
Bears & Bulls

332:452 Software Engineering
Report 2

Group 6:
William Pan, Aaron Sun, Pratik Ringshia

Dean Douvikas, Omar Raja, Noah Silow-Carroll

URL: To Be Determined

April 23, 2012

Contributions Breakdown

Task W
il

li
am

A
ar

on

P
ra

ti
k

D
ea

n

O
m

ar

N
oa

h

Cover Page x

Table of Contents x

Interaction Diagrams x

Class Diagram x

Data Types and Op. Signatures x

Architectural Styles x x

Identifying Subsystems x x

Mapping Subsystems to Hardware x x

Persistent Data Storage x x

Network Protocol x

Global Control Flow x x

Hardware Requirements x

Algorithms x

Data Structures x

UI Design and Implementation x

Design of Tests x x x

References x x x x x

Progress Report x

Plan of Work x

1

The above chart summarizes the contributions from various team members in
terms of effort. Based on the course website, our grades would normally be calcu-
lated by used a point breakdown for each section. However, we, the group, would
much appreciate it if you could distribute the total points for this report as the
chart dictates, where all team members have contributed equally. Many of the
contributions from the team members cannot be quantified by the grading scheme,
and we all worked equally.

Thank you.

2

Contents

1 Interaction Diagrams 5
1.1 Use Case 1/2: Buy/Sell Stocks . 5
1.2 Use Case 3: Query Stocks . 7
1.3 Use Case 5: View Portfolio . 8
1.4 Use Case 7: Register . 9
1.5 Use Case 8/11: Create League/Fund

Use Case 13/20: Manage League/Fund 10

2 Alternative Designs 12
2.1 Use Case 1: Buy Stocks . 13
2.2 Use Case 2: Sell Stocks . 14
2.3 Use Case 3: Query Stocks . 15
2.4 Use Case 5: View Portfolio . 16
2.5 Use Case 8: Create League . 17
2.6 Use Case 11: Create Fund . 18
2.7 Use Case 13: Manage League . 19
2.8 Use Case 20: Manage Fund . 20

3 Class Diagram and Interface Specification 21
3.1 Class Diagram . 21
3.2 Data Types and Operation Signatures 22
3.3 Traceability Matrix . 35

4 System Architecture and System Design 36
4.1 Architectural Styles . 36
4.2 Identifying Subsystems . 37
4.3 Mapping Subsystems to Hardware 38
4.4 Persistent Data Storage . 39
4.5 Network Protocol . 40
4.6 Global Control Flow . 40
4.7 Hardware Requirements . 40

5 Algorithms and Data Structures 41
5.1 Algorithms . 41
5.2 Data Structures . 41

6 User Interface Design and Implementation 42

3

7 Design of Tests 42
7.1 State Diagrams . 42
7.2 Unit Tests . 43
7.3 Test Coverage . 62
7.4 Integration Testing . 63
7.5 Non-functional Requirements Testing 63
7.6 Mathematical Model Testing . 64

8 Progress Report 65

9 Plan of Work 66

10 References 68

NOTE: If viewing as PDF, please zoom in to see images. In addtion,

design principles for various objects are stated in the first cap-

tion, and not repeated in subsequent captions to avoid repetition.

4

1 Interaction Diagrams

1.1 Use Case 1/2: Buy/Sell Stocks

Figure 1: Interaction Diagram for Buy Stocks (From Report 1 Fig. 2)

When a buy or sell event occurs, the process begins with the Investor Actor
initiating a RequestBuy to the Web Page through the web interface. The Investor
must have provide a valid ticket, which includes a stock symbol and the amount
of that stock that they wish to trade. The ticket also contains the user ID and
the transaction type. Tickets have a price and validity field as well, but these
will be populated by the Stock Query and Validity Checker respectively. The
Web Page relays this information to the Controller, who’s duty it is to execute
the trade if possible. First, to find out if the trade is possible, the Controller
sends the ticket to the Validity Checker. For buys, the Validity Checker must first
determine the market price of the stock after being adjusted by the liquidity model,
and second it must get the Investor’s account balance and determine if there are
sufficient funds to execute the transaction. If so, it returns back a ticket that is

5

Figure 2: Interaction Diagram for Sell Stocks (From Report 1 Fig. 3)

now stamped as being valid. For sells, it must make sure that the Investor has
enough of the stocks required to make the sell and enough balance to pay the
commission. Validity Checker then calls Stock Query instead of querying Stock
Info Provider directly. This follows the Expert Doer principle since Stock Query
already has the ability to interface with the Stock Provider. Once the controller has
a valid ticket, it calls the DataHandler to update the Database to reflect the new
state after the transaction has been conducted. While creating the DataHandler
introduces another component which is against the principle of Loose Coupling, we
decided it was paramount to keep it since anytime an object needs to modify the
database, it can do so through the DataHandler rather than implementing its own
programming logic to communicate with the database. This is yet another example
of the Expert Doer principle (and also High Cohesion). Once the DataHandler is
done, the Controller notifies Page Renderer of the resulting status of the entire
procedure, so that a page can be displayed accordingly to notify the user of the
success or failure of their action. The Page Renderer then returns the page back
to the Web Page which the Investor will see.

6

1.2 Use Case 3: Query Stocks

Figure 3: Interaction Diagram for Query Stocks (From Report 1 Fig. 4)

To receive information about a single stock, the Investor first chooses the stock
through the Web page. The Web page then tells the Controller to fetch the stock
and it’s relevant information. The Controller messages Stock Query to get the state
of the stock currently as provided by the Stock Info Provider. Once the Controller
has this information, it sends it to the Page Renderer which formats it into HTML,
and returns it to the Web page. This diagram displays the properties discussed
above, mainly Expert Doer and High Cohesion.

7

1.3 Use Case 5: View Portfolio

Figure 4: Interaction Diagram for View Portfolio (From Report 1 Fig. 5)

When the Investor wants to view their Portfolio, they notify the Web Page,
which communicates with a Controller. The Controller queries the DataHandler to
retrieve the investor’s stocks. Once the controller has the list of stocks, it iterates
through each of them and uses Stock Query to get their respective prices. These
prices will be used to populate a data object containing the portfolio’s stocks and
net worth which will then be returned to the Page Render where it is embedded
into HTML before being served back to the Web Page. An alternative failure case
that is worth mentioning is the Stock Info Provider returning an error in response
to a request for a stock’s information. This error will be noted in the data object
by the controller, and the Page Renderer will make note and display whatever it
can without the data.

8

1.4 Use Case 7: Register

Figure 5: Interaction Diagram for Register (From Report 1 Fig. 6)

On a user’s first visit to the Bears & Bulls URL, they are redirected to a page
where they are given the option to authorize the app and add it. After allowing
Facebook to authorize the app and access their data, the user is sent another
redirect to a page that will set up their account for them. This page then creates
a session by messaging Facebook and requesting a token. Once successful, it get’s
the user’s info, namely their unique Facebook id, which it will use to create the
user’s account. In order to create the account, the Web Page calls a Controller
that interfaces with the DataHandler (the standard method for interfacing with
the database) to create a new row in the Investors table for the user. When
successful, the controller is notified and the Page Renderer is told to serve a web
page accordingly to get the user started.

9

1.5 Use Case 8/11: Create League/Fund

Use Case 13/20: Manage League/Fund

Figure 6: Interaction Diagram for Create League (From Report 1 Fig. 7)

The creation and modification of a league and a fund work essentially in the same
way. The Investor initiates the action through the Web page, which hands off the
task to the Controller. The Controller then communicates with the FundHandler
or the LeagueManager depending on what is being created or modified to see if
the action is valid (an example of High Cohesion and Expert Doer). If so, the
controller informs the DataHandler of what fields to update in the database to
reflect the actions being carried out. The Page Renderer is told to return a page
back to the Web page accordingly so the Investor can be notified. The failure
case occurs when a setting is invalid, and the page renderer will display an error
accordingly.

