

TRADE FUN!

Group 6

Jia Ding

Nikhila Lavu

Pratyusha Nandamuri

Vaishnavi Kakumani

Zhiyue Wang

Date of Submission: 11/4/2011

URL of the Project’s Website:

https://sites.google.com/site/stocktradefun/

https://sites.google.com/site/stocktradefun/

2

1. INDIVIDUAL CONTRIBUTIONS BREAKDOWN:

The effort breakdown for all team members is shown in the following responsibility matrix and
responsibility allocation chart.

Responsibility Levels

Team Member Name

Nikhila
Lavu

Vaishnavi
Kakumani

Jia
Ding

Zhiyue
Wang

Pratyusha
Nandamuri

Project management 30% 40%

30%

Cover Page and Individual
Contributions Breakdown

100%

Table of Contents

100%

Interaction Diagrams

40% 60%

Class Diagram and Interface
Specification

100%

System Architecture and
System Design

60%

40%

Algorithms and Data
Structures

100%

User Interface Design and
Implementation

100%

Progress Report and Plan of
Work

33.3% 33.3% 33.3%

References

100%

3

2. TABLE OF CONTENTS:

1. Individual Contributions Breakdown 2

2. Table of Contents 3

3. Interaction Diagrams 4

 (a) List of Implemented Use Cases 4

 (b) Diagrams for Implemented Use cases 4

4. Class Diagram and Interface Specification 22

 (a) Class Diagram 22

 (b) Data Types and Operation Signatures 23

5. System Architecture and System Design 26

 (a) Architectural styles 26

 (b) Identifying Subsystems 27

 (c) Mapping Subsystems to Hardware 27

 (d) Persistent Data Storage 27

(e) Network Protocol 28

(f) Global Control Flow 29

(g) Hardware Requirements 30

6. Algorithms and Data Structures 30

 (a) Algorithms 30

 (b) Data Structures 30

7. User Interface Design and Implementation 31

8. Progress Report and Plan of Work 34

 (a) Progress Report 34

 (b) Plan of Work 35

 (c) Breakdown of Responsibilities 35

9. References 36

4

3. INTERACTION DIAGRAMS:

(a) List of Implemented Use Cases:

 Use Case 1: Login

 Use Case 2: Registration

 Use Case 3: View About Us

 Use Case 4: View About Me

 Use Case 5: Edit My Profile

 Use Case 6: View RSS Newsfeed

 Use Case 7: View My Game Portfolio

 Use Case 8: Go Home

 Use Case 9: Market Order - Buy

 Use Case 10: Market Order - Sell

 Use Case 11: View Trading History

 Use Case 12: View Help Documentation

 Use Case 13: View Trade Diary

 Use Case 14: View top five Gainers/Losers

 Use Case 15: View Most Active Companies

 Use Case 16: Delete Account

 Use Case 17: Logout

(b) Diagrams for Implemented Use cases:

Each interaction diagram that we depict below assumes that each page in our website is an

object which communicates with the rest of our internal and external modules via function

calls. The inputs necessary for the function calls are specified as parameters with the braces ‘()’.

5

INTERACTION DIAGRAM FOR USE CASE 1: LOGIN

 Fig 3.1 INTERACTION DIAGRAM FOR USE CASE 1: LOGIN

This interaction sequence diagram represents the USE CASE 1: LOGIN. The user initiates the
login process by entering his username and password to the login screen. The login screen
sends a ‘verifylogin’ query to the userdata table with username and password as input
parameters. If the login details are found to be correct, a session is opened and the user is
taken into his personalized account homepage. In case of a mismatch, ‘Invalid
username/password’ error is displayed.

6

INTERACTION DIAGRAM FOR USE CASE 2: REGISTRATION

Fig 3.2 INTERACTION DIAGRAM FOR USE CASE 2: REGISTRATION

This interaction sequence diagram represents the USE CASE 2: REGISTRATION. The User
initiates the process by entering his firstname, lastname, email and password in the registration
screen. The registration screen poses a ‘verifyuserdetails’ query to the userdata table to check if
the user’s details already exist in the database. If no such email ID exists, the query returns
true. A new account and a new portfolio are created for the user and he is directed to his
personalized homepage. In case the email ID already exists in the database, the query returns
false and the registration screen displays ‘Account already exists; Forgot Password?’ error.

