
PitFail Report 3
An Online Financial Engineering Game

December 12, 2011

Software Engineering I, Group 3
https://github.com/pitfail/pitfail-reports/wiki

Michael Koval, Cody Schafer,
Owen Healy, Brian Goodacre

Roma Mehta, Sonu Iqbal
Avanti Kulkarni

https://github.com/pitfail/pitfail-reports/wiki

Table of Contents
1 Individual Contributions 5

2 Summary of Changes 6

3 Glossary 6

4 General Information 8
4.1 References to the code . 8
4.2 Browsable Source Code . 8
4.3 Some general points about the code . 8

4.3.1 Lambda expressions . 8
4.3.2 Traits . 9
4.3.3 Option Types . 9
4.3.4 Monads . 9
4.3.5 Applicative Functors . 9
4.3.6 Typesafe numbers . 9
4.3.7 HLists . 9

5 Architecture 10
5.1 Overall Architecture . 10

5.1.1 Model . 10
5.1.2 View . 10
5.1.3 Controller . 10
5.1.4 All external libraries that our code uses . 11

5.2 The Website . 11
5.2.1 Overall Website Architecture . 11
5.2.2 Overall Android Client Architecture: . 14

5.3 Interacting with a Trading Simulation over Twitter . 14
5.3.1 Motivation . 14
5.3.2 Implementation . 15
5.3.3 Reflections, now that we have tried it . 15

5.4 Architectural Styles . 16
5.4.1 Identifying Subsystems . 16

6 Domain Model 17
6.1 How the Domain Model Has Changed . 17
6.2 Users, Portfolios, and Leagues . 17

6.2.1 Basic Definitions . 17
6.2.2 The User-Portfolio-League domain model . 18

6.3 Assets and Liabilities . 21
6.3.1 How StockAssets work . 22
6.3.2 How Derivative Assets/Liabilities work . 22

6.4 Derivatives . 22
6.4.1 Scaling Derivatives . 23

6.5 Trading Stocks . 24
6.5.1 When a new order comes in . 24
6.5.2 Margin . 25
6.5.3 Domain model for trading . 26

6.6 Dividends . 28
6.7 News . 29

1

6.8 Voting . 34
6.9 Comments . 37
6.10 Auto Trades . 38

7 Perturbations and Interactions 39
7.1 Stocks . 39

7.1.1 allStockHoldings . 39
7.1.2 Portfolio.myStockAssets . 40
7.1.3 Portfolio.haveTicker . 40
7.1.4 Portfolio.howManyShares . 41
7.1.5 Portfolio.howManyDollars . 41
7.1.6 Portfolio.userBuyStock . 42
7.1.7 Portfolio.userSellStock . 43
7.1.8 Portfolio.userSellAll . 44
7.1.9 Portfolio.userMakeBuyLimitOrder . 44
7.1.10 Portfolio.userMakeSellLimitOrder . 45
7.1.11 Portfolio.myBuyLimitOrders . 45
7.1.12 Portfolio.mySellLimitOrders . 46
7.1.13 Portfolio.margin . 46

7.2 Derivatives . 47
7.2.1 Exercising Derivatives . 47
7.2.2 Portfolio.myDerivativeAssets . 48
7.2.3 Portfolio.myDerivativeLiabilities . 48
7.2.4 Portfolio.myDerivativeOffers . 49
7.2.5 Portfolio.userOfferDerivativeTo . 49
7.2.6 Portfolio.userOfferDerivativeAtAuction . 50
7.2.7 Portfolio.userAcceptOffer . 50
7.2.8 Portfolio.userDeclineOffer . 50
7.2.9 DerivativeAsset.userExecuteManually . 51
7.2.10 DerivativeAsset.systemExecuteOnSchedule . 52
7.2.11 DerivativeAsset.spotValue . 53

7.3 Dividends . 54
7.3.1 DividendSchema.systemCheckForDividends . 54
7.3.2 Portfolio.myDividendPayments . 54

7.4 Voting . 54
7.4.1 Portfolio.userVoteUp . 54
7.4.2 Portfolio.userVoteDown . 55
7.4.3 NewsEvent.buyerVotes . 55
7.4.4 NewsEvent.sellerVotes . 55

7.5 Comments . 56
7.5.1 User.userPostComment . 56
7.5.2 NewsEvent.comments . 56

7.6 Auto Trades . 57
7.6.1 Running an Auto Trade . 57
7.6.2 Creating . 59
7.6.3 Modifying . 59
7.6.4 Deleting . 60
7.6.5 Getting all auto trades . 60

7.7 News . 61
7.7.1 Getting recent news events . 61
7.7.2 Reporting an event . 61

7.8 Auctions . 62

2

7.8.1 Offering a derivative at auction . 62
7.8.2 Bidding on an auction . 62
7.8.3 Getting the current high bid . 63
7.8.4 Closing an auction . 64
7.8.5 Buy Via Android Cleint . 65
7.8.6 Sell Via Android Cleint . 66

7.9 Notifications for Android Client . 67
7.10 FaceBook Operations: . 67

7.10.1 FaceBook Client: . 68
7.10.2 Server Operations: . 69

8 System Architecutre and System Design 73
8.1 Templating . 73

8.1.1 Improving Lift Forms . 74
8.2 Serializing objects without using reflection . 76

8.2.1 Why we needed to change . 76
8.2.2 Product Types . 77
8.2.3 Generic representation of products . 77
8.2.4 Looping over products . 77
8.2.5 Extracting the fields of a product type . 78
8.2.6 Re-creating a product type from the fields . 78
8.2.7 The advantage to this method of serialization . 79
8.2.8 Putting this all together . 79

8.3 Applying OO cohesion metrics to our code . 79
8.3.1 Decisions that were made about how to calculate the metrics 85
8.3.2 Problems with OO cohesion metrics for Scala code . 85

8.4 Evaluating the cohesion of functional code . 90
8.4.1 Why OO metrics do not work well for functional code 90
8.4.2 Thinking in terms of statements and proofs . 91
8.4.3 Evaluating cohesion . 92
8.4.4 Can you assume too little? . 93

9 Customer Statement of Requirements 94

10 Functional Requirements Specification 96
10.1 Actors and Goals . 96
10.2 Use Cases . 98

10.2.1 Listing of Use Cases . 98
10.2.2 Fully Dressed Use Cases . 100
10.2.3 Use Case Traceability Matrix . 104

11 Nonfunctional Requirements 104
11.1 Usability . 104
11.2 Performance . 105
11.3 Reliability . 105
11.4 Security . 105
11.5 Supportability/Extensibility . 105
11.6 Maintainability . 105
11.7 Testability . 105
11.8 Consistency . 105
11.9 Documentation . 105

3

12 User Interface 106
12.1 User Interface Design and Implementation . 106

12.1.1 Welcome Page for New User . 106
12.1.2 Portfolio Management . 106
12.1.3 Buying Stocks . 107
12.1.4 Trading Derivatives . 108
12.1.5 Social Features . 108

12.2 Effort Estimation using Use Case Points . 109
12.3 Purchase a Stock . 109
12.4 Creating a Derivative . 109
12.5 Sell a Stock . 110
12.6 Act on Derivative Offer . 110
12.7 Bid on Derivative . 111
12.8 Close Derivative Auction . 111

13 Class Diagram and Interface Specification 111
13.1 Comments on the UML . 111

13.1.1 stockdata . 111
13.1.2 model.schema . 112
13.1.3 texttrading . 112
13.1.4 website.control . 113
13.1.5 website.view . 113
13.1.6 Android view . 113

14 History of Work & Current Status of Implemenation 119
14.1 Comparison to Planned Milestones . 119
14.2 Key Accomplishments . 120

15 Conclusions and Future Work 120
15.1 What goals of PitFail are still unmet? . 120
15.2 Which areas of the system would we focus on to meet PitFail’s goals? 120

16 References 121

4

1 Individual Contributions
All team members contributed in ways which are too layered and interlinked to quantify.

5

2 Summary of Changes
1. The domain model has been massively expanded to reflect the domain-specific aspects of PitFail.

This is described in How the Domain Model Has Changed

2. The interaction diagrams have also reached further into the domain-specific areas of PitFail, to
cover the new domain concepts. See Perturbations and Interactions. Note that these are for the
most part not changes in the actual software, just changes in how we understand the role of the
documentation.

3. PitFail has largely stuck to its original requirements; however, many more of those requirements
have been implemented than had been at the time of report#2. Requirements that have been
implemented since then:

1. The addition of leagues.
2. The addition of Teams (portfolios with multiple owners).
3. The ability to view a portfolio’s history
4. It is possible to sell only part of your holdings of a stock via the website.
5. The ability to view league standings.
6. The ability to comment on trades.
7. The ability to vote on trades.
8. The ability to receive notifications about stocks one cares about via the android client.
9. The ability to receive an email newsletter about one’s portfolio.

10. Dividends are now paid to users’ portfolios (This is important. See dividendmotive).
11. The ability to trade stocks directly with other players.
12. The ability to place limit orders.
13. Trading of stocks is now limited to available traders (which is far more realistic).
14. Execution of market orders is now more realistic -- orders are executed at the asking

price, not the last traded price.

3 Glossary
Here we attempt to clarify possibly ambiguous words as they are used in PitFail. We are not defining these
words in general; just what they mean in this document.

Ask Price

The price at which a trader is willing to sell a stock. [Ask]

Asset

Either a stock or the buyer end of a derivative contract.

Bid Price

The price a trader is willing to pay for a stock. PitFail has its own opinion (independent of Yahoo
Finance) of what the bid price of a stock is, because PitFail players can trade with one another
[Bid].

Client

6

A system that is not running on PitFail’s server. An example is a webbrowser, the Android
phone, or the Facebook connector.

Company

A synonym for Portfolio.

Consistency

Obeying all explicit or implied contracts (e.g., types describe a form of consistency).

Controller

The part of MVC that operates on the Model but is not represented by a domain concept.

Form

The main mode of interacting with the website frontent. User enters values and submits them.

Last Traded Price

The price which Yahoo Finance considers to be the last traded price of a stock.

Leaderboard

A list of the highest ranked portfolios in a League.

League

A group of portfolios that compete against each other. Users, Portfolios, and Leagues

Liability

The seller end of a derivative contract.

Limit Order

An order to buy or sell a stock at any available price within some bound [Limit].

Model

The part of MVC that maintains the state of the system. The Model is where concepts from the
Domain Model are realized as code.

Player

A human being interacting with PitFail.

PitFail

The entire trading simulation, including the backend, the various clients, and the players playing
it.

Portfolio

A portfolio in pitfail is the primary concept in trading; the one that makes trades, owns stocks,
etc. See Users, Portfolios, and Leagues.

Price

Dollars per share.

Scale

7

A unitless number.
Side-effect

A result of invoking a function that is hidden by the function’s signature. [SideEffects]
Stock

PitFail recognizes as a stock anything that Yahoo Finance is willing to assign a price to.
Team

A synonym for Portfolio, specifically used in the case where more than one user is in control of
said portfolio.

User
A user is a single account in the PitFail system. A single user typically corresponds to 1 player.
See Users, Portfolios, and Leagues.

View
The part of MVC that is visible to the user. The View may include HTML files, presentation-
specific code, protocols for communicating with the user (e.g. HTTP), stylesheets.

4 General Information
4.1 References to the code
References into the code are given with a filename and an id such as ref_254, which appears in the code as
a comment. line numbers can change but these should be constant.

4.2 Browsable Source Code
We used Mark Harrah’s “browse” plugin [Browse] to generate HTML hyperlinked doc for the Scala code.
The doc resides under the main source tree in server/browsable-doc. Hopefully this will make the code
easier to follow.

4.3 Some general points about the code
Here we attempt to pre-clarify some aspects that might be confusing or unexpected in the report that follows.
Some of this is due to our choice of programming languages; some of it is peculiar to our own code.

4.3.1 Lambda expressions

Scala has, and we often use, lambda expressions (example website/view/CommentPage.scala ref_524):
val postSubmit = Submit(postForm, "Post") { case text =>

currentUser.userPostComment(ev, text)
}

The expression in curly braces:
{ case text => currentUser.userPostComment(ev, text) }

is a lambda expression [Lambda] (anynomous function). It becomes a function that can be treated like
a value, and is passed to the Submit object, to be called when the form is submitted.

Some consequences of this:
1. Many of our functions do not have names. Their role is evident by the context.

2. Inversion of control [Inversion] is easy and so we use it often.

8

4.3.2 Traits

A trait in scala is similar to a Java interface, except that it can have concrete code in it as well [Traits].
Traits in scala can be used to

1. Split functionality into multiple units (See for example Organization of the Model into traits).

2. Provide a common interface to several classes (like how you’d use a Java interface).

3. Group together a set of disjoint cases, similar to an enum [ADTs] (example website/view/StockSeller.scala
ref_104).

4.3.3 Option Types

Many of our functions return a type like Option[Int]. (example model/auctions.scala ref_188) Option is
a Scala type (based on the ML type by the same name [ML]) that can be either present or absent [Option1]
[Iry1]. So for example:

def sumOption(l: List[Int]): Option[Int] =
if (l.isEmpty) Some(l.sum)
else None

4.3.4 Monads

Some of our code is monadic [Monads1] (example model/stocks.scala ref_745, website/jsapi/jsapi.scala
ref_618, model/magic.scala ref_650).

4.3.5 Applicative Functors

Some of our code uses applicative functors [Applicative1] provided by the Scalaz [Scalaz] library (example
model/magic.scala ref_853).

4.3.6 Typesafe numbers

In the report there are many references to the types Dollars, Shares, Price and Scale. These are our
own classes, defined in model/model.scala ref_868. They represent numbers, where the number represents
a dollar value, a shares value, a price, or a unitless number (scale).

The purpose of these classes is to check at compile time that we are using the correct units. You can do
(example model/stocks.scala ref_325):

val cost = price * shares

and get the right type. But if you accidentally do:

val cost = price / shares

you will get a compile-time error.
We did this after making too many math mistakes. It was a huge improvement.

4.3.7 HLists

Some of our code uses HLists (examples model/spser.scala ref_718, website/intform/branches.scala ref_575)
(and other heterogeneous collections) [HList]. Our use of these is described more thoroughly in the sections
that use them.

9

5 Architecture
5.1 Overall Architecture
PitFail follows roughly an MVC [MVC] architecture. David Pollak (Lift’s author) believes that Lift is a
“View First” architecture [View], but since none of use are familiar with “View First”, nor do we really know
what it means, we stuck to MVC.

5.1.1 Model

The model contains the most domain-specific parts of PitFail. These are classes that represent trades
(model/stocks.scala ref_225), portfolios (model/stocks.scala ref_204), derivatives (model/derivatives.scala
ref_807), etc.

The Model provides a large set of public methods for extracting data and performing operations. These
are described in more detail in the section on interactions.

The model resides in model/.

5.1.1.1 Organization of the Model into traits If you look at the class Portfolio (model/users.scala
ref_204) you will see it defines no methods, but it does mix in many traits (PortfolioOps (model/users.scala
ref_782), PortfolioWithStocks (model/stocks.scala ref_569), PortfolioWithDerivatives (model/derivatives.scala
ref_789), ...). This allows us to separate the many responsibilities of a portfolio (because there are very
many) without having to expose that decision to client code: the client can use a Portfolio like a
PortfolioWithStocks.

This made the model code much easier to work with. It’s hard to imagine working in a language that
doesn’t have this feature; either you’d have to make client code aware of how you’ve broken up responsibilities
(which is sometimes appropriate, but not usually), or have a few massive classes that are hard to work with.

5.1.2 View

PitFail has multiple view components that all refer back to the same model. These are the website, Android,
Twitter and Facebook clients.

The Views use the public accessor functions in the Model to retrieve data and perform actions.

• Website view in website/view/

• Twitter view in texttrading/twitter.scala

• Android view in android/Pitfail_Android_Cleint/src/com/pitfail/

• Facebook view in ??????

5.1.3 Controller

To preserve the relationship between the Domain Model and the code, it is better to have few controller
classes [Controllers]. A controller class is one that does not represent a concept in the domain (e.g. a
Derivative is a domain-specific concept, but a DerivativeTradeOps is not (See also “Anemic domain model”
[Anemic])). However, a few controller classes did sneak in:

• Checker (website/control/Checker.scala) runs a timer to perform periodic checks (dividend payments
etc).

• LoginManager (website/control/LoginManager.scala) holds a current login

• Logout (website/control/Logout.scala) performs a logout

• Newsletter (website/control/Newsletter.scala) sends the newsletter

10

• OpenIDLogin (website/control/OpenIDLogin.scala) handles OpenID protocol

• PortfolioSwitcher (website/control/PortfolioSwitcher.scala) keeps track of a user’s “current” port-
folio

• TwitterLogin (website/control/TwitterLogin.scala) handles the OAuth protocol to log in with Twitter

5.1.4 All external libraries that our code uses

(Note you don’t need to install these dependencies because “sbt“ will do that automatically. This list is
provided to give a clearer idea of how our code is structured).

• sbt as the build tool.

• Lift as the web framework.

• H2 Database as the database.

• Joda Time for time.

• Dispatch for HTTP.

• up for heterogeneous lists.

• SLF4J for logging.

• Scalaz Library for miscellaneous functional programming features.

• Scalatest for unit testing.

• Java Servlet API for servlets.

• GSON for JSON serialization.

• Scribe for OAuth protocol.

5.2 The Website
The website is one of PitFail’s Views in the MVC architecture. It makes calls into the Model to perform
specific operations (example website/view/CommentPage ref_458).

5.2.1 Overall Website Architecture

The website is built on top of the Lift Web Framework [Lift1]. It runs on the Jetty Web Server [Jetty1].

5.2.1.1 Performing actions (Buy/Sell/...) via the Web frontend Suppose the user has filled out
a form like this one (Figure 1):

Figure 1: A form for buying stock.

and presses “Buy”.
In order to process that request, the following must happen:

11

https://github.com/harrah/xsbt
http://liftweb.net/
http://www.h2database.com/html/main.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/DateTime.html
http://dispatch.databinder.net/Dispatch.html
https://github.com/harrah/up
http://www.slf4j.org/
http://code.google.com/p/scalaz/
http://scalatest.org/
http://java.sun.com/developer/onlineTraining/Servlets/Fundamentals/servlets.html
http://code.google.com/p/google-gson/
https://github.com/fernandezpablo85/scribe-java

1. An HTTP post is sent from the browser to the server (Jetty).

2. Jetty delegates the request to the web framework, Lift.

3. Form data is parsed and processed.

4. A call is made to the model to perform the operation.

These steps are described in more detail below.

5.2.1.2 When Lift gets an HTTP POST The sequence of messages for an HTTP Post are (Figure
2):

Figure 2: Form submission

PitFail is currently using jQuery to submit forms (website/html/templates-hidden/default.html ref_325).
Ideally we’d like our forms to work using either jQuery or traditional HTML forms, but we got this working
first so it’s what we’re using for now.

When the user hits “Buy”, JavaScript in the page generates an HTTP POST directed at PitFail’s server.
The server Jetty receives the POST, and calls LiftServlet.doPost() (actually there are some other steps
involved because LiftFilter must first filter the requests but these are all internal to Lift). LiftServlet passes
the request on to LiftRules to dispatch it.

LiftRules recognizes that this is an Ajax request coming from an HTML form, and extracts the form
fields out of it. LiftRules keeps a table of onSubmit callbacks indexed by field name. For all the incoming
fields, Lift calls the onSubmit callback, and then finally the onSubmit callback for the submit button -- that
way, by the time the submit button’s callback is invoked, all the fields will have been invoked first.

We have written a significant amount of code to interface with Lift forms, which is described in Improving
Lift Forms.

12

5.2.1.3 Checking for Consistency Scala is a statically typed functional language that has a lot in
common with ML, where the philosphy is that you should use the type system to prove the consistency of
your data at compile-time, eliminating the need for run-time checks [Typing].

Unfortunately, this is web programming, where your data is regularly sent to domains outside of your
control. It appears that a strong type system relies a good deal on trust, which you simply don’t have
when half your program lives in a web browser. We found most of our work was spent meticulously pulling
untrusted data back into a strongly typed format, only to have it be clobbered again at the next page reload.

When a form is submitted, we have to do 2 things with the data:

1. Convert the user’s loosely structured input into a strongly-typed internal representation (example
website/view/ModelFields.scala ref_717).

2. Perform the action requested (example website/view/CommentPage ref_458).

At either stage something can go wrong.
Because we wrote our own form handling wrappers (Improving Lift Forms), we wrote error handling

code for our form wrappers, using a trait called BasicErrors (website/intform/intform.scala ref_293).
BasicErrors checks each of the fields in the form for errors; if there are any errors these are reported to the
user, and if all are consistent, it builds a single object containing all the form data (which is elaborated in
Improving Lift Forms).

The process of structuring data and checking for input errors looks like this (Figure 3):

Figure 3: Checking for input errors

13

If the data makes it past input checking, the operation must be sent to the domain-specific parts of the
code, such as Portfolio or StockAsset. These operations are described in detail in interactions.

If the operation fails because of something more fundamental -- say, for example, the user attempts to
buy more of a stock than is being offered for sale -- the operation will throw an exception (NoBidders in
this case) (model/stocks.scala ref_478). The View catches the exception and converts it to a message that
will be displayed to the user (example website/view/StockSeller.scala ref_736).

We like this system because:

1. The Model (Portfolio, StockAsset, ...) do not have to duplicate the checks made in the view.
For example, the model never needs to check that a string is formatted correctly like a number
[Dry].

2. The Model does not have to provide human-readable error mesages; it mearly throws exceptions,
which the View then decides an appropriate message for. This keeps our code to the MVC
pattern.

5.2.2 Overall Android Client Architecture:

The Android client runs on the Android phones (Android version 2.2 and above). The development for
the same is done using Android Development framework (Android SDK) which is basically Android library
written in Java language. The Android library allows the developer to create screens, manage flows among
the screens and also define connection with server (if required). In Pitfail, the connection from Android client
can be made to either Yahoo! Finance to get the latest stock rates and other information or to the PitFail
server, to update the database information about the user and also to retrieve user information according
to the flow.

5.2.2.1 Android Frameworks used:

5.2.2.2 Activities: An Activity is an application component that provides a screen with which users
can interact in order to do something. We created activities to perform different tasks like Sell Stock,
LeaderBoard, New Team. Each activity is given a window in which to draw its user interface.

5.2.2.3 Services: A Service is an application component that can perform long-running operations in
the background and does not provide a user interface. Android provided two types of services. Bounded and
Unbounded. We created an Unbound Polling service to receive stock updates from the server. An Unbound
service will continue to run in the background even if the user switches to another application. The Polling
service hits the Jetty server periodically to recieve stock updates on any of the stocks held by user. Our
Polling service starts as soon as the User starts the PitFail Application on his device.

5.2.2.4 Notifications: Notification is a special feature of the Android smart phones, where the user
can receive important updates about the account even when the application is not in the front screen. We
used this feature to provide notification to the user when the rates of the shares held by the user change
in the market. This will help the user to receive automatic updates, rather than checking the statistics
from time to time. The Polling service passes any stock updates as new notifications with a unique ID
to the Notification Manager. The Notification Manager then displays the stock update message as a New
Notification on Android Status Bar. The user can clear the Notifications whenever he wants.