10

Figure 7: Interaction Diagram for Create Fund (From Report 1 Fig. 8)

Figure 8: Interaction Diagram for Manage League (From Report 1 Fig. 9)

11

Figure 9: Interaction Diagram for Manage Fund (From Report 1 Fig. 10)

2 Alternative Designs

As you can see, there are many objects that are reused multiple times in each of
the interaction diagrams above. Since each object was only assigned the responsi-
bilities need to accomplish a specific purpose, it is able to be used many times for
different scenarios. This is the benefit of using the design decisions of Expert Doer
and High Cohesion, at the expense of Loose Coupling.

The only new object that was introduced from our previous iterations (report
1) was the Controller. Initially, we had the functionality of validity checking built
into the Controller (which was then named the Validity Checker) as shown in
the diagrams below. However, in spirit of high cohesion, we allowed the Validity
Checker to carry out the sole task of verifying the ticket to see if it supports a
valid transaction. This frees up the Validity Checker to also be flexible so it can be
use to both buy and sell stocks. The need for a seperate controller object became
apparent when creating the interaction diagrams because we realized that the Web
Site needed one object that initiated multiple requests rather than many objects
initiating some requests to get the task done. This falls in line with the idea of

12

the Expert Doer principle. With this new model, objects do not take on too many
Type 2 responsibilities since the Controller now specializes in doing it for them.

(Please see below for the alternate diagrams without the controller)
Some other alternatives (not pictured) were also considered during the design

process. For example, in one design, we considered having Stock Query query the
Stock Info Provider periodically to get the prices for all stocks and store them in
the database. For our app to get a stock price, it would get it from our database
instead. We ultimately decided against this since it would unnecessarily increase
the size of our database and would be too complicated an implementation in the
early stages of development. We will possibly revisit this implementation in the
future since it would reduce our application’s latency by not having to connect to
an external server each time a trade needs to be made, and to reduce the overall
volume of queries made to the external API once the app becomes popular.

2.1 Use Case 1: Buy Stocks

Figure 10: Interaction Diagram for Buy Stocks (Alternate)

13

2.2 Use Case 2: Sell Stocks

Figure 11: Interaction Diagram for Sell Stocks (Alternate)

14

2.3 Use Case 3: Query Stocks

Figure 12: Interaction Diagram for Query Stocks (Alternate)

15

2.4 Use Case 5: View Portfolio

Figure 13: Interaction Diagram for View Portfolio (Alternate)

16

2.5 Use Case 8: Create League

Figure 14: Interaction Diagram for Create League (Alternate)

17

2.6 Use Case 11: Create Fund

Figure 15: Interaction Diagram for Create Fund

18

2.7 Use Case 13: Manage League

Figure 16: Interaction Diagram for Manage League (Alternate)

19

2.8 Use Case 20: Manage Fund

Figure 17: Interaction Diagram for Manage Fund (Alternate)

20

3 Class Diagram and Interface Specification

3.1 Class Diagram

The following class diagram shows the relations between classes. The class di-
agrams are collapsed to show only the names of the classes. The class attributes
and methods are listed in Section 3.2. Several classes shown here were not present
in the domain model. This is explained under the Traceability Matrix.

21

3.2 Data Types and Operation Signatures

22

3.2.1 Controller

Attributes
The controller has the job of conveying messages back and forth between different
domain concepts in the domain model. In order to accomplish this, we determined
it would be best if the controller had a copy of every data type that it handles as
an attribute. This lowers the chance of corrupting data.

− ticket : Ticket
This is a copy of the order ticket that the investor has just submitted.

− data : StockData
This is a copy of the data that the system queries from the Stock Info Provider.

− fields : Fields
This is a copy of the fields that a league or fund fills out during a creation/editing
request. Since the various fields are quite similar between the two, one Fields
object is used for both.

− userinfo : UserInfo
This is a copy of the user info that the system gets from Facebook. It is only
used when an account is created, and the controller sends this to the database.

− investor: String
This is a copy of the investor’s username that the controller passes along to the
data handler. It is used to find the Investor object from inside the database.

− portfolio : Portfolio
This is a copy of a Portfolio object that the controller passes along.

− history : History
This is a copy of a History object (contains the investor’s transaction history)
that the controller passes along.

− stock : String
This is a copy of the stock symbol that is passed to the Stock Query for it to
get info on the stock. Fund names are also treated as stock names because
investors invest in these just like they would a stock

− payment : Float
This is a copy of the amount that the investor is submitting as payment to a
league

− league : String
This is a copy of the name of a league that the controller passes along

23

Methods
The controller has many methods which the web page calls in order to let the
controller know that it has a request (all except for Render and RenderError). The
controller will subsequently convey the message by calling another function.

− Render(Integer : type,void* : data) : Boolean
This method is what the controller calls when it is ready to render a page. The
arguments are an Integer for the type of page that is displayed (for example
portfolio page), and a pointer to a data structure containing the data necessary
to construct the page. This method calls the appropriate method within page
renderer.

− RenderError(Integer : type,void* : data) : Boolean
This method serves the same purpose as the one above, except that it tells the
page renderer to render an error version of the page.

+ RequestBuy(Ticket : ticket)
This method is the method that the web page calls in order to request a buy

+ RequestSell(Ticket : ticket)
This method is the method that the web page calls in order to request a sell

+ RequestPortfolio(String : investor) : Void
This method is the method that the web page calls in order to view a portfolio

+ RequestCreateL(Fields : fields) : Void
This method is the method that the web page calls in order to create a league

+ RequestCreateF(Fields : fields) : Void
This method is the method that the web page calls in order to create a fund

+ RequestEditL(Fields : fields) : Void
This method is the method that the web page calls in order to edit league
settings.

+ RequestEditF(Fields : fields) : Void
This method is the method that the web page calls in order to edit fund settings.

+ RequestHistory(String : investor) : Void
This method is the method that the web page calls in order to view transaction
history.

+ RequestAddWatch(String : investor, String : stock) : Void
This method is the method that the web page calls in order to add a stock to
the watchlist.

+ RequestPayment(String : investor, Float : payment, String : league)
: Void
This method is the method that the web page calls in order to make a payment
to a league.

24

+ RequestJoin(String : investor, String : league) : Void
This method is the method that the web page calls in order to join a league.

+ RequestInvite(String : investor, String : league) : Void
This method is the method that the web page calls in order to invite an investor
to a league.

+ RequestAddCoord(String : investor) : Void
This method is the method that the web page calls in order to add a coordinator
to a league.

+ RequestRemove(String : investor, String : league) : Void
This method is the method that the web page calls in order to remove an
investor from a league.

+ RequestManage(String : investor, Float : payment, String : league) :
Void
This method is the method that the web page calls in order to distribute money
to the winners.

3.2.2 PageRenderer

Attributes

−page : Page This is the current page that the web browser is displaying/will be
displayed.

Methods
Every method has an integer parameter called valid. This lets the page renderer
know if the page that it should be generating is an error page or a success page.

− generatePageOrder(Ticket : ticket, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of an
order.

− generatePageStock(StockData : data, Integer : valid) : Boolean
This method is called in order to render a page displaying the resultsof a stock
data query.

− generatePagePortfolio(Portfolio : portfolio, Stockdata* : data, Inte-
ger : valid) : Boolean
This method is called in order to render a page displaying the results of a
portfolio viewing.

− generatePageFront(UserInfo : userinfo, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of an
account creation.

25

− generatePageLorF(Fields : fields, integer : valid) : Boolean
This method is called in order to render a page displaying the results of a
creation of a fund or league, or an editing of a fund or league.

− generatePagePayment(Integer : payment, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of a
payment to a league.

− generatePageJoin(String : league, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of joining
a league.

− generatePageInvite(Investor : investor, String : league, Integer : valid,
String : which) : Boolean
This method is called in order to render a page displaying the results of inviting
an investor to a league.

− generatePageRemove(Investor : investor, Integer : valid) : Boolean
This method is called in order to render a page displaying the results of remov-
ing an investor from a league.

− generatePageManMoney(Investor : investor, Float : payment, String
: league) : Boolean
This method is called in order to render a page displaying the results of dis-
tributing money to the winners.

− generatePageAddC(Ingestor : investor, String : league, Integer :
valid) : Boolean
This method is called in order to render a page displaying the results of adding
a coordinator to a league.

