

2009

Presented by:

Alex Sood, John Grun,

Kevin Folinus, Chris

Zalewski & David Meng.

3/13/2009

Stock Market Fantasy Game

Report 2

2

 John Grun Kevin

Folinus
Chris
Zalewski

Alex Sood David Meng

Project
Management

25% 25% 25% 25%

Interaction
Diagrams

50% 50%

Class Diagram
and Interface
Specification

 100%

System
Architecture
and System
Design

40% 10% 10% 40%

Algorithms and
Data
Structures

 50% 50%

User Interface
Design and
Implementation

 60% 40%

Progress
Report and
Plan of Work

 50% 50%

3

Table of Contents

1. Interaction Diagrams…………………………………………………………………………………….4

2. Class Diagram and Interface Specification…………………………………………………………..12

a. Class Diagram
b. Data Types and Operation Signatures

3. System Architecture and System Design…………………………………………………………….16

a. Architectural Styles
b. Identifying Subsystems
c. Mapping Subsystems to Hardware
d. Persistent Data Storage
e. Network Protocol
f. Global Control Flow
g. Hardware Requirements

4. Algorithms and Data Structures……………………………………………………………………….19

a. Algorithms
b. Data Structures

5. User Interface Design and Implementation………………………………………………………….20

6. Progress Report and Plan of Work…………………………………………………………………..25

a. Progress Report
b. Plan of Work
c. Breakdown of Responsibilities

7. References………………………………………………………………………………………………28

4

1. Interaction Diagrams

LoginScree
n

AccountManag
er

Create Account UC-1

Database

Select function (“register”)

Prompt user for

and

Username and createAccount(name,passwor

executeQuery(query

AccountScree
n

execute(command

login(name,

logi

UC-

5

:AccountScr
een

:AccountMana
ger

Remove Account UC-2

:Database

Select function (“De-register”)

Prompt user for

Passwor removeAccount(port.getName()

executeQuery(query

:LoginScreen

execute(com2

new

6

LoginScree
n

AccountMa
nager

Login UC-3

Databas
e

Select function (“login”)

Prompt user for

and

Username and login(name,

executeQuery(login_query

AccountSc
reen

Portfolio

new Portfolio(name,

new Portfolio(name,

new

AccountScreen(p)

7

AccountScree
n

Portfo
lio

Buy UC-5

Databas
e

Select function (“buy”)

Prompt user for stock

and number of

Stock names and

BuySellScr
een

new

.buy(t,

StockLi
st

getPrice(stock

Pric

r =

assets.updateRow()

8

AccountScree
n

Portfo
lio

Sell UC-6

Databas
e

Select function (“sell”)

Prompt user for stock

and number of

Stock names and

BuySellScr
een

new

sell(t,

StockLi
st

getPrice(stock

Pric

r =

assets.updateRow()

9

AccountScreen

Sell UC-7

Database

Select function (“ViewPricel”)

Prompt user for stock name

Stock name

StockWatch
er

new StockWatcher

StockLi
st

Loop

tru

Loop

watchList.lengt

getQuote(watchList[x]

executeQuery(q

Price,ticker, and price

10

AccountScreen

Logout UC-12

Select function (“logout”)

LoginScreen AccountManage
r

logout(port

new

11

DatabaseMaint
ainer

Update Price UC-13

Database Yahoo! Finance

Loop

true

Loop

list.lengt yahooInterface(list[x]

) con.getInputStream(

ment.execute("update stock_table set price = " + price + ", price_change = " + change + " where ticker = '" + tic +

12

2. Class Diagram and Interface Specification

a. Class Diagram

AccountManage
r

DatabaseMaintainer

StockList Portfolio

StockWatcher AccountScreen

LoginScreen

BuySellScreen
StockWatchUpdater

AccountScreenUpdater

ErrBox

AccountManager

DatabaseMaintainer

StockList Portfolio

StockWatcher AccountScreen

LoginScreen

BuySellScreen
StockWatchUpdater

AccountScreenUpdater

ErrBox

13

b. Data Types and Operation Signatures

AccountManager
-url: String = “jdbc:mysql://software-ece.rutgers.edu/group902?user=user&password=password”
{readOnly}
-con: Connection
+getCon(): Connection {query}
-connect(): void {postcondition: con is connected to Account Database.}
+createAccount(in name: String, in pass: String): Portfolio {postcondition: if name does not match a
username in Account Database, an entry with name and pass is added to Account Database.}
+login(in name: String, in pass: String): Portfolio {postcondition: if name and pass match an entry in
Account Database, that user's assets are retrieved and put into a Portfolio object.}
+logout(inout p: Portfolio): void {postcondition: p is set to null.}
+removeAccount(in name: String): void {postcondition: all entries containing name are removed from
Account Database.}

