
1

Rutgers University
School of Engineering

Department of Electrical and Computer Engineering

StockHop: The Stock Market Fantasy League Game

 REPORT #1

URL: http://www.thestockhop.com

Group #2

Priyanka Kale
Jakub Kolodziejski
Dan Marzullo

Wei Shen
Sam Ramezanli
 Melissa Romanus

http://www.thestockhop.com/

2

I. Individual Contributions Breakdown

 Team Member
 Dan Jakub Melissa Priyanka Sam Wei

R
es
p
o
n
si
bi
lit
y
M
at
ri
x

Project Management (8 pts) 5% 25% 70%
Software Development
Introduction (3 pts)

 100%

Interaction Diagrams (20
pts)

 100%

Class Diagram and Interface
Specification (24 pts)

50% 50%

System Architecture and
System Design (24 pts)

 47.5% 47.5% 5%

Algorithms and Data
Structures (10 pts)

 15% 35% 30% 20%

User Interface Design and
Implementation (10 pts)

 100%

Progress Report and Plan of
Work (3 pts)

10% 10% 80%

References (1 pt) 100%

Responsibility Matrix

3

II. Table of Contents

StockHop: The Stock Market Fantasy League Game ... 1

I. Individual Contributions Breakdown .. 2

II. Table of Contents ... 3

III. Software Development Introduction ... 4

IV. Interaction Diagrams .. 6

V. Class Diagram and Interface Specification .. 16

VI. System Architecture and System Design ... 27

VII. Algorithms and Data Structures .. 34

VII. User Interface Design and Implementation .. 36

IX. Progress Report and Plan of Work ... 40

X. References .. 45

APPENDIX ... 46

4

III. Software Development Introduction

This section describes why Group 2 made decisions to use certain programming languages,
frameworks, or abstraction layers (and what, specifically, they are) in order to code this
project.

a. PHP 5.3.8 - PHP stands for PHP:Hypertext Preprocessor. PHP is a web development

server-side scripting language. It is used to create websites with dynamic content and

the ability for user interaction. PHP is often embedded with HTML to develop web

applications. PHP was chosen by Group 2 due to a familiarity with it between the

students. PHP 5.3 was the latest major release of PHP and incorporates many new

features that older PHP does not provide, mostly to do with the ability to use

namespaces. These namespaces allow the code to be organized in a cleaner fashion.

b. Symfony2 [PHP Framework] – Symfony2 is a PHP based framework implementing a

MVC (Model/View/Controller) architecture with the goal of rapidly developing a web

application. MVC has become a very popular and widely used architecture for web

applications. Symfony2 utilizes the namespace functionality of PHP 5.3. Symfony2

makes an attempt to provide the effective structure and functionality that most web

applications will require, which is advantageous since the developer does not have to

reconstruct code on his own that is already provided (saving time, production cost, etc).

It integrates other outside projects, Doctrine and Twig (see below), to further ease the

burden of initial project set-up.

Symfony2's base framework is designed to allow the developers to effortlessly design a

"Representational state transfer", or REST, interface to both regular web users and to

other applications if needed. The REST API was advantageous to Group 2 because of the

benefit of allowing us to conceal a lot of the complicated data from the user. The user

does not need to see large complicated query strings, and we, as developers, do not

need to do large complicated mod_rewrite apache expressions to 'clean up' our query

strings. Group 2 chose symfony2 because it is a new framework that incorporates all of

the features of the latest MVC technologies. When tested against various benchmarks,

the Symfony2 framework was up to 100x faster than other frameworks such as CakePHP

and up to 10x faster than the popular Zend Framework. Group 2 knew that they wanted

to implement the MVC method when writing their code, in order to increase the

readability of the code and also to make a clearer separation between the “web

development” and “web design” for future maintenance.

c. Twig [PHP Templating Engine] – Twig is a template engine for PHP. A template engine is

“software that is designed to process web templates and content information to

produce output web documents (“Template Engine (web)”, Wikipedia)”. Symfony2

effectively uses Twig to separate the presentation logic from the internal logic (for

instance, HTML from complex PHP functions). Symfony 2 overall uses a very object

5

oriented approach; its base functionality is all provided by via a series of objects.

Symfony2’s integration with Twig further helps to separate and speed up the

development process. By using Twig, the developers do not need to write overly

complicated PHP mixed in with the HTML. Twig functionality provides just enough logic

to make simple decisions, include extra content, or iterate through arrays. Twig is not

responsible for, nor could it handle, any actual logic relevant to the tasks such as form

validation, user verification, or database interactions.

d. Doctrine Object Relational Mapper (ORM) – Doctrine is a Free and Open Source

Software (FOSS) project to provide stable and consistent Object Relational Mapping

(ORM) functionality to the PHP language. Its function as an ORM is to allow persistent

database records to be exposed to the program as standard PHP classes. These classes

obfuscate the underlying database data types and expose a very convenient set of

accessor and modify functions. The classes in Doctrine are allowed to inherit parent

classes and implement interfaces, giving the abstracted database objects the ability to

take advantage of the flexibility and functionality of OO concepts. Another benefit of

Doctrine is its use of PHP's PDO (PHP:Data Objects) database abstraction layer. This

abstraction layer allows PHP, and thus Doctrine, to support many types of database

servers beyond MySQL. Group 2 chose Doctrine over other ORMs due to its integration

with Symfony2. The abstraction layer allows setting/getting of fields in the databases

through function calls, rather than having to write many queries.

e. jQuery – jQuery is used for client-side javascript scripting. It is the most widely used

javascript library that includes many useful functions. It works across multiple browsers

that have javascript enabled. Group 2 chose jQuery over straight javascript due to the

ease of use of jQuery and its included functions. It is primarily used in thestockhop to

load data from Yahoo! Finance and parse this data without having to reload the page.

f. Java Programming Language [Backend Server-Side Program] – Java is a high-level object

oriented programming language. Before choosing a language, Group 2 knew they

wanted to use an object-oriented language for the backend software. Group 2

ultimately chose Java over C/C++ due to its ease of integration with web applications –

many websites already use Java on the backend, so libraries were already written for

connecting to the database, sending mail via a mail server, etc. Another key feature of

Java is, once compiled, a java.class file (machine bytecode) can typically run on any

machine that has java installed, independent of the computer architecture. This

increases the portability of our software.

g. Other Decisions – MySQL was chosen as the relational database. MySQL was chosen

because it is easy to deploy on the backend server and Group 2 teammates had the

most functionality with this database. The Apache web server was used because it was

easy to deploy and is highly configurable. Apache was chosen over something like

6

Microsoft IIS because we were writing our application in PHP and not something like

Microsoft’s ASP.NET.

