

Rutgers University
School of Engineering

Department of Electrical and Computer Engineering

StockHop: The Stock Market Fantasy League Game
REPORT #3

URL: http://www.thestockhop.com

Group #2

Priyanka Kale
JakubKolodziejski
Dan Marzullo

Sam Ramezanli
 Melissa Romanus

Wei Shen

http://www.thestockhop.com/

Individual Contributions Breakdown

For Report 3, all team members contributed equally. This report involved collating our
old reports and updating sections based on recent updates.

2. Table of Contents
StockHop: The Stock Market Fantasy League Game ...1

3. Summary of Changes ..4

4. Customer Statement of Requirements...6

5. Glossary of Terms ...9

6. Functional Requirements Specification .. 10

7. Nonfunctional Requirements (FURPS) ... 40

8. Effort Estimation using Use Case Points ... 43

9. Software Implementation Design Choices.. 50

10. Domain Analysis ... 53

11. Interaction Diagrams... 63

12. Class Diagram and Interface Specification ... 78

13. System Architecture and System Design ... 100

14. Algorithms and Data Structures ... 108

15. Cohesion Analysis ... 109

14. User Interface ... 113

15. History of Work & Current Status of Implementation   .. 119

16. Conclusions and Future Work .. 121

17. References .. 123

APPENDIX .. 125

3. Summary of Changes
Going further in the project helped us to understand better meaning of the earlier
concepts we had in our reports. In addition, reading our classmates’ comments about
our report made us review our report and correct and update some parts.

The concepts of Trailing Stop and Stop-Limit orders were not previously mentioned in
Reports 1 and 2. This is due to the fact that we ended up with a decent product one
week early and thought about what extra order types we could add to enhance our
website. If we had not finished the basic functionality early, we would not have had the
time to envision and come up with this plan. Reports 1 and 2 also did not have fully-
dressed descriptions and Sequence Diagrams for all of the Use Cases. Since we were
able to realize all of our use cases, we needed to update the use cases and system
sequence diagrams.

Several Use cases have been updated. Some of them had simple errors such as arrow
directions or font variations that we notice them after reading comments. The main
changes in Use Cases was use case alternate scenario and Flow of events that we
gained a better understanding of after we started coding the real task. So, some lines
have been added or removed from earlier report.

We also had some changes in our domain model. The central idea for the domain
model remains the same. We have a central controller concept, which communicates
with various other concepts. In the updated model we have two such controllers,
Broker, which did most of the backend control, and UI Manager, which did most of the
frontend control. A few concepts are renamed though their roles are unchanged and a
few concepts are added new like controllers for each of research, ranking and
preferences page. Few concepts like limit order, stop order are combined into single
concept order, as during implementation we realized we could have a single concept
order and the broker concept would internally handle individual orders.

A discussion on OCL was added, and we also modified the explanation of Design
Patterns in our code as we learned more about them. A cohesion analysis of the
backend code was added. The class diagrams had to be redone from Reports 1 and 2,
since code was both added and enhanced since the first Demo. Additionally, we added
the Use Case Effort Estimation section.

Bulleted Summary of Report Changes
Domain Analysis

- Domain Model
- Concepts and Attributes

Class Diagrams (Frontend and Backend)
Design Patterns
OCL Contracts
Use Cases

- Fully Dressed Descriptions
- System Sequence Diagrams
- Effort Estimation

Interaction Diagrams
User Interface

- Mockups and Explanation of Navigational Paths

4. Customer Statement of Requirements

To Whom It May Concern:

Bulls and Bills, LLC has been serving the everyday stock market investor for over
50 years. With the recent economic downturn, we have seen a decrease in the number
of users on our site. We want to expand our customer base as much as possible and
reach people that may have never considered the prospect of stock market trading. In
the past, trading in the stock market was thought to be limited to only those with a
strong financial educational background. As the internet became more and more
popular, it became possible for the everyday person to become involved in stock
market trading through the use of online web services. Our customer base lacks novice
investors, whom we think may be too intimidated to gamble with their money. We are
hoping to change all of that with a stock market investment fantasy game.

The game will simulate the basic functionality and provide some of the same
features as the US stock market, but instead of real money, users of the website will be
able to invest with virtual money. This virtual money should be in the amount of
$100,000. The stocks in which they can invest should be real-world stocks. The site
should display current information about these stocks when someone attempts to
make a trade with them (we realize this may not be real-time since data from real-time
stock market information is expensive and we do not have the licensing to share ours
with you). We do not want to provide stock forecasting, since that is something we
offer on our real website and costs money.

 Each user should be able to have his or her own account. These accounts
should be secure. When a user logs in to the site, they should have access to their
portfolio. The portfolio should contain all of the stocks that they have purchased. It is
also important for users to access their transaction history, so they can keep track of
where their money is going. An open transactions page will also be important to show
users that have placed stop or limit orders that their transactions are still valid. Open
transactions also include those orders placed after the close of the stock market. Please
remember the stock market hours are Monday through Friday from 9:30AM to
4:00PM. Remember that it is also closed on Holidays such as Thanksgiving and the day
after Christmas. It is a requirement to only let users trade during those times, however,
we are flexible if you want to implement Pre-Market Trading or After-Hours Trading.
Please notify our office before implementing these in the game.

We would like this to be a website that is as user-friendly and informative as
possible. There are many existing stock market simulators on the market today. We
want to set ourselves apart with superior tutorials and accessibility. It is important that
it is easy for users to both learn about the stock market and easily use the website. It
should have simplistic style pages but also equip users with most of the functionality
they would be able to get from the real market. Since it is a game, we also want to

make this a competition. Users should be able to view their rank in the competition
that is based off of their net worth. We hope to attract new customers this way as well
as keep our old customers loyal to the company even if they do not currently have the
money to invest in the real market.

When a user makes a trade, we would like them to have a single page in which
they can buy and sell. Please make sure to implement market, limit, and stop orders.
Any additional orders you add are not required but definitely help us set ourselves
apart (and may be attached to some Achievement Bonuses for your team). Users
should be able to enter the symbol of the company that they want to purchase, the
quantity of shares, whether they want to Buy or Sell, and if the transaction should be
good for the day or good until cancelled (i.e. for stop/limit orders). The system should
confirm this amount with the user before executing the order.

We would like to make stock research as easy as possible for the user. They
should be able to view the stock’s performance over the course of the day, as well as
information like the price of the last trade, time of the last trade, change, previous
close price, opening price, bid and asking price, the volume, and the market cap. They
should also be able to view the stock information for the company they select from the
trade page.

We would like the site to offer advertising, so that we can make money from
advertisers, and also so that we can advertise our real investment website. The
advertising interface will need to have a private login. An advertiser’s login should have
a clean and simple interface where they can Add a New Ad. The ad and edit functions
should be able to take uploaded pictures and text. When the advertiser creates a new
ad, they should be able to choose a duration and will be billed for this duration. After
this duration is up, the ad should be removed from the page. We would like to have
any ads that go through this interface allowed to be deleted by a future system
administrator at our company, so please allow a manual delete by someone with
privileged access.

 We did an independent survey for our own investment website and found that
people preferred the site to update them on current business news. The approved
company source for this news is CNN. We would like this to be displayed somewhere
on the game’s site. If users want to add their own favorites to this feed, that will be
okay.

 In order to appeal to a younger market, we are also hoping to send out text
messages or emails to customers that elect to be messaged whenever a trade is
processed or if they have set an alert for a stock. We would like you to have the entire
website ready to launch by December 2011. We look forward to working together in
the future.

Sincerely,

Frank “Red” Johnson

Requirements from Red’s Letter

REQ1 System shall be a stock market fantasy game.

REQ2 System shall have separate user accounts and will allow users to change

preferences.

REQ3 System shall give user $100,000 virtual money.

REQ4 System shall allow users to virtually buy and sell stock.

System shall allow users to choose the type of orders (Market, Limit,

Stop, Stop-limit, Trailing stop) and the order duration (Good for Day,

Good Until Canceled)

REQ5 System shall provide tutorials that explain

a. How to Use the Website
b. Basics of Investing

REQ6 System shall allow companies and individuals to purchase advertising

space on the website.

REQ7 System shall contain portfolio, transaction history, and pending

transactions.

REQ8 System shall obtain stock data from a given website.

REQ9 System shall obtain stock news from a given website.

REQ10 System shall allow the user to ask for notification via email or text

message.

Note that there are more requirements from Red’s Letter, but these are the most
important.

5. Glossary of Terms

• Actors – External players of a system.

• Attributes - properties of concepts, are usually for storage/accounting purposes

or state information

• Domain Model – a conceptual model of a system or piece of software

• FURPS+ – an acronym meaning Functionality, Usability, Reliability, Performance,

and Reliability, which describe nonfunctional requirements

• Gantt Chart- project planning chart that shows time and the duration of tasks

• MySQL – an open-source database system

• Portfolio –The collection of all stocks that a user owns and their current value

• System Administrator –Responsible for maintaining the server, including setup,

security, user accounts, etc.

• UML – (Unified Modeling language) - Software Engineering modeling language

• Use Case – shows a certain scenario of system and the actors that take place in it

• User - Any individual visiting the website

6. Functional Requirements Specification

 Stakeholders
a. Bulls and Bills, LLC – The customer and sponsor of this project is

interested in this project to attract customers to their company and
to make revenue off of the game website.

b. Advertisers – Other financial institutions may want to advertise on
the website, but really any appropriate advertisements are
approved. Therefore, potential advertisers can come from a variety
of backgrounds (e.g. software, job websites, investment websites,
banks, etc.).

c. Users

 Teachers and Students – Educators can use the website to
assist with a business or economics course.

 Novice Users – Novice users will need the most guidance
through the tutorials.

 Intermediate/Expert Users – These users may be focused in
riskier portfolios and also in being at the top of the rankings
to increase their chances of winning prizes.

 Investors – Investors may be interested in how efficiently this
website models the real stock market.

d. Internet game fanatics – Some people love competition and love to
play games. These users of the website are interested in winning
monthly and yearly games.

e. Development Team – The website developers are concerned with
developing a reliable product in the given amount of time.

f. System Administrator – The system administrator is concerned with
the maintainability and security of this website.

g. Testers – The site testers, a group that will be able to use the site in
demo mode before it goes to full production, will be able to give
feedback.

 Actors and Goals

 Actor 1: New Player

i. Type: Initiating actor

ii. Goals:

o To create new account.

o Learn about game.

o Play the game.

 Actor 2: User

i. Type: Initiating actor

ii. Goals:

o Access his/her account (Login).

o View cash balance and transaction history at Homepage.

o Buy a specified number of shares of a company’s stock.

o Sell a specified number of shares of a company’s stock.

o View current and past information about the price at Research

section.

o View a user’s stock account performance relative to other users’

performance.

o View Transaction History

o View Portfolio

o Edit Preferences

 Actor 3: Advertiser

i. Type: Initiating actor

ii. Goals:

o Access his/her account (Login).

o Manage advertisements on the website.

o Attract users to find out about his/her service.

 Actor 4: Database

i. Type: Participating actor

ii. Goals:

o Information is saved in database for new User.

o Data is being checked to prevent duplicating for usernames.

o Transaction History is saved and kept in database.

o Users’ portfolio is saved and kept in database

o Stock market updates are saved in database.

o Information is deleted when there is a request from System.

 Actor 5: Email Server

i. Type: Participating Actor

ii. Goals:

o Send email to contacts when it receives request from System.

 Actor 6:Yahoo Finance

i. Type: Participating

ii. Goals:

o Provide up to date information regarding Stock market.

o Whenever there is a request, information is sent to System.

 Actor 7: Timer (now Poll-er)

i. Type: Initiating

ii. Goals:

o Prompt system for requesting new Stock market data from

Yahoo Finance.

o Since Report 1, the timer has evolved into a Poll-er. Rather than

periodically request Yahoo data at fixed intervals (Timer mode),

the backend software does not actually request any data from

Yahoo! Finance until there are orders in the Open Orders

database. This reduces the number of calls to Yahoo! Finance.

 Actor 8: CNN Money Markets RSS Feed

i. Type: Participating

ii. Goals:

o Provide up to date information regarding stock market news.

o Data is requested each time a new page is loaded and

information is sent to the System.

 Use cases

i. Casual Description

UC-1: Registration: All visitors to website are able to create free accounts
by choosing user name and password and giving some basic information of
themselves such as birthday.

UC-2:Sign in: A user is able to sign in to his/her profile from the login
page. Once logged in to an account, the user can then access details about
the account and make changes.

UC-3: View Home Page: A user is able to view portfolio summary
(best/worst stocks), cash balance, overall rank, and other personalized
information from profile’s homepage.

UC-4: Buy Stocks: Users can search for available stocks as well as select a
type of stock order and the number of shares they wish to purchase. If the
user has enough cash to cover the cost, the order can be placed, and will
then be added to the pending transaction list.

UC-5: Sell Stocks: A user can sell his/her owned shares of stock by selecting
the company, number of shares, and type of order. The order will then be
added to the pending transaction list.

UC-6: Research Stocks: Users can request and view information about a
company’s current stock price and price history. By entering a company’s
stock symbol, the user will be presented with the company’s stock
information.

UC-7: Send Notifications: The user can receive an E-Mail or SMS message
when an important event happens in an account. When a pending buy or
sell order is completed or cancelled, a notification will be sent to user.

UC-8: View Rankings: Users can view their ranking in terms of investment
performance among other users of the system. The user can view the top
ranking players as well as sort the list based on a variety of criteria.

UC-9: User sign out: A user can click the “log out” button to restrict access
to their account by unauthorized users. After logging out, a user will need
to reenter a valid username and password pair to regain access to the
account.

UC-10: View Help: The user can access a variety of documentation about
how to use the Stock Hop site as well as basic tutorials on the stock market.

UC-11: View Transaction History: Users can view all of the previous
transactions on an account. All completed orders will appear with the
details of the transaction.

UC-12: View Pending Transactions: Users can view all of the pending
transactions in an account. If an order has yet to be completed or is
submitted during off-hours, it will be viewable on the pending transaction
page

UC-13: View Portfolio: A user can view the portfolio associated with an
account. By navigating to the portfolio page, the user can see the stocks
that are owned and details about them such as the number of owned shares
and the profits of each.

UC-14: User Preferences: A user can change various settings about his or
her account by navigating to the preferences page. There a user can set up
E-Mail and SMS messages, change the preferred email contact, change his
or her password, or delete the account entirely.

UC-15: Manage Advertisements: The advertiser can log in to the website,
add advertisements, and remove their advertisements.

UC-16: Maintain Website: The system administrator can access the
backend for periodic maintenance and upgrades. A team of maintenance
coders can add or remove features or bugs as needed.

UC-17: Poll for Stock Prices: The Poll-er will query Yahoo! Finance in order
to execute orders when there is data in the Open Orders Database table.

UC-18: View Current Stock News: The user can view the current stock
market news as obtained by CNN Money Markets at the top of each page.
This information is exchanged from the external source CNN every time a
page is loaded.

The login use cases are not usually shown as use cases in software
engineering development, because a user does not want (or request) to
login. The reason that it is included in this report is that the login
functionality does interact with the database, the user’s browser, and the
system. Additionally, the way StockHop is written, a user only sees a
registration page and login option when he or she visits the site (user cannot
browse the site without logging in). This makes login a necessary step in
being able to view the features of the site, and thus, facilitates its need to
be included in the Use Cases.

The team was able to implement all of the use cases that came up with from
the proposal. After completing these, the team came up with some ideas for
future work. These ideas for future work are shown in the Conclusions
section. More Use Cases would be developed as the future work ideas were
developed.

ii. Fully Dressed Descriptions

The following in depth use cases reflect those features that will be ready
by Demo 1.

Use Case UC-1: Registration
 Initiating Actor: New User or Advertiser
 Participating Actors: Database
 Actor’s Goal: Create an account
 Pre-condition: having a computer, which is connected to Internet.
 Post-condition: An account is created and user is able to login to the system.
 Flow of Events for main success scenario:

o → User goes to start page of our website.
o ← System asks for username and password.
o → User choose arbitrary username and password
o ← System request information from Database.
o → Database send information.
o ← System check information to see whether this username is already taken

or not.
o → User gives additional information such as Birthday and sex.
o ← System save the information in database.
o ← System show confirmation note for the user.

 Flow of Events for Extensions (Alternate Scenario):
o → User enter a used username.

← System request information from Database.
→ Database sends information to System.
← System verify and compare information.
← System would return to main page and shows message: “This username
is taken”

Use Case UC-2: User Sign In

 Initiating Actor: User
 Participating Actors: Database

 Actor’s Goal: To login into his/her account.
 Pre-condition: User or advertiser has a previously established account.
 Post Condition: The system displays the user’s personalized home page.
 Flow of Events for main success scenario:

o → User visits StockHop webpage.
o ← System prompts user to enter username and password or to create a new

account.
o → User enters valid username and password pair.
o ← System authenticates username and password with database.
o ← System login User and take User to Home page.

