Bears & Bulls

332:452 SOFTWARE ENGINEERING

Group 6:
William Pan, Aaron Sun, Pratik Ringshia
Dean Douvikas, Omar Raja, Noah Silow-Carroll

URL: Not yet provided

February 17, 2012

Contributions Breakdown

Task William | Aaron | Pratik | Dean | Omar | Noah

STATEMENT OF REQS. X X

a. Problem Statement

b. Glossary of Terms

SYSTEM REQS.

a. Functional Regs.

Sl R
~
>
~

b. Nonfunctional Regs.

c. Appearance Regs. X

FUNCTIONAL SPECS.

"

a. Stakeholders

~

b. Actors and Goals

c. Casual Use Cases

d. Use Case Diagram

e. Fully Dressed

Sl R Rl

f. Sequence Diagrams

UI SPECIFICATIONS X

"

a. Preliminary Design

b. User Effort Estimation X

DOMAIN ANALYSIS X X

a. Domain Model

"
i
"

b. Operation Contracts X X

c. Mathematical Model X

PLAN OF WORK X

REFERENCES X

Project Management X

First Report Effort Estimation

Aaron William Pratik Dean Omar MNoah

Group Members

[y
Ca

[y
j=}

[y
=4

[y
]

User Contribution (%)
[y
=

L T LN N < M LT ¢

The above chart summarizes the contributions from various team members in
terms of effort. Based on the course website, our grades would normally be calcu-
lated by used a point breakdown for each section. However, we, the group, would
much appreciate it if you could distribute the total points for this report as the
chart dictates, where all team members have contributed equally. Many of the
contributions from the team members cannot be quantified by the grading scheme,
and we all worked equally.

Thank you.

Contents

1 Statement of Requirements
1.1 Problem Statement L.
1.2 Glossary of Terms

2 System Requirements

2.1 Function Requirements
2.2 Nonfunctional Requirements
2.3 On-Screen Appearance Requirements

3 Functional Requirements

3.1 Stakeholder
3.2 Actorsand Goals
3.3 UseCases e
3.3.1 Casual Description
3.3.2 Use Case Diagram
3.3.3 Fully-Dressed Description
3.3.4 Traceability Matrix
3.4 System Sequence Diagrams

4 User Interface Specifications

4.1 Preliminary Design
4.1.1 Dashboard
4.1.2 Add Portfolio
4.1.3 Invite Users to League
4.1.4 Manage Portfolio
4.1.5 Research Stocks
4.1.6 Purchase Stocks
4.1.7 League Page

4.2 User Effort Estimation

5 Domain Analysis

5.1 Domain Model
5.1.1 Concept Definitions
5.1.2 Association Definitions
5.1.3 Attribute Definitions
5.1.4 Traceability Matrix

5.2 System Operation Contracts

Sy Ot

© oo

5.3 Mathematical Model 62
Plan of Work 64
Appendix 67

References 71

1 Statement of Requirements

1.1 Problem Statement

Investing has long been the activity of the wealthy. The advent of the discount
broker has lowered the barriers of entry so that almost anyone can become an active
participant in the stock market. Nevertheless commission costs, the risk of losing
money, and a lack of capital can still drive off would-be investors. Bears & Bulls
strives to remove these remaining deterrents by simulating a discount broker and
allowing users to practice investing in a risk free environment. Most importantly,
in keeping in line with what the investor wants, Bears & Bulls will simulate the
real-life stock market.

To fulfill the investor’s requirements, Bears & Bulls provides many of the services
of a real-life broker. It allows investors to create and manage portfolios through its
user friendly interface. The investor has the ability to buy and sell stocks through
market, limit, buy stop and stop loss orders. Bears & Bulls also supports margin
accounts, and allows investors to buy on margin, providing capabilities that an
investor might not ordinarily have the means to afford. Bears & Bulls will use
real world data by retrieving actual stock information and executing the orders
based on these prices. Since no real assets are being exchanged, Bears & Bulls will
determine price slippage for large trades or volatile markets to better simulate a
real transaction.

An investor’s portfolio will contain information about the stocks that he currently
owns, such as quantity, current market price, total gain and ticker symbol. This
will give the investor a clear overview of his holdings, and allow him to evaluate his
current standings. Bears & Bulls will keep a history of the investor’s transactions
so that he can refer back to them to reevaluate his strategies.

As with all major brokers today, Bears & Bulls will give the investor access to a
wide range of market data. Investors can use Bears & Bulls to access critical market
information, such as charts, fundamental indicators and technical indicators. Bears
& Bulls will also support watchlists, which give investors a quick summary of stocks
they are interested in. Overall, Bears & Bulls’ goal is to strike a balance between
ease of use and depth in order to appeal to beginners and veteran traders alike.

Unlike other market simulators, Bears & Bulls will be introduced as a Facebook
application to take advantage of Facebook’s large user base and the growing trend
of social networking. Integrating Bears & Bulls into Facebook will streamline the
login progress and allow users to access the application directly from their Facebook
account. This eliminates the need for a lengthy registration process and will also

allow users to keep tabs on their friends and exchange trading ideas.

To create a more compelling user experience, Bears & Bulls introduces the ability
to create, join and compete in leagues. Leagues provide users a way to test their
investing mettle against friends or other players within Bears & Bulls. Leagues
can be public or private, and the creator can decide the rules of the league, as well
as who can and cannot participate in it. The ability to place entrance fees and
payouts to winners adds an additional dimension of competitiveness.

In order to include everyone in the social aspect of the game, Bears & Bulls offers
it own public leagues. Every portfolio an investor manages will be associated with
a league. Bears & Bulls’ Public leagues are open ended and provide investors an
environment to invest in without the pressure of competition. The best performing
portfolios will still be ranked so skilled investors can demonstrate their investing
acumen.

Perhaps the most exciting feature that Bears & Bulls introduces is the concept
of Funds. Bears & Bulls allows investors to create their own funds, either a hedge
fund or a mutual fund, and manage other investors’ money. This feature has not
been found in any existing stock market simulator and is completely unique to
Bears & Bulls. Investors confident in their abilities can set up a fund and try to
entice other investors to invest in it. The fund managers will be able to set the
rules of the fund, including who they accept money from, what their management
fees are, and what strategies they will employ.

Communication is central to the design of Bears & Bulls. By encapsulating
it within Facebook, users are provided a suite of tools to share their thoughts
on various trades. As the only application of its kind in Facebook, it is unlikely
that user’s will be perfectly satisfied with Bears & Bulls. As such, Bears & Bulls
also facilitates communication between users and system developers by including a
convenient comment submission system. This will help Bears & Bulls’ developers
make improvements as the program grows.

1.2 Glossary of Terms

League Coordinator — A player who acts as an administrator of a private league.
Responsibilities include inviting/deleting users and managing details of the
league, such as entry fee.

Fund — A pooled investment vehicle. Funds are run by managers who recieve either
a maintenance fee, performance fee or both. Investors may invest in a Fund a
if they believe the Fund’s manager can help them realize greater gains.

Investor — A person who commits capital expecting to see his/her capital grow in
value. Players in our system are investors.

League — A league is a registered group with a particular set of rules. Leagues are
comprised of players. There are multiple types of leagues.

e Global — A league comprised of all players of the game. Upon joining the
Bears & Bulls, players are automatically added to this league. There is
only one global league. Coordinators of the league are the creators of this
program.

e Private — A league which is headed by a coordinator and requires approval
before active membership.

e Public — A league without a coordinator. It can be joined by users without
needing approval.

Order Ticket — Form players must complete to place an order for the sale or
purchase of an asset.

Player — A user who registers with our service and creates a portfolio. This member
joins leagues and competes with existing members. Synonomous with investor
and user.

Portfolio — Detailed account of assets associated with each of a league’s players. A
player will have a unique portfolio per league. The player’s goal is to maximize
the value of his portfolio in comparison with the rest of the league’s members.

Slippage — Price difference between what a trade executes at and the price of the
previously executed trade.[10]

Stock — A type of asset that represents ownership of a corporation. Players will
be able to purchase and sell stocks for their portfolios.

Stop Order — A type of order used to protect gains or limit losses. Stop loss
orders are activated if a stock drops below the stop price and buy stop orders
are activated if a stock rises above the stop price.

Ticker Symbol — A unique series of letters assigned to a stock for the purpose of
trading.

User — A person who would use the system. Synonomous with Investor.
Volatility — The tendency for a stock’s price to make drastic moves.

Watchlist — A list of stocks that displays relevent information regarding each stock.
Each investor has a watchlist and may add and remove stocks from the list.

2 System Requirements

2.1 Function Requirements

PW = Priority Weight

ID

PW

REQUIREMENT

REQ-1

5

The system shall allow new users to register an account with
their Facebook profile.

REQ-2

The system shall support order placement by filling out an
order ticket. The order ticket shall include order type, quan-
tity, symbol, price type and term. The order ticket shall be
placed in an order queue to be processed.

REQ-3

The system shall review the order queue periodically and:
e Immediately execute market orders.
e Convert order to market order if order conditions are
met.
e Remove canceled or expired orders
e If none of the above, leave order untouched.

REQ-4

The system shall maintain a database of user portfolios and
transactions. The database will also include league rankings
for each player

REQ-5

The system shall support investing leagues. Users shall be
allowed to create leagues and specify prizes, duration, capi-
tal limits and entrance fees. The system shall also support
official leagues and rankings based on return on investment.