5.3 Interacting with a Trading Simulation over Twitter
5.3.1 Motivation

Twitter is a service that is already widely used by many people, so there is a lower threshold of learning and
discovery to play a game over Twitter than to use a dedicated website. It is not expected that the Twitter

14

interface will duplicate all features of the website; rather users will be able to perform their most common
tasks from an interface they are familiar with.

The bulk of the proposal is a syntax that represents the operations of the game. This syntax could
integrate into any system that allows sending brief messages from named accounts. However, since Twitter
is already well integrated this extra flexibility may be unnecessary.

5.3.2 Implementation

5.3.2.1 Accounts The game has an account, tentatively named pitfail, and will listen for user tweets
sent to @pitfail.

A user may start playing PitFail over Twitter. This lets the user start playing faster and with no setup
-- the first message they send to @pitfail creates an account. There’s no way to automatically associate
this with an OpenID login (that I know of) -- if the user later wants to use the PitFail website

The program may respond to tweets that require a response by sending tweets back to users.

5.3.2.2 Syntax of the commands

5.3.2.2.1 View Portfolio

@pitfail portfolio

PitFail will respond with assets and liabilities in a human-readable form.

5.3.2.2.2 Buy a Stock

@pitfail buy 100 shares of HP

or:

@pitfail buy HP * 100

(See [[Products # A language for securities]])
or:

@pitfail buy $250 of HP

PitFail will respond with an ACK if successful, or an error if the trade failed.
This implicitly places a market order. PitFail currently does not support setting limits on the price at

which the trade is executed.

5.3.2.2.3 Sell a stock

@pitfail sell 100 shares of HP

@pitfail sell HP * 100

@pitfail sell $250 of HP

5.3.3 Reflections, now that we have tried it

Being able to specify trades as text commands is very convenient. Yes, you have to learn the syntax of the
commands, but once you do, it is much faster, clearer, less awkward, and generally more pleasant than using
a website.

15

5.4 Architectural Styles
PitFail is composed of a large number of pieces of code which provide a wide range of functionality. This
necessitated using different achitectural styles for various portions of the program. Some sections of the code
are independent of other portions to the degree that they can be viewed as libraries. This is particularly
the case with the Stock Database code, which presents itself as a library from which different querying
archetectures may be constructed.

The Stock Database library heavily follows the pipe and filter achitectural style. Each class (also called a
Stock Database, SDB) either links other SDBs together or communicates with a concrete SDB. In practice,
many more of the SDBs form the interior “filtering” functions rather than the endpoint “driving” functions.
The filtering SDBs impliment collating of requests, caching of results, various forms of rate limiting, and
fallback between different pipelines of SDBs.

5.4.1 Identifying Subsystems

PitFails subsystems:

1. A server ; this houses the Model (from MVC), the server for the website, a set of servlets that
can invoked by the Android and FB clients, and the listener for the Twitter frontend.

2. The Android UI, which runs on the player’s phone, and makes calls into the model via servlets.

3. The FB UI, which lives on its own server and makes calls into the model via servlets.

Note that the decision to house the website and Twitter UIs in the same running process and servlet
container as the Model was purely at our discretion; on the other hand the Android UI has no choice but to
run on a separate machine. Having the website run in the same process as the model meant that the website
could make calls in-language to the model, which is much easier to work with.

Key “client side” portions of the code are the Android application and the Javascript code generated by
Lift which notifies server side handlers of some event/change or makes a request which runs a server side
handler. None of the WebPage Javascript code should be considered a subsystem of PitFail.

The interaction between subsystems is show in Figure 4.

«subsystem»
Android Application

«subsystem»
Lift View

«subsystem»
Simple HTTP Interface

«subsystem»
Lift Controller

«subsystem»
Facebook Command Interface

«subsystem»
Twitter Command Interface

«subsystem»
Stock Database

«subsystem»
Text Command Runner

«subsystem»
Model

Figure 4: Major Subsystem Diagram of PitFail

16

6 Domain Model
6.1 How the Domain Model Has Changed
The original domain model diagram looked like this (Figure 5):

Web Framework

PitFail (server side)

Web Server

PageRenderer
OAuthConsumer

twitter.com

User

Web Browser

StockTrader

Model

Database

PriceFetcher
yahoo.com

LoginManager

Twitter Listener

Interpreter

Parser

facebook.com
Facebook Listener

User

User

WebController

Figure 5: The original domain model.

The single biggest change has been the addition of many more domain specific concepts to the model.
This is mostly due to our improved understanding of the role that a domain model plays, namely to clarify
and define the domain that the system lives in. The old domain model was much less domain-specific and
more software-specific, which does not serve the original purpose.

The concepts that have been added are domain-specific concepts such as StockAsset, DerivativeAsset,
NewsEvent, EventComment, etc. (which appear below in the diagrams).

The new domain model has become too complicated to show in a single diagram. The various pieces of
it are diagrammed and explained in the following sections. What has been removed from these sections are
architecture-specific aspects of the system; these have been moved to other sections. The reason is that the
architecture specific parts (how a request comes in, HTTP and AJAX protocols) are not domain-specific.

One consequence of working more domain concepts into the model is that we had to include some concepts
that do not correspond to software objects. This is noted where it occurs.

6.2 Users, Portfolios, and Leagues
6.2.1 Basic Definitions

• “User” -- A human player of PitFail. A user may manage more than one portfolio.

• “Portfolio”, aka “Team” aka “Company” -- A made-up PitFail entity that owns and trades. Many
times in this document it may be mentioned that a “portfolio” places an order. The reason for this
phrasing is that the order is associated with a portfolio, not with a user. The primary traders in PitFail
are portfolios. A portfolio may be owned by more than one user.

17

• “League” -- a collection of portfolios competing against each other. A league is managed by a User, but
participated in by Portfolios. Hence a single user may have portfolios that belong to different leagues.

An example might help to illustrate what is going on here (Figure 6):

Mike Sonu

Mike1 Mike2 Sonu1

default RUTraders

Martin
Coda

administers administers

belongs to belongs to

owns owns

Key:

user

portfolio

league

Figure 6: An example of users, portfolios and teams.

In this example, Mike and Sonu are users. Mike has two portfolios, named Mike1 and Mike2; Sonu has
1 portfolio, named Sonu1. Mike1 belongs to a league named “default”; Mike2 and Sonu1 belong to a league
named “RUTraders”.

Coda and Martin are users that administer the “default” and “RUTraders” leagues. Coda and Martin
might have portfolios of their own, but this is not relevant to the business of administering leagues.

The reasons for the existence of each of these concepts is:

• “User” -- This provides a way for an actual human user to log into the site, to have an experience that
is tied to them.

• “Portfolio” -- These actually do the trading. A Portfolio is the one actually credited with owning assets
and being responsible for the payment of liabilities, not the user.

• “League” -- The purpose of a league is to represent “competition” between portfolios. Hence rankings
are done within a league, and “rules” are set within a league. Trading, however, happens globally,
among all leagues.

In the report we will often say that “a portfolio does this” and “a portfolio does that”; the action is being
initiated by a human, but we model it as if the portfolio is the doer of an action: a portfolio buys a stock, a
portfolio sells a stock. If we want to refer to a real human being we will use the word “player”.

6.2.2 The User-Portfolio-League domain model

The basic concepts and relationships for the system in its idle state are (Figure 7):

18

User
+username: String

Portfolio
+name: String
+cash: Dollars

League
+name: String
+startingCash: Dollars

Assets...

owns

controls

belongs to

administers

Figure 7: User/Portfolio/League concepts

Precisely what assets are indicated by “Assets...” will be described later (Assets and Liabilities). The
relationships between these concepts are:

• User controls Portfolio: When a user controls a portfolio, a player who is logged in as that user can
perform actions with that portfolio. e.g. if user Mike controls portfolio Mike1, then when human Mike
is logged in as user Mike, he can buy stock with portfolio Mike1.

• User administers League The administrator(s) of a league can invite people to the league, and set the
starting cash.

• Portfolio belongs to League Portfolios in the same league are roughly playing “against” each other, in
that rankings are done per-league. But PitFail is not really an adversarial game.

• Portfolio owns assets See Assets and Liabilities.

Adding some of the creation/joining operations, this becomes (Figure 8):

19

User
+username: String

Portfolio
+name: String

League
+name: String

administers

controls

belongs to

PortfolioInvite

sends

to

accepts/declines

creates

LeagueInvite

sends

to

accepts/decline

creates

Figure 8: User/Portfolio/League concepts, with creation/joining operations

Note a few potentially surprising things about this model:

• PortfolioInvites are sent to Users, and LeagueInvites are sent to Portfolios. This is because it is a User
who will control a portfolio, and a Portfolio that will join a league (users do not join leagues).

• Even though, in reality, a human user initiates the action of “sending” an invite, it is shown in the
diagram as originating from a Portfolio or a League, because that is how we interpret it; invites come
from the concepts that can be joined.

In the actual code, some of the “many-to-many” relationships acquired an extra class (the association
class). Such as (model/users.scala) (Figure 9):

User PortfolioOwnership

League

Administration

Figure 9: Some association classes.

But this is a detail of the implementation and not part of the domain model; no meaningful attributes
are stored with Ownership and Administration.

20

6.3 Assets and Liabilities
This part describes only the ownership aspect of assets and liabilities. The trading and exercising aspects
will be described later.

The diagram below shows only the part of the domain model that relate to the ownership of assets and
liabilities (Figure 10):

Portfolio
+cash: Dollars

User
+username: String

StockAsset
+ticker: String
+shares: Shares

DerivativeLiability
+remaining: Scale

DerivativeAsset
+scale: Scale

owns

*

*

owns
owns

owns

corresponds to

Derivative
+exerciseDate: Date
+securities: Security
+early: Boolean

promises

Security

SecDerivative
+name: String
+scale: Scale

SecDollars
+dollars: Dollars

SecStock
+ticker: String
+shares: Shares

Figure 10: Assets and Liabilities

There are two kinds of assets: StockAssets and DerivativeAssets, and one kind of liability: a Deriva-
tiveLiability.

21

6.3.1 How StockAssets work

A stock asset is simply a number of shares of a particular stock. So for example, 30 shares of MSFT is a
stock asset.

6.3.2 How Derivative Assets/Liabilities work

A derivative, in PitFail, is a promise to exchange a list of assets on or before a specified date. There are 3
parts to this contract:

1. The Derivative is the statement of the contract; that is, it is the list of assets to be exchanged, the
date on which it is to occur, and whether the contract may be exercised early (See for example
[American]). The exact nature of how the contract is specified is described in the section on
derivativeexp.

2. The DerivativeLiability is the statement by one portfolio that they will offer up the assets specified
in the Derivative.

3. The DerivativeAsset is a promise to a portfolio that they will be able to collect the assets promised
in the Derivative.

Each DerivativeAsset corresponds to exactly 1 DerivativeLiability, and each DerivativeLiability corre-
sponds to 1 or more DerivativeAssets. Each DerivativeAsset has a property called scale which is the
portion of the liability this asset has a claim on. A DerivativeLiability has an attribute remaining which is
the fraction of the contract that has not been exercised (Figure 11):

DerivativeLiability
remaining = 80%

DerivativeAsset
scale = 20%

DerivativeAsset
scale = 60%

100%

Figure 11: The relationship between the sizes of DerivativeAssets and DerivativeLiabilities.

Every time a DerivativeAsset is exercised, it is deleted, and the remaining of the corresponding Deriva-
tiveLiability is reduced by the scale of the DerivativeAsset. It is an invariant of the system that the sum
of of the scales of all DerivativeAssets for a particular DerivativeLiability must equal the remaining.

6.4 Derivatives
The parts to a derivative contract are:

1. A list of securities to be traded.

2. A date on which this is to occur.

3. Whether it may be exercised early.

22

4. A condition that decides (automatically) whether the derivative will be exercised on the scheduled
date.

(2) and (3) are just a DateTime and a Boolean respectively; (1) is more complicated.
The list of securities is represented as a list, where each element may be one of:
1. A “stock” security, SecStock, which holds a ticker symbol and a number of shares.

2. A “dollars” security, SecDollar, which holds a dollar amount.

3. A “derivative” security, SecDerivative, which holds a named liability and a scale (see the
section on Scaling Derivatives). (At the moment there is no way within the PitFail UI to create
a SecDerivative. However, since the theoretical concepts behind it are complete, we describe it
anyway).

If any of the quantities are negative (eg negative shares, negative dollars, negative scale), that means
that the securities are supposed to move from the buyer to the seller.

For a descripton of how derivatives are exercised see Exercising Derivatives.

6.4.1 Scaling Derivatives

Many aspects of PitFail require that derivatives be scaled. That is, given one derivative, create a new one
with identical terms, but “smaller” or “larger” (Figure 12):

100 shares MSFT

$2000

50 shares MSFT

$1000

50%

Figure 12:

Scaling is done by scaling each security promised:
1. For SecDollar, scale the dollar amount

2. For SecStock, scale the share amount

3. For SecDerivative, scale the scale amount
and leaving the date and early exercise the same.

23

6.5 Trading Stocks
The diagram below represents the “idle state” of the system with respect to stock trading (13):

Stock
+ticker: String
+lastTradePrice: Price
+bidPrice: Price
+askPrice: Price

BuyOffer
+bidPrice: Price

SellOffer
+askPrice: Price

AutomaticTrader
+ticker: String
+premium: Scale
+targetDollars: Dollars
+name: String

BuyLimitOrder SellLimitOrderAutomatedBuyOffer AutomatedSellOffer

Portfolio
+margin: Dollars

Figure 13: Stock trading at idle.

When the system is is idle, no trades are taking place; all that exist are orders that have yet to be fulfilled.
PitFail allows only two kinds of orders to sit idly. These are

1. Limit orders

2. Automated (synthetic) trading orders.

Market orders do not exist when the system is idle because market orders are executed at the offering
price as soon as they are created. PitFail does not provide explicit support for stop orders, but it would be
easy for a user to create one using the javascript automated trading API (and, when a Stop is triggered, it
becomes a market order [Stop], and so will be executed immediately).

All orders in the idle state have two important properties: the available number of shares, and the limit
price. This will allow PitFail to form automatic matches, as described later.

An invariant of the system is that when the order system is Idle, there are no orders that can be matched
with one another.

6.5.1 When a new order comes in

When a new order comes in, it has a desired number of shares, and it may or may not have a limit price.
First, all existing orders for the same stock are collected, and sorted by desirability (ie, best price to worst
price) Figure 14:

24

10 shares
$30/sh

5 shares
$37/sh

15 shares
$33/sh

Better

Figure 14: Comparing available with desired shares.

The incoming order is matched up against the best orders possible (that are below its limit price, if any).
Those orders are then completely or partially executed (Figure 15):

10 shares
$30/sh

5 shares
$37/sh

15 shares
$33/sh

Better

Available

12 shares
$34/sh

Incoming

10 shares
$30/sh

5 shares
$37/sh

15 shares
$33/sh

Available

12 shares
$34/sh

Incoming

Partially Executed

Fully executed

Figure 15: Which orders are partially or fully executed.

In this example, 10 shares will be purchased at 30/sh, and 2 shares at 33/sh.
You will notice that the orders already in the pool pay a price in not being able to negotiate -- since

the buyer is willing to pay 34/sh, they would, if they could, increase their limit to 34/sh to take advantage.
However, by having orders in the pool that are not negotiated, there is a benefit in liquidity; hence traders
who place orders unexecuted into the pool will change a liquidity premium in the trade (which is why there
is a spread between the bid and ask price for a stock as offered by the same trader [Makers]).

If the newly placed order is not fully executed, and the trader specified a limit, it will become part of the
pool of unexecuted orders.

6.5.2 Margin

In order to ensure the smooth execution of orders, when a user places an order that is not executed imme-
diately, they must set aside margin so that the order can be executed later. For a buy order the user sets

25

aside cash that will be used to buy the shares when the order is executed, and for a sell order the user sets
aside the shares that will be sold.

If the order is cancelled or not fully used the margin will be returned.

6.5.3 Domain model for trading

The model below does not correspond 1-1 to actual software classes because our architecture is not entirely
object-oriented. For example, there is no class called Execution; execution of orders is procedural (Figure
16).

Portfolio

BuyLimitOrder
+ticker: String
+shares: Shares
+limit: Price

SellLimitOrder
+ticker: String
+shares: Shares
+limit: Price

StockAsset
+ticker: String
+shares: Shares

AutomaticTrader
+ticker: String

AutomatedBuyOrder
+ticker: String
+shares: Shares
+limit: Price

AutomatedSellOrder
+ticker: String
+shares: Shares
+limit: Price

owns

Execution

Execution

pairs with

places

places

results in

results in

pairs with

pairs with

places

places

adds to / creates

subtracts from / deletes

StockPriceSource

queries

Figure 16: The execution of a trade.

The association of AutomaticTrader with StockPriceSource is meant to convey that the automatic traders
use real-world bid and ask prices to set their bid and ask prices.

Because there is too much to fit on one diagram, here is the part of the domain model that deals with
cash and margin (Figure 17):

26

Portfolio

BuyLimitOrder
+ticker: String
+shares: Shares
+limit: Price

SellLimitOrder
+ticker: String
+shares: Shares
+limit: Price

Execution

Execution

pairs with

places

places

results in

results in

Cash
+amount: Dollars

Margin
+amount: Dollars

StockAsset
+ticker: String
+shares: Shares

subtracts from

subtracts from

adds to

subtracts from

adds to

Figure 17: How cash moves when trading.

(In the code, there is no object called Cash, rather it is an attribute of Portfloio; but it is helpful to show
it as such for the domain model).

The reason that the execution of a BuyLimitOrder “adds to” Cash is that all the necessary cash has
already been set aside in Margin; the cash that is being added is the leftover margin.

When an order is cancelled (by its owner), all that must happen is that the margin is restored (Figure
18):

27

Portfolio

BuyLimitOrder
+ticker: String
+shares: Shares
+limit: Price

SellLimitOrder
+ticker: String
+shares: Shares
+limit: Price

Cash
+amount: Dollars

Margin
+amount: Dollars

StockAsset
+ticker: String
+shares: Shares

Cancellation

Cancellation

performs

of

performs

of

subtracts from

adds to

adds to

Figure 18: Cancelling and order and restoring margin.

6.6 Dividends
It is very important for PitFail to keep track of dividends paid by stocks, for two reasons:

1. It would be unrealistic in a particularly unsettling way: stocks that will never pay dividends have
no value; why are we trading them?

2. Because PitFail players will own stocks that pay dividends, and every time a dividend is paid
the stock price drops abruptly, players would not appreciate having the price drop if they do not
receive a dividend in return.

Periodically, PitFail queries Yahoo Finance to see if stocks owned by the players have paid dividends. If
they have, the system will pay dividends to the player, in what is represented here (though not in the code)
as a DividendEvent (Figure 19):

28

Portfolio

StockAsset

DividendEvent

Cash DividendPayment

increases

owns

owns

has

creates

StockPriceSource

queries

Figure 19: When dividends are paid.

The DividendPayment object is created only to allow the user to view the history of their dividend
payments.

6.7 News
The purpose of “news” is to show PitFail players to see what other PitFail players have been doing. Impor-
tantly, News is not part of actual trading; this is just for seeing what’s going on.

This means that a single news event has associations with a lot of other concepts, but not in a way that
affects the rest of the program: it’s just point out, for example, which derivative was traded when reporting
that a derivative was traded.

The basic concept domain for News is (Figure 20):

29

NewsEvent
+when: DateTime

Action

reports an

Bought
+ticker: String
+shares: Shares
+dollars: Dollars
+price: Price

Sold
+ticker: String
+shares: Shares
+dollars: Dollars
+price: Price

Portfolio

by by

... more actions ...

Figure 20: The news Domain.

only two actions are shown here; there are a lot so they are split up across multiple diagrams.
Buying and selling stocks, as shown above, refer to the Portfolio who “did” the action, and the information

about what was bought or sold. This only applies to orders that are executed (either immediately or later).
Orders that are delayed will generate another kind of an event.

Derivative Trading has the following kinds of events (Figure 21):

30

Action

Offered
+price: Dollars

Accepted
+price: Dollars

Declined
+price: Dollars

Portfolio (from)

Portfolio (to)

Derivative

Figure 21: News for derivative trading.

from and to are shown as separate concepts even though they are instances of the same class, because
they play a different role in these events: one is the portfolio making the offer, the other is the portfolio
receiving, and possible accepting, the offer.

For Auctions we have (Figure 22):

31

Action

Auctioned
+price: Dollars

Bid
+price: Dollars

Closed
+price: Dollars

Portfolio (seller)

Portfolio (bidder)

Derivative

Won

AuctionOffer

Figure 22: News for auctions.

There are other associations which are not shown, that relate to voting. These are described in the
section on voting.

Placing orders that get delayed are described by (Figure 23):

32

Action

BuyOrdered
+stock: String
+shares: Shares
+limit: Price

SellOrdered
+stock: String
+shares: Shares
+limit: Price

Portfolio

Figure 23: News for orders.

Where the associated portfolio is the one who performed the buy or sell.
There is one more event for exercising derivatives (Figure 24):

33

Action

Portfolio Derivative

Exercised

Figure 24: News for exercising derivatives.

Where the associated portfolio is the one who did the exercising.

6.8 Voting
When players enter into a contract (not executing it yet, just entering it) involving a derivative, the following
assets are moved (Figure 25):

Portfolio (buyer) Portfolio (seller)

Cash

DerivativeAsset DerivativeAsset

Figure 25: How assets and liabilities change when a contract is entered.

34

If owning the asset (being in the buyer side of the contract) pays off more than the cash payed, the buyer
is happy. If owning the liability (being in the seller side of the contract) is not bad enough to negate the
cash received, the seller got a good deal. These are not necessarily mutually exclusive.

Now, say a third player, the Voter, looks at his news feed and thinks that the buyer got a good deal (and
maybe the seller too, but that is not relevant yet). The Voter would be happy with an arrangement like the
following (Figure 26):

Portfolio (buyer) Portfolio (seller)

Cash

DerivativeAsset DerivativeLiability

Portfolio (Voter 1)

DerivativeAsset

DerivativeLiability Cash

Figure 26: Another player makes a similar deal.

where the derivative in green resembles the derivative in black, and the cash in green resembles the cash
in black. (As in, if it was a good deal for him, it’s a good deal for me too. Not necessarily true, but it could
be true sometimes).

When two portfolios enter a derivative, an object is created called DerivativeBuyerSetAside (there is
a nearly identical process for sellers) (Figure 27):

35

DerivativeBuyerSetAside
+scale: Scale

Portfolio (buyer)

Portfolio (seller)

DerivativeLiability

DerivativeAsset

Derivative

corresponds to

owns

owns

Figure 27: DerivativeBuyerSetAside

(remember, the Derivative holds the terms of the contract, and the DerivativeAsset and DerivativeLiability
show who owns which end).

The DerivativeBuyerSetAside holds one attribute, which is the “amount” left to be voted on. For the
precise meaning of this scale, see the section on Scaling Derivatives.

The scale remaining starts out at 3%. When the first voter votes in favor of the buyer, they enter into
a contract with the seller that is identical to the original derivative, but scaled to 1.5% (= 3%/2). He also
pays the seller 1.5% of what the original buyer paid (Figure 28):

Portfolio (buyer) Portfolio (seller)

$10,000

DerivativeAsset DerivativeLiability

Portfolio (Voter 1)

DerivativeAsset

DerivativeLiability $150

100 shares MSFT
$1000

1.5 shares MSFT
$15

Figure 28: A voter enters into a contract.