 Flow of Events for Extensions (Alternate Scenario):
← System detects invalid username and password with database
← System informs user of the error.
← System prompts the user to try entering information again or to create a
new account.

Use Case UC-3: View Homepage

 Initiating Actor: Users
 Participating Actors: Yahoo Finance, Database
 Actor’s Goal: To view portfolios, cash balance, transaction history and other

personalized information.
 Pre-condition: User already is registered and has a profile.
 Post-condition: none worth mentioning.
 Flow of Events for main success scenario:

o → User login to profile.
o ← System request information from Yahoo Finance.
o → Yahoo Finance sends information to System.
o ← System compare the incoming information with User’s portfolio
o ← System updates Database.
o ← System displays Homepage.
o → User is informed about recent changes and update in his/her account.

Use Case UC-4: Buy Stocks

 Initiating Actor: Users

 Participating Actors: Database, Yahoo Finance
 Actor’s Goal: To buy a specified number of shares of a company’s stock
 Pre-condition: User is logged in.
 Post-condition: (1) The purchased number of shares appears in the user’s account.

(2) The purchase price is deducted from the user’s available cash
 Flow of Events for main success scenario:

o → User request buy section of the StockHop webpage.
o ← System prompts user to enter stock name/symbol and amount of stocks.
o → User enters valid stock name/symbol.
o ← System queries Yahoo Finance for current price per share of the entered

stock symbol.
o → Yahoo Finance finds a match for the stock name/symbol and return the

price.
o ← System compute total cost and add the commission cost to it.
o ← System verify that total cost plus commission is less than user’s cash

balance.
o ← System asks user to enter type of transaction (Market, Limit, Stop,

Trailing Stop, Stop-Limit).
o → User choose type of price he/she wish to have.
o ← System send the user’s request to Yahoo Finance.
o ← System send information to database and update user’s portfolio.
o ← System notifies user that the transaction has been completed.

 Flow of events for Extensions (Alternate Scenarios) :
1) → User enters invalid stock symbol
← System queries Yahoo Finance for current price per share of the entered
stock symbol.
→ System notifies the User that the stock symbol is invalid.
→System prompts for the User to enter a different stock symbol.

2) → System determines that the User does not have enough cash to make
the desired purchase.
→ System notifies the User that there is not enough cash to make the
purchase.
→ System prompts the User to enter new purchase information.

Use Case UC-5 : Sell Stocks

 Initiating Actor: Users and Advertisers
 Participating Actors: Database, Yahoo Finance, Email server.
 Actor’s Goal: Sell stocks to investors
 Pre-condition: User is logged in, User owns at least one amount of share.
 Post-condition: Transaction is done and user’s portfolio is updated with stock

removed from it.
 Flow of Events for main success scenario:

o → User request sell section of the StockHop webpage.
o ← System prompts user to enter stock name/symbol and amount of stocks.
o → User enters valid stock name/symbol and amount of stocks he wish to

sell.
o ← System request database for user’s portfolio information.
o → Database sends information.
o ← System verifies that user own the stock and the amounts of share he wish

to sell.
o ← System queries Yahoo Finance for current price per share of the entered

stock symbol.
o → Yahoo Finance finds a match for the stock name/symbol and return the

price.
o ← System compute total income and subtracts the commission cost from it.
o ← System asks user to enter type of price (Market, Limit, Stop, Trailing Stop,

Stop-Limit).
o → User choose type of price he/she wish to have.
o ← System sends the offer to Yahoo Finance.
o ← System sends information to database to update user’s portfolio and

removes sold shares from portfolio and.
o → Database confirms changes to System.
o ← System notifies user that the transaction has been completed.

 Flow of Events for Extensions (Alternate Scenario):
1. → User enters wrong amount of share (User does not have enough
money to buy these amount of shares).
 ← System check database and asks user to enter true amount of money.
2. → our share will not be bought by the Stock investors because of high
price or type of share.
← System sends user email that transaction is not done.

We received feedback that we should break up the Buy and Sell use cases into separate

use cases based on each type of transaction. The team considered this, but ultimately

decided to expand upon the details within each Buy and Sell Use Case. We chose to do

this because the same general execution flow is the same. The only changes made

would be on how the system handles the type of order on the backend. These are more

logic-based if/else statements and did not pertain to an overall difference in

functionality.

Use Case UC-6: Research Stocks

 Initiating Actor: Users
 Participating Actors: Yahoo Finance.
 Actor’s Goal: To view current and past information about the price of a company’s

stock.
 Pre-condition: User or advertiser has a previously established account.
 Post-condition: The system will display information about the current and historical

prices of a company’s stock to the user.
 Flow of Events for main success scenario:

o → User request the research section of the webpage
o ← System prompts user to enter stock symbol
o → User enters valid stock symbol
o ← System queries Yahoo Finance for current price per share of the entered

stock symbol as well as any available history about the stock.
o → Yahoo Finance (a) returns requested information to the System
o ← System (a) displays retrieved information to the User (b) provides an area

for the User to enter another stock symbol to look up another stock
 Flow of Events for Extensions (Alternate Scenario):

o → User enter invalid stock symbol.
o ← System queries Yahoo Finance for current price per share of the entered

stock symbol as well as any available history about the stock
o → Yahoo Finance notifies the System that the stock symbol is invalid
o ← System notifies the User that the stock symbol is invalid and
o ← System prompts User to enter a different stock symbol.

Use Case UC-7 : Send Notifications
 Initiating Actor: Poll-er
 Participating Actors: User, Advertiser, Database and Yahoo Finance.
 Actor’s Goal: Send notifications in order to inform profile owner about events

happened in the profile
 Pre-condition: User has an account, User has activity in his/her account., User has

chosen to receive SMS or email for notification.
 Post-condition: Email would be sent to User successfully.
 Flow of Events for main success scenario:

o → Timer prompts system to check for new event.
o ← System request information from Yahoo Finance.
o → Yahoo Finance sends information to system.
o ← System notice an important new event.
o ← System signals email server (or SMS server) for sending notification to

User.
o → User checks his/her email/mobile and will aware of what has happened.

 Flow of Events for Extensions (Alternate Scenario):

 → User enters wrong email address.

 ← System sends email to wrong address

Use Case UC-8 : View Rankings

 Initiating Actor: User
 Participating Actors: User System, Database
 Actor’s Goal: To view a user’s stock account performance relative to other users’

performance
 Pre-condition: 1) User or advertiser has a previously established account 2) User is

currently logged into an account
 Post-condition: Email The system will display information about the user’s ranking

based on certain criteria
 Flow of Events for main success scenario:

o → User visits the rankings section of the webpage.
o ← System requests account information from the Account Database and

sorts users by certain criteria
o ← System signals a) displays a default view of the User’s ranking and (b)

provides clickable options to the User to alter the display or view top
ranking users.

Use Case UC-9: User Sign Out

 Initiating Actor: User
 Participating Actors: System, Database.
 Actor’s Goal: To protect account from unauthorized access and to delete account.
 Pre-condition: 1) User or advertiser has a previously established account 2) User is

currently logged into an account
 Post-condition: The user’s account is not immediately accessible from the current

computer
 Flow of Events for main success scenario:

o → User is logged into an account on the webpage.
o → User clicks the “log out” button on the webpage
o ← System sends all unsaved data to the Database for storage
o ← System (a) displays “successfully logged out” message to user and (b)

disables immediate continued access of the user’s account.

Use Case UC-11: View Transaction History

 Initiating Actor: User
 Participating Actors: Yahoo Finance, Database, User.
 Actor’s Goal: to view all of the previous transactions on an account and all

completed and pending orders will appear with the details of the transaction.
 Pre-condition: User should have at least one transaction since he/she has joined

the website
 Post-condition: User is aware of history of transactions and their current status.
 Flow of Events for main success scenario:

o → User Login.
o → User choose transaction history from the Homepage.
o ← System request information from Yahoo Finance
o → Yahoo Finance sends current market updates.
o ← System sends new updates to database and request database for user’s

transaction information
o → Database sends information
o ← System verify information from Yahoo finance and Database.
o ← System signal User about his transaction history.

Use Case UC-12: Help
 Initiating Actor: User
 Participating Actors: Database
 Actor’s Goal: To learn about how the system as a whole or a particular function of

the system works
 Pre-condition: (1) User or advertiser has a previously established account (2) User

is currently logged into an account
 Post-condition: The user is more informed about how to use the system.
 Flow of Events for main success scenario:

o → User is logged into an account on the website
o → User navigates to the “Help” section on the webpage
o ← System displays all clickable help topics to the User
o → User clicks to request a help topic from the System
o ← System sends new data to database.
o ← System the help content for the requested topic as well as an option to

return to the previous list of help topics.

Use Case UC-13: View Portfolio

 Initiating Actor: User
 Participating Actors: Yahoo Finance, Database, and User.
 Actor’s Goal: A user can see the stocks that are owned and details about them such

as the number of owned shares, profits of each, current price and recent changes.
 Pre-condition: User should have at least one share since he/she has joined the

website
 Post-condition: User is aware of history of his/her stock values and information.
 Flow of Events for main success scenario:

o → User Login.
o → User choose View Portfolio from the Homepage.
o ← System request database for user’s transaction information
o → Database sends information
o ← System request information from Yahoo Finance
o → Yahoo Finance sends current market updates.
o ← System verify information
o ← System signal User about his transaction history.

 Flow of Events for Extensions (Alternate Scenario):
o User does not have any shares in portfolio:

 Portfolio is shown with zero number of shares.

Use Case UC-14 : Preferences
 Initiating Actor: User
 Participating Actors: Database, Email Server
 Actor’s Goal: Delete account, change email, change password.
 Pre-condition: User has an account.
 Post-condition: Profile preference will be changed.
 Flow of Events for main success scenario:

o → User goes to preference page and select the setting he/she wish to
change.

o ← System asks for new data.
o → User enter new data.
o ← System sends new data to database.
o ← System prompt email server to notify the user of successful operation.
o → Email server sends user notification about operation.

Use Case UC-15: Manage Advertisements

 Initiating Actor: Advertiser, System Admin
 Participating Actors: Database, email server, Users.
 Actor’s Goal: display and manage advertisements on the website.
 Pre-condition: Advertiser is logged in. Advertiser has the right from webpage

instructors to post his advertisements on user profiles.
 Post-condition: Advertisements will be posted on Users profiles. Every time any

user clicks on one of the links, amount of money would be sent to advertiser’s bank
account.

 Flow of Events for main success scenario:
o → Advertiser log in to his/her profile.
o → Advertiser choose a picture (or motion picture) for his product.
o ← System add the picture to database and post the picture on

advertisement section on the website.
 Flow of Events for Extensions (Alternate Scenario):

1. → agreements between user and web instructor is expired.
 ← System would delete the pictures from the website.
2. → Advertiser post inappropriate picture on the website!
← System (web instructor) would delete the advertisement from the
website.

Use Case UC-16: Maintain Website

 Initiating Actor: System Administrator
 Participating Actors: System Administrator, Email Servers, Database, User
 Actor’s Goal: Perform maintenance on the website, including adding/deleting user
 Pre-condition: Varies. System Administrator can modify or delete user accounts
 Post-condition: Varies. For user deletion, Database and Email Servers remove user

from it.
 Special Note: Maintain website is a broad use case. For brevity, I have shown the

steps for removing a user. Maintaining a website may vary over time. Group 2
thought about this, and decided that perhaps this use case could be broken up if
more maintenance activities were needed.

 Flow of Events for main success scenario:
o → System Administrator connects to Database and Email Servers.
o  System Administrator selects a particular User from Database and

deletes it.
o ← System removes User from Database.
o → System confirms User Deletion.

Use Case UC-17: Poll for Stock Prices

 Initiating Actor: The Poll
 Participating Actors: Database, Yahoo Finance.
 Actor’s Goal: The Poller will query Yahoo! Finance in order to execute orders

when there is data in the Open Orders Database table.
 Pre-condition: There should be at least one order in Open Order Database.
 Post-condition: Order will be executed by Yahoo Finance
 Flow of Events for main success scenario:

o → Poll sends request to the system.
o ← System ask database to send current list of orders.
o → Database sends requested information.
o ← System verify information from database to see whether there are any

orders.
o ← System send request to Yahoo Finance to execute current Orders.

 Flow of Events for Extensions (Alternate Scenario):
1. There are no Orders to be executed.

Use Case UC-18: View Current Stock News

 Initiating Actor: User
 Participating Actors: CNN Money Market RSS Feed
 Actor’s Goal: User has an access to latest Stock news by logging in to his/her profile.
 Pre-condition: User should have an account in Stock Hop.
 Post-condition: User is aware of latest Stock news.
 Flow of Events for main success scenario:

o → User choose Dashboard from the Homepage.
o ← System request CNN Money Market RSS Feed latest stock news.
o → CNN Money Market RSS Feed sends current stock news and updates.
o ← System display latest Stock news on the Dashboard section of the profile.

iii. Use Case Diagram

User

Google Adsense

System Administrator

Database

Yahoo Finance

Email/SMS Server

UseCase1

«initiates»

«participates»

UseCase2

«initiates»

«participates»

UseCase3

«initiates»

«initiates»

«participates»

UseCase4

«initiates»

«participates»

«participates»

UseCase5

«participates»

«participates»

«participates»

«initiates»

UseCase6

«initiates»

«participates»

UseCase7

«initiates»

«participates»

«participates»

UseCase8«initiates»

«participates»

UseCase9

«initiates»

«participates»

UseCase10

«initiates»

«participates»

UseCase11

«initiates»

«participates»

UseCase12

«initiates»

«participates»

UseCase13

«initiates»

«participates»

UseCase14

«initiates»

«participates»

UseCase15

«initiates»

«participates»

UseCase16

«initiates»

«participates»

UseCase17

«initiates»

«participates»

Advertiser

«initiates»

«participates»

«initiates»

iv. System Requirements – Use Case Traceability Matrix

Requirement Number Requirement Use Case Traceability

1 System shall be a stock

market fantasy game.

All Use Cases

2 System shall have separate

user accounts and will allow

users to change preferences.

1,2,9,14

3 System shall give user

$100,000 virtual money.

1,3,4,5

4 System shall allow users

to virtually buy and sell

stock.

System shall allow users

to choose the type of

orders (Market, Limit,

Stop, Stop-limit, Trailing

stop) and the order

duration (Good for Day,

Good Until Canceled)

System shall let the user

to ask for notification

4,5

5 System shall provide tutorials

that explain

How to Use the Website

Basics of Investing

10

6 System shall allow

companies and

individuals to purchase

advertising space on the

website.

15

7 System shall contain

portfolio, transaction

history, and pending

transactions.

13,12,11,10

8 System shall obtain stock

data from a given

website.

17

d. System Sequence Diagrams

These diagrams are explained in the above Use Case descriptions. Please see the above

descriptions for in depth explanations of each diagram. They are organized by Use

Case, where UC-1 corresponds to Use Case 1, etc. This was done in the interest of not

being repetitive.

UC-1 Registration:

UC-2: Login

User

Database

System

Authentication succeeded

System prompts user to enter username
and password or to create a new account

Opens StockHop

Enters valid username and password

Authenticates username and password
 with database

Displays home page

UC-3 View Homepage:

UC-4 Buy Stock:

UC-5 Sell Stocks:

UC-6 Research Stocks

UC-7 Send Notifications:

UC-8: View Rankings:

User

Database

System

Replies with the data

Opens ranking page of StockHop

Requests account data from database

Displays ranking page with sorted users

Sorts users based on the data

Provides clickable options to the User
 to alter the display or view top ranking users.

UC-9: User Sign out

User

Database

System

Replies with the commit message

Logs Into the system

Saves unsaved data to the database

Displays “successfully logged out”
 message to user

Disables access to user account

Clicks on logout

UC-11 View Transactions History:

UC-12 Help

UC-13 View Portfolio:

UC-14 Preferences:

UC-15: Manage Advertisements

Advertiser
Database

System

Data saved

Logs Into the system

Saves advertiser's data to the database

Displays advertiser's interface

Authenticates with database

Authentication succeeded

Selects picture for the advertisement

Requests to save the picture

Post the picture on advertisement
sect ion on the website.

 The team had many discussions on how to implement the stock queries from Yahoo

Finance. Rather than periodically dumping all information of all possible stocks to a

database (memory and hard drive intensive), the team decided that the queries to get

information from Yahoo Finance would be done at the time that the user is querying.

The group decided that stop, limit, stop-limit, and trailing stop orders would spawn a

server-side polling process that would periodically check Yahoo Finance and create an

event if any of its criteria is met.

UC-17: Poll for Stock Reports

The Poller actor interacts by seeing if there are orders in the Database. If there are Orders in

the Database, the Poller asks Yahoo Finance for the data needed. Once this information is back,

it follows with the Execute Buy / Execute Sell logic.

Poll
Yahoo Finance

System

Requests system to poll for stock prices.

Sends data to the poll

Get orders from database

Replies with the list of orders

checks if list not empty.

Database

Request for the stock prices.