IV. Interaction Diagrams
a. Summary of interaction diagrams

The following explain the interaction diagrams for the use cases covered in Demo 1.

i. Registration

ii. View Homepage

iii. Buy Stocks

iv. Sell Stocks

v. Research Stocks

vi. View Portfolio

vii. Send Notifications

viii. View Transaction History

ix. Preferences

7

b. Interface Diagrams

Registration

alt

[else]

:SignupController :Database

Information already exists

return error

[else if] wrong information
return error

createNewUser()

return success

The above diagram shows Registration use case. When an user goes to the registration page,

the system asks for username and password that the user wants to create. After that, system

will request information from database and check information to see whether this username

is already taken or not and if the information is valid. If there is nothing wrong with the

information, the database is updated and show confirmation note for the user.

8

View Homepage

:HomeController :Database

user login

indexAction()

Display homepage

The above diagram shows View Homepage use case. After an user is logged into the system,

the HomeController would ask information from the database and show the home page to

the current user.

9

Buy Stocks

:TradeController :Broker :CSVParser

readOrders()

getPrice(symbol)

getVolume(symbol)

:Database

validateAction()

alt User has enough funds

addPortfolio()

setUserCash()

addHistory()

return success

[else]
return error

The use case of Buy Stock is represented in the above diagram. An user at the front end first initiates a

buy action and specifies the type(market, limit, or stop), price, and volume of the order he wants. Then

the backend fetch the order through database and query about the stock information from Yahoo

Finance. After getting the price and volume information, the system verify that total cost less than user’s

cash balance and send information to database and update user’s portfolio. If the order is executed

successfully, the system would notify user that the transaction has been completed.

10

Sell Stocks

The diagram below is to show the use case of Sell Stock. An user at the front end first initiates a sell

action and specifies the type(market, limit, or stop), price, and volume of the order he wants. Then the

backend fetch the order through database and query about the stock information from Yahoo Finance.

After getting the price and volume information, the system verify that user owns the stock and the

amounts of share he wish to sell and send information to database and update user’s portfolio. If the

order is executed successfully, the system would notify user that the transaction has been completed.

:TradeController :Broker :CSVParser

readOrders()

getPrice(symbol)

getVolume(symbol)

:Database

validateAction()

alt User has enough shares

removePortfolio

()

setUserCash()

addHistory()

return success

[else]
return error

11

Research Stocks

alt

[else]

:StockFacts YahooFinance

Valid stock symbol

Display stock infomatoin

getStock(&stock)

return error

invalid stock symbol

The above diagram shows Research Stocks use case. First user enters the desired stock symbol.

If the symbol is valid, StockFacts queries Yahoo Finance for current price per share of the

entered stock symbol as well as any available history about the stock, and then returns

requested information to StockFacts. Finally, the system displays retrieved information to the

user.

12

View Portfolio

:PortfolioController :Database

user request for portfolio

indexAction()

display user’s portfolio

The above diagram shows the View Portfolio use case. After an user is logged into the system

and asks for his/her portfolio, the PortfolioController would request information from the

database and display the corresponding portfolio of the user.

13

Send Notifications

loop

[else]

:Mail :EmailServer

Notice a new event

return error

Invalid email address

sendl()

Send user email

alt

Send Notifications use case is showed as the above diagram. A loop is constantly waiting for a

new event. After a new event is noticed, system signals email server (or SMS server) for sending

notification to the user. If the email address is correct, then the user will be aware of what has

happened.

14

View Transaction History

:TradeController :Database

user request for transaction history

validateAction(Request $request)

display transaction history

The above diagram shows the use case of View Transaction History. After an user is logged into

the system and asks for his/her transaction history, the TradeController would request

information from the database and show the corresponding transaction information to the user.

15

Preferences

:PrefsController :Database

New data

commitAction

(Request $request)

Signal user

:EmailServer

send()

Send user email notification

The use case of Preferences is represented in the above diagram. After a user goes to

preference page and enters the setting he/she wish to change, the PrefsController would send

the new data to database. Besides, the email server will send an email to notify the user of

successful operation.

16

V. Class Diagram and Interface Specification
The class diagrams and interface specifications were split up between the backend and the

frontend. The rationale for doing this is that the front end and the backend never directly

collaborate with one another. The frontend (i.e. client side, web side) inserts and extracts

data from the database and also pulls data from Yahoo! Finance. The backend (i.e. server

side, polling program) inserts and extracts data from the database and pulls data from

Yahoo! Finance independent of the frontend. In this way, the database works as somewhat

of a middleware between the two bodies of code as shown in the figure below.

h. Class Diagrams

Frontend Class Diagram

In this UML diagram, the entities are shown on the left of the Frontend Class Diagram.

Each entity corresponds to a table in the database and has set/get methods to retrieve

the corresponding fields of the database table. The relationship between entities and

controllers is explained in Section VII.b.iii below. All controllers inherit from the base

controller class. For the entities, only the Account class inherits from the UserInterface

base class. Note that the ‘indexAction()’, ‘retrieveAction()’, functions are the basic

building blocks that Symfony2 looks for to communicate with the database. As such, the

function names are not as descriptive as the actual controller names. This is by design,

to maintain consistency with the Symfony2 framework.

On the right of the Frontend Class Diagram are the base controller classes, which house

all of the more complex PHP logic. Please note that while Symfony2 uses OO principles,

making class diagrams for the different entities and controllers does not show as much

of a program flow as simple flowcharts can show. The program flow diagrams are shown

in Appendix A.2.

17

18

Backend Class Diagram

+main()

Broker

+CSVParser()
+getPrice()
+getVolume()
+Parse()

-stock
-csvString
-url
-urlConn
-inStream
-buff
-strarr
-numStocks

CSVParser

+Database()
+Database()
+connect()
+readOrders()
+getSymbols()
+getOrder()
+getUserCash()
+setUserCash()
+getPortfolioStock()
+getUserEmail()
+addHistory()
+addPortfolio()
+removePortfolio()
+deleteOrder()
+weightedAverage()

-connection
-orders
+currentOrder

Database

+Order()
+Order()

+id
+user
+timePlaced
+symbol
+action
+quantity
+type
+targetPrice
+duration
+notify

Order

i. Data Types and Operation Signatures

Frontend

It is difficult to state the data types for PHP-based software. PHP is loosely-typed. This

means that I can use a variable named $someData to represent an integer, a string, a

double, or a Boolean. Therefore, it is not easy to identify each $variable as integer,

string, etc. Instead, the variable names will be listed without specific types.