REQ-6

The system shall provide market data, including;:

e Charts
e Fundamental Indicators P/E, Range, Beta

e Techinical Indicators Moving Averages, Bollinger Bands,

REQ-7

The system shall allow users to create and manage Funds.
The rules of a Fund are specified when the Fund is created.
These rules include the types of trades they are allowed to
do and the types of assets they are allowed to hold. Investors
can choose to invest money in Funds and Fund managers can
choose to accept or decline investors.

REQ-8

The system shall use Facebook Credits to accept entrance
fees from league participants and make payments to league
winners

REQ-9

The system shall simulate market liquidity when trading high
volumes of stocks

REQ-10

The system shall support margin accounts. The system shall
require an initial and mainentance margin for assets pur-
chased on margin. The system shall automatically exit posi-
tions that fall below maintenance margin. The user shall be
notified that his position has been exited.

REQ-11

The system shall allow users to submit comments to the sys-
tem administrators.

2.2 Nonfunctional Requirements

ID

PW

REQUIREMENT

REQ-12

The system shall be simple to use and have a minimal learn-
ing curve. Data shall be presented in such a way that the
user’s focus is automatically drawn to it when the user views
the page. Whenever a user navigates to a page the main con-
tent of the page shall be placed at the center of the screen
and the user shall not have to scroll to view the data or access
the majority of the options on the page.

REQ-13

All user data shall be stored in the system’s database. No
user information shall be stored on the user’s device. User’s
shall not be able to directly modify any data. There must be
at least two copies of every record in case of system failure.

REQ-14

The system shall have a common aesthetic theme and any
two pages shall be separated by no more than 4 links.

REQ-15| 3 | The system performance shall be consistent. Users shall not
experience any notable latency from the system. Users with
a broadband connection shall not experience more than 0.1
s between executing commands and seeing the result.
REQ-16 | 3 | The sytem shall be platform independent and should run
equally well on Windows, Mac and *nix systems. The system
shall have consisten appearance between browsers.

REQ-17| 2 | The system shall require minimal maintenance. The system
shall require maintenance at most once a week.

REQ-18 | 2 | The system shall maintain function in the event of any
changes to Facebook’s API.

2.3 On-Screen Appearance Requirements

Since Bears & Bulls is tightly integrated with Facebook, some guidelines must
be observed when designing the website. Since pages will be embedded in an
iframe within Facebook, a max-width of 760px must be respected for our app.
Additionally, to keep consistent with Facebook’s Ul experience, Bears & Bulls will
avoid using any pop-ups. We will therefore be using modal dialogs in place of
Javascript alert boxes where needed. Additionally, although the iframe sandboxes
much of the app’s functionality from the Facebook webpage, care must be taken
to avoid interference between any front-end scripts that Bears & Bulls might use.
Another limitation occurs in the domain of advertisements, as we must adhere to
Facebook’s Advertising Guidelines (http://www.facebook.com/ad _guidelines.php)
to curate the content and positioning of our advertisements.

10

3 Functional Requirements

3.1 Stakeholder

e Facebook Users who wish to use the system for entertainment.

e Novice Investors who wish to use the system to practice investing.

e Sponsors who wish to advertise by creating and sponsoring leagues.

o System Administrators who will maintain the system as well as manage the
global league.

3.2 Actors and Goals

e Investor — Initiating Actor, Participating Actor

1. To create an account

. To make trades

To research stocks

To view transaction and player ranking history
To view and edit account information

To view porfolios and balances

To create and/or join investment leagues

To create and/or join a Fund

To submit comments to system administrators
10. To add stocks to his/her watchlist

e League Coordinator — Initiating Actor

© 00NN

1. Invite other users to the investment league
2. Add coordinators

3. Manage league details

4. Delete members

e System Administrator — Initiating Actor, Participating Actor

1. To maintain the database and website
2. To view messages from users
3. To receive payments form advertisers and make payments to winners

e Stock Info Provider — Participating Actor
e Database Server — Participating Actor

e Web Server — Participating Actor

e Facebook — Participating Actor

11

3.3 Use Cases

3.3.1 Casual Description

Use Case UC-1: Buy Stock

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To buy a stock. This involves filling out and submitting an order ticket
and includes market, limit, buy to cover and buy stop orders. Buy orders
may use margin if the investor’s account is a margin account. Market prices
will be queried from Stock Info Provider.

Use Case UC-2: Sell Stock

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To sell a stock. This involves filling out and submitting an order ticket
and includes, limit short sell and stop loss orders. Market prices will be
queried from Stock Info Provider.

Use Case UC-3: Query Stock

Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)

Goal: To search ticker symbols and view market information for specified
stock. Information will include prices, charts, fundamentals, news articles,
etc. Information will be queried from Stock Info Provider.

Use Case UC-4: View History

Actor: Investor (Initiating), Database (Participating)

Goal: To view transaction history and player ranking history. Transaction
history is a compilation of previous trades; player ranking history is a com-
pilation of daily player rank within a league.

Use Case UC-5: View Portfolio
Actor: Investor (Initiating), Stock Info Provider (Participating), Database
(Participating)
Goal: To view portfolio and balances. This includes all currently owned stocks
as well as monetary balances.

12

Use Case UC-6: Watch Stock

Actor: Investor (Initiating), Database (Participating)

Goal: To add stocks to watchlist. The watchlist will display the stocks and
their prices on the user’s homescreen. The watchlist will email the user
when user-set pricepoints have been met.

Use Case UC-7: Register
Actor: Investor (Initiating), Database (Participating), Facebook (Participat-
ing)
Goal: To register for an account. This creates a game account that will retrieve
user information from Facebook.

Use Case UC-8: Create League

Actor: Investor (Initiating), Database (Participating)
Goal: Create an investment league. Upon creating a league, the investor is
given the position of coordinator within the league.

Use Case UC-9: Pay League

Actor: Investor (Initiating), Database (Participating)
Goal: To pay investment league entrance fee for leagues with entrances fees.

Use Case UC-10: Submit Comment
Actor: Investor ([Initiating), Database (Participating), Facebook (Participat-
ing)
Goal: To submit comments to system administrators. This allows investor to
provide feedback to system admins.

Use Case UC-11: Create Fund

Actor: Investor (Initiating), Database (Participating)
Goal: To create a Fund (hedge/mutual fund). Upon creating the Fund, the
investor becomes the Fund’s manager.

Use Case UC-12: Join League

Actor: Investor (Initiating), Investor (Participating), Database (Participating)
Goal: To join a league and participate in it.

13

Use Case UC-13: Manage League

Actor: League Coordinator (Initiating), Database (Participating)
Goal: To manage league details such as setting entrance fee, demoting coordi-
nators, and setting league rules.

Use Case UC-14: Invite to League

Actor: League Coordinator (Initiating), Investor (Participating)
Goal: To invite other investors to joing the league. Invitations are the only
way to joing private leagues.

Use Case UC-15: Add Coordinator

Actor: League Coordinator ([Initiating), Investor (Participating), Database
(Participating)
Goal: To designate another league member as a League Coordinator.

Use Case UC-16: Remove User

Actor: League Coordinator (Initiating), Database (Participating)
Goal: To eliminate an existing user account and disable access from a league.
This function is used to remove users when deemed necessary.

Use Case UC-17: Update Models

Actor: Sys Admin (Initiating)
Goal: To update liquidity model that simulates price slippage during high
volatility and block trades.

Use Case UC-18: View Comment

Actor: Sys Admin (Initiating), Facebook (Participating)
Goal: View user comments. Comments will be logged and taken into consid-
eration for future patches to the system.

Use Case UC-19: Manage Money

Actor: Sys Admin (Initiating), Facebook (Participating)
Goal: To receive Facebook credits from league participants for leagues with
entrance fees and pay league winners.

14

Use Case UC-20: Manage Fund

Actor: Fund Manager (Initiating), Database (Participating)
Goal: To accept and decline investors who wish to invest in the Fund.

3.3.2 Use Case Diagram

=<initiates==

==patticipates==

@ ==participates==

==paticipates== h‘—“Q

==jniffates== Query Stacks (UC-3) Stock Info Provider
==paticipates=» —

7 Wiew Portfolio (UC-5)

==initiates==

- ==paticipates==
Watch Stock (LIC-B) ==padjipates=
Alps==

Znitiates== Register {LC-T) ==patitipates==

==initiates== o
-
Jain League (LIC-12) I Patteinatesss
Investor =
frae
T
zinitiateg== Wigw History (LIC-4) <<participales®

= ici L,
F patticipates== Iy
\ Create Fund (UC-11) R
e ==particgHHRaes==

A

" Create League (UC-8) ‘ Database
> Pay League (UC-8 .
==initiategz= 4 gue { ! <<pammpate_s_>>
=<pa etES ==
Manage Fund (UC-20) Han s,
. o
Fund Manage SubmitCDmme l

2 pajgss>
==initiates=> Add Coordinator (JC-15) i ==patticipates=» ﬁ
League Coordinatar gze_xt;r:d»
S £ Facehook
n «em;d::«
Remove User (UC-16) 4

==patitigtes==

==

==initiates=

=<initiates==

. Manage Money (UC-19)
System Admi —
==initiates== <=paticipates==
" Update Model (UC-17)

Figure 1: Use Case Diagram [2]

e

Consider Comments (UC-18)

==paticipates==

In this diagram, the actors involved with a specific use case are shown. The
investor, system admin, League Coordinator, and Fund manager are the only ini-

15

tiating actors in this diagram, and there are no non-human initiating actors. The
database is seen to participate in almost every use case except some of those that
are initiated by the system admin. The majority of the use cases are also initiated
by the investor, with some use cases being initiated by the more specialized League
Coordinator and Fund manager. In this design, we have that the Fund manager
only has one other use case than the regular investor because his duties reflect very
closely to those of the investor. The League Coordinator assumes many more re-
sponsibilities than a normal investor (like Invite to League and Add Coordinator).
Facebook participates in everything dealing with money, and also it provides the
comment functionality. The stock info provider only participates in four use cases,
all of which query it at some point in their action. The use case diagram here shows
that there is low coupling within the system because almost all use cases have only
a total of two actors either initiating or participating.