The scale remaining is then cut by half to 1.5% (The interpretation of this is that the original 3% is the
total amount that will be allocated after infinitely many votes are made).

Now if another player votes, they will realize 0.75% of the original trade (Figure 29):

36

Portfolio (buyer) Portfolio (seller)

$10,000

DerivativeAsset DerivativeLiability

Portfolio (Voter 1)

DerivativeAsset

DerivativeLiability $150

100 shares MSFT
$1000

1.5 shares MSFT
$15

DerivativeAsset

DerivativeLiability $75

0.75 shares MSFT
$7.50

Figure 29: Another voter casts a vote.

Votes are recorded and associated with the origanal NewsEvent, so that a score of buyer-votes and seller
votes can be calculated (Figure 30):

NewsEvent

Portfolio

DerivativeSellerVote DerivativeBuyerVote

on on

casts casts

Figure 30: Scoring events.

6.9 Comments
Compared to voting, comments are refreshingly simple.

Users, not portfolios, cast comments. A comment is associated with a news event (Figure 31):

37

NewsEvent

EventComment

User

on

casts

Figure 31: Comments on a news event.

6.10 Auto Trades
While the system is idle, an auto-trade is represented as (Figure 32):

Portfolio
AutoTrade

+title: String
+code: String

owns

Figure 32: An auto trade while the system is idle.

When a player runs an AutoTrade, we have what we conceptually (though not in the code) call an
AutoTradeEvent (Figure 33):

38

Portfolio AutoTrade
+title: String
+code: String

owns

AutoTradeEvent

JSAPI

initiates

for

queries

Figure 33: An auto trade being run.

The JSAPI is a set of JavaScript functions and corresponding server-side handlers that allow the Auto
Trade to actually perform actions. See Running an Auto Trade.

7 Perturbations and Interactions
7.1 Stocks
7.1.1 allStockHoldings

Gets all stocks held in PitFail (model/stocks.scala ref_158) Figure 34.

39

Figure 34: allStockHoldings

7.1.2 Portfolio.myStockAssets

Gets stock assets from this portfolio (model/stocks.scala ref_937) Figure 35.

Figure 35: myStockAssets

7.1.3 Portfolio.haveTicker

Gets an asset for this stock if we have one, None otherwise (model/stocks.scala ref_407) Figure 36.

40

Figure 36: haveTicker

7.1.4 Portfolio.howManyShares

Gets how many shares of this stock do we have (model/stocks.scala ref_666) Figure 37.

Figure 37: howManyShares

7.1.5 Portfolio.howManyDollars

Gets how many dollars (at last traded price) of this stock we have (model/stocks.scala ref_873) Figure 38.

41

Figure 38: howManyDollars

7.1.6 Portfolio.userBuyStock

Attempts to make a market-order purchase of a stock (model/stocks.scala ref_850) Figure 39.

42

Figure 39: userBuyStock

7.1.7 Portfolio.userSellStock

Makes a sell market order for a stock (model/stocks.scala ref_620) Figure 40.

43

Figure 40:

7.1.8 Portfolio.userSellAll

Sells all of the shares we own (with a market order)(model/stocks.scala ref_306) Figure 41.

Figure 41: userSellAll

7.1.9 Portfolio.userMakeBuyLimitOrder

Places a buy limit order. This involves first executing all of the order that can be executed immediately (ie
there are available sellers below the limit) and then deferring the rest until another available seller comes in
(model/stocks.scala ref_184) Figure 42.

44

Figure 42: userMakeBuyLimitOrder

7.1.10 Portfolio.userMakeSellLimitOrder

Places a sell limit order. This involves executing all that can be executed immediately (where ther are
available buyers above the limit) and then defers the rest (model/stocks.scala ref_939) Figure 43.

Figure 43: userMakeSellLimitOrder

7.1.11 Portfolio.myBuyLimitOrders

Gets all pending buy limit orders (model/stocks.scala ref_734) Figure 44.

45

Figure 44: myBuyLimitOrders

7.1.12 Portfolio.mySellLimitOrders

Gets all pending sell limit orders (model/stocks.scala ref_680) Figure 45.

Figure 45: mySellLimitOrders

7.1.13 Portfolio.margin

Calculates the current margin that has been set aside (model/stocks.scala ref_224) Figure 46.

46

Figure 46: margin

7.2 Derivatives
7.2.1 Exercising Derivatives

When a derivative is exercised, the goal is to move the securities from their source (seller or buyer’s portfolio)
to their destination (buyer or seller’s portfolio). When this is possible, the procedure is easy; the only
complications that arise are when this is not possible (model/stocks.scala ref_519).

7.2.1.1 Moving Dollars Say $100 dollars needs to move from A to B. If A has $100, $100 is deducted
from A’s cash, and added to B’s cash.

If A does not have $100, as much as possible is deducted and added to B’s cash. this should begin
a process of margin call and forced liquidation, but PitFail does not support this feature at this time
(model/derivatives.scala ref_392).

7.2.1.2 Moving Stocks Say 100 shares of MSFT need to be moved from A to B. If A has 100 shares of
MSFT, they are deducted from A’s portfolio and added to B’s.

If A does not have 100 shares of MSFT, the following steps are taken:

1. First, A (under the control of the system, not the human player) attempts to buy 100 shares of
MSFT at 15% above the last traded price. This is similar to a limit order in that the trade will
execute at the ask price if the ask price is less than 1.15*(last trade price). This attempt to buy
may be partially or completely executed (if there are shares available), or not at all.

2. If, after attempting to buy the remaining shares, A still does not thave 100 shares MSFT, pays
the remaining debt to B in cash, at 1.15*(last trade price)*(shares unaccounted for).

47

3. If A does not have enough shares or enough cash, this should generate a margin call and A’s
assets should be liquidated, but PitFail does not support this feature.

This procedure for moving stocks differs significantly from the old procedure (as of demo #1), because in
the old version it was always possible to buy an unlimited amount of a stock. When this became no longer
possible, it was necessary to design a system that would respect the limited volume available but still be
largely automatic; since we do not expect PitFail players want to be bothered by an online game to resolve
the issue. Hence the 15% premium -- high enough to give a user an incentive to actually own the stocks
promised, but not so high as to make it a disaster if they do not (model/derivatives.scala ref_411).

7.2.1.3 Moving Derivatives This feature was removed from the most recent version of PitFail because
the UI still does not support creating a derivative that refers to another derivative (making the support in
the backend moot). In the old version, the way this worked was that, if A owned the specified amount of
the specified derivative, it would be moved. If not, a new derivative would be created with terms identical
to the desired ones, for which A would hold the liability and B the asset.

7.2.2 Portfolio.myDerivativeAssets

Gets all derivative assets we own (model/derivatives.scala ref_74) Figure 47.

Figure 47: myDerivativeAssets

7.2.3 Portfolio.myDerivativeLiabilities

Gets all deriavtive liabilities we own (model/derivaives.scala ref_484) 48.

48

Figure 48: myDerivativeLiabilities

7.2.4 Portfolio.myDerivativeOffers

Gets all derivative offers that have been sent to us and not yet accepted/rejected (model/derivatives.scala
ref_462) 49.

Figure 49: myDerivativeOffers

7.2.5 Portfolio.userOfferDerivativeTo

Offers a derivative to another user (model/derivatives.scala ref_6) 50.

49

Figure 50: userOfferDerivativeTo

7.2.6 Portfolio.userOfferDerivativeAtAuction

Offers a derivative at auction (model/derivatives.scala ref_674) 51.

Figure 51: userOfferDerivativeAtAuction

7.2.7 Portfolio.userAcceptOffer

Accepts a derivative offer (model/derivatives.scala ref_699) Figure 52.

Figure 52: userAcceptOffer

7.2.8 Portfolio.userDeclineOffer

Declines a derivative offer (model/derivatives.scala ref_650) Figure 53.

50

Figure 53: userDeclineOffer

7.2.9 DerivativeAsset.userExecuteManually

Exercise a derivative before its scheduled exercise date (model/derivatives.scala ref_583) Figure 54.

51

Figure 54: userExecuteManually

7.2.10 DerivativeAsset.systemExecuteOnSchedule

Executes a derivative on its scheduled exercise date, provided that the contracted condition holds
(model/derivatives.scala ref_289) Figure 55.

52

Figure 55: systemExecuteOnSchedule

7.2.11 DerivativeAsset.spotValue

Gets how much a derivative would be worth should it be exercised today (model/derivatives.scala ref_319)
Figure 56.

Figure 56: spotValue

53

7.3 Dividends
7.3.1 DividendSchema.systemCheckForDividends

Checks for new dividends, and credits them if there are (model/dividends.scala ref_789) Figure 57.

Figure 57: systemCheckForDividends

7.3.2 Portfolio.myDividendPayments

Gets a list of dividend payments that we have received (model/dividends.scala ref_489) Figure 58.

Figure 58: myDividendPayments

7.4 Voting
7.4.1 Portfolio.userVoteUp

Casts an up-vote on a trade (model/voting.scala ref_805) Figure 59.

54

Figure 59: userVoteUp

7.4.2 Portfolio.userVoteDown

Casts a down-vote on a trade (model/voting.scala ref_940) Figure 60.

Figure 60: userVoteDown

7.4.3 NewsEvent.buyerVotes

Gets all for-buyer votes on this event (model/voting.scala ref_146) Figure 61.

Figure 61: buyerVotes

7.4.4 NewsEvent.sellerVotes

Gets all for-seller votes on this event (model/voting.scala ref_405) Figure 62.

55

Figure 62: sellerVotes

7.5 Comments
7.5.1 User.userPostComment

Posts a comment on an event (model/comments.scala ref_494) Figure 63.

Figure 63: userPostComment

7.5.2 NewsEvent.comments

Get comments associated with this event (model/comments.scala ref_449) Figure 64.

56

Figure 64: comments

7.6 Auto Trades
Auto trades have a more complicated flow of control than other parts of the code, because execution is split
between the server and the client (website/jsapi/jsapi.scala).

7.6.1 Running an Auto Trade

I’m hoping the following diagram is clearer than it would be as a sequence diagram Figure 65:

57

Browser Server

Run Button

AJAX Request

unnamed callback
(AutoTrades.scala)

AJAX Response

runAutoTrade()

Code
for
the

Auto
Trade()eval

unnamed callback
(jsapi.scala)

buyShares(ticker, shares)
AJAX Request

stockPrice(ticker)
AJAX Request

javascript callback

AJAX Response

unnamed callback
(jsapi.scala)

1

2

3

4

5

7

6

8

9

Figure 65: The full sequence of running an auto-trade.

This corresponds to the following Auto-Trade code (in JavaScript -- what the user types in):

buyShares(’MSFT’, 100)
stockPrice(’MSFT’, function(price) {

alert(price)
})

The steps are:

1. The user presses the “Run” button. This sends an AJAX request to the server.

2. A callback in the Scala code (website/view/AutoTrades.scala ref_73) receives the AJAX request
and sends a response in the form of a JavaScript command to be executed on the client [Ajax].

58

3. The JavaScript command gets the users AutoTrade out of the textarea, which is also a segment
of JavaScript (website/jsapi/jsapi.scala ref_188).

4. The user’s code is evaluated with eval() (website/jsapi/jsapi.scala ref_188).

5. The user’s code makes an API call -- in this case buyShares(ticker,shares). buyShares() is
a JavaScript function that lives in the client (website/jsapi/jsapi.scala ref_405), and that makes
an AJAX request to the server (website/jsapi/jsapi.scala ref_867).

6. The server receives the AJAX request and performs the operation (buying a stock) (web-
site/jsapi/jsapi.scala ref_645).

7. The user’s code makes another request -- but this one is different because the user’s code needs
a reply.

8. A callback in the Scala code receives the request, gets the data, and constructs a response that
consists of a JavaScript object (the price) (website/jsapi/jsapi.scala ref_18).

9. The user’s callback is invoked with the response (website/jsapi/jsapi.scala ref_867).

7.6.2 Creating

This creates a new (blank) auto trade (model/auto.scala ref_168) 66.

Figure 66: userMakeNewAutoTrade

7.6.3 Modifying

This updates the stored information about an auto-trade (model/auto.scala ref_337) Figure 67.

[Ajax] http://exploring.liftweb.net/master/index-11.html

59

http://exploring.liftweb.net/master/index-11.html

Figure 67: userModify

7.6.4 Deleting

This deletes an auto trade (model/auto.scala ref_309) Figure 68.

Figure 68: userDelete

7.6.5 Getting all auto trades

This gets all the auto trades associated with a portfolio (auto trades are associated with portfolios, not users
(see the domain model)) (model/auto.scala ref_900) Figure 69.

60

Figure 69: myAutoTrades

7.7 News
7.7.1 Getting recent news events

This gets the most recent events that have been reported (model/news.scala ref_531) Figure 70.

Figure 70: recentEvents

7.7.2 Reporting an event

The API into reporting events is the report() method in the class Action, which takes the action, associates
a timestamp with it, and adds it to the list of all events that have occurred (model/news.scala ref_121) Figure
71.

61

Figure 71: Reporting a news event.

7.8 Auctions
7.8.1 Offering a derivative at auction

This creates a new auctioned item (model/derivatives.scala ref_674) Figure 72.

Figure 72: userOfferDerivativeAtAuction

7.8.2 Bidding on an auction

This casts a bid on an auction item (model/auctions.scala ref_861) Figure 73.

62

Figure 73: userCastBid

7.8.3 Getting the current high bid

This gets the current high id, if there is one (if no bids have been cast, there will be no high bid)
(model/auctions.scala ref_188) Figure 74.

Figure 74: highBid

63

7.8.4 Closing an auction

Closing an auction results in entering a derivative contract. See the sections on derivatives for an explanation
of what this means (model/auctions.scala ref_870) Figure 75.

Figure 75: userClose

64

7.8.5 Buy Via Android Cleint

Figure 76: Buy Stocks via Android Client

The diagram above (Figure 76) is the interaction sequence diagram for UC Buy Stocks from an Android
Mobile Client. This Interaction diagram is the extension of System sequence Diagram for UC-1 Buy Stocks.
As shown, first the search action is initiated by the Android Controller which requested by the Android user.
The Android controller sends an HTTP Post request to Yahoo Stock Source. This request specifically asks
for the Stock Value of the stock ticker by sending the corresponding tag with the request. Once the response
is received, the Mobile Client creates the Buy request. The Android controller calls the BuyServlet using
an HTTP Post request via the Jetty Server.The Jetty server has capability to support both Scala and Java
sources as it runs on a JVM. All the servlets for Android are written in Java which internally calls functions
from Scala classes. The reason for choosing Java for Android client is for its compatibility.The BuySerlvlet
internally makes use of the Portfolio class the extract the user info from the Database. If the Volume to be
bought is correct, user’s portfolio is updated and results are sent back to the user.

65

7.8.6 Sell Via Android Cleint

Figure 77: Sell Stocks via Android Client

The diagram above (77) is the interaction sequence diagram for UC Sell Stocks from an Android Mobile
Client. The user initiates the action by creating a request by providing the Stock ticker name he intends
to sell off. The Android controller sends an HTTP Post request to SellServlet via the Web Server. The
BuyServlet makes use of portfolio class and call the function to update the user profile.Because we expect
asynchronous requests there is a possibility that by the time a SellStock is completely executed there can
be another asynchronous call from some other client interface by the same user. Such a situation is handled
by throwing back an exception message “You dont own this stock” and corresponding appropriate message
back to the user.Currently, we sell off all the corresponding stocks.

66

7.9 Notifications for Android Client

Figure 78: Sell Stocks via Android Client

When the user starts the Pitfail Application for the first time, a background service is started with it which is
not bounded to the application. This is a Polling service which polls the Web Server periodically. On receiving
the request from the service, the server executes the Stock updates Servlet which collects information on any
change in the price of all the stocks the user owns. If the margin of change is equal to more than 1 dollar, the
corresponding updates are sent to the polling service. The Polling service then sends those messages to the
Android Notification manager. The Notification manager then display new notifications as Stock updates
for the user. If there is a previous notification which is not yet viewed by the user, the previous notification
is updated and there is just one latest notification available for the user to view.

7.10 FaceBook Operations:
Facebook interface currently supports 4 operations:

1. Buy Stocks.

2. Sell stocks.

3. View Portfolio.

4. View Leaderboard.

If a player wants to access PitFail via Facebook, he or she can post the request on PitFail’s wall in the
following format:

Username: Operation(Buy/Sell):[volume]:[Ticker]

67

Arguments in square brackets are optional. For example, View portfolio and view leaderboard operations
do not take volume and ticker as arguments.

The request posted on the wall needs to be processed. To process this request :
1.This request should be listened to and FB app should be notified of the wall post
2.The wall post should be read and parsed.
3.The request should invoke appropriate module from server to get the operation done
4.The player should be notified of the status of the request (successful/failed)
The operations takes place partly at Facebook client side and partly at server side.
Here is a description in detail:

7.10.1 FaceBook Client:

Facebook client includes mainly two operations:

1. FBListener -- FBListener listens to our facebook page pitfail and notifies the app controller of
any incoming request (a wall post) to be processed.

2. ParseMessage -- ParseMessage parses user’s wall post to multiple token , checks if the message
follows the required syntax and decides if the message is good enough to be processed. Figure 79

Figure 79:

FBListener listens to the wall post of our account and notifies pitFail FB app of any new wall post. We use
RestFB APIs that access Facebook account of PitFail using the unique access token provided by FaceBook.
API fetchConnection(User) reads the new wall post and passes it to ParseMessage module. ParseMessage
processes the wall post, extracts the information required to process the request. It also checks for the right
number of arguments and the data type (e.g. Volume has to be a number, a request to view portfolio does
not take more than two arguments).

If the message is good enough to be processed (no errors), client controller calls appropriate functions
from the server, otherwise the player is notified of the error by commenting on player’s wall post.

68

7.10.2 Server Operations:

Now once the message is retrieved and parsed at the client side, the server functions are invoked with the
parsed tokens as arguments.

Before processing any request, we always check if the username that is requesting this operation is
valid or not. Therefore before invoking any other method client invokes EnsureUser method to enusure the
authenticity of the user.

7.10.2.1 Ensure User: Facebook interface of PitFail does not (for now) support registration. The player
has to be already registered to the system to play the game via FB interface. Figure 80

Figure 80:

ensureUser ensures the existence of a user before the user’s request tries to access portfolio. If the user
exists, the request is processed further otherwise the player is notified of the error occurred by posting a
comment on his wall post.

Once the user is checked for his/her authenticity, we can proceed further with the actual operation
requested by the user. Below are the operations user can execute.

7.10.2.2 Buy Stock: for all the operations below, once the ensureUser confirms the authenticity of the
user, FaceBook client invokes a Java servlet on Jetty server. The main task handled by this java servlet is
to accept arguments from Facebook client and invoke appropriate scala mothods to perform task requested
by facebook client Here the servlet is: FBBuyServlet(Username) Figure 81

69

Figure 81:

7.10.2.3 Sell Stock: In sell stock , FBSellServlet() is the Java servlet that accepts arguments from
Facebook client and invokes scala method to sell stocks. Figure 82

70

Figure 82:

7.10.2.4 View Portfolio: Before processing any request , we make sure (by invoking ensureUser) that
the username exists. Therefore there is no failure flow (alternate flow) for portfolio view. We will invoke
this funtion only if the ensureUser confirms that the user exists. Figure 83

71

Figure 83:

Once client receives response (portfolio for the username) from server, client prettifies the response make
it look better as FaceBook wall post.

7.10.2.5 View Leaderboard: Apart from the leagues created by different users, we have a global league.
Players playing via facebook can view the leaders of global league by using operation - view leaderboard.

Here too, we dont have a alternate (failure) flow, as this method will be invoked only once ensureUser
confirms that the username exists. Figure 84

72

Figure 84:

8 System Architecutre and System Design
8.1 Templating
David Pollak, who developed Lift, believed that it was better not to mix code and HTML[Pollak]_. This is
because code is too powerful -- you may initially set out to include only View code in the HTML, but it’s
too easy to accidentally slip in some functionality that actually belongs in the Model[Pollak]_.

In lift templates, you write HTML code like:

<lift:NewsEvent>
<param:subject/> <param:action/> on <param:when/>

</lift:NewsEvent>

and then bind values to it in the Scala code like:

class NewsEvent {
def render(in: NodeSeq) = bind("param", in,

"subject" -> "joe",
"action" -> "Bought 100 shares of MSFT",
"when" -> "Today"

)
}

David Pollak may be right, but we found that the drawbacks of using Lift’s templates did not end up
being worth the extra help in separating View from Model, and converted most of our template code to raw
Scala code. Some reasons for this were:

73

• We have 4 different views attached to our model -- this means that we already have a really good idea
when when we are putting model code into the view, because it gets duplicated among the several
Views. Having more than one frontend is a great way to enforce good MVC design.

• Scala has inline XML literals [XML].

• Lift templates cannot do 1 really important thing. Consider the following made-up template code:

<lift:Dashboard>
<lift:Portfolio/>
<lift:Offers/>

</lift:Dashboard>

This code inserts 3 objects: the containing Dashboard, and inside it a Portfolio and a list off incoming
Offers. Now the question is: how do you make the Portfolio code aware of the enclosing Dashboard
code?
In Lift there is no way to do this. Using XML literals this is trivial:

class Dashboard {
def render =

<div>
{Portfolio(this).render}
{Offers(this).render}

</div>
}

• Transforming XML is not type-safe, so errors are not caught until the page is loaded. This wastes a
lot of time debugging, and could potentially miss errors forever.

Considering these factors, we wrote our HTML using Scala’s XML literals (example website/view/DividendChart.scala
ref_44).

8.1.1 Improving Lift Forms

8.1.1.1 Limitations of standard lift forms Lift provides some abstractions for getting data out of a
submitted form [Lift2]. It is done in a callback-manner:

var ticker: String
var shares: String

bind("param", html,
"ticker" -> SHtml.text(ticker, { t => ticker = t }),
"shares" -> SHtml.text(shares, { s => shares = s })

)

That is, when the form is submitted, the callbacks are called, and they are passed the data that was
submitted.

There are a few reasons we wanted to improve on this system:
• Because callbacks are called individually, you have to use side-effects to build up the complete structure

of the data. We like to avoid side-effects when possible [SideEffects].

• Because callbacks are called individually, you have to wait until all have been called to do checks that
synthesize multiple values.

• Lift forms deal almost entirely with Strings. This is awkward in a statically typed language. We’d
rather worked with typed fields.

To address these concerns we wrote intform, which is a wrapper around lift forms (website/intform/).

74

8.1.1.2 Typed form fields Every field in intform has a type (website/intform/intform.scala ref_727).
This is the type of the value that is produced when the form is submitted. So for example a StringField
produces a String, a UserField (where you type in a user’s name) produces a User, a DollarsField a Dollars,
and so on. The Field class has a process() method (website/intform/intform.scala ref_997) that produces
a value of the correct type.

Once you have introduced typed fields you have to deal with the fact that you might not be able
to produce a value of the type you want. Say you have a DollarsField and the user types in “one-
hua,s.chuetnouhscrasc.hua”. You can’t convert that to a number. So the process() method has to have the
type:

def process(): Option[A]

where A is the type that the field produces (see the section on Option Types).

8.1.1.3 Aggregating multiple fields together Say you have two IntFields and a class:

case class Point(x: Int, y: Int)

and you want to use these to build a PointField. We use the same method we used in Serializing objects
without using reflection: we treat Point as a product type, which be built from a heterogeneous list of fields
(website/intform/branches.scala ref_575).