+ pageType(Inveger : Type, void*: data, Integer : valid) : Boolean
This method is called by the controller in order to render a page with the given
type, data, and whether it is an error or not.

+ getPage() : Page
This method is called by the web page in order to retrieve the page it must
display.

3.2.3 DataHandler

Methods
These methods are called by the controller to access the information in the database.

+ executeOrder(Ticket : ticket) : Boolean
This method executes the ticket order by updating the investor’s portfolio
accordingly.

26

+ RequestPortfolio(String : investor) : Portfolio
This method is called to request the portfolio data from the database.

+ CreateAccount(UserInfo : userinfo) : Boolean
This method is called to request an account creation.

+ Createleague(Fields : fields) : Boolean
This method is called to request a league creation.

+ EditLeague(Fields : fields) : Boolean
This method is called to request the league settings be modified in the database.

+ CreateFund(Fields : fields) : Boolean
This method is called to request a fund creation.

+ EditFund(Fields : fields) : boolean
This method is called to request the fund settings be modified in the database.

+ RequestHistory(String : investor) : History
This method is called to request the transaction history from the database.

+ AddWatch(String : investor, String : stock) : Boolean
This method is called to request that the database add a stock to the watchlist
of an investor.

+ MakePayment(String : investor, Float : payment, String : league) :
Boolean
This method is called to request that the payment for a league be updated in
the database.

+ JoinLeague(String : investor, String : league) : Boolean
This method is called to request that an investor be added to a league in the
database.

+ Invite(String : investor, String : league) : Void
This method is called to request that an invite be added to the investor’s
account.

+ AddCoordinator(String : investor) : Boolean
This method is called to request that a coordinator be added to a league in the
database.

+ RemoveUser(String : investor, String : league) : Boolean
This method is called to request that an investor be removed from a specific
league in the database.

+ ManageMoney(String : investor, Float : payment, String : league) :
Boolean
This method is called to request that the database allocate money to the spec-
ified investor.

27

3.2.4 ValidityChecker

Attributes
The validity checker holds the below attributes that it uses in calculations to de-
termine if an order is valid or not.

− data : Stockdata
This is a copy of the stock data obtained from Stock Query.

− ticket : Ticket
This is a copy of the order ticket that the investor fills out.

− pricepershare : Double
This is a copy of the price per share of the stock, which the liquidity model
determines.

− balance : Double
This is a copy of the investor’s current account balance.

Methods

+ ValidateBuy(Ticket : ticket) : void
This method is called by the controller to determine if a buy is valid or not.

− VerifyFunds() : void
This method is called by the validity checker in order to determine if the in-
vestor has sufficient funds for the transaction.

+ ValidPayent(String : Investor, Float : payment, String : league) :
Boolean
This method is called by the controller to determine if the investor can pay the
specified amount to the league.

+ ValidateSell(Ticket : ticket) : void
This method is called by the controller to determine if a sell is valid or not.

3.2.5 StockQuery

Methods

+ Query(String : stock) : StockData
This method is called to request stock data from the stock info provider. The
data is forwarded straight to the class requesting it, and a copy is not made
within the Stock Query.

28

3.2.6 LiquidityModel

Methods

+ AdjustPrice(StockData : data, Ticket : ticket) : Integer
This method is called by the validity checker to modify the stock price per
share in accordance to how many the investor plans to buy or sell.

3.2.7 WebPage

Attributes
The web page contains a copy of various attributes that it receives from the investor
and forwards it on to the controller.

− ticket : Ticket
This is a copy of an order ticket that the investor fills out.

− fields : Fields
This is a copy of the league or fund settings that the investor fills out.

− userinfo : Userinfo
This is a copy of the user info that facebook provides to the system.

− investor : String
This is a copy of the investor’s username.

− stock : String
This is a copy of the particular stock that is requested by the investor.

− payment : Float
This is the amount of payment that the investor enters to pay a league.

− eague : String
This is the name of the league that the investor enters.

3.2.8 FundHandler

Attributes

− fields : Fields
This is a copy of the fields for the fund.

Methods

+ verifyFields(Fields : fields) : Fields
This method that the controller calls that verifies that the settings for the fund
are all valid.

29

3.2.9 LeagueHandler

Attributes

− fields : Fields
This is a copy of the fields for the league.

Methods

+ verifyFields(Fields : fields) : Fields
This method that the controller calls that verifies that the settings for the
league are all valid.

3.2.10 Leaderboard

Attributes

− investorlist : List
This is a list of the top investors ordered by rank.

3.2.11 Ticket

Attributes

investor : String
This is the investor’s username.

stock : String
This is the stock symbol.

numstock : Integer
This is the amount of stock that is being exchanged.

pricepershare : Double
This is the price per share of the stock.

valid : Integer
This is a valid bit: it lets the controller know if the ticket is valid or not.

time : Date
This is the time and date of the ticket submission.

type : Integer
This is the type of transaction (example being stop order).

30

3.2.12 Shares

This class contains the number of shares of a stock that an investor owns, and
information about them. Attributes

pricepaid : Double
This is the price paid for the stock.

executiondate : Date
This is the date of execution of the trade.

lasttrade : Double
This is the price of the lastest trade on the market for the stock.

change : Double
This is the change in the stock from the beginning of the day.

changepercent : Double
This is the percentage change in the stock from the beginning of the day.

daysgain : Double
This is the gain from the stock in the current day.

quantity : Integer
This is the amount of stock that is owned.

totalgain : Double
This is the total gain from the stock from when it was first bought.

totalgainpercent : Double
This is the percentage gain from the stock out of the gains from all stocks the
investor holds.

3.2.13 Portfolio

Attributes

cash : Double
This is the investor’s balance.

sharesheld : List
This is a list of class shares that the investor owns.

3.2.14 StopOrder

Attributes

StopPercentage : Double
This is the threshold percent change of the stock before the order is executed.

31

HighWaterMark : Double
This is the highest price reached (or lowest for a buy). This is used for trailing
orders.

StopPriceChange : Double
This is the threshold change in price of the stock before the order is executed.

trailing : Boolean
This specifies if the stop order is a trailing stop or not.

3.2.15 LimitOrder

Attributes

limitprice : Double
This is the threshold price for a stock before the order is executed.

3.2.16 MarketOrder

This class is the default order type and has no special requirements. Thus it is
represented here only to remind the developer that the market order exists.

3.2.17 OrderList

Attributes

ticket : List
This is a list of tickets that have yet to be executed because conditions for
execution have not been met.

3.2.18 History

Attributes

ticket : List
This is a list of class tickets in chronologically backwards order, with the most
recent transaction first.

32

3.2.19 FundManager

Attributes

− portfolio : Portfolio
This is the portfolio of the fund, which the fund manager maintains.

3.2.20 LeagueCoordinator

The league coordinator does not have any special attributes or methods that
make it different from an investor. This class exists to differentiate an investor
from a league coordinator (who is able to call more functions). This class inherits
from InvestorAccount

3.2.21 InvestorAccount

Attributes

name : String
This is the username of the investor.

globalRank : unsignedLong
his is the global rank of the investor.

portfolio : Portfolio
This is the investor’s portfolio.

history : History
This is the investor’s transaction history.

userinfo : UserInfo
This is the investor’s personal info that was retrieved from Facebook.

leagues : List
This is the list of leagues that the investor is currently a member of.

3.2.22 Fund

Attributes

portfolio : Portfolio
This is the fund’s portfolio.

fields : Fields
This is the various settings of the fund, including fund name.

33

3.2.23 League

Attributes

investor : List
This is the list of investors that are currently in the league.

ranking : List
This is the list of rankings for each investor (it runs parallel to the investor
list).

fields : Fields
This is the various settings of the league, including the league name.