In an alternate scheme (not depicted), the stock info provider is regularly queried
by the system, and the system sends the data to the database where it is stored.
This makes the stock info provider assume much less responsibilities, and it would
only be a participating actor in potentially one use case (something along the lines
of System Query). Also, the Fund Manager has his own set of use cases in managing
a Fund (like Fund Buy and Fund Sell) in order to reflect that it is a Fund that is
carrying out these duties. This alternate scheme was not chosen because we did not
wish for the database to hold that much information, and also the Fund Manager’s
duties seemed too similar to the Investor’s duties to warrant a new set of use cases.

3.3.3 Fully-Dressed Description

Use Case UC-1: Buy Stock

Related Requirements: REQ-2, REQ-3, REQ-9, REQ-10

Initiating Actor: Investor

Actor’s Goal: To buy a stock and add it to his portfolio

Participating Actors: Database, Stock Info Provider

Precondition: The user must have an account and have enough money for
the purchase.

Postcondition: The user’s portfolio must be debited the amount of the pur-
chase and the stock must be added to the user’s portfolio. Information
about the stock must be updated for the lifetime of the stock in the port-
folio.

Flow of Events for Main Success Scenario:

1 — The wnvestor searches for a ticker symbol and fills out and submits an

16

order ticket with the amount he wishes to buy.

2 — The system adds the order ticket to the order queue, and when the
system reaches the ticket, the system queries the stock info provider for
the price of the stock.

3 < Stock info provider sends the price of the stock to the system.

4 — The system determines the price of the buy and if order conditions are
met it queries the database for the investor’s balance.

5 <— The database sends the investor’s balance to the system.

6 — The system determines that the balance is enough to satisfy the buy and
the system signals the database to perform the transaction.

7 <— The database adds the stock to the investor’s portfolio, his balance is
decreased by the buy amount, and the transaction is recroded in the
transaction history. The database signals to system that the transaction
is complete.

8 <— The system signals to the player: “Transaction Completed”.

Flow of Events for Not Enough Money:

1 — The investor searches for a ticker symbol and fills out and submits an
order ticket with the amount he wishes to buy.

2 — The system adds the order ticket to the order queue, and when the
system reaches the ticket, the system queries the stock info provider for
the price of the stock.

3 < Stock info provider sends the price of the stock to the system.

4 — The system determines the price of the buy and if order conditions are
met it queries the database for the investor’s balance.

5 <— The database sends the investor’s balance to the system.

6 < The system signals to the player: “Error in transaction: Balance too
low”. The order ticket is removed from the list.

Use Case UC-2: Sell Stock

Related Requirements: REQ-2, REQ-3, REQ-9, REQ-10

Initiating Actor: Investor

Actor’s Goal: To sell a stock from his portfolio and receive cash from it.

Participating Actors: Database, Stock Info Provider

Precondition: The user must have an account and have enough of the par-
ticular stock for the sell.

Postcondition: The user’s credited the amount of the sale and the stock must
be removed from the user’s portfolio.

Flow of Events for Main Success Scenario:

17

1 — The investor searches for a ticker symbol and submits an order ticket
with the amount he wishes to sell. (The order ticket will display the
stocks the investor currently has when he chooses the option “sell”).

2 — The system adds the ticket to the order queue, and after the system
reaches the ticket in the queue the system queries the stock info provider
for the price of the stock.

3 < Stock info provider sends the price of the stock to the system.

5 — The system determines the price of the sell and when order conditions
are met it queries the database for the number of shares of the stock in
the investor’s portfolio.

6 <— The database sends the number of stocks to the system.

7 — The system determines that the number of shares is greater than or
equal to the amount he wishes to sell. The system signals the database
to perform the transaction.

9 <~ The database subtracts the number of shares from the investor’s port-
folio, his balance is credited by the sell amount and the transaction is
recorded in the transaction history. The database signals to the system
that the transaction is complete.

10 <~ The system signals to the player: “Transaction Complete”.

Flow of Events for Not Enough Stock:

1 — The wnvestor searches for a ticker symbol and fills out and submits an
order ticket with the amount he wishes to sell. (The order ticket will
display the stocks the investor currently has when he chooses the option
“sell”);

2 — The system adds the ticket to the queue, and after the system reaches
the ticket in the queue the system queries the stock info provider for the
price of the stock.

3 < The stock info provider sends the price of the stock to the system.

4 — The system determines the price of the sell and when order conditions
are met it queries the database for the number of shares of the stock in
the investor’s portfolio.

5 <~ The database sends the number of stocks to the system.

6 < The system determines that the number of stocks is less than the number
he wishes to sell.

7 <— The system signals to the player: “Error in Transaction: Not enough
shares held”. The order ticket is removed from the queue.

Use Case UC-3: Query Stocks

18

Related Requirements: REQ-2, REQ-3, REQ-6
Initiating Actor: Investor
Actor’s Goal: To search ticker symbols and view market information for the
stock
Participating Actors: Stock Info Provider, Database
Precondition: The user must have an account
Postcondition: The market information for the stock must be displayed on
the screen.
Flow of Events for Main Success Scenario:
1 — The investor clicks the “Markets” link and searches a ticker symbol and
queries a stock.
2 — The system queries market data from the stock info provider
3 <— The stock info provider sends the data to the system.
4 < The system displays the market data on the page.
Flow of Events for Error in Retrieving Data:
1 — The investor browses to the “Markets” section and searches a ticker
symbol and queries a stock.
2 — The system queries the market data from the stock info provider.
3 < The stock info provider fails to send data to the system, and notifies the
system that there was an error.
4 < The system displays “Error retrieving data”.

Use Case UC-5: View Portfolio
Related Requirements: REQ-4, REQ-5, REQ-6, REQ-7
Initiating Actor: Investor
Actor’s Goal: To view his current portfolio and cash balances
Participating Actors: Database, Stock Info Provider
Precondition: The investor must have an account.
Postcondition: The investor’s portfolio and balances must be displayed on
the screen.
Flow of Events for Main Success Scenario:
1 — The investor navigates to “Portfolio & Balances”.
2 — The system queries the database for the investor’s portfolio and bal-
ances.
3 <— The database sends the investor portfolio and balances to the system.
4 — The system queries the stock info provider for the price information for
the stocks held in the portfolio.
5 < The stock info provider sends the requested data to the sytem.

19

6 <— The system displays the portfolio and balances with the stock informa-
tion provided by the stock info provider.

Flow of Events for Error in Retrieving Data:

1 — The investor navigates to “Portfolio & Balances”

2 — The system quesries the database for the investor’s portfolio and bal-
ances

3 <— The database sends the investor’s portfolio and balances to the system.

4 — The system queries for stock information for the stocks held in the in-
vestor’s portfolio.

5 < The stock info provider fails to send the requested data to the system,
and notifies the system that there was an error.

6 <— The system displays the portfolio and balances without the data pro-
vided by the stock info provider and displays without the data provided
by the stock info provider and displays “Error Retrieving Data”.

Use Case UC-T7: Register

Related Requirements: REQ-1

Initiating Actor: Investor

Actor’s Goal: To create an account

Participating Actors: Database, Facebook

Precondition: The system must support account creation.

Postcondition: A new account is in place for the user. This account will hold
information such as name, portfolio holdings, balances, etc.

Flow of Events for Main Success Scenario:

1 — The nvestor navigates to the application Facebook’s website and clicks
“Get App”

2 < Facebook displays page asking if the investor will allow the app to access
information.

3 — The investor clicks “Allow”.

4 <+ Facebook authenticates the user.

5 <— The system signals to the database to create a new account with the
above information.

6 <— The database creates the user account and signals to the system that
the account was created.

7 <— The system signals to the user that an account has been created.

Use Case UC-8: Create League

20

Related Requirements: REQ-5
Initiating Actor: Investor
Actor’s Goal: To create an investment league
Participating Actors: Database, Webmail Server
Precondition: The investor must have an account
Postcondition: The new league must be created, with the initiating investor
as the League Coordinator.
Flow of Events for Main Success Scenario:
1 — The investor navigates to “Investment Leagues” and fills out a form with
league name, entrance fee, starting funds, etc.
2 — The system determines that the league name is unique, and signals to
the database to create a new league with the above information.
3 <— The database creates the stated league, and signals to the system that
it has suceeded.
4 <+ The system signals to the user “League Creation Successful!”
Flow of Events for Duplicate League Name:
1 — The investor navigates to “Investment Leagues” and fills out a form with
league name, entrance fee, starting funds, etc.
2 < The system determines that the league name is not unique, and the
system signals to the user “League Name is Already Taken”.
3 — Loop back to step 2 and continue to either main success scenario or
alternate scenario.

Use Case UC-11: Create Fund

Related Requirements: REQ-4, REQ-7
Initiating Actor: Investor
Actor’s Goal: To create a Fund
Participating Actors: Database
Precondition: The investor must have an account
Postcondition: The new Fund must be created, with the initiating investor
as the Fund manager.
Flow of Events for Main Success Scenario:
1 — The investor navigates to “Funds” and fills out a form with Fund name,
rules, restrictions, and description.
2 — The system determines that the Fund name is unique, and signals to the
database to create a new league with the above information.
3 <— The database creates the stated Fund, and signals to the system that it
has suceeded.