7

INTERACTION DIAGRAM FOR USE CASE 3: VIEW ABOUT US

Fig 3.3 INTERACTION DIAGRAM FOR USE CASE 3: VIEW ABOUT US

This interaction sequence diagram represents the USE CASE 3: VIEW ABOUT US. The user
initiates the entire process by using the ‘viewaboutus()’ function call. This prompts the about us
screen to display information about the website and the website administrators.

8

INTERACTION DIAGRAM FOR USE CASE 4: VIEW ABOUT ME

Fig 3.4 INTERACTION DIAGRAM FOR USE CASE 4: VIEW ABOUT ME

This interaction sequence diagram represents the USE CASE 4: VIEW ABOUT ME. When the
user wants to check his profile information, he does it using the ‘viewaboutme ()’ function call
to the about me screen. The page then communicates with the userdata table, gets the user
information including his firstname, lastname, age, gender and the thoughts he put in his about
me column and displays it for the user.

9

INTERACTION DIAGRAM FOR USE CASE 5: EDIT MY PROFILE

Fig 3.5 INTERACTION DIAGRAM FOR USE CASE 5: EDIT MY PROFILE

This interaction sequence diagram represents the USE CASE 5: EDIT MY PROFILE. The user
initiates this process using the ‘editprofile()’ function call. The columns he wants to edit will be
the input parameters. The edit profile screen then instructs the userdata table to edit the user
record according to the information provided by the user. Once the changes are made, the user
is intimidated and he is allowed to make further changes. This process is a loop and continues
until the user is satisfied with his profile.

10

INTERACTION DIAGRAM FOR USE CASE 6: VIEW RSS NEWSFEED

Fig 3.6 INTERACTION DIAGRAM FOR USE CASE 6: VIEW RSS NEWSFEED

This interaction sequence diagram represents the USE CASE 6: VIEW RSS NEWSFEED. When the
user enters his homepage, the viewrssfeed() function prompts the home page screen to display
the latest financial news for the user. The home page screen gets this information from an
external news provider (in our case, it is CNBC news) and displays it for the user.

11

INTERACTION DIAGRAM FOR USE CASE 7: VIEW MY GAME PORTFOLIO

Fig 3.7 INTERACTION DIAGRAM FOR USE CASE 7: VIEW MY GAME PORTFOLIO

This interaction sequence diagram represents the USE CASE 7: VIEW MY GAME PORTFOLIO.
The user initiates this process by sending the ‘viewportfolio’ function call to the game portfolio
screen. The game portfolio screen then gets a list of all the stocks currently in the user’s
portfolio from the orders table and then provides this information to the portfolio table. The
portfolio table in turn gets the current ask prices for all these stocks and calculates the portfolio
value. It then returns this portfolio value along with the user’s cash balance. These two values
along with the list of current stocks in the portfolio are displayed for the user.

12

INTERACTION DIAGRAM FOR USE CASE 8: GO HOME

Fig 3.8 INTERACTION DIAGRAM FOR USE CASE 8: GO HOME

This interaction sequence diagram represents the USE CASE 8: GO HOME. Whenever the user
wants to return to his homepage from a current page, he initiates the ‘gohome()’ function call.
The user view screen, which is the current screen the user sees, responds to this function and
directs him to his homepage.

13

INTERACTION DIAGRAM FOR USE CASE 9: MARKET ORDER - BUY

Fig 3.9 INTERACTION DIAGRAM FOR USE CASE 9: MARKET ORDER - BUY

This interaction sequence diagram represents the USE CASE 9: MARKET ORDER - BUY. When
the user wants to buy a stock (market order), he initiates this process using the
‘getinfo(stockname)’ function call to the trade stocks screen where, ‘stockname’ is the stock he
chooses to buy. The page then gets the current information about the stock like it’s ask price,
bid price etc. along with a five day chart from the stocks data table. The stocks data table
fetches this information from Yahoo! Finance whenever a query is made.

