of
paid by the investor is:

ptotal =
[n−1∑
i=0

(1 +
v

l
)i × s× z

]
+ (1 +

v

l
)n(b− (n− 1)× z)

Consider the example where an investor wishes to purchase 1000 shares of XYZ
and the current ask is $110.00 × 300 shares and N = 1 + v

l = 1.01. In this case,
s = 110.00, z = 300, b = 1000, n = 3. The first block of 300 is sold at $110.00.
The second block of 300 is sold at $111.10, the third block is sold at $112.21 and
the final 100 shares is sold at $113.33. The total price paid is $100106.33, or an
average price per share of $111.33. This is a 1.2% change from the ask price.

Now it is necessary to determine v and l. Many mathematical models have
been dedicated to predicting volatility and liquidity and there is still nothing that
can accurately predict either of them. That said, there are ways of qualitatively
measuring volatility and liquidity that will suit our needs.

Volatility can be measured by the stock β. β is the correlation between a stock’s
movement relative to the movement of the market as a whole. Consider plotting
the percentage moves of the market versus the changes in price of a stock. A β of
1 would mean that every percentage move in the market should result the same
percentage move in the stock price. Higher β generally implies higher volatility.

62

Liquidity can be measured by the bid-ask spread of a security. Highly liquid assets,
such as currencies, usually have bid-ask spreads of a few hundreths of a percent.
Less liquid assets such as mid-cap stocks, have bid-ask spreads of one or two percent
of their price. For our model, we will use v = β

100 to represent the volatility of a
stock. Let r be the bid-ask spread and s the last price of the stock. Liquidity l will
be defined as l = s

r . Thus a spread of 0 would mean infinite liquidity. N would

then be defined as N =
(

1 + βr
100s

)
.

63

7 Interaction Diagrams

7.1 Use Case 1/2: Buy/Sell Stocks

Figure 19: Interaction Diagram for Buy Stocks (From Report 1 Fig. 2)

When a buy or sell event occurs, the process begins with the Investor Actor
initiating a RequestBuy to the Web Page through the web interface. The Investor
must have provide a valid ticket, which includes a stock symbol and the amount
of that stock that they wish to trade. The ticket also contains the user ID and
the transaction type. Tickets have a price and validity field as well, but these
will be populated by the Stock Query and Validity Checker respectively. The
Web Page relays this information to the Controller, who’s duty it is to execute
the trade if possible. First, to find out if the trade is possible, the Controller
sends the ticket to the Validity Checker. For buys, the Validity Checker must first
determine the market price of the stock after being adjusted by the liquidity model,
and second it must get the Investor’s account balance and determine if there are
sufficient funds to execute the transaction. If so, it returns back a ticket that is

64

Figure 20: Interaction Diagram for Sell Stocks (From Report 1 Fig. 3)

now stamped as being valid. For sells, it must make sure that the Investor has
enough of the stocks required to make the sell and enough balance to pay the
commission. Validity Checker then calls Stock Query instead of querying Stock
Info Provider directly. This follows the Expert Doer principle since Stock Query
already has the ability to interface with the Stock Provider. Once the controller has
a valid ticket, it calls the Data Handler to update the Database to reflect the new
state after the transaction has been conducted. While creating the Data Handler
introduces another component which is against the principle of Loose Coupling,
we decided it was paramount to keep it since anytime an object needs to modify
the database, it can do so through the Data Handler rather than implementing its
own programming logic to communicate with the database. This is yet another
example of the Expert Doer principle (and also High Cohesion). Once the Data
Handler is done, the Controller notifies Page Renderer of the resulting status of
the entire procedure, so that a page can be displayed accordingly to notify the user
of the success or failure of their action. The Page Renderer then returns the page
back to the Web Page which the Investor will see.

65

7.2 Use Case 3: Query Stocks

Figure 21: Interaction Diagram for Query Stocks (From Report 1 Fig. 4)

To receive information about a single stock, the Investor first chooses the stock
through the Web page. The Web page then tells the Controller to fetch the stock
and it’s relevant information. The Controller messages Stock Query to get the state
of the stock currently as provided by the Stock Info Provider. Once the Controller
has this information, it sends it to the Page Renderer which formats it into HTML,
and returns it to the Web page. This diagram displays the properties discussed
above, mainly Expert Doer and High Cohesion.

66

7.3 Use Case 5: View Portfolio

Figure 22: Interaction Diagram for View Portfolio (From Report 1 Fig. 5)

When the Investor wants to view their Portfolio, they notify the Web Page,
which communicates with a Controller. The Controller queries the Data Handler
to retrieve the investor’s stocks. Once the controller has the list of stocks, it iterates
through each of them and uses Stock Query to get their respective prices. These
prices will be used to populate a data object containing the portfolio’s stocks and
net worth which will then be returned to the Page Render where it is embedded
into HTML before being served back to the Web Page. An alternative failure case
that is worth mentioning is the Stock Info Provider returning an error in response
to a request for a stock’s information. This error will be noted in the data object
by the controller, and the Page Renderer will make note and display whatever it
can without the data.

67

7.4 Use Case 7: Register

Figure 23: Interaction Diagram for Register (From Report 1 Fig. 6)

On a user’s first visit to the Bears & Bulls URL, they are redirected to a page
where they are given the option to authorize the app and add it. After allowing
Facebook to authorize the app and access their data, the user is sent another
redirect to a page that will set up their account for them. This page then creates
a session by messaging Facebook and requesting a token. Once successful, it get’s
the user’s info, namely their unique Facebook id, which it will use to create the
user’s account. In order to create the account, the Web Page calls a Controller
that interfaces with the Data Handler (the standard method for interfacing with
the database) to create a new row in the Investors table for the user. When
successful, the controller is notified and the Page Renderer is told to serve a web
page accordingly to get the user started.

68

7.5 Use Case 7/11: Create League/Fund

Use Case 9/15: Manage League/Fund

Figure 24: Interaction Diagram for Create League (From Report 1 Fig. 7)

The creation and modification of a league and a fund work essentially in the
same way. The Investor initiates the action through the Web page, which hands
off the task to the Controller. The Controller then communicates with the Fund
Handler or the League Manager depending on what is being created or modified
to see if the action is valid (an example of High Cohesion and Expert Doer). If so,
the controller informs the Data Handler of what fields to update in the database
to reflect the actions being carried out. The Page Renderer is told to return a
page back to the Web page accordingly so the Investor can be notified. The failure
case occurs when a setting is invalid, and the page renderer will display an error
accordingly.

69

Figure 25: Interaction Diagram for Create Fund (From Report 1 Fig. 8)

Figure 26: Interaction Diagram for Manage League (From Report 1 Fig. 9)

70

Figure 27: Interaction Diagram for Manage Fund (From Report 1 Fig. 10)

71

8 Class Diagram and Interface Specification

The following class diagram shows the new relations between classes. The class
diagrams are collapsed to show only the names of the classes. The class attributes
and methods are listed in the subsequent sections. Five new classes were intro-
duced.

8.1 Class Diagram

72

8.2 Data Types and Operation Signatures

73

8.2.1 Controller

Attributes
The controller has the job of conveying messages back and forth between different
domain concepts in the domain model. In order to accomplish this, we determined
it would be best if the controller had a copy of every data type that it handles as
an attribute. This lowers the chance of corrupting data.

− ticket : Ticket
This is a copy of the order ticket that the investor has just submitted.

− data : StockData
This is a copy of the data that the system queries from the Stock Info Provider.

− fields : Fields
This is a copy of the fields that a league or fund fills out during a creation/editing
request. Since the various fields are quite similar between the two, one Fields
object is used for both.

− userinfo : UserInfo
This is a copy of the user info that the system gets from Facebook. It is only
used when an account is created, and the controller sends this to the database.

− investor: String
This is a copy of the investor’s username that the controller passes along to the
data handler. It is used to find the Investor object from inside the database.

− portfolio : Portfolio
This is a copy of a Portfolio object that the controller passes along.

− history : History
This is a copy of a History object (contains the investor’s transaction history)
that the controller passes along.

− stock : String
This is a copy of the stock symbol that is passed to the Stock Query for it to
get info on the stock. Fund names are also treated as stock names because
investors invest in these just like they would a stock

− league : String
This is a copy of the name of a league that the controller passes along

74

Methods
The controller has many methods which the web page calls in order to let the
controller know that it has a request (all except for Render and RenderError). The
controller will subsequently convey the message by calling another function.

− Render(Integer : type,void* : data) : Boolean
This method is what the controller calls when it is ready to render a page. The
arguments are an Integer for the type of page that is displayed, and a pointer
to a data structure containing the data necessary to construct the page. This
method calls the appropriate method within page renderer.

− RenderError(Integer : type,void* : data) : Boolean
This method serves the same purpose as the one above, except that it tells the
page renderer to render an error version of the page.