Replies with the data

UC-18:

Poll
CNN Money Market RSS feed

System

Chooses dashboard from stock hop
to get the latest stock news from

 RSS feed.

Displays data on the dash board.

processes the news and updates
for display

Replies with the stock news and updates

request CNN Money Market RSS Feed
for latest stock news

7. Nonfunctional Requirements (FURPS)

 Functionality

Feature set
- System shall be able to display stock information on website in easily

navigable tables
- System shall be able to send both email and text message alerts on

transaction completion and individual stock alerts
- System shall be able to display a business News RSS Feed
- System shall be user-friendly and minimize time to completion of orders
- System shall display scrolling stock ticker at the top of trading page

Capabilities
- System shall be able to model stock trading -- market orders, limit
orders, stop orders, stop-limit orders, and trailing stop orders

 - System shall be able to run on multiple browsers, including mobile web
Security

Logins to the website will be password protected so that users cannot
view other users’ portfolios. The login forms will take extra security measures to
prevent against MySQL injection attacks (i.e. an attack where the user enters
malicious code in a PHP form that accesses a MySQL database to try to take
over the server or tables where sensitive information is stored). The MySQL
database will store passwords in an encrypted format.

 Usability

The website should be easy to navigate and operate in a realistic manner to the
actual stock market. Each page on the website will have the same top bar,
navigation, and color scheme so that users feel a consistency as they visit all of
the pages within the site. In addition, the website should include easy to use
navigability and minimization of the time it would take a user to complete
transactions. The website should also offer easy-to-understand tutorials about
how to use the website.

 Reliability

The website shall be as accurate as possible by taking information from Yahoo
Finance. These stock prices are delayed by 15 minutes, but should still be
consistent with the information that would be displayed on the original
websites (i.e. stock prices will not be made up).

The website host server requires a Verizon FIOS internet connection to work
and runs on PSE&G power. If this connection were to go out due to problems
from either company, this would cause the website to be affected. These
external factors are not controllable, but the server itself is attached to a UBS
backup power unit to reduce its downtime in the event of a power failure.

Additionally, the system shall periodically backup the user data and MySQL

database tables in order to reduce the time to get the website back up and

running should it become compromised in any way. This also reduces the time

to recover if the primary server storage fails.

 Performance

The user should be not experience slow-down when the server is gathering data
from Yahoo Finance or when other users are trying to make transactions. The
actual server hardware is lightweight but is easily upgradable. The website and
server-side applications will be written in a way that is not intensive to the

server hardware and also that provides users with the quickest possible
response time.

 Supportability
The website shall be written to be as modular as possible to ease any code
maintenance that needs to take place in the future and to account for
additional features to be added. Code shall be well-commented for future
maintainability. It should be written such that it is expandable in the future to
run on upgraded server hardware. Since the users of the site are so diverse, the
overall site aims to have compatibility with as many different browsers as
possible, including Google Chrome, Mozilla Firefox, Internet Explorer, Safari, as
well as mobile browsers.

8. Effort Estimation using Use Case Points
To estimate the effort needed for the development of the system, we need to first find

the UCP, or Use Case Points of the system. To do this, we begin by finding the Unadjusted Use

Case Points (UUCP), which is made up of the sum of the Unadjusted Actor Weight (UAW) and

Unadjusted Use Case Weight (UUCW).

Unadjusted Actor Weight (UAW)

Actor Name Description of relevant characteristics Complexity Weight

New Player New Player is interacting with the system via a

Graphical User Interface

Complex 3

User User is interacting with the system via a Graphical

User Interface

Complex 3

Advertiser Advertiser is interacting with the system via a

Graphical User Interface (when placing

advertisements)

Complex 3

Database Database is another system which interacts with the

system through a defined API.

Simple 1

Email Server Same as Database. Simple 1

Yahoo

Finance

Same as Database. Simple 1

Timer Same as Database. Simple 1

UAW(Stockhop) = 4 x Simple + 0 x Average + 2 x Complex = 4 x 1 + 0 x 2 + 2 x 3 = 10

Unadjusted Use Case Weight (UUCW)

Use Case Description Category Weight

UC-1:Registration Complex User Interface. 9 steps for the main

success scenario. 1 participating actor

(Database)

Average 10

UC-2:Sign in Moderate interface design. 5 steps for the

main success scenario. 1 participating actor

(Database)

Average 10

UC-3: View Home

Page

Complex User Interface. 7 steps for the main

success scenario. 2 participating actors (Yahoo

Finance, Database)

Complex 15

UC-4: Buy Stocks Complex User Interface. 12 steps for the main

success scenario. 2 participating actors (Yahoo

Finance, Database)

Complex 15

UC-5: Sell Stocks Complex User Interface. 15 steps for the main

success scenario. 3 participating actors (Yahoo

Finance, Database, Email Server)

Complex 15

UC-6: Research

Stocks

Complex User Interface. 6 steps for the main

success scenario. 1 participating actor (Yahoo

Finance)

Average 10

UC-7: Send

Notifications

Simple User Interface. 6 steps for the main

success scenario. 4 participating actors (User,

Advertiser, Database, Yahoo Finance)

Average 10

UC-8: View

Rankings

Simple User Interface. 3 steps for the main

success scenario. 2 participating actors (User,

Database)

Simple 5

UC-9: User sign

out

Simple User Interface. 4 steps for the main

success scenario. 1 participating actor

(Database)

Simple 5

UC-10: View Help Simple User Interface. 1 step for the main

success scenario. 1 participating actor

(Database)

Simple 5

UC-11: View

Transaction

History

Moderate interface design. 8 steps for the

main success scenario. 3 participating actors

(Database, Yahoo Finance, User)

Average 10

UC-12: View

Pending

Transactions

Moderate interface design. 8 steps for the

main success scenario. 3 participating actors

(Database, Yahoo Finance, User)

Average 10

UC-13: View

Portfolio

Moderate interface design. 8 steps for the

main success scenario. 3 participating actors

(Database, Yahoo Finance, User)

Average 10

UC-14: User

Preferences

Moderate interface design. 6 steps for the

main success scenario. 2 participating actors

(Database, Email Server)

Average 10

UC-15: Manage

Advertisements

Complex User Interface. 3 steps for the main

success scenario. 3 participating actors

(Database, Email Server, Users)

Complex 15

UC-16: Maintain

Website

Complex interface design. The length of the

success scenario cannot be determined, since

it is a system administration job that varies

based on what site maintenance needs to be

done. 1 required participating actor is System

Administrator. Other participating actors

depend on what is broken or needs

maintenance and could include the Database,

Email Server, etc.

Complex N/A

UC-17: Poll for

Stock Prices

Complex interface design. 8 steps for the main

success scenario. 3 participating actors.

(Database, Yahoo Finance, User)

Complex 15

UC-18: View

Current Stock

News

Moderate interface design. 5 steps for
the main success scenario. 2 participating
actors (User, Database, CNN
Money Market RSS Feed)

Average 10

UUCW (StockHop) = 3 x Simple + 8 x Average + 5 x Complex = 3 x 5 + 9 x 10 + 5 x 15 = 180

UUCP = UAW + UUCW = 10 + 170 = 190

 Next, we need to find the Technical Complexity Factor (TCF).

Technical Factor Description Weight

T1 Distributed system (running on multiple machines) 2

T2 Performance objectives (are response time and throughput

performance critical?)

1

T3 End-user efficiency 1

T4 Complex internal processing 1

T5 Reusable design or code 1

T6 Easy to install (are automated conversion and installation

included in the system?)

0.5

T7 Easy to use (including operations such as backup, startup, and

recovery)

0.5

T8 Portable 2

T9 Easy to change (to add new features or modify existing ones) 1

T10 Concurrent use (by multiple users) 1

T11 Special security features 1

T12 Provides direct access for third parties (the system will be used

from multiple sites in different organizations)

1

T13 Special user training facilities are required 1

Technical Factor Description Weight Perceived

Complexity

Calculated Factor (Weighted

x Perceived Complexity)

T1 Distributed, web-based system 2 4 2 x 4 = 8

T2 Users expect good performance but

there are inherent delays in the

simulation

1 2 1 x 2 = 2

T3 End-user expects efficiency but there

are no exceptional demands

1 3 1 x 3 = 3

T4 Moderate internal processing 1 3 1 x 3 = 3

T5 No requirement for reusability 1 0 1 x 0 = 0

T6 Ease of install is not very important

as it is run on a single server for many

users (currently)

0.5 1 0.5 x 1 = 0.5

T7 Ease of backup, startup, and recovery

are very important

0.5 5 0.5 x 5 = 2.5

T8 No portability concerns beyond a

desire to keep database vendor

options open

2 2 2 x 2 = 4

T9 May need to add or modify features 1 3 1 x 3 = 3

T10 Concurrent use is required 1 4 1 x 4 = 4

T11 Security of server and database is a

moderate concern

1 3 1 x 3 = 3

T12 Provides direct access for advertisers

1 3 1 x 3 = 3

T13 No unique training needs 1 0 1 x 0 = 0

Technical Factor Total: 36

Constant-1 (C1) = 0.6

Constant-2 (C2) = 0.01

TCF = Constant 1 + Constant 2 x Technical Factor Total = 0.6 + 0.01 x 36 = 0.96

 Finally, we need to find the Environment Complexity Factor (ECF).

Technical Factor Description Weight

E1 Familiar with the development process (e.g., UML-based) 2

E2 Application problem experience 1

E3 Paradigm experience (e.g., object-oriented approach) 1

E4 Lead analyst capability 1

E5 Motivation 1

E6 Stable requirements 0.5

E7 Part-time staff 0.5

E8 Difficult programming language 2

Technical Factor Description Weight Perceived

Complexity

Calculated Factor (Weighted

x Perceived Complexity)

E1 Beginner familiarity with the UML

based development

1.5 1 1.5 x 1 = 1.5

E2 Some familiarity with application

problem

0.5 2 0.5 x 2 = 1

E3 Moderate knowledge of object-

oriented approach

1 3 1 x 3 = 3

E4 Beginner lead analyst 0.5 1 0.5 x 1 = 3

E5 Highly motivated 1 5 1 x 5 = 5

E6 Stable requirements expected 2 5 2 x 5 = 10

E7 All of the staff is part-time -1 5 -1 x 5 = -5

E8 Programming language of average

difficulty will be used

-1 3 -1 x 3 = -3

Technical Factor Total: 15.5

Constant-1 (C1) = 1.4

Constant-2 (C2) = -0.03

ECF = Constant 1 + Constant 2 x Environmental Factor Total = 1.4 - 0.03 x 15.5 = 0.935

 Now that we have the UUCP, TCF, and ECF, we can find the Use Case Points (UCP) by

the following equation.

UCP = UUCP x TCF x ECF = 190 x 0.96 x 0.935 = 170.544

Finally, to find out the duration of development time for the system, we can use the

provide Productivity Factor (PF) of 28 hours per use case point in the following equation.

Duration = UCP x PF = 170.544 x 28 = 4775.232 person-hours

Evaluation of this equation results in 4775.232 person-hours needed to develop this

system. Of course this is only an estimation, but it is based on a logical process that helps to

give a base expectation. Group 2 acknowledges that this number is very high. There were 6 of

us working on this project, so that would have to equate to ~750 hours (or roughly 30 days of

24 hour work per person). This is obviously an impractical calculation. The person-hours serve

to show us an estimate. Since there was no historical data on what constitutes a Simple,

Average, or Complex task for the 6 of us at our current skill level and no historical data on what

the weights should be, we obtained an unreasonably high value for the person-hours. In the

future, we would look at previous data, such as the actual hours spent on coding this project to

come up with more reasonable estimates.

9. Software Implementation Design Choices

This section describes why Group 2 made decisions to use certain programming
languages, frameworks, or abstraction layers (and what, specifically, they are) in order
to code this project.

a. PHP 5.3.8 - PHP stands for PHP:Hypertext Preprocessor. PHP is a web

development server-side scripting language. It is used to create websites with

dynamic content and the ability for user interaction. PHP is often embedded

with HTML to develop web applications. PHP was chosen by Group 2 due to a

familiarity with it between the students. PHP 5.3 was the latest major release

of PHP and incorporates many new features that older PHP does not provide,

mostly to do with the ability to use namespaces. These namespaces allow the

code to be organized in a cleaner fashion.

b. Symfony2 [PHP Framework] – Symfony2 is a PHP based framework

implementing a MVC (Model/View/Controller) architecture with the goal of

rapidly developing a web application. MVC has become a very popular and

widely used architecture for web applications. Symfony2 utilizes the

namespace functionality of PHP 5.3. Symfony2 makes an attempt to provide

the effective structure and functionality that most web applications will

require, which is advantageous since the developer does not have to

reconstruct code on his own that is already provided (saving time, production

cost, etc). It integrates other outside projects, Doctrine and Twig (see below),

to further ease the burden of initial project set-up.

Symfony2's base framework is designed to allow the developers to effortlessly

design a "Representational state transfer", or REST, interface to both regular

web users and to other applications if needed. The REST API was advantageous

to Group 2 because of the benefit of allowing us to conceal a lot of the

complicated data from the user. The user does not need to see large

complicated query strings, and we, as developers, do not need to do large

complicated mod_rewrite apache expressions to 'clean up' our query strings.

Group 2 chose symfony2 because it is a new framework that incorporates all of

the features of the latest MVC technologies. When tested against various

benchmarks, the Symfony2 framework was up to 100x faster than other

frameworks such as CakePHP and up to 10x faster than the popular Zend

Framework. Group 2 knew that they wanted to implement the MVC method

when writing their code, in order to increase the readability of the code and

also to make a clearer separation between the “web development” and “web

design” for future maintenance.

c. Twig [PHP Templating Engine] – Twig is a template engine for PHP. A template

engine is “software that is designed to process web templates and content

information to produce output web documents (“Template Engine (web)”,

Wikipedia)”. Symfony2 effectively uses Twig to separate the presentation logic

from the internal logic (for instance, HTML from complex PHP functions).

Symfony 2 overall uses a very object oriented approach; its base functionality is

all provided by via a series of objects. Symfony2’s integration with Twig further

helps to separate and speed up the development process. By using Twig, the

developers do not need to write overly complicated PHP mixed in with the

HTML. Twig functionality provides just enough logic to make simple decisions,

include extra content, or iterate through arrays. Twig is not responsible for, nor

could it handle, any actual logic relevant to the tasks such as form validation,

user verification, or database interactions.

d. Doctrine Object Relational Mapper (ORM) – Doctrine is a Free and Open Source

Software (FOSS) project to provide stable and consistent Object Relational

Mapping (ORM) functionality to the PHP language. Its function as an ORM is to

allow persistent database records to be exposed to the program as standard

PHP classes. These classes obfuscate the underlying database data types and

expose a very convenient set of accessor and modify functions. The classes in

Doctrine are allowed to inherit parent classes and implement interfaces, giving

the abstracted database objects the ability to take advantage of the flexibility

and functionality of OO concepts. Another benefit of Doctrine is its use of

PHP's PDO (PHP:Data Objects) database abstraction layer. This abstraction

layer allows PHP, and thus Doctrine, to support many types of database servers

beyond MySQL. Group 2 chose Doctrine over other ORMs due to its integration

with Symfony2. The abstraction layer allows setting/getting of fields in the

databases through function calls, rather than having to write many queries.

e. jQuery – jQuery is used for client-side javascript scripting. It is the most widely

used javascript library that includes many useful functions. It works across

multiple browsers that have javascript enabled. Group 2 chose jQuery over

straight javascript due to the ease of use of jQuery and its included functions. It

is primarily used in thestockhop to load data from Yahoo! Finance and parse

this data without having to reload the page.

f. PHPUnit – Unit testing framework for PHP. Allows a user to write tests for their

PHP functions. Can execute its own requests as a mock ‘user’ and will execute

the PHP code without having to go through the GUI. This testing method

works best in practices where the test is written before the code, so the

specific goals that each function is supposed to achieve are clearer.

g. Java Programming Language [Backend Server-Side Program] – Java is a high-

level object oriented programming language. Before choosing a language,

Group 2 knew they wanted to use an object-oriented language for the backend

software. Group 2 ultimately chose Java over C/C++ due to its ease of

integration with web applications – many websites already use Java on the

backend, so libraries were already written for connecting to the database,

sending mail via a mail server, etc. Another key feature of Java is, once

compiled, a java.class file (machine bytecode) can typically run on any machine

that has java installed, independent of the computer architecture. This

increases the portability of our software.

h. Other Decisions – MySQL was chosen as the relational database. MySQL was

chosen because it is easy to deploy on the backend server and Group 2

teammates had the most functionality with this database. The Apache web

server was used because it was easy to deploy and is highly configurable.

Apache was chosen over something like Microsoft IIS because we were writing

our application in PHP and not something like Microsoft’s ASP.NET. We also

set up an email server POSIX and routed through a gmail account in order to

get around constraints imposed due to firewall issues with Verizon FIOS.