21

4 < The system signals to the user “Fund Creation Successful!”
Flow of Events for Duplicate Fund Name:

1 — The nvestor navigates to “Funds” and fills out a form with Fund name,
rules, restrictions, and description.

2 < The system determines that the Fund name is not unique, and the system
signals to the user “Fund Name is Already Taken”.

3 — Loop back to step 2, and continue to either main success scenario or
alternative scenario.

Use Case UC-13: Manage League

Related Requirements: REQ-5
Initiating Actor: League Coordinator
Actor’s Goal: To manage league details such as starting balance, entry fee,
duration, limiting capital, etc.
Participating Actors: Database
Precondition: The user changing league details must be the League Coordi-
nator
Postcondition: The league details are successfully modified.
Flow of Events for Main Success Scenario:
1 — The league coordinator navigates to “Manage League”.He then fills out
the league information form and submits it to the system.
2 — The system determines that all changes are valid, and the system signals
to the database to implement the changes.
3 < The database implements the changes in league settings, and signals to
the system that the changes were made successfully.
4 < The system signals to the league coordinator that the settings were suc-
cessfully saved.
Flow of Events for Invalid Changes:

1 — The league coordinator navigates to “Manage League”.He then fills out
the league information form and submits it to the system.

2 — The system determines that one or more changes are invalid, and the
system signals to the user “Invalid Changes”.

3 — Loop back to step 2, and continue to either the main success scenario or
alternate scenario.

Use Case UC-14: Invite to League
Related Requirements: REQ-5

22

Initiating Actor: League Coordinator
Actor’s Goal: To invite other investors to join the league.
Participating Actors: Database, Investor
Precondition: The inviter and invitee must have an account, and the inviter
must be a league coordinator.
Precondition: The investor becomes a member of the league.
Flow of Events for Main Success Scenario:
1 — The coordinator chooses “Invite to League” and selects the appropriate
1mvestor.
2 < The system notifies the invitee that he has been invited to join the
league.
3 <— The system notifies the inviter that the invitation was sent.

Use Case UC-20: Manage Fund

Related Requirements: REQ-7
Initiating Actor: Fund Manager
Actor’s Goal: To manage Fund details such as rules, restrictions, and descrip-
tions.
Participating Actors:
Precondition:
Flow of Events for Main Success Scenario:
1 — The league coordinator navigates to “Manage Fund”.He then fills out
the Fund information form and submits it to the system.
2 — The system determines that all changes are valid, and the system signals
to the database to implement the changes.
3 <— The database implements the changes in Fund settings, and signals to
the system that the changes were made successfully.
4 < The system signals to the Fund manager that the settings were success-
fully saved.
Flow of Events for Invalid Changes:
1 — The league coordinator navigates to “Manage Fund”.He then fills out
the Fund information form and submits it to the system.
2 — The system determines that one or more changes are invalid, and the
system signals to the user “Invalid Changes”.
3 — Loop back to step 2, and continue to either the main success scenario or
alternate scenario.

23

3.3.4 Traceability Matrix

R# = REQ-#
R1|R2|R3 /R4 R5|R6 | R7|R8| R9| R10 | R11
PW 51 5 51514 4] 4] 3|3 2 1 Max | Total
UCo1 X | X X X 5 15
UucCco2 X | x X X 5 15
UucCco03 X | X X 5 14
UCo04 X 5 5
UuCo05 X | x | x| X 5 17
UCo06 X 4 4
UCo7 | x | x X | x X X X 5 26
UCO08 X 4 4
UucCo09 X 3 3
UC10 X 1 1
UC11 X X 5 9
UC12 X 4 4
UucCi13 X 4 4
UC14 X 4 4
UC15 X 4 4
UC16 X 4 4
UuC17 X 3 3
UC18 X 1 1
UC19 X X 4 7
UuC20 X 4 4

24

3.4 System Sequence Diagrams

NOTE: Diagrams of alternative implementations are in the appendix.

Interactiom

% Investar : Investor = _|System : Weh Server ‘ = |Database : Databaze ‘ = |Stock Info Provider : Stock Info Provider

| \ |
\ |
- . -l | |
Submit & buy - -
Request Stbck Information [I

Return Stc*:k Information
-
Request Investor Balance |:|

Return Investor Balance |

|
|
|
|
L |
Reguest Complete Transaction |
|
|
|
|
|
|

Return Confirmstion of Completion

Return Confirmation of Buy

Figure 2: UC-1: Buy Stock

In this sequence diagram, the tnvestor starts by submitting a buy to the web
server. The system then requests the stock information from the stock info provider.
Following this, the system requests the investor’s balance from the database, and
if the investor has enough money for the transaction, the system requests that the
database complete the transaction. Lastly, the system returns a confirmation of
the buy to the investor.

For the alternate scenario where the investor does not have enough money, the
system does not request the database to carry out the transaction and instead sends
an error back to the investor.

An alternative implementation for this use case was discussed, where instead of
the system querying the stock info provider for the stock prices, it would query the
database for the stock prices. In this model the database would have up to date
information on the stock price info (from periodic queries from the system), and
thus the stock info provider is left out of the transaction. However, this idea was
not implemented because we decided it would be too much information to cache
and would not be too practical.

25

Interaction

% Investor : Investar = |System: Weh Server ‘ % |Databaze : Databasze ‘ = |Stock Info Provider : Stock Info Pravider

| \ | |
\ | |
il -l | |
Submit & Zel -
Recuest Stbck Infarmation
| [I

Return Stckk Infarmation

Reguest Investor Stocks b|:|

Return Investor Stocks |

-
Reguest Complete Transaction

Return Confirmation of Completion

Return Confirmation of Sell

Figure 3: UC-1: Sell Stock

In this sequence diagram, the investor starts by submitting a sell to the web
server. The system then requests the stock information from the stock info provider.
Following this, the system requests the amount the stock that the investor holds
from the database, and if the investor has enough stocks for the transaction, the
system requests that the database complete the transaction. Lastly, the system
returns a confirmation of the sell to the investor.

For the alternate scenario where the investor does not have enough stocks, the
system does not request the database to carry out the transaction and instead sends
an error back to the investor.

An alternative implementation for this use case was discussed, where instead of
the system querying the stock info provider for the stock prices, it would query the
database for the stock prices. In this model the database would have up to date
information on the stock price info, and thus the stock info provider is left out of
the transaction. However, this idea was not implemented because we decided it
would be too much information to cache and would not be too practical.

26

Interaction

% Investor : Investar = |System: Weh Server = |Stock Info Provider : Stock Info Provider

-

-l
Request Stock Information

-
Request Stock Information

Return Stock Information

Return Stock Information T
\
\
\
\

Figure 4: UC-3 Query Stock

In this sequence diagram, the Investor first requests stock information from the
system. The system then queries the stock information from the stock info provider,
and then feeds it back to the Investor.

For the alternate scenario where the request from the stock info provider fails,
the system sends an error back to the user that it was not able to retrieve the data.

As discussed in the buy and sell use cases, an alternative implementation would
have been that the system queries the database instead for the information. (Please
see Sequence Diagram for Buy Stock for full discussion on it).

27

Interaction

% Investor : Investar = |System: Weh Server ‘ % |Databaze : Databasze ‘ = |Stock Info Provider : Stock Info Pravider

| |
| |
il -l | |
Reqguest Portfolio | |
~ |
Request Portfolio |j |
. |
| |
| |
| |
|

Return Portfolio

Return Stul:k Infarmation
- . |

Return Portfolio |

-
Recuest Strck Information [I
|
|
|
|
|

Figure 5: UC-5 View Portfolio

In this sequence diagram, the investor starts off by navigating to his portfolio
and in this way requests the portfolio from the system. The system then requests
the portfolio from the database, and when the portolio is returned to the system,
the system then queries the stock info provider for the current stock prices for the
stocks in the portfolio. The system then sends back to the user the portfolio with
the stock prices.

For the alternate scenario where the system is unable to retrieve data from the
stock info provider, it will instead return an incomplete portfolio to the investor
where the stock names and quantities are displayed, but no information on the
stock is given.

As discussed in the buy and sell use cases, an alternative implementation would
have been that the database stores the stock prices. When the system makes the
call to the database, the database compiles both the portfolio as well as the prices
before sending it off to the system. This implementation cuts out the step of the
system querying the stock info provider, but again it was determined that this
would not be the most efficient strategy because the system would have to query
the stock info provider periodically for the price updates and store it in the database
cache. (Please see the Sequence Diagram Buy Stock above for full discussion on
it).

28

Interaction

% Investor : Investar ‘ E |Facehook : Facebook

= |System : Web Server = |Database : Databasze ‘

| |

| |

- |

et &App Page |j |

Feturn App Page | l
-

Click "Allosw" |j |

: |

|

Confirmation of Accourt Creation

|
|
|
|
|
|
|
|
|
.
Reguest Account Crestion |j
|
|
|
|
|
|
|

Figure 6: UC-7 Register

In this sequence diagram, the investor first navigates to the app and clicks ” Get
App” on the Facebook website. Folowing this, Facbook returns the App page to
the investor, prompting the investor to make a choice of whether to allow the app
to access information or not allow it. The investor clicks 7 Allow” and Facebook
authenticates the investor. The system then requests from the database that an
account be created, and when this is done the system provides access the investor
access to the site.

An alternate implementation for this use case was discussed where instead of cre-
ating an account directly for the investor, the investor would have to first navigate
within the system and click " Register” within the system after being authenticated
by Facebook. However, this idea was discarded because it seemed unnecessary for
the investor to go through that route.