The user can then decide on the quantity of the stocks based on the information he sees.
‘marketbuy(stock,quantity)’ then asks the portfolio table to check if the user has sufficient cash
balance to make this transaction. If yes, the portfolio table is updated, the transaction is added
to the orders table and an email notification is sent. If not, the user is informed about the
insufficient cash balance scenario.

*We are currently fetching the NASDAQ stocks because Yahoo! Finance doesn’t somehow give
the ask and bid prices for NYSE stocks.

*After 4pm, currently we are asking the users to make the trade next day rather than put it in
pending, because the price may change when the market opens for the next day. We are also
debating on giving the user a choice to keep his trade pending or to come back the next day for
the trade.

14

INTERACTION DIAGRAM FOR USE CASE 10: MARKET ORDER - SELL

Fig 3.10 INTERACTION DIAGRAM FOR USE CASE 10: MARKET ORDER - SELL

This interaction sequence diagram represents the USE CASE 10: MARKET ORDER - SELL. When
the user wants to sell a stock (market order), he initiates this process using the
‘getinfo(stockname)’ function call to the trade stocks screen where, ‘stockname’ is the stock he
chooses to sell. The page then gets the current information about the stock like it’s ask price,
bid price etc. along with a five day chart from the stocks data table. The stocks data table
fetches this information from Yahoo! Finance whenever a query is made.

The user can then decide on the quantity of the stocks based on the information he sees.
‘marketsell(stock,quantity)’ then asks the orders table to check if the user has sufficient number
of stocks to make this transaction. If yes, the portfolio table is updated, the transaction is added
to the orders table and an email notification is sent. If not, the user is informed about the
insufficient stocks scenario.

15

INTERACTION DIAGRAM FOR USE CASE 11: VIEW TRADING HISTORY

Fig 3.11 INTERACTION DIAGRAM FOR USE CASE 11: VIEW TRADING HISTORY

This interaction sequence diagram represents the USE CASE 11: VIEW TRADING HISTORY.
When the user wants to see a history of his past transactions he can initiate this process using
the ‘viewtradinghistory()’ function call to the trade history screen. The page then requests all
the user history from the orders table and displays it to the user.

16

INTERACTION DIAGRAM FOR USE CASE 12: VIEW HELP DOCUMENTATION

Fig 3.12 INTERACTION DIAGRAM FOR USE CASE 12: VIEW HELP DOCUMENTATION

This interaction sequence diagram represents the USE CASE 12: VIEW HELP DOCUMENTATION.
The user can view the help documentation provided my making the ‘viewhelpdocumentation()’
function call to the help screen which then displays the required content.

17

INTERACTION DIAGRAM FOR USE CASE 13: VIEW TRADE DIARY

Fig 3.13 INTERACTION DIAGRAM FOR USE CASE 13: VIEW TRADE DIARY

This interaction sequence diagram represents the USE CASE 13: VIEW TRADE DIARY. The user
initiates this process by making the ‘viewtradediary()’ function call to the trade diary screen.
The trade diary page then requests the trade_diary table for the diary entries the user has
previously made. It displays them and then asks the user if he wants to make a new entry. Once
the user has made this new entry, it is sent to be stored in the trade_diary table as a new
record and the user is asked if he wants to make another entry. This process continues in a loop
as long as the user wants to make diary entries.

18

INTERACTION DIAGRAM FOR USE CASE 14: VIEW TOP FIVE GAINERS/LOSERS

Fig 3.14 INTERACTION DIAGRAM FOR USE CASE 14: VIEW TOP FIVE GAINERS/LOSERS

This interaction sequence diagram represents the USE CASE 14: VIEW TOP FIVE
GAINERS/LOSERS. The user can see a list of top five price-gaining and losing companies from
our current database of 20 companies. For this, he needs to make the ‘viewgainerslosers()’
function call to the view gainers losers page. The page then sends a ‘getgainersandlosers()’
query to the stocksdata table. This function call returns the top five companies in the database
that have the highest and lowest percentage change in the stock price. The percent change is
calculated using the yesterday’s closing price and the price at which the latest trade has been
made.