+ RequestBuy(Ticket : ticket)
This method is the method that the web page calls in order to request a buy

+ RequestSell(Ticket : ticket)
This method is the method that the web page calls in order to request a sell

+ RequestPortfolio(String : investor) : Void
This method is the method that the web page calls in order to view a portfolio

+ RequestCreateL(Fields : fields) : Void
This method is the method that the web page calls in order to create a league

+ RequestCreateF(Fields : fields) : Void
This method is the method that the web page calls in order to create a fund

+ RequestEditL(Fields : fields) : Void
This method is the method that the web page calls in order to edit league
settings.

+ RequestEditF(Fields : fields) : Void
This method is the method that the web page calls in order to edit fund settings.

+ RequestHistory(String : investor) : Void
This method is the method that the web page calls in order to view transaction
history.

+ RequestJoin(String : investor, String : league) : Void
This method is the method that the web page calls in order to join a league.

+ RequestInvite(String : investor, String : league) : Void
This method is the method that the web page calls in order to invite an investor
to a league.

+ RequestAddCoord(String : investor) : Void
This method is the method that the web page calls in order to add a coordinator
to a league.

75

8.2.2 PageRenderer

Attributes

−page : Page This is the current page that the web browser is displaying/will be
displayed.

Methods
Every method has an integer parameter called valid. This lets the page renderer
know if the page that it should be generating is an error page or a success page.

− generatePageOrder(Ticket : ticket, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of an
order.

− generatePageStock(StockData : data, Integer : valid) : Boolean
This method is called in order to render a page displaying the resultsof a stock
data query.

− generatePagePortfolio(Portfolio : portfolio, Stockdata* : data, Inte-
ger : valid) : Boolean
This method is called in order to render a page displaying the results of a
portfolio viewing.

− generatePageFront(UserInfo : userinfo, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of an
account creation.

− generatePageLorF(Fields : fields, integer : valid) : Boolean
This method is called in order to render a page displaying the results of a
creation of a fund or league, or an editing of a fund or league.

− generatePageJoin(String : league, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of joining
a league.

− generatePageInvite(Investor : investor, String : league, Integer : valid,
String : which) : Boolean
This method is called in order to render a page displaying the results of inviting
an investor to a league.

+ pageType(Integer : Type, void*: data, Integer : valid) : Boolean
This method is called by the controller in order to render a page with the given
type, data, and whether it is an error or not.

+ getPage() : Page
This method is called by the web page in order to retrieve the page it must
display.

76

8.2.3 DataHandler

Methods
These methods are called by the controller to access the information in the database.

+ ExecuteOrder(Ticket : ticket) : Boolean
This method executes the ticket order by updating the investor’s portfolio
accordingly.

+ RequestPortfolio(String : investor) : Portfolio
This method is called to request the portfolio data from the database.

+ CreateAccount(UserInfo : userinfo) : Boolean
This method is called to request an account creation.

+ CreateLeague(Fields : fields) : Boolean
This method is called to request a league creation.

+ EditLeague(Fields : fields) : Boolean
This method is called to request the league settings be modified in the database.

+ CreateFund(Fields : fields) : Boolean
This method is called to request a fund creation.

+ EditFund(Fields : fields) : boolean
This method is called to request the fund settings be modified in the database.

+ RequestHistory(String : investor) : History
This method is called to request the transaction history from the database.

+ JoinLeague(String : investor, String : league) : Boolean
This method is called to request that an investor be added to a league in the
database.

+ Invite(String : investor, String : league) : Void
This method is called to request that an invite be added to the investor’s
account.

8.2.4 StockQuery

Methods

+ Query(String : stock) : StockData
This method is called to request stock data from the stock info provider. The
data is forwarded straight to the class requesting it, and a copy is not made
within the Stock Query.

77

8.2.5 ValidityChecker

Attributes
The validity checker holds the below attributes that it uses in calculations to de-
termine if an order is valid or not. The validity checker is an interface class that is
implemented by the order processors MarketOrderProcessor, StopOrderProcessor
and LimitOrderProcessor. These classes are omitted for brevity but implement the
methods listed below in similar manners.

− data : Stockdata
This is a copy of the stock data obtained from Stock Query.

− ticket : Ticket
This is a copy of the order ticket that the investor fills out.

− pricepershare : Double
This is a copy of the price per share of the stock, which the liquidity model
determines.

− balance : Double
This is a copy of the investor’s current account balance.

Methods

+ ValidateBuy(Ticket : ticket) : void
This method is called by the controller to determine if a buy is valid or not.

− VerifyFunds() : void
This method is called by the validity checker in order to determine if the in-
vestor has sufficient funds for the transaction.

+ ValidateSell(Ticket : ticket) : void
This method is called by the controller to determine if a sell is valid or not.

8.2.6 LiquidityModel

Methods

+ AdjustPrice(StockData : data, Ticket : ticket) : Integer
This method is called by the validity checker to modify the stock price per
share in accordance to how many the investor plans to buy or sell.

78

8.2.7 WebPage

Attributes
The web page contains a copy of various attributes that it receives from the investor
and forwards it on to the controller.

− ticket : Ticket
This is a copy of an order ticket that the investor fills out.

− fields : Fields
This is a copy of the league or fund settings that the investor fills out.

− userinfo : Userinfo
This is a copy of the user info that facebook provides to the system.

− investor : String
This is a copy of the investor’s username.

− stock : String
This is a copy of the particular stock that is requested by the investor.

− league : String
This is the name of the league that the investor enters.

8.2.8 FundHandler

The FundHandler is an interface for MutualHandler and HedgeHandler. The
description of the individual classes are omitted for brevity but the methods they
implement follow the description below. Attributes

− fields : Fields
This is a copy of the fields for the fund.

Methods

+ verifyFields(Fields : fields) : Fields
This method that the controller calls that verifies that the settings for the fund
are all valid.

8.2.9 Leaderboard

Attributes

− investorlist : List
This is a list of the top investors ordered by rank.

79

8.2.10 LeagueHandler

Attributes

− fields : Fields
This is a copy of the fields for the league.

Methods

+ verifyFields(Fields : fields) : Fields
This method that the controller calls that verifies that the settings for the
league are all valid.

8.2.11 Ticket

Attributes

investor : String
This is the investor’s username.

stock : String
This is the stock symbol.

numstock : Integer
This is the amount of stock that is being exchanged.

pricepershare : Double
This is the price per share of the stock.

valid : Integer
This is a valid bit: it lets the controller know if the ticket is valid or not.

time : Date
This is the time and date of the ticket submission.

type : Integer
This is the type of transaction (example being stop order).

8.2.12 Shares

This class contains the number of shares of a stock that an investor owns, and
information about them. Attributes

pricepaid : Double
This is the price paid for the stock.

executiondate : Date
This is the date of execution of the trade.

80

lasttrade : Double
This is the price of the lastest trade on the market for the stock.

change : Double
This is the change in the stock from the beginning of the day.

changepercent : Double
This is the percentage change in the stock from the beginning of the day.

daysgain : Double
This is the gain from the stock in the current day.

quantity : Integer
This is the amount of stock that is owned.

totalgain : Double
This is the total gain from the stock from when it was first bought.

totalgainpercent : Double
This is the percentage gain from the stock out of the gains from all stocks the
investor holds.

8.2.13 Portfolio

Attributes

cash : Double
This is the investor’s balance.

sharesheld : List
This is a list of class shares that the investor owns.

8.2.14 StopOrder

Attributes

StopPercentage : Double
This is the threshold percent change of the stock before the order is executed.

HighWaterMark : Double
This is the highest price reached (or lowest for a buy). This is used for trailing
orders.

StopPriceChange : Double
This is the threshold change in price of the stock before the order is executed.

trailing : Boolean
This specifies if the stop order is a trailing stop or not.

81

8.2.15 LimitOrder

Attributes

limitprice : Double
This is the threshold price for a stock before the order is executed.

8.2.16 MarketOrder

This class is the default order type and has no special requirements. Thus it is
represented here only to remind the developer that the market order exists.

8.2.17 OrderList

Attributes

ticket : List
This is a list of tickets that have yet to be executed because conditions for
execution have not been met.

8.2.18 History

Attributes

ticket : List
This is a list of class tickets in chronologically backwards order, with the most
recent transaction first.

8.2.19 FundManager

Attributes

− portfolio : Portfolio
This is the portfolio of the fund, which the fund manager maintains.

8.2.20 LeagueCoordinator

The league coordinator does not have any special attributes or methods that
make it different from an investor. This class exists to differentiate an investor
from a league coordinator (who is able to call more functions). This class inherits
from InvestorAccount

82

8.2.21 InvestorAccount

Attributes

name : String
This is the username of the investor.

globalRank : unsignedLong
his is the global rank of the investor.

portfolio : Portfolio
This is the investor’s portfolio.

history : History
This is the investor’s transaction history.

userinfo : UserInfo
This is the investor’s personal info that was retrieved from Facebook.

leagues : List
This is the list of leagues that the investor is currently a member of.

8.2.22 Fund

Attributes

portfolio : Portfolio
This is the fund’s portfolio.

fields : Fields
This is the various settings of the fund, including fund name.