34

3.3 Traceability Matrix

Class W
eb

P
ag

e

P
ag

e
R

en
d

er
er

V
al

id
it

y
C

h
ec

ke
r

S
to

ck
Q

u
er

y

D
at

aH
an

d
le

r

L
iq

u
id

it
y
M

o
d

el

L
ea

gu
eM

an
ag

er

F
u

n
d

H
an

d
le

r

WebPage x

PageRenderer x

Controller x x

ValidityChecker x

LiquidityModel x

StockQuery x

DataHandler x

FundHandler x

LeagueHandler x

League x

LeaderBoard x

LeagueCoordinator x

InvestorAccount x

Portfolio x

FundManager x

Fund x

Shares x

Histor x

OrderList x

Ticket x

Market Order x

Limit Order x

Stop Order x

Many of the classes map back to the DataHandler concept since they contain data
that is queried by the DataHandler. These classes should have been represented
as separate entities in the domain model and shows a shortcoming of the domain
model that was derived earlier. These concepts will be added to the domain model
to reflect the classes needed to store the data.

35

4 System Architecture and System Design

4.1 Architectural Styles

Bears & Bulls utilizes several architectural styles with a main focus on the
Model/View/Controller approach. Let us take a closer examination into how Bears
& Bulls incorporates these various techniques in its implementation.

4.1.1 Model/View/Controller

Bears & Bulls relies heavily on the Model/View/Controller architecture. The
main view is the Facebook web interface that the user interacts with. Through
this interface the user carries out various tasks as enumerated by our Use Cases.
Various controllers will help the user interface with the two main models which are
the site database and the stocks model provided by the stock information provider.
The view will be represented by HTML, CSS, and Javascript. The controller logic
will be implemented using PHP. For the models, the site database will be created
using MySQL and the stock model will be made accessible by API calls to an
external stock information provider. Most of our concepts fall into the controller
category.

4.1.2 Front and Back Ends

The front-end component of our system is our Web UI. This is what the public
will see. The back end consists of all the behind the scenes business logic for our
app. Even within our controller and model logic, we have representations of front
and back ends. For example, for the controller to communicate with the database,
it must do so through the DataHandler. Hence, the DataHandler serves as the
front end of the database to the controller.

4.1.3 Event-driven Architecture

Any changes to the equilibrium of our system by the user is an event. In this
way, the user acts as an event emitter (i.e. initiating buy, sells, creating leagues,
etc.). The events are handled by the controller logic, which serves as the event
consumer for these events. Another type of event that drives our application are
changes in stock price. This is used to execute limit, stop, and stop limit orders.

36

4.1.4 Object-oriented

Our application uses some object-oriented practices. For example things such
as leagues, funds, tickets, transactions, and stocks are all represented as objects.
These objects are the lifeblood of our system because all data communication occurs
through these objects.

4.2 Identifying Subsystems

Page: (WebPage, PageRenderer, Controller)
Page is the subsystem that directly interacts with the user actor. It is respon-
sible for handling the user’s input and relaying to the other subsystems.

League: (League, LeagueCoordinator, LeaderBoard, LeagueHandler)
This subsystem takes care of all things associated with a league, including it’s
creation and maintenance, as well as displaying information about the league
and its players, such as the leader board.

37

Portfolio: (Portfolio, History, Shares)
This subsystem keeps track of an investor’s portfolio, including it’s history and
content.

Fund: (Fund, FundManager)
This subsystem takes care of all things associated with a fund, including it’s
creation and maintenance as well as displaying information about the fund and
its content.

Orders: (OrderList, Ticket, MarketOrder, LimitOrder, StopOrder)
This subsystem manages all transactions initiated by the investor. Orders is a
subsystem that handles all transaction initiated by the investor, such as limit
and stop orders, for the system. It keeps track of such orders by creating tickets.

StockPrice: (StockQuery, ValidityChecker, LiquidityManager)
StockPrice’s responsibility is to get updated stock prices and alter them based
on liquidity, as well as validate transaction based on available cash balance.

4.3 Mapping Subsystems to Hardware

The mapping of subsystems takes place onto two servers. One server, Heroku,
was provided by Facebook Developers. Heroku is a cloud application platform
which supports any programming language. We manage our app via the Heroku
command-line tool and deploy out code via the Git revision control system. All
system administrators have access to this account and can submit changes at any
time. A software engineering computer was provided by the ECE department
(sweng-1.engr.rutgers.edu) which can be accessed within the Rutgers network via
ssh group6@sweng-1.engr or by visiting apps.rutgers.edu and then http://sweng-
1.engr.rutgers.edu/g̃roup6. The capabilities allow PHP and MySQL which will
be utilized to display the user interface. Processes are first initiated by the Web
Browser when the user requests an action to occur. The DataHandler, Controller,
Stock Query, and Page Renderer will all be managed via these two servers. For
capabilities stored on the Heroku server, the information is stored in the cloud
provided by Heroku. For capabilities stored on the ECE server, the data is stored
on sweng-1. The exact location of each subsystem has not been fully determined
yet, but they will be between the two choices discussed above.

38

4.4 Persistent Data Storage

Bears & Bulls needs to store data that will outlast a single execution of the system
in order to keep track of player profiles, stocks and net worth. For each player, the
database will store the user’s name, cash balances, current stock information and
a history of past transactions. A players cash balances is the amount of money
not tied up in current stocks. For current stocks, the data base will record the
stock symbol, quantity of stock, purchase price of the stock, date and time of
original transaction, and the price of stock at last update. Updates occur when the
portfolio is viewed or when the system updates the current standings of a league.
With all this information, the system can calculate a player’s net worth, which
is his cash balances plus the total value of his current stocks based on the most
recently updated prices. The database will also hold a record of past transactions
and stocks owned, including the prices that the stocks were bought and sold at,
as well as times and dates of all transactions. The database will be implemented
using MySQL.

Name: Noah Silow-Carroll

Cash: $6,435.00

Market Value: $36450.00

Stocks

Symbol Qty Price Paid Date Bought Last Trade Day’s Gain

goog 50 610.31 2/24/12 618.15 +2.37

yhoo -100 14.48 2/27/12 14.91 -0.12

f 50 12.20 2/27/12 11.97 -0.03

Transaction History

Symbol Transaction Type Price Quantity Date

yhoo Sell Short 14.48 100 2/27/12

f Buy 12.20 50 2/27/12

f Sell 34.83 100 2/24/12

goog Buy 610.31 50 2/24/12

39

4.5 Network Protocol

Bears & Bulls utilizes Facebook for its operation. This system uses an IFrame
Canvas application which is an IFrame surrounded by the Facebook chrome. Since
the application is essentially a website wrapped in Facebook’s application environ-
ment, the entire system communicates via HTTP.

The Facebook Platform uses OAuth 2.0 protocol for authentication and autho-
rization. If the user is already logged into Facebook, the system will validate the
login cookie stored on the users browser which authenticates the user. If the user
is not logged in, they are prompted to enter their login information. Since au-
thentication is handled by Facebook, Bears & Bulls will not do additional user
authentication.

4.6 Global Control Flow

Bears & Bulls is an event-driven system which waits for certain actions to occur
and responds the them. To update a users portfolio, the system waits for the
user to attempt to view his portfolio. Upon receiving this request the system
contacts the StockInfoProvider and updates the users portfolio accordingly. To
view league standings, our system needs to update every league member’s portfolio
so the user can view up-to-date league standings. To view information on a stock,
the StockInfoProvider is contacted to provide up-to-date information concerning
said stock. The order of execution for order tickets uses a linked-list sorted by the
time an order is received. Executed orders are removed from the list as they are
executed.

4.7 Hardware Requirements

Bears & Bulls is optimized for use with a color display with a minimum resolution
of 760xn pixels because the maximum pixel width allowed by iframe is 760 pixels.
The user doesnt require any hard drive space for this application as all the required
data is stored on Bears & Bulls’ servers. A network connection is required to access
Facebook. If Facebook authentication is accessible, then Bears & Bulls is accessible.
Users devices need an Internet connection to connect to the system. This is the
main hardware requirement our system needs.

40

5 Algorithms and Data Structures

5.1 Algorithms

Most of the functions of Bears & Bulls take user inputs and return outputs
with minimal data manipulation other than page rendering. As such, there are
really no noteworthy algorithms to discuss apart from the model used to simulate
price slippage for block trades. For information regarding the mathematical model,
please refer to the Bears & Bulls Report 1. A relational database will be used
for persistent data storage. Most of the data in the system will be entered into
the database and so algorithms for manipulating the data, such as sorting and
searching, are handled by the database. Thus search and sorting algorithms are
not in the scope of the system and will not be discussed.