19

INTERACTION DIAGRAM FOR USE CASE 15: VIEW MOST ACTIVE COMPANIES

Fig 3.15 INTERACTION DIAGRAM FOR USE CASE 15: VIEW MOST ACTIVE COMPANIES

This interaction sequence diagram represents the USE CASE 15: VIEW MOST ACTIVE
COMPANIES. The user can see a list of top five active companies from our current database of
20 companies. For this, he needs to make the ‘viewtopactive()’ function call to the view top
active companies page. The page then sends a ‘gettopactive’ query to the stocksdata table. This
function call returns the top five companies in the database that have the highest liquidity
(volume of stocks) which are then displayed.

20

INTERACTION DIAGRAM FOR USE CASE 16: DELETE ACCOUNT

Fig 3.16 INTERACTION DIAGRAM FOR USE CASE 16: DELETE ACCOUNT

This interaction sequence diagram represents the USE CASE 16: DELETE ACCOUNT. The user
initiates this process using the ‘deleteaccount()’ function call to the edit profile page. The page
on receiving this call instructs the user data table to remove the user’s record from the table,
close the current session and log him off. The user is then directed to the login screen.

21

INTERACTION DIAGRAM FOR USE CASE 17: LOGOUT

Fig 3.17 INTERACTION DIAGRAM FOR USE CASE 17: LOGOUT

This interaction sequence diagram represents the USE CASE 17: LOGOUT. When the user wants
to log out, he goes to his homepage and makes a call to the ‘logout()’ function. The home page
then instructs the session manager to close the session and log the user out. The user is then
directed to the login screen.

22

4. CLASS DIAGRAM AND INTERFACE SPECIFICATION:

a) Class Diagram:

Fig 4.1 Class Diagram

23

b) Data Types and Operation Signatures:

1. User (Investor):
-userid: int
-firstname: String
-lastname: String
-aboutme: String
-email: String
-password: String

2. LoginService:
-email: String
-password: String
+verify_login (in email: String, in password: String): bool{Post-condition: user is authenticated
and homepage is displayed. Alternate-scenario: user enters wrong username and password and
is requested to enter them again. }

3. SessionManager:
-userid: int
-email: String
+is_valid_session(): bool
+getuserid (in email: String): int

4. UserProfileService:
+register (in user:User): void
+display_userdata(in userid: int):void{Post-condition: First name, Last name, Age, About-me is
extracted from the database and displayed.}
+update_Profile(in user:User):void {Post-condition: Changed fields are updated in the userdata
table in the database }
+delete_account(in userid: int):void {Post-condition: All information about the user is deleted in
the database}

5. TradeDiary:
-Date: String
-Symbol: String
-Comment: String
+insert_comment(in Date: Date, in Symbol: String, in comment: String): void{ Post-condition:
comment is inserted into the trade_diary table in the database}
+display_comment():void{Post-condition: all the comments of the user are extracted from
trade_diary table in the database and displayed.}

24

6. Order: (Market Order)
-orderid: int
-company: String
-tickersymbol: String
-action: String
-Order_type: String
-quantity: int
-transaction_date: datetime
-Price: double
-Commission: double
-userid: int
-status: String

7. OrderService:
+insert_order(in order: Order):void
+get_orders(in userid: int): Array{Order}
+get_stockholdings(in userid:int): Array{Company, quantity}
+send_email(in email: String): void
+update_cashbalance (in quantity: int, in Price: double, in commission: double): void{Post-
condition: cashbalance is increased or decreased depending on whether shares are bought or
sold and is updated in the portfolio table in the database}

8. TradingHistory:
+extract_history(in userid: int): Order

9. StockData:
-symbol: String
-company: String
-ask: double
-bid: double
-stockchange: double
-stockvolume: double
+update_stockdata(): void{Post-condition: stockdata is extracted from yahoo finance and
updated in the stockdata table in the database.}

10. Top5Gainers/Losers:
+extract_gainers(in stockdata: StockData): Array{company, stockchange}{Post-condition: Top 5
companies based on the change% are extracted from stockdata table and displayed}
+extract_losers(in stockdata: StockData): Array{company, stockchange}{Post-condition: Last 5
companies based on the change% are extracted from stockdata table and displayed}