8.2.23 League

Attributes

investor : List
This is the list of investors that are currently in the league.

ranking : List
This is the list of rankings for each investor (it runs parallel to the investor
list).

fields : Fields
This is the various settings of the league, including the league name.

83

8.3 Traceability Matrix

Class W
eb

P
ag

e

P
ag

eR
en

d
er

er

V
al

id
it

y
C

h
ec

ke
r

S
to

ck
Q

u
er

y

D
at

aH
an

d
le

r

L
iq

u
id

it
y
M

an
ag

er

L
ea

gu
eH

an
d

le
r

F
u

n
d

H
an

d
le

r

WebPage x

PageRenderer x

Controller x x

ValidityChecker x

LiquidityModel x

StockQuery x

DataHandler x

FundHandler x

LeagueHandler x

League x

LeaderBoard x

LeagueCoordinator x

InvestorAccount x

Portfolio x

FundHandler x

Fund x

Shares x

History x

OrderList x

Ticket x

Market Order x

Limit Order x

Stop Order x

MarketOrderProcessor x

LimitOrderProcessor x

StopOrderProcessor x

HedgeManager x

MutualManager x

84

Many of the classes map back to the DataHandler concept since they contain
data that is queried by the DataHandler. These classes were represented by a single
database in the domain model, but shown as separate entities in the class diagram
to give more insight on the inner workings and details of our program.

8.4 Design Patterns

Looking back at our previous interaction diagrams, we found that we had un-
knowingly implemented some design patterns. We will now make it clear what
design patterns were implemented in the interaction diagrams.

8.4.1 Command Pattern

The command pattern is implemented in almost every interaction diagram, and
manifests itself in the form of our class called ”controller”. Our controller class
is not the same as a traditional controller class, but is actually an interface for
many different commands. As you can see through the interaction diagrams, the
user calls the controller interface in order to carry out any action. The concrete
commands are carried out by classes such as validity checker, stock query, liquidity
model, fund handler, and league manager. Many of these actions are logged by
the system because the controller makes a call to update the database in most
cases. The controller knows the receiver of each action request, and knows the
appropriate sequence of calls to make based on a given request. Perhaps a more
make appropriate name for the controller would have been ”processor” because it
is like the central processor within our system. It provides an interface for all the
commands in our system, and has the actual commands implemented by various
classes derived from it.

8.4.2 Strategy Pattern

The strategy pattern is also implemented in our design. Validity checker has
stoporderProcessor, limitorderProcessor, and marketorderProcessor as its three dif-
ferent strategies. During run time, depending on whichever order is chosen, the
appropriate one of the three classes is called to handle the request. Similarly, fund-
Handler has mutualHandler and hedgeHandler as its different strategies. This is
not shown in the interaction diagrams in the interest of readability. However, the
interfaces (validity checker and fund manager) are both shown in the interaction
diagrams, and it is assumed that the appropriate class is called.

85

8.4.3 Uses of Design Patterns

The use of these design patterns have greatly benefited in the design of the
project. In particular, the command pattern greatly simplifies our interaction di-
agrams and gives us the ability to log transactions within our systems as well as
undo certain transactions. Also, it allows us to carry out the actual execution of an
order at a different time from when it was submitted. However, perhaps the best
part of it is that it easily allows us to add new functionality to our system. As an
example of its benefits, consider the interaction diagrams. If the command pattern
was not used, then the Web page would have to know where each command had
to go, and thus its role as a doing object would be invalid. Also, the web page
would have too many roles, and it is much more advantageous to have a dedicated
interface for these functions. The strategy pattern is invaluable for the working of
this system. It cuts out a lot of conditional logic, and allows for a dedicated class
for each type of ticket and fund. In a system that could potentially use a lot of
conditional logic, this strategy pattern is very useful. There are no concrete exam-
ples to show using the interaction diagrams because it is internal if statements, but
one can appreciate the elegance of a strategy method.

8.5 Object Contraint Language

context Controller::RequestPortfolio(string : investor) void
pre: (investor → InvestorAccount.portfolio = this.portfolio)
- You can only view your own portfolios

context Controller::RequestEditL(Fields : fields) void
pre: (InvestorAccount→LeagueCoordinator = true)
- You can only edit a league if you are the league coordinator

ontext Controller::RequestEditF(Fields : fields) void
pre: (InvestorAccount→FundManager = true)
- You can only edit a fund if you are the fund manager

context Controller::RequestInvite(String : investor, String : league) : Void
pre: (InvestorAccount→LeagueCoordinator = true)
- You can only invite people to a league if you are the league coordinator

86

context DataHandler::ExecuteOrder(Ticket : ticket) : Boolean
pre: (ValidateSell())
post: (InvestorAccount.Update())
- The Investor’s portfolio must be updated to accommodate bought/sold stocks

context DataHandler::CreateAccount(UserInfo : userinfo) : Boolean
post: (hasPortfolio = true AND inGlobalLeague = 1)
- The investor will have a portfolio for the Global Public League upon regis-
tration

context DataHandler::CreateLeague(Fields : fields) : Boolean
post: (league→name = field:League Name AND league → this.member AND
update())
- The league will be stored in our database (update) , and the league coordi-
nator will have a portfolio for that league.

context DataHandler::CreateFund(Fields : fields) : Boolean
post: (fund→name = field:Fund Name AND fund → this.member AND up-
date())
- The find will be stored in our database (update), and the fund manager will
have a portfolio for that fund

context DataHandler::EditLeague(Fields : fields) : Boolean
post: (league→settings.update(fields))
- League settings will be updated in the database

context DataHandler::EditFund(Fields : fields) : Boolean
post: (fund→settings.update(fields))
- Fund settings will be updated in the database

context DataHandler::JoinLeague(String : investor, String : league) : Boolean
post: (league→this.member AND update())
- The User will now have a portfolio for the league

87

context ValidityChecker inv:
if(League)

self.balance ≥ 0
- The User will not have a negative balance

context ValidityChecker::ValidateBuy(Ticket : ticket)
pre: (ticket→fields.isValid())
post: ValidityChecker::VerifyFunds is called
- The fields of the order form must be valid for the specified order
- Upon validation, the amount of funds compared to the price must be checked
next

context ValidityChecker::ValidateSell(Ticket : ticket)
pre: (ValidateBuy() AND VerifyFunds())
post: DataHandler::ExecuteOrder is called
- The fields of the order form must be confirmed by Validate Buy
- The request to update the database must be called

context ValidityChecker::VerifyFunds inv:
InvestorAccount.portfolio.cash ≥ for(I = stock; I < stocknum; i++)

cash += ticket[i].pricepershare*numstock
- The User must have more funds than the cost of the order, or an error is
returned

context ValidityChecker::VerifyFunds() : void
pre: (ValidateBuy())
post: DataHandler::ExecuteOrder is called
- The request to update the database must be called

context LiquidityModel inv:
if(ticket.type=buy)

ticket.price ≤ updatedPrice
else if(ticket.type=sell)

ticket.price ≥ updatedPrice
- If our liquidity model is being applied to a buy, the updated price cannot be
lower than the original price. If dealing with a sell, the updated price cannot
be higher than the original price.

88

context FundHandler::verifyFields inv:
self→fields.isValid()
- The fields filled out for fund settings must be valid, or an error is returned

context LeagueHandler::verifyFields inv:
self→fields.isValid()
- The league filled out for fund settings must be valid, or an error is returned

context Ticket inv:
self.numstock > 0
-A ticket can only exist for at least one share of a stock, as orders must include
at least one share

context Ticket inv:
pricepershare > 0
- The price of a share is always greater than zero

context Shares inv:
pricepaid > 0
- The price of a share is always greater than zero

context Shares inv:
lasttrade→pricepaid > 0
- The price of a share is always greater than zero

context Shares inv:
changepercent ≥ -100
- Value of a stock can never go below zero, so the percent change will never be
less than -100%

context Shares inv:
quantity > 0
- If there were no shares of the stock, it would not be kept track of

context Shares inv:
totalgainpercent ≥ -100
- Value of a stock can never go below zero, so the percent change will never be
less than -100%

89

context Portfolio inv:
if(Portfolio→type!=HedgeFund)

funds ≥ 0
- A portfolio can never have negative funds, unless it is a hedge fund (it can
briefly have negative funds, which it would quickly gain back from the sale of
stock)

context StopOrder inv:
self.StopPriceChange < self.HighWaterMark
- The stop price change needs to be less than the high water mark

context StopOrder inv:
self.StopPriceChange > 0
- Stop price change cannot be zero or less than zero

context StopOrder inv:
(self.StopPercentage > 0) AND (self.StopPercentage < 100)
- Stop percentage has to be a valid nuber between 0 and 100

context LimitOrder inv:
self.limitprice > 0
- User cannot purchase a stock at a price of zero

90

9 System Architecture and System Design

9.1 Architectural Styles

Bears & Bulls utilizes several architectural styles with a main focus on the
Model/View/Controller approach. Let us take a closer examination into how Bears
& Bulls incorporates these various techniques in its implementation.