AccountScreen:
-dispPanel: JPanel
-butPanel: JPanel
-dispArea: JTextArea
-buySell: JButton
-viewPrice: JButton
-logout: JButton
-deregister: JButton
-port: Portfolio
-asu: AccountScreenUpdater
+actionPerformed(in ev: ActionEvent): void {bodycondition: if buySell is the source of ev, a
BuySellScreen is launched, bodycondition: if viewPrice is the source of ev, a StockWatcher is
launched, bodycondition: if logout is the source of ev, AccountManager.logout(port) is called,
bodycondition: if deregister is the source of ev, AccountManager.removeAccount(port.getName()) is
called.}

AccountScreen.AccountScreenUpdater:
+run(): void {bodycondition: dispArea's text is set to port.toString().}

AccountScreen.BuySellScreen:
-inPanel: JPanel
-buttonPanel: JPanel
-stockField: JTextField
-numField: JTextField
-buy: JButton
-sell: JButton
-cancel: JButton
-stockLabel: JLabel
-numLabel: JLabel

14

+actionPerformed(in ev: ActionEvent): void {precondition: stockField and numField are non-empty,
bodycondition: if buy is the source of ev, Portfolio.buy(...) is called with entered stock ticker and
number fo shares, bodycondition: if sell is the source of ev, Portfolio.sell(...) is called with entered
stock ticker and number of shares.}

DatabaseMaintainer:
-list: String[*] {readOnly}
-url: String = “jdbc:mysql://localhost/group902?user=user&password=password” {readOnly}
-ment: Statement
+run(): void
-update(): void {postcondition: each stock price in Account Database is updated with its current value.}
-yahooInterface(in ticker: String): String {postcondition: returns a String containing ticker, the current
price, and today's change in price.}
+main(in args: String[]): void

ErrBox:
-msgLabel: JLabel
-ok: JButton
+actionPerformed(in ev: ActionEvent): void

LoginScreen:
-inPanel: JPanel
-butPanel: JPanel
-nameField: JTextField
-passField: JTextField
-nameLabel: JLabel
-passLabel: JLabel
-login: JButton
-register: JButton
-exit: JButton
+actionPerformed(in ev: ActionEvent): void {precondition: nameField and passField are non-empty,
bodycondition: if login is the source of ev, AccountManager.login(...) is called, bodycondition: if
register is the source of ev, AccountManager.createAccount(...) is called, postcondition: if
login/registration information is valid, AccountScreen is launched.}
+main(in args: String[*]): void {bodycondition: launches a LoginScreen.}

 There are two important things to note here. You may have noticed that there are two main
methods. That's because DatabaseMaintainer runs on the server machine and therefore needs its own
main method. The second thing to note is that the main method in the LoginScreen class have been
placed in any class without changing anything. It was placed in the LoginScreen class because the
primary responsibility of the main method is to launch a LoginScreen.

Portfolio:
-commission: double = 0.02 {readOnly}
-name: String
-assets: ResultSet

15

+getName(): String {query}
+getValue(): double {query}
+toString(): String {query}
+buy(in stock: String, in amnt: double): boolean {postcondition: if the user has enough cash for the
purchase, the stock shares are added to the portfolio and the cash is subtracted from the portfolio.}
+sell(in stock: String, in amnt: double): boolean {postcondition: if the user has enough shares to sell,
the shares are subtracted from the portfolio and the income is added to the portfolio.}

StockList:
+getPrice(in tic: String): double {precondition: AccountManager.con is not null, postcondition: returns
the price of the stock associated with tic.}
+getQuote(in tic: String): String {precondition: AccountManager.con is not null, postcondition: returns
a String containing the stock ticker, its current price, and today's change in price.}

StockWatcher:
-dispPanel: JPanel
-inPanel: JPanel
-fieldPanel: JPanel
-dispPane: JScrollPane
-watchList: String[*]
-quotes: JTextField[*]
-header: JTextField
-input: JTextField
-go: JButton
-exit: JButton
-nextOpenField: int
-updater: StockWatchUpdater
+actionPerformed(in ev: ActionEvent): void
+add(in tick: String): void {postcondition: tick is placed in watchList, and the corresponding stock
quote is placed in one the elements of quotes.}
+remove(in pos: int): void {postcondition: the ticker at watchList[pos] is removed, and the stock quote
at quotes[pos] is removed.}

StockWatcher.StockWatchUpdater:
+run(): void {bodycondition: each non-empty element of quotes is updated with the current stock
quote.}

16

3. System Architecture and System Design

a. Architecture Styles

We are creating a component-based database-centric application. This is a combination of the
component-based software engineering and the database-centric architectures. The program as a
a whole is organized into "components" in order to ease debugging, scalability, reduce complexity,
and improve organization of the code. In addition to the component layout of the code, the
application is heavily relent on a central database. All use cases involve the main database at
some point in their execution.

b. Identifying Subsystems

c. Mapping Subsystems to Hardware

Does your system need to run on multiple computers? For example, you may have client
(web browser) and server (web server) processes, running on different machines.