25

11. MostActiveCompanies:
+extract_active(in stockdata: StockData): Array{company, stockvolume}{Post-condition: Top 5
companies based on the volume are extracted from stockdata table and displayed}

12. Portfolio:
-portfolioid: int
-cashbalance: double
-portfoliovalue: double
-userid: int
+update_portfoliovalue(in userid: int) }{Post-condition: Depending on the stock holdings of the
user the portfolio value is updated in the portfolio table.}
+display_portfolio(in userid: int) }{Post-condition: Displays the portfoliovalue, cashbalance and
stockholdings of the user.}

26

5. SYSTEM ARCHITECTURE AND SYSTEM DESIGN
a) Architectural Styles
Architectural style corresponds to the composition of the system along with communications
involved in it. The architecture of our software system is not limited to a single architectural
style, but is a combination of architectural styles that make up the complete system. This is
because the system under consideration (TradeFun!) is an interactive and dynamic website. A
few architectural styles that relate close to our system are explained in the following table

Architectural Style

Description(MSDN & Wikipedia)

Role in Trade Fun! website

Client/Server

Segregates the system into two
applications, where the client
makes requests to the server. In
many cases, the server is a database
with application logic represented
as stored procedures. A client does
not share any of its resources, but
requests a server's content or
service function. Clients therefore
initiate communication sessions
with servers which await incoming
requests.

Client/Server architectural style
can be found in working of
various applications of our
website like during Login,
Trading, Trading Diary, Portfolio
display, Delete Account. This style
acts as the back bone of our
website as this a database driven
website.

Component based
Architectural style

Component-based architecture
describes a software engineering
approach to system design and
development. It focuses on the
decomposition of the design into
individual functional or logical
components that expose well-
defined communication interfaces
containing methods, events, and
properties.

Trade Fun! Website contains
different modules which are
interconnected and interact with
each other. For example, Trading
diary and Portfolio are two
individual applications which
interact with each other for data.
This makes our website to have
Component based Architectural
style

Event driven
Architectural style

Event-driven architecture (EDA) is
a software architecture pattern
promoting the production,
detection, consumption of, and
reaction to events. An event can be
defined as "a significant change
in state"

A typical Web application design
like Trade Fun! works with the
user logging in(an event), asking
for information(event), executing
the trade(event) and logging out.
Thus Trade Fun! has an event
driven architectural style

27

b) Identifying Subsystems

The following package diagram depicts our subsystems. It shows the domains <<boundary>>,
<<control>>, <<entity>> that were discussed in the domain analysis and the classes that were
discussed in the class diagram.

Fig 5.1 Package diagram of subsystems

c) Mapping Subsystems to Hardware

At the time of writing this report, our system runs on a single machine. Both the server and
client reside on the same machine, which means, to play the game user should have database
and web server setup on his/her machine. By the time of final release, we want to make sure
that this is not required.

d) Persistent Data Storage

As our system is a register and play model, we are required to store the personal information of
our registered users along with their individual portfolios and trading diaries. This was achieved
by setting up a relation database called MySQL. In MySQL, at present we have a database called
“test”. This has all the tables that are required for the smooth flow of the game. All the
personal information of the users is stored in a table called “userdata” in which email will be a
unique column. This was implemented so that no two users can have the same email (just like a
username). “yahoo data table” is the table which stores the stock information and gets updated
frequently by running a query.

These tables are interconnected either through the primary key (userid) or through email. Email
was used to connect the tables because it is easy to store and update tables with this as email
will be the session variable and all the data pertaining to that session can be sent to database
tagged with the email.

28

Fig 5.2 Database Schema

e) Network Protocol

Since our system is a web based application using PHP and MySQL, we will be running on an
Apache server. PHP has built in a library for communicating with MySQL databases. It is much
more efficient and faster than opening an ODBC connection. We will use this library for
communications between the application and its backend MySQL database. The PHP-MySQL
extension makes full use of the MySQL Client/Server Protocol. This is a powerful protocol and
will facilitate all the server-to-database server connections. We choose MySQL not only because

29

it is highly robust, but also it is completely free and enables us to invest resources in other
facets of the system.