9.1.1 Model/View/Controller

Bears & Bulls relies heavily on the Model/View/Controller architecture. The
main view is the Facebook web interface that the user interacts with. Through
this interface the user carries out various tasks as enumerated by our Use Cases.
Various controllers will help the user interface with the two main models which are
the site database and the stocks model provided by the stock information provider.
The view will be represented by HTML, CSS, and Javascript. The controller logic
will be implemented using PHP. For the models, the site database will be created
using MySQL and the stock model will be made accessible by API calls to an
external stock information provider. Most of our concepts fall into the controller
category.

9.1.2 Front and Back Ends

The front-end component of our system is our Web UI. This is what the public
will see. The back end consists of all the behind the scenes business logic for our
app. Even within our controller and model logic, we have representations of front
and back ends. For example, for the controller to communicate with the database,
it must do so through the DataHandler. Hence, the DataHandler serves as the
front end of the database to the controller.

9.1.3 Event-driven Architecture

Any changes to the equilibrium of our system by the user is an event. In this
way, the user acts as an event emitter (i.e. initiating buy, sells, creating leagues,
etc.). The events are handled by the controller logic, which serves as the event
consumer for these events. Another type of event that drives our application are
changes in stock price. This is used to execute limit, stop, and stop limit orders.

91

9.1.4 Object-oriented

Our application uses some object-oriented practices. For example things such
as leagues, funds, tickets, transactions, and stocks are all represented as objects.
These objects are the lifeblood of our system because all data communication occurs
through these objects.

9.2 Identifying Subsystems

Page: (WebPage, PageRenderer, Controller)
Page is the subsystem that directly interacts with the user actor. It is respon-
sible for handling the user’s input and relaying to the other subsystems.

League: (League, LeagueCoordinator, LeaderBoard, LeagueHandler)
This subsystem takes care of all things associated with a league, including it’s
creation and maintenance, as well as displaying information about the league
and its players, such as the leader board.

92

Portfolio: (Portfolio, History, Shares)
This subsystem keeps track of an investor’s portfolio, including it’s history and
content.

Fund: (Fund, FundManager)
This subsystem takes care of all things associated with a fund, including it’s
creation and maintenance as well as displaying information about the fund and
its content.

Orders: (OrderList, Ticket, MarketOrder, LimitOrder, StopOrder)
This subsystem manages all transactions initiated by the investor. Orders is a
subsystem that handles all transaction initiated by the investor, such as limit
and stop orders, for the system. It keeps track of such orders by creating tickets.

StockPrice: (StockQuery, ValidityChecker, LiquidityManager)
StockPrice’s responsibility is to get updated stock prices and alter them based
on liquidity, as well as validate transaction based on available cash balance.

9.3 Mapping Subsystems to Hardware

The mapping of subsystems takes place onto two servers. One server, Heroku,
was provided by Facebook Developers. Heroku is a cloud application platform
which supports any programming language. We manage our app via the Heroku
command-line tool and deploy out code via the Git revision control system. All
system administrators have access to this account and can submit changes at any
time. The capabilities allow PHP and MySQL which will be utilized to display
the user interface. Processes are first initiated by the Web Browser when the user
requests an action to occur. The DataHandler, Controller, Stock Query, and Page
Renderer will all be managed via the Heroku server. For capabilities stored on
the Heroku server, the information is stored in the cloud provided by Heroku.
Originally we utilized both Heroku and a software engineering computer (sweng-
1.engr.rutgers.edu/ group6), but we were able to incorporate all the capabilities
via Heroku, so the usage of sweng-1 was eliminated.

93

9.4 Persistent Data Storage

Bears & Bulls needs to store data that will outlast a single execution of the system
in order to keep track of player profiles, stocks and net worth. For each player, the
database will store the user’s name, cash balances, current stock information and
a history of past transactions. A players cash balances is the amount of money
not tied up in current stocks. For current stocks, the database will record the
stock symbol, quantity of stock, purchase price of the stock, date and time of
original transaction, and the price of stock at last update. Updates occur when the
portfolio is viewed or when the system updates the current standings of a league.
With all this information, the system can calculate a player’s net worth, which
is his cash balances plus the total value of his current stocks based on the most
recently updated prices. The database will also hold a record of past transactions
and stocks owned, including the prices that the stocks were bought and sold at,
as well as times and dates of all transactions. The database will be implemented
using MySQL.

Name: Noah Silow-Carroll

Cash: $6,435.00

Market Value: $36450.00

Stocks

Symbol Qty Price Paid Date Bought Last Trade Day’s Gain

goog 50 610.31 2/24/12 618.15 +2.37

yhoo -100 14.48 2/27/12 14.91 -0.12

f 50 12.20 2/27/12 11.97 -0.03

Transaction History

Symbol Transaction Type Price Quantity Date

yhoo Sell Short 14.48 100 2/27/12

f Buy 12.20 50 2/27/12

f Sell 34.83 100 2/24/12

goog Buy 610.31 50 2/24/12

94

9.5 Network Protocol

Bears & Bulls utilizes Facebook for its operation. This system uses an IFrame
Canvas application which is an IFrame surrounded by the Facebook chrome. Since
the application is essentially a website wrapped in Facebook’s application environ-
ment, the entire system communicates via HTTP.

The Facebook Platform uses OAuth 2.0 protocol for authentication and autho-
rization. If the user is already logged into Facebook, the system will validate the
login cookie stored on the users browser which authenticates the user. If the user
is not logged in, they are prompted to enter their login information. Since au-
thentication is handled by Facebook, Bears & Bulls will not do additional user
authentication.

9.6 Global Control Flow

Bears & Bulls is an event-driven system which waits for certain actions to occur
and responds the them. The users profiles will be updated on the dashboard for all
leagues everytime the dashboard is loaded. Upon receiving this request the system
contacts the StockInfoProvider and updates the users portfolio accordingly. To
view league standings, our system needs to update every league member’s portfolio
so the user can view up-to-date league standings. To view information on a stock,
the StockInfoProvider is contacted to provide up-to-date information concerning
said stock. The order of execution for order tickets uses a linked-list sorted by the
time an order is received. Executed orders are removed from the list as they are
executed.

9.7 Hardware Requirements

Bears & Bulls is optimized for use with a color display with a minimum resolution
of 760xn pixels because the maximum pixel width allowed by iframe is 760 pixels.
The user doesnt require any hard drive space for this application as all the required
data is stored on Bears & Bulls’ servers. A network connection is required to access
Facebook. If Facebook authentication is accessible, then Bears & Bulls is accessible.
Users devices need an Internet connection to connect to the system. This is the
main hardware requirement our system needs.

95

10 Algorithms and Data Structures

10.1 Algorithms

Most of the functions of Bears & Bulls take user inputs and return outputs with
minimal data manipulation other than page rendering. As such, there are really
no noteworthy algorithms to discuss apart from the model used to simulate price
slippage for block trades. ADD NEW MODEL A relational database will be used
for persistent data storage. Most of the data in the system will be entered into
the database and so algorithms for manipulating the data, such as sorting and
searching, are handled by the database. Thus search and sorting algorithms are
not in the scope of the system and will not be discussed.

10.2 Data Structures

The main structure of concern that is used in Bears & Bulls is a linked-lists.
Linked-lists are used to hold the pending order tickets that the system has stored
within it.

The linked-list structure was chosen because it supports easy insertion and dele-
tion from the list. The linked list was chosen over the queue because the queue does
not support deletion from any point within the queue. This is necessary because
the orders are not necesarrily executed in the order they are received. The system
iterates over the list of tickets and skips orders whose order condititions have not
been met. An order submitted later may be executed first if its order condition
is fulfilled first and that ticket should be removed immediately after execution,
regardless of the location.

An array was not chosen because the data structure must be able to support an
arbitrary number of tickets in at any given time. Thus a fixed-size array would
not be appropriate. The overhead of resizing a fixed size array to handle insertions
and deletions makes an array-based list implementation a poor candidate for the
order list. Both arrays and linked-lists are O(1) in terms of insertion, and for our
purposes they are both O(n) for retrieval because each retrieval requires a traversal.
However, the list has a O(1) deletion while the array will have O(n) for deletion
due to shifting.

Most of the data that is needed by Bears & Bulls is stored in a relational database
and so container classes such as investor lists and league membership lists are not
in the scope of the system.

96

11 User Interface Design and Implementation

Bears & Bulls benefits greatly from being an app on Facebook since this elimi-
nates the tedious sign up process. Buying your first stock is as easy as just installing
the app. The entire app workflow was designed with simplicity in mind, and so it
was stressed that a user should be able to get from any one screen to another with
a minimum of four clicks.

Dashboard

Upon visiting the app, the user is first presented with the dashboard page. If
the user is playing for the first time, they will have a default portfolio already
set up that is associated with the global league. This page provides them with a
summary of the performance of their portfolios and funds, snapshots of the three
major markets for the day and links to create and manage leagues and funds.