29

Interaction

% Investor : Investor @Sys’[em JWieh Server EDatabase: Databaze

Request League Crestion

Request League Creation

Confirmation of League Crestion

_| Confirmation of League Crestion _|
| |
| |

Figure 7: UC-8 Create League

In this sequence diagram, the investor requests a new league from the system,
which in turn requests a league from the Database to be created. After the account
is created, the Database signals to the system that is has been created, and the
system signals back to the investor that the league has been created.

For the alternate scenario, if the database detects that there is a duplicate name,
it will return an error to the system, which in turn will give an error back to the
investor.

There were no real alternative implementations that we discussed, since this
seemed the only logical procession of events.

30

Interaction

% Investor : Investor ESys‘tem Weh Server ngaiabasa: Database

Reqguest Fund Account

.
Recuest Fund Sccourt

Confirmation of Accourt Creation

Confirmation of Fund Creation

Figure 8: UC-11: Create Fund

In this sequence diagram, the investor requests a new Fund Account from the
system, which in turn requests a Fund Account from the Database to be created.
After the account is created, the Database signals to the system that is has been
created, and the system signals back to the investor that the account has been
created.

For the alternate scenario, if the database detects that there is a duplicate name,
it will return an error to the system, which in turn will give an error back to the
investor.

There were no real alternate implementations that we discussed, since this seemed
the only logical procession of events.

31

Interaction

% League Coordinstor | League Coordinstor ESys‘tem Weh Server ‘ EDatabase : Databaze ‘

-

|
|
Reqguest Changes - |
Request Changes H
|
|
|
|
|
|
|
|
|

Confirmation of Changes

Confirmation of Changes

Figure 9: UC-13 Manage League

In this sequence diagram, the League Coordinator requests that changes be made
to the league settings, and after the system has verified the changes are valid, it
sends a request to the database to implement these changes. After these changes
have been made, the database signals to the system that the changes have been
made, and the system then signals to the League Coordinator that the changes have
been made.

For the alternate scenario, if the database detects that there is an error in the
changes (for example an invalid value entered in a field), it will return an error to
the system, which in turn will give an error back to the investor.

There was no alternative implementation of this use case that was discussed since
this one seemed to be the only logical way to do it given the actors that we had.

32

Interaction

% League Coordinstor | League Coordinstor ESys‘tem Weh Server ‘ % Ireeestor © Investor

-
Send Invitation

Confirmation of Sent Invitation

|
|
|
|
.
Send Ineitation [I
|
|
|
|
|
|
|
|
|
|

Figure 10: UC-14 Invite to League

In this sequence diagram, the League Coordinator requests that the system sends
an invitation to the investor, and after the system has sent it to the investor, the
system returns a confirmation to the League Coordinator that an invitation was
sent.

There was an alternative implementation of this use case where we discussed the
possibility that [eague members could also invite other investors. However, this
seemed to be an unwise choice since it could cause a mass of unwanted invitations,
thus this functionality was restricted to the League Coordinator.

33

Interaction

% Fund Managet : Fund Manager ESys‘tem Weh Server ‘ EDatabase : Databaze ‘

i -l
-
Request Fund Accourt Changes H

Request Changes
Confirmation of Fund Account Changes

Confirmation of Changes

Figure 11: UC-20 Manage Fund

In this sequence diagram, the Fund Manager requests that changes be made to
the Fund settings, and after the system has verified the changes are valid, it sends a
request to the database to implement these changes. After these changes have been
made, the database signals to the system that the changes have been made, and
the system then signals to the Fund Manager that the changes have been made.

For the alternate scenario, if the database detects that there is an error in the
changes (for example an invalid value entered in a field), it will return an error to
the system, which in turn will give an error back to the investor.

There was no alternative implementation of this use case that was discussed since
this one seemed to be the only logical way to do it given the actors that we had.

34

4 User Interface Specifications

Bears & Bulls benefits greatly from being an app on Facebook since this elim-
inates the tedious sign up process and buying your first stock is as easy as just
installing the app. The entire app workflow was designed with simplicity in mind,
and so it was stressed that a user should be able to get from any one screen to
another with a minimum of four clicks.

4.1 Preliminary Design

4.1.1 Dashboard

SCROLLING STOCK TICKER

My Portfolios (4) Today's Top Gainers

Name Percent Earned
Gain: +2.23% -1.02% +2.23% -0.23% \Warren Buffet 12.5%
Worth: $1,023.23 53,023.68 $6,231.12 $808.23
Bill Gates +8.8%
Goldman Sachs +7.5%
- Barclays Capital +7.2%
Jay-Z +7.0%
Mame: Global Energy- Office My
L:’ﬂ”{:ie Feague Tedos Richest Investors
Name Portfolio Value
Warren Buffet $1,232,488
Bill Gates $802,231
Goldman Sachs $666,666
Barclays Capital $123,456
You 583,543

Figure 12: Dashboard

Upon visiting the app, the user is first presented with the dashboard page. If
the user is playing for the first time, they will have a default portfolio already
set up that is associated with the global league. This page provides them with a
summary of the performance of their portfolios, a scrolling stock ticker, and the
high scores list for the global league. From here the user could either click on one
of their portfolios and manage it (Figure 15) or add a new portfolio (Figure 13)
by clicking on the + button.

35

4.1.2 Add Portfolio

Add a Portfolio

Create a League Join a League Create a Fund

| Duration A J ‘ | Duration A J ‘ | Duration

| Playing Mode k ‘ | Playing Mode ¥ ‘

Create Search Create

Figure 13: Add Portfolio

When the user clicks on the + button to add a portfolio, a modal dialog box pops
up presenting them with one of three ways to add a portfolio. If the user wishes to
create a league, they are required to input the name of the league, the duration of
the league, and the rules for league operation as enumerated by the playing mode
dropdown. After entering the parameters and clicking Create, the user is taken to
a screen to invite users to that league (Figure 15). If the user wishes to join a
league, they can type in the name of the league if they know it or search for open
leagues accepting players by providing their preferences in terms of duration and
playing mode. After clicking Search, the user will randomly be put in a league that
best suits their preferences.

36

4.1.3 Invite Users to League

Invite Friends

| Search by Name + || Search all friends

O
'

|

|
"

T

B
[]

1 . . [. -

Invite by E-mail Address: Use commas to separate e-mails

Add a Personal Message

Cancel

Figure 14: Invite Users to League

Here we benefit from being an app on Facebook by being able to provide the
user with a list of all their Facebook friends. The user simply selects the friends
that they would like to send an invite to, along with an optional personal message
if they wish.

37

4.1.4 Manage Portfolio

My Portfolios (4)

Worth: +2.23% -1.02%
51,023.23 53,023.88

Name: Global Energy-

+2.23%
56,231.12

Figure 15: Manage Portfolio

Once a portfolio has been created, the user can populate it with the stocks they
wish to purchase. Clicking Buy More brings up the Research Stocks page (Figure
15). They can also view the performance of their existing stocks, the amount of
cash they have on hand, and sell any stocks that they wish to by specifying the
quantity and clicking on the Sell button. Additionally, to see how they are faring
in the league, they can click on the league name at the top to be taken to the league

page (Figure 18).

38

-0.23%
$808.23

4.1.5 Research Stocks

Filter Stocks
Q Search for a stock...i.e GOOG Exchange h J ‘ Sector k4 ‘
P/E Ratio: Market Cap: Dividend:
|\:. :. :. Apply

Mame | Symbol | Last Price ‘ Change

Apple Inc. AAPL $500.00 +0.23%

Progress Energy, Inc. PG £50.00 -1.45%

Activision Blizzard ATV $10.00 +0.30%

Pages: 1 2 3 4 0 21 Next

This page allows the user to search for stocks based on simple parameters, namely
the exchange its traded on, which sector it belongs in, the P/E ratio, the market
cap, and the percent dividend offered. From here the user can click on the name
of the stock they are interested in, which will bring them to the stocks page (Fig-
ure 15). If there are too many stocks to be listed at once, a simple pagination

Figure 16: Research Stocks

mechanism will allow the user to traverse through the list in portions.

39

4.1.6 Purchase Stocks

PGN: Progress Energy, Inc. $50.00 +2.5%

Dividend/Yield: 0.62/4.60 Vol/Avg.: 1.95M/1.63M Quantity:

:fpl;n:g; 20.37 Shares: 295M PiEchase
Open: 50.00

Range: 50.00 - 54.42

Performance:
40
30

20

10

0
Jan 2010 Mar 2010 May 2010 Jul 2010 Sep 2010 MNov 2010

Figure 17: Purchase Stocks

When a stocks name is clicked, the user is presented with this screen that sum-
marizes the stocks performance and lists key stock information. From this popup,
the user can place an order to purchase stock.

40

4.1.7 League Page

League Standings

Rank | Name Value Today's Change Overall Change
1 Warren Buffet $56,000 +0.23% +0.23%
2 Steve Jobs $32,000 -1.45% -1.45%
3 Bill Gates $200 +0.30% +0.30%

Invite Friends

Figure 18: League Page

On this page, a brief summary of the portfolios of all the league members is
provided. The stocks in competitors portfolio are kept confidential, however the
total value is made public. The players are ranked in order of their portfolio value.
If the league manager is viewing the page, he also has the ability to remove players
from the league by clicking on the x next to their name. He also has the ability to
invite more players to the league by clicking on the Invite Friends button, which
brings up the Facebook provided popup (Figure 14).