19

Entity Definitions

Entity Account:

Operations

+getId()

+setUsername($username)

+getUsername()

+setPassword($password)

+getPassword()

+setRegistrationDate($registrationDate)

+getRegistrationDate()

+setEmail($email)

+getEmail()

+setDefaultNotify($defaultNotify)

+getDefaultNotify()

+setCash($cash)

+getCash()

+__construct()

+setNotify($notify)

+getNotify()

+addOrder(\RU\TheStockHopBundle\Entity\Order $orders)

+getOrders()

+addHistory(\RU\TheStockHopBundle\Entity\History $history)

+getHistory()

+addPortfolio(\RU\TheStockHopBundle\Entity\Portfolio $portfolio)

+getPortfolio()

+getSalt()

+setSalt($value)

+equals(UserInterface $user)

+eraseCredentials()

+getRoles()

+addRole(\RU\TheStockHopBundle\Entity\Role $userRoles)

+getUserRoles()

+setPhoneNumber($phoneNumber)

+getPhoneNumber()

+setCarrier($carrier)

+getCarrier()

Attributes

$id;

$username;

$password;

20

$salt;

$userRoles;

$phoneNumber;

$carrier;

$registrationDate;

$email;

$notify;

$cash;

$orders;

$history;

$portfolio;

$confirmPassword;

$newPassword;

$oldPassword;

Entity Role:

Operations

+getRole()

+getId()

+setName($name)

+getName()

+setCreatedAt($createdAt)

+getCreatedAt()

+__construct()

Attributes

$id;

$name;

$createdAt;

Entity Orders:

Operations

+getId()

+setAccountId($accountId)

+getAccountId()

+setCreated($created)

+getCreated()

+setSymbol($symbol)

+getSymbol()

+setAction($action)

+getAction()

+setQuantity($quantity)

+getQuantity()

21

+setType($type)

+getType()

+setTargetPrice($targetPrice)

+getTargetPrice()

+setDuration($duration)

+getDuration()

+setNotify($notify)

+getNotify()

+setAccount(\RU\TheStockHopBundle\Entity\Account $account)

+getAccount()

+__construct()

Attributes

$id;

$account_id;

$created;

$symbol;

$action;

$quantity;

$type;

$targetPrice;

$duration;

$notify;

$account;

$info;

Entity History:

Operations

+getId()

+setAccountId($accountId)

+getAccountId()

+setCreated($created)

+getCreated()

+setSymbol($symbol)

+getSymbol()

+setAction($action)

+getAction()

+setQuantity($quantity)

+getQuantity()

+setType($type)

+getType()

22

+setTargetPrice($targetPrice)

+getTargetPrice()

+setDuration($duration)

+getDuration()

+setExecuted($executed)

+getExecuted()

+setFinalPrice($finalPrice)

+getFinalPrice()

+setCommission($commission)

+getCommission()

+setOrderValue($orderValue)

+getOrderValue()

+setAccountValue($accountValue)

+getAccountValue()

+setAccount(\RU\TheStockHopBundle\Entity\Account $account)

+getAccount()

Attributes

$id;

$account_id;

$created;

$symbol;

$action;

$quantity;

$type;

$targetPrice;

$duration;

$executed;

$finalPrice;

$commission;

$orderValue;

$accountValue;

$account;

Entity Portfolio:

Operations

+getId()

+setAccountId($accountId)

+getAccountId()

+setSymbol($symbol)

+getSymbol()

23

+setQuantity($quantity)

+getQuantity()

+setPrice($price)

+getPrice()

+setAccount(\RU\TheStockHopBundle\Entity\Account $account)

+getAccount()

Attributes

$id;

$account_id;

$symbol;

$quantity;

$price;

$account;

$info;

Controller Definitions

PrefsController

Operators

+__construct()

+indexAction(Request $request)

+commitAction(Request $request)

+saveAction(Request $request)

Attributes

$msg_success

$msg_failure

$msg_other

ResearchController

Operators

+indexAction()

+getAction(Request $request)

+getjavaAction($name = "")

Attributes

$msg_success

$msg_failure

$msg_other

HelpController

Operators

+indexAction()

24

Attributes

$msg_success

$msg_failure

$msg_other

PortfolioController

Operators

+indexAction(Request $request)

Attributes

$msg_success

$msg_failure

$msg_other

SecurityController

Operators

+loginAction()

Attributes

$msg_success

$msg_failure

$msg_other

OrdersController

Operators

+__construct()

+indexAction()

+cancelAction($id)

Attributes

$msg_success

$msg_failure

$msg_other

HomeController

Operators

+indexAction()

Attributes

$msg_success

$msg_failure

$msg_other

RankingController

Operators

+indexAction(Request $request)

25

Attributes

$msg_success

$msg_failure

$msg_other

AdminController

Operators

+indexAction()

SignupController

Operations

+indexAction(Request $request)

+validateAction(Request $request)

Attributes

$msg_success

$msg_failure

$msg_other

TradeController

Operations

+indexAction(Request $request)

+validateAction(Request $request)

+buyAction(Request $request)

+sellAction(Request $request)

Attributes

$msg_success

$msg_failure

$msg_other

Backend

Broker

Operations

+ main(): void

CSVParser

Attributes

- stock : String

- csvString : String

26

- url : URL

- urlConn : URLConnection

- inStream : InputStreamReader

- buff : BufferedReader

- strarr[][] : String

- numStocks : int

Operations

+ getPrice (symbol : String) : double

+ getVolume (symbol : String) : double

+ Parse () : void

Database

Attributes

- connection : Connection

- orders : ResultSet

+ currentOrder : Order

Operations

+ Database ()

+ Database (dbName : String, dbUser : String, dbPassword : String)

+ connect (dbName : String, dbUser : String, dbPassword : String) : void

+ readOrders () : void

+ getSymbols () : String

+ getOrder () : Order

+ getUserCash (user : String) : BigDecimal

+ setUserCash (user : String, cashMoney : BigDecimal) : void

+ getPortfolioStock (user : String, symbol : String) : long

+ getUserEmail (user : String) : String

+ addHistory (user : String, timePlaced : Timestamp, symbol : String, action : String,

quantity : long, type : String, targetPrice : BigDecimal, duration : String, price :

BigDecimal, commission : BigDecimal, orderValue : BigDecimal, accountValue :

BigDecimal) : void

+ addPortfolio (user : String, symbol : String, quantity : long, price : BigDecimal) : void

+ removePortfolio (user : String, symbol : String, quantity : long) : void

+ deleteOrder (id : long) : void

- weightedAverage (price1 : BigDecimal, quantity1Long : long, price2 : BigDecimal,

quantity2long : long) : BigDecimal

Order

Attributes

+ id : long

+ user : String

+ timePlaced : Timestamp

27

+ symbol : String

+ action : String

+ quantity : long

+ type : String

+ targetPrice : BigDecimal

+ duration : String

+ notify : String

Operations

+ Order ()

+ Order (id : long, user : String, timePlaced : Timestamp, symbol : String, action : String,

quantity : long, type : String, targetPrice : BigDecimal, duration : String, notify : String)

VI. System Architecture and System Design
a. Architectural Styles

Before speaking of the kinds of architectural styles we used in thestockhop, it is useful

to provide a definition of an architectural style. “An architectural style … defines a family

of systems in terms or a pattern of structural organization. More specifically, an

architectural style determines the vocabulary of components and connectors that can

be used in instances of that style, together with a set of constraints on how they can be

combined (Garlan and Shaw, 6).”