97

Create League

Clicking on Create under Leagues on the dashboard will allow the user to create
a league and specify the league name, description, public/private model, starting
balance, allowed sectors and whether investing in funds is allowed. Creating funds
is very similar to creating leagues.

League Invitation

When a league invitation is received, the View Invites link under Leagues on the
dashboard will be highlighted. Clicking on this brings the user to the invite page
where they can view league details and either accept or decline the invitation.

98

League Details

Clicking on League Details for any league on the dashboard presents the user
with rules/settings for the league, league rankings and a comment section where
members of the league can discuss stocks and brag about their progress. Changing
the settings of a fund will bring the user to a similar page for the fund.

Invite Friends

Clicking Invite Friends for any league run by the user allows the user to send
Facebook invitations to any of their friends on facebook.

99

Portfolio

Clicking on any of the leagues or funds on the dashboard will bring the user to
their portfolio for that league or fund. Here they can view their stocks, transaction
history, pending orders and fund investments.

Research Stock

After finding a specific stock and clicking Get Quote, the user is presented with
stock data, graphs and links to recent articles on the stock.

100

12 Design of Tests

NOTE: There was some confusion with the tests for Report 2. The tests were
correct according to Professor Marsic and hence the tests remain unchanged except
for those tests that no longer apply.

12.1 State Diagrams

Note on State Diagrams
Depicted below are the state diagrams for leagues and order tickets. Although
there are many more classes within the system, these two are the only classes
that contain non-trivial states (idle and active). Therefore, only these two will be
depicted below. Test cases have been developed for all classes though.

Figure 28: State Diagram of Order Ticket

Figure 29: State Diagram of League

101

12.2 Unit Tests

12.2.1 Controller

Test-case Identifier: TC-1
Function Tested: Controller::Render(Integer : type,void* : data) : Boolean
Pass/Fail Criteria: The test passes if the correct data to be rendered is
passed to PageRenderer. The test fails if this data is incorrect or incomplete.

Test Procedure Expected Results

–Call Function (Pass) –Correct data to be rendered is passed,
pageType of PageRenderer gets called

–Call Function (Fail) –Data to be rendered is incomplete or in-
correct, function returns zero

Test-case Identifier: TC-2
Function Tested: Controller::RenderError(Integer : type,void* : data) :
Boolean
Pass/Fail Criteria: The test passes if the correct data to be rendered is
passed to PageRenderer. The test fails if this data is incorrect or incomplete.

Test Procedure Expected Results

–Call Function (Pass) –Correct data to be rendered is passed,
pageType of PageRenderer gets called

–Call Function (Fail) –Data to be rendered is incomplete or in-
correct, function returns zero

Test-case Identifier: TC-3
Function Tested: Controller::RequestPortfolio(String : Investor) : Void
Pass/Fail Criteria: The test passes if the correctly matching portfolio is
signaled to be retrieved. The test fails if the request does not go out, due to
an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, RequestPortfolio
of DataHandler is called

–Call Function (Fail) –Data does not get sent, RequestPortfolio
of DataHandler is not called

102

Test-case Identifier: TC-4
Function Tested: Controller::RequestCreateL(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s league settings is sent to the DataHandler. The test fails if the
request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, CreateLeague of
DataHandler is called

–Call Function (Fail) –Data does not get sent, CreateLeague of
DataHandler is not called

Test-case Identifier: TC-5
Function Tested: Controller::RequestCreateF(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s fund settings is sent to the DataHandler. The test fails if the
request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, CreateFund of
DataHandler is called

–Call Function (Fail) –Data does not get sent, CreateFund of
DataHandler is not called

Test-case Identifier: TC-6
Function Tested: Controller::RequestEditL(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s edits is sent to the DataHandler. The test fails if the request does
not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, EditLeague of
DataHandler is called

–Call Function (Fail) –Data does not get sent, EditLeague of
DataHandler is not called

103

Test-case Identifier: TC-7
Function Tested: Controller::RequestEditF(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s edits is sent to the DataHandler. The test fails if the request does
not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, EditFund of
DataHandler is called

–Call Function (Fail) –Data does not get sent, EditFund of
DataHandler is not called

Test-case Identifier: TC-8
Function Tested: Controller::RequestHistory(String : investor) : Void
Pass/Fail Criteria: The test passes if the request for the correct investor
history is sent to the DataHandler. The test fails if the request does not go
out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, RequestHistory
of DataHandler is called

–Call Function (Fail) –Data does not get sent, RequestHistory
of DataHandler is not called

Test-case Identifier: TC-9
Function Tested: Controller::RequestInvite(String : investor, String :
League) : Void
Pass/Fail Criteria: The test passes if the request to invite the correct
investor to join the correct league is sent to the DataHandler. The test fails
if the request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, Invite of Data-
Handler is called

–Call Function (Fail) –Data does not get sent, Invite of Data-
Handler is not called

104

Test-case Identifier: TC-10
Function Tested: Controller::RequestBuy(Ticket : ticket) : Void
Pass/Fail Criteria: The test passes if the request to buy stock is sent to
the DataHandler. The test fails if the request does not go out, due to an
incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, ExecuteOrder of
DataHandler is called

–Call Function (Fail) –Data does not get sent, ExecuteOrder of
DataHandler is not called

Test-case Identifier: TC-11
Function Tested: Controller::RequestSell(Ticket : ticket) : Void
Pass/Fail Criteria: The test passes if the request to sell stock is sent to
the DataHandler. The test fails if the request does not go out, due to an
incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, ExecuteOrder of
DataHandler is called

–Call Function (Fail) –Data does not get sent, ExecuteOrder of
DataHandler is not called

12.2.2 PageRenderer

Test-case Identifier: TC-12
Function Tested: PageRenderer::generatePageOrder(TicketLticket, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the test stub enters a request for an
order and an order page is generated. Unsuccessful if page is not generated.

Test Procedure Expected Results
–Submit an order ticket (Pass) –Page Renderer returns true and order re-

sult page is successfully created

–Request an order page (Fail) –Page Renderer returns false if the page
could not be generated

105

Test-case Identifier: TC-13
Function Tested: PageRenderer::generatePageStock(StockData:data, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the test stub enters a request for a
stock and a stock page is generated. Unsuccessful if page cannot be generated.

Test Procedure Expected Results
–Request a stock page (Pass) –Page Renderer returns true and market

data page is successfully created

–Request a stock page (Fail) –Page Renderer returns false if the page
could not be generated

Test-case Identifier: TC-14
Function Tested: PageRenderer::generatePagePortfolio(Portfolio:portfolio,
StockData* data, Integer:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
portfolio and a portfolio page is generated. Unsuccessful if page cannot be
generated.

Test Procedure Expected Results
–Request a portfolio page (Pass) –PageRenderer returns true and user

portfolio page is created

–Request a portfolio page (Fail) –PageRenderer returns false if portfolio
page could not be generated

Test-case Identifier: TC-15
Function Tested: PageRenderer::generatePageFront(UserInfo:userinfo, In-
teger:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for home
and a home page is generated. Unsuccessful if page cannot be generated.

Test Procedure Expected Results
–Request a front page (Pass) –PageRenderer returns true and home

page is generated

–Request a front page (Fail) –PageRenderer returns false if front page
could not be generated

106

Test-case Identifier: TC-16
Function Tested: PageRenderer::generatePageLorF(Fields: fields, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
league or fund and a correct league or fund page is generated. Unsuccessful
if page cannot be generated.

Test Procedure Expected Results
–Request a league page (Pass) –Page Renderer returns true and league

page is created

–Request a league page (Fail) –Page Renderer returns an false if page
could not be created

–Request a fund page (Pass) –Page Renderer returns true and fund
page is created

–Request a fund page (Fail) –Page Renderer returns an false if page
could not be created

Test-case Identifier: TC-17
Function Tested: PageRenderer::generatePageJoin(String: league, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for join-
ing a league and a join page is generated. Unsuccessful if page cannot be
generated.

Test Procedure Expected Results
Request a join page (Pass) Page Renderer returns true and league

join page is created

Request a join page (Fail) Page Renderer returns false and page is
not generated

Test-case Identifier: TC-18
Function Tested: PageRenderer::generatePageInvite(Investor: investor,
String: league Integer:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
league invite and a league invite page is generated. Unsuccessful if page
cannot be generated.

Test Procedure Expected Results
–Request a league invite page
(Pass)

–Page Renderer returns true and request
invitation page is created

–Request a league invite page (Fail) –Page Renderer returns false and page is
not generated

107

Test-case Identifier: TC-19
Function Tested: PageRenderer::pageType(Integer : Type, void* : data,
Integer: valid):Boolean
Pass/fail Criteria: The test passes if the page renderer calls the correct

Test Procedure Expected Results
–Request page type (Pass) –Page Renderer returns true if a corre-

sponding generate page function is called

–Request page type (Fail) –Page Renderer returns false if a corre-
sponding generate page function is not
called. For example if the integer Type
is out of range.