5.2 Data Structures

The main structure of concern that is used in Bears & Bulls is a linked-lists.
Linked-lists are used to hold the pending order tickets that the system has stored
within it.

The linked-list structure was chosen because it supports easy insertion and dele-
tion from the list. The linked list was chosen over the queue because the queue does
not support deletion from any point within the queue. This is necessary because
the orders are not necesarrily executed in the order they are received. The system
iterates over the list of tickets and skips orders whose order condititions have not
been met. An order submitted later may be executed first if its order condition
is fulfilled first and that ticket should be removed immediately after execution,
regardless of the location.

An array was not chosen because the data structure must be able to support an
arbitrary number of tickets in at any given time. Thus a fixed-size array would
not be appropriate. The overhead of resizing a fixed size array to handle insertions
and deletions makes an array-based list implementation a poor candidate for the
order list. Both arrays and linked-lists are O(1) in terms of insertion, and for our
purposes they are both O(n) for retrieval because each retrieval requires a traversal.
However, the list has a O(1) deletion while the array will have O(n) for deletion
due to shifting.

Most of the data that is needed by Bears & Bulls is stored in a relational database
and so container classes such as investor lists and league membership lists are not
in the scope of the system.

41

6 User Interface Design and Implementation

The user interface and user effort approximation has not yet varied from what was
outlined in Report 1. The initial mockups provided in Report 1 are in the process of
being implemented in HTML and CSS. Thus far, the basic page skeleton that will
be reused for most pages on the site and the Dashboard page have been completed.
An HTML implementation of the entire website is scheduled to be completed at
a later time before Demo 1. Currently, the site front-end is temporarily uploaded
and can be interacted with at ¡http://high-window-8945.herokuapp.com/temp/¿.

7 Design of Tests

7.1 State Diagrams

Note on State Diagrams
Depicted below are the state diagrams for leagues and order tickets. Although
there are many more classes within the system, these two are the only classes
that contain non-trivial states (idle and active). Therefore, only these two will be
depicted below. Test cases have been developed for all classes though.

42

Figure 18: State Diagram of Order Ticket

Figure 19: State Diagram of League

7.2 Unit Tests

7.2.1 Controller

Test-case Identifier: TC-1
Function Tested: Controller::Render(Integer : type,void* : data) : Boolean
Pass/Fail Criteria: The test passes if the correct data to be rendered is
passed to PageRenderer. The test fails if this data is incorrect or incomplete.

Test Procedure Expected Results

–Call Function (Pass) –Correct data to be rendered is passed,
pageType of PageRenderer gets called

–Call Function (Fail) –Data to be rendered is incomplete or in-
correct, function returns zero

43

Test-case Identifier: TC-2
Function Tested: Controller::RenderError(Integer : type,void* : data) :
Boolean
Pass/Fail Criteria: The test passes if the correct data to be rendered is
passed to PageRenderer. The test fails if this data is incorrect or incomplete.

Test Procedure Expected Results

–Call Function (Pass) –Correct data to be rendered is passed,
pageType of PageRenderer gets called

–Call Function (Fail) –Data to be rendered is incomplete or in-
correct, function returns zero

Test-case Identifier: TC-3
Function Tested: Controller::RequestPortfolio(String : Investor) : Void
Pass/Fail Criteria: The test passes if the correctly matching portfolio is
signaled to be retrieved. The test fails if the request does not go out, due to
an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, RequestPortfolio
of DataHandler is called

–Call Function (Fail) –Data does not get sent, RequestPortfolio
of DataHandler is not called

Test-case Identifier: TC-4
Function Tested: Controller::RequestCreateL(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s league settings is sent to the DataHandler. The test fails if the
request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, CreateLeague of
DataHandler is called

–Call Function (Fail) –Data does not get sent, CreateLeague of
DataHandler is not called

44

Test-case Identifier: TC-5
Function Tested: Controller::RequestCreateF(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s fund settings is sent to the DataHandler. The test fails if the
request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, CreateFund of
DataHandler is called

–Call Function (Fail) –Data does not get sent, CreateFund of
DataHandler is not called

Test-case Identifier: TC-6
Function Tested: Controller::RequestEditL(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s edits is sent to the DataHandler. The test fails if the request does
not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, EditLeague of
DataHandler is called

–Call Function (Fail) –Data does not get sent, EditLeague of
DataHandler is not called

Test-case Identifier: TC-7
Function Tested: Controller::RequestEditF(Field : fields) : Void
Pass/Fail Criteria: The test passes if the request complying with the cor-
rect User’s edits is sent to the DataHandler. The test fails if the request does
not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, EditFund of
DataHandler is called

–Call Function (Fail) –Data does not get sent, EditFund of
DataHandler is not called

45

Test-case Identifier: TC-8
Function Tested: Controller::RequestHistory(String : investor) : Void
Pass/Fail Criteria: The test passes if the request for the correct investor
history is sent to the DataHandler. The test fails if the request does not go
out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, RequestHistory
of DataHandler is called

–Call Function (Fail) –Data does not get sent, RequestHistory
of DataHandler is not called

Test-case Identifier: TC-9
Function Tested: Controller::RequestAddWatch(String : investor, String :
stock) : Void
Pass/Fail Criteria: The test passes if the request to add a watch on the
correct stock for the correct investor is sent to the DataHandler. The test
fails if the request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, AddWatch of
DataHandler is called

–Call Function (Fail) –Data does not get sent, AddWatch of
DataHandler is not called

Test-case Identifier: TC-10
Function Tested: Controller::RequestPayment(String : investor, Float :
payment, String : League) : Void
Pass/Fail Criteria:The test passes if the request to make the correct pay-
ment for the correct investor in the correct league is sent to the DataHandler.
The test fails if the request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, MakePayment of
DataHandler is called

–Call Function (Fail) –Data does not get sent, MakePayment of
DataHandler is not called

46

Test-case Identifier: TC-11
Function Tested: Controller::RequestJoin(String : investor, String :
League) : Void
Pass/Fail Criteria: The test passes if the request to make the correct
investor join the correct league is sent to the DataHandler. The test fails if
the request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, JoinLeague of
DataHandler is called

–Call Function (Fail) –Data does not get sent, JoinLeague of
DataHandler is not called

Test-case Identifier: TC-12
Function Tested: Controller::RequestInvite(String : investor, String :
League) : Void
Pass/Fail Criteria: The test passes if the request to invite the correct
investor to join the correct league is sent to the DataHandler. The test fails
if the request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, Invite of Data-
Handler is called

–Call Function (Fail) –Data does not get sent, Invite of Data-
Handler is not called

Test-case Identifier: TC-13
Function Tested: Controller::RequestAddCoord(String : investor) : Void
Pass/Fail Criteria: The test passes if the request to add the correct coor-
dinator is sent to the DataHandler. The test fails if the request does not go
out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, AddCoordinator
of DataHandler is called

–Call Function (Fail) –Data does not get sent, AddCoordinator
of DataHandler is not called

47

Test-case Identifier: TC-14
Function Tested: Controller::RequestRemove(String : investor, String :
league) : Void
Pass/Fail Criteria: The test passes if the request to remove the correct
investor from the correct league is sent to the DataHandler. The test fails if
the request does not go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, RemoveUser of
DataHandler is called

–Call Function (Fail) –Data does not get sent, RemoveUser of
DataHandler is not called

Test-case Identifier: TC-15
Function Tested: Controller::RequestManage(String : investor, Float :
payment, String : league) : Void
Pass/Fail Criteria: The test passes if the request to distribute money to
the winners is sent to the DataHandler. The test fails if the request does not
go out, due to an incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, ManageMoney of
DataHandler is called

–Call Function (Fail) –Data does not get sent, ManageMoney
of DataHandler is not called

Test-case Identifier: TC-16
Function Tested: Controller::RequestBuy(Ticket : ticket) : Void
Pass/Fail Criteria: The test passes if the request to buy stock is sent to
the DataHandler. The test fails if the request does not go out, due to an
incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, ExecuteOrder of
DataHandler is called

–Call Function (Fail) –Data does not get sent, ExecuteOrder of
DataHandler is not called

48

Test-case Identifier: TC-17
Function Tested: Controller::RequestSell(Ticket : ticket) : Void
Pass/Fail Criteria: The test passes if the request to sell stock is sent to
the DataHandler. The test fails if the request does not go out, due to an
incorrect argument.