10. Domain Analysis

a. Revised Domain Model

User Login Or Register
<<boundary>>

Portfolio Controller
<<boundary>>

Advertiser Interface
<<boundary>>

UI Manager
<<control>>

Security Controler
<<control>>

+success

Broker
<<control>>

Email Interface
<<boundary>>

+emailId
+text

DB Manager
<<control>>

+updateTime
+updateUser
+queryStatus

Mobile Interface
<<boundary>>

+mobileNumber
+text

External Interface
<<boundary>>

LoginKey
<<entity>>

+userName
+password

Preference Controller
<<control>>

Investor Home Page
<<boundary>>

invokes

invokes

invokes

communicates

communicates

Invester
<<actor>>

Portfolio
<<entity>>

Advertiser
<<actor>>

Parser
<<boundary>>

communicates

communicates

External Data
<<entity>>

Stock Database
<<entity>>

User Database
<<entity>>

Transaction Database
<<entity>>

obtains information

obtains information

obtains information

Order
<<data>>

obtains information

Home Controller
<<control>>

authenticates

Research Controller
<<control>>

Ranking Controller
<<control>>

Admin Controller
<<control>>

This is a revised Domain Model from Report 1. The central idea for the domain

model remains the same, however, minor edits were made to align it with the

current status. When we first created our domain model, we had not decided on

the model-view-controller framework for the frontend, so we did not define a

central controller the same way.

We have a central controller concept which communicates with various other

concepts. In the updated model we have two such controllers, Broker which did

most of the backend control and UI Manager which did most of the frontend

control. A few concepts are renamed though their roles are unchanged and a few

concepts are added new like controllers for each of research, ranking and

preferences page. Few concepts like limit order, stop order are combined into

single concept order, as during implementation, we realized we could have a single

concept order and the broker concept would internally handle individual orders

i. Concept Definitions

Concept Name Type Concept Description

Administrator

Interface

D Interface for system administrator
actor to perform various operations
like maintaining user accounts,
configuration changes, data
manipulation, etc.

UserLoginOrRegister D Displays functions for users to log in

into the system or for new users to

register themselves.

 Login Key K Stores the username and password

information.

Place An Order K Stores information about a

transaction initiated by an investor.

Investor Home Page D Displays information after users log

in.

 Trade Page D Provides interface for user to

enter data to buy and sell stocks.

Once a symbol is selected, interacts

with Yahoo finance to display the

stock information.

Buy A Stock D Stores data for the order placed to

buy a stock. Uses functions

provided by Check Order Valid to

verify the validity of the order. Adds

data to open orders database table.

For valid orders based on the order

type invokes appropriate

transaction i.e. market, limit, stop.

Sell A Stock D Stores data for the order placed to

buy a stock. Uses functions

provided by Check Order Valid to

verify the validity of the order. For

valid orders based on the order

type invokes appropriate

transaction i.e. market, limit, stop.

Check Order Valid D Provides functionality to check the

validity of the order placed. Checks

if the symbol is valid, user has

enough cash to perform the

transaction etc.

Place Market Order D Provides functionality to complete

a market order transaction. Checks

to see if 20 minutes has passed.

Checks if user has enough cash to

perform the transaction. If yes,

execute order. Update information

in database to reflect purchase

(decrement user’s cash, update

transaction history and portfolio,

etc). Notify user if user preferences

are set.

Place Limit Order D Provides functionality to complete

a limit order transaction. Gets the

stock prices and volumes for all

open orders. Monitors data from

yahoo to check if the limit price has

reached. If yes, further processes

the order by purchasing or selling

the shares at limit price and

following the same path as the

market order.

Place Stop Order D Provides functionality to complete

a stop order transaction. Gets the

stock prices and volumes for all

open orders. Monitors data from

yahoo to check if the price has

reached. If yes, further processes

the order by transitioning the order

from limit order to market order.

View Portfolio K Provides interface for user to view

his portfolio. Interacts with

database to obtain the portfolio

information.

 Stock Data Observer D Keeps observing the up to date

stock prices and information. Gets

data from the controller through

the external interface

UI Manager D Manages the various user

interfaces. Interacts with the

controller for information from

database, to obtain external data

etc.

Authenticator D Responsible for authenticating the

user based on the login information

provided.

Error Interface D Displays appropriate error

messages to the users.

Advertiser Interface D Interface for advertiser actor.

Controller D Coordinates information between

concepts and events based on use

cases. It instructs the database,

obtains information from the

database and gives it to the

different interfaces.

External Interface

D Interacts with the external systems

like Yahoo to get the data.

External Database K External data from Yahoo or any

other external system

Email Interface D System Interface for email system

Mobile Interface D System Interface for SMS system

DB Manager D Interface to database used to

retrieve and store data

Stock Market

Database

K Stores stock market information

Transaction Database K Stores information about

transactions

User Database K Stores information about the users

Type D: Doing, Type K: Knowing

ii. Association Definitions

Concept Relation
[direction: ->]

Concept

Controller Communicates UI Manager

Controller Communicates Email Interface

Controller Communicates Mobile Interface
Controller obtains information Portfolio

Controller Instructs DB Manager

UI Manager Invokes User Interface
UI Manager Invokes Admin Interface

UI Manager Invokes Advertiser Interface

UI Manager Invokes External Interface

UI Manager Communicates Controller
Stock Data Observer obtains information Controller

Authenticator obtains information Controller
User Interface invokes Login Page

User Interface invokes Buy/Sell Page

User Interface invokes Home Page
Admin Interface invokes Login Page

DatabaseManager forwardsRequest RetrieveStockData

DatabaseManager forwardsRequest RetrieveStockChar
Login Page obtains information Login

Login Page authenticates using Authenticator

Trade Page Performs Place An Order
Place An Order Performs Buy A Stock

Place An Order Performs Sell A Stock

Buy A Stock Validates Is Order Valid
Sell A Stock Validates Is Order Valid

Buy A Stock Performs Place Market Order

Buy A Stock Performs Place Limit Order

Buy A Stock Performs Place Stop Order
Sell A Stock Performs Place Market Order

Sell A Stock Performs Place Limit Order

Sell A Stock Performs Place Stop Order
Authenticator Report Error Error Interface

Buy A Stock Report Error Error Interface

Sell A Stock Report Error Error Interface
Email Interface Report Error Error Interface

Mobile Interface Report Error Error Interface

iii. Attribute Definitions

Concept Attribute/ Definition

Administrator Interface

UserLogin

LoginKey 1. username – Username provided by the users
2. password – Password provided by the user

Invester Home page

Trade Page

PlaceOrder 1. orderType – Type of order that is either buy or
sell

2. noOfShares – number of the shares to be
bought or sold

3. status - Indicates whether the buy/sell was
successful

BuyAStock 1 status – indicates whether buy was successful (the

same is communicated in upward direction)

SellAStock 1 status – indicates whether sell was successful(the

same is communicated in upward direction)

ViewPortfolio 1. user – user for whom the portfolio is created
2. portfolioData - other data pertaining to

portfolio

Check Order Valid

Place Market Order

Place Limit Order

Place Stop Order

UIManager

Authenticator 1. success – set to 1 if the authentication succeeded

Error Interface 1. error – holds the error message

Advertiser Interface

Controller

External Interface

Email Interface 1. emailId – email id of the user
2. text – the text to be emailed

Mobile interface 1. mobileNumber – mobile number
2. text – text to be messaged

DB Manager 1. updateTime – time when the update was
performed

2. updateUser – user who performed the update
3. updateStatus – Indicated if the update was

successful

b. System Operation Contracts

Operation: Create New Account

Preconditions:  The account name does not exist

Postconditions:  A new user account created
 An amount of virtual money is added to the new
account

Operation: Buy Stocks

Preconditions:  An investor is already logged in
 The investor has sufficient funds
 Validate the trading volume of the day

Postconditions:  Update the investor’s portfolio

Operation: Sell Stocks

Preconditions:  An investor is already logged in
 The investor has sufficient number of shares of the

stock

Postconditions:  Update the investor’s portfolio

Operation: View Portfolio

Preconditions:  An investor is already logged in

Postconditions:  Display investor’s portfolio information

Operation: View Stock Detail Information

Preconditions:  An investor is already logged in
 The entered content matches a stock name in

database

Postconditions:  Display the desired stock information

Operation: Manage User Accounts

Preconditions:  A system administrator is already logged in
 The desired account information exists

Postconditions:  The account reflects the change based on the
administrator’s operation

Operation: Manage Webpage

Preconditions:  A system administrator is already logged in

Postconditions:  The webpage reflects the change based on the
administrator’s operation

Operation: Email Notification

Preconditions:  An operation or an event is triggered

Postconditions:  An email notification is sent to the corresponding user
based on an event or operation

Operation: Mobile Device Notification

Preconditions:  An operation or an event is triggered

Postconditions:  A text message is sent to the corresponding user’s
mobile device based on an event or operation

Operation: View Leaderboard

Preconditions:  An investor is already logged in

Postconditions:  Display the leaderboard

11. Interaction Diagrams

a. Summary of interaction diagrams

i. Registration

ii. View Homepage

iii. Buy Stocks

iv. Execute Buy

v. Sell Stocks

vi. Execute Sell

vii. Research Stocks

viii. View Portfolio

ix. Send Notifications

x. View Transaction History

xi. Preferences

As a general note, the frontend is using the Model-View-Controller design pattern. Almost

everything about the Symfony2 frontend leverages well-defined Java design patterns. Any time

the word “Controller” is shown in the interaction diagrams, it is representing the Front End

Controller design pattern (“Front Controller Pattern,” Wikipedia). The Frontend interaction

diagrams show the use of the Model-View-Controller whenever the word “Controller” is used.

Please note: The Design Patterns are sufficiently described in the section 12C (Design Patterns).

The Interaction Diagrams Execute Buy, Buy, Execute Sell, and Sell were created and show the

backend design patterns in use. The actual explanation of these Design Patterns is provided in

12C and was not repeated in this section.

http://en.wikipedia.org/wiki/Front_Controller_pattern

b. Interface Diagrams

Registration

alt

[else]

:SignupController :Database

Information already exists

return error

[else if] wrong information
return error

createNewUser()

return success

The above diagram shows Registration use case. When a user goes to the

registration page, the system asks for username and password that the user wants

to create. After that, system will request information from database and check

information to see whether this username is already taken or not and if the

information is valid. If there is nothing wrong with the information, the database is

updated and show confirmation note for the user.

View Homepage

:HomeController :Database

user login

indexAction()

Display homepage

The above diagram shows View Homepage use case. After a user is logged into the

system, the HomeController would ask information from the database and show

the home page to the current user.

Buy Stocks

The use case of Buy Stock is represented in the above diagram. An user at the front end first

initiates a buy action and specifies the type(market, limit, stop, limit, or trailing stop), price, and

volume of the order he wants. Then the backend fetch the order through database and query

about the stock information from Yahoo Finance. After getting the price and volume

information, the system verify that total cost less than user’s cash balance and send

information to database and update user’s portfolio.

Execute Buy

Execute Buy differs from Buy Stocks in that it describes the behavior that happens on the

backend after a stock is successfully deemed to be able to execute and is a ‘Buy’ action. If the

order is executed successfully, the system would notify user that the transaction has been

completed.

Sell Stocks

The diagram below is to show the use case of Sell Stock. An user at the front end first initiates a

sell action and specifies the type(market, limit, stop, stop-limit, or trailing stop), price, and

volume of the order he wants. Then the backend fetch the order through database and query

about the stock information from Yahoo Finance. After getting the price and volume

information, the system verify that user owns the stock and the amounts of share he wish to

sell and send information to database and update user’s portfolio.

Execute Sell

Execute Sell differs from Sell Stocks in that it describes the behavior that happens on

the backend after a stock is successfully deemed to be able to execute and is a “Sell”

action. If the order is executed successfully, the system would notify user that the

transaction has been completed.

Research Stocks

alt

[else]

:StockFacts YahooFinance

Valid stock symbol

Display stock infomatoin

getStock(&stock)

return error

invalid stock symbol

The above diagram shows Research Stocks use case. First user enters the desired stock

symbol. If the symbol is valid, StockFacts queries Yahoo Finance for current price per

share of the entered stock symbol as well as any available history about the stock, and

then returns requested information to StockFacts. Finally, the system displays retrieved

information to the user.

View Portfolio

:PortfolioController :Database

user request for portfolio

indexAction()

display user’s portfolio

The above diagram shows the View Portfolio use case. After an user is logged into the

system and asks for his/her portfolio, the PortfolioController would request

information from the database and display the corresponding portfolio of the user.

Send Notifications

loop

[else]

:Mail :EmailServer

Notice a new event

return error

Invalid email address

sendl()

Send user email

alt

Send Notifications use case is showed as the above diagram. A loop is constantly

waiting for a new event. After a new event is noticed, system signals email server (or

SMS server) for sending notification to the user. If the email address is correct, then the

user will be aware of what has happened.

View Transaction History

:TradeController :Database

user request for transaction history

validateAction(Request $request)

display transaction history

The above diagram shows the use case of View Transaction History. After a user is

logged into the system and asks for his/her transaction history, the TradeController

would request information from the database and show the corresponding transaction

information to the user.

Preferences

:PrefsController :Database

New data

commitAction

(Request $request)

Signal user

:EmailServer

send()

Send user email notification

The use case of Preferences is represented in the above diagram. After a user goes to

preference page and enters the setting he/she wish to change, the PrefsController

would send the new data to database. Besides, the email server will send an email to

notify the user of successful operation.

12. Class Diagram and Interface Specification

The class diagrams and interface specifications were split up between the backend

and the frontend. The rationale for doing this is that the front end and the backend

never directly collaborate with one another. The frontend (i.e. client side, web

side) inserts and extracts data from the database and also pulls data from Yahoo!

Finance. The backend (i.e. server side, polling program) inserts and extracts data

from the database and pulls data from Yahoo! Finance independent of the

frontend. In this way, the database works as somewhat of a middleware between

the two bodies of code as shown in the figure below.

a. Class Diagrams

The class diagrams have evolved since Report 2. This is because in between

Demo 1 and Demo 2, code was redone to make it run more efficiently.

Frontend code underwent an entire UI design, and as more was learned about

Symfony2’s functionality, the team tried to stick to the best practices of

Symfony2 and the code often required revision. Also, testing was added in

between Demo 1 and Demo 2, so the additional testing classes are shown

below.

On the backend, new order types were added. Also, at the time of Demo 1,

some errors were found in the way the code was operating together. The java

code was restructured to run smoothly and be more loosely-coupled and highly

cohesive.

Frontend Class Diagram

The entities are shown on the left of the Frontend Class Diagram. Each entity

corresponds to a table in the database and has set/get methods to retrieve the

corresponding fields of the database table. The relationship between entities

and controllers is explained in Section VII.b.iii below. All controllers inherit

from the base controller class. For the entities, only the Account class inherits

from the UserInterface base class. Note that the ‘indexAction()’,

‘retrieveAction()’, functions are the basic building blocks that Symfony2 looks

for to communicate with the database. As such, the function names are not as

descriptive as the actual controller names. This is by design, to maintain

consistency with the Symfony2 framework.

On the right of the Frontend Class Diagram are the base controller classes,

which house all of the more complex PHP logic. Please note that while

Symfony2 uses OO principles, making class diagrams for the different entities

and controllers does not show as much of a program flow as simple flowcharts

can show. The program flow diagrams are shown in Appendix A.2.

On the bottom right of the Frontend Class Diagram are the TestUseCase

classes, which house all of the PHPUnit logic that tests the code. Please note

that this is different than the validation scripts, which are not shown below

since validation is done by Symfony2 code that was not written by Group 2.

The testing code purposefully injects data into the Controllers and expects

them to behave a certain way. A report is generated as to whether or not the

tests behave as expected. The test writer defines what “expected” behavior is

and can use assert statements or manually inspect the data that is inserted into

the database. Please note, after generating this graphic, I actually realized that

I forgot the class to implement the removal of orders at the end of each day

that were “Good for the Day” orders. The graphic misses this class, however, it

is listed in the function names below it. It is the class EndOfDayCommand. It

has variables $input and $ouput, and has the functions configure() and

execute(). I apologize for omitting this in the diagram.

Backend Class Diagram

+main()
+executeBuy()
+executeSell()

broker

+CSVParser()
+getPrice()
+getVolume()
+Parse()

-stock
-csvString
-url
-urlConn
-inStream
-buff
-strarr
-numStocks

CSVParser

+Database()
+connect()
+readOrders()
+getSymbols()
+getOrder()
+getUserCash()
+setUserCash()
+getPortfolioStock()
+getUserEmail()
+getUserPhone()
+getUserPhoneCarrier()
+getUserSMS()
+addHistory()
+addToPortfolio()
+removeFromPortfolio()
+deleteOrder()
+updateStopPrice()
-weightedAverage()

-connection
-orders
+currentOrder

Database

+Order()

+id
+account
+timePlaced
+symbol
+action
+quantity
+type
+stopPrice
+limitPrice
+trail
+duration
+notify

Order +Mail()
+send()

+to
+body

Mail

+SMS()
+send()

+to
+body

SMS

b. Data Types and Operation Signatures

Frontend

It is difficult to state the data types for PHP-based software. PHP is loosely-

typed. This means that I can use a variable named $someData to represent an

integer, a string, a double, or a Boolean. Therefore, it is not easy to identify

each $variable as integer, string, etc. Instead, the variable names will be listed

without specific types. On that same note, functions are also not represented

by specific types. Instead, the word “function” usually proceeds a function in

PHP.