Test-case Identifier: TC-20
Function Tested: PageRenderer::getPage():Page
Pass/fail Criteria: The test passes if the system returns a page and unsuc-
cessful if no page is returned.

Test Procedure Expected Results
–Request a page (Pass) –System displays Returns true if a page

is loaded and returned

–Request a page (Fail) –Incorrect if a page isnt loaded, record
that no page loaded

12.2.3 DataHandler

Test-case Identifier: TC-21
Function Tested: DataHandler::executeOrder(Ticket: ticket): Boolean
Pass/Fail Criteria: The test passes if the test stub executes the ticket by
updating the investors portfolio accordingly

Test Procedure Expected Results

–Execute order (Pass) –DataHandler executes order and up-
dates investors portfolio and returns true.

–Execute order (Fail) –If unable to execute order, return false.

108

Test-case Identifier: TC-22
Function Tested: DataHandler::RequestPortfolio(String: Investor): Port-
folio
Pass/Fail Criteria: The test passes if the test stub requests for portfolio
data and it is retrieved from the database

Test Procedure Expected Results

–Request portfolio data (Pass) –DataHandler requests portfolio data and
returns it from the database.

–Request portfolio updaten (Fail) –If there is an error retrieving the data
from the database, it should display an
error that no pertinent data was returned.

Test-case Identifier: TC-23
Function Tested: DataHandler::CreateAccount(UserInfo: userinfo):
Boolean
Pass/Fail Criteria: The test passes if the test stub requests an account
creation and the request is granted.

Test Procedure Expected Results

–Request to create an account
(Pass)

–DataHandler requests account creation
and returns true if account creation suc-
cessful

—Call Function (Fail) –If the request for account creation is un-
successful, return false

Test-case Identifier: TC-24
Function Tested: DataHandler::CreateLeague(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests a league cre-
ation and it is created. Unsuccessful if league isnt created.

Test Procedure Expected Results

–Request to create a league (Pass) –DataHandler requests league creation
and returns true if league creation suc-
cessful

–Request to create a league (Fail) –If the request for league creation is un-
successful, return false

109

Test-case Identifier: TC-25
Function Tested: DataHandler::EditLeague(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests to modify
league settings in database and is successful. Unsuccessful if settings not
changed.

Test Procedure Expected Results

–Request to edit league settings
(Pass)

–DataHandler modifies league settings
and returns true.

–Request to edit league settings
(Fail)

–DataHandler unable to modify league
settings, returns false.

Test-case Identifier: TC-26
Function Tested: DataHandler::CreateFund(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests a fund creation
and it is created. Unsuccessful if fund isnt created.

Test Procedure Expected Results

–Request to create a fund (Pass) –Fund Handler requests fund creation
and returns true if fund creation success-
ful

–Request to create a fund (Fail) –If the request for fund creation is unsuc-
cessful, return false.

Test-case Identifier: TC-27
Function Tested: DataHandler::EditFund(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests to modify fund
settings in database and is successful. Unsuccessful if settings not changed.

Test Procedure Expected Results

–Request to edit fund settings
(Pass)

–DataHandler modifies fund settings and
returns true.

–Request to edit fund settings
(Fail)

–DataHandler unable to modify fund set-
tings, returns false.

110

Test-case Identifier: TC-28
Function Tested: DataHandler::RequestHistory(String: Investor): History
Pass/Fail Criteria: The test passes if the test stub requests to view trans-
action history from the database and it is successful.

Test Procedure Expected Results

–Request to view transaction his-
tory

–DataHandler returns the transaction
history.

–Request to view transaction his-
tory (Fail)

–DataHandler is unable to return trans-
action history, display error saying unable
to retrieve transaction history.

Test-case Identifier: TC-29
Function Tested: DataHandler:: JoinLeague(String: Investor, String:
League): Boolean
Pass/Fail Criteria: The test passes if the test stub requests investor to be
added to a league in database and is successful. Unsuccessful if it doesnt
occur.

Test Procedure Expected Results

–Request to join league (Pass) –DataHandler updates information in
database about the league and returns
true.

–Request to join league (Fail) –If joining the league encounters a prob-
lem, return false.

Test-case Identifier: TC-30
Function Tested: DataHandler::Invite(String: Investor, String: League):
Void
Pass/Fail Criteria: The test passes if the test stub requests that an invite
be added to the investors account.

Test Procedure Expected Results

–Add invite to investors account
(Pass)

–DataHandler adds the invite to investors
account in database.

–Add invite to investors account
(Fail)

–If unable to add invite in database, dis-
play error saying that invite wasnt added
to investors account.

111

Test-case Identifier: TC-31
Function Tested: DataHandler::ExecuteOrder(Ticket: ticket): Boolean
Pass/Fail Criteria: The test passes if the test stub requests that the
database allocate money to the specified investor and is able to.

Test Procedure Expected Results

–Allocate money to investor (Pass) –DataHandler allocates money to the
specified investor and returns true.

–Allocate money to investor (Fail) –If unable to allocate money to investor,
return false.

12.2.4 ValidityChecker

Test-case Identifier: TC-32
Function Tested: ValidityChecker::ValidateBuy(Ticket: ticket): void
Pass/Fail Criteria: The test passes if the test stub determines that a buy
is valid. Unsuccessful if buy is not valid.

Test Procedure Expected Results

–Submit buy request (Pass) –Validity Checker verifies that buy is
valid.

–Submit buy request(Fail) –If attempted buy is invalid, Validity
Checker should display an error code that
buy is invalid.

Test-case Identifier: TC-33
Function Tested: ValidityChecker::VerifyFunds(): void
Pass/Fail Criteria: The test passes if the test stub determines that the
investor has sufficient funds for the transaction. Unsuccessful if insufficient
funds for the transaction

Test Procedure Expected Results

–Submit buy order ticket (Pass) –Validity Checker verifies that cash bal-
ances are sufficient for order.

–Submit buy order ticket (Fail) –If the investor has insufficient funds for
the transaction, Validity Checker should
display an error that there are insufficient
funds for the transaction.

112

Test-case Identifier: TC-34
Function Tested: ValidityChecker::ValidateSell(Ticket: ticket): void
Pass/Fail Criteria: The test passes if the test stub determines if a sell is
valid. Unsuccessful if its invalid.

Test Procedure Expected Results

–Submit sell request (Pass) –Validity Checker verifies that sell is
valid.

–Submit invalid sell request (Fail) –If attempted sell is invalid, Validity
Checker should display an error code that
sell is invalid.

12.2.5 StockQuery

Test-case Identifier: TC-35
Function Tested: StockQuery::Query(String: stock):StockData
Pass/Fail Criteria: The test passes if the system queries a stock and that
stock is returned

Test Procedure Expected Results

–Request to query a stock (Pass) –Stock Query returns the stock data
–Request to query a stock (Fail) –If the attempted query was for a stock

that does not exist, Stock Query should
return an error code that the stock does
not exist. If stock information was not
attainable, it should display an error that
no pertinent data was returned.

113

12.2.6 LiquidityModel

Test-case Identifier: TC-36
Function Tested: LiquidityModel::AdjustPrice(StockData: data, Ticket:
ticket): Integer
Pass/Fail Criteria: This test passes if the system requests a price adjust-
ment and the new price is returned

Test Procedure Expected Results

–Request a price adjustment (Pass) –LiquidityModel returns the adjusted
price

–Request a price adjustment (Fail) –If the attempted price adjustment is in-
valid, LiquidityModel should return an
error code that the adjustment was in-
valid. If price adjustment was not attain-
able, it should display an error that no
pertinent data was returned.

12.2.7 FundHandler

Test-case Identifier: TC-37
Function Tested: FundHandler::verifyFields(Fields: fields): Fields
Pass/Fail Criteria: The test passes if the system verifies that the settings
for the fund are all valid and returns the fields

Test Procedure Expected Results

–Request to verify fields (Pass) –FundHandler returns the valid fields.
–Request to verify fields (Fail) –If incorrect fields are loaded, FundHan-

dler should return an error code that the
fields are invalid. If any fields are not
filled in, FundHandler should return an
error code that there are empty fields.

114

12.2.8 LeagueHandler

Test-case Identifier: TC-54
Function Tested: LeagueHandler::verifyFields(Fields: fields): Fields
Pass/Fail Criteria: The test passes if the system verifies that the settings
for the league are all valid and returns the fields

Test Procedure Expected Results

–Request to verify fields (Pass) –League Handler returns the valid fields.
–Request to verify fields (Fail) –If incorrect fields are loaded, League

Handler should return an error code that
the fields are invalid. If any fields are not
filled in, League Handler should return an
error code that there are empty fields.

12.3 Test Coverage

The test cases are envisioned to cover all states and transitions for every class.
This is attained through the testing of every function of every class. Because the
transitions and states are all attained in some way or another through a function
call, the test coverage is very high and accounts for all of these states and transi-
tions. For example, for the order ticket class, the empty case is the initial default
case. The filled state is attained by the investor filling out the form and submitting
it. The transition between these two is tested by TC-16 and TC-17, when the web
page calls the controller to request a buy and sell. For the transition for pending
and execute, TC-46, TC-49, and TC-50 cover the necessary transitions between
the states (as well as testing that the states exist). For the archive state, TC-50
by the DataHandler covers the transition as well as the archived state.