75

8.1.1.4 Hiding side-effects When an intform is submitted a callback is called with the submitted
data (example website/view/CommentPage.scala ref_524). At first this seems no different than what Lift
forms do. The improvement is that while in Lift forms you have multiple, separate callbacks that are passed
the individual fields, in intform you get the entire data as a single object, so you do not have to deal with
interaction between the callbacks. Consider (psuedocode):

var x: Int
var y: Int

IntField() { newX =>
x = newX

}
IntField() { newY =>

y = newY
}

Now say you want to add a check that x < y. Where do you add it? If you add it here:

var x: Int
var y: Int

IntField() { newX =>
x = newX

}
IntField() { newY =>

y = newY
if (y >= x) throw BadInput

}

you are assuming that the x callback happens before the y callback -- but this is not at all obvious from
the code. On the other hand, if your callback takes all data together:

PointField() { p =>
if (p.y >= p.x) throw BadInput

}

now you are not relying on the order of any side-effects.

8.2 Serializing objects without using reflection
8.2.1 Why we needed to change

For the first demo, our database backend was written using Squeryl [Squeryl1]. There were some pros and
cons to using squeryl, but overall we probably would have kept using it if this were possible.

However, as the model code grew large, we realized we had to reorganize, and one of the ways we
reorganized was to split the code into traits (See Traits), and mix them together (See Organization of the
Model into traits). Unfortunately, Squeryl does not support mapping inner classes, because it does not know
how to reconstruct the outer pointer [Squeryl2].

It was more important to us to have a better organized model code than to keep using Squeryl, so we
had to change. Initially, we ignored the database backend; our code had no persistence, but this did not
make much of a difference in testing and we were able to implement all the important operations with no
database. And another benefit of have no database is that we’d keep our code non-specific to the particular
database code we used.

But, in the end, we could not actually present a website that lost all its information every time it was
restarted. So we wrote “spser” (model/spser.scala).

76

8.2.2 Product Types

A product type is a type with members [ADTs], e.g. (in Java):

class Point {
public int x;
public int y;

}

is a product type, where the members are x and y. Another way of saying this is that the Point type is
a product of int and int.

So say you wanted to serialize a class:

Foo {
T1 x1;
T2 x2;
...
TN xN;

}

to a database. Well, if you already have a way to turn the types T1...TN into database fields, then
serializing a Foo is just a matter of extracting the members, and converting them to fields (model/spser.scala
ref_984). Deserializing is just a matter of extracting the xk values, and applying a constructor:

(T1, T2, ... TN) => Foo

to build a Foo object (model/spser.scala ref_704).

8.2.3 Generic representation of products

We use the same representation of products as Mark Harrah’s HLists [HList], which in turn is the same
representation as Oleg Kiselyov’s HList for Haskell [Kiselyov].

A product is either HOne (model/spser.scala ref_220):

case class HOne() extends HProd

ie, a product of 0 types (the name HOne is a reference to the “unit type”[Unit]), or a product of an existing
product with one more type added on (model/spser.scala ref_464):

case class HTimes[+H,+T<:HProd](head: H, tail: T) extends HProd

8.2.4 Looping over products

A common technique when working with Haskell’s HLists is to write a typeclass for the loop operation,
and then instance declarations for the base- and recursive- cases [Loop]. We use the same technique (as in
model/spser.scala ref_231). Where Haskell has typeclasses Scala has implicit parameters [Implicits]. So, for
example, to print an HProd we can do:

trait Display[A] {
def display(a: A): Unit

}

implicit def displayOne = new Display[HOne] {
def display(o: HOne) { }

}
implicit def displayTimes[H,T<:HProd:Display] = new Display[HTimes[H,T]] {

def display(p: HTimes[H,T]) { println(p.head) ; hDisplay(p.tail) }
}

77

8.2.5 Extracting the fields of a product type

Now that we have HProd, we have 2 different ways to represent each product type. There’s the original,
“friendly” way:

case class Point(x: Int, y: Int)

and the HProd “generic” way:

HProd[Int, HProd[Int, HOne]]

When writing code, we want to use the “friendly” way as much as possible, except in the very backend,
where we need to be able to iterate over product fields and so must use the “generic” way. So we must be
able to convert between them.

If you look at the class:

case class Point(x: Int, y: Int)

after it has passed through the first few Scala compiler phases, you will see (among other things; the full
output is huge):

case class Point extends java.lang.Object with ScalaObject with Product with Serializable {
<caseaccessor> <paramaccessor> private[this] val x: Int = _;
<stable> <caseaccessor> <accessor> <paramaccessor> def x: Int = Point.this.x;
<caseaccessor> <paramaccessor> private[this] val y: Int = _;
<stable> <caseaccessor> <accessor> <paramaccessor> def y: Int = Point.this.y;
def this(x: Int, y: Int): Point = {

Point.super.this();
()

};
override def productPrefix: java.lang.String = "Point";
override def productArity: Int = 2;
override def productElement(x$1: Int): Any = x$1 match {

case 0 => x
case 1 => y
case _ => throw new java.lang.IndexOutOfBoundsException(x$1.toString())

};
};

In other words, the Scala compiler provides some minimal support for extracting elements from product
types, in the form of productElement. productElement is not type-safe, but if we trust the Scala compiler
to generate it correctly, we can do some type coercion and create a type-safe extractor (model/spser.scala
ref_997).

8.2.6 Re-creating a product type from the fields

How do we go from HTimes[Int,HTimes[Int,HOne]] to Point? Point has a constructor:

(Int, Int) => Point

which can be used to construct a Point given the fields. Unfortunately this is another area where Scala’s
types are awkward to work with; there is no type-safe way to generalize over function arity. The solution is
a set of auto-generated functions for every function arity up to some size (model/spser.scala ref_662).

78

8.2.7 The advantage to this method of serialization

The biggest advantage to serializing objects using product types is that it works within the language, whereas
reflection works outside the language. In Scala this is especially relevant because Scala uses Java’s reflection
API’s, which do not know about Scala. The disadvantages to working outside the lanuage are:

• Less type information. JVM type erasure [Erasure] takes away most type information.

• Less type safety. Because reflection operates a run-time and doesn’t have static types.

• The chance to conflict with language features, such as how Squeryl cannot pass the outer pointer to a
synthesized object. This one was the killer.

8.2.8 Putting this all together

Ideally we would like to add our serialization/deserialization routines to Squeryl. There is no reason this
should not be possible. We tried; given more time, we might thave succeeded, but the Squeryl code is fairly
set on using reflection to create objects. So we wrote a tiny DSL [DSL] for building SQL queries and attached
it to the H2 JDBC library [H2] (model/spser.scala ref_629).

8.3 Applying OO cohesion metrics to our code
A Scala compiler plugin was used to automatically find which methods reference which attributes. This
information is used to calculate the cohesion metrics SCOM [SCOM], CC [CC], LSCC [LSCC], and CAMC
[CAMC] (the last one uses method signature types and does not look at attributes).

The file metrics-summary.txt shows the method-attribute matrix for each class.
A summary of the metrics for all the classes are:

id name SCOM CC LSCC CAMC
10749 RunChecks 1.000 1.000 0.000 1.000
245780 $anon 1.000 1.000 0.000 1.000
293016 ResponseAsset 1.000 1.000 1.000 1.000
10548 SharesField 1.000 1.000 1.000 1.000
9558 Security 1.000 1.000 1.000 1.000
10012 TwitterFrontend 0.000 0.000 0.000 0.667
9505 ShortThrowableRenderer 1.000 1.000 0.000 1.000
10459 Direction 1.000 1.000 1.000 1.000
169117 AutoTradeSubmit 1.000 1.000 1.000 1.000
10070 LoginManager 0.000 0.000 0.000 0.333
10162 AggregateField 1.000 1.000 0.000 1.000
9679 UserSchema 0.000 0.000 0.000 1.000
10612 OutgoingOffers 0.000 0.000 0.000 1.000
9623 Dollars 1.000 1.000 1.000 0.146
39042 User 1.000 1.000 1.000 1.000
10544 DollarsField 1.000 1.000 0.000 1.000
9612 Refresh 1.000 1.000 0.000 1.000
10193 Form 1.000 1.000 1.000 1.000
10303 FieldErrorRender 1.000 1.000 1.000 1.000
108737 ResponseOption 1.000 1.000 1.000 1.000
9481 Email_bg 0.000 0.000 0.000 0.667
10046 insertTestData 1.000 1.000 0.000 1.000
9721 GetPortfolio 1.000 1.000 0.000 1.000
9669 StockSchema 1.000 1.000 1.000 1.000
39048 Ownership 1.000 1.000 1.000 1.000
147231 $anon 1.000 1.000 0.000 1.000
10972 MyPage 1.000 1.000 0.000 1.000
9629 Price 1.000 1.000 1.000 0.238
10453 Recipient 1.000 1.000 1.000 1.000
9811 CachedStockDatabase 0.550 0.500 0.350 0.400
39181 DerivativeBuyerSetAside 1.000 1.000 1.000 1.000
9943 TransactionResponse 1.000 1.000 1.000 1.000
246458 $anon 1.000 1.000 1.000 1.000
9796 BatchingStockDatabase 0.056 0.167 0.056 0.250
293013 Response 1.000 1.000 1.000 1.000

79

145421 _currentLogin 1.000 1.000 1.000 1.000
9993 TextTrader 1.000 1.000 1.000 1.000
10309 AggregateRender 1.000 1.000 1.000 1.000
10305 FormOuter 1.000 1.000 1.000 1.000
10454 SpecificUser 1.000 1.000 1.000 1.000
11044 FormattedDerivative 1.000 1.000 1.000 1.000
157406 $anon 1.000 1.000 1.000 1.000
10871 NoOrder 1.000 1.000 1.000 1.000
9874 StockDatabase 1.000 1.000 1.000 1.000
9921 Buy 1.000 1.000 1.000 1.000
246941 $anon 1.000 1.000 0.000 1.000
10392 ClearDatabase 1.000 1.000 0.000 1.000
9701 BuyServlet 1.000 1.000 0.000 1.000
39167 UserWithComments 0.000 0.000 0.000 1.000
39203 AutoTrade 1.000 1.000 1.000 1.000
10246 StringField 1.000 1.000 0.000 1.000
10163 CaseField 0.667 0.500 0.333 1.000
9604 Link 0.833 0.667 0.500 0.333
10253 ConstField 0.000 0.000 0.000 1.000
265398 HaveCommand 1.000 1.000 1.000 1.000
9889 YahooCSVStockDatabase 0.000 0.000 0.000 0.500
10492 dividendChart 1.000 1.000 0.000 1.000
10033 DBSetup 1.000 1.000 0.000 1.000
10250 IntField 1.000 1.000 1.000 1.000
39168 NewsEventWithComments 0.000 0.000 0.000 0.333
9930 StockAsset 1.000 1.000 1.000 1.000
11020 BigDecimalFormatted 1.000 1.000 1.000 1.000
10211 BadInput 1.000 1.000 1.000 1.000
39137 Declined 1.000 1.000 1.000 1.000
9763 StockUpdates 1.000 1.000 1.000 1.000
39143 Bid 1.000 1.000 1.000 1.000
9574 ComparableSecurity 1.000 1.000 1.000 1.000
10343 AuctionPage 0.000 0.000 0.000 1.000
9931 StockDollars 1.000 1.000 1.000 1.000
9598 Table 0.000 0.000 0.000 0.500
10196 Form 1.000 1.000 0.000 1.000
39140 Auctioned 1.000 1.000 1.000 1.000
142554 accessToken 1.000 1.000 1.000 1.000
39062 OldUser 1.000 1.000 1.000 1.000
10306 SubmitRender 1.000 1.000 1.000 1.000
10300 Refreshable 1.000 1.000 0.000 1.000
9625 Dollars 0.000 0.000 0.000 0.500
10210 FormSubmit 0.000 0.000 0.000 0.583
10410 commentPage 1.000 1.000 0.000 1.000
39110 AuctionBid 1.000 1.000 1.000 1.000
10244 StringField 1.000 1.000 1.000 1.000
10581 News 0.000 0.000 0.000 0.556
9601 KL 1.000 1.000 1.000 0.500
39054 League 1.000 1.000 1.000 1.000
9735 SellServlet 1.000 1.000 1.000 1.000
39194 NewsEventWithVotes 0.000 0.000 0.000 1.000
39146 Won 1.000 1.000 1.000 1.000
11024 BigDecimalOptionFormatted 1.000 1.000 1.000 1.000
157401 NeedRenderable 1.000 1.000 1.000 1.000
9565 SecDerivative 1.000 1.000 1.000 0.500
10971 UserPage 1.000 1.000 0.000 1.000
9699 BuyServlet 1.000 1.000 1.000 1.000
9824 DividendDatabase 1.000 1.000 1.000 1.000
145792 savedPortfolio 1.000 1.000 1.000 1.000
10304 InnerFieldRender 1.000 1.000 1.000 1.000
93022 $anon 1.000 1.000 0.000 1.000
10282 package 0.000 0.000 0.000 0.042
10458 OpenAuction 1.000 1.000 0.000 1.000
9608 Links 0.000 0.000 0.000 0.500
9649 RankingSchema 0.000 0.000 0.000 1.000
10644 PortfolioInvites 0.000 0.000 0.000 0.333
10166 CaseField 1.000 1.000 0.000 1.000
10915 tChart 1.000 1.000 0.000 1.000
10795 SearchPipeline 1.000 1.000 1.000 1.000
265394 Idle 1.000 1.000 1.000 1.000
39051 PortfolioInvite 1.000 1.000 1.000 1.000
10893 SwitchPortfolio 1.000 1.000 0.000 1.000

80

10807 SelectField 1.000 1.000 0.000 1.000
10808 SelectRender 1.000 1.000 1.000 1.000
9856 QueryService 1.000 1.000 1.000 1.000
9971 package 1.000 1.000 1.000 1.000
9991 Backend 1.000 1.000 1.000 1.000
9937 Response 1.000 1.000 1.000 1.000
10804 SelectField 0.500 0.333 0.333 1.000
39099 DerivativeAssetOps 0.000 0.000 0.000 1.000
10302 FieldRender 1.000 1.000 1.000 1.000
39089 DerivativeAsset 1.000 1.000 1.000 1.000
10264 DateField 1.000 1.000 0.000 1.000
39193 PortfolioWithVotes 0.000 0.000 0.000 0.367
39157 NewsEvent 1.000 1.000 0.000 1.000
10270 TextAreaField 1.000 0.500 0.500 1.000
9849 HttpQueryService 1.000 1.000 1.000 1.000
127504 $anon 1.000 1.000 0.000 1.000
10197 Field 1.000 1.000 1.000 1.000
10140 package 1.000 1.000 0.000 1.000
9673 DividendSource 1.000 1.000 1.000 1.000
9868 QuoteInfo 1.000 1.000 1.000 1.000
10942 UserField 1.000 1.000 0.000 1.000
10631 PortfolioField 1.000 1.000 0.000 1.000
9600 DBMagic 1.000 1.000 1.000 1.000
9488 email 1.000 1.000 0.000 1.000
10660 PortfolioLink 1.000 1.000 0.000 1.000
10227 ChildError 1.000 1.000 0.000 1.000
39025 NoSuchEvent 1.000 1.000 1.000 1.000
9838 FailoverStockDatabase 0.000 0.000 0.000 0.750
9934 StockShares 1.000 1.000 1.000 1.000
9683 VotingSchema 1.000 1.000 1.000 1.000
59900 $anon 1.000 1.000 0.000 1.000
9562 SecStock 1.000 1.000 1.000 0.500
9497 package 1.000 1.000 0.000 1.000
39206 PortfolioWithAutoTrades 0.000 0.000 0.000 1.000
10308 TextRender 1.000 1.000 1.000 1.000
10208 FormSubmit 1.000 1.000 1.000 1.000
39065 PortfolioOps 0.000 0.000 0.000 0.600
10563 NewPortfolio 0.000 0.000 0.000 1.000
9490 email 1.000 1.000 1.000 1.000
39029 NameInUse 1.000 1.000 1.000 1.000
9802 CacheMap 0.167 0.333 0.167 0.417
10307 ErrorRender 1.000 1.000 1.000 1.000
9571 CondGreater 1.000 1.000 1.000 1.000
9538 AuctionSchema 0.000 0.000 0.000 0.333
10687 PrintSchema 1.000 1.000 0.000 1.000
10256 ConstField 1.000 1.000 0.000 1.000
39166 EventComment 1.000 1.000 0.000 1.000
145413 NotLoggedIn 1.000 1.000 0.000 1.000
9789 TestServlet 0.000 0.000 0.000 0.500
10269 DateTimeField 1.000 1.000 0.000 1.000
245766 $anon 1.000 1.000 0.000 1.000
39023 NoSuchDerivativeLiability 1.000 1.000 1.000 1.000
39021 NoSuchDerivativeAsset 1.000 1.000 1.000 1.000
10958 UserLink 1.000 1.000 0.000 1.000
59950 $anon 0.000 0.000 0.000 0.625
11272 NodeSeqPlus 1.000 1.000 1.000 1.000
38939 NotFound 1.000 1.000 1.000 1.000
10267 DateTimeField 1.000 1.000 1.000 1.000
10361 AuctionThumbnail 0.000 0.000 0.000 1.000
93057 $anon 1.000 1.000 0.000 1.000
10978 theirPortfolio 1.000 1.000 0.000 1.000
9483 Email_bg 1.000 1.000 1.000 1.000
10199 BasicErrors 1.000 1.000 1.000 0.333
39092 DerivativeLiability 1.000 1.000 1.000 1.000
246450 $anon 1.000 1.000 1.000 1.000
10207 Submit 0.000 0.000 0.000 0.583
265395 HaveQuote 1.000 1.000 1.000 1.000
39115 PortfolioWithAuctions 0.000 0.000 0.000 0.500
9671 StockPriceSource 1.000 1.000 1.000 1.000
10579 News 0.000 0.000 0.000 1.000
9908 Message 1.000 1.000 1.000 1.000
9554 DerivativeSchema 0.000 0.000 0.000 1.000

81

10673 PortfolioPage 1.000 1.000 0.000 1.000
39010 NotExecutable 1.000 1.000 1.000 1.000
9644 operations 0.000 0.000 0.000 0.667
10131 TwitterLogin 0.000 0.000 0.000 0.286
39047 Portfolio 0.000 0.000 0.000 0.333
10464 StockInDerivative 1.000 1.000 1.000 1.000
39001 DontOwnStock 1.000 1.000 1.000 1.000
9875 NoSuchStockException 1.000 1.000 1.000 1.000
10011 twit 1.000 1.000 0.000 1.000
9656 schema 1.000 1.000 1.000 1.000
9940 Status 1.000 1.000 1.000 1.000
39070 StockAsset 1.000 1.000 1.000 1.000
10629 PortfolioField 1.000 1.000 1.000 1.000
10847 stockChart 1.000 1.000 0.000 1.000
9862 Stock 1.000 1.000 1.000 1.000
10272 TextAreaField 1.000 1.000 0.000 1.000
9912 Request 1.000 1.000 1.000 1.000
10312 ListRender 0.000 0.000 0.000 0.333
39008 NoSuchOffer 1.000 1.000 1.000 1.000
9626 Shares 1.000 1.000 1.000 0.208
10200 Processable 1.000 1.000 1.000 1.000
9559 SecDollar 1.000 1.000 1.000 0.500
9901 YahooStockDatabase 0.000 0.000 0.000 0.333
10622 portfolio 1.000 1.000 0.000 1.000
10974 myPage 1.000 1.000 0.000 1.000
11001 BoxOps 1.000 1.000 1.000 1.000
10217 SubmitResult 1.000 1.000 1.000 1.000
9631 Price 0.000 0.000 0.000 0.500
39057 UserOps 0.000 0.000 0.000 0.273
9826 CachedDividendDatabase 1.000 1.000 1.000 1.000
10545 PriceField 1.000 1.000 1.000 1.000
293011 Response 1.000 1.000 1.000 1.000
10223 Error 1.000 1.000 1.000 1.000
10976 theirPage 1.000 1.000 0.000 1.000
10301 Page 1.000 1.000 0.000 1.000
39114 AuctionOfferOps 0.000 0.000 0.000 1.000
39013 BidTooSmall 1.000 1.000 1.000 1.000
9622 package 0.000 0.000 0.000 0.500
9542 AutoTradeSchema 1.000 1.000 1.000 1.000
9825 YahooDividendDatabase 1.000 1.000 1.000 1.000
9527 DummySchema 0.000 0.000 0.000 1.000
52247 $anon 0.000 0.000 0.000 0.333
9628 Shares 0.000 0.000 0.000 0.500
10259 BooleanField 1.000 1.000 0.000 1.000
142552 requestToken 1.000 1.000 1.000 1.000
10823 SellThisStock 1.000 1.000 1.000 1.000
10219 OK 1.000 1.000 1.000 1.000
38961 Insert 1.000 1.000 1.000 1.000
10174 DependentListField 1.000 1.000 0.000 1.000
9924 Sell 1.000 1.000 1.000 1.000
10298 Refreshable 1.000 1.000 1.000 1.000
39095 DerivativeOffer 1.000 1.000 1.000 1.000
11275 NodePlus 1.000 1.000 1.000 1.000
10316 CheckBoxRender 1.000 1.000 1.000 1.000
38960 EditOp 1.000 1.000 1.000 1.000
9787 TestServlet 1.000 1.000 1.000 1.000
116811 LazyQuote 1.000 1.000 1.000 1.000
136675 $anon 1.000 1.000 0.000 1.000
39190 DerivativeSellerVote 1.000 1.000 1.000 1.000
108743 ResponseError 1.000 1.000 1.000 1.000
10509 EventPage 0.000 0.000 0.000 0.250
9675 Stocks 0.000 0.000 0.000 1.000
9995 TextTrader 0.000 0.000 0.000 0.750
10734 RefreshHack 1.000 1.000 0.000 1.000
10524 LoginStatus 0.000 0.000 0.000 1.000
10328 package 0.000 0.000 0.000 0.500
10319 TextAreaRender 1.000 1.000 1.000 1.000
9911 Reply 1.000 1.000 1.000 1.000
10079 Logout 0.000 0.000 0.000 0.500
246521 $anon 1.000 1.000 0.000 1.000
246466 $anon 1.000 1.000 1.000 1.000
116813 LazyQuote 1.000 1.000 0.000 1.000