Also, our system connects to Yahoo! Finance using HTTP. We are using an HTTP protocol
because it is the most commonly used protocol on the internet and it is a standard protocol in
any server as well as browser. This option was especially attractive as it allows for great
flexibility in design and high reliability. Any user who can run a web browser will be compatible
with our system. By the way, HTTP is driven simply by the fact that HTTP URLs for stock quotes
and charts on Yahoo! Finance are readily available.

f) Global Control Flow:

 Execution Orderness:
Most of our system is event-driven. Which means actions can be generated by any user at any
point in time. Once an action is generated the system will respond accordingly, managed by the
control structure. When no actions are being taken, the system will remain idle until user-
interaction occurs. The advantage of event-driven is that it provides a simpler structure and
waits in a loop for events, and every user can generate the actions in a different order. The
difficulties arise when a sequence requires multiple steps to complete.

Some of screens in our system have two threads that run concurrently. For example, my
portfolio and my trading history are both have two threads. One is event-driven, which we have
mentioned above, the system responds when the user clicks a button or when an event occurs.
The other is procedure-driven which periodically updates the display of the portfolio contents
and transaction history with taking no inputs from the users.

 Time Dependency:
Until now we have not used any timers in our system. That is to say, when a user clicks trade
stocks, my portfolio, top five gainers/losers and most active companies, the stock data table in
the database is automatically updated with the data extracted from Yahoo! Finance and
accordingly the actions are carried out with the updated data. Maybe we will add timers in the
future demo.

 Concurrency:
Since our system is implemented via a server-side scripting language and we use Apache as our
web server, it is, by nature, multithreaded. This is completely seamless to us and saves a lot of
development time while making use of proven technologies. Apache, PHP, MySQL are all
proven to be solid, enterprise caliber software. These are multithreaded and allow for many
concurrent users and concurrent database queries.

30

g) Hardware Requirements

 Disk Storage: 100MB Available Hard Drive Space would satisfy our needs to hold user
data in database.

 Operating System: the user can access to our website using Windows XP/Vista/7.

 Internet-LAN Connection with minimum bandwidth of 56Kbps are needed to connect to
Yahoo! Finance and CNBC so that users can get the latest information.

 Screen Display-our website will be well presented if users use a computer with a display
resolution of 1024x768 or greater.

 The system should be able to run PHP, MYSQL, java script and Apache HTTP server
smoothly.

These requirements are not minimal, but are recommended for the best server experience.

6. ALGORITHMS AND DATA STRUCTURES:

a) Algorithms:
Top 5 Gainers/Losers:

The top 5 gainers/losers list gives a list of top 5 companies based on change (%)
whose share values have increased and decreased.
Change in %:
Change is the difference between the last closing price and the current price (Last
trade).Change percent signifies the profit per share made by the company.
Previous day’s closing price=p1
Last trade (current price) = p2
Change (%) = ((p1-p2)/p1)*100

(b) Data Structures:
Our system uses two types of data structures. Arrays are used in many parts of our system. The
other data structures used are data tables loaded in the MYSQL database.

31

7. USER INTERFACE DESIGN

One of the main goals of Trade Fun! Website is to attract students and traders with little or no
technical knowledge. In order to achieve this goal, from the beginning we made sure to keep
the User Interface as simple and as easy to use as possible. The initial design for a general page
that we planned was as follows:

Fig 7.1 General page format

Keeping our initial promise, we decided to use the above design for all our pages. This decision
was made after we found that the users feel comfortable if all the pages are of the same
design/ pattern (as opposed to boredom attached to it). In order to achieve this goal, we are
using iframes where all the new pages open in the frame at the center of the page as opposed
to an entirely new page. This has two distinct advantages: it is easy to navigate through the
pages- using the navigation bar on the left side of the page and it is easy to keep the session
alive through all the pages (in addition to keeping the number of mouse clicks at minimum).

Our User Interface promises least number of mouse clicks to get the work done. The front page
of Trade Fun! Has login along with links that redirects the user to “new user registration” and
“forgot password”. There will be running scroll on the left side of the page with latest
updates/news from Trade Fun! team.