Web applications usually combine a mix of architectural styles. The frontend design uses

the Model-View-Controller architecture, which is considered to be a separated-

presentation architectural style. The separated-presentation architectural style

describes the separation of presentation code from internal logic code, which is exactly

what has been done with the use of Symfony2 and doctrine. It is also using the

client/server architectural style. All of the data to run the application is stored centrally

on thestockhop server, but many clients can access the web application from different

places around the world through many different Internet browsers.

Both the frontend and the backend are using the component-based architectural style

by using design and development languages that allows them to be run independent of

the platform they are on. In this way, the code gets great reusability and allows for

growth and scalability. Both ends are also using the object-oriented architectural style

to increase code modularity and readability. Sometimes, the Representational State

Transfer (REST) (described in Section III.b) is described as an architectural style when it is

thought of as being comprised of a uniform interface and a layered architectural style. In

28

this way, the use of Symfony2 in a conventional manner also uses the REST architectural

style.

b. Identifying Subsystems

<<access>>

Database Backend
Frontend

server side

Frontend

GUI

<<access>><<access>>

The frontend GUI provides the interface by which a user can interact with the system

and view data from the system. The front end server side retrieves data from the

database and Yahoo Finance and presents it to the user via the frontend GUI. It also

stores new stock orders in the database. The database holds all the persistent

information such as user accounts, portfolios, the transaction history, and the list of

open stock orders to be processed. The backend handles open order execution, user

notification of completed orders via email and/or SMS, and updates account

information, portfolios, and transaction histories appropriately.

c. Mapping Subsystems to Hardware

While the server is contained to one machine, the system as a whole is spread across

different machines. The system is effectively split into two separate and fairly

independent sections, a frontend and a backend, with the database (residing on the

server) acting as the intermediary between the two. The frontend is further subdivided

into a GUI component which runs within a web browser on a client’s computer (or

realistically, many clients’ computers) providing a rich interactive experience and the

server side portion runs within the web server process on the server. The server side

frontend handles interaction between the GUI and the database, such as retrieving

portfolio contents and ensuring orders are properly and legitimately entered into the

database. On the backend, there is only one process we call the “broker” which handles

proper order execution and user notification of completed orders. This process runs on

the server alongside the database and the server side half of the frontend.

d. Persistent Data Storage

A MySQL relational database is used for persistent data storage. There are seven tables

within the MySQL database entitled thestockhop. These tables are as follows: accounts,

account_role, role, orders, history, portfolio, and carriers. The figure below shows the

database schema mapping including field names and types.

29

The main table is the accounts table. This stores the user's information such as

username, password (encrypted), cash balance, etc. In the figure, the field ‘salt’ is used

for the advanced encryption algorithm for the user passwords. This accounts table also

holds the primary key based on user. Each user has a unique ‘id’ associated with their

account. This id is the primary key. All subsequent tables use ‘account_id’ which is a

foreign key that refers to the accounts table id. Therefore, an entry in the “Portfolio”

table is associated with a particular user by the use of the foreign key (which relates to

the accounts table primary key to get the user data). The decision was made not to

repeat the username and data in every table to reduce redundancy and also to follow

closely with Codd’s 12 Rules for Relational Databases (“Codd’s 12 Rules”, Wikipedia).

Additionally, the account_role and role tables are used as a Many-to-Many relationship

with the accounts table, because many users can have many roles, whereas in

something like the Orders table, one order can only have one user associated with it.

The purpose of these roles tables is to record the different roles of users. For example,

“username: group2” could have the role of “user” AND the role of “administrator”. Or,

more likely, a user might have the role of both “user” and “advertiser”. This particular

person needs to be able to have access to the stock trading game and also to the

interface to upload their advertisements.

30

The orders table is used to store open orders for all users. Each individual entry is traced

back to a particular user using the foreign key. The system has a 20 minute delay before

it processes any orders (Market, Stop, or Limit) due to the fact that Yahoo! Finance data

is 20 minute delayed. If users had access to real-time stock market data, they would be

able to cheat at thestockhop.com. The frontend software inserts the information filled

out from the trade form into the open orders database, and the backend software

constantly polls the open orders database to see if new data has appeared.

The history table stores transaction history for all users. The portfolio table stores the

stocks owned by particular users and their purchase price. Similar to the other tables, a

user is identified through the use of foreign keys to index the accounts table.

The carriers table is actually not used in connection with other databases and does not

follow Codd’s 12 Rules. It is instead used as a matter of convenience to globally store an

array that can be seen by all the software. It is used specifically for SMS text messaging.

In order to text message users, the software emails their number at the correct carrier

relay, i.e. a Verizon customer with the phone number 555-555-5555 can be text

messaged by emailing 5555555555@vtext.com.

e. Network Protocol

TheStockHop is self-contained to one server. Running on the localhost, there is a MySQL
database server, a POSTFIX mail server, and an Apache web server. There are only 4
different external connections needed for the server.

First, the website is accessed via incoming HTTP requests on port 80, this is an Internet
standard, all user interactions happen over the frontend web interface.

Both the backend and frontend make outgoing HTTP requests to Yahoo! Finance in
order to gather the necessary financial data. The reason Group 2 used HTTP is because
that it is what Yahoo! Finance provides for sessionless one time queries of its data, and
there was no further interaction with the Yahoo! Finance website than that.

The email notification uses SSL encryption on outgoing port 587 for the simple mail
transport protocol (SMTP). SMTP is an internet standard for sending mail. The reason
we use port 587 and encrypt the outgoing mail connection is due to the fact that the
current ISP the server is on blocks outgoing mail connections on port 25. We relay our
mail through Google Mail servers using the port 587 method.

Internally, there are different connections needed for application communication. The
frontend relies on PHP's internal drivers to connect to a MYSQL database for access to
the persistent data. The backend uses the JDBC driver to connect to the MySQL
database and the Javamail driver to connect to the mail server.

f. Global Control Flow

mailto:5555555555@vtext.com

31

Our system is event-driven in that it waits for users’ input and acts according to it. User

interaction is required in frontend features like logging in, placing a trade, etc. The

system does not log anyone in until the initial event is driven by an external request.

Also, we have a timer run in our backend program to fetch user orders and stock

information. Since the information on Yahoo Finance is twenty minutes delayed for

most of people, the timer in our system is also used to make user orders are executed

twenty minutes delay for users to play fair.