82

39155 NewsEvent 1.000 1.000 1.000 1.000
9966 ConsoleFrontend 1.000 1.000 1.000 1.000
142492 redirectBackTo 1.000 1.000 1.000 1.000
10249 NumberField 1.000 1.000 0.000 1.000
245750 $anon 1.000 1.000 1.000 1.000
266571 $anon 1.000 1.000 1.000 1.000
108740 ResponseValid 1.000 1.000 1.000 1.000
39080 PortfolioWithStocks 0.000 0.000 0.000 0.412
9878 DatabaseException 1.000 1.000 1.000 1.000
10297 Renderable 1.000 1.000 1.000 1.000
38953 Transaction 1.000 1.000 0.000 1.000
11278 MergeAttr 1.000 1.000 1.000 1.000
10170 ListField 1.000 1.000 0.000 1.000
293014 ResponseAsset 1.000 1.000 1.000 1.000
9532 H2Schema 0.000 0.000 0.000 1.000
10461 ToBuyer 0.000 0.000 0.000 0.250
9737 SellServlet 1.000 1.000 0.000 1.000
38965 Update 1.000 1.000 1.000 1.000
93105 $anon 1.000 1.000 0.000 1.000
9555 Derivative 1.000 0.250 0.250 0.500
10880 StockOrderer 0.556 0.403 0.347 0.200
10712 quoteReport 1.000 1.000 0.000 1.000
39100 PortfolioWithDerivatives 0.000 0.000 0.000 0.278
11015 DateTimeFormatted 1.000 1.000 1.000 1.000
11006 BadUser 1.000 1.000 1.000 1.000
9639 NewsSchema 0.000 0.000 0.000 0.333
10059 Checker 0.000 0.000 0.000 1.000
39164 EventComment 1.000 1.000 1.000 1.000
9632 Scale 1.000 1.000 1.000 0.194
10547 PriceField 1.000 1.000 0.000 1.000
9474 EmailActor 0.000 0.000 0.000 1.000
10101 periodically 1.000 1.000 0.000 1.000
39121 Action 1.000 1.000 0.000 1.000
10470 DerivativeBuilder 0.055 0.109 0.055 0.136
9867 Quote 0.000 0.000 0.000 0.500
39207 AutoTradeOps 0.000 0.000 0.000 0.667
39152 Exercised 1.000 1.000 1.000 1.000
9992 Frontend 1.000 1.000 1.000 1.000
9960 WithUser 0.667 0.667 0.667 0.333
39134 Accepted 1.000 1.000 1.000 1.000
9959 PitFailBackend 0.000 0.000 0.000 0.500
39184 DerivativeSellerSetAside 1.000 1.000 1.000 1.000
38998 NotEnoughCash 1.000 1.000 1.000 1.000
39131 Offered 1.000 1.000 1.000 1.000
11040 CompSecFormatted 1.000 1.000 1.000 1.000
11036 FormattedCondition 1.000 1.000 1.000 1.000
39056 League 0.000 0.000 0.000 0.375
60540 $anon 1.000 1.000 1.000 1.000
39128 Sold 1.000 1.000 1.000 1.000
9765 StockUpdates 1.000 1.000 0.000 1.000
9865 Quote 1.000 1.000 1.000 1.000
9851 HttpQueryService 0.000 0.000 0.000 0.750
10214 BadFieldInput 1.000 1.000 1.000 1.000
10028 Boot 1.000 1.000 0.000 1.000
265392 Status 1.000 1.000 1.000 1.000
10317 DateRender 1.000 1.000 0.000 1.000
9927 SellAll 1.000 1.000 1.000 1.000
38997 NegativeVolume 1.000 1.000 1.000 1.000
39045 Portfolio 1.000 1.000 1.000 1.000
10550 SharesField 1.000 1.000 0.000 1.000
9610 RefreshHub 0.000 0.000 0.000 1.000
39187 DerivativeBuyerVote 1.000 1.000 1.000 1.000
10429 Dashboard 0.000 0.000 0.000 1.000
9586 DividendSchema 0.000 0.000 0.000 1.000
39109 AuctionOffer 1.000 1.000 0.000 1.000
9915 Action 1.000 1.000 1.000 1.000
9578 CompSecDollar 1.000 1.000 1.000 1.000
39079 StockAssetOps 0.000 0.000 0.000 1.000
39076 GroupedStockAsset 1.000 1.000 1.000 1.000
246506 $anon 0.500 0.500 0.500 1.000
10463 ToSeller 0.000 0.000 0.000 0.250
10242 TextField 1.000 1.000 1.000 1.000

83

10378 AutoTrades 0.500 0.500 0.500 0.250
9942 OK 1.000 1.000 0.000 1.000
11056 ColonEq 1.000 1.000 1.000 1.000
9510 package 0.000 0.000 0.000 0.100
9521 RWTwitter 1.000 1.000 1.000 1.000
256492 Stuff 1.000 1.000 1.000 1.000
39019 NoSuchPortfolio 1.000 1.000 1.000 1.000
39059 NewUser 1.000 1.000 1.000 1.000
10247 NumberField 1.000 1.000 1.000 1.000
9503 ShortThrowableRenderer 1.000 1.000 1.000 1.000
10203 UnitProcessable 1.000 1.000 0.000 1.000
10877 AddToDerivative 1.000 1.000 1.000 1.000
10204 Submit 1.000 1.000 1.000 1.000
39107 AuctionOffer 1.000 1.000 1.000 1.000
9719 GetPortfolio 1.000 1.000 1.000 1.000
9821 Dividend 1.000 1.000 1.000 1.000
167813 Bid 1.000 1.000 1.000 1.000
10113 PortfolioSwitcher 0.000 0.000 0.000 0.333
9519 Twitter 1.000 1.000 1.000 1.000
9607 Link 1.000 1.000 0.000 1.000
9949 Failed 1.000 1.000 1.000 1.000
39012 NoSuchAuction 1.000 1.000 1.000 1.000
11028 FormattedSecurities 1.000 1.000 1.000 1.000
256512 $anon 1.000 1.000 1.000 1.000
10310 CaseRender 1.000 1.000 1.000 1.000
10940 UserField 1.000 1.000 1.000 1.000
59575 $anon 1.000 1.000 0.000 1.000
39004 NotEnoughShares 1.000 1.000 1.000 1.000
39125 Bought 1.000 1.000 1.000 1.000
10167 ListField 0.000 0.000 0.000 0.250
10774 SearchBar 0.087 0.209 0.048 0.136
149581 $anon 1.000 1.000 0.000 1.000
10092 OpenIDLogin 0.000 0.000 0.000 0.250
39058 IsNewUser 1.000 1.000 1.000 1.000
10311 CaseChoices 1.000 1.000 1.000 1.000
39027 NoSuchComment 1.000 1.000 1.000 1.000
10262 DateField 1.000 1.000 1.000 1.000
142543 Auth 1.000 1.000 1.000 1.000
142556 serviceInProgress 1.000 1.000 1.000 1.000
39149 Closed 1.000 1.000 1.000 1.000
39212 DividendPayment 1.000 1.000 1.000 1.000
10997 voteControls 0.000 0.000 0.000 0.467
151983 $anon 1.000 1.000 0.000 1.000
9657 SchemaErrors 0.000 0.000 0.000 1.000
10252 IntField 1.000 1.000 0.000 1.000
9634 Scale 0.000 0.000 0.000 0.500
38969 Delete 1.000 1.000 1.000 1.000
9575 CompSecStock 1.000 1.000 1.000 1.000
10870 StockOrder 1.000 1.000 1.000 1.000
157348 $anon 1.000 1.000 0.000 1.000
39073 StockPurchase 1.000 1.000 1.000 1.000
39017 NoSuchUser 1.000 1.000 1.000 1.000
39094 DerivativeLiability 1.000 1.000 0.000 1.000
10874 BuyShares 1.000 1.000 1.000 1.000
39044 User 0.000 0.000 0.000 1.000
10825 SellThisStock 1.000 1.000 0.000 1.000
10542 DollarsField 1.000 1.000 1.000 1.000
10158 AggregateField 0.667 0.500 0.333 1.000
9570 CondAlways 0.000 0.000 0.000 1.000
9659 NotFound 1.000 1.000 0.000 1.000
142550 returnTo 1.000 1.000 1.000 1.000
9547 CommentSchema 1.000 1.000 1.000 1.000
38950 Transaction 1.000 0.750 0.750 0.250
10721 Refreshable 0.000 0.000 0.000 1.000
108978 Entry 1.000 1.000 1.000 1.000
10257 BooleanField 1.000 0.500 0.500 1.000
157238 $anon 1.000 1.000 1.000 1.000
10467 DerivativeOrder 1.000 1.000 1.000 1.000
11032 FormattedSecurity 1.000 1.000 1.000 1.000
10318 DependentListRender 1.000 1.000 1.000 1.000
9980 parser 0.000 0.000 0.000 1.000
9987 ConsoleTest 1.000 1.000 0.000 1.000

84

9918 GetInfo 1.000 1.000 1.000 1.000
9917 Portfolio 1.000 1.000 0.000 1.000
10171 DependentListField 0.500 1.000 0.500 1.000
9946 StringResponse 1.000 1.000 1.000 1.000
10313 ItemRender 1.000 1.000 1.000 1.000
9568 Condition 1.000 1.000 1.000 1.000
9609 Transactions 0.000 0.000 0.000 0.125
10933 TestForm 1.000 1.000 0.000 1.000
9603 KL 1.000 1.000 0.000 1.000
10599 Offers 0.000 0.000 0.000 0.500

8.3.1 Decisions that were made about how to calculate the metrics

Fernandez and Peña do not say explicitly whether in the following situtaion method foo() references attribute
x [SCOM]:

class A {
var x: Int = _
def foo() = bar()
def bar() = x

}

Because Scala wraps almost all attributes in accessor methods, even internally, these metrics would make
little sense unless foo() is considered to reference bar().

Another question is, What is an atttribute? The following decisions were made:

Member attribute? Why?
var yes Exact analog of a Java instance variable
concrete val no Cannot change
abstract val yes Value depends on where it is made concrete
def no This is a method

8.3.2 Problems with OO cohesion metrics for Scala code

The biggest problem with these metrics is that in Scala it is common (and good practice) to have classes
with no methods at all; that act merely as a container for multiple fields [ADTs].

Another problem is that it is common (and also good practice) to abstract methods out into traits
which contain no fields. Hence a large number of Scala classes contain only fields and no methods, or only
methods and no fields.

CAMC suffers from the fact that Scala types tend to be more complicated than types in other OO
languages, so it is harder for two types to be equal.

These three facts result in the following histograms:

85

Histogram of met$SCOM

met$SCOM

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

86

Histogram of met$CC

met$CC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

87

Histogram of met$LSCC

met$LSCC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

88

Histogram of met$CAMC

met$CAMC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

Most classes either fall to 0 or 1, with only a few in the middle. Further more it is not clear that those
that fall to 0 (classes with no methods) are really bad -- they would be bad Java classes but they are good
Scala classes.

It is good to see the above histograms before looking at the below trellis graphic, because otherwise the
trellis graphic makes the metrics look more appropriate than they really are:

89

SCOM

0.0 0.2 0.4 0.6 0.8 1.0

●●●●●

●

●●●

●

●

●●

●●●●●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●

●●

●●●

●

●●●

●

●●●●●●●●●●

●

●

●●●

●●●●●●●●●●●●

●

●

●●●

●

●● ●●●●●●●●●●●●●

●

●●●●●

●

●●

●●

●●

●

●●

●

●●●●

●

●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●●

●●●●●●●●●●●●

●

●●●●

●

●●●●

●●

●●●●●●

●

●

●

●●

●●●

●●●●●●●●●●●●●●●●●

●●●

●

●●

●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●●

●

●

●

●●

●●

●●●

●

●●

●
●●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●●●●

●

●● ●●●●

●

●●●

●

●●●

●

●●

●

●● ●●●

●

● ●●

●

●

●●

●●●● ●●●

●

●● ●●●● ●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●● ●

●

●●●●●●●

●

●

●

● ●●●●●

●●

● ●●

●

●●●

●

●●●●● ●●●●●

●

●

●●●

●● ●●●●● ●●●●●

●

●

●●●

●

● ● ●● ●● ●●●● ●●●● ●

●

●●● ●●

●

●●

●●

●●

●

●●

●

●●●●

●

●● ●●●

●

●●●

●

●● ●●●●

●

●

●

●

●

●

●

● ●

●●●

●●●● ●●●●● ●● ●

●

●●●●

●

●● ●●

●●

●●●●●●

●

●

●

●●

●●●

● ●●●●● ●●●●●●●●● ●●

●●●

●

●●

●●

●

● ●● ●●●● ●●●

●

●●● ●● ●

●●

● ●● ●

●

●

●

●●

●●

●●●

●

●●

●
●●

●●

●

●

●

●●●●●

●

●●● ●

●

●● ●● ●●●●

●

●

●●

● ●●

●

●

●

●

●

●

● ●

●

●●●●●●● ●●●●●●

●

●● ●●●●●●● ●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●● ●●● ●

●

● ●

●

●

● ●●●

●

●● ●●●●

●

● ●●

●

●●●

●

●●

●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●

●

●●●

●

●

●●

● ●●●●●●

●

●●●●●●● ●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●

● ●

●●●

●

● ●●

●

●●●● ●●●●●●

●

●

● ●●

●●●●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●●● ●

●

●●

● ●

●●

●

●●

●

●●●●

●

●●●●●

●

●●●

●

●●●● ●●

●

●

●

●

●

●

●

●●

●●●

●●●●●●●●●●●●

●

●● ●●

●

●●●●

●●

●●●●●●

●

●

●

●●

●● ●

●●●●●●●●●●●●●●●●●

● ●●

●

●●

●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●●

●

●

●

●●

● ●

●● ●

●

●●

●
● ●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●●●●

●

●●●●●●

●

●●●

●

●●●

●

●●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●

●

●●●

●

●

●●

●●●●●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●

●●

●●●

●

●●●

●

●●●●●●●●●●

●

●

●●●

●●●●●●●●●●●●

●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●

●●

●●

●

●●

●

●●●●

●

●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●●

●●●●●●●●●●●●

●

●●●●

●

●●●●

●●

●●●●●●

●

●

●

●●

●●●

●●●●●●●●●●●●●●●●●

●●●

●

●●

●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●

●

●

●

●

●●

●●

●●●

●

●●

●

●●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●●●

●

●

●

●

●●●●

●

●●●● ●●●

●

●●

●

CC

●● ●●●

●

● ●●

●

●

●●

●●●● ●●●

●

●● ●●●● ●●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●● ●

●

●●●●●●●

●

●

●

● ●●●●●

●●

● ●●

●

●●●

●

●●●●● ●●●●●

●

●

●●●

●● ●●●●● ●●●●●

●

●

●●●

●

●

●

●● ●● ●●●● ●●●● ●

●

●●● ●●

●

●●

●●

●●

●

●●

●

●●●●

●

●● ●●●

●

●●●

●

●● ●●●●

●

●

●

●

●

●

●

● ●

●●●

●●●● ●●●●● ●● ●

●

●●●●

●

●● ●●

●●

●●●●●●

●

●

●

●●

●●●

● ●●●●● ●●●●●●●●● ●●

●●●

●

●●

●●

●

● ●● ●●●● ●●●

●

●●● ●● ●

●●

● ●●

●

●

●

●

●●

●●

●●●

●

●●

●

●●

●●

●

●

●

●●●●●

●

●●● ●

●

●● ●● ●●●●

●

●

●●

● ●●

●

●

●

●

●

●

● ●

●

●●●●●●● ●●●●●●

●

●● ●●●●●●● ●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●● ●●● ●

●

● ●

●

●

● ●●

●

●

●

●

●●●●

●

● ●● ● ●●●

●

●●

●

●●●●●

●

●●●

●

●

●●

● ●●●●●●

●

●●●●●●● ●

●

●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●

● ●

●●●

●

● ●●

●

●●●● ●●●●●●

●

●

● ●●

●●●●●●●●●●●●

●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●●●● ●

●

●●

● ●

●●

●

●●

●

●●●●

●

●●●●●

●

●●●

●

●●●● ●●

●

●

●

●

●

●

●

●●

●●●

●●●●●●●●●●●●

●

●● ●●

●

●●●●

●●

●●●●●●

●

●

●

●●

●● ●

●●●●●●●●●●●●●●●●●

● ●●

●

●●

●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●

●

●

●

●

●●

● ●

●● ●

●

●●

●

● ●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●●●

●

●

●

●

●●●●

●

●●●●●●●

●

●●

●

●●

●●●

● ●

●●

● ●●●

●●

●●

●●●

● ●●

●●

●●

●●

●

●●●

●

●●●●●●●●●●●

●●●●

●

●

●

●

●

●

● ●●

●

●

●●●●●●●

●

●

● ●

●●●●

●●● ●

●●

●

●●●

●

●●●●

●

●●●●

●● ●●●● ●●

●●●

●●

●●●●●

●

●

●●

●● ●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●

●●

●●

●●

●●

●

●●

● ●●●●● ●●

●●

●●

●●●

● ●●

●●●●

●

●

●

●

●

●

● ●

●

●●●

●●●

●

●●●●

●

●

●

●

●

●●●●

● ●●

●●

●●

●●●●

●●●

●

●

●●

●●● ●

●●●●

●

●●●●●●●●

●

●●

●●● ●●●

●●

● ●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●● ●

●

●

●

●

●●

●●

●●

●●

●● ●●
●

●●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●●

●
●

●●

●●●●●●●●

● ●● ●●

●●●

●

●●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●●●●

● ●

●

●

●

●●●

● ●●● ●●

●●●

● ●

●●

● ●●●

●●

●●

●●●

● ●●

●●

●●

●●

●

●●●

●

●●●●●●●●●●●

●●●●

●

●

●

●

●

●

● ●●

●

●

●●●●●●●

●

●

● ●

●●●●

●●● ●

●●

●

●●●

●

●●●●

●

●●●●

●● ●●●● ●●

●●●

●●

●●●●●

●

●

●●

●● ●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●

●●

●●

●●

●●

●

●●

● ●●●●● ●●

●●

●●

●●●

● ●●

●●●●

●

●

●

●

●

●

● ●

●

●●●

●●●

●

●●●●

●

●

●

●

●

●●●●

● ●●

●●

●●

●●●●

●●●

●

●

●●

●●● ●

●●●●

●

●●●●●●●●

●

●●

●●● ●●●

●●

● ●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●● ●

●

●

●

●

●●

●●

●●

●●

●● ●●
●

●●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●●

●
●

●●

●●●●●●●●

● ●● ●●

●●●

●

●●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●●●●

● ●

●

●

●

●●●

● ●●●

LSCC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●

●●●

● ●

●●

● ●●●

● ●

●●

●●●

● ●●

●●

●●

● ●

●

●●●

●

●●●●●●●●●●●

●●●●

●

●

●

●

●

●

● ●●

●

●

●●●●●●●

●

●

● ●

●●●●

●● ● ●

●●

●

● ●●

●

●●●●

●

●●●●

●● ●● ●● ●●

●●●

●●

●●●●●

●

●

●●

●● ●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●

●●

●●

● ●

●●

●

●●

● ●●●●● ●●

●●

●●

●●●

●●●

●● ●●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●●●●

●

●

●

●

●

●● ●●

● ●●

●●

●●

●●●●

●●●

●

●

●●

●● ● ●

●●●●

●

●●●●●●●●

●

●●

● ●● ●●●

●●

● ●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●● ●

●

●

●

●

●●

●●

● ●

●●

●●●●
●

● ●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●●

●
●

●●

●●●●●●●●

● ●●●●

●●●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●●

●●

●

●

●

●●●

● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●● ●●●

●

● ●

●

●●●

●

●●●●●●●● ●

●

●●●●●●

●

●

●●●

●
●

●●● ●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●● ●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●● ●●

●

● ●●

●

●●

●

●●●●

●

●●●●●

●

●●●● ●●●

●

●●

●

●

●

●● ●● ●●

●

●
●

●●●●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●

●●●●●●● ●

●

●●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●●

●

● ●

●

●● ●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●● ●●● ●●●● ●●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●● ●

●

●●●●●●●●● ●●●● ●●●

●

● ●●●●●●● ●●●● ●●●

●

●●

●

●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●● ●●●

●

● ●

●

●●●

●

●●●●●●●● ●

●

●●●●●●

●

●

●●●

●
●

●●● ●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●● ●●●

●

●● ●●●●●●●●●●●●●

●

●●●

●

●● ●●

●

● ●●

●

●●

●

●●●●

●

●●●●●

●

●●●● ●●●

●

●●

●

●

●

●● ●● ●●

●

●
●

●●●●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●

●●●●●●● ●

●

●●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●●

●

● ●

●

●● ●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●● ●●● ●●●● ●●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●● ●

●

●●●●●●●●● ●●●● ●●●

●

● ●● ●●●●● ●●●●●●●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

●● ●●●

●

● ●●

●

●●●

●

●●● ●●●

●

●● ●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●● ●● ●

●

● ●

●

●● ●

●

●●●●●●●● ●

●

● ●●●●●

●

●

● ●●

●
●

●●● ●●●

●

● ●●●●●

●

●

●

●

●

●● ●●●●● ●●●●●●● ●●●

●

● ● ●● ●● ●●●● ●●●● ●

●

●●●

●

●● ●●

●

● ●●

●

●●

●

●●●●

●

●● ●●●

●

●●●●●● ●

●

●●

●

●

●

●● ●●● ●

●

●
●

●●●● ●●●●● ●● ●

●

●

●

●

●

●

●● ●●

●

●

●●●●●●● ●

●

●●●

●

●

● ●●●●● ●●●●●●●●● ●●

●

●

●

●●

●

●●

●

● ●● ●●●● ●●●

●

●●● ●● ●●

●

● ●●

●

●

●

●

●●

●

● ●

●

●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●● ●

●

●● ●● ●●●●● ●●●● ●●● ●●

●

●

●

● ●

●

●●●●●●● ●●●●●●

●

●● ●●●●●●● ●●

●

●

●

●

●●●●●●●●

●

●●●

●

●●●● ●●● ●●● ●●●● ●●

●

● ●● ●●●●●● ●● ● ●●●

●

●●

● CAMC

Most of the metrics corellate well with each other, except CAMC, which is all over the place.

8.4 Evaluating the cohesion of functional code
We do not know how to give a metric nor or we sure that a numerical metric is the right approach, but we
have some ideas on what makes functional code more or less cohesive.

8.4.1 Why OO metrics do not work well for functional code

OO metrics do not work well with functional code because they do not give good answers for the following
pattern:

case class Point(x: Double, y: Double)

90

def dist(p1: Point, p2: Point): Double = ...

That is, defining classes that only hold fields, and then defining methods outside of those classes. This is
common in functional programming [Data]. Scala does incorporate OO, but this pattern is still too common
(in our experience) to make OO metrics useful, which would consider the fields of Point to be unconnected
[SCOM].

Another pattern that OO metrics have trouble with is:

def diff(f: Double=>Double) = { (x: Double) =>
(f(x + 1e-5) - f(x)) / 1e-5

}

There is a context being created, in which the variable f is visible, almost as if you defined a class like:

class Diff {
val f: Double=>Double

def apply(x: Int) = (f(x + 1e-5) - f(x)) / 1e-5
}

(For many good examples on this pattern see [SICP1]).
OO metrics act as if the only creator of context is a class [SCOM], but in functional programming this

is often not true, as above.

8.4.2 Thinking in terms of statements and proofs

The Curry-Howard Isomorphism relates types and data in a programming language to logical statements
[CurryHoward]:

• A type corresponds to a statement.

• A value corresponds to a proof of the statement of its type.

A function with input type A and output type B has a type written A => B which is taken to mean “A
implies B” [CurryHoward]. So the actual function (ie the value):

def foo(a: A): B = ...

can be thought of as the proof that A implies B. So A is the hopethesis in the proof, and B is the conclusion.
This gives us a way to describe (not quite define, unfortunately) an idea which we will use to describe

cohesion. Say we have a function defined like:

def foo(x: String, y: Int): Int = y * 2

This has type:

(String, Int) => Int

(the product type (String, Int) is analogous to “and” [CurryHoward]).
So our hypothesis is “String and Int”, but in the proof we only use Int. So we have made an unnecessary

assumption. And you can see just by looking that the x argument to foo is superfluous.
So, this gives us a way to say whether a function has superfluous arguments. But that was already

obvious, because you don’t usually write functions with unneeded arguments anyway: you have to make a
conscious effort to put in the x argument, and if it’s really unnecessary you wouldn’t add it in the first place.