Test Procedure Expected Results

–Call Function (Pass) –Correct data gets sent, ExecuteOrder of
DataHandler is called

–Call Function (Fail) –Data does not get sent, ExecuteOrder of
DataHandler is not called

7.2.2 PageRenderer

Test-case Identifier: TC-18
Function Tested: PageRenderer::generatePageOrder(TicketLticket, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the test stub enters a request for an
order and an order page is generated. Unsuccessful if page is not generated.

Test Procedure Expected Results
–Submit an order ticket (Pass) –Page Renderer returns true and order re-

sult page is successfully created

–Request an order page (Fail) –Page Renderer returns false if the page
could not be generated

Test-case Identifier: TC-19
Function Tested: PageRenderer::generatePageStock(StockData:data, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the test stub enters a request for a
stock and a stock page is generated. Unsuccessful if page cannot be generated.

Test Procedure Expected Results
–Request a stock page (Pass) –Page Renderer returns true and market

data page is successfully created

–Request a stock page (Fail) –Page Renderer returns false if the page
could not be generated

49

Test-case Identifier: TC-20
Function Tested: PageRenderer::generatePagePortfolio(Portfolio:portfolio,
StockData* data, Integer:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
portfolio and a portfolio page is generated. Unsuccessful if page cannot be
generated.

Test Procedure Expected Results
–Request a portfolio page (Pass) –PageRenderer returns true and user

portfolio page is created

–Request a portfolio page (Fail) –PageRenderer returns false if portfolio
page could not be generated

Test-case Identifier: TC-21
Function Tested: PageRenderer::generatePageFront(UserInfo:userinfo, In-
teger:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for home
and a home page is generated. Unsuccessful if page cannot be generated.

Test Procedure Expected Results
–Request a front page (Pass) –PageRenderer returns true and home

page is generated

–Request a front page (Fail) –PageRenderer returns false if front page
could not be generated

Test-case Identifier: TC-22
Function Tested: PageRenderer::generatePageLorF(Fields: fields, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
league or fund and a correct league or fund page is generated. Unsuccessful
if page cannot be generated.

Test Procedure Expected Results
–Request a league page (Pass) –Page Renderer returns true and league

page is created

–Request a league page (Fail) –Page Renderer returns an false if page
could not be created

–Request a fund page (Pass) –Page Renderer returns true and fund
page is created

–Request a fund page (Fail) –Page Renderer returns an false if page
could not be created

50

Test-case Identifier: TC-23
Function Tested: PageRenderer::generatePagePayment(Integer:payment,
Integer:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
payment page and a payment page is generated. Unsuccessful if page cannot
be generated.

Test Procedure Expected Results
–Request a payment page (Pass) –Page Renderer returns true and league

page is created

–Request a payment page (Fail) –Page Renderer returns false and page is
not generated

Test-case Identifier: TC-24
Function Tested: PageRenderer::generatePageJoin(String: league, Inte-
ger:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for join-
ing a league and a join page is generated. Unsuccessful if page cannot be
generated.

Test Procedure Expected Results
Request a join page (Pass) Page Renderer returns true and league

join page is created

Request a join page (Fail) Page Renderer returns false and page is
not generated

Test-case Identifier: TC-25
Function Tested: PageRenderer::generatePageInvite(Investor: investor,
String: league Integer:valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request for a
league invite and a league invite page is generated. Unsuccessful if page
cannot be generated.

Test Procedure Expected Results
–Request a league invite page
(Pass)

–Page Renderer returns true and request
invitation page is created

–Request a league invite page (Fail) –Page Renderer returns false and page is
not generated

51

Test-case Identifier: TC-26
Function Tested: PageRenderer::generatePageRemove(Investor: investor,
Integer: valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request to remove
a user and a remove user page is generated. Unsuccessful if page cannot be
generated.

Test Procedure Expected Results
–Request a remove user page (Pass) –Page Renderer returns true and remove

user page is created

–Request a remove user page (Fail) –Page Renderer returns false and page is
not generated

Test-case Identifier: TC-27
Function Tested: PageRenderer::generatePageManMoney(Investor: in-
vestor, Integer: payment, String: which):Boolean
Pass/fail Criteria: The test passes if the system enters a request to manage
money and a correct money management page is generated. Unsuccessful if
page cannot be generated.

Test Procedure Expected Results
–Request a money management
page (Pass)

–Page Renderer returns true and manage
money page is created

–Request a money management
page (Fail)

–Page Renderer returns false and page is
not generated

Test-case Identifier: TC-28
Function Tested: PageRenderer::pageType(Integer : Type, void* : data,
Integer: valid):Boolean
Pass/fail Criteria: The test passes if the page renderer calls the correct

Test Procedure Expected Results
–Request page type (Pass) –Page Renderer returns true if a corre-

sponding generate page function is called

–Request page type (Fail) –Page Renderer returns false if a corre-
sponding generate page function is not
called. For example if the integer Type
is out of range.

52

Test-case Identifier: TC-29
Function Tested: PageRenderer::getPage():Page
Pass/fail Criteria: The test passes if the system returns a page and unsuc-
cessful if no page is returned.

Test Procedure Expected Results
–Request a page (Pass) –System displays Returns true if a page

is loaded and returned

–Request a page (Fail) –Incorrect if a page isnt loaded, record
that no page loaded

Test-case Identifier: TC-30
Function Tested: PageRenderer::generatePageAddC(Investor: Investor,
String: league, arg4, Integer: valid):Boolean
Pass/fail Criteria: The test passes if the system enters a request to add a
page and it is created successfully. Unsuccessful if page cannot be generated

Test Procedure Expected Results
–Request a page to be created
(Pass)

–Page Renderer returns true if add coor-
dinator page is generated

–Request a page to be created (Fail) –Page Renderer returns false and page is
not generated

7.2.3 DataHandler

Test-case Identifier: TC-31
Function Tested: DataHandler::executeOrder(Ticket: ticket): Boolean
Pass/Fail Criteria: The test passes if the test stub executes the ticket by
updating the investors portfolio accordingly

Test Procedure Expected Results

–Execute order (Pass) –DataHandler executes order and up-
dates investors portfolio and returns true.

–Execute order (Fail) –If unable to execute order, return false.

53

Test-case Identifier: TC-32
Function Tested: DataHandler::RequestPortfolio(String: Investor): Port-
folio
Pass/Fail Criteria: The test passes if the test stub requests for portfolio
data and it is retrieved from the database

Test Procedure Expected Results

–Request portfolio data (Pass) –DataHandler requests portfolio data and
returns it from the database.

–Request portfolio updaten (Fail) –If there is an error retrieving the data
from the database, it should display an
error that no pertinent data was returned.

Test-case Identifier: TC-33
Function Tested: DataHandler::CreateAccount(UserInfo: userinfo):
Boolean
Pass/Fail Criteria: The test passes if the test stub requests an account
creation and the request is granted.

Test Procedure Expected Results

–Request to create an account
(Pass)

–DataHandler requests account creation
and returns true if account creation suc-
cessful

—Call Function (Fail) –If the request for account creation is un-
successful, return false

Test-case Identifier: TC-34
Function Tested: DataHandler::CreateLeague(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests a league cre-
ation and it is created. Unsuccessful if league isnt created.

Test Procedure Expected Results

–Request to create a league (Pass) –DataHandler requests league creation
and returns true if league creation suc-
cessful

–Request to create a league (Fail) –If the request for league creation is un-
successful, return false

54

Test-case Identifier: TC-35
Function Tested: DataHandler::EditLeague(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests to modify
league settings in database and is successful. Unsuccessful if settings not
changed.