Please note, this front end list has changed from Report 2. As the code evolved

and more was learned about Symfony2, the function and variable names

changed a bit. This list also includes the new Test classes which were

implemented to use PHPUnit unit testing.

CLASS: PortfolioControllerTest

 FUNCTION: testIndex()

CLASS: TradeControllerTest

 FUNCTION: testIndex()

CLASS: OrderControllerTest

 FUNCTION: testIndex()

CLASS: RankingControllerTest

 FUNCTION: testIndex()

CLASS: SecurityControllerTest

 FUNCTION: testIndex()

CLASS: TheStockHopExtension

 FUNCTION: load(array$configs,ContainerBuilder$container)

CLASS: Configuration

 FUNCTION: getConfigTreeBuilder()

CLASS: Portfolio

 VARIABLE: $id

 VARIABLE: $account_id

 VARIABLE: $symbol

 VARIABLE: $quantity

 VARIABLE: $price

 VARIABLE: $account

 VARIABLE: $info

 FUNCTION: getId()

 FUNCTION: setAccountId($accountId)

 FUNCTION: getAccountId()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setQuantity($quantity)

 FUNCTION: getQuantity()

 FUNCTION: setPrice($price)

 FUNCTION: getPrice()

 FUNCTION:

setAccount(\RU\TheStockHopBundle\Entity\Account$account)

 FUNCTION: getAccount()

CLASS: Role

 VARIABLE: $id

 VARIABLE: $name

 VARIABLE: $createdAt

 FUNCTION: getRole()

 FUNCTION: getId()

 FUNCTION: setName($name)

 FUNCTION: getName()

 FUNCTION: setCreatedAt($createdAt)

 FUNCTION: getCreatedAt()

 FUNCTION: __construct()

CLASS: Order

 VARIABLE: $id

 VARIABLE: $account_id

 VARIABLE: $created

 VARIABLE: $symbol

 VARIABLE: $action

 VARIABLE: $quantity

 VARIABLE: $type

 VARIABLE: $limitPrice

 VARIABLE: $stopPrice

 VARIABLE: $trail

 VARIABLE: $duration

 VARIABLE: $notify

 VARIABLE: $account

 VARIABLE: $info

 FUNCTION: getId()

 FUNCTION: setAccountId($accountId)

 FUNCTION: getAccountId()

 FUNCTION: setCreated($created)

 FUNCTION: getCreated()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setAction($action)

 FUNCTION: getAction()

 FUNCTION: setQuantity($quantity)

 FUNCTION: getQuantity()

 FUNCTION: setType($type)

 FUNCTION: getType()

 FUNCTION: setDuration($duration)

 FUNCTION: getDuration()

 FUNCTION: setNotify($notify)

 FUNCTION: getNotify()

 FUNCTION:

setAccount(\RU\TheStockHopBundle\Entity\Account$account)

 FUNCTION: getAccount()

 FUNCTION: __construct()

 FUNCTION: setLimitPrice($limitPrice)

 FUNCTION: getLimitPrice()

 FUNCTION: setStopPrice($stopPrice)

 FUNCTION: getStopPrice()

 FUNCTION: getTrailPrice()

 FUNCTION: getTrail()

 FUNCTION: setTrail($trail)

CLASS: StockCache

 VARIABLE: $id

 VARIABLE: $symbol

 VARIABLE: $name

 VARIABLE: $sector

 VARIABLE: $industry

 VARIABLE: $price

 VARIABLE: $updated

 FUNCTION: getId()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setName($name)

 FUNCTION: getName()

 FUNCTION: setSector($sector)

 FUNCTION: getSector()

 FUNCTION: setIndustry($industry)

 FUNCTION: getIndustry()

 FUNCTION: setPrice($price)

 FUNCTION: getPrice()

 FUNCTION: setUpdated($updated)

 FUNCTION: getUpdated()

CLASS: Rank

 VARIABLE: $id

 VARIABLE: $name

 VARIABLE: $worth

 VARIABLE: $pos

 FUNCTION: getId()

 FUNCTION: setName($name)

 FUNCTION: getName()

 FUNCTION: setWorth($worth)

 FUNCTION: getWorth()

 FUNCTION: setPos($pos)

 FUNCTION: getPos()

CLASS: History

 VARIABLE: $id

 VARIABLE: $account_id

 VARIABLE: $created

 VARIABLE: $symbol

 VARIABLE: $action

 VARIABLE: $quantity

 VARIABLE: $type

 VARIABLE: $duration

 VARIABLE: $executed

 VARIABLE: $limitPrice

 VARIABLE: $finalPrice

 VARIABLE: $stopPrice

 VARIABLE: $trail

 VARIABLE: $commission

 VARIABLE: $orderValue

 VARIABLE: $accountValue

 VARIABLE: $account

 FUNCTION: getId()

 FUNCTION: setAccountId($accountId)

 FUNCTION: getAccountId()

 FUNCTION: setCreated($created)

 FUNCTION: getCreated()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setAction($action)

 FUNCTION: getAction()

 FUNCTION: setQuantity($quantity)

 FUNCTION: getQuantity()

 FUNCTION: setType($type)

 FUNCTION: getType()

 FUNCTION: setDuration($duration)

 FUNCTION: getDuration()

 FUNCTION: setExecuted($executed)

 FUNCTION: getExecuted()

 FUNCTION: setCommission($commission)

 FUNCTION: getCommission()

 FUNCTION: setOrderValue($orderValue)

 FUNCTION: getOrderValue()

 FUNCTION: setAccountValue($accountValue)

 FUNCTION: getAccountValue()

 FUNCTION:

setAccount(\RU\TheStockHopBundle\Entity\Account$account)

 FUNCTION: getAccount()

 FUNCTION: setLimitPrice($limitPrice)

 FUNCTION: getLimitPrice()

 FUNCTION: setStopPrice($stopPrice)

 FUNCTION: getStopPrice()

 FUNCTION: setTrail(\int$trail)

 FUNCTION: getTrail()

 FUNCTION: setFinalPrice($finalPrice)

 FUNCTION: getFinalPrice()

CLASS: StockCache

 VARIABLE: $id

 VARIABLE: $symbol

 VARIABLE: $name

 VARIABLE: $sector

 VARIABLE: $industry

 VARIABLE: $price

 VARIABLE: $updated

 FUNCTION: getId()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setName($name)

 FUNCTION: getName()

 FUNCTION: setSector($sector)

 FUNCTION: getSector()

 FUNCTION: setIndustry($industry)

 FUNCTION: getIndustry()

 FUNCTION: setPrice($price)

 FUNCTION: getPrice()

 FUNCTION: setUpdated($updated)

 FUNCTION: getUpdated()

CLASS: Role

 VARIABLE: $id

 VARIABLE: $name

 VARIABLE: $createdAt

 FUNCTION: getRole()

 FUNCTION: getId()

 FUNCTION: setName($name)

 FUNCTION: getName()

 FUNCTION: setCreatedAt($createdAt)

 FUNCTION: getCreatedAt()

 FUNCTION: __construct()

CLASS: Account

 VARIABLE: $id

 VARIABLE: $username

 VARIABLE: $password

 VARIABLE: $salt

 VARIABLE: $userRoles

 VARIABLE: $phoneNumber

 VARIABLE: $carrier

 VARIABLE: $registrationDate

 VARIABLE: $email

 VARIABLE: $notify

 VARIABLE: $cash

 VARIABLE: $orders

 VARIABLE: $history

 VARIABLE: $portfolio

 VARIABLE: $confirmPassword

 VARIABLE: $newPassword

 VARIABLE: $oldPassword

 FUNCTION: getId()

 FUNCTION: setUsername($username)

 FUNCTION: getUsername()

 FUNCTION: setPassword($password)

 FUNCTION: getPassword()

 FUNCTION: setRegistrationDate($registrationDate)

 FUNCTION: getRegistrationDate()

 FUNCTION: setEmail($email)

 FUNCTION: getEmail()

 FUNCTION: setDefaultNotify($defaultNotify)

 FUNCTION: getDefaultNotify()

 FUNCTION: setCash($cash)

 FUNCTION: getCash()

 FUNCTION: __construct()

 FUNCTION: setNotify($notify)

 FUNCTION: getNotify()

 FUNCTION: addOrder(\RU\TheStockHopBundle\Entity\Order$orders)

 FUNCTION: getOrders()

 FUNCTION:

addHistory(\RU\TheStockHopBundle\Entity\History$history)

 FUNCTION: getHistory()

 FUNCTION:

addPortfolio(\RU\TheStockHopBundle\Entity\Portfolio$portfolio)

 FUNCTION: getPortfolio()

 FUNCTION: getSalt()

 FUNCTION: setSalt($value)

 FUNCTION: equals(UserInterface$user)

 FUNCTION: eraseCredentials()

 FUNCTION: getRoles()

 FUNCTION: addRole(\RU\TheStockHopBundle\Entity\Role$userRoles)

 FUNCTION: getUserRoles()

 FUNCTION: setPhoneNumber($phoneNumber)

 FUNCTION: getPhoneNumber()

 FUNCTION: setCarrier($carrier)

 FUNCTION: getCarrier()

CLASS: Account

 VARIABLE: $id

 VARIABLE: $username

 VARIABLE: $password

 VARIABLE: $salt

 VARIABLE: $userRoles

 VARIABLE: $phoneNumber

 VARIABLE: $carrier

 VARIABLE: $registrationDate

 VARIABLE: $email

 VARIABLE: $notify

 VARIABLE: $cash

 VARIABLE: $orders

 VARIABLE: $history

 VARIABLE: $portfolio

 VARIABLE: $confirmPassword

 VARIABLE: $newPassword

 VARIABLE: $oldPassword

 FUNCTION: getId()

 FUNCTION: setUsername($username)

 FUNCTION: getUsername()

 FUNCTION: setPassword($password)

 FUNCTION: getPassword()

 FUNCTION: setRegistrationDate($registrationDate)

 FUNCTION: getRegistrationDate()

 FUNCTION: setEmail($email)

 FUNCTION: getEmail()

 FUNCTION: setDefaultNotify($defaultNotify)

 FUNCTION: getDefaultNotify()

 FUNCTION: setCash($cash)

 FUNCTION: getCash()

 FUNCTION: __construct()

 FUNCTION: setNotify($notify)

 FUNCTION: getNotify()

 FUNCTION: addOrder(\RU\TheStockHopBundle\Entity\Order$orders)

 FUNCTION: getOrders()

 FUNCTION:

addHistory(\RU\TheStockHopBundle\Entity\History$history)

 FUNCTION: getHistory()

 FUNCTION:

addPortfolio(\RU\TheStockHopBundle\Entity\Portfolio$portfolio)

 FUNCTION: getPortfolio()

 FUNCTION: getSalt()

 FUNCTION: setSalt($value)

 FUNCTION: equals(UserInterface$user)

 FUNCTION: eraseCredentials()

 FUNCTION: getRoles()

 FUNCTION: addRole(\RU\TheStockHopBundle\Entity\Role$userRoles)

 FUNCTION: getUserRoles()

 FUNCTION: setPhoneNumber($phoneNumber)

 FUNCTION: getPhoneNumber()

 FUNCTION: setCarrier($carrier)

 FUNCTION: getCarrier()

CLASS: History

 VARIABLE: $id

 VARIABLE: $account_id

 VARIABLE: $created

 VARIABLE: $symbol

 VARIABLE: $action

 VARIABLE: $quantity

 VARIABLE: $type

 VARIABLE: $duration

 VARIABLE: $executed

 VARIABLE: $limitPrice

 VARIABLE: $finalPrice

 VARIABLE: $stopPrice

 VARIABLE: $trail

 VARIABLE: $commission

 VARIABLE: $orderValue

 VARIABLE: $accountValue

 VARIABLE: $account

 FUNCTION: getId()

 FUNCTION: setAccountId($accountId)

 FUNCTION: getAccountId()

 FUNCTION: setCreated($created)

 FUNCTION: getCreated()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setAction($action)

 FUNCTION: getAction()

 FUNCTION: setQuantity($quantity)

 FUNCTION: getQuantity()

 FUNCTION: setType($type)

 FUNCTION: getType()

 FUNCTION: setDuration($duration)

 FUNCTION: getDuration()

 FUNCTION: setExecuted($executed)

 FUNCTION: getExecuted()

 FUNCTION: setCommission($commission)

 FUNCTION: getCommission()

 FUNCTION: setOrderValue($orderValue)

 FUNCTION: getOrderValue()

 FUNCTION: setAccountValue($accountValue)

 FUNCTION: getAccountValue()

 FUNCTION:

setAccount(\RU\TheStockHopBundle\Entity\Account$account)

 FUNCTION: getAccount()

 FUNCTION: setLimitPrice($limitPrice)

 FUNCTION: getLimitPrice()

 FUNCTION: setStopPrice($stopPrice)

 FUNCTION: getStopPrice()

 FUNCTION: setTrail(\int$trail)

 FUNCTION: getTrail()

 FUNCTION: setFinalPrice($finalPrice)

 FUNCTION: getFinalPrice()

CLASS: Order

 VARIABLE: $id

 VARIABLE: $account_id

 VARIABLE: $created

 VARIABLE: $symbol

 VARIABLE: $action

 VARIABLE: $quantity

 VARIABLE: $type

 VARIABLE: $limitPrice

 VARIABLE: $stopPrice

 VARIABLE: $trail

 VARIABLE: $duration

 VARIABLE: $notify

 VARIABLE: $account

 VARIABLE: $info

 FUNCTION: getId()

 FUNCTION: setAccountId($accountId)

 FUNCTION: getAccountId()

 FUNCTION: setCreated($created)

 FUNCTION: getCreated()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setAction($action)

 FUNCTION: getAction()

 FUNCTION: setQuantity($quantity)

 FUNCTION: getQuantity()

 FUNCTION: setType($type)

 FUNCTION: getType()

 FUNCTION: setDuration($duration)

 FUNCTION: getDuration()

 FUNCTION: setNotify($notify)

 FUNCTION: getNotify()

 FUNCTION:

setAccount(\RU\TheStockHopBundle\Entity\Account$account)

 FUNCTION: getAccount()

 FUNCTION: __construct()

 FUNCTION: setLimitPrice($limitPrice)

 FUNCTION: getLimitPrice()

 FUNCTION: setStopPrice($stopPrice)

 FUNCTION: getStopPrice()

 FUNCTION: getTrailPrice()

 FUNCTION: getTrail()

 FUNCTION: setTrail($trail)

CLASS: Portfolio

 VARIABLE: $id

 VARIABLE: $account_id

 VARIABLE: $symbol

 VARIABLE: $quantity

 VARIABLE: $price

 VARIABLE: $account

 VARIABLE: $info

 FUNCTION: getId()

 FUNCTION: setAccountId($accountId)

 FUNCTION: getAccountId()

 FUNCTION: setSymbol($symbol)

 FUNCTION: getSymbol()

 FUNCTION: setQuantity($quantity)

 FUNCTION: getQuantity()

 FUNCTION: setPrice($price)

 FUNCTION: getPrice()

 FUNCTION:

setAccount(\RU\TheStockHopBundle\Entity\Account$account)

 FUNCTION: getAccount()

CLASS: Rank

 VARIABLE: $id

 VARIABLE: $name

 VARIABLE: $worth

 VARIABLE: $pos

 FUNCTION: getId()

 FUNCTION: setName($name)

 FUNCTION: getName()

 FUNCTION: setWorth($worth)

 FUNCTION: getWorth()

 FUNCTION: setPos($pos)

 FUNCTION: getPos()

CLASS: AdvertiseController

 FUNCTION: __construct()

 FUNCTION: indexAction(Request$request)

 FUNCTION: newAction(Request$request)

 FUNCTION: getForm()

CLASS: PrefsController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 VARIABLE: $failure_set

 VARIABLE: $success_set

 VARIABLE: $other_set

 FUNCTION: __construct()

 FUNCTION: indexAction(Request$request)

 FUNCTION: commitAction(Request$request)

CLASS: ResearchController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 FUNCTION: indexAction()

 FUNCTION: getAction(Request$request)

 FUNCTION: getjavaAction($name="")

CLASS: HelpController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 FUNCTION: indexAction()

CLASS: PortfolioController

 FUNCTION: indexAction(Request$request)

CLASS: DefaultController

 FUNCTION: indexAction()

 FUNCTION: createAction()

CLASS: SecurityController

 FUNCTION: loginAction()

CLASS: OrdersController

 FUNCTION: __construct()

 FUNCTION: indexAction()