But there is another place where hypotheses come from: enclosing scopes. Consider the curried form
[Currying] of foo:

91

def foo(x: String) = {

def bar(y: Int) = y * 2

bar _
}

Inside foo we define a function bar, and then return that function.
What is not so obvious, and easy to miss in actual code, is that bar could refer to x if it so desires:

def foo(x: String) = {

def bar(y: Int) = x

bar _
}

but it doesn’t. This means the assumptions (“String”) introduced by the enclosing context are not
needed in the proof of bar.

There are other ways that unneeded hypotheses can sneak in. Consider:

case class Point(x: Int, y: Int)

def projectX(p: Point): Int = p.x

Point is a product type (See Product Types), but projectX uses only one field of the product. A more
cohesive design would be:

trait HasX { val x: Int }
case class Point(x: Int, y: Int) extends HasX

def projectX(h: HasX) = h.x

Or, directly using Scala’s structural types [Struct]:

case class Point(x: Int, y: Int)

def projectX(p: {val x: Int}) = p.x

8.4.3 Evaluating cohesion

Say we want to evaluate the cohesion of the previous code:

def foo(x: String) = {

def bar(y: Int) = y * 2

bar _
}

We would say that the scope created by foo has extra things in it that do not belong there, because they
make no use of that scope in their code. A more cohesive version is:

def bar(y: Int) = y * 2

In this sample of code from PitFail (model/auctions.scala ref_823):

92

trait PortfolioWithAuctions {
self: Portfolio =>

def auctionOffers: Seq[AuctionOffer] = schema.auctionOffers where
(’offerer ~=~ this) toList

def userCastBid(auction: AuctionOffer, price: Dollars) = editDB {
if (price <= auction.goingPrice)

throw BidTooSmall(auction.goingPrice)

(
AuctionBid(offer=auction, by=this, price=price).insert

& Bid(this, auction, price).report
)

}
}

we see that userCastBid has auctionOffers in scope, but never uses it. We could break it up like:

trait PortfolioWithAuctions
extends PortfolioWithAuctionOffers
with PortfolioWithBids

trait PortfolioWithAuctionOffers {
self: Portfolio =>

def auctionOffers: Seq[AuctionOffer] = schema.auctionOffers where
(’offerer ~=~ this) toList

}

trait PortfolioWithBids {
self: Portfolio =>

def userCastBid(auction: AuctionOffer, price: Dollars) = editDB {
if (price <= auction.goingPrice)

throw BidTooSmall(auction.goingPrice)

(
AuctionBid(offer=auction, by=this, price=price).insert

& Bid(this, auction, price).report
)

}
}

so userCastBid is now more restrictively typed.

8.4.4 Can you assume too little?

We talked about assuming too much, but is it possible to assume too little?
It is possible, if there are holes in your code [CurryHoward] such as exceptions, infinite loops [Iry1] or

incomplete case expressions [CurryHoward]. These are regarded in functional programming as a Bad Thing
[Iry2] and people already avoid them.

93

9 Customer Statement of Requirements
Investors today are seeking more effective financial tools that not only motivates them to invest in the stock
market and improve their decision making skills but also an application that is interesting enough to keep
using. Our goal is to build a system that is less focused on simulation than on playing a game. Existing
trading simulations mimic the inconveniences of trading stocks on real markets; while this might help future
traders to practice, it is out of place for the typical internet user. PitFail’s philosophy is that the market
for trading practice is already well-handled by games such as Investopedia. PitFail instead believes that it
is more important to teach theory than mechanics. In contrast with the existing alternatives, PitFail offers
number of differentiating features: while the core program centers around buying and selling of liquid assets
(stocks, options; anything with available market prices), PitFail aims eventually to users to trade directly
with each other in non-liquid assets such as derivatives. To achieve a low-threshold for getting in to the
game, PitFail may be played using users’ existing accounts (such as Twitter, smart phones or Facebook)
with essentially no setup.

PitFail creates a virtual stock world, creating a network of stock investors, through which they trade
real-world stocks without the risk of losing real money. Unlike existing trading simulations, PitFail does not
require the players to go through a time-consuming registration process. Players can login to the system
using their existing e-mail addresses and the system remembers the players for their next use. As such,
PitFail requires essentially no commitment and it is easy for players to get started. Initially, the player is
given a fixed amount of startup funds and uses these funds to buy virtual stocks.

You could take a trading game different ways -- Investopedia, which is excruciatingly tied to the real
world, or Neopets which is isolated and pristine -- but the nice thing about capitalism is that we can play
with any rules, so long as they’re consistent. But so many (all that I’m aware of) of the games that have
been written so far left out something so important: you can’t enter (enforced) contracts with other players.

It’s not a trivial detail -- if you can’t enter contracts, you can’t turn intangible ideas into assets -- ie,
you can’t commoditize all the things you might like to commoditize (well, maybe you can if that’s nothing).
There’s a good reason they don’t do this, of course: to enforce contracts you either need a legal system
(doable -- Wikipedia has one, but a serious impediment still) or contracts that a computer can enforce.
PitFail makes a compromise -- users can enter into contracts (in the form of derivatives), but the rules are
reduced to a simple set that the system can enforce, yet that can be combined creatively by the players.

This adds a new aspect to the game -- illiquidity. The PitFail stock exchange is simulated as a perfectly
efficient, perfectly liquid market. This is of course unrealistic -- in the real world, trading volume is finite,
trades are not made constantly, not all trades are made at the marginal price. Alas, it would be hard for
PitFail to simulated illiquidity in stocks -- unless we have access to an actual massive population of traders,
it would be simply too illiquid to be worth playing.

There are many options for a player to choose from once he/she logs in:

1. Player can join a team (a small group of already registered players). Once player joins a team,
the player will buy/sell/compete with other players/teams using collective portfolio of the team.

2. Player can join a league (a group of already registered players) where the members of a league
compete with each other using their individual portfolio.

3. Player can play in the “Global League” which includes all players.

When the player trades and builds a portfolio, the system should have access to real-time stock infor-
mation and should adjust the value of a player’s investments based on this real time stock info. PitFail
retrieves actual stock prices from a third-party source Yahoo! that monitors stock exchanges and maintains
up-to-date (though delayed) stock prices. If the corresponding actual stock loses value on a real-world stock
exchange, the player’s virtual investment loses value equally. Likewise, if the corresponding actual stock
gains value, the player’s virtual investment grows equally.

As a game, a crucial part of the application is maintaining player portfolio. The application provides
every player with portfolio to view his or her history and modify his or her current investments (i.e. currently

94

owned stocks and derivatives). In addition to the securities currently owned by the player, the player is able
to view a few summary statistics about their portfolio, such as a history of net worth over time, and an
indication of which assets have increased in value since their purchase. What the player ultimately cares
about, of course, is net worth in the future -- that’s what they are trying to optimize. We can’t tell them
that, of course, nor should we, since it’s the whole point of playing the game. We should even be careful
in categorizing assets by change in value -- users will of course purchase assets that perform oppositely to
hedge risk. Basically, we don’t want to decide strategy for the player; we want to give them information and
let them decide strategy.

To add a flavor of a game, players can monitor each other’s progress by viewing a feed of recent activity
and browsing leader boards. PitFail also offers aggregate feeds of recent activity. This allows a group of
people to keep abreast of their friends’ or enemies’ activities. Remember, this is not real personal information
we’re talking about -- we’re willing to sacrifice privacy (if you can call it that) for a competitive spirit. PitFail
provides the players with the ability to comment on other’s trades when browsing recent activity or viewing
another user’s portfolio. These comments make players feel involved and part of a larger community. One
additional feature PitFail provides is the ability for players to “upvote” and “downvote” trades based on
their opinion of trade. PitFail can then rank users and assign status symbols (e.g. badges) to users with the
strongest ability to vote predictively. Of course, predicting is only so good if you can’t make good trades
yourself -- but it’s interesting to see both rankings nonetheless. This type of ranking appears to be unique
to PitFail. Another feature that appears to be unique to PitFail is that it allows users to design their own
securities (i.e futures or options) , thus creating new financial products. Even without a court system to
enforce complex contracts, custom securities allow PitFail’s users to a new financial environment.

As mentioned, PitFail can be accessed via a website, Twitter, Facebook, or an Android application. Each
of these methods have their own purposes. As financial trades are compact and atomic and that they can
be expressed through small messages, PitFail provides a Twitter and Facebook interfaces where players can
buy/sell securities by tweeting to a particular account/ writing post on Facebook account wall . Twitter and
Facebook provide a familiar interfaces to use the system. Also, as no registration is required which makes it
easy to use. PitFail can also be accessed via a website that offers additional set of features (In addition to all
of the functionality provided by the Twitter interfaces): like view portfolio, design custom securities, interact
socially with other users and play against or in co-operation (teams/leagues) with other users. Also, website
helps to generate some advertising revenue, making it desirable to attract users to the PitFail website by
offering features that are not possible via Twitter/Facebook. Android interface provides features that are
similar to that of the website, with the addition of notifications to the user when some event occurs within
PitFail.

The motivation for implementing teams/leagues comes from the apparent fact that most (perhaps all)
trading games target students and teachers as their principal user base, suggesting this accounts for most
of the people who actually play these games. While PitFail is mostly seeking a different niche -- the casual
online player -- the classroom market is too big to ignore completely, hence a feature that makes it possible
for students to play against each other in a league.

Below is the list of customer requirements:

1. REQ-1 Stock Market Simulator Website: Investors are looking for an effective tool that allows
users to invest and learn without having to invest real money and also allows them to interact
with other users more effectively to make the game really enjoyable.

2. REQ-2 Android Application: Mobile users who like having native applications can use such
system with quick access.

3. REQ-3 Access via Twitter/Facebook: Users who heavily use social networks like Face-
book/Twitter can connect to PitFail easily.

4. REQ-4 Simple User Interface: Users are looking for simple interface that welcomes new users
and guides the new user through portfolio management.

95

5. REQ-5 Zero-Configuration Setup: Users should not have to set any settings or explicitly create
an account to begin playing.

6. REQ-6 Updated Stock Information: Application should present stock symbols, company names,
stock history, updated stock values and prices amongst other details.

7. REQ-7 Basic Trading: Users should be able to buy and sell stocks whose values change over
time.

8. REQ-8 Large, Liquid, Efficient Market: The simulated “exchange” should present the illusion
of a large, liquid and efficient market -- stocks are traded constantly, at marginal price, and each
individual trade is small compared to the total trading volume.

9. REQ-9 Relation to the outside world: The values of stocks should be in some way related to the
outside world so that users have information to base trading decisions on.

10. REQ-10 Player Portfolio: Each player must have separate portfolio that gives him/her option
to buy/sell new securities, view currently owned securities.

11. REQ-11 Evaluate Portfolios: Securities owned by each player should be periodically evaluated
and should be updated to their current value.

12. REQ-12 Advertisements: The website must contain appropriate and interesting advertisements
relating to finance and stock

13. REQ-13 Coordinators for Supervision: Users must be able to create their own leagues.

14. REQ-14 Summary Statistics: The website should provide users with a few summary statistics
about their portfolio -- aggregate value over time, which securities have increased in value. The
website shouldn’t usurp the role of deciding strategy for the player; only the most basic of stats
should be displayed.

15. REQ-15 Voting: players should be able to up/down-vote each other’s trades. Vote tallies should
be visible to other users.

16. REQ-16 Commenting: players should be able to comment (via the website -- you can already
comment on anything via Twitter) on each other’s trades. Comments should be visible to all
users.

17. REQ-17 Moderation: There should be at least a minimal degree of comment moderation so
blatantly offensive comments can be removed.

18. REQ-18 Designing Derivatives: Players should be able to enter into contracts with each other
that will be enforced by the PitFail system.

19. REQ-19 Guided designing of derivatives: The website should guide players into common formats
for derivatives to make it easier for new players to figure out.

20. REQ-20 Rankings: On the website players should be able to see rankings of all players by
portfolio value (liquid assets only), and by voting score.

10 Functional Requirements Specification
10.1 Actors and Goals

• A Web Player (or WebPlayer) is a player who interacts with the game via the web browser interface.
The web interface also provides access to the command based interface.

96

– Buys and Sell Stocks.
– View and Modify Portfolio.
– Create League.
– Participate in Leagues.
– Wants to effectively administer the tournament to provide either a learning experience to the

players, or, alternately, an enjoyable experience to the players.

• An Administrator is a WebPlayer who is designated as having administrator control of a league. This
control allows the Administrator to invite addition players to the league.

– Invites players to a league.
– Wants to increase participation in their league or add the set of players the league is intended for.

• A Twitter Player (or TwitterPlayer) is an indirect player who interacts with the game via the Twitter
actor. They are the originator of the commands received from the Twitter actor.

– Buys and Sells Stocks
– Examines their portfolio

• A MobilePlayer is a player who interacts with the game via the Android interface. This actor contains
has limited use cases compared to a Web Player.

– Buys and Sells Stocks
– View Portfolio
– Participate in Leagues

• The database is the store for all persistent data on interactions with the system. It stores data regarding
all user portfolios and the association of authentications with users.

• A stock information provider is a supplier of stock pricing data for the present (within the margin of
some minutes). They are queried for all data regarding actual market numbers. Currently, Yahoo is
the stock information provider (via its Yahoo Finance API).

• Authentication providers allow us to uniquely identify users and associate some stored state with their
unique identification.

• Twitter is utilized both as a authentication provider (for all players) as well as an interface to the
service. This actor provides a stream of text based commands from the indirect actor Twitter Player.

97

10.2 Use Cases

View Portfolio (UC-4)

View League Stats (UC-6)

Sell (UC-2)

Remove Coordinator (UC-14)
Modify League Settings (UC-12)

Manage League (UC-16)

<<extend>>

<<extend>>

Make League (UC-11)

Get Security Details (UC-5)

Get Portfolio Info (UC-9)

Delete League (UC-15)

<<extend>>

Create User (UC-19)

Change Default League (UC-10)

Buy (UC-1)

Authentication (UC-18)

<<include>>

<<include>>

Add Coordinator (UC-13)

<<extend>>

Web Player

<<initiates>>

<<initiates>>

<<initiates>>

Twitter

<<initiates>>

<<initiates>>

Stock Info Provider

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

Database

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<participates>>

Coordinator

<<initiates>>

Authentication Provider

<<participates>>

<<initiates>>

<<initiates>>

<<initiates>>

<<participates>>

Invite to League (UC-17)

<<extend>>

<<participates>>

Buy via Twitter (UC-7)

Sell via Twitter (UC-8)

<<initiates>>

<<initiates>>

TwitterPlayer

<<participates>>

<<participates>>

<<participates>>

<<participates>>

<<include>>

<<include>>

<<include>>

<<include>>

<<participates>>

<<include>>

<<include>>

<<include>>

Vote (UC-20)

Vote by Twitter (UC-21)

Design Derivative (UC-22)

Accept Derivative (UC-23)

<<participates>>

<<initiates>>

<<include>>

<<initiates>>

<<participates>>

<<participates>>

<<include>>

<<initiates>>

<<participates>>

<<include>>

<<initiates>>

<<participates>>

<<include>>

Figure 85: A diagram of use cases and actors showing interactions and relationships.

10.2.1 Listing of Use Cases

1. Buy, Actor: WebPlayer, TwitterPlayer, MobilePlayer Purchases a security from the market at
the price listed by the designated market makers.

2. Sell, Actor: WebPlayer, TwitterPlayer, MobilePlayer Sells a held security at the price listed by
the designated market makers.

3. View Portfolio, Actor: WebPlayer, TwitterPlayer, MobilePlayer Allow the initiating actor to
examine the contents of their portfolio. Information regarding their current assets and liabilities
as well as how they have been progressing over time may be displayed.

4. View League stats, Actor: WebPlayer. Display information regarding the entire league including
a listing of all portfolios, graphs of the top portfolios, and the distribution of stocks held by the
top portfolios

5. Invite to League, Actor: WebPlayer. Send an invitation to a player to join a league of which the
actor is an administrator.

6. Create League, Actor: WebPlayer. Create a new league with the creator as the administrator.

98

7. Accept or Decline League Invitation, Actor: WebPlayer. Acceptance of an outstanding invitation
allows the initiating actor to create portfolios within the league the invite was dispatched from.

8. Create Portfolio, Actor: WebPlayer, MobilePlayer Creates a new portfolio associated with a
particular league. This portfolio is created with the cash value indicated by the league in which
it is created.

9. Get Security Details, Actor: WebPlayer, TwitterPlayer. Display information regarding a partic-
ular security (stock or bond) such as historical trends and statistics.

10. View Portfolio, Actor: WebPlayer. Display the contents of one of the initiating actor’s portfolios.
This includes a listing of assets and liabilities, and graphs showing the change in portfolio value
over time.

11. Create Initial Portfolio, Actor: WebPlayer, TwitterPlayer. On the initiation of an action by the
player, a default portfolio is created for them within the default league.

12. Authentication, Actor: WebPlayer. The initiating actor authenticates to the server via an exter-
nal authentication provider. Twitter is the current supported authentication provider. Authenti-
cation for the TwitterPlayer is provided external to our system.

12. Vote, Actor: WebPlayer The initiating actor votes on a particular trade, investing from a portfolio
in that trade being successful or unsuccessful.

13. Comment, Actor: WebPlayer The initiating actor adds a globally visible snippet of text to an
’event’ (a trade occurred, a derivative was offered, et c.) within the system.

14. Create Derivative, Actor: WebPlayer

15. Bid on Derivative, Actor: WebPlayer This is a part of the public auction system. The initiating
actor places a particular cash value bid on a derivative currently in public auction.

17. Execute Derivative, Actor: WebPlayer On derivatives that allow it, this causes the early evalua-
tion of the derivative’s terms.

18. Close an Offer, Actor: WebPlayer Close an offer at auction, confirming the sale to the highest
bidder.

19. Accept or Decline a pending offer, Actor: WebPlayer When a direct offer of a derivative is made
to a portfolio controlled by the initiating actor, the actor must accept or reject this offer (or leave
it outstanding, cluttering the interface to some extent).

20. Open Buy Order, Actor: WebPlayer Create an order for the purchase of a particular amount of
a particular security at a particular dollar value per share (a limit order).

21. Open Sell Order, Actor: WebPlayer Create an order for the sale of a particular amount of a
particular asset (a held security) at a particular dollar value per share (another limit order).

22. Cancel a Buy or Sell Order, Actor: WebPlayer When a Buy or Sell order is placed via the Buy or
Sell use case, the orders are kept alive indefinitely unless canceled. A user who wishes to remove
orders which they no longer want active will cancel the order.

99

10.2.2 Fully Dressed Use Cases

10.2.2.1 UC-1: Buy

Related Requirements: REQ-1, REQ-2, REQ-6, REQ-7, REQ-8, REQ-9

Initiating Actor: Any of: WebPlayer, TwitterPlayer, MobilePlayer

Actor’s Goal: To purchase a security from the market, to add it to his portfolio, and see his updated
portfolio.

Participating Actors: Database, Stock Information Provider.

Preconditions: The user should have logged in.

Postconditions: The user needs to be able to see his purchased security in his portfolio and track the
progress of the security in his portfolio until he “SELLS” it.

Flow of Events for Successful Buy:

1. → The Player, WebPlayer, or TwitterPlayer determines a Security and how much of it to
“BUY”. This is sent to the System

2. → System signals the Stock Information Provider for the price of the security.
3. ← Stock Information Provider sends the price of the Security to the System.
4. → System requests the amount of cash the Player has from the Database.
5. ← Database returns the amount of cash for the Player to the System.
6. → System checks that there is enough money for complete the transaction and sends the

complete transaction for a Player, Security, and the quantity to the Database.
7. ← Database signals the System the transaction is complete.
8. ← System signals to the Player that the Buy operation was completed successfully.

Flow of Events for Unsuccessful Buy:

1. → The Player, WebPlayer, or TwitterPlayer determines a Security and how much of it to
“BUY”. This is sent to the System

2. → System signals the Stock Information Provider for the price of the security.
3. ← Stock Information Provider sends the price of the Security to the System.
4. → System requests the amount of cash the Player has from the Database.
5. ← Database returns the amount of cash for the Player to the System.
6. ← System checks that there is enough money for complete the transaction. There is not

enough money. System signals to the Player “Transaction Not Completed: Insufficient
Funds.”

10.2.2.2 UC-2: Sell

Related Requirements: REQ-1, REQ-2, REQ-6, REQ-7, REQ-8, REQ-9

Initiating Actor: Any of: WebPlayer, TwitterPlayer, MobilePlayer

Actor’s Goal: To purchase a security from the market, to add it to his portfolio, and see the updated
portfolio

Participating Actors: Database, Stock Information Provider

100

Preconditions:

• User is authenticated (logged in).
• Contain in his portfolio at least the quantity of securities his is requesting to sell.

Postconditions:

• The user’s portfolio will reflect the quantity of securities sold.

Flow of Events for Successful Sell:

1. → The Player determines a Security and how much of it to “SELL”. They send this infor-
mation to the System.

2. → System requests the price of the security from the Stock Information Provider
3. ← Stock Information Provider sends the price of the Security to the System.
4. → System requests the amount of the Security the Player owns from the Database.
5. ← Database returns the amount of the Security the Player has to the System.
6. → System checks that there are enough Securities to complete the transaction. System

signals the Database to complete the transaction for a Player, Security, and the quantity.
7. ← Database returns an indicator of transaction completion to the System.
8. ← System signals the transaction successfully completed to the Player.

Flow of Events for Unsuccessful Sell:

1. → The Player determines a Security and how much of it to “SELL”. They send this infor-
mation to the System.

2. → System requests the price of the security from the Stock Information Provider
3. ← Stock Information Provider sends the price of the Security to the System.
4. → System requests the amount of the Security the Player owns from the Database.
5. ← Database returns the amount of the Security the Player has to the System.
6. ← System checks that there is enough Securities to complete the transaction. There is not.

System signals that the transaction was not successfully completed due to insufficient funds
to the Player.

10.2.2.3 UC-3: View Portfolio

Related Requirements: REQ-1, REQ-2, REQ-6, REQ-10, REQ-11, REQ-14

Initiating Actor: Any of: Web Player, Mobile Player, Twitter Player.

Actor’s Goal: To view information regarding their portfolio. This information includes the currently owned
securities, minimal statistics regarding those securities (as they relate to the current and past value of
the portfolio), current available capital (and similar minimal information regarding its change), and
the overall value of the portfolio (also with some statistical information regarding changes over time).
The actor desires this information to make decisions regarding what their next interaction with the
system should be. They use this info to decide to sell stock they have or buy an increased number of
shares of stock they have).

Participating Actors: Stock Information Provider, Database

Preconditions:

101

• User is authenticated.

Postconditions: Information is displayed to the user, but no internal actions are taken. Nothing about the
users portfolio will be modified by this action.

Flow of Events for Main Success Scenario:

1. → Player requests a view of their portfolio.
2. → System requests the information about the user’s portfolio for this particular league from

the Database.
3. ← Database returns the information regarding the portfolio.
4. → System forms a query regarding all the currently held securities within the portfolio and

dispatches it to the Stock Information Provider.
5. ← Stock Information Provider returns the requested data.
6. ← System forms a view of the portfolio information and returns it to the Player

10.2.2.4 UC-4: View League Statistics

Related Requirements: REQ-1, REQ-6, REQ-9

Initiating Actor: WebPlayer

Actor’s Goal: To view the performance of his or her portfolio relative to other league members. For a
teacher, this may also be used to verify that his or her students are actively participating in the game.