For time dependency, the backend of our system periodically processes pending orders

and checks the preconditions for different trades. The system has multiple threads to

support multiple users operating at the same time and periodically fetch orders.

g. Hardware Requirements

Server-Side

Note that a complete scalability analysis has not been performed, so the server-side

hardware requirements are based on the needs of the current website. The website

requires an external hard drive. This hard drive must be capable of storing the database

data. An internet connection is required, so necessary hardware includes a network

card.

The hardware profile for the current thestockhop.com server is shown in the Appendix

as A.1. This hardware profile is everything needed for server maintenance and

administration on the current server.

Client-Side

On the client side, the client needs to have a monitor to view the GUI Display. In

addition, since a web browser is required, the other hardware that comprises a

computer is required such as CPU, Graphics Card, RAM, keyboard, mouse, etc. A web

connection is also required, so the computer must contain a network card (whether

wireless or Ethernet).

h. Program Flow Diagrams

Before constructing class diagrams or interaction diagrams, Group 2 wished to capture

the basic Program Flow using simple flowcharts. It was decided to incorporate these as

part of Report 2, since it was part of our design process. Within the documentation, we

will show the logic for the front end trade screen and then the backend “Broker”

program since these flowcharts explain the most important functionality to

TheStockHop. There are more flowcharts for other cases in Appendix A.2.

32

START
Trade

(Frontend)

User fills out stock

order form

Clear stock order

form & stock

preview

User clicks clear BTN

On change to

stock symbol field

All necessary

fields filled?

Enough money

to cover order?

Save order in open

stock order list

YES

END

Valid stock

symbol?

Tell user stock

symbol is invalid

Fetch basic stock

info from Google/

Yahoo

YES

NO

Show basic stock

info in stock

preview

Stock symbol

valid?

YES

User clicks preview order button

Tell user stock

symbol is invalid
NO

Tell user all fields

need to be filled
NO

Tell user they do

not have enough

money

NO

YES

Ask user to

confirm order

Order

confirmed?

YES

NO

Tell user order

confirmed

33

Broker Program

(Backend) START

Fetch open orders

list

Fetch stock quotes

and volume from

Yahoo

F
o

r
e

a
c
h

 o
rd

e
r

20 minutes

elapsed?
NO Order type?YES

Stock data

matches order

criteria?

Add/remove stock

to/from portfolio

Add entry to

history

Change user’s

cash balance

Send

notification?

Send email/SMS

notification to user

YES

STOPGo to next order Go to next orderNO

YES

MARKET

NO Go to next order

Remove stock

from open stock

order list

Execute at price

on limit order

Execute order at

current market

price

LIMIT

NO

Enough

Volume
YES

Stock data

matches order

criteria?

YES

Go to next order NO

34

VII. Algorithms and Data Structures
a. Algorithms

The original incarnations of TheStockHop do not have complex algorithms but they do

follow a well-defined Program Flow (See Broker Backend Program). It is planned for

Demo 2 to implement more complex stock analysis algorithms in order to separate

TheStockHop from existing stock market fantasy league games.

b. Data Structures

i. “Order” Data Type [Backend]

The Order data structure is used to convey the relevant data of the currently in-process

stock order between the MySQL interaction wrapper code and the rest of the “broker”

program. It is comprised of the following data types, each of which is used by the broker

program to determine whether an order is to be processed, how to process the order, and

to make necessary changes to a user’s account, portfolio, and transaction history.

Name Data Type Description

Id Int Unique “key” used to identify the order

Account Int Account ID of the user who placed the order

timePlaced Timestamp Date and time the order was placed

Symbol String Stock symbol for this order

Action String Indicates whether this is a buy or sell order

Quantity Long Number of shares to process

Type String Indicates whether this is a market, limit, or stop order

targetPrice BigDecimal Target price to determine execution (applies only to limit and stop orders)

Duration String How long this order is good for (day or good until cancelled)

Notify Byte Indicates whether to notify the user when the order is executed

ii. Stock Information Array [Backend]

After parsing from Yahoo Finance, the program uses a two dimensional array to store

stock information. The columns in the array are symbol, price and volume, and the rows

are different stocks that parsed from Yahoo Finance.

iii. Entity Classes and Controller Classes [Frontend]

The entity classes and controller classes on the frontend can be described in a general

way that applies to all of them.

An entity class directly correlates to a table within the database. For example, there is a

class called Account. Each field in the accounts table is then a protected data type within

this class. The entity classes contain setter and getter methods to access their protected

data types. The controller class instantiate an entity the same way one would instantiate

an object in other high level programming languages, i.e. an account object is created in

the controller using ‘new Account();’. The controller classes then use these objects to

35

manipulate data within this object. Finally, the object can be posted to the database

using the PHP PDO connections described above. In the instance where data is being

collected from a particular table, the $user type (an Account entity) can be

dereferenced: $user->getPortfolio() accesses the Entity to obtain the entries in the

portfolio table associated with a given user.

36

VII. User Interface Design and Implementation
We have stuck somewhat close to our original screen mock-ups. Aside from some color
changes, and the presence of a logo, the site is essentially the same. Major differences
include the removal of the data ticker, a switch in the visual style of the tabs, and the
location of the “Login | Signup” and “Logout” actions. Below we provide a walkthrough of
how users will experience the site.

Introduction:
The first thing a visitor will notice about StockHop, is how simple everything is; the main
goal of website creators is to avoid complexity and make everything as easy as possible.

Sign up and Login:
Now, sign up and login to your StockHop profile could not be simpler. StockHop avoids
requiring sensitive and detailed information from users. They can sign up and make a profile
in just few seconds.

37

Homepage:
After signing on, the user is presented with the latest finance news and events in his/her
profile with no need to have different tabs open in your browsers for the latest stock news;
it’s all there in the profile homepage.
In addition, after signing on, you have access to every section of the website, the tabs at the
top will help you navigate the various sections of the site.

38

Trading:
We understand that when a user want to buy or sell stocks, It may be useful to double check
such a decision at the last minute; StockHop will populate the trade screen with relevant
information to the stock you wish to trade. The relevant information, similar to what the
research screen would provide, will immediately appear just right of the trade form..

Portfolio:
We let users to easily check the performance of the stocks they own in the portfolio section.
Necessary information about owned stocks, such as stock quantity, current market value,
amount of money gained per share, and Share change are provided in portfolio section. In
the event you decide it is a favorable time to drop your position in a certain stock, there is a
quick link sell option that will take you to the trade form and populate it with information
about the stock you may desire to sell.

Rankings:
Are you interested in knowing your success in trading among others? If yes, you can go to
Rankings section of the website and find it out yourself.