 FUNCTION: cancelAction($id)

CLASS: TradeController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 VARIABLE: $failure_set

 VARIABLE: $success_set

 VARIABLE: $other_set

 FUNCTION: __construct()

 FUNCTION: indexAction(Request$request)

 FUNCTION: validateAction(Request$request)

 FUNCTION: sellAction(Request$request)

CLASS: HomeController

 FUNCTION: indexAction()

CLASS: RankingController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 FUNCTION: indexAction(Request$request)

CLASS: AdminController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 FUNCTION: indexAction()

CLASS: SignupController

 VARIABLE: $msg_success

 VARIABLE: $msg_failure

 VARIABLE: $msg_other

 FUNCTION: indexAction(Request$request)

 FUNCTION: validateAction(Request$request)

CLASS: TradeController

 FUNCTION: __construct()

 FUNCTION: indexAction(Request$request)

 FUNCTION: validateAction(Request$request)

 FUNCTION: sellAction(Request$request)

 FUNCTION: makeForm($order)

CLASS: Symbol

 VARIABLE: $message

CLASS: SymbolValidator

 FUNCTION: isValid($value,Constraint$constraint)

CLASS: ResearchType

 VARIABLE: $symbol

 FUNCTION: buildForm(FormBuilder$builder,array$options)

 FUNCTION: setSymbol($data="")

 FUNCTION: getSymbol()

 FUNCTION: getName()

CLASS: OrderActionType

 FUNCTION: buildForm(FormBuilder$builder,array$options)

 FUNCTION: getDefaultOptions(array$options)

 FUNCTION: getName()

CLASS: FixtureLoader

 FUNCTION: load($manager)

CLASS: RankRepository

 FUNCTION: findAllOrderedByWorth()

 FUNCTION: findAllOrderedByPos()

 FUNCTION: findByName($user)

CLASS: StockFacts

 VARIABLE: $info

 FUNCTION: __construct()

 FUNCTION: getStock($stock)

 FUNCTION: isValid()

 FUNCTION: getValue($qty=1)

 FUNCTION: getGain($cost=1)

CLASS: TheStockHopBundle

CLASS: RankCommand

 FUNCTION: configure()

 FUNCTION: execute(InputInterface$input,OutputInterface$output)

CLASS: EndOfDayCommand

 FUNCTION: configure()

 FUNCTION: execute(InputInterface$input,OutputInterface$output)

Backend

Operations

+ main() : void

+executeBuy(database : Database, currentOrder : Order, p : CSVParser,

sellComission : double, buyCommission : double) : void

+executeSell(database : Database, currentOrder : Order, p : CSVParser,

sellComission : double, buyCommission : double) : void

CSVParser

Attributes

- stock : String

- csvString : String

- url : URL

- urlConn : URLConnection

- inStream : InputStreamReader

- buff : BufferedReader

- strarr[][] : String

- numStocks : int

Operations

+ CSVParser() : void

+ CSVParser(st : String) : void

+ getPrice (symbol : String) : double

+ getVolume (symbol : String) : double

+ Parse () : void

Database

Attributes

- connection : Connection

- orders : ResultSet

+ currentOrder : Order

Operations

+ Database ()

+ Database (dbName : String, dbUser : String, dbPassword : String)

+ connect (dbName : String, dbUser : String, dbPassword : String) : void

+ readOrders () : void

+ getSymbols () : String

+ getOrder () : Order

+ getUserCash (account : int) : BigDecimal

+ setUserCash (account : int, cashMoney : BigDecimal) : void

+ getPortfolioStock (account : int, symbol : String) : long

+ getUserEmail (account : int) : String

+ getUserPhone(account : int) : String

+ getUserPhoneCarrier(account : int) : String

+ getUserSMS(account : int) : String

+ addHistory (account : int, timePlaced : Timestamp, symbol : String, action :

String, quantity : long, type : String, stopPrice : BigDecimal, limitPrice :

BigDecimal, trail : BigDecimal, duration : String, price : BigDecimal, commission

: BigDecimal, orderValue : BigDecimal, accountValue : BigDecimal) : void

+ addToPortfolio (account : int, symbol : String, quantity : long, price :

BigDecimal) : void

+ removeFromPortfolio (account : int, symbol : String, quantity : long) : void

+ deleteOrder (id : long) : void

+ updateStopPrice(id : int, stopPrice : BigDecimal) : void

- weightedAverage (price1 : BigDecimal, quantity1Long : long, price2 :

BigDecimal, quantity2long : long) : BigDecimal

Order

Attributes

+ id : long

+ account : int

+ timePlaced : Timestamp

+ symbol : String

+ action : String

+ quantity : long

+ type : String

+ stopPrice : BigDecimal

+ limitPrice : BigDecimal

+ trail : BigDecimal

+ duration : String

+ notify : byte

Operations

+ Order ()

+ Order (id : long, account : int, timePlaced : Timestamp, symbol : String, action

: String, quantity : long, type : String, stopPrice : BigDecimal, limitPrice :

BigDecimal, trail : BigDecimal, duration : String, notify : String)

Mail

Attributes

+ to : String

+body : String

Operations

+ Mail()

+ Mail(mailto : String, mailBody : String)

+ send () : void

SMS

Attributes

+ to : String

+body : String

Operations

+ SMS()

+ SMS(mailto : String, mailBody : String)

+ send () : void

c. Design Patterns

Symfony2 utilizes the Model-View-Controller design pattern, and the front-end

controller design pattern. The frontend also utilized inheritance through a testing class.

The testing class used the builder method to facilitate easy testing by injection of test

objects into the PHP code. In addition, Symfony2 was used to add an abstraction layer

to the database. In common day web coding, this abstraction layer (or ORM) is known

as an ORM Design Pattern. Though these do not follow the classical design patterns,

they do follow the new idea of web-based design patterns.

The backend of the system uses the proxy design pattern extensively to shield the core

logic and calculation portions from the interaction with the database, Yahoo Finance,

and notifications. There are effectively four separate proxy style modules that we

developed and incorporated into the design. The primary one is the Database module

which handles all calls and interaction between the “broker” program and the MySQL

database. The database interaction code could have been hard coded into the main

broker class; however, we decided to separate this code into its own class and have the

broker program interact with it via our own “standard” methods would facilitate in

easier coding and maintenance of the broker program. This became very convenient

when we decided to incorporate additional stock order types which necessitated some

significant changes to the orders and history tables of the database. Because the

broker code was written to call our own custom methods in the Database class, the

heavy code changes needed to interact with the modified tables were kept within the

Database class. As such, all the code in the broker class for handling the original order

types remained unchanged, and therefore was guaranteed to still work as expected.

Only additional code had to be written to handle the new order types. The other

classes that were designed in a proxy style were the CSVParser (for interacting with

Yahoo Finance), Mail (for sending email notifications), and SMS (for sending text

messages) classes. In a similar manner to the Database class, any changes we needed

to make to improve our system interaction with the outside world or fix newly

discovered issues did not affect the core function of the backend software.

By nature of the problem, the backend uses state based design patterns as well. All the

different order types are stored with the same sequence of data types in the MySQL

database. Each order is retrieved in the same manner, regardless of whether it is a

“market buy” order, “limit sell” order, or any other type of order. However, once the

type of order is known, the backend enters the appropriate state to process the order

according to the correct rules it needs to. This state is naturally determined by the

current order type. The state determines whether the order is going to follow a buy or

sell route, as well as the conditions which must be satisfied to process the order. Once

the order has been executed accordingly, the backend returns to normal operation,

saving the order completion information in the history table and removing the order

from the orders table before the next order is fetched.

d. Object Constraint Language (Contracts)

Group 2 feels that OCL is most useful before you actually code an entire project.

It is difficult to reverse engineer OCL contracts from already written code. OCL is

meant as extra constraints that are not captured by UML class diagrams. They

should be required for Report 2, prior to the students coding up the entire

project. It was difficult to write up constraints at the end of the project.

Additionally, Group 2 frontend code does not interact with the database in the

same way that one might expect, due to the abstraction level that we added.

The database abstraction layer enforces its own contracts by using set and get

methods for everything in the database. Instead of writing the OCL Contracts

for the frontend, a sampling of the OCL contracts were instead written for the

backend code that interacts with the database.

context Database::readOrders() : void

pre: connection.createStatement() != NULL

post: result = stmt.executeQuery("SELECT * FROM orders ORDER BY

time_placed");

result.isEmpty()

context Database::getSymbols () : String

pre: orders.next()

let entries: symbols.indexOf(orders.getString("symbol")) > 0 then

 continue;

if symbols != “” then

 symbols += “+”

post: result += orders.getString(“symbol”)

context Database::getOrder() : void

pre: connection.createStatement() != NULL

post: result = stmt.executeQuery("SELECT * FROM orders ORDER BY

time_placed");

result.isEmpty()

context Database::getUserEmail(int account) : String

pre: connection.prepareStatement() != NULL
post: result = connection.prepareStatement("SELECT email FROM accounts WHERE

id=?");

result.isEmpty()

context Database::addHistory(int account, Timestamp timePlaced, String symbol,

String action, long quantity, String type, BigDecimal stopPrice, BigDecimal limitPrice,

BigDecimal trail, String duration, BigDecimal price, BigDecimal commission,

BigDecimal orderValue, BigDecimal accountValue) : void

post: prepStmt = connection.prepareStatement("INSERT INTO history

(account_id,time_placed,symbol,action,quantity,type,stop_price,limit_price,trail,duratio

n,price,commission,order_value,account_value,time_executed)

VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)");

13. System Architecture and System Design
a. Architectural Styles

Before speaking of the kinds of architectural styles we used in thestockhop, it is

useful to provide a definition of an architectural style. “An architectural style …

defines a family of systems in terms or a pattern of structural organization.

More specifically, an architectural style determines the vocabulary of

components and connectors that can be used in instances of that style,

together with a set of constraints on how they can be combined (Garlan and

Shaw, 6).”

Web applications usually combine a mix of architectural styles. The frontend

design uses the Model-View-Controller architecture, which is considered to be

a separated-presentation architectural style. The separated-presentation

architectural style describes the separation of presentation code from internal

logic code, which is exactly what has been done with the use of Symfony2 and

doctrine. It is also using the client/server architectural style. All of the data to

run the application is stored centrally on thestockhop server, but many clients

can access the web application from different places around the world through

many different Internet browsers.

Both the frontend and the backend are using the component-based

architectural style by using design and development languages that allows

them to be run independent of the platform they are on. In this way, the code

gets great reusability and allows for growth and scalability. Both ends are also

using the object-oriented architectural style to increase code modularity and

readability. Sometimes, the Representational State Transfer (REST) (described

in Section III.b) is described as an architectural style when it is thought of as

being comprised of a uniform interface and a layered architectural style. In this

way, the use of Symfony2 in a conventional manner also uses the REST

architectural style.

b. Identifying Subsystems

<<access>>

Database Backend
Frontend

server side

Frontend

GUI

<<access>><<access>>

The frontend GUI provides the interface by which a user can interact with the

system and view data from the system. The front end server side retrieves data

from the database and Yahoo Finance and presents it to the user via the

frontend GUI. It also stores new stock orders in the database. The database

holds all the persistent information such as user accounts, portfolios, the

transaction history, and the list of open stock orders to be processed. The

backend handles open order execution, user notification of completed orders

via email and/or SMS, and updates account information, portfolios, and

transaction histories appropriately.

c. Mapping Subsystems to Hardware

While the server is contained to one machine, the system as a whole is spread

across different machines. The system is effectively split into two separate and

fairly independent sections, a frontend and a backend, with the database

(residing on the server) acting as the intermediary between the two. The

frontend is further subdivided into a GUI component which runs within a web

browser on a client’s computer (or realistically, many clients’ computers)

providing a rich interactive experience and the server side portion runs within

the web server process on the server. The server side frontend handles

interaction between the GUI and the database, such as retrieving portfolio

contents and ensuring orders are properly and legitimately entered into the

database. On the backend, there is only one process we call the “broker” which

handles proper order execution and user notification of completed orders. This

process runs on the server alongside the database and the server side half of

the frontend.

d. Persistent Data Storage

A MySQL relational database is used for persistent data storage. There are nine

tables within the MySQL database entitled thestockhop. These tables are as

follows: accounts, account_role, role, orders, history, portfolio, rank,

stock_cache, and carriers. The figure below shows the database schema

mapping including field names and types.

The main table is the accounts table. This stores the user's information such as

username, password (encrypted), cash balance, etc. In the figure, the field ‘salt’

is used for the advanced encryption algorithm for the user passwords. This

accounts table also holds the primary key based on user. Each user has a

unique ‘id’ associated with their account. This id is the primary key. All

subsequent tables use ‘account_id’ which is a foreign key that refers to the

accounts table id. Therefore, an entry in the “Portfolio” table is associated with

a particular user by the use of the foreign key (which relates to the accounts

table primary key to get the user data). The decision was made not to repeat

the username and data in every table to reduce redundancy and also to follow

closely with Codd’s 12 Rules for Relational Databases (“Codd’s 12 Rules”,

Wikipedia).

Additionally, the account_role and role tables are used as a Many-to-Many

relationship with the accounts table, because many users can have many roles,

whereas in something like the Orders table, one order can only have one user

associated with it. The purpose of these roles tables is to record the different

roles of users. For example, “username: group2” could have the role of “user”

AND the role of “administrator”. Or, more likely, a user might have the role of

both “user” and “advertiser”. This particular person needs to be able to have

access to the stock trading game and also to the interface to upload their

advertisements.

The orders table is used to store open orders for all users. Each individual entry

is traced back to a particular user using the foreign key. The system has a 20

minute delay before it processes any orders (Market, Stop, or Limit) due to the

fact that Yahoo! Finance data is 20 minute delayed. If users had access to real-

time stock market data, they would be able to cheat at thestockhop.com. The

frontend software inserts the information filled out from the trade form into

the open orders database, and the backend software constantly polls the open

orders database to see if new data has appeared.

The history table stores transaction history for all users. The portfolio table

stores the stocks owned by particular users and their purchase price. Similar to

the other tables, a user is identified through the use of foreign keys to index

the accounts table.

The carriers table is actually not used in connection with other databases and

does not follow Codd’s 12 Rules. It is instead used as a matter of convenience

to globally store an array that can be seen by all the software. It is used

specifically for SMS text messaging. In order to text message users, the

software emails their number at the correct carrier relay, i.e. a Verizon

customer with the phone number 555-555-5555 can be text messaged by

emailing 5555555555@vtext.com.

e. Network Protocol

TheStockHop is self-contained to one server. Running on the localhost, there is
a MySQL database server, a POSTFIX mail server, and an Apache web server.
There are only 4 different external connections needed for the server.

First, the website is accessed via incoming HTTP requests on port 80, this is an
Internet standard, all user interactions happen over the frontend web
interface.

Both the backend and frontend make outgoing HTTP requests to Yahoo!
Finance in order to gather the necessary financial data. The reason Group 2
used HTTP is because that it is what Yahoo! Finance provides for sessionless
one time queries of its data, and there was no further interaction with the
Yahoo! Finance website than that.

mailto:5555555555@vtext.com

The email notification uses SSL encryption on outgoing port 587 for the simple
mail transport protocol (SMTP). SMTP is an internet standard for sending mail.
The reason we use port 587 and encrypt the outgoing mail connection is due to
the fact that the current ISP the server is on blocks outgoing mail connections
on port 25. We relay our mail through Google Mail servers using the port 587
method.

Internally, there are different connections needed for application
communication. The frontend relies on PHP's internal drivers to connect to a
MYSQL database for access to the persistent data. The backend uses the JDBC
driver to connect to the MySQL database and the Javamail driver to connect to
the mail server.

f. Global Control Flow

Our system is event-driven in that it waits for users’ input and acts according to

it. User interaction is required in frontend features like logging in, placing a

trade, etc. The system does not log anyone in until the initial event is driven by

an external request.

Also, we have a timer run in our backend program to fetch user orders and

stock information. Since the information on Yahoo Finance is twenty minutes

delayed for most of people, the timer in our system is also used to make user

orders are executed twenty minutes delay for users to play fair.

For time dependency, the backend of our system periodically processes

pending orders and checks the preconditions for different trades. The system

has multiple threads to support multiple users operating at the same time and

periodically fetch orders.

g. Hardware Requirements

Server-Side

Note that a complete scalability analysis has not been performed, so the

server-side hardware requirements are based on the needs of the current

website. The website requires an external hard drive. This hard drive must be

capable of storing the database data. An internet connection is required, so

necessary hardware includes a network card.

The hardware profile for the current thestockhop.com server is shown in the

Appendix as A.1. This hardware profile is everything needed for server

maintenance and administration on the current server.

Client-Side

On the client side, the client needs to have a monitor to view the GUI Display.

In addition, since a web browser is required, the other hardware that

comprises a computer is required such as CPU, Graphics Card, RAM, keyboard,

mouse, etc. A web connection is also required, so the computer must contain a

network card (whether wireless or Ethernet).

h. Program Flow Diagrams

Before constructing class diagrams or interaction diagrams, Group 2 wished to

capture the basic Program Flow using simple flowcharts. It was decided to

incorporate these as part of Report 2, since it was part of our design process.