41

4.2 User Effort Estimation

Usage Scenario Clicks | Keystrokes
Buy a stock 7 5)
Sell a stock 5 1
Create new league 6 14
Create new fund 5 13
Invite user to league 4 10
Remove user from league 4 0
Buy Stock

1. Click on App on Facebook.

2. Click on League.

3. Click on Portfolio.

4. Click on Buy More.

5. Click on the “Search for a stock” text field.

6. Press keys to enter Stock ticker to purchase (ex. AAPL).

7. Press Apply

8. Click on the Stock

9. Press keys to enter number of shares (ex. 15).

—_
=

Click on Purchase

Sell Stock

1.
. Click on League.

SN

Click on App on Facebook.

Click on Portfolio.

Press keys of “Qty.” field next to stock you want to sell (ex. 5 of AAPL)
Click on Sell

Click on Confirm

Create League

1.
2.
3.

Click on App on Facebook.

Click on Add Portfolio.

Enter name in either Create a League or Join League. (ex. BA RRH A
LLLEAGUE)

. Click in information in the two drop down menus named Duration and

Playing Mode.

. Click on Create.

42

Create Fund

1. Click on App on Facebook.

2. Click on Add Fund.

3. Enter name in in Create Fund. (ex. Q U A N T U M)
4. Click in information in the one drop down menu.

5. Click on Create.

Invite User to League

1. Click on App on Facebook.

2. Click on League Name

3. Click on Invite Friends.

4. Type in “Search all friends” name of new members (ex. PARITA S OK
A N)

5. Click on Submit

Remove User from League

1. Click on App on Facebook.
2. Click on League Name

3. Click on x next to the player’s name.
4. Click on Confirm.

43

5 Domain Analysis

5.1 Domain Model

" lUsar i
User Domain Model j

T

Webh Browser

Web Server

Database
data
‘Weh Framewark }
——

0y -
Page RendererL League Manager Server Side =4
settingsvalid
updateSettings
Walidity Checker Data Handler
leaguevalid databaseHandle
fundsvalid
tradeSuccess
— Liguidity Manager Stock Cluery |\ Stock Info Provider
priceUpdate UnternaITimer)'
N—
Order Handler

fb-'alidOrderRequesﬂ
I

Figure 19: Domain Model

Figure 19 shows Bears & Bulls’ general Domain Model as a whole. The subse-
quent diagrams will give insight into how the concepts work to satisfy the key user
cases of the website. Alternate models for the use cases will also be shown. The
key difference between the alternate model and the accepted model is the alternate
models use of caching to store market data instead of retrieving it when needed.
The database would get updated periodically by requesting new information every
time interval, for example every minute.

44

User
| LIC Buy Stock Sell Stock
Database
data

send input dresponse

‘Wieh Serer

Web Framework send page
store data
request data
\(Page RendererL send page data SeNerB\deE
- N retrieve data
i request partfolio info
send page info Validity Checker Dala Handler
return portfolio info
{andle
send updated portfolio data
tradeSuccess
send updated stock data
semvice stock data request —————————
Order Handler] Liguidity Manager Stock Query | Stock Info Provider
< lalidOrderRenuast intermalTimer =
sand arder regquest 4 P " end order infa J send stock data request /_4

send order data

Figure 20: Place Order

Figure 20 will represent UC-1 and UC-2. It represents both our buy and sell use
cases since they behave in the same way. The User’s order information eventually
makes its way to the Web Framework, which passes the data to the Order Handler.
It then relays the data to the Stock Query, which will fetch a price from Stock Info
Provider based on what stock is ordered. Stock Query will send this price and the
rest of the order data to the Liquidity Manager to adjust the price based on an
algorithm. This updated order data then travels to the Validity Checker so the
trade can be deemed valid. It requirs the user’s portfolio data for this, so it sends
the User and league ID to the data handler along with a request for portfolio data
about funds and league settings. Once the trade is judged as valid or not, it will
send updated portfolio info to be stored to the data handler if needed and pass
the necessary info to the Page Renderer to display a page showing the success and
result of the trade. This rendered page is sent to the Web Framework, to be shown
to the User.

45

L Buy Stock Sell Stock
Alternative

Weh Browser

send input send response P
" weh Server data
Weh Framewark
- send page
[~
\,

store data
request data

Page Renderer | send page data Server Side 5
retrievd data

i —_— reguest porfolio info
send page info validity Checker Data Handler
- return portfolio info —_
leaguetalid datahaseHandle
funds\alid send updated porfolio data
tradeSuccess
—

return price reguest

send updated stock data

N N I
Qrder Handler Liquidity Manager
walidOrderRequest| send price regquest |pricelpdate
send arder request q \p P

zehd stockinfo

Figure 21: Place Order Alternate

The alternate case for placing an order, differing in the ways described at the
start of the section is shown in Figure 21.

46

UG View Portfolio j

Web Browser

send input send response

Web Server
[Database
M data
Wb Frarnewark send page
N r refrieve data request data
send page request
send data request - E
Fage Renderer { Data Handler Senver Side |
|- send page data [databaseHandle
T —
send page data Stack Query send stock data request Stock Info Praovider
send data reguest JremarTimer service stock data request
L S —

Figure 22: View Portfolio

Figure 22 shows the UC-5 View Portfolio. The User’s query about a portfolio
gets sent down to the Web Framework which in turn will request a page to be
rendered by the Page Renderer. To get its necessary data, the Page Renderer will
send a request for updated stock prices to the Stock Query, and a request for the
portfolio info to the Data Handler. The Stock Query will retrieve the data from
the Stock Info Provider, and the Data Handler will get its data from the Database.
One they have collected the data, they both return it to the Page Renderer, which
will generate the page for the Web Framework to send to the User for viewing.

47

£ .
User

U View Portfolio

:D: Alternative
Wiy

ab Browser

k
i
send input send response
(" wieh Server |
S—— oo
data
Weh Framewark send page
retrieve data request data

send page request

send dafa request - i
Fage Renderer Diata Handler Server Side |
send page data |databaseHandle

Figure 23: View Portfolio Alternate

The alternate case is shown in Figure 23, using the Database instead of the
Stock Info Provider.

48

T ear
User b‘

LIZ Create Leane

Weh Browser

k,
send input

send response

(" wieh Server | Datahase
data

eb Framework

send settings

k,

send page store data

SewerSidelﬁ

League Manager
settingsvalid
updateSettings

databaseHandle send setting data

Fage Renderer
)

send page data

Data Handler |

S ——

Figure 24: Create League

UC-8 Create League is represented shown in Figure 24. Note that this model will
also essentially cover creating Funds, as well as maintaining both leagues and Funds.
The only thing difference is what the User would have to input for settings. The
Web Framework eventually receives the User’s desired initial or modified settings
and sends it to the League Manager. The League Manager will generate new data
for the league or Fund, and send this data along with the settings info to the Data
Handler to be stored within the Database. The Data Handler will then pass on
necessary data for the Page Renderer to create a page. Once rendered, it is passed
to the Web Framework to be shown to the User.

49

T ear
User

LIZ Create Leane
Alternative
Weh Browser
k,
send input send response
(" wieh Server | Datahase
data

e

eb Framewaork

send settings

send page store data

SewerSidEE

League Manager

settingsvalid
updateSettings

Page Renderer send page data

Data Handler

databhaseHandle

send setting data

Figure 25: Create League Alternate

The alternate case involves the League Manager sending necessary page data to
the Page Renderer rather than the Data Handler, as shown in 25.

LS Query Stock

Web Browser

send input send response

Web Server

Web Framewark

—

send page request

send page

Fage Renderer

SenrerSideEl

send stock data request

T —
Stock Info Provider

send page data Stock Query

send data request

\|internaITimer

senice stock data request

A

Figure 26 shows the UC-3 Query Stocks. The requested stock is sent through
to the Web Framework and handed off to the Page Renderer. This concept then
requests the data for said stock from the Stock Query, which fetches the information
from the Stock Info Provider. The Stock Query will return the required data to
the Page Renderer which will create its page for the Web Framework to send to

the User for viewing.

Figure 26: Query Stocks

o1

—

£ .
User

LIC Qluery Stock

:D: Aternative
Wiy

ab Browser

\,

s

send input send response

(" wieh Server | [Database
tﬁata
i

eb Framewaork send page

_

request data
send page request ratriave data

Page Renderer SewerSideE
send page data Data Handler |

send data request datahaseHandle

Figure 27: Query Stocks Alternate

The alternate case, using the Database instead of the Stock Info Provider, is
shown in 27.

Lpdate Stock Info

[Database I
data l

store data

Diata Handler | Serer Side

databaseHandle |

send staock data

[Stock Query zend stock data reguest

internalTimer

service stock data request

{ Stock Info F'rn:wider1

Figure 28: Updating Stock Info

| J

The last diagram (Figure 28) shows Updating Stock Info, a required process if
the alternative domain models are to be used. It involves the Stock Query being
signaled by an internal timer to request all stock info from the Stock Info Provider,
which it will in turn send to the Data Handler to store in the Databse.