In a similar fashion, the states and transitions of the league are also accounted
for. Although doing these tests will not ensure that the flow through the entire
system is guaranteed, it will make sure that each transition and state is tested.

For the other classes who have trivial states (idle and active), testing the func-
tions will again cover these states because a function call puts the class into an
active mode, and exiting the call puts it back in idle state.

115

12.4 Integration Testing

For integration testing, Bears & Bulls will undergo bottom-up integration testing.
Each component in a lower level of the systems hierarchy will be tested individually.
After that occurs, the components which rely upon these are tested. Integration
testing needs to take place after we conduct the entire unit testing. There is a need
to use the higher model to test its interactions with its lower level components. For
example, with the PageRenderer, it is necessary to test that the Page Renderer is
able to interact with each of its methods correctly. If any problem occurs, testing
can pinpoint that the problem is either in the interface between PageRenderer and
its method. If a problem is pinpointed, it needs to be reviewed and corrected.
By following this strategy, problems can be pinpointed more easily. Drivers need
to be implemented to simulate the higher level components. Test stubs will be
needed to simulate lower level components. Drivers will need to be implemented
for the PageRenderer, ValidityChecker, LiquidityModel, DataHandler, Controller,
FundHandler, LeagueHandler, StockQuery, and LeaderBoard. Interactions need to
be tested with funds, leagues, investor accounts, portfolios, history, league coor-
dinators, fund managers, order list, shares, tickets, stop orders, limit orders, and
market orders. The top level components are the most important, yet they are
tested last. This is the last main testing portion where it is determined whether in-
teractions can be made throughout the system without errors. At this point, most
of the bugs should be fixed and the system should operate as its operation contracts
state. Testing is a major part of software engineering. Due to time constraints,
testing may have to be cut short if it consumes too many resources (developers
time) and if deadlines are approaching. The more faults found at the beginning of
the testing stage increases the probability of finding further faults if testing goes
on for an extended period of time.

12.5 Non-functional Requirements Testing

In order to test the system’s nonfunctional requirements, a focus group will be
surveyed and the results compiled to determine the overall usability and ease of
use of the application. Surveyors will be asked such questions as ”Did you ever
feel lost or overwhelmed at any particular screen?”, ”Were you able to get where
you wanted?”, ”Did the app produce any unexpected behavior?” (REQ-12, REQ-
14). Additionally, the time it takes a user to carry out a predetermined task can
be measured to ensure that the app is not needlessly complex, and that it is also
loading fast enough (REQ-14, REQ-15). Additionally, the app must be tested on a

116

variety of browsers (especially the industry leading Chrome, Firefox, and Internet
Explorer) on various operating systems to ensure that all users receive a similar
experience (REQ-16). Since Bears & Bulls is using Heroku, cases such as system
and disk failures will be managed and tested by their team. Heroku provides
a system status page on https://status.heroku.com/ which provides the current
working conditions of their servers (REQ-17).

13 History of Work, Current Status, Future Work

13.1 History of Work

The planned milestone of completing the First Report within 15 days was suc-
cessfully accomplished. The planned milestone of completing the Second Report
which consisted of Class Diagram and Interface Specification, System Architecture
and System Design, Algorithms and Data Structures, User Interface Design and
Implementation, Progress Report and Report Editing went faster than we expected
in Report 1 by 33% of the time (15 days to 10 days). When creating planned dead-
lines for the Demos, we assumed team members would spend three to five hours
a day working on Bears & Bulls. Fixing errors that occurred and implementing
some of the functionalities took a little longer than expected. As the Demo 1 due
date approached, the amount of hours put into working on Bears & Bulls increased
significantly resulting in some team members spending north of ten hours a day
working on Bears & Bulls. The time frame preceding the days of the Demo 1 due
date (March 27, 2012) was heavily concentrated. Functionalities from Report 1
which we did not implement were a watch stock list, league entrance fees, adding
league coordinators, and Facebook credits from league participants for leagues with
entrance fees and paying league winners. We decided to remove these functional-
ities both because some were determined to be no longer necessary and also time
constraints came upon us. We decided as a team that the actual payment would
be too complicated to implement given the allotted time frame. The user interface
is one of our biggest strengths. Instead of the simply display we had planned as of
Report 2, we were able to add more functionalities than previously expected. We
were able to have market snapshots on the main screen, giving the user an indica-
tion of the markets progress that day. Querying a stock gives not only pertinent
stock information from Yahoo Finance, but also news related to the company also
retrieved from Yahoo Finance. This was all placed in a user-friendly format which
is informative and inviting. The option to buy a stock is not limited to the trade
page, but can be purchased straight from querying a stock (simple link to the trade

117

page).

13.2 Current Status

Currently, Bears & Bulls is a functioning application within Facebook. Users
can create multiple portfolios, join leagues and funds, and the user interface has
been updated significantly to be more user friendly. Most of the functionalities
have been implemented and the current status is just debugging minor bugs and
upgrading the efficiency of the application and easy-to-use interface.

13.2.1 Key Accomplishments

The following are the key accomplishments of Bears & Bulls that were imple-
mented.

• Facebook integration
• Posting activity of Bears & Bulls on main Facebook page
• Posting activity of Bears & Bulls within League Details
• Interacting directly with members of a league via Facebook social plugin
• Implementing Leaderboards of each league
• Implementing both Mutual and Hedge Funds
• Advanced research page
• Searching web for news related to stocks queried and displaying them

13.3 Use Cases

The following are the use cases of Bears & Bulls that were implemented.

• Buy Stock
• Sell Stock
• Query Stock
• View History
• View Portfolio
• Register
• Create League
• Submit Comment
• Create Fund
• Join League
• Manage League

118

• Invite to League
• Update Models
• View Comment
• Manage Fund

13.4 Future Work

Goals we had in mind that werent able to be implemented due to time constraints
are several. As indicated in Report 1, a stock watch list within the Research page
would be a bonus. It gives investors another option to research stocks before they
decide to make or not to make an investment in a given firm. Payment leagues are
another key feature that would be beneficial to add. Implementing a league system
similar to Yahoo! Fantasy Sports would give the option of testing your skill against
serious competition. With options to submit payment prior to entry in a league,
financial incentives are now offered to perform well. To ensure that Bears & Bulls
remains user-friendly and doesnt become a gambling den, limits would be placed
on how large payment to leagues would be to ensure that friendly competition still
exists. These payments would be submitted via Facebook credits. Management of
this money system would also have to be implemented. Another goal that would
be beneficial is to introduce a mobile version of Bears & Bulls. In the modern
world where smartphones dominate the market and many people have access to
Facebook on the go, enabling access to Bears & Bulls on the go would increase
the traffic Bears & Bulls incurs and thus activity would soar. It would also give
users multiple interfaces to interact with Bears & Bulls. Enhancing the notification
system would be an added bonus. In addition to the existing capabilities, sending
notifications when stocks are doing well, stocks are doing bad, movement among
the leaderboards, etc. would give the user updates on their activity within Bears
& Bulls.

119

14 Appendix

14.1 Original Domain Model

NOTE: Alternates Omitted.

Figure 30: Domain Model

Figure 30 shows Bears & Bulls’ general orignal plan for the Domain Model. The
subsequent diagrams give insight into how we planned for the concepts to work to
satisfy the key use cases of the website. Alternate models that we considered for
the use cases will also be shown. The key difference between the alternate model
and the accepted model is the alternate models use of caching to store market data
instead of retrieving it when needed. The database would get updated periodically
by requesting new information every time interval, for example every minute. We
ended up pursuing the former option.

120

Figure 31: Place Order

Figure 31 will represent UC-1 and UC-2. It represents both our buy and sell use
cases since they behave in the same way. The User’s order information eventually
makes its way to the Web Framework, which passes the data to the Order Handler.
It then relays the data to the Stock Query, which will fetch a price from Stock Info
Provider based on what stock is ordered. Stock Query will send this price and the
rest of the order data to the Liquidity Manager to adjust the price based on an
algorithm. This updated order data then travels to the Validity Checker so the
trade can be deemed valid. It requirs the user’s portfolio data for this, so it sends
the User and league ID to the data handler along with a request for portfolio data
about funds and league settings. Once the trade is judged as valid or not, it will
send updated portfolio info to be stored to the data handler if needed and pass
the necessary info to the Page Renderer to display a page showing the success and
result of the trade. This rendered page is sent to the Web Framework, to be shown
to the User.