Test Procedure Expected Results

–Request to edit league settings
(Pass)

–DataHandler modifies league settings
and returns true.

–Request to edit league settings
(Fail)

–DataHandler unable to modify league
settings, returns false.

Test-case Identifier: TC-36
Function Tested: DataHandler::CreateFund(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests a fund creation
and it is created. Unsuccessful if fund isnt created.

Test Procedure Expected Results

–Request to create a fund (Pass) –Fund Handler requests fund creation
and returns true if fund creation success-
ful

–Request to create a fund (Fail) –If the request for fund creation is unsuc-
cessful, return false.

Test-case Identifier: TC-37
Function Tested: DataHandler::EditFund(Fields: fields): Boolean
Pass/Fail Criteria: The test passes if the test stub requests to modify fund
settings in database and is successful. Unsuccessful if settings not changed.

Test Procedure Expected Results

–Request to edit fund settings
(Pass)

–DataHandler modifies fund settings and
returns true.

–Request to edit fund settings
(Fail)

–DataHandler unable to modify fund set-
tings, returns false.

55

Test-case Identifier: TC-38
Function Tested: DataHandler::RequestHistory(String: Investor): History
Pass/Fail Criteria: The test passes if the test stub requests to view trans-
action history from the database and it is successful.

Test Procedure Expected Results

–Request to view transaction his-
tory

–DataHandler returns the transaction
history.

–Request to view transaction his-
tory (Fail)

–DataHandler is unable to return trans-
action history, display error saying unable
to retrieve transaction history.

Test-case Identifier: TC-39
Function Tested: DataHandler::AddWatch(String: Investor, String:
Stock): Boolean
Pass/Fail Criteria: The test passes if the test stub requests to addstock to
watchlist and it occurs. Unsuccessful if stock not added.

Test Procedure Expected Results

–Request to watch a stock (Pass) –DataHandler adds stock to watchlist and
returns true.

–Request to watch a stock (Fail) –DataHandler is unable to add stock to
watchlist and returns false. If the stock
entered is invalid, return false.

Test-case Identifier: TC-40
Function Tested: DataHandler::MakePayment(String: investor, Float:
payment, String: League): Boolean
Pass/Fail Criteria: The test passes if the test stub requests that payment
is updated in database and it occurs. Unsuccessful if it doesnt happen.

Test Procedure Expected Results

–Submit payment (Pass) –Data handler submits payment to the
league and returns true.

–Submit payment (Fail) –If payment isnt processed, return false.

56

Test-case Identifier: TC-41
Function Tested: DataHandler:: JoinLeague(String: Investor, String:
League): Boolean
Pass/Fail Criteria: The test passes if the test stub requests investor to be
added to a league in database and is successful. Unsuccessful if it doesnt
occur.

Test Procedure Expected Results

–Request to join league (Pass) –DataHandler updates information in
database about the league and returns
true.

–Request to join league (Fail) –If joining the league encounters a prob-
lem, return false.

Test-case Identifier: TC-42
Function Tested: DataHandler::Invite(String: Investor, String: League):
Void
Pass/Fail Criteria: The test passes if the test stub requests that an invite
be added to the investors account.

Test Procedure Expected Results

–Add invite to investors account
(Pass)

–DataHandler adds the invite to investors
account in database.

–Add invite to investors account
(Fail)

–If unable to add invite in database, dis-
play error saying that invite wasnt added
to investors account.

Test-case Identifier: TC-43
Function Tested: DataHandler::AddCoordinator(String: Investor):
Boolean
Pass/Fail Criteria: The test passes if test stub requests that a coordinator
be added to a league in the database and is added.

Test Procedure Expected Results

–Request for an investor to be pro-
moted to coordinator (Pass)

–DataHandler adds investor to list of co-
ordinators and returns true.

–Request for an investor to be pro-
moted to coordinator (Fail)

–If unable to add investor to coordinator
list in database, return false.

57

Test-case Identifier: TC-44
Function Tested: DataHandler::RemoveUser(String: Investor, String:
League): Boolean
Pass/Fail Criteria: The test passes if the test stub requests that an investor
be removed from a specific league in the database.

Test Procedure Expected Results

–Request to remove an investor
from the league (Pass)

–DataHandler removes user from league
in database and returns true.

–Request to remove an investor
from the league (Fail)

–If the DataHandler is unable to remove
user from the league, return false.

Test-case Identifier: TC-45
Function Tested: DataHandler::ManageMoney(String: Investor, Float:
Payment, String: League): Boolean
Pass/Fail Criteria: The test passes if the test stub requests that the order
is executed and the investor’s portfolio is properly adjusted.

Test Procedure Expected Results

–Execute a ticket (Pass) –DataHandler changes investor’s porfolio
to reflect trade.

–Execute a ticket (Fail) –If unable to execute the trade, return
false.

Test-case Identifier: TC-46
Function Tested: DataHandler::ExecuteOrder(Ticket: ticket): Boolean
Pass/Fail Criteria: The test passes if the test stub requests that the
database allocate money to the specified investor and is able to.

Test Procedure Expected Results

–Allocate money to investor (Pass) –DataHandler allocates money to the
specified investor and returns true.

–Allocate money to investor (Fail) –If unable to allocate money to investor,
return false.

58

7.2.4 ValidityChecker

Test-case Identifier: TC-47
Function Tested: ValidityChecker::ValidateBuy(Ticket: ticket): void
Pass/Fail Criteria: The test passes if the test stub determines that a buy
is valid. Unsuccessful if buy is not valid.

Test Procedure Expected Results

–Submit buy request (Pass) –Validity Checker verifies that buy is
valid.

–Submit buy request(Fail) –If attempted buy is invalid, Validity
Checker should display an error code that
buy is invalid.

Test-case Identifier: TC-48
Function Tested: ValidityChecker::VerifyFunds(): void
Pass/Fail Criteria: The test passes if the test stub determines that the
investor has sufficient funds for the transaction. Unsuccessful if insufficient
funds for the transaction

Test Procedure Expected Results

–Submit buy order ticket (Pass) –Validity Checker verifies that cash bal-
ances are sufficient for order.

–Submit buy order ticket (Fail) –If the investor has insufficient funds for
the transaction, Validity Checker should
display an error that there are insufficient
funds for the transaction.

Test-case Identifier: TC-49
Function Tested: ValidityChecker::ValidPayment(String: Investor, Float:
payment, String: league): boolean
Pass/Fail Criteria: The test passes if the test stub determines the investor
can pay the specified amount to the league. Unsuccessful if the investor
cannot pay.

Test Procedure Expected Results

– Submit valid payment (Pass) –Validity Checker determines payment is
valid and returns true.

– Submit invalid payment (Fail) –Validity Checker determines payment is
invalid and returns false.

59

Test-case Identifier: TC-50
Function Tested: ValidityChecker::ValidateSell(Ticket: ticket): void
Pass/Fail Criteria: The test passes if the test stub determines if a sell is
valid. Unsuccessful if its invalid.

Test Procedure Expected Results

–Submit sell request (Pass) –Validity Checker verifies that sell is
valid.

–Submit invalid sell request (Fail) –If attempted sell is invalid, Validity
Checker should display an error code that
sell is invalid.

7.2.5 StockQuery

Test-case Identifier: TC-51
Function Tested: StockQuery::Query(String: stock):StockData
Pass/Fail Criteria: The test passes if the system queries a stock and that
stock is returned

Test Procedure Expected Results

–Request to query a stock (Pass) –Stock Query returns the stock data
–Request to query a stock (Fail) –If the attempted query was for a stock

that does not exist, Stock Query should
return an error code that the stock does
not exist. If stock information was not
attainable, it should display an error that
no pertinent data was returned.

60

7.2.6 LiquidityModel

Test-case Identifier: TC-52
Function Tested: LiquidityModel::AdjustPrice(StockData: data, Ticket:
ticket): Integer
Pass/Fail Criteria: This test passes if the system requests a price adjust-
ment and the new price is returned

Test Procedure Expected Results

–Request a price adjustment (Pass) –LiquidityModel returns the adjusted
price

–Request a price adjustment (Fail) –If the attempted price adjustment is in-
valid, LiquidityModel should return an
error code that the adjustment was in-
valid. If price adjustment was not attain-
able, it should display an error that no
pertinent data was returned.