5.1.1 Concept Definitions

The definition of our concepts are as follows:

User
Definition: A player playing Bears & Bulls.
Responsibilities:

e Manage portfolio

e Make requests for trades
e Manage leagues

e Navigate through website

Web Browser
Definition: The user’s browser which runs from the user’s device.
Responsibilities:

e Take requests from the user

e Send requests to the Web Server

e Get responses from the Web Server

e Display the response from the Web Server

Web Server
Definition: HT'TP web server, running on a web host
Responsibilities:

e Receive requests from Web Browser
e Send requests to Web Framework

e Get responses from Web Framework
e Send responses to the Web Browser

Web Framework
Definition: APIs to help display user-friendly output
Responsibilities:

e Receive requests from Web Server

e Sends request to appropriate handler: application or database
e Receive rendered pages in the form of structured data

e Send responses to the Web Server

Page Renderer
Definition: Takes user requests and creates a page which is user-friendly
Responsibilities:

54

e Determine the information required to be rendered and request it
e Receive the required information

e Convert the information into user-friendly format

e Send rendered pages to the Web Framework

Order Handler
Definition: Application conducting transactions of stocks
Responsibilities:

e Receive requests from Web Framework

e Determine what the request is and readies for manipulation
e Request updated price info

e Transmit necessary information to other concepts

Stock Query
Definition: Fetch real-time stock prices
Responsibilities:

e Receive requests for stock price

e Request information from Stock Info Provider

e Retrieve information from Stock Info Provider

e Send real-time stock prices to be stored for application’s use

Validity Checker
Definition: Checks if a trade is valid
Responsibilities:

e Receive updated order information

e Request and receive portfolio data

e Determine if sufficient funds are available for the transaction

e Determine if trade is allowed for given user and portfolio based on league
or Fund settings

e Send updated portfolio information if necessary

e Send data reflecting successful /unsuccessful trade to be redered

Liquidity Manager
Definition: Manipulates price to realistic real world prices for slippage
Responsibilities:

e Receive stock and order data

e Utilize algorithm to reflect realistic trades in the market
e Determine new price

e Send out updated stock information

55

Data Handler

Definition: Communicates with Database to service data requests

Responsibilities:

e Receive and send every kind of data used in system

e Request data from Database
e Send data to be stored in Database

League Manager

Definition: Can create and upkeep leagues and Funds

Responsibilities:

e Receive initial or modified settings input for desired league or Fund
e Pass league or Fund data to be stored

e Pass league or Fund data for rendering of a page

5.1.2 Association Definitions

The following association definitions are provided for the domain models that
model not only for the important use cases, but also any alternative models for

said use cases:

Concept Pair Association Description Association
Name

Web Browser <> User interacts with browser send input, send

Web Server response

Web Framework <«
Order Handler

Passes volume, trade type, User
ID and league ID

send order request

Web Framework <>
Page Renderer

Request to visit page, sends
rendered page in form of data

send page request,
send page

Web Framework <>
League Manager

Passes the user’s desired
settings

send settings

Page Renderer <+
Data Handler

Requests data to correctly
render page, passes necessary
data

send data request,
send page data

Page Renderer <
Stock Query

Asks for data on specific stocks,
send data on specific stocks

request stock
data, send stock
data

Page Renderer <+
League Manager

Sends the required data to
render page

send page data

56

Page Renderer <
Validity Checker

Passes necessary data for the
page to be rendered

send page info

Order Handler <«
Liquidity Manager

Sends order information to
reflect real-life prices

send price request

Order Handler <«
Stock Query

Passes necessary order data

send order data

Stock Query <«
Stock Info Provider

Asks for stock data, return
stock data

send stock data
request, service
stock data request

Stock Query <
Data Handler

Sends stock data to be stored

send stock data

Stock Query <«
Liquidity Manager

Passes updated order
information

send order info

Validity Checker <>
Data Handler

Asks for user’s portfolio
information for validity
purposes, passes user’s portfolio
information, passes updated
portfolio information following
trade

request portfolio
data, return
portfolio data,
send new portfolio
data

Validity Checker <>
Liquidity Manager

Sends updated stock data to be
checked

send updated
stock data

Liquidity Manager
< Data Handler

Sends order information,
returns new price

send stock info,
return price
request

Data Handler <
Database

Stores incoming data, request
certain data, retrieve needed
data

store data,
request data,
retrieve data

Data Handler <»
League Manager

Sends the settings data to be
stored

send settings data

57

5.1.3 Attribute Definitions

Most of our concepts do not need to hold their own data, as our website is
dynamic and web-based. We also have not yet made the decision to cache data.
Thus, nearly all data is stored in a single database. The sparse attributes that
must be accounted for are as follows:

Concept

Attribute

Meaning

Data Handler

databaseHandle

Interacts with the database.

Database

data

Stores data for future use. Includes
all data used in the system,
including League ID, User ID, stock
volume and price data, league
settings, fund settings, and portfolio
data such as transaction history.

Facebook

accountInformation

We don’t need to keep detailed
account of user information as
Facebook has already done it for us.
Also we don’t need to create new

login information as that is handled
by Facebook.

Stock Query

internal Timer

Necessary for an alternate domain
model where the Database is
refreshed with all stock information
periodically.

Page Renderer

sufficientRenderData

Determines if the required data to
render the page is there.

Order Hander

validOrderRequest

Checks to see if there is all the
required data for an order.

Liquidity Manager

priceUpdate

Generates a new price value of the
ordered stock.

League Manager

settingsValid,
updateSettings

Determines if the User’s settings
input are valid. Will also upkeep
settings based on User modification,
signaling changes to be made to
Database.

58

Validity Checker | leagueValid, Compares funds and price and
fundsValid, checks league settings to make sure
tradeSuccess a transaction is valid. Determines if
trade is a success.

5.1.4 Traceability Matrix

a3
Bl n | . 2lg
= S Cl 2|8
%H@%’gz‘ = =
JHEEIEIRERE
5£Em53%§§
EEEIEIEEEIEE
Use Case | PW |2 |2 |22 |a |[Olal<|3|A
UC01-02 15 | x|x|x|x|x|x|x|x|x|X
UucCos3 4 | x| x|x|x| X X
ucCo05 17 | x|x| x| x| x X X
UCO08 4 |x|x|x|x|X X

5.2 System Operation Contracts

Register User
Preconditions:

e None
Postconditions:

e User has a portfolio associated with the league.
e User’s name, portfolio holdings and other information are stored in the

database.

Buy Stocks
Preconditions:

e Investor’s intended transaction is less than available cash balances.
e Stock provider has the stocks available for purchase.

e Transaction is valid under league settings.

e Transaction data is valid.

59

Postconditions:

e Update database with user’s new stock holdings.

Sell Stocks
Preconditions:

e Investor has the assets he is attempting to sell.
e Transaction is valid under league settings.
e Transaction data is valid.

Postconditions:

e Investor’s portfolio is adjusted in database to reflect transaction.
e Stock inventory is updated in database.

Query Stocks
Preconditions:

e Stock exists
Postconditions:
e None

View Portfolio
Preconditions:

e Initiating investor owns the portfolio.
Postconditions:
e None.

Create Portfolio
Preconditions:

e User has permission to create a portfolio, as dictated by league coordinator
e Input data is valid

Postconditions:

e User’s portfolio reflects membership in the league
e Portfolio information stored in the database

Create Fund
Preconditions:

e Input settings are valid

60

Postconditions:
e New fund’s information stored in the database

Create League
Preconditions:

e Input settings are valid
Postconditions:
e League information stored in the database

Invite to League
Preconditions:

e User has permission to join a league
e Valid invitee User ID and League ID

Postconditions:
e Invite information sent to Manage League for further interaction

Manage League
Preconditions:

e User has league coordinator privileges
e Input settings are valid

Postconditions:
e League information is up to date and is reflected in the database

Manage Fund
Preconditions:

e Fund manager initiates a erquest
e Input settings are valid

Postconditions:
e Any updated information is updated in the database

View Account Information
Preconditions:

e User is logged in

Postconditions:

61

e None

View League Standings
Preconditions:

e User has access privileges to the league
e League exists

Postconditions:

e None

5.3 Mathematical Model

Bears & Bulls’ sole mathematical model is the model used to calculate price
slippage when executing block trades. Slippage is usually associated with large
equity Funds and institutional investors [12] since their actions tend to flood the
exchange with an abundance of buy or sell orders. This puts pressure on the price
of the security to move up in the case of a buy or to move down in the case of a
sell. Slippage is usually not an issue for highly liquid markets with low volatility.
Traders buying and selling blue chip stocks would therefore experience very little
slippage, even when the volume is very high. On the other hand, a trader buying
huge volumes of penny stocks can easily cause price movements through his actions
alone. Thus Bears & Bulls provides a mathematical model for estimating price
slippage.

The two factors that determine slippage are volatility and liquidity. High volatil-
ity by definition implies high price swings and so more slippage. Highly liquid
markets have many buyers and sellers and so a large trade can be made without
affecting price to the same extent as in an illiquid market. Let v represent the
volatility of a security, [represent its liquidity, and p the average price. It is clear
the that average price of a trade should be directly related to v and inversely related
to [. Let us examine what would happen to the average price an investor pays if
he were to buy a large block of shares.

In a completely involatile market (v = 0), the trader would experience no slippage
based on his trading action since no volatility implies no price movement. Likewise,
in a perfectly liquid market (I = 00), there is always a willing counterparty for the
trade at the given price and quantity. Let s be the current ask price for security

and z be the current ask size. From the above relation, we can see that
v

p=(1+7)xs

62

satisfies the conditions that there is no price movement from the current ask price.
The equation also preserves the relationship between p, v and [. Let N =1+ 7
and assume that it is greater than 1. If the block size the buyer wishes to buy is
less than the ask size, then the buyer only needs to buy from that seller to fill his
order. Thus the price would not deviate from the seller’s ask price. If the buyer
wants to buy more than the current ask size, he must buy from additional seller
to complete his order. A simplifying assumption will be made that the next seller
sells the same block size as the previous seller. The price per share for the next
seller is N x s. Continuing this pattern, the n'® block will sell at N"~! x s. The
last block may not be filled as the buyer may not want to buy in multiples of the
current ask size. Thus if we let b be the total number of shares the buyer wishes
to buy and n = LSJ be the number of whole blocks bought, then the total price of
paid by the investor is:

Protal = [;0:(1 + %)Z 8% 2]+ (1+ %)”(b— (n—1) x 2)
Consider the example where an investor wishes to purchase 1000 shares of XYZ
and the current ask is $110.00 x 300 shares and N = 1+ 7 = 1.01. In this case,
s = 110.00, z = 300,b = 1000,n = 3. The first block of 300 is sold at $110.00.
The second block of 300 is sold at $111.10, the third block is sold at $112.21 and
the final 100 shares is sold at $113.33. The total price paid is $100106.33, or an
average price per share of $111.33. This is a 1.2% change from the ask price.