Yes, our system requires several computers to operate. The main database is on a server,
while the rest of the program resides on the user's computer. Currently, if the program loses
connection with the main database, it will fail to complete its current task. The problem
limitation should be removed before the release of the final version

Boundary

StockWatcher
Cell_Alert

BuySellScreen
Login

AccountScreen

Client

Portfolio
Cell_Alert
StockList

AccountManager

DatabaseMaintainer

Database

17

d. Persistent Data Storage

The application needs to save the data containing user’s login information, their stock portfolio
and a table of stock tickers and their current values.

The database ‘accounts’ has a primary key index used to access the ‘assets’ database
column ‘name’.

The second database the program uses is a database to keep track of the current stock
market prices. This database has a thread running on the server to continually update it.

18

e. Network Protocol

 This system uses two different communications protocols. The system connects to the
Account Database using Java JDBC and connects to Yahoo! Finance using HTTP. Multiple
databases need to be accessed, and JDBC provides several classes and interfaces for
connecting to an SQL database within a Java program. Since the system is implemented
entirely in Java, that makes JDBC the logical choice for connecting to the Account Database.
The JDBC driver attempts to convert the underlying data to the Java type specified in the
getter method and returns a suitable Java value. The JDBC specification has a table showing
the allowable mappings from SQL types to Java types that can be used by the ResultSet
getter methods. The one drawback of JDBC is that the implementation of the classes and
interfaces it provides are dependent on the JDBC driver that is used. This requires that a
JDBC driver be distributed with the program. The choice of HTTP is driven simply by the fact
that HTTP urls for stock quotes on Yahoo! Finance are readily available.

f. Global Control Flow

 This system uses several threads, some of which are process-driven and some of
which are event-driven. The login screen has a single, event-driven thread that simply waits
for the user to enter his or her login information. The account screen has two threads that run
concurrently. One is event-driven; it waits for the user to select an operation. The other is
process-driven; it periodically updates the display of the portfolio contents and takes no input
from the user. Since the process-driven thread does not alter the contents of the portfolio at
all, there is no synchronization required between threads. The StockWatcher window follows
the same pattern. It has one thread that waits for the user to input stock tickers and one
thread that periodically updates the displayed stock quotes. In addition to these threads,
which run on the user's machine, there is one thread that is constantly running on the server
machine which periodically updates the stock prices in the Account Database.

g. Hardware Requirements

19

 The system’s server is going to require an internet connection to connect to Yahoo!
Finance and so the users can log in and play the game. In addition, the server should be able
to run Java and MySQL smoothly. There should be enough hard drive space in order to hold
user data in databases.
 Users will need an internet connection, monitor, and enough hard drive space to install
the game. The specific minimum requirements of each hardware device have not yet been
determined since our program is still in the development stage.

4. Algorithms and Data Structures

Algorithms

There are currently no complex algorithms in use in the program. If algorithms were to
exist in the project, they would deal with certain predictions of the stock market. One instance
of such an algorithm would be predicting the expected price of a stock of interest, and
providing the user with recommendations. If time permits, an implementation of a database
can be used with these algorithms to track the trend of each stock. Another algorithm could
exist where it can predict whether or not a user’s choice is too risky considering the condition
of their portfolio.

Data Structures

The program uses two types of data structures. The StockWatch application uses an
array of strings to store the ticker names the user is currently watching. The other data
structures used are data tables loaded from the databases.

In both cases these data structures were the only sensible options available.

20

5. User Interface Design and Implementation

 The primary focus of our user interface design is to make the user’s interaction as
simple and efficient as possible. In some circumstances efficiency is slightly sacrificed in order
to create a more intuitive application, these cases will be described in detail later.

The interface can be broken down into five main components.
LoginScreen
AccountScreen
BuySellScreen
StockWatch
ErrBox

LoginScreen:

The login screen allows a user to login using an existing account, create a new one, or exit
the program. The previous implementation did not have an exit button. This is a small but
convenient modification.

21

AccountScreen:

 When a user successfully logs on they will first encounter the AccountScreen. The
AccountScreen has four click boxes and a display pane. The boxes enable the user to
Buy/Sell stocks, Track Specific Stocks, Logout or Deregister.

 The display pane shows the current user their holdings and the value of these
holdings. It does this by calling the Portfolio class’s toString() overloaded function. This
function accesses the database of the current user and displays their holdings in the display
pane.

 In order to keep the display updated an AccountScreenUpdater is initiated as a
background process. This daemon application continuously updates the AccountScreen
window pane by calling the toString() function at a specified interval of time.

This pane displays
data from Portfolio
class on to the
AccountScreen.