7.2.7 FundHandler

Test-case Identifier: TC-53
Function Tested: FundHandler::verifyFields(Fields: fields): Fields
Pass/Fail Criteria: The test passes if the system verifies that the settings
for the fund are all valid and returns the fields

Test Procedure Expected Results

–Request to verify fields (Pass) –FundHandler returns the valid fields.
–Request to verify fields (Fail) –If incorrect fields are loaded, FundHan-

dler should return an error code that the
fields are invalid. If any fields are not
filled in, FundHandler should return an
error code that there are empty fields.

61

7.2.8 LeagueHandler

Test-case Identifier: TC-54
Function Tested: LeagueHandler::verifyFields(Fields: fields): Fields
Pass/Fail Criteria: The test passes if the system verifies that the settings
for the league are all valid and returns the fields

Test Procedure Expected Results

–Request to verify fields (Pass) –League Handler returns the valid fields.
–Request to verify fields (Fail) –If incorrect fields are loaded, League

Handler should return an error code that
the fields are invalid. If any fields are not
filled in, League Handler should return an
error code that there are empty fields.

7.3 Test Coverage

The test cases are envisioned to cover all states and transitions for every class.
This is attained through the testing of every function of every class. Because the
transitions and states are all attained in some way or another through a function
call, the test coverage is very high and accounts for all of these states and transi-
tions. For example, for the order ticket class, the empty case is the initial default
case. The filled state is attained by the investor filling out the form and submitting
it. The transition between these two is tested by TC-16 and TC-17, when the web
page calls the controller to request a buy and sell. For the transition for pending
and execute, TC-46, TC-49, and TC-50 cover the necessary transitions between
the states (as well as testing that the states exist). For the archive state, TC-50
by the DataHandler covers the transition as well as the archived state.

In a similar fashion, the states and transitions of the league are also accounted
for. Although doing these tests will not ensure that the flow through the entire
system is guaranteed, it will make sure that each transition and state is tested.

For the other classes who have trivial states (idle and active), testing the func-
tions will again cover these states because a function call puts the class into an
active mode, and exiting the call puts it back in idle state.

62

7.4 Integration Testing

For integration testing, Bears & Bulls will undergo bottom-up integration testing.
Each component in a lower level of the systems hierarchy will be tested individually.
After that occurs, the components which rely upon these are tested. Integration
testing needs to take place after we conduct the entire unit testing. There is a need
to use the higher model to test its interactions with its lower level components. For
example, with the PageRenderer, it is necessary to test that the Page Renderer is
able to interact with each of its methods correctly. If any problem occurs, testing
can pinpoint that the problem is either in the interface between PageRenderer and
its method. If a problem is pinpointed, it needs to be reviewed and corrected.
By following this strategy, problems can be pinpointed more easily. Drivers need
to be implemented to simulate the higher level components. Test stubs will be
needed to simulate lower level components. Drivers will need to be implemented
for the PageRenderer, ValidityChecker, LiquidityModel, DataHandler, Controller,
FundHandler, LeagueHandler, StockQuery, and LeaderBoard. Interactions need to
be tested with funds, leagues, investor accounts, portfolios, history, league coor-
dinators, fund managers, order list, shares, tickets, stop orders, limit orders, and
market orders. The top level components are the most important, yet they are
tested last. This is the last main testing portion where it is determined whether in-
teractions can be made throughout the system without errors. At this point, most
of the bugs should be fixed and the system should operate as its operation contracts
state. Testing is a major part of software engineering. Due to time constraints,
testing may have to be cut short if it consumes too many resources (developers
time) and if deadlines are approaching. The more faults found at the beginning of
the testing stage increases the probability of finding further faults if testing goes
on for an extended period of time.

7.5 Non-functional Requirements Testing

In order to test the system’s nonfunctional requirements, a focus group will be
surveyed and the results compiled to determine the overall usability and ease of
use of the application. Surveyors will be asked such questions as ”Did you ever
feel lost or overwhelmed at any particular screen?”, ”Were you able to get where
you wanted?”, ”Did the app produce any unexpected behavior?” (REQ-12, REQ-
14). Additionally, the time it takes a user to carry out a predetermined task can
be measured to ensure that the app is not needlessly complex, and that it is also
loading fast enough (REQ-14, REQ-15). Additionally, the app must be tested on a

63

variety of browsers (especially the industry leading Chrome, Firefox, and Internet
Explorer) on various operating systems to ensure that all users receive a similar
experience (REQ-16). Since Bears & Bulls is using Heroku, cases such as system
and disk failures will be managed and tested by their team. Heroku provides
a system status page on https://status.heroku.com/ which provides the current
working conditions of their servers (REQ-17).

7.6 Mathematical Model Testing

The following shows various test cases for the mathematical model governing
price slippage. The model works adjust prices as expected to account for market
conditions, however the price change is heavily dependant on the number of blocks
that is being purchased. The largest percent changes occur when over 300 block
sizes are being bought. This isn’t too surprising since large sell offs or buys will
likely signal to other traders to jump in on the trade on drive prices down or up
respectively.

64

8 Progress Report

As of now, none of the use cases have been implemented. However, we do have
the framework for much of the system and the database done, so although none
of these have been implemented it is not a far leap to implement them. We now
have to take the framework and build functionality onto it, which includes the use
cases as well as interactions between the system and the database. This includes
connecting to the database as well as implementing the correct retrieval functions
from the database. We hope to have all this done by March 18th so that we have
ample time for debugging and testing the code.

65

9 Plan of Work

Contribution Breakdown

Responsibilities Matrix W
il

li
am

A
ar

on

P
ra

ti
k

D
ea

n

O
m

ar

N
oa

h

First Demo

Database x x

Facebook Integration x x x x

Basic User Interface x x x x x x

Connection to Database x x x

Testing x x x x x x

Third Report

Collation of Reports x x x

Update Report x x x x x x

Second Demo

Implement Rest of Use Cases x x x x x x

Testing and Enhancing x x x x x x

The preceding table is the responsibility matrix for this group. In general, Aaron
and William will do most of the compiling of the reports, while everyone also works
on writing the reports. Aaron and Pratik will lay down the class diagrams and
interface specifications as a groundwork for the rest of the system. The system
architecture and design will be a collaborative effort between all members in the
group, while algorithms and data structures will mostly be determined by Aaron
and William. Pratik is the most experienced in implementing user interfaces, thus
he will take the lead on user interface design and will work closely with Noah,
Omar, and Dean. Finally, the editing of the reports it will be a collaborative effort
too.

The general scheme for the rest of the project will be that Aaron and William
will implement the database, while the rest of the group will work on the interface.
From there, William, Aaron, and Pratik will make the connections between the
various parts. If any group member has finished his delegated tasks, he will jump
around to wherever he is needed.

66

67

10 References

References

[Bell, 2004] Bell, D. (2004). Uml basics: The class diagram. www.ibm.com/

developerworks/rational/library/content/RationalEdge/sep04/bell/.

[Company, 2012] Company, O. T. L. U. (2012). Eclipse uml. http://omondo.com.

[Marsic, 2012] Marsic, I. (2012). Software Engineering. Unpublished, first edition
edition.

[Unknown, a] Unknown. Architectural patterns and styles. http://msdn.

microsoft.com/en-us/library/ee658117.aspx.

[Unknown, b] Unknown. Bottom-up integration in integration testing. http://

www.freetutes.com/systemanalysis/sa9-bottom-up-integration.html.

[Unknown, c] Unknown. Communications protocol. http://en.wikipedia.org/

wiki/Communications_protocol.

[Unknown, d] Unknown. Geometric series. mathworld.wolfram.com/

GeometricSeries.html.

[Unknown, e] Unknown. Integration testing. http://

softwaretestingfundamentals.com/integration-testing/.

[Unknown, 2011] Unknown (2011). Bull n bear. http://www.cjssecurities.co.
za/main/Portals/0/bull_n_bear\%5B1\%5D.jpg.

68