Participating Actors: Database

Preconditions: The league that is being viewed exists and the league is either public or the user is a
member.

Postconditions: None; this is a stateless action.

Flow of Events for Main Success Scenario:

1. → Player requests to view league performance.
2. ← System signals the Database for authentication and the league’s leaderboard.
3. ← Database authenticates the user’s ability to view the statistics and returns the league’s

leaderboard.
4. ← System returns a leaderboard of all league members.

Flow of Events for league does not exist:

1. → Player requests the league statistics page.
2. ← System signals the Database for authentication and the league’s leaderboard.
3. ← Database signals the System that the league does not exist.
4. ← System returns “page not found” error.

102

10.2.2.5 UC-5: Invite to League

Related Requirements: REQ-1, REQ-14, REQ-20

Initiating Actor: Administrator

Actor’s Goal: To modify settings for the coordinator’s league. This includes modifying the league’s name,
nickname, starting funds, and security settings.

Participating Actors: Database

Preconditions:

• League that is being modified exists
• Initiating actor is a coordinator of the league that he or she is modifying

Postconditions:

• League name is still unique
• League nickname is still unique
• Starting funds is positive

Flow of Events for Main Success Scenario:

1. → Coordinator requests to view league settings page.
2. ← System signals the Database for authentication and the league’s settings page.
3. ← Database authenticates the user’s ability to modify the league settings and returns the

league settings page.
4. ← System returns a league setting page populated with the current settings.
5. → Coordinator submits updated league settings.
6. ← System Validate new league settings
7. ← System sends updated settings to the database.
8. ← Database signals the System that the settings have been updated.
9. ← System signals the Coordinator “Settings have been updated.”

Flow of Events for league does not exist:

1. → Player requests the league settings page.
2. ← System signals the Database for authentication and the league’s settings page.
3. ← Database signals the System that the league does not exist.
4. ← System returns “page not found” error.

Flow of Events for user is not a coordinator of the league:

1. → Player requests the league settings page.
2. ← System signals the Database for authentication and the league’s settings page.
3. ← Database signals the System that the league is invite-only and the Player is not a member.
4. ← System returns “access denied” error.

103

10.2.3 Use Case Traceability Matrix

The following is the relationship between the use-cases defined above and the requirements discussed in the
statement of requirements:

• UC-1: REQ-1, REQ-2, REQ-6, REQ-7, REQ-8, REQ-9

• UC-2: REQ-1, REQ-2, REQ-6, REQ-7, REQ-8, REQ-9

• UC-3: REQ-1, REQ-20

• UC-4: REQ-1, REQ-2, REQ-6, REQ-10, REQ-11, REQ-14

• UC-5: REQ-1, REQ-6, REQ-9

• UC-6: REQ-1, REQ-14, REQ-20

• UC-7: REQ-3, REQ-6, REQ-7, REQ-8, REQ-9

• UC-8: REQ-3, REQ-6, REQ-7, REQ-8, REQ-9

• UC-9: REQ-3, REQ-6, REQ-10, REQ-11, REQ-14

• UC-10: REQ-3, REQ-20

• UC-11: REQ-1, REQ-13, REQ-17

• UC-12: REQ-1, REQ-13, REQ-17

• UC-13: REQ-1, REQ-13, REQ-17

• UC-14: REQ-1, REQ-13, REQ-17

• UC-15: REQ-1, REQ-13, REQ-17

• UC-16: REQ-1, REQ-13

• UC-17: REQ-1, REQ-13

• UC-18: REQ-1, REQ-4, REQ-10, REQ-11, REQ-17

• UC-19: REQ-1, REQ-4, REQ-5, REQ-10, REQ-11

• UC-20: REQ-1, REQ-2, REQ-15, REQ-20

• UC-21: REQ-3, REQ-15, REQ-20

• UC-22: REQ-1, REQ-18, REQ-19

• UC-23: REQ-1, REQ-2, REQ-18, REQ-19

11 Nonfunctional Requirements
11.1 Usability
The website should be easy to navigate irrespective of the type of user. It should have an appealing user
interface which is pleasant to the eyes. A through consideration should be given for its aesthetic design in
order to make it easily navigable and to have a good readability. The key focus should be on making the
user interface as interactive as possible.

104

11.2 Performance
In order to have a great performance, the website should be as lightweight as possible by keeping minimum
hardware demands. For it to be efficient, any task initiated by the user should be completed in a timely
manner. The web server should be able to serve multiple requests and when a large number of users are
logged in.

11.3 Reliability
In case of Internet failure, the user’s portfolios should be brought back to a consistent state when user logs
in the system again after the failed internet connection. The system should keep a backup of user’s data in
case of server failure. A proper care should be taken to handle a situation where a particular stock source is
not available (i.e. Yahoo).

11.4 Security
The system should be secure enough such that user’s privacy is maintained. The system should have a login
process irrespective of the application i.e via Website, Mobile or Twitter interface.

11.5 Supportability/Extensibility
It should be feasible to extend any server components and include improved versions of modules which can
be installed only by administrators. For future purposes of handling the load, it should be easier to include
more number of servers to achieve load balancing. The system should be platform independent so that it is
easy to move to newer technologies or the next versions of web server.

11.6 Maintainability
The system should be easy to maintain for the administrator. The administrator should be provided with
an interface to interact with the entire system to make changes and to recover from any failure manually as
well. The interface should give the administrator enough capability to perform future maintenance.

11.7 Testability
The system should be flexible enough to allow creating test databases and fake players so that feature test
does not need to manipulate the actual database. This would ensure that it has great testability which can
be used to build a more robust

11.8 Consistency
It should be ensured that the application is consistent throughout irrespective of what interface the player is
using i.e whether website, mobile application or Twitter interface. Functionality might be limited on these
different interfaces but it should not difficult for the user to shift from one application to another to access
the system. Buzz words used should be same throughout and on all the interfaces to avoid confusion.

11.9 Documentation
The website should have enough material in the form of tutorial which can help the user to understand the
rules and policies of the Stock fantasy league game and how it works.

105

12 User Interface
12.1 User Interface Design and Implementation
PitFail’s overall user interface closely resembles the interface depicted in its mockups: most of the changes
were merely cosmetic. Most of the functional changes are because the current implementation of PitFail is
missing features that were included in the mockup: e.g. companies, leagues, and social interaction. These
changes are grouped into general categories, described in detail, and justified in the following sections.

12.1.1 Welcome Page for New User

PitFail was originally described as having a “guided registration” process where the user registers as part
of purchasing his or her first stock. While the user can still explore the stock purchasing interface before
logging in, the current implementation of PitFail does not support this “zero effort” registration because of
a technical limitation. As such, guided messages no longer are displayed next to each step in the purchasing
pipeline:

����

�������

�����		
�������� �

������ ������
��������

����������	 ����!	��������"���#�$%	�

���&���"�'% �'

���(
���)��*��	 ���+�#���
��		
���	��,���%		"����	 ��

���&	$-�����
���#��	�*��#�%��
�)��
��	 ��-	���	��	

��

��

��

(
��

. � /00

Note that the list of steps is not visible and the current step is not indicated with an arrow. Some form
of guided registration will be implemented in the next version of PitFail. Thankfully, this doesn’t change
user effort: the user simply must login before selecting a stock instead of after selecting a stock.

12.1.2 Portfolio Management

Perhaps the largest change from the original mockups to the current implementation is the user’s portfolio.
This was planned to be displayed as a single large table containing the all of the user’s assets: a combination
of cash, stocks, and derivatives. This design made it difficult to visually differentiate between types of assets
and to locate an asset of interest.

Instead, the portfolio displayed as a “T”-chart, splitting assets and liabilities into two separate columns.
The assets column is further subdivided by the type of asset: cash, stocks, and derivatives. These subdivisions
allow the user to quickly locate an asset of interest, for example, when selling a stock. Each column is
summarized with a “total” row that estimates the current value of his or her portfolio by approximating
the value of derivatives as if they were immediately executed. While none of these changes dramatically
alter user effort relative to the mockup, reformatting the portfolio as a “T”-chart and adding this additional
information makes it much easier for a user to view his or her current assets at a glance:

106

������ ����	
�

���

���

���

����

�����	���������	����

��������	��������	�����

�������������	��������	��������	����

������� �	�����

!"

"�

�

!���

#$�
�%!

#!&��'

#
&%�&!

#!"��&

#
��$"�"�

#'(�$�"�

#
&%&�!�

#"�
!����

�����	�	���)��	�*����

�� ���

������	���+��	�������

������	���+��

,
%�"$
-,'�$$./

������	���+��	��� ����

��+���

����)�0	$
1��	2����0	#&"3"&�!�

���� ���� ���4������4 �4��� �������

��++�4	��	��	���)*	,	

Besides the changes to the table of assets, there are clearly several features missing from the implemen-
tation: (1) historic portfolio performance, (2) multiple portfolios, and (3) league navigation. These missing
interface elements will be restored after companies, leagues, and logging of historic prices are implemented
in the next iteration of PitFail.

12.1.3 Buying Stocks

Purchasing stocks is one of the fundamental activities on PitFail. The interface for buying stocks is very
similar to the interface shown in the original mockups: when the user enters a valid ticker symbol in the
large search bar, a small stock quote expands below the search bar. This quote includes a few statistics
about the stock’s daily performance and a graph of the stock’s performance over time.

������ ����	
�

���

���

���

����

�����	���������	����

��������	��������	�����

�������������	��������	��������	����

������� �	�����

!"

"�

�

!���

#$�
�%!

#!&��'

#
&%�&!

#!"��&

#
��$"�"�

#'(�$�"�

#
&%&�!�

#"�
!����

�))�

�� ���

������	���*��

�))����*��	����	+ ,

"!��&& -
%�"$
+-'�$$.,

������	���*��	��� ����

��*���

�

���� ���� ���/������/ �/��� �������

��**�/	��	��	���01	-	

��1 �//

Unlike the original mockup, the options for interacting with the stock are not embedded in the stock
quote. Instead, they are displayed in a dedicated section of the webpage. This extra space is used to display
a short description of stock trading and helps guide new users through the process: something that will be
even more important once options are supported. While the original mockups allowed the user to enter an
amount in either shares or dollars, this was found to be confusing and was removed in the current version of
the user interface.

Neither of these changes do not considerably effect user effort.

107

12.1.4 Trading Derivatives

If the user clicks the “add to derivative” button instead of the “buy stock” button, he or she is presented
with the derivative offering page. In the original mockups this was shown as a prose-like description of a
derivative with a number of blanks. Originally intended to guide the user through the derivative creation
process, this was found to be unfeasible with the number of derivative configuration options supported in
PitFail. As such, this was redesigned to resemble a traditional form: a prose description followed by a table
of input fields.

����

�������

�����		
�������� �

������ ������
��������

�	
	��

��

�	

������� �!��"#���

!�# $��

%&�������'�&�(���(�

����

!)

*������

*������

��

���

*�+���

*�����

��������������,�-	(�

,�-	(�

!��"#����&��	�����&����	��&����.��/

.����0�� 	����	&�

'���-0�&���1�����

�/��

2 *��������

*�����	&

��

�34�&� �	� ��5/��1��/�� �	�"

*���� �

�&	4	 ��%	��&���

Once the derivative has been created it can either be offered to a specific user or to a public auction. If
a buyer is specified, that user is prompted to accept or decline the offer using a special form in his or her
portfolio. If the derivative is offered to a public auction, a link to the auction page is added to the sidebar
and other users have an opportunity to bid. These features were not included in the mockups, so see the
User Effort Estimation section below for a detailed usability analysis.

12.1.5 Social Features

PitFail’s original mockups included a real-time newsfeed at the bottom of every page. This news feed was a
log of trading history and served as a hub for social interaction between users. A limited implementation of
this newsfeed is included in the current version of PitFail. Unlike the mockup, the newsfeed is included in
every page’s sidebar instead of the footer. This is similar to the real-time feed that was recently added to
Facebook and will be familiar to the majority of PitFail’s users.

���������	
��������������������������������������

�
�����������
����� !�������
"���!�� �!#�!�� ���#� �

$����#�����!��"�%�!�&������������#��������������

��''(�

�
��������"�(������

���������)�!(�����#�"
�

�
�������"
�������
"�������'
���������!(�*�����

��''(�

��''(�

Besides the different location, much of the functionality displayed in the mockups has not yet been

108

implemented. Notably, this includes: (1) user-specific newsfeeds, (2) voting, (3) commenting, (4) messages
for derivative trades, and (5) messages for a users going broke. These features will be implemented in the
next version of PitFail and do not effect user effort.

12.2 Effort Estimation using Use Case Points
Several of the most common usage scenarios for the PitFail website are evaluated below. In particular, note
that common scenarios (e.g. buying a stock) are much easier to perform than rare scenarios (e.g. creating
a new league):

Usage Scenario Clicks Keystrokes
purchase a stock 3 7
create a derivative 4 27
act on a pending derivative offer* 1 1
bid on a derivative auction* 4 5
close a derivative auction* 1 1
sell a stock 3 2
create a new league n/a n/a
modify an existing league n/a n/a
invite a user to a league n/a n/a

Features that are not currently implemented are shown as empty rows and actions that have been added
since the original mockups are marked with asterisks. Both these new usage scenarios and existing usage
scenarios that were modified are analyzed in detail below. This includes buying and selling stocks because
of the lack of league support in the current version of PitFail.

12.3 Purchase a Stock
Assume the user wishes to purchase 10 shares of Google stock. The user must:

• Navigation: total of one click, as follows

1. Click on “login”.

• Data Entry: total of two clicks and seven keystrokes, as follows

1. Click on the “enter a ticker symbol” text field.
2. Press the keys “G”, “O”, “O”, and “G”.
3. Press “enter” to load the quote.
4. Press the keys “1” and “0” to specify 10 shares.
5. Click the “buy” button to confirm the purchase.

Note that the user could press “enter” instead of clicking the “buy” button.

12.4 Creating a Derivative
Assume the user wishes to offer a call option to Bucky that includes 10 shares of Google stock and expires
on December 25, 2011. This option costs $1000 to begin active and one can buy the shares for $10,000 if
and only if the market rate for Google stock is greater than $1000 per share. The user must:

109

• Navigation: total of one click, as follows

1. Click on “login”.

• Data Entry: total of 3 clicks and 27 keystrokes, as follows

1. Click on the “enter a ticker symbol” text field.
2. Press the keys “G”, “O”, “O”, and “G”.
3. Press the “enter” key to load the quote.
4. Press the keys “1” and “0” to specify 10 shares.
5. Click the “add” button to begin creating a derivative.
6. Press the “B”, “u”, “c”, “k”, and “y” keys to enter the recipient’s name.
7. Press “tab” to move to the “premium” field.
8. Press the keys “1”, “0”, “0”, and “0” to enter $1000.
9. Press “tab” to move to the “expiration date” field.

10. Press the “1”, “2”, “/”, “2”, and “5” keys to select December 25th of the current year.
11. Press “tab” to move to the “strike price” field.
12. Press the “1”, “0”, “0”, “0”, and “0” keys to enter $10000.
13. Click on the “Propose Contract” button to complete the transaction.

12.5 Sell a Stock
Assume the user wishes to sell 10 shares of Google stock from his or her Global League. The user must:

• Navigation: total of one clicks, as follows

1. Click on “login”.

• Data Entry: total of two clicks and two keystrokes, as follows

1. Click on the text input in the row corresponding to Google.
2. Press the keys “1” and “0” to specify 10 shares.
3. Click the “sell” button to confirm the purchase.

Note that the user could press “enter” instead of clicking the “sell” button.

12.6 Act on Derivative Offer
Assume the user wishes to accept a derivative that was directly offered to him or her:

• Navigation: total of one click, as follows

1. Click on “login”.

• Data Entry: total of one click, as follows

1. Click on the “accept” button next to the correct derivative.

110

12.7 Bid on Derivative
Assume the user wishes to bid $50,000 on a derivative that is being sold in a public auction:

• Navigation: total of two clicks, as follows

1. Click on “login”.
2. Click on the correct derivative link in the sidebar.

• Data Entry: total of two clicks and five keystrokes, as follows

1. Click on the “your bid” field.
2. Press the keys “5”, “0”, “0”, 0“, and ”0“.
3. Click the ”Cast Bid“ button.

12.8 Close Derivative Auction
Assume the user wishes to close an auction that he or she posted:

• Navigation: total of one click, as follows

1. Click on ”login“.

• Data Entry: total of one click, as follows

1. Click on the ”close“ button next to the correct auction.

13 Class Diagram and Interface Specification
13.1 Comments on the UML
13.1.1 stockdata

It might be surprising that the classes FailoverStockDB, YahooYQLStockDB, YahooCSVStockDB, and
CachingStockDB do not have any associations with each other. The reason is that, for benefits of testability,
the stockdata classes are design with dependency injection. This allows each one to be tested individually
without requiring any of the others.

When the classes are actually used, they are built into a pipeline, for example (Figure 86):

111

YahooCSVStockDatabase

YahooYQLStockDatabase

FailoverStockDatabase CachingStockDatabase

Flow of Data

yahoo.com

consumer

Figure 86: The pipeline architecture of the stock querying classes.

13.1.2 model.schema

These closely resemble the concepts in the Domain Model (See Domain Model). The biggest omission is
that some of the Domain Concepts do not appear in actual code:

1. The ”execution“ of a trade was represented as a concept, but does not appear in the code as a
class.

2. Likewise the ”cancellation“ of a trade.

3. A DividendEvent appeared as a concept but is merely procedural in the code.

Also not that some of the arrows in the UML diagram are encapsulated in association classes (See Domain
Model).

13.1.3 texttrading

The texttrading code should also be viewed as a pipeline (Figure 87):

Parser PitFailBackendTwitterFrontend TwitterFrontendStages:

Data passed on: String Action StringResponse

Figure 87: The pipeline architecture of texttrading.

112

13.1.4 website.control

This is the stateful part of the website: storing the current user, and the portfolio they are currently working
with.

13.1.5 website.view

Not all the classes are shown here; however, all of them follow the same structure as the ones shown. A
website view class has:

1. Some HTML in the form of Scala inline XML.

2. Some calls into the model to retrieve data.

3. Places in the HTML where data is inserted.

4. Some callbacks for user-input events (submitting a form).

5. Some calls into the model to perform the requested action.

The view is intended to be as thin a layer as possible on top of the real logic in the model.

13.1.6 Android view

The Android is another View in the MVC architecture; the classes shown:

2. Make calls into the model (via servlets) to retrieve data.

1. Take user input (via the Android UI).

3. Make calls into the model to perform the user’s actions.

The only real difference between the design of the android and website frontends is that the Android
UI has no choice but to run on a separate machine, and so it must retrieve data and perform actions over
HTTP.

113

android

model.schema

texttrading

model

stockdata

SharesPrice

Dollars Scale

Stock Quote QuoteInfo

UserPortfolio

StockAsset

DerivativeAsset

DerivativeLiability

DerivativeOffer

AuctionOffer

AuctionBid

◀ owns

<<interface>>
StockDatabase

YahooYQLStockDB YahooCSVStockDB CachingStockDBFailoverStockDB

creates

<<interface>>
Action

GetInfo Buy Sell SellAll

<<interface>>
StockAsset

Stock
Shares

Stock
Dollars

<<interface>>
Response

Transaction
Response

StringResponse

Failed

TwitterFrontend

◀ responds ParserPitfailBackend

▲ creates

Request

◀ executes

AutoTrade
◀ owns

NewsEvent

Bought Sold Offered…

owner ▶

reports on ▲

PortfolioInvite

◀ makes

LeagueInviteLeague

invites ▼

Administration

Subscription

subscribes ▼

PortfolioValue

PeriodicValue
Updater

▼ updates

website.control

LoginManager

LogoutOpenIDLogin TwitterLogin

PortfolioSwitcher

website.view

PortfolioPage

LeaderBoard

…

◀ places

DerivativeBuyerVote

DerivativeSellerVote

Comment

◀ votes on

comments on ▶

HomeScreen

NewTeam

BuyDetail

PortfolioDetail

PollingServiceLeaderBoard

initial ▶

displays ▶shows ▶

Shares (model package)

• Attributes

– +shares: BigDecimal
– +«operator» -: Dollars
– +«operator» ###: String

• Methods

– +«constructor»(BigDecimal)
– +«constructor»(String>
– /compare(Shares): Int
– +«operator» +(Shares): Shares
– +«operator» -(Shares): Shares
– +«operator» *(Price): Dollars
– +«operator» *(Scale): Shares

Price (model package)

• Attributes

– +price: BigDecimal
– +«operator» $: String

• Methods

– +«constructor»(BigDecimal)
– +«constructor»(String)
– /compare(Price): Int
– +«operator» +(Price): Price
– +«operator» -(Price): Price
– +«operator» *(Shares): Dollars
– +«operator» *(Scale): Price

Dollars (model package)

• Attributes

– +dollars: BigDecimal
– +«operator» -: Dollars
– +«operator» $: String

• Methods

– +«constructor»(BigDecimal)
– +«constructor»(String)
– +/compare(Dollars): Int
– +«operator» +(Dollars): Dollars
– +«operator» -(Dollars): Dollars
– +«operator» *(Scale): Dollars
– +«operator» -/-(Price): Shares
– +«operator» /-/(Price): Shares

115

Scale (model package)

• Attributes

– +price: BigDecimal
– +«operator» -: Scale
– +«operator» %: String

• Methods

– +«constructor»(BigDecimal)
– +«constructor»(String)
– /compare(Scale): Int
– +«operator» +(Scale): Scale
– +«operator» -(Scale): Scale
– +«operator» *(Price): Price
– +«operator» *(Shares): Shares
– +«operator» *(Scale): Scale

Stock (model.schema package)

• Attributes

– +symbol: String
– +toString: String

Quote (model.schema package)

• Attributes

– +stock: Stock
– +exchange: String
– +price: Price
– +updateTime: ateTime
– +info: QuoteInfo
– +toString: String

• Methods

– /equals(Quote): Boolean

QuoteInfo (model.schema package)

• Attributes

– +percentChange: Option[BigDecimal]
– +openPrice: Option[BigDecimal]
– +lowPrice: Option[BigDecimal]
– +highPrice: Option[BigDecimal]
– +dividendShare: Option[BigDecimal]

• Methods

– /equals(Quote): Boolean

116

StockDatabase (stockdata package)

• Methods

– +getQuote(Stock): Quote
– +getQuotes(Seq[Stock]): Seq[Quote]

YahooYQLStockDatabase (stockdata package)

• Attributes

– -queryService: HttpQueryService

• Methods

– +«constructor»(HttpQueryService)
– +getQuote(Stock): Quote
– +getQuotes(Seq[Stock]): Seq[Quote]

YahooCSVStockDatabase (stockdata package)

• Attributes

– -queryService: HttpQueryService

• Methods

– +«constructor»(HttpQueryService)
– +getQuote(Stock): Quote
– +getQuotes(Seq[Stock]): Seq[Quote]

CachingStockDatabase (stockdata package)

• Attributes

– -database: StockDatabase
– -cache: Map[Stock, Quote]

• Methods

– +«constructor»(StockDatabase)
– +getQuote(Stock): Quote
– +getQuotes(Seq[Stock]): Seq[Quote]

FailoverStockDatabase (stockdata package)

• Attributes

– databases: Seq[StockDatabase]

• Methods

– +«constructor»(Seq[StockDatabase])
– +getQuote(Stock): Quote
– +getQuotes(Seq[Stock]): Seq[Quote]

HomeScreen (android package)

• Attributes

117

– -activity: Activity
– -spinner: Spinner
– -indexOfUserNameForSpinner: Int
– -search: Button
– -sell: Button
– -team: Button
– -leaderboard: Button
– -cashText: TextView
– -ticker: AutoCompleteTextView
– -companies: String[*] {unique}

• Methods
– +onCreate(Bundle): Unit
– +onClick(View): Unit
– +afterTextChanged(Editable): Unit
– +beforeTextChanged(CharSequence, Int, Int, Int): Unit
– +onTextChanged(CharSequence, Int, Int, Int): Unit

BuyDetail (android package)

• Attributes
– -tickerName: TextView
– -buy: Button
– -activity: Activity
– -tickerString: String
– -valueString: ArrayList<String>

• Methods
– +onCreate(Bundle): Unit
– +ImageOperations(String, String): Drawable
– +fetch(String): Object

PortfolioDetail (android package)

• Attributes
– -cashText: TextView
– -portfolioHeader: TextView
– -selectedPortfolio: String

• Methods
– onCreate(Bundle): Unit

NewTeam (android package)

• Attributes
– -portfolio: EditText
– -invite: EditText
– -inviteButton: Button
– -activity: Activity

• Methods

118

– +onCreate(Bundle): Unit
– +onClick(View): Unit

LeaderBoard (android package)

• Methods
– onCreate(Bundle): Unit

PollingService (android package)

• Attributes
– TAG: String { readonly }
– timer: Timer
– update_id: Int

• Methods
– onBind(Intent): IBinder
– onCreate(): Unit
– onDestroy(): Unit

14 History of Work & Current Status of Implemenation
14.1 Comparison to Planned Milestones
The planned milestones from Report 2 differed from reality in that they were overly aggressive and did
not take into account that quickness that Pitfail team members could implement certain functions. When
creating the planned deadlines in Report 2, team members assumed working two to four hours a day on
Pitfail. What happened is that other responsibilities in other classes resulted in stretches of inactivity in
Pitfail, thus throwing up the planned deadlines. As the Demo 2 day approached, great amounts of time
during the day and night were put into Pitfail in a way that Microsoft Project could not correctly capture
a ”typical Pitfail working day.“ The result is a History of Work heavily concentrated around Demo days. If
Pitfail were a company, Report 2’s Plan of Work would have been a great guiding factor in agile development.
Instead, Report 3’s History of Work better explains how milestones were achieved.