39

Preferences:
If you are not satisfied with your account information, you can always go to Preference
Section and change them. Email address, password, notification default, and mobile
information can all be modified here.

Notifications:

In order to make TheStockHop more convenient, users have the ability to add mobile
notification in addition to email notification; in this case, you will be notified about your
transaction status when you’re on the move.

40

IX. Progress Report and Plan of Work
a. Progress Report

The table below shows the percentage done of code for each use case.

Use
Case
Number

Use Case Name Percentage Completed

1 Registration 100%

2 Sign-In 100%

3 View Home Page 100%

4 Buy Stocks 50%

5 Sell Stocks 25%

6 Research Stocks 75%

7 Send Notifications 100%

8 View Rankings 25%

9 User sign-out 100%

10 View Help 50%

11 View Transaction History 100%

12 View Pending Transaction History 100%

13 View Portfolio 100%

14 User Preferences 100%

15 Manage Advertisements 0%

16 Maintain Website 25%

17 Update Stock Prices 100%

Currently, we are debugging some backend features that do not fully work. In addition,

the frontend is getting extensive error checking and data validation functions for all the

forms. The CSS is also being modified. The frontend sell features also need to be

changed.

Over the next week, the team will start implementing the advertiser interface and then

will add the advanced stock analysis to the Research page.

41

b. Plan of Work

The unique ID is used to show the display of each task in the Gantt Chart.

Completed Unique ID Task Name Duration Start Finish

100% 8 Project Proposal 1 day Fri 9/16/11 Fri 9/16/11

100% 2 Report 1 11 days Mon 9/19/11 Fri 9/30/11

100% 1 Server Setup 6 days Mon 9/26/11 Sat 10/1/11

100% 9 Code: Registration, Login,
Logout

6 days Sat 10/1/11 Fri 10/7/11

100% 14 Code: Transaction History 4 days Sat 10/1/11 Wed 10/5/11

100% 16 Code: Trade Screen 18 days Sat 10/1/11 Tue 10/25/11

100% 21 Code: Yahoo Finance Data
Gatherer

11 days Sat 10/1/11 Fri 10/14/11

100% 22 Code: Portfolio 6 days Sat 10/1/11 Fri 10/7/11

50% 17
Code: Buy and Sell Features 29 days Mon 10/3/11

Thu
11/10/11

100% 18 Code: Market Order 10 days Mon 10/3/11 Fri 10/14/11

50% 19 Code: Stop Order 20 days Fri 10/14/11 Thu 11/10/11

50% 20 Code: Limit Order 20 days Fri 10/14/11 Thu 11/10/11

100% 3
Report 2 10 days

Mon
10/10/11

Fri 11/4/11

0% 12
Code: Advertisements 5 days

Mon
10/10/11

Fri 10/14/11

100% 13 Code: Email and SMS
Notifications

4 days
Mon
10/17/11

Thu 10/20/11

50% 15
Code: Pending Transactions 15 days

Mon
10/24/11

Fri 11/11/11

100% 5 Demo 1 1 day Fri 10/28/11 Fri 10/28/11

10% 23
Advanced Stock Analysis 16 days

Mon
10/31/11

Mon
11/21/11

0% 11
Code: Mobile Site 22 days Tue 11/1/11

Wed
11/30/11

0% 4
Report 3 18 days

Wed
11/16/11

Fri 12/9/11

0% 10 Code: RSS Feeds 2 days Thu 11/24/11 Fri 11/25/11

N/A 6 Demo 2 1 day Fri 12/9/11 Fri 12/9/11

0% 7 Electronic Project Archive 1 day Sat 12/10/11 Sat 12/10/11

42

 Gantt Chart:

Green or blue bars with a black line going through them indicate that that part of the task has reached

completion.

c. Breakdown of Responsibilities

Team Member Responsibilities

Dan M.  Use Case Design

 Partial System Design

 Backend Programming

 Backend Code Integration

 Class Diagram and Interface Specification (Backend)

 System functional structure (frontend/backend and their
substructures)

43

Jakub K.  System functional structure (frontend/backend and their
substructures)

 GUI design

 Database and table design

 Wrote database interaction wrapper class and associated
“Order” data structure for backend

 Wrote email and SMS notification classes and
implementation code for the backend

 Testing and debugging of the backend “broker” functional
code

 Program Flow Diagrams

Melissa R.  Project Leader (organize meeting times, allocate resources for
particular tasks, project schedule/planning)

 Server Administration (built backend server from scratch,
implemented the mail server, database server, and all
necessary programs)

 System functional structure (frontend/backend and their
substructures)

 Coded entire frontend – including all pages in Symfony2
framework, created Doctrine entity classes to interact with
controllers [all classes/modules]

 HTML/CSS/Twig templating to provide styling for the website

 FURPS, Functional Requirement Development

 Frontend/backend/database integration testing

Priyanka K.  Domain Analysis, Report 1

 PHP Function to Grab Stock Data from Yahoo! Finance for
frontend

 PHP Function to message users to confirm sign-up

 System functional structure (frontend/backend and their
substructures)

 Researched architectural styles

 Researched stock analysis algorithms

 Website Testing

Sam R.  Use Case Development

 User Interface Design, Report 2

 Human Factors Analysis

 Incorporated reviewer comments from Report 1 into Report 2

 Research Java code for sending email and text messages

 System functional structure (frontend/backend and their
substructures)

 Website Testing

Wei S.  Domain Analysis, Report 1

 Coded backend functionality to grab data from Yahoo!
Finance

 Wrote Java code (CSVParse.java) to parse this data, and put it
in an array that was used by the backend to facilitate trading

44

functionality

 System functional structure (frontend/backend and their
substructures)

 Website Testing

 Interaction Diagrams, Report 2

45

X. References

"Template Engine (web)." Wikipedia, the Free Encyclopedia. Web. 04 Nov. 2011.

<http://en.wikipedia.org/wiki/Template_engine_(web)>.

"Codd's 12 Rules." Wikipedia, the Free Encyclopedia. Web. 04 Nov. 2011.

<http://en.wikipedia.org/wiki/Codd's_12_rules>.

Garlan, David, and Mary Shaw. An Introduction to Software Architecture. Tech. no. CMU-CS-94-166. New

Jersey: World Scientific, 1993. Print.