Within the documentation, we will show the logic for the front end trade

screen and then the backend “Broker” program since these flowcharts explain

the most important functionality to TheStockHop. There are more flowcharts

for other cases in Appendix A.2.

START
Trade

(Frontend)

User fills out stock

order form

Clear stock order

form & stock

preview

User clicks clear BTN

On change to

stock symbol field

All necessary

fields filled?

Enough money

to cover order?

Save order in open

stock order list

YES

END

Valid stock

symbol?

Tell user stock

symbol is invalid

Fetch basic stock

info from Google/

Yahoo

YES

NO

Show basic stock

info in stock

preview

Stock symbol

valid?

YES

User clicks preview order button

Tell user stock

symbol is invalid
NO

Tell user all fields

need to be filled
NO

Tell user they do

not have enough

money

NO

YES

Ask user to

confirm order

Order

confirmed?

YES

NO

Tell user order

confirmed

Broker Program

(Backend) START

Fetch open orders

list

Fetch stock quotes

and volume from

Yahoo

F
o

r
e

a
ch

 o
rd

e
r

20 minutes

elapsed?
NO Order type?YES

Stock data

matches order

criteria?

Add/remove stock

to/from portfolio

Add entry to

history

Change user’s

cash balance

Send

notification?

Send email/SMS

notification to user

YES

STOPGo to next order Go to next orderNO

YES

MARKET

NO Go to next order

Remove stock

from open stock

order list

Execute at price

on limit order

Execute order at

current market

price

LIMIT

NO

Enough

Volume
YES

Stock data

matches order

criteria?

YES

Go to next order NO

14. Algorithms and Data Structures
a. Algorithms

TheStockHop does not currently use many complex algorithms. In future

implementations, moving average analysis will be done server-side using more

complex data mapping tools. One interesting aspect that is almost algorithmic

is the way the trailing stop order is treated. In a trailing stop, the stop order is

recomputed as the market price moves. Upon periodic queries to Yahoo!

Finance, the Open Orders table that contains the trailing stop orders slides the

“Stop Target Price” by the trail amount (by slides, we mean that it takes the

new Market Price, applies the trail amount, and obtains a new ‘stop target

price’).

b. Data Structures

i. “Order” Data Type [Backend]

The Order data structure is used to convey the relevant data of the currently in-

process stock order between the MySQL interaction wrapper code and the rest of

the “broker” program. It is comprised of the following data types, each of which is

used by the broker program to determine whether an order is to be processed,

how to process the order, and to make necessary changes to a user’s account,

portfolio, and transaction history.

Name Data Type Description

Id Int Unique “key” used to identify the order

Account Int Account ID of the user who placed the order

timePlaced Timestamp Date and time the order was placed

Symbol String Stock symbol for this order

Action String Indicates whether this is a buy or sell order

Quantity Long Number of shares to process

Type String Indicates whether this is a market, limit, stop-limit, trailing stop, or stop
order

Target_sto
p

BigDecimal Target price to determine execution of stop orders (can be used in
combination with target_limit for stop-limit orders)

Target_lim
it

BigDecimal Target price to determine execution of limit orders (can be used in
combination with target_stop for stop-limit orders)

Trail BigDecimal The trailing amount for Trailing Stop Orders

Duration String How long this order is good for (day or good until cancelled)

Notify Byte Indicates whether to notify the user when the order is executed

ii. Stock Information Array [Backend]

After parsing from Yahoo Finance, the program uses a two dimensional array to

store stock information. The columns in the array are symbol, price and

volume, and the rows are different stocks that parsed from Yahoo Finance.

iii. Entity Classes and Controller Classes [Frontend]

The entity classes and controller classes on the frontend can be described in a

general way that applies to all of them.

An entity class directly correlates to a table within the database. For example,

there is a class called Account. Each field in the accounts table is then a

protected data type within this class. The entity classes contain setter and

getter methods to access their protected data types. The controller class

instantiate an entity the same way one would instantiate an object in other

high level programming languages, i.e. an account object is created in the

controller using ‘new Account();’. The controller classes then use these objects

to manipulate data within this object. Finally, the object can be posted to the

database using the PHP PDO connections described above. In the instance

where data is being collected from a particular table, the $user type (an

Account entity) can be dereferenced: $user->getPortfolio() accesses the Entity

to obtain the entries in the portfolio table associated with a given user.

15. Cohesion Analysis
COHESION MODEL FOR BACKEND

 BROKER Order

 Database

CVSPARSER Mail SMS

Above are the cohesion models for the different classes used in our backend. The

circles represent the attributes, the rectangles represent the methods and the lines

indicate what methods use what attributes. From the diagram it can be observed that

most of the classes are fairly balanced in their computations except for the Order class.

We tried to make the classes such that no class methods had to do too many

computations, however the order class was mostly a state class which held all the data

for the particular order and hence it was highly cohesive. Below are the cohesion

values for SCOM, CC, LSCC and CAMC. The values are generated using a plugin of java ,

metrics analysis. An XML with the generated dependency values is attached.

The calculations are based on the below rules:

SCOM: The SCOM for two components is calculated using product of intersection of the

two components and the union of the two divided by minimum of the two and the

number of attributes.

CC: CC is simply the ratio of the intersection of the two components and the union of

the two components.

LSCC: It’s a measure of the number of attributes, the number of methods, and the
number of methods that reference the attribute.
CAMC: was calculated as a/kl, where l is the number of distinct parameter types, k is
the number of methods, and a is the summation of the number of distinct parameter
types of each method in the class.

Class/Attribute/Method SCOM CC LSCC CAMC

Broker 1 1 1 1

ExecuterOrderSell 1 1 1 1

ExecuteOrderBuy 1 1 1 1

Cash 1 1 1 1

Order 1 1 1 1

CSVParser 0.8 .778 .8 0

GetVolume .1 .1 0 0

GetPrice .1 .1 0 0

Parse 1 1 .5 .16

stock .3 .6 .4 0

url .3 1 .7 0

urlConn .3 1 .3 .33

inStream .3 .8 .156 0

Buff .3 .7 .67 0

strarr 1 1 .9 0

numStocks .3 .8 .5 0

Order 1 1 1 1

Id 1 1 1 1

account 1 1 1 1

timePlaced 1 1 1 1

symbol 1 1 1 1

action 1 1 1 1

type 1 1 1 1

quantity 1 1 1 1

targetPrice 1 1 1 1

stopPrice 1 1 1 1

limitPrice 1 1 1 1

trail 1 1 1 1

duration 1 1 1 1

notify 1 1 1 1

Order 1 1 1 1

Mail 1 1 1 1

to 1 1 1 1

body 1 1 1 1

mail 1 1 1 1

send 1 1 1 1

SMS 1 1 1 1

to 1 1 1 1

body 1 1 1 1

SMS 1 1 1 1

send 1 1 1 1

Database .3 .5 .5 .3

connection 0 .1 .3 .5

order 0 .3 1 .667

debug 0 1 1 .4

currentOrder 0 .1 .3 0

connect .5 .66 .667 0

readOrders .3 .4 .3 0

getSymbols 0 0 0 .146

getOrder 0 0 0 1

getUserCash 0 0 0 1

setUserCash 0 0 0 1

getPortfolioStock 0 0 0 1

getUserEmail 0 0 0 1

addHistory 0 0 0 1

getUserPhone 0 0 0 .133

getUserPhoneCarrier 0 0 0 1

getUserSMS 0 0 0 1

addToPortfolio 0 0 0 1

removeFromPortfolio 0 0 0 1

deleteOrder 0 0 0 .5

updateStopPrice 0 0 0 1

weightedAverage 0 0 0 1

debug .25 .3 .2 1

A report on the unit testing for the front end is still being created.

14. User Interface
A focus for thestockhop.com from Demo1 to Demo2 was to undergo a complete UI
redesign. After sitting down to think about the usability from the perspective of new
users, we realized that our website was not as friendly, inviting, and ‘fun-looking’ as
many of the most used websites on the Internet these days (Facebook, Twitter, etc).
The overall functionality of the original user interface remains unchanged, but a heavy
emphasis was placed on color schemes and user-friendliness. Major differences include
the removal of the data ticker in favor of a news-only ticker, a switch in the visual style
of the tabs, and the location of the “Login | Signup” and “Logout” actions. Below we
provide a walkthrough of how users will experience the site.

We also considered the fact that our application was data-driven and that there
needed to be an effective way of displaying and searching through all of this data. We
implemented new searchable tables that are super fast for searching for data or display
only a certain number of entries per page.

The site is comprised of the following pages:

1. Welcome – default page seen when a new or not yet logged in existing

user accesses the website at http://www.stockhop.com. Here a new

user may register or an existing user may sign in.

http://www.stockhop.com/

1. Home – individual user’s home screen containing the user’s current rank, a brief

performance summary of their portfolio showing the best/worst stocks they

currently own, and a news feed showing current business news. Clicking on a

news feed title will take the user to a third-party website that has the full

article.

2. Portfolio – shows the pending transactions and the stocks the user currently

owns. The user can cancel or edit individual pending transactions from this

screen. The user can also click “Sell” next to a currently owned stock to

automatically fill out a sell order.

3. Research – used for researching and viewing detailed information about a particular

stock. Stock information is searched by stock symbol.

Note: Navigation bar was omitted from the above image in order to show both history

tables but is actually present on the research page.

4. Trade – buy/sell orders are made from this screen. They are then previewed and

confirmed via a popup dialog.

5. Orders – shows the currently pending buy/sell orders that have not yet been

executed. The user may cancel an order from this screen.

6. Preferences – used to edit the notification email address, enable/disable

notifications about stock order completions, change the user’s password, and

permanently delete the user’s account.

7. Help – contains help and tutorial information on stock market basics and how to use

theStockHop website

15. History of Work & Current Status of Implementation  

TheStockHop programming team managed to achieve almost all of their programming goals
this semester. The following chart summarizes the work completed by the group. After Group 2
was satisfied with the results of the UI Design, they decided to add in the Stop-Limit and
Trailing Stop orders.

Task Name Duration Start Finish

Project Proposal 1 day Fri 9/16/11 Fri 9/16/11

Report 1 11 days Mon 9/19/11 Fri 9/30/11

Server Setup 6 days Mon 9/26/11 Sat 10/1/11

Code: Registration, Login,
Logout

6 days Sat 10/1/11 Fri 10/7/11

Code: Transaction History 4 days Sat 10/1/11 Wed 10/5/11

Code: Trade Screen 18 days Sat 10/1/11 Tue 10/25/11

Code: Yahoo Finance Data
Gatherer

11 days Sat 10/1/11 Fri 10/14/11

Code: Portfolio 6 days Sat 10/1/11 Fri 10/7/11

Code: Buy and Sell Features 29 days Mon 10/3/11 Thu 11/10/11

 Code: Market Order 10 days Mon 10/3/11 Fri 10/14/11

 Code: Stop Order 20 days Fri 10/14/11 Thu 11/10/11

 Code: Limit Order 20 days Fri 10/14/11 Thu 11/10/11

 Code: Trailing Stop 10 days Mon 11/28/11 Wed 12/7/11

 Code: Stop-Limit 10 days Mon 11/28/11 Wed 12/7/11

Report 2 10 days Mon 10/10/11 Fri 10/21/11

Code: Advertisements 5 days Mon 10/10/11 Fri 10/14/11

Code: Email and SMS
Notifications

4 days Mon 10/17/11 Thu 10/20/11

Code: Pending Transactions 15 days Mon 10/24/11 Fri 11/11/11

Demo 1 1 day Fri 10/28/11 Fri 10/28/11

Advanced Stock Analysis 16 days Mon 10/31/11 Mon 11/21/11

Code: Mobile Site 22 days Tue 11/1/11 Wed 11/30/11

Report 3 23 days Wed 11/16/11 Sun 12/18/11

Code: RSS Feeds 2 days Thu 11/24/11 Fri 11/25/11

Demo 2 1 day Fri 12/9/11 Fri 12/9/11

Electronic Project Archive 7 days Sat 12/10/11 Sun 12/18/11

UI Redesign 16 days Wed 11/16/11 Wed 12/7/11

We did not end up implementing a mobile site, however, our current website was
tested on the default Android browser and it does work. The only thing that we did not
do was optimize it for mobile web.

Initially, we forgot to account for Testing and Debugging of our code. This meant that
there were a lot of difficulties in our first Demo that we were trying to work out in
more of a last minute fashion. We left extra time for debugging in time for Demo 2, and
also implemented PHPUnit tests of our frontend code. We also used the testing
methods of having friends and family use the system that had not previously had
experience with stock trading or our interface.

We were also able to implement the ‘basic functionality’ ahead of schedule. This was
due to the fact that we wanted to have a very functional Demo 1. After we had
implemented the functionality, we used some of the ahead of schedule time that we
had acquired in order to look at the project and assess the areas that needed the most
improvement. We added a UI Redesign, which was not part of the initial plan. We also
tried out code for a cache of sorts. It did not show a speed-up at a small scale, but
instead, we found that we could streamline our calls to Yahoo Finance. Instead of
making multiple calls for each stock symbol, we were able to make just one call and get
information for many symbols back.

Key Accomplishments

 Set-up web server and database server

 Deployed a website that is live to the Internet (not running locally)

 User Interface Design

 Data interactions with external website

 Database interactions between web client and also server-side programs

Start
Fri 9/16/11

Finish
Sun
12/18/11

Sep 18,
'11

Oct 2,
'11

Oct 16,
'11

Oct 30,
'11

Nov 13,
'11

Nov 27,
'11 Report 1

Mon 9/19/11 - Fri
9/30/11 Server

Setup
Mon

9/26/11
- Sat

10/1/11

Code:
Registra

tion,
Login,
Logout

Sat
10/1/11 -

Fri
10/7/11

Code:
Transac

tion
History

Sat
10/1/11 -

Wed
10/5/11

Code: Trade Screen
Sat 10/1/11 - Tue 10/25/11

Code: Yahoo
Finance Data

Gatherer
Sat 10/1/11 - Fri

10/14/11

Code:
Portfoli

o
Sat

10/1/11 -
Fri

10/7/11

Code: Buy and Sell Features
Mon 10/3/11 - Thu 11/10/11

Code: Market
Order

Mon 10/3/11 - Fri
10/14/11

Report 2
Mon 10/10/11 -

Fri 10/21/11

Code:
Adver
tisem
ents
Mon

10/10/
11 - Fri
10/14/

11

Code: Stop Order
Fri 10/14/11 - Thu 11/10/11

Code: Limit Order
Fri 10/14/11 - Thu 11/10/11

Cod
e:

Ema
il

and
SMS
Noti
ficat
ions
Mon

10/17
/11 -
Thu

10/20
/11

Code: Pending
Transactions

Mon 10/24/11 - Fri
11/11/11

Demo
1
Fri

10/28/1
1

Advanced Stock Analysis
Mon 10/31/11 - Mon 11/21/11

Code: Mobile Site
Tue 11/1/11 - Wed 11/30/11

Report 3
Wed 11/16/11 - Sun 12/18/11
UI Redesign

Wed 11/16/11 - Wed 12/7/11
Code: RSS

Feeds
Thu

11/24/11 -
Fri 11/25/11

Project
Proposal
Fri 9/16/11

Demo 2
Fri

12/9/11

Electronic Project
Archive

Sun 12/18/11

Toda
y

 Order Types: Buy or Sell for Market, Limit, Stop, Trailing Stop, and Stop-
Limit

 RSS Feed

 Views of Portfolio, Open Orders, and Transaction History

 Email & Cell Phone Notifications

 Historical Stock Research

 Fast searchable and sortable data tables

 Tutorials

 Advertising Interface Form that allows file uploads to the server

 Nightly ranking system organized by user net worth

 After-Hours Deletion of “Good for the Day” stocks

16. Conclusions and Future Work

TheStockHop.com has been tremendous undertaking given the allotted development

time and small development team. Additionally, some of the staff were very

inexperienced in building a large software package so there were training requirements

to handle as well. TheStockHop.com team tried to find contributions for both the

inexperienced and experienced members of the team – where some members were

more concerned with adding code and other members were concerned with research

and human factors.

From the beginning, TheStockHop.com set itself apart from other members in the class

in that it was implemented as a live website on a home server. The server was also not

previously running, so we started from essentially scratch by installing a Linux

Operating System, and configuring it to be a web server. We then focused on installing

all of the features and plugins needed to create our project. The result is the live URL:

http://www.thestockhop.com.

One of the biggest initial challenges faced before Demo 1 was the fact that we forgot to

schedule in testing mechanisms and time. This did not allow us to show all of the

functionality we coded in for Demo 1. In order to tackle this challenge, we added unit

testing in to the PHP and additionally, leveraged friends and family to test out the

system and report any bugs found.