The History of Work shows the milestones that were not accomplished as tasks that are corssed out. The
various non-accomplished were not accomplished either because their predecessors were not accomplished,
the milestones were minor goals if time permitted and time ran out, or the milestones were no longer deemed
necassary:

1. The support for comlplex actions (orders, derivatives) was not implemented because the need
for free-form Twitter input seemed unnecessary. The structured Twitter input was easily under-
standable, but without an upgrade to an unstructured Twitter input recongizer, advanced actions
would not be easily understood in the structured Twitter system. Hence, advanced support for
Twitter was not implemented.

2. Challeges was not implemented because the teams and leagues were delievered very close to
Demo 2. Implemented challenges would have been a trade-off between itself and debugging and
debugging was deemed more important.

3. Implemented OpenID for Facebook and Google was deemed not necassary since Twitter offered
a similar service that was already implemented.

119

14.2 Key Accomplishments
The following are the key accomplishments of the Pitfail project that were implemented split across the
platforms they were implemented on and the different use cases that were implemented:

• Multiple Interface

– Website
– Android
– Twitter
– Facebook
– Email

• Use Cases

– Stocks - Buy/Sell
– Option for Orders
– Derivatives
– Auctions
– Portfolio Graphs
– Auto Trades
– Comments
– Voting
– Teams - cooperative
– Leagues - competitive
– Leaderboard

15 Conclusions and Future Work
15.1 What goals of PitFail are still unmet?
What are PitFail’s goals?

Definite interfaces for interactions between subsystems have yet to be clearly defined. This lack of a
standard interface bettween ’things’ leads to duplication of effort within the codebase. In particular, the
model interface is extremely adhoc. Their exists one abstraction of the model within the texttrading/ code
(refered to there as ”backend“). The website/view/ does database lookups nearly directly. Java servlets
are implimented via a set of compatability methods within the model/ codebase. A unified interface model
interface has the posibility to provide a clear and simple manner for adding additional components to the
codebase, where each of these compenents interacts with the model in some way.

The external interfaces exposed by the Java servlets (utilized by the Android and Facebook applications)
lack authorization mechanizms and are thus unsuitable as web service APIs.

15.2 Which areas of the system would we focus on to meet PitFail’s goals?
While the website holds most of PitFail’s complicated features, the ”light“ frontends are much more conve-
nient, simple, and intuitive. The Twitter frontend has a particularly nice syntax and requires practically no
user effort to get started.

If the website were demoted to just displaying the ”content heavy“ parts (e.g. plots) and the Twitter and
mobile frontends became the main mode of interaction, this would allow us to focus on the unique aspects
of PitFail (derivative trading, PitFail-style voting).

120

16 References

[ADTs] Marie Gleichman. ”Functional Scala: Algebraic Datatypes –
Sum and Product Types“ http://gleichmann.wordpress.com/2011/02/05/
functional-scala-algebraic-datatypes-sum-and-product-types/

121

http://gleichmann.wordpress.com/2011/02/05/functional-scala-algebraic-datatypes-sum-and-product-types/
http://gleichmann.wordpress.com/2011/02/05/functional-scala-algebraic-datatypes-sum-and-product-types/

[American] Investopedia. ”How do you tell whether an option is American or European style¿‘ http:
//www.investopedia.com/ask/answers/06/americanvseuropean.asp#axzz1gFsL9Mp8

[Anemic] StackOverflow ”Anemic Domain Model: Pros/Cons“ http://stackoverflow.com/questions/
258534/anemic-domain-model-pros-cons

[Applicative1] Haskell Wikibook - Applicative Functors. http://en.wikibooks.org/wiki/Haskell/
Applicative_Functors

[Ask] Investopedia - Ask price http://www.investopedia.com/terms/a/ask.asp

[Bid] Investopedia - Bid price http://www.investopedia.com/terms/b/bidprice.asp#axzz1gTt8rHSo

[Browse] Mark Harrah’s Browse Plugin https://github.com/harrah/browse

[CAMC] Steven Counsell, Stephen Swift. ”The Interpretation and Utility of Three Cohesion Metrics
for Object-Oriented Design“. ACM Trans. Softw. Eng. Methodol. 15, 2 (April 2006), 123-149.
DOI=10.1145/1131421.1131422 http://doi.acm.org/10.1145/1131421.1131422

[CC] Challa Bonja and Eyob Kidanmariam. 2006. Metrics for class cohesion and similarity between methods.
In Proceedings of the 44th annual Southeast regional conference (ACM-SE 44). ACM, New York, NY, USA,
91-95. DOI=10.1145/1185448.1185469 http://doi.acm.org/10.1145/1185448.1185469

[Controllers] Paul Oldfield. ”Domain Modelling“ http://www.aptprocess.com/whitepapers/
DomainModelling.pdf

[CurryHoward] Haskell Wikibook - The Curry-Howard Isomorphism. http://en.wikibooks.org/wiki/
Haskell/The_Curry-Howard_isomorphism

[Currying] HaskellWiki - Currying. http://www.haskell.org/haskellwiki/Currying

122

http://www.investopedia.com/ask/answers/06/americanvseuropean.asp#axzz1gFsL9Mp8
http://www.investopedia.com/ask/answers/06/americanvseuropean.asp#axzz1gFsL9Mp8
http://stackoverflow.com/questions/258534/anemic-domain-model-pros-cons
http://stackoverflow.com/questions/258534/anemic-domain-model-pros-cons
http://en.wikibooks.org/wiki/Haskell/Applicative_Functors
http://en.wikibooks.org/wiki/Haskell/Applicative_Functors
http://www.investopedia.com/terms/a/ask.asp
http://www.investopedia.com/terms/b/bidprice.asp#axzz1gTt8rHSo
https://github.com/harrah/browse
http://doi.acm.org/10.1145/1131421.1131422
http://doi.acm.org/10.1145/1185448.1185469
http://www.aptprocess.com/whitepapers/DomainModelling.pdf
http://www.aptprocess.com/whitepapers/DomainModelling.pdf
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism
http://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism
http://www.haskell.org/haskellwiki/Currying

[Data] Haskell Wikibook - Type Declarations. http://en.wikibooks.org/wiki/Haskell/Type_
declarations

[DRY] Ward’s Wiki - Don’t Repeat Yourself. http://c2.com/cgi/wiki?DontRepeatYourself

[DSL] Ward’s Wiki - Domain Specific Language. http://c2.com/cgi/wiki?DomainSpecificLanguage Ed.
Eric McLaughlin and Mary O’Brien. Sebastopol: O’Reilly, 2006.

[Erasure] Oracle. ”Type Erasure“. The Java Tutorials. http://docs.oracle.com/javase/tutorial/java/
generics/erasure.html

[H2] H2 Database Engine. http://www.h2database.com/html/main.html

[HList] Mark Harrah. ”Type Level Programming in Scala“. http://apocalisp.wordpress.com/2010/06/
08/type-level-programming-in-scala/

[HTTP] Wikipedia. ”Hypertext Transfer Protocol“. http://en.wikipedia.org/wiki/Hypertext_
Transfer_Protocol

123

http://en.wikibooks.org/wiki/Haskell/Type_declarations
http://en.wikibooks.org/wiki/Haskell/Type_declarations
http://c2.com/cgi/wiki?DontRepeatYourself
http://c2.com/cgi/wiki?DomainSpecificLanguage
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://www.h2database.com/html/main.html
http://apocalisp.wordpress.com/2010/06/08/type-level-programming-in-scala/
http://apocalisp.wordpress.com/2010/06/08/type-level-programming-in-scala/
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

[Implicits] Martin Odersky. ”Poor Man’s Type Classes“. http://lampwww.epfl.ch/~odersky/talks/wg2.
8-boston06.pdf

[Inversion] Martin Fowler. ”Inversion of Control“. http://martinfowler.com/bliki/
InversionOfControl.html

[Iry1] James Iry. ”Why Scala’s Option and Haskell’s Maybe types will save you from null“. http://
james-iry.blogspot.com/2010/08/why-scalas-and-haskells-types-will-save.html

[Iry2] James Iry. ”Getting to the bottom of nothing at all“. http://james-iry.blogspot.com/2009/08/
getting-to-bottom-of-nothing-at-all.html

[JDBC] Wikipedia. ”Java Database Connectivity“. http://en.wikipedia.org/wiki/Java_Database_
Connectivity

[Jetty1] Jetty Web Server. http://jetty.codehaus.org/jetty/

[Kiselyov] Oleg Kiselyov and Ralf Lämmel and Keean Schupke. ”Strongly typed heterogeneous collections“.
Haskell 2004: Proceedings of the ACM Sigplan workshop on Haskell.

[Lambda] ”A Tour Of Scala: Anonymous Function Syntax“. http://www.scala-lang.org/node/133

124

http://lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf
http://lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf
http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/bliki/InversionOfControl.html
http://james-iry.blogspot.com/2010/08/why-scalas-and-haskells-types-will-save.html
http://james-iry.blogspot.com/2010/08/why-scalas-and-haskells-types-will-save.html
http://james-iry.blogspot.com/2009/08/getting-to-bottom-of-nothing-at-all.html
http://james-iry.blogspot.com/2009/08/getting-to-bottom-of-nothing-at-all.html
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://jetty.codehaus.org/jetty/
http://www.scala-lang.org/node/133

[Lift1] Lift Web Framework. http://liftweb.net/

[Lift2] Lift Forms. http://exploring.liftweb.net/master/index-6.html

[Limit] Investopedia - Limit Order http://www.investopedia.com/terms/l/limitorder.asp

[Loop] StackOverflow. ”How to iterate through a heterogeneous recur-
sive value in Haskell“. http://stackoverflow.com/questions/5024148/
how-to-iterate-through-a-heterogeneous-recursive-value-in-haskell

[LSCC] J Al Dallal, Lionel C. Briand. ”A Precise Method-Method Interaction-Based Cohesion Metric for
Object-Oriented Classes“. ACM Transactions on Software 2010.

[Makers] Wikipedia. ”Market Maker“. http://en.wikipedia.org/wiki/Market_maker

[Marsic] Marsic, Ivan. Software Engineering. Piscataway: Rutgers University, 2011. PDF.

[ML] The Standard ML Basis Library - The Option Structure. http://www.standardml.org/Basis/
option.html

[Monads1] Burak Emir. ”Monads in Scala“. http://lamp.epfl.ch/~emir/bqbase/2005/01/20/monad.
html

[MVC] Wikipedia. ”MVC“. http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

[Option1] Scala Standard Library - Option. http://www.scala-lang.org/api/current/scala/Option.
html

125

http://liftweb.net/
http://exploring.liftweb.net/master/index-6.html
http://www.investopedia.com/terms/l/limitorder.asp
http://stackoverflow.com/questions/5024148/how-to-iterate-through-a-heterogeneous-recursive-value-in-haskell
http://stackoverflow.com/questions/5024148/how-to-iterate-through-a-heterogeneous-recursive-value-in-haskell
http://en.wikipedia.org/wiki/Market_maker
http://www.standardml.org/Basis/option.html
http://www.standardml.org/Basis/option.html
http://lamp.epfl.ch/~emir/bqbase/2005/01/20/monad.html
http://lamp.epfl.ch/~emir/bqbase/2005/01/20/monad.html
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.scala-lang.org/api/current/scala/Option.html
http://www.scala-lang.org/api/current/scala/Option.html

[Pollak] David Pollak. ”Separating Presentation Logic from scala files“. http://markmail.org/message/
cco7biz2g3jeilg6

[Scalaz] Scalaz Libarry. http://code.google.com/p/scalaz/

[SCOM] Luis Fernández and Rosalía Peña. ”A Sensitive Metric of Class Cohesion“. Information Theories
and Applications.

[SICP1] Harold Abelson, Gerald Sussman, Julie Sussman. ”The Structure and Interpretation of Computer
Programs“. http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-20.html#%_sec_3.1.1

[SideEffects] Ward’s Wiki - Side Effect. http://c2.com/cgi/wiki?SideEffect

[Squeryl1] Squeryl. http://squeryl.org/

126

http://markmail.org/message/cco7biz2g3jeilg6
http://markmail.org/message/cco7biz2g3jeilg6
http://code.google.com/p/scalaz/
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-20.html#%_sec_3.1.1
http://c2.com/cgi/wiki?SideEffect
http://squeryl.org/

[Squeryl2] Squeryl source code, showing where it fails at inner classes. https://github.com/max-l/
Squeryl/blob/master/src/main/scala/org/squeryl/internals/PosoMetaData.scala

[Stop] Investopedia - Stop Order. http://www.investopedia.com/terms/s/stoporder.asp#
axzz1g4pXxPbD

[Struct] Steven Schmidt. ”Scala Goodness: Structural Typing“. http://codemonkeyism.com/
scala-goodness-structural-typing/

[Traits] ”A Tour Of Scala: Traits“. http://www.scala-lang.org/node/126

[Typing] Haskell Wiki - Typing. http://www.haskell.org/haskellwiki/Typing

[UML] Miles, Russ and Kim Hamilton. Learning UML 2.0.

[Unit] Wikipedia - ”Unit Type“. http://en.wikipedia.org/wiki/Unit_type

[View] Lift - ”View First“. http://www.assembla.com/wiki/show/liftweb/View_First

[XML] ”A Tour of Scala: XML Processing“. http://www.scala-lang.org/node/131

127

https://github.com/max-l/Squeryl/blob/master/src/main/scala/org/squeryl/internals/PosoMetaData.scala
https://github.com/max-l/Squeryl/blob/master/src/main/scala/org/squeryl/internals/PosoMetaData.scala
http://www.investopedia.com/terms/s/stoporder.asp#axzz1g4pXxPbD
http://www.investopedia.com/terms/s/stoporder.asp#axzz1g4pXxPbD
http://codemonkeyism.com/scala-goodness-structural-typing/
http://codemonkeyism.com/scala-goodness-structural-typing/
http://www.scala-lang.org/node/126
http://www.haskell.org/haskellwiki/Typing
http://en.wikipedia.org/wiki/Unit_type
http://www.assembla.com/wiki/show/liftweb/View_First
http://www.scala-lang.org/node/131

[Android] ”Developers Guide“. http://developer.android.com/guide/index.html

128

http://developer.android.com/guide/index.html

	Table of Contents
	1 Individual Contributions
	2 Summary of Changes
	3 Glossary
	4 General Information
	4.1 References to the code
	4.2 Browsable Source Code
	4.3 Some general points about the code
	4.3.1 Lambda expressions
	4.3.2 Traits
	4.3.3 Option Types
	4.3.4 Monads
	4.3.5 Applicative Functors
	4.3.6 Typesafe numbers
	4.3.7 HLists

	5 Architecture
	5.1 Overall Architecture
	5.1.1 Model
	5.1.2 View
	5.1.3 Controller
	5.1.4 All external libraries that our code uses

	5.2 The Website
	5.2.1 Overall Website Architecture
	5.2.2 Overall Android Client Architecture:

	5.3 Interacting with a Trading Simulation over Twitter
	5.3.1 Motivation
	5.3.2 Implementation
	5.3.3 Reflections, now that we have tried it

	5.4 Architectural Styles
	5.4.1 Identifying Subsystems

	6 Domain Model
	6.1 How the Domain Model Has Changed
	6.2 Users, Portfolios, and Leagues
	6.2.1 Basic Definitions
	6.2.2 The User-Portfolio-League domain model

	6.3 Assets and Liabilities
	6.3.1 How StockAssets work
	6.3.2 How Derivative Assets/Liabilities work

	6.4 Derivatives
	6.4.1 Scaling Derivatives

	6.5 Trading Stocks
	6.5.1 When a new order comes in
	6.5.2 Margin
	6.5.3 Domain model for trading

	6.6 Dividends
	6.7 News
	6.8 Voting
	6.9 Comments
	6.10 Auto Trades

	7 Perturbations and Interactions
	7.1 Stocks
	7.1.1 allStockHoldings
	7.1.2 Portfolio.myStockAssets
	7.1.3 Portfolio.haveTicker
	7.1.4 Portfolio.howManyShares
	7.1.5 Portfolio.howManyDollars
	7.1.6 Portfolio.userBuyStock
	7.1.7 Portfolio.userSellStock
	7.1.8 Portfolio.userSellAll
	7.1.9 Portfolio.userMakeBuyLimitOrder
	7.1.10 Portfolio.userMakeSellLimitOrder
	7.1.11 Portfolio.myBuyLimitOrders
	7.1.12 Portfolio.mySellLimitOrders
	7.1.13 Portfolio.margin

	7.2 Derivatives
	7.2.1 Exercising Derivatives
	7.2.2 Portfolio.myDerivativeAssets
	7.2.3 Portfolio.myDerivativeLiabilities
	7.2.4 Portfolio.myDerivativeOffers
	7.2.5 Portfolio.userOfferDerivativeTo
	7.2.6 Portfolio.userOfferDerivativeAtAuction
	7.2.7 Portfolio.userAcceptOffer
	7.2.8 Portfolio.userDeclineOffer
	7.2.9 DerivativeAsset.userExecuteManually
	7.2.10 DerivativeAsset.systemExecuteOnSchedule
	7.2.11 DerivativeAsset.spotValue

	7.3 Dividends
	7.3.1 DividendSchema.systemCheckForDividends
	7.3.2 Portfolio.myDividendPayments

	7.4 Voting
	7.4.1 Portfolio.userVoteUp
	7.4.2 Portfolio.userVoteDown
	7.4.3 NewsEvent.buyerVotes
	7.4.4 NewsEvent.sellerVotes

	7.5 Comments
	7.5.1 User.userPostComment
	7.5.2 NewsEvent.comments

	7.6 Auto Trades
	7.6.1 Running an Auto Trade
	7.6.2 Creating
	7.6.3 Modifying
	7.6.4 Deleting
	7.6.5 Getting all auto trades

	7.7 News
	7.7.1 Getting recent news events
	7.7.2 Reporting an event

	7.8 Auctions
	7.8.1 Offering a derivative at auction
	7.8.2 Bidding on an auction
	7.8.3 Getting the current high bid
	7.8.4 Closing an auction
	7.8.5 Buy Via Android Cleint
	7.8.6 Sell Via Android Cleint

	7.9 Notifications for Android Client
	7.10 FaceBook Operations:
	7.10.1 FaceBook Client:
	7.10.2 Server Operations:

	8 System Architecutre and System Design
	8.1 Templating
	8.1.1 Improving Lift Forms

	8.2 Serializing objects without using reflection
	8.2.1 Why we needed to change
	8.2.2 Product Types
	8.2.3 Generic representation of products
	8.2.4 Looping over products
	8.2.5 Extracting the fields of a product type
	8.2.6 Re-creating a product type from the fields
	8.2.7 The advantage to this method of serialization
	8.2.8 Putting this all together

	8.3 Applying OO cohesion metrics to our code
	8.3.1 Decisions that were made about how to calculate the metrics
	8.3.2 Problems with OO cohesion metrics for Scala code

	8.4 Evaluating the cohesion of functional code
	8.4.1 Why OO metrics do not work well for functional code
	8.4.2 Thinking in terms of statements and proofs
	8.4.3 Evaluating cohesion
	8.4.4 Can you assume too little?

	9 Customer Statement of Requirements
	10 Functional Requirements Specification
	10.1 Actors and Goals
	10.2 Use Cases
	10.2.1 Listing of Use Cases
	10.2.2 Fully Dressed Use Cases
	10.2.3 Use Case Traceability Matrix

	11 Nonfunctional Requirements
	11.1 Usability
	11.2 Performance
	11.3 Reliability
	11.4 Security
	11.5 Supportability/Extensibility
	11.6 Maintainability
	11.7 Testability
	11.8 Consistency
	11.9 Documentation

	12 User Interface
	12.1 User Interface Design and Implementation
	12.1.1 Welcome Page for New User
	12.1.2 Portfolio Management
	12.1.3 Buying Stocks
	12.1.4 Trading Derivatives
	12.1.5 Social Features

	12.2 Effort Estimation using Use Case Points
	12.3 Purchase a Stock
	12.4 Creating a Derivative
	12.5 Sell a Stock
	12.6 Act on Derivative Offer
	12.7 Bid on Derivative
	12.8 Close Derivative Auction

	13 Class Diagram and Interface Specification
	13.1 Comments on the UML
	13.1.1 stockdata
	13.1.2 model.schema
	13.1.3 texttrading
	13.1.4 website.control
	13.1.5 website.view
	13.1.6 Android view

	14 History of Work & Current Status of Implemenation
	14.1 Comparison to Planned Milestones
	14.2 Key Accomplishments

	15 Conclusions and Future Work
	15.1 What goals of PitFail are still unmet?
	15.2 Which areas of the system would we focus on to meet PitFail's goals?

	16 References