46

APPENDIX

47

A.1 Hardware Profile

stockhop-01.fc2112.net
 description: Desktop Computer
 product: ()
 width: 32 bits
 capabilities: smbios-2.4 dmi-2.4 smp-1.4 smp
 configuration: boot=normal chassis=desktop cpus=1 uuid=98C158E4-2334-11DD-AE72-0011113186F6
 *-core
 description: Motherboard
 product: D945GCLF
 vendor: Intel Corporation
 physical id: 0
 version: AAE27042-302
 serial: AZLF82100ACB
 slot: Base Board Chassis Location
 *-cpu
 description: CPU
 product: Intel(R) Atom(TM) CPU 230 @ 1.60GHz
 vendor: Intel Corp.
 physical id: 0
 bus info: cpu@0
 version: 6.12.2
 serial: 0001-06C2-0000-0000-0000-0000
 slot: U1PR
 size: 1600MHz
 capacity: 4GHz
 width: 64 bits
 clock: 133MHz
 capabilities: boot fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov
pat clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx x86-64 constant_tsc pni monitor ds_cpl tm2 ssse3
cx16 xtpr lahf_lm
 configuration: id=1
 *-cache:0
 description: L2 cache
 physical id: 1
 slot: Unknown
 size: 512KiB
 capacity: 512KiB
 capabilities: asynchronous internal write-back unified
 *-cache:1
 description: L1 cache
 physical id: 2
 slot: Unknown
 size: 32KiB
 capacity: 32KiB
 capabilities: asynchronous internal write-back instruction
 *-logicalcpu:0

48

 description: Logical CPU
 physical id: 1.1
 width: 64 bits
 capabilities: logical
 *-logicalcpu:1
 description: Logical CPU
 physical id: 1.2
 width: 64 bits
 capabilities: logical
 *-firmware
 description: BIOS
 vendor: Intel Corp.
 physical id: 3
 version: LF94510J.86A.0182.2009.0528.2014
 date: 05/28/2009
 size: 64KiB
 capacity: 448KiB
 capabilities: pci upgrade shadowing cdboot bootselect edd int9keyboard int14serial int17printer
int10video acpi usb zipboot biosbootspecification netboot
 *-memory
 description: System Memory
 physical id: 10
 slot: System board or motherboard
 size: 2GiB
 capacity: 2GiB
 *-bank
 description: DIMM DDR2 Synchronous 533 MHz (1.9 ns)
 product: 0x393931353535202839393635353529000000
 vendor: 0x7F7F7F9400000000
 physical id: 0
 serial: 0x00000000
 slot: J1MY
 size: 2GiB
 width: 64 bits
 clock: 533MHz (1.9ns)
 *-pci
 description: Host bridge
 product: 82945G/GZ/P/PL Memory Controller Hub
 vendor: Intel Corporation
 physical id: 100
 bus info: pci@0000:00:00.0
 version: 02
 width: 32 bits
 clock: 33MHz
 configuration: driver=agpgart-intel
 resources: irq:0
 *-display UNCLAIMED
 description: VGA compatible controller

49

 product: 82945G/GZ Integrated Graphics Controller
 vendor: Intel Corporation
 physical id: 2
 bus info: pci@0000:00:02.0
 version: 02
 width: 32 bits
 clock: 33MHz
 capabilities: msi pm vga_controller bus_master cap_list
 configuration: latency=0
 resources: memory:88200000-8827ffff ioport:20c0(size=8) memory:80000000-
87ffffff(prefetchable) memory:88280000-8829ffff
 *-pci:0
 description: PCI bridge
 product: N10/ICH 7 Family PCI Express Port 1
 vendor: Intel Corporation
 physical id: 1c
 bus info: pci@0000:00:1c.0
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pci pciexpress msi pm normal_decode bus_master cap_list
 configuration: driver=pcieport-driver
 resources: irq:201 ioport:1000(size=4096) memory:88100000-881fffff
ioport:88000000(size=1048576)
 *-network
 description: Ethernet interface
 product: RTL8101E/RTL8102E PCI Express Fast Ethernet controller
 vendor: Realtek Semiconductor Co., Ltd.
 physical id: 0
 bus info: pci@0000:01:00.0
 logical name: eth0
 version: 02
 serial: 00:1c:c0:45:da:d1
 size: 100Mbit/s
 capacity: 100Mbit/s
 width: 64 bits
 clock: 33MHz
 capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt
10bt-fd 100bt 100bt-fd autonegotiation
 configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-1-NAPI
duplex=full ip=172.16.2.10 latency=0 link=yes multicast=yes port=MII speed=100Mbit/s
 resources: irq:50 ioport:1000(size=256) memory:88100000-88100fff memory:88000000-
8800ffff(prefetchable) memory:88020000-8803ffff(prefetchable)
 *-pci:1
 description: PCI bridge
 product: N10/ICH 7 Family PCI Express Port 3
 vendor: Intel Corporation
 physical id: 1c.2

50

 bus info: pci@0000:00:1c.2
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pci pciexpress msi pm normal_decode bus_master cap_list
 configuration: driver=pcieport-driver
 resources: irq:209
 *-pci:2
 description: PCI bridge
 product: N10/ICH 7 Family PCI Express Port 4
 vendor: Intel Corporation
 physical id: 1c.3
 bus info: pci@0000:00:1c.3
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pci pciexpress msi pm normal_decode bus_master cap_list
 configuration: driver=pcieport-driver
 resources: irq:217
 *-usb:0
 description: USB Controller
 product: N10/ICH 7 Family USB UHCI Controller #1
 vendor: Intel Corporation
 physical id: 1d
 bus info: pci@0000:00:1d.0
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: uhci bus_master
 configuration: driver=uhci_hcd latency=0
 resources: irq:225 ioport:2060(size=32)
 *-usbhost
 product: UHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 uhci_hcd
 physical id: 1
 bus info: usb@2
 logical name: usb2
 version: 2.06
 capabilities: usb-1.10
 configuration: driver=hub slots=2 speed=12Mbit/s
 *-usb:1
 description: USB Controller
 product: N10/ICH 7 Family USB UHCI Controller #2
 vendor: Intel Corporation
 physical id: 1d.1
 bus info: pci@0000:00:1d.1
 version: 01
 width: 32 bits

51

 clock: 33MHz
 capabilities: uhci bus_master
 configuration: driver=uhci_hcd latency=0
 resources: irq:185 ioport:2040(size=32)
 *-usbhost
 product: UHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 uhci_hcd
 physical id: 1
 bus info: usb@3
 logical name: usb3
 version: 2.06
 capabilities: usb-1.10
 configuration: driver=hub slots=2 speed=12Mbit/s
 *-usb:2
 description: USB Controller
 product: N10/ICH 7 Family USB UHCI Controller #4
 vendor: Intel Corporation
 physical id: 1d.3
 bus info: pci@0000:00:1d.3
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: uhci bus_master
 configuration: driver=uhci_hcd latency=0
 resources: irq:233 ioport:2020(size=32)
 *-usbhost
 product: UHCI Host Controller
 vendor: Linux 2.6.18-274.3.1.el5 uhci_hcd
 physical id: 1
 bus info: usb@4
 logical name: usb4
 version: 2.06
 capabilities: usb-1.10
 configuration: driver=hub slots=2 speed=12Mbit/s
 *-usb:3
 description: USB Controller
 product: N10/ICH 7 Family USB2 EHCI Controller
 vendor: Intel Corporation
 physical id: 1d.7
 bus info: pci@0000:00:1d.7
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: pm debug ehci bus_master cap_list
 configuration: driver=ehci_hcd latency=0
 resources: irq:225 memory:882a0000-882a03ff
 *-usbhost
 product: EHCI Host Controller