121

Figure 32: View Portfolio

Figure 32 shows the UC-5 View Portfolio. The User’s query about a portfolio
gets sent down to the Web Framework which in turn will request a page to be
rendered by the Page Renderer. To get its necessary data, the Page Renderer will
send a request for updated stock prices to the Stock Query, and a request for the
portfolio info to the Data Handler. The Stock Query will retrieve the data from
the Stock Info Provider, and the Data Handler will get its data from the Database.
One they have collected the data, they both return it to the Page Renderer, which
will generate the page for the Web Framework to send to the User for viewing.

122

Figure 33: Create League

UC-8 Create League is represented shown in Figure 33. Note that this model will
also essentially cover creating Funds, as well as maintaining both leagues and Funds.
The only thing difference is what the User would have to input for settings. The
Web Framework eventually receives the User’s desired initial or modified settings
and sends it to the League Manager. The League Manager will generate new data
for the league or Fund, and send this data along with the settings info to the Data
Handler to be stored within the Database. The Data Handler will then pass on
necessary data for the Page Renderer to create a page. Once rendered, it is passed
to the Web Framework to be shown to the User.

123

Figure 34: Query Stocks

Figure 34 shows the UC-3 Query Stocks. The requested stock is sent through
to the Web Framework and handed off to the Page Renderer. This concept then
requests the data for said stock from the Stock Query, which fetches the information
from the Stock Info Provider. The Stock Query will return the required data to
the Page Renderer which will create its page for the Web Framework to send to
the User for viewing.

124

Figure 35: Updating Stock Info

The last diagram (Figure 35) shows Updating Stock Info, a required process if
the alternative domain models are to be used. It involves the Stock Query being
signaled by an internal timer to request all stock info from the Stock Info Provider,
which it will in turn send to the Data Handler to store in the Databse.

14.1.1 Original Concept Definitions

User
Definition: A player playing Bears & Bulls.
Responsibilities:

• Manage portfolio
• Make requests for trades
• Manage leagues
• Navigate through website

125

Web Browser
Definition: The user’s browser which runs from the user’s device.
Responsibilities:

• Take requests from the user
• Send requests to the Web Server
• Get responses from the Web Server
• Display the response from the Web Server

Web Server
Definition: HTTP web server, running on a web host
Responsibilities:

• Receive requests from Web Browser
• Send requests to Web Framework
• Get responses from Web Framework
• Send responses to the Web Browser

Web Framework
Definition: APIs to help display user-friendly output
Responsibilities:

• Receive requests from Web Server
• Sends request to appropriate handler: application or database
• Receive rendered pages in the form of structured data
• Send responses to the Web Server

Page Renderer
Definition: Takes user requests and creates a page which is user-friendly
Responsibilities:

• Determine the information required to be rendered and request it
• Receive the required information
• Convert the information into user-friendly format
• Send rendered pages to the Web Framework

Order Handler
Definition: Application conducting transactions of stocks
Responsibilities:

• Receive requests from Web Framework
• Determine what the request is and readies for manipulation
• Request updated price info

126

• Transmit necessary information to other concepts

Stock Query
Definition: Fetch real-time stock prices
Responsibilities:

• Receive requests for stock price
• Request information from Stock Info Provider
• Retrieve information from Stock Info Provider
• Send real-time stock prices to be stored for application’s use

Validity Checker
Definition: Checks if a trade is valid
Responsibilities:

• Receive updated order information
• Request and receive portfolio data
• Determine if sufficient funds are available for the transaction
• Determine if trade is allowed for given user and portfolio based on league

or Fund settings
• Send updated portfolio information if necessary
• Send data reflecting successful/unsuccessful trade to be redered

Liquidity Manager
Definition: Manipulates price to realistic real world prices for slippage
Responsibilities:

• Receive stock and order data
• Utilize algorithm to reflect realistic trades in the market
• Determine new price
• Send out updated stock information

Data Handler
Definition: Communicates with Database to service data requests
Responsibilities:

• Receive and send every kind of data used in system
• Request data from Database
• Send data to be stored in Database

League Manager
Definition: Can create and upkeep leagues and Funds
Responsibilities:

127

• Receive initial or modified settings input for desired league or Fund
• Pass league or Fund data to be stored
• Pass league or Fund data for rendering of a page

14.1.2 Original Association Definitions

The following association definitions are provided for the domain models that
model not only for the important use cases, but also any alternative models for
said use cases:

Concept Pair Association Description Association
Name

Web Browser ↔
Web Server

User interacts with browser send input, send
response

Web Framework ↔
Order Handler

Passes volume, trade type, User
ID and league ID

send order request

Web Framework ↔
Page Renderer

Request to visit page, sends
rendered page in form of data

send page request,
send page

Web Framework ↔
League Manager

Passes the user’s desired
settings

send settings

Page Renderer ↔
Data Handler

Requests data to correctly
render page, passes necessary
data

send data request,
send page data

Page Renderer ↔
Stock Query

Asks for data on specific stocks,
send data on specific stocks

request stock
data, send stock
data

Page Renderer ↔
League Manager

Sends the required data to
render page

send page data

Page Renderer ↔
Validity Checker

Passes necessary data for the
page to be rendered

send page info

Order Handler ↔
Liquidity Manager

Sends order information to
reflect real-life prices

send price request

Order Handler ↔
Stock Query

Passes necessary order data send order data

Stock Query ↔
Stock Info Provider

Asks for stock data, return
stock data

send stock data
request, service
stock data request

128

Stock Query ↔
Data Handler

Sends stock data to be stored send stock data

Stock Query ↔
Liquidity Manager

Passes updated order
information

send order info

Validity Checker ↔
Data Handler

Asks for user’s portfolio
information for validity
purposes, passes user’s portfolio
information, passes updated
portfolio information following
trade

request portfolio
data, return
portfolio data,
send new portfolio
data

Validity Checker ↔
Liquidity Manager

Sends updated stock data to be
checked

send updated
stock data

Liquidity Manager
↔ Data Handler

Sends order information,
returns new price

send stock info,
return price
request

Data Handler ↔
Database

Stores incoming data, request
certain data, retrieve needed
data

store data,
request data,
retrieve data

Data Handler ↔
League Manager

Sends the settings data to be
stored

send settings data

14.1.3 Original Attribute Definitions

Most of our concepts do not need to hold their own data, as our website is
dynamic and web-based. We also have not yet made the decision to cache data.
Thus, nearly all data is stored in a single database. The sparse attributes that
must be accounted for are as follows:

Concept Attribute Meaning

Data Handler databaseHandle Interacts with the database.

Database data Stores data for future use. Includes all
data used in the system, including
League ID, User ID, stock volume and
price data, league settings, fund
settings, and portfolio data such as
transaction history.

129

Facebook accountInformation We don’t need to keep detailed account
of user information as Facebook has
already done it for us. Also we don’t
need to create new login information
as that is handled by Facebook.

Stock Query internalTimer Necessary for an alternate domain
model where the Database is refreshed
with all stock information periodically.

Page Renderer sufficientRenderData Determines if the required data to
render the page is there.

Order Hander validOrderRequest Checks to see if there is all the
required data for an order.

Liquidity Manager priceUpdate Generates a new price value of the
ordered stock.

League Manager settingsValid,
updateSettings

Determines if the User’s settings input
are valid. Will also upkeep settings
based on User modification, signaling
changes to be made to Database.

Validity Checker leagueValid,
fundsValid,
tradeSuccess

Compares funds and price and checks
league settings to make sure a
transaction is valid. Determines if
trade is a success.

14.1.4 Original Traceability Matrix

Use Case PW U
se

r

W
eb

B
ro

w
se

r

W
eb

S
er

ve
r

W
eb

F
ra

m
ew

or
k

P
ag

e
R

en
d

er
er

O
rd

er
H

an
d

le
r

S
to

ck
Q

u
er

y

A
va

il
ab

il
it

y
F

in
d

L
iq

u
id

it
y

M
an

ag
er

D
at

a
H

an
d

le
r

UC01-02 15 x x x x x x x x x x

UC03 14 x x x x x x

UC05 17 x x x x x x x

UC08 4 x x x x x x

130

References

[1] http://www.stockmarketnewz.com/2011/10/19/who\%E2\%80\
%99s-right-about-commodities-bears-or-bulls/.

[2] Discount Broker. http://www.investopedia.com/terms/d/

discountbroker.asp#axzz1mOap5Tqp.

[3] Omondo: The Live UML Company. http://omondo.com.

[4] Facebook Developers. http://www.facebook.com.

[5] Benjamin Graham. The Intelligent Investor. HarperCollins Publishers, revised
edition, 2003.

[6] Technical Indicators and Overlays. http://stockcharts.com/school/doku.
phpid=chart_school:technical_indicators.

[7] George Kleinman. Trading Commodities & Financial Futures. Prentice Hall,
3rd edition, 2005.

[8] Ivan Marsic. Software Engineering. Unpublished, first edition edition, 2012.

[9] Pitfail. http://github.com/pitfail.

[10] Gantt Project. http://www.ganttproject.biz.

[11] Alessandro S. http://www.linkedin.com/answers/financial-markets/

equity-markets/MKT_EQU/1231-10230.

[12] Argo UML. http://argouml.tigris.org.

131