Now it is necessary to determine v and [. Many mathematical models have
been dedicated to predicting volatility and liquidity and there is still nothing that
can accurately predict either of them. That said, there are ways of qualitatively
measuring volatility and liquidity that will suit our needs.

Volatility can be measured by the stock 8. 3 is the correlation between a stock’s
movement relative to the movement of the market as a whole. Consider plotting
the percentage moves of the market versus the changes in price of a stock. A 3 of
1 would mean that every percentage move in the market should result the same
percentage move in the stock price. Higher generally implies higher volatility.
Liquidity can be measured by the bid-ask spread of a security. Highly liquid assets,
such as currencies, usually have bid-ask spreads of a few hundreths of a percent.
Less liquid assets such as mid-cap stocks, have bid-ask spreads of one or two percent
of their price. For our model, we will use v = % to represent the volatility of a
stock. Let r be the bid-ask spread and s the last price of the stock. Liquidity [will

be defined as [= 2. Thus a spread of 0 would mean infinite liquidity. N would
then be defined as N = (1 +)

Br
100s

63

6 Plan of Work

Contribution Breakdown

é AEIEHEIE
=z 2| % |8
Responsibilities Matrix =< &Aooz
Proposal X
First Report
Requirements X | X |X|X|[X|X
Use Cases X | X X
Domain Model X | X|X
User Interface X X
Plan of Action X
Second Report
Class Diagram and Interface Specification | x X
System Architecture and Design X | X|X|[xX|[X]|X
Algorithms and Data Structures X | X
User Interface Design an Implementation X | X |X|X
Progress Report and Plan of Work X
Report Editing XX |X|x|x|X
First Demo
Database X | X
Integration to Facebook X | X |X|X
Basic User Interface X | X|X|[xX|[X]|X
Connection to Database X | x| X
Testing X | X |X|X|X|X
Third Report
Collation of Reports X | x| x
Update Report X | X |X|X|X|X
Second Demo
Implement Rest of Use Cases X | X|X|[xX[X]|X
Testing/Enhancing X|X|X|[X|X|X

64

[Zhiers - Zviozie]

] Buiaueyu EusaL
[Eieq o]
[ZLizit - Z1izie]
e s8seQ 8540 159y Juawsldu|
[20ieq 51]
[Zvig - Ziieze]
. d owag puoiss
[(=Meg 5z]
[Zhiizit - Zhimt]
e vodey siepdn
[=hieq £1]
[Zwpit - zhiize]
i] Hoday puolas puesii4 8le|eo
[(=}iEq gl
[Ziize - vzl
L i uoday payL
lishieqg gz]
[Zviizie - eEas]
[] Bunsa)
[i=xieq 2]
[zupzic - Zuzzie]
|| aseqeleq 0} UojIBULDD
[(=pieq z]
lzize - Zuvziz]
e saepialu Jasn dlseg
[=ieqst]
[ZW5eZ - THIWZ]
| —] WoogaIe 4 o} uonelfaqu)
[=rieqg gl
[Zhizzie - Zhiikz]
=———— 5] asedeleq
[Eieq +2]
[zviizre -Zuiiz]
C d owagisid
[(=pteg sz]
[zuie - ziwe]
[] Bump3 poday
[Eieg z]
[zhrue - Thiae]
'] MIOM JO UB|d pue Loday ssalfiold
[i=Mieq 1]
[zume -2z]
[uonepuaLa|dw) pue ufisag aaepau) 1asn
[(Eheq 5]
[ziae - ziwe]
| SaIMINAS eleq pUE SLILIoB|yY
[=eq £]
[zl - ziezz]
E——— uflsag walsis pue aunpayyuy Walshs
[zxieq £]
[zueziz - zuinz]
== uoleayaads atepaiy| pue Wwelfelg ssejn
[(Ehieq]
[zidie - ziaiiz]
N " uoday puolasg
[(=peg 5]
[Zhiiiz - Zhian]
[I Hoday 1si4
[Eieq g1]
[ziiezn - zwezin |
— lesodold
[=ieq]
mmi j j 97 m; ._:7 mi m_i 37 mﬁi 97 i o6 xmmjm xmméT xmmim EEE xmmjw V_m.m.}_;im A2z
e .
- { yoolowd.
TLOE hew ZLOE Utk TLOT Yoe Loz Aenigsd zlog Aenuer - - Eil)
L o< LU
N e

[5]

65

The preceding table is the responsibility matrix for this group. In general, Aaron
and William will do most of the compiling of the reports, while everyone also works
on writing the reports. Aaron and Pratik will lay down the class diagrams and
interface specifications as a groundwork for the rest of the system. The system
architecture and design will be a collaborative effort between all members in the
group, while algorithms and data structures will mostly be determined by Aaron
and William. Pratik is the most experienced in implementing user interfaces, thus
he will take the lead on user interface design and will work closely with Noah,
Omar, and Dean. Finally, the editing of the reports it will be a collaborative effort
too.

The general scheme for the rest of the project will be that Aaron and William
will implement the database, while the rest of the group will work on the interface.
From there, William, Aaron, and Pratik will make the connections between the
various parts. If any group member has finished his delegated tasks, he will jump
around to wherever he is needed.

66

7 Appendix

Interactiom
% Investar : Investor = |System: Weh Server = |Database : Database = |Stock Info Provider : Stock Info Provider
| | | |
| | | |
il - | |
Submit & Buy
| |
Request Stm:lk Information |:|

|
Return Stoclf Intarmeation |
- |
Reguest Investor Balance |j |
|
|
Return Investor Balance | |
| |
u u | |
| Return Error in Buy | | |
| | I |

|
Figure 29: Alternative Sequence Diagram for Buy Stocks
Interactiom
% Investar : Investor = |System: Weh Server = |Database : Database = |Stock Info Provider : Stock Info Provider

| | |

| | |

1 .l |

Subimit & Sell |

|

Return Stoclf Intarmeation

.
Request Investor Stocks |j
|
|
|
|
|

Return Investor Stocks

|

|

|

|

Reruest Stm:lk Infarmation |:|

|

|

|

|

|

|

|

u |

| Return Error in Sell | |

| |
|

Figure 30: Alternative Sequence Diagram for Sell Stocks

67

Interaction

% Invvestor : Investor = | Zystem : Web Server = |Stock Info Provider : Stock Info Provider

Reguest Stock Information

Reqguest Stock Information

Return Error

Return Error in Retrieving Infarmation

Figure 31: Alternative Sequence Diagram for Query Stocks

Interactiom

% Inwestar : Investar = |System Wb Server = |Database ' Databaze = |Stock Info Provider © Stock Info Provicer

Reguest Portfolio

| |
| |
| |
| |
-
Request Portfolio |
|
Return Portfalio [|
| |
' -
Reqguest Stodk Information
|
|
|
|
|
|
|

Ra1urr| Error

_i Return Incomplete Portfolio
|
|

Figure 32: Alternative Sequence Diagram for View Portfolio

68

Interaction
% Investor : Investor @Sys’[em JWieh Server EDatabase: Databaze

Request League Crestion

Request League Creation

Return Error in League Crestion

Return Error in League Creation |
|

Figure 33: Alternative Sequence Diagram for Creating Leagues

Interactiom
% Irvvestor ; Investor ESystem ;Weh Server ED&tabase: Database

|
|
Request Fund Accourt :

Reguest Fund SAccount

Return Error

Return Errar _|
|
|

Figure 34: Alternative Sequence Diagram for Creating Funds

69

Interaction

% League Coordinator © League Coordinatar @Sys’[em JWieh Server EDatabase . Databaze

Request Changes
Reqguest Changes

Return Error in Changes

Return Error in Changes

Figure 35: Alternative Sequence Diagram for Manage League

Interactiom

% Fund Manager : Fund Manager ESystem ;Weh Server ED&tabase ; Databasze

Reguest Changes

Reguest Fund Account Changes

Return Error in Fund Account Changes

Return Error in Changes

Figure 36: Alternative Sequence Diagram for Manage Fund

70

8 References

References

[1] http://www.stockmarketnewz.com/2011/10/19/who\%E2\%80\
%99s-right-about-commodities-bears-or-bulls/.

2] Discount Broker. http://www.investopedia.com/terms/d/
discountbroker.asp#axzz1lmOap5Tqp.

[3] Omondo: The Live UML Company. http://omondo . com.
[4] Facebook Developers.

[5] Benjamin Graham. The Intelligent Investor. HarperCollins Publishers, revised
edition, 2003.

[6] Technical Indicators and Overlays. http://stockcharts.com/school/doku.
php?id=chart_school:technical_indicators.

[7] George Kleinman. Trading Commodities & Financial Futures. Prentice Hall,
3rd edition, 2005.

[8] Ivan Marsic. Software Engineering. Unpublished, first edition edition, 2012.
9
[10

]
] Pitfail. http://github.com/pitfail.

] Gantt Project. http://www.ganttproject.biz.

[11] Alessandro S. http://www.linkedin.com/answers/financial-markets/
equity-markets/MKT_EQU/1231-10230.

[12] Argo UML. http://argouml.tigris.org.

71