52

 vendor: Linux 2.6.18-274.3.1.el5 ehci_hcd
 physical id: 1
 bus info: usb@1
 logical name: usb1
 version: 2.06
 capabilities: usb-2.00
 configuration: driver=hub slots=8 speed=480Mbit/s
 *-pci:3
 description: PCI bridge
 product: 82801 PCI Bridge
 vendor: Intel Corporation
 physical id: 1e
 bus info: pci@0000:00:1e.0
 version: e1
 width: 32 bits
 clock: 33MHz
 capabilities: pci subtractive_decode bus_master cap_list
 *-isa
 description: ISA bridge
 product: 82801GB/GR (ICH7 Family) LPC Interface Bridge
 vendor: Intel Corporation
 physical id: 1f
 bus info: pci@0000:00:1f.0
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: isa bus_master cap_list
 configuration: latency=0
 *-ide:0
 description: IDE interface
 product: 82801G (ICH7 Family) IDE Controller
 vendor: Intel Corporation
 physical id: 1f.1
 bus info: pci@0000:00:1f.1
 version: 01
 width: 32 bits
 clock: 33MHz
 capabilities: ide bus_master
 configuration: driver=PIIX_IDE latency=0
 resources: irq:177 ioport:2090(size=16)
 *-ide:1
 description: IDE interface
 product: N10/ICH7 Family SATA IDE Controller
 vendor: Intel Corporation
 physical id: 1f.2
 bus info: pci@0000:00:1f.2
 logical name: scsi0
 version: 01

53

 width: 32 bits
 clock: 66MHz
 capabilities: ide pm bus_master cap_list emulated
 configuration: driver=ata_piix latency=0
 resources: irq:185 ioport:20a8(size=8) ioport:20cc(size=4) ioport:20a0(size=8) ioport:20c8(size=4)
ioport:2080(size=16)
 *-disk
 description: ATA Disk
 product: WDC WD1600AAJS-6
 vendor: Western Digital
 physical id: 0.0.0
 bus info: scsi@0:0.0.0
 logical name: /dev/sda
 version: 21.1
 serial: WD-WCAP92555587
 size: 149GiB (160GB)
 capabilities: partitioned partitioned:dos
 configuration: ansiversion=5 signature=9c879c87
 *-volume:0
 description: EXT3 volume
 vendor: Linux
 physical id: 1
 bus info: scsi@0:0.0.0,1
 logical name: /dev/sda1
 logical name: /boot
 version: 1.0
 serial: a00bef24-b7f4-4c46-b334-7e47542ad398
 size: 101MiB
 capacity: 101MiB
 capabilities: primary bootable journaled extended_attributes recover ext3 ext2 initialized
 configuration: created=2006-10-02 15:23:32 filesystem=ext3 label=/boot modified=2006-10-
13 17:29:54 mount.fstype=ext3 mount.options=rw,data=ordered mounted=2006-10-13 17:29:54
state=mounted
 *-volume:1
 description: Linux LVM Physical Volume partition
 physical id: 2
 bus info: scsi@0:0.0.0,2
 logical name: /dev/sda2
 serial: gq7jTA-n0Y4-Q0G4-ALUr-mg2r-ADaf-Dk1DHZ
 size: 148GiB
 capacity: 148GiB
 capabilities: primary multi lvm2
 *-serial
 description: SMBus
 product: N10/ICH 7 Family SMBus Controller
 vendor: Intel Corporation
 physical id: 1f.3
 bus info: pci@0000:00:1f.3

54

 version: 01
 width: 32 bits
 clock: 33MHz
 configuration: driver=i801_smbus latency=0
 resources: irq:185 ioport:2000(size=32)

A.2 Complete Flow Chart Program Flow

55

START

Show user the

home page

Logged in?

(cookie exists?)

YES

Show guest the

welcome page
NO

Check Login

56

Register START

YES

Tell guest

passwords do not

match

NO

Username

exists?

Ask guest for

another username
YES

Create new user

NO

Guest fills out and

submits register

form

All fields filled?

Passwords

match?

YES

Tell guest all fields

need to be filled
NO

Login user

(create cookie)

Show user the

home page

END

57

STARTSign In

Guest fills out and

submits sign in

form

All fields filled?
Tell guest all fields

need to be filled
NO

YES

Username

exists?

Tell guest login is

incorrect
NO

Password is

correct?

YES

Login user

(create cookie)

YES

NO

Show user the

home page

END

58

STARTSign Out

User clicks

LOGOUT

Show guest the

logged out page

END

Logout user

(delete cookie)

59

STARTView Portfolio

Fetch data from

portfolio table

Fetch data from

Yahoo/Google

Show user the

portfolio page

END

Fetch data from

open stock order

table

60

STARTView History

Fetch data from

history table

Show user the

history page

END

61

START
Cancel Order

LNK

Is order

executed?

Remove order

from open stock

order list table

NO

END

Tell user it’s too

late to cancel
YES

Show user the

updated orders or

portfolio page

Confirm user

wants to cancel

order

62

START
Sell Stock

LNK

Fetch specific

stock info from

portfolio table

Show user trade

page with stock

order form filled in

appropriately

END

63

STARTDelete Account

User fills out and

submits delete

account form

Do passwords

match?

Confirm user

wants to delete

account

YES

END

Is password

correct?

YES

Tell user

passwords do not

match

NO

Tell user password

is incorrect
NO

Logout user

(delete cookie)

Delete user and

user data from

tables

Show user

account deletion

confirmation

64

START
Change

Password

User fills out and

submits change

password form

All fields filled?
Tell user all fields

need to be filled

Tell user password

is incorrect

Current

password is

correct?

NO

NO

Do new

passwords

match?

Tell user

passwords do not

match

NO

YES

YES

Change user

password in

account table

YES

END

65

START
Notification

Changes

User modifies and

submits

notification

preferences form

Is email

address filled

in?

Ask user to fill in

email addresss
NO

Change email and

notification yes/no

in account table

YES

END

66

START
Research

Search

User fills in and

submits research

search form

Valid stock

symbol?

Tell user stock

symbol is invalid
NO

Fetch stock

information from

Yahoo/Google

YES

Show stock

information to user

on research page

END

67

STARTHelp Search

User fills in and

submits help

search form

Fetch help info

based on search

Show help info to

user on help page

END