22

BuySellScreen:

 The Buy/Sell Screen is simple and intuitive. The user is given two text boxes to enter a
stock ticker and the number of share’s they wish to buy. When the proper option is selected
the program executed their order if they have the funds/shares to do so. The cancel button
allows them to exit this screen if they do not wish to buy or sell a security.

The previous user interface incorporated the buy and sell features into the AccountScreen.
This was done to minimize the number of mouse clicks needed to use our program. It,
however, made the program feel less intuitive and has now been changed to create a more
fluid environment.

23

StockWatch:

The StockWatch interface is a newly added piece of interface in our design. It enables the
user to enter multiple different ticker prices and watch their values change throughout the day.
It does this by storing a string array of tickers and calling a StockWatchUpdater, a daemon
application, similarly to the AccountScreenUpdater. The StockWatchUpdater runs through the
string of tickers and outputs their data stored in the database onto the screen.

ErrBox:

When an error occurs this simple error box will be displayed with the appropriate error
message.

24

The user interface is very simple and intuitive. All of the buttons needed for a desired
task are on the main screen of the user’s portfolio. Once a button a pressed, most options
will lead to another window which is also very intuitive (Example: Pressing “Check Stock
Price” will open a window which allows a user to type in the desired stock and the price will
show up). If all options were on one screen, a button may be accidentally pressed due to
confusion or not paying attention. For example, perhaps a user wanted to check a price of a
stock, but had a field filled for buying a certain amount of shares. The user may accidentally
click “Buy” instead of “Check Price,” leading to unwanted results. This is why the ease-of-use
is high for this interface; it is difficult for one to make a mistake.

There has been an added element to User Effort Estimation
Error
Navigation
- 1 Click “OK”

25

6. Progress Report and Plan of Work

a. Progress Report

Classes that have been created are:

Portfolio
LoginScreen
DataBaseManager
StockLost
AccountScreen
StockWatcher
BuySellScreen
AccountManager
AccountScreenUpdater

In these classes, the following use cases are being implemented:

UC-1 Create Account
UC-2 Remove Account
UC-3 Login
UC-5 Buy Stock
UC-6 Sell Stock
UC-7 View Stock Price
UC-12 Logout

The Portfolio is functional with the Yahoo! Finance website and the DataBaseManager is also
functional.

26

b. Plan of Work

27

c. Breakdown of Responsibilities

Project Management - Gantt
Chart

Tasks Start Date Duration(days) End Data

Code Gui 3/2/2009 10 3/12/2009
Alex, John, Chris, and
Kevin

StockWatcher.java 3/2/2009 10 3/12/2009 Chris, Kevin
AccountScreen.java 3/2/2009 10 3/12/2009 Chris, Kevin
LoginScreen.java 3/2/2009 10 3/12/2009 Alex, John
ErroBox.java 3/2/2009 10 3/12/2009 Alex, John

Code Back-End Operations 3/2/2009 15 3/17/2009
Alex, John, Chris, and
Kevin

Portfolio.java 3/2/2009 15 3/17/2009
Alex, John, Chris, and
Kevin

AccountManager.java 3/2/2009 15 3/17/2009 Alex
StockList.java 3/2/2009 15 3/17/2009 Alex
DatabaseMaintainer.java 3/2/2009 15 3/17/2009 Alex

First Demo 3/17/2009 8 3/25/2009
Alex, John, Chris, and
Kevin

Second Demo 4/10/2009 21 5/1/2009
Alex, John, Chris, and
Kevin

Report 2 3/2/2009 10 3/12/2009
Alex, John, Chris, and
Kevin

Cell Phone Interface 3/20/2009 10 3/30/2009 John, Kevin
Stock News RSS Feed 3/15/2009 15 3/30/2009 Chris, Kevin
Cell Phone Testing 4/1/2009 7 4/8/2009 John
Testing 4/9/2009 8 4/17/2009 Chris, Kevin, John

Clean Up 4/20/2009 5 4/25/2009
Alex, John, Chris, and
Kevin

Debugging 4/27/2009 5 5/2/2009
Alex, John, Chris, and
Kevin

28

7. References

Brend Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering. Upper Saddle River:
Pearson Education, Inc., 2001.

Paul T. Tymann & G. Michael Schneider. Modern Software Development Using Java. Pacific Grove,
Thomson, 2004.

Dan Pilone & Neil Pitman. ULM 2.0 In a Nutshell. Sebastopol, O’Reilly Media, Inc., 2005.

Cay S. Horstmann & Gary Cornell. Core Java: Volume 1 – Fundamentals. Santa Clara, Sun
Microsystems Inc., 1959.

Wikipedi. Wikimeda Foundation. www.wikipedia.org

Microsoft Developer Network. Microsoft. Msdn.microsoft.com/en-us/default.aspx