32

Fig 7.2 Login Page

Once the User enters his/her credentials and system authenticates it, user will be redirected to
the homepage which is shown below. Going along with the lines of general page description,
home page has navigation on the left side of the page and an iframe at the center of the screen
with latest financial/ world headlines from CNBC. Care has been taken not to include the entire
CNBC website into our homepage as this may result in giving up the valuable space.

Fig 7.3 Homepage

From the homepage, user can navigate to the page of his/her choice using the navigation bar.
For reference, trading page and portfolio are shown below. Again, please keep in mind that our

33

main goal is to deliver an enterprise level trading league and hence we are concentrating more
on the code and less preference is being given to flashy web designs.

Fig 7.4 Trading Floor pages

34

8. PROGRESS REPORT AND PLAN OF WORK:
(a) Progress Report

List of Implemented Use Cases:

 UseCase-1: Login

 UseCase-2: Registration

 UseCase-3: View About Us

 UseCase-4: View About Me

 UseCase-5: Edit My Profile

 UseCase-6: View RSS Newsfeed

 UseCase-7: View My Game Portfolio

 UseCase-8: Go Home

 UseCase-9: Market Order- Buy

 UseCase-10: Market Order- Sell

 UseCase-11: View Trading History

 UseCase-12: View Help Documentation

 UseCase-13: View Trade Diary

 UseCase-14: View Top Five Gainers/Losers

 UseCase-15: View Most Active Companies

 UseCase-16: Delete Account

 UseCase-17: Logout

List of use cases currently being tackled:

 UseCase-18: Rank players
In this use case players are automatically ranked according to their portfolio values i.e
on the value of their stock holdings
.

 UseCase-19: Watchlist
In this use case a user can keep track of their favorite stocks or the stocks which they
want to observe before investing on them.

 UseCase-20: Forum
We are trying to implement a forum where users can stay connected with each other
and can post new threads and reply already posted threads.

 UseCase-21: Limit Order- Buy

 UseCase-22: Limit Order- Sell

 UseCase-23:Stop Order- Buy

 UseCase-24:Stop Order- Sell

 UseCase-25: Forgot Password

 UseCase-26: Connectivity with Facebook, Twitter

35

 UseCase-27: Advertisements

(b) Plan of Work

(c) Breakdown of Responsibilities:

 Vaishnavi Kakumani: Programming, testing of market order-buy, market order-sell,
portfolio, trading history, top 5 gainers/losers, most active companies, E-mail
notification modules.

 Nikhila Lavu: Programming, testing of login, registration, edit profile, trading diary,
session management, RSS feed modules.

36

 Pratyusha Nandamuri: Design and validation of all modules.

 Jia Ding: help documentation module.

 Zhiyue Wang: Displaying userdata in About Me page.

Vaishnavi Kakumani does the integration and the testing of the integrated system.

Nikhila Lavu does most of project management and sets the meeting agenda and time limits.

9. REFERENCES

 Wikipedia: Stock market, http://en.wikipedia.org/wiki/Stock_market

 Wikipedia: Finance, http://en.wikipedia.org/wiki/Equity_(finance)

 Investopedia: http://www.investopedia.com/#axzz1XWQ25K7D

 Investopedia: Stock basics,
http://www.investopedia.com/university/stocks/default.asp#axzz1XWQPiPfX

 Wall Street Survivor:
https://www.wallstreetsurvivor.com/Public/Members/Login.aspx?ReturnUrl=%2fPrivate
%2fTrading%2fTrade.aspx

 Up Down: http://www.updown.com/trade-stock

 UML tutorials and reference documents: http://www.uml.org/

http://en.wikipedia.org/wiki/Stock_market
http://en.wikipedia.org/wiki/Equity_%28finance%29
http://www.investopedia.com/#axzz1XWQ25K7D
http://www.investopedia.com/university/stocks/default.asp#axzz1XWQPiPfX
https://www.wallstreetsurvivor.com/Public/Members/Login.aspx?ReturnUrl=%2fPrivate%2fTrading%2fTrade.aspx
https://www.wallstreetsurvivor.com/Public/Members/Login.aspx?ReturnUrl=%2fPrivate%2fTrading%2fTrade.aspx
http://www.updown.com/trade-stock