For the frontend, learning a new framework, Symfony2 proved to be very difficult in

the beginning. It really took a few weeks for the team to get up to speed with the

project in its entirety. Initially, the code for the frontend did not leverage all the

possible features of Symfony2. After learning more about design patterns in Software

Engineering, the students learned more about the intricacies of the Model-View-

Controller pattern and even went back to fix some of their code. Another software

engineering idea learned was the idea of separating presentation logic from business

logic in web-based applications through the use of Twig (explained above).

Prior to doing this project, the object-oriented aspects of PHP had not been explored

by the students, so leveraging object-oriented PHP allowed them to really take into

account scalability and expandability. Refactoring was another important factor in the

design process. After taking an agile approach to the user interface design of Demo 1,

the team was able to reevaluate their progress. Before implementing the new UI, the

site was mocked up more thoroughly in inkscape, and css was written to match the

same grid that was used to make the image. This really made the design look much

cleaner. In a future iteration, the jQuery and javascript code that was written would be

organized into separate files. Some integration issues occurred when trying to move

the javascript files a few levels up into a separate directory, so most of the java script is

actually implemented in-line with the HTML Twig files.

TheStockHop.com allows the user to place a wide variety of order types. Currently,

these types include market, limit, stop, stop-limit, and trailing stop orders. However,

there are many more order types that can be added to the system to add to its

completeness and to allow it to excel as a teaching tool. In time, it is our hope that

TheStockHop.com

From a computational standpoint, the processing required to handle a customer’s

requests at TheStockHop.com is not very high. However, if the number of users of the

system grows significantly larger, the aggregate of the requests from all the users could

tax the server and potentially result in slow performance or, in the worst case, refusal

of service. Solutions to this problem have already begun to be researched and a

caching system for stock prices has been tested to prevent redundant calls to the price

provider.

Currently, TheStockHop.com relies on the stock prices being provided by Yahoo

Finance. This has so far proved reliable and fast. However, when using Yahoo Finances

services, TheStockHop.com is legally restricted from making money. Ideally, we would

like to change providers to one that has fewer restrictions. More than that, we would

also like to have backup providers if Yahoo Finance ever were to go down. Also, the

current server is very minimalistic hardware running off of a normal Verizon FIOS

connection. If TheStockHop were to move into a for-profit sector, better hardware and

a Small Business grade connection would be required.

Finally, because TheStockHop.com is primarily a teaching tool, we would like to further

engage the user beyond simply placing orders. Some sort of analysis application or

predictive tool that the user can interact with would tremendously enhance the

experience and raise learning potential. We also hope to implement ranking prizes.

Again, this was not something we realized in the first iteration in order to avoid

violating any of the terms of service of Yahoo Finance.

Using the design principles learned in software engineering, the majority of the core

functionality was indeed implemented and received a level of polish, making

TheStockHop.com a worthy competitor to other fantasy stock trading websites. There

is still plenty of room for TheStockHop.com to grow in the future, and the tools that the

team used make it easy to scale and modify this project.

17. References
"Template Engine (web)." Wikipedia, the Free Encyclopedia. Web. 04 Nov. 2011.

<http://en.wikipedia.org/wiki/Template_engine_(web)>.

"Codd's 12 Rules." Wikipedia, the Free Encyclopedia. Web. 04 Nov. 2011.

<http://en.wikipedia.org/wiki/Codd's_12_rules>.

Garlan, David, and Mary Shaw. An Introduction to Software Architecture. Tech. no. CMU-CS-

94-166. New Jersey: World Scientific, 1993. Print.

"Front Controller Pattern." Wikipedia, the Free Encyclopedia. Web. 15 Dec. 2011.

<http://en.wikipedia.org/wiki/Front_Controller_pattern>.

APPENDIX

A.1 Hardware Profile

stockhop-01.fc2112.net
 description: Desktop Computer
 product: ()
 width: 32 bits
 capabilities: smbios-2.4 dmi-2.4 smp-1.4 smp
 configuration: boot=normal chassis=desktop cpus=1 uuid=98C158E4-2334-11DD-AE72-
0011113186F6
 *-core
 description: Motherboard
 product: D945GCLF
 vendor: Intel Corporation
 physical id: 0
 version: AAE27042-302
 serial: AZLF82100ACB
 slot: Base Board Chassis Location
 *-cpu
 description: CPU
 product: Intel(R) Atom(TM) CPU 230 @ 1.60GHz
 vendor: Intel Corp.
 physical id: 0
 bus info: cpu@0
 version: 6.12.2
 serial: 0001-06C2-0000-0000-0000-0000
 slot: U1PR
 size: 1600MHz
 capacity: 4GHz
 width: 64 bits
 clock: 133MHz
 capabilities: boot fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic mtrr pge mca
cmov pat clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx x86-64 constant_tsc pni monitor ds_cpl
tm2 ssse3 cx16 xtpr lahf_lm
 configuration: id=1
 *-cache:0
 description: L2 cache
 physical id: 1
 slot: Unknown
 size: 512KiB
 capacity: 512KiB
 capabilities: asynchronous internal write-back unified
 *-cache:1
 description: L1 cache
 physical id: 2
 slot: Unknown
 size: 32KiB
 capacity: 32KiB
 capabilities: asynchronous internal write-back instruction
 *-logicalcpu:0
 description: Logical CPU

 physical id: 1.1
 width: 64 bits
 capabilities: logical
 *-logicalcpu:1
 description: Logical CPU
 physical id: 1.2
 width: 64 bits
 capabilities: logical
 *-firmware
 description: BIOS
 vendor: Intel Corp.
 physical id: 3
 version: LF94510J.86A.0182.2009.0528.2014
 date: 05/28/2009
 size: 64KiB
 capacity: 448KiB
 capabilities: pci upgrade shadowing cdboot bootselect edd int9keyboard int14serial
int17printer int10video acpi usb zipboot biosbootspecification netboot
 *-memory
 description: System Memory
 physical id: 10
 slot: System board or motherboard
 size: 2GiB
 capacity: 2GiB
 *-bank
 description: DIMM DDR2 Synchronous 533 MHz (1.9 ns)
 product: 0x393931353535202839393635353529000000
 vendor: 0x7F7F7F9400000000
 physical id: 0
 serial: 0x00000000
 slot: J1MY
 size: 2GiB
 width: 64 bits
 clock: 533MHz (1.9ns)
 *-pci
 description: Host bridge
 product: 82945G/GZ/P/PL Memory Controller Hub
 vendor: Intel Corporation
 physical id: 100
 bus info: pci@0000:00:00.0
 version: 02
 width: 32 bits
 clock: 33MHz
 configuration: driver=agpgart-intel
 resources: irq:0
 *-display UNCLAIMED
 description: VGA compatible controller
 product: 82945G/GZ Integrated Graphics Controller
 vendor: Intel Corporation
 physical id: 2

 bus info: pci@0000:00:02.0
 version: 02
 width: 32 bits
 clock: 33MHz
 capabilities: msi pm vga_controller bus_master cap_list
 configuration: latency=0
 resources: memory:88200000-8827ffff ioport:20c0(size=8) memory:80000000-
87ffffff(prefetchable) memory:88280000-8829ffff
 *-pci:0
 description: PCI bridge
 product: N10/ICH 7 Family PCI Express Port 1
 vendor: Intel Corporation
 physical id: 1c
 bus info: pci@0000:00:1c.0
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pci pciexpress msi pm normal_decode bus_master cap_list
 configuration: driver=pcieport-driver
 resources: irq:201 ioport:1000(size=4096) memory:88100000-881fffff
ioport:88000000(size=1048576)
 *-network
 description: Ethernet interface
 product: RTL8101E/RTL8102E PCI Express Fast Ethernet controller
 vendor: Realtek Semiconductor Co., Ltd.
 physical id: 0
 bus info: pci@0000:01:00.0
 logical name: eth0
 version: 02
 serial: 00:1c:c0:45:da:d1
 size: 100Mbit/s
 capacity: 100Mbit/s
 width: 64 bits
 clock: 33MHz
 capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii
10bt 10bt-fd 100bt 100bt-fd autonegotiation
 configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-1-
NAPI duplex=full ip=172.16.2.10 latency=0 link=yes multicast=yes port=MII speed=100Mbit/s
 resources: irq:50 ioport:1000(size=256) memory:88100000-88100fff memory:88000000-
8800ffff(prefetchable) memory:88020000-8803ffff(prefetchable)
 *-pci:1
 description: PCI bridge
 product: N10/ICH 7 Family PCI Express Port 3
 vendor: Intel Corporation
 physical id: 1c.2
 bus info: pci@0000:00:1c.2
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pci pciexpress msi pm normal_decode bus_master cap_list

 configuration: driver=pcieport-driver
 resources: irq:209
 *-pci:2
 description: PCI bridge
 product: N10/ICH 7 Family PCI Express Port 4
 vendor: Intel Corporation
 physical id: 1c.3
 bus info: pci@0000:00:1c.3
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pci pciexpress msi pm normal_decode bus_master cap_list
 configuration: driver=pcieport-driver
 resources: irq:217
 *-usb:0
 description: USB Controller
 product: N10/ICH 7 Family USB UHCI Controller #1
 vendor: Intel Corporation
 physical id: 1d
 bus info: pci@0000:00:1d.0
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: uhci bus_master
 configuration: driver=uhci_hcd latency=0
 resources: irq:225 ioport:2060(size=32)
 *-usbhost
 product: UHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 uhci_hcd
 physical id: 1
 bus info: usb@2
 logical name: usb2
 version: 2.06
 capabilities: usb-1.10
 configuration: driver=hub slots=2 speed=12Mbit/s
 *-usb:1
 description: USB Controller
 product: N10/ICH 7 Family USB UHCI Controller #2
 vendor: Intel Corporation
 physical id: 1d.1
 bus info: pci@0000:00:1d.1
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: uhci bus_master
 configuration: driver=uhci_hcd latency=0
 resources: irq:185 ioport:2040(size=32)
 *-usbhost
 product: UHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 uhci_hcd

 physical id: 1
 bus info: usb@3
 logical name: usb3
 version: 2.06
 capabilities: usb-1.10
 configuration: driver=hub slots=2 speed=12Mbit/s
 *-usb:2
 description: USB Controller
 product: N10/ICH 7 Family USB UHCI Controller #4
 vendor: Intel Corporation
 physical id: 1d.3
 bus info: pci@0000:00:1d.3
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: uhci bus_master
 configuration: driver=uhci_hcd latency=0
 resources: irq:233 ioport:2020(size=32)
 *-usbhost
 product: UHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 uhci_hcd
 physical id: 1
 bus info: usb@4
 logical name: usb4
 version: 2.06
 capabilities: usb-1.10
 configuration: driver=hub slots=2 speed=12Mbit/s
 *-usb:3
 description: USB Controller
 product: N10/ICH 7 Family USB2 EHCI Controller
 vendor: Intel Corporation
 physical id: 1d.7
 bus info: pci@0000:00:1d.7
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pm debug ehci bus_master cap_list
 configuration: driver=ehci_hcd latency=0
 resources: irq:225 memory:882a0000-882a03ff
 *-usbhost
 product: EHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 ehci_hcd
 physical id: 1
 bus info: usb@1
 logical name: usb1
 version: 2.06
 capabilities: usb-2.00
 configuration: driver=hub slots=8 speed=480Mbit/s
 *-pci:3
 description: PCI bridge

 product: 82801 PCI Bridge
 vendor: Intel Corporation
 physical id: 1e
 bus info: pci@0000:00:1e.0
 version: e1
 width: 32 bits
 clock: 33MHz
 capabilities: pci subtractive_decode bus_master cap_list
 *-isa
 description: ISA bridge
 product: 82801GB/GR (ICH7 Family) LPC Interface Bridge
 vendor: Intel Corporation
 physical id: 1f
 bus info: pci@0000:00:1f.0
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: isa bus_master cap_list
 configuration: latency=0
 *-ide:0
 description: IDE interface
 product: 82801G (ICH7 Family) IDE Controller
 vendor: Intel Corporation
 physical id: 1f.1
 bus info: pci@0000:00:1f.1
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: ide bus_master
 configuration: driver=PIIX_IDE latency=0
 resources: irq:177 ioport:2090(size=16)
 *-ide:1
 description: IDE interface
 product: N10/ICH7 Family SATA IDE Controller
 vendor: Intel Corporation
 physical id: 1f.2
 bus info: pci@0000:00:1f.2
 logical name: scsi0
 version: 01
 width: 32 bits
 clock: 66MHz
 capabilities: ide pm bus_master cap_list emulated
 configuration: driver=ata_piix latency=0
 resources: irq:185 ioport:20a8(size=8) ioport:20cc(size=4) ioport:20a0(size=8)
ioport:20c8(size=4) ioport:2080(size=16)
 *-disk
 description: ATA Disk
 product: WDC WD1600AAJS-6
 vendor: Western Digital
 physical id: 0.0.0

 bus info: scsi@0:0.0.0
 logical name: /dev/sda
 version: 21.1
 serial: WD-WCAP92555587
 size: 149GiB (160GB)
 capabilities: partitioned partitioned:dos
 configuration: ansiversion=5 signature=9c879c87
 *-volume:0
 description: EXT3 volume
 vendor: Linux
 physical id: 1
 bus info: scsi@0:0.0.0,1
 logical name: /dev/sda1
 logical name: /boot
 version: 1.0
 serial: a00bef24-b7f4-4c46-b334-7e47542ad398
 size: 101MiB
 capacity: 101MiB
 capabilities: primary bootable journaled extended_attributes recover ext3 ext2 initialized
 configuration: created=2006-10-02 15:23:32 filesystem=ext3 label=/boot
modified=2006-10-13 17:29:54 mount.fstype=ext3 mount.options=rw,data=ordered
mounted=2006-10-13 17:29:54 state=mounted
 *-volume:1
 description: Linux LVM Physical Volume partition
 physical id: 2
 bus info: scsi@0:0.0.0,2
 logical name: /dev/sda2
 serial: gq7jTA-n0Y4-Q0G4-ALUr-mg2r-ADaf-Dk1DHZ
 size: 148GiB
 capacity: 148GiB
 capabilities: primary multi lvm2
 *-serial
 description: SMBus
 product: N10/ICH 7 Family SMBus Controller
 vendor: Intel Corporation
 physical id: 1f.3
 bus info: pci@0000:00:1f.3
 version: 01
 width: 32 bits
 clock: 33MHz
 configuration: driver=i801_smbus latency=0
 resources: irq:185 ioport:2000(size=32)

A.2 Complete Flow Chart Program Flow

START

Show user the

home page

Logged in?

(cookie exists?)

YES

Show guest the

welcome page
NO

Check Login

Register START

YES

Tell guest

passwords do not

match

NO

Username

exists?

Ask guest for

another username
YES

Create new user

NO

Guest fills out and

submits register

form

All fields filled?

Passwords

match?

YES

Tell guest all fields

need to be filled
NO

Login user

(create cookie)

Show user the

home page

END

STARTSign In

Guest fills out and

submits sign in

form

All fields filled?
Tell guest all fields

need to be filled
NO

YES

Username

exists?

Tell guest login is

incorrect
NO

Password is

correct?

YES

Login user

(create cookie)

YES

NO

Show user the

home page

END

STARTSign Out

User clicks

LOGOUT

Show guest the

logged out page

END

Logout user

(delete cookie)

STARTView Portfolio

Fetch data from

portfolio table

Fetch data from

Yahoo/Google

Show user the

portfolio page

END

Fetch data from

open stock order

table

STARTView History

Fetch data from

history table

Show user the

history page

END

START
Cancel Order

LNK

Is order

executed?

Remove order

from open stock

order list table

NO

END

Tell user it’s too

late to cancel
YES

Show user the

updated orders or

portfolio page

Confirm user

wants to cancel

order

START
Sell Stock

LNK

Fetch specific

stock info from

portfolio table

Show user trade

page with stock

order form filled in

appropriately

END

STARTDelete Account

User fills out and

submits delete

account form

Do passwords

match?

Confirm user

wants to delete

account

YES

END

Is password

correct?

YES

Tell user

passwords do not

match

NO

Tell user password

is incorrect
NO

Logout user

(delete cookie)

Delete user and

user data from

tables

Show user

account deletion

confirmation

START
Change

Password

User fills out and

submits change

password form

All fields filled?
Tell user all fields

need to be filled

Tell user password

is incorrect

Current

password is

correct?

NO

NO

Do new

passwords

match?

Tell user

passwords do not

match

NO

YES

YES

Change user

password in

account table

YES

END

START
Notification

Changes

User modifies and

submits

notification

preferences form

Is email

address filled

in?

Ask user to fill in

email addresss
NO

Change email and

notification yes/no

in account table

YES

END

START
Research

Search

User fills in and

submits research

search form

Valid stock

symbol?

Tell user stock

symbol is invalid
NO

Fetch stock

information from

Yahoo/Google

YES

Show stock

information to user

on research page

END

STARTHelp Search

User fills in and

submits help

search form

Fetch help info

based on search

Show help info to

user on help page

END

