
Page �1

!!!

WEB BASED STOCK FORECASTERS
TEAM 3

https://sites.google.com/site/group3stockforecasting/

Peter Zhang

Vincent Chen

Robert Adrion

Syedur Rahman

Robin Karmakar

Mohammed Latif

Manoj Velagaleti

REPORT 2

Page �2

Responsibility Matrix !!!!!!

!!!!!!!

RESPONSIBILITIES

Interaction Diagrams 20% 20% 20% 10% 20% 10%

Diagrams descriptions 20% 20% 20% 20% 20%

Alternate solution descriptions 20% 20% 20% 20% 20%

Class Diagram 100%

Data Types and Operation Signatures 50% 50%

Architectural Styles 100%

Identifying Subsystems 50% 50%

Mapping Subsystems to Hardware 100%

Persistent Data Storage 50% 50%
Network Protocol, Global Control Flow,
Hardware Requirements 50% 50%

Algorithms and Data Structures 100%

Appearance 50% 50%

Description 50% 50%

Design of Tests 100%
Merging the Contributions from Individual
Team Members 8% 7% 2% 52% 12% 8% 11%

Project Coordination and Progress Report 100%

Plan of Work 100%

TOTAL POINT ALLOCATION 14.38 14.27 14.22 14.22 14.32 14.38 14.21

Mano
j Ve

lag
ale

ti

Vinc
ent

 Chen

Robi
n K

arm
aka

r

Moha
mmed

Lat
if

Syed
ur

Rahm
an

Pete
r Zh

ang

Robe
rt A

dri
on

TEAM MEMBERS

Page �3

Allocation of Points

!!!

0 2 4 6 8 10 12 14 16 18 20

MANOJ VELAGALETI

VINCENT CHEN

ROBIN KARMAKAR

MOHAMMED LATIF

SYEDUR RAHMAN

PETER ZHANG

ROBERT ADRION

Page �4

Table of Contents !

!

 Interaction Diagrams 5 ...
 Class Diagram and Interface Specification 14 ...

 Class Diagram 14 ...
 Data Types and Operation Signatures 15 ...
Traceability Matrix 20 ..

 System Architecture and System Design 21 ..
 Architectural Styles 21 ...
 Identifying Subsystems 22 ...
 Mapping Subsystems to Hardware 23 ..
 Persistant Data Storage 23 ...
 Network Protocol 27 ..
 Global Control Flow 28 ..
 Hardware Requirements 28 ..

 Algorithms and Data Structures 29 ...
 Algorithms 29 ...

Artificial Neural Network (ANN) 29 ...
Autoregressive integrated moving average (ARIMA) 30 ...
Simple Moving Average (SMA) 31 ...
Exponential Moving Average (EMA) 32 ...
Rate of Change (ROC) 32 ...
Relative Strength Index (RSI) 32 ...
Average True Range (ATR) 33 ...
Average Directional Index (ADX) 33 ...
Accumulative Swing Index (ASI) 34 ..

 Data Structures 35 ..
 User Interface Design and Implementation 36 ..
 Design of Tests 38 ...
 Project Management and Plan of Work 41 ...

 Merging the Contributions from Individual Team Members 41 ..
 Project Coordination and Progress Report 42 ..
 Plan of Work 42 ..
 Breakdown of Responsibilities 42 ...

 References 43 ..
 Useful Information 43 ..

Page �5

!
1. Interaction Diagrams
¯¯

UC-2: AddStock

!
Figure-18: Design sequence diagram for UC-2: AddStock !

 Figure-18 shows the design sequence diagram for Use Case 2: AddStock. Once the
administrator enters a sequence of comma separated ticker symbols the controller parses that
string into an array of ticker symbols. A main loop is then entered for each ticker. To prevent
duplicates, the searcher verifies that the stock does not already exist within the database. Once
the stocks uniqueness is verified, two request URLs are created by the Stock Retriever to
retrieve the necessary stock data. If the administrator made a typo or for some reason the URL
is invalid, the failed stock is added to an error list and the loop continues onto the next stored
ticker. Otherwise, the price provider will create and return two documents: a file containing

Page �6

historical prices and a file containing current stock information such as industry, sector, and
current prices. The relevant data is then extracted from the documents and stored within the
database by the Stock Extractor. Once the loop has completed, the administrator is notified of
errors that occurred if any.

!
Figure-19: Alternate design sequence diagram for UC-2: AddStock !

 The question of who should create the request URLs can lead to many solutions. The
expert doer principle suggest that this should be the controller since it first gets the knowledge
of whether a stock already exists within the database or not (and thus whether a request URL
must be created for it). Figure-19 demonstrates this alternate design where the controller first
constructs the URLs and passes them to the stock retriever. It should be noted that to simplify
this diagram, unrelated intermediate function calls have been removed. The high cohesion
principle, on the other hand, would dictate that the stock retriever should be responsible for
creating the request URL’s. Since the controller’s sole responsibility is to manage
communication between concepts and nothing more, the initial design in Figure-18 is chosen.
 !!!!!!!!!

Page �7

UC-6: Search

Figure-20: Design sequence diagram for UC-6: Search !
 Figure-20, shows the design sequence diagram for Use Case 6: Search. The controller
creates a query using a user’s search parameters which includes a keyword, industry, and
sector. If a keyword is entered it is logged by the Logger for analytics and then the database is
queried by the Searcher using the previously constructed query. For every result, a chart of
historical prices is created. The pagemaker combines all relevant information for every search
result into a page which is returned to the controller. The controller will then update the
website. If no matches are found, the website is simply updated to show this.

Page �8

Figure-21: Alternate design for UC-6: Search !
 Figure-21 displays an alternate design to this sequence where the controller, instead of
creating the query itself, passes on the relevant information to the searcher which would then
be responsible for creating the query. It should be noted that unrelated intermediate function
calls have been removed to further simplify this diagram. This design, again follows the high
cohesion principle. The controller’s responsibilities are limited to that of just coordinating
tasks between concepts and nothing more. Furthermore, this method allows for the query to be
created right before its use unlike in Figure-20 where the keyword must first be logged before
the query is even utilized. Thus, the data is less prone to corruption. Therefore the method in
Figure-21 will be followed. !!!!!!!!!!!!!! !

Page �9

UC-13: PredictAndNotify

Figure-22: Design sequence diagram for UC-13: PredictAndNotify !
 Figure-22 shows the design sequence diagram for Use Case 13: PredictAndNotify. A
Cronjob will initiate the predictor to start an internal timer within TimeKeeper. The predictor
then retrieves historical prices for each stock from the database. For each prediction model, a
prediction is made based on those historical prices and a confidence value is calculated, these
are then stored into the database. An overall prediction is then made and stored within the
database along with its confidence value. The timer is then stopped and the time sent to the
logger to be logged. The predictor then calls the Notifier. For each user and for each tracked

Page �10

stock for that user, a comparison is then made between the current prediction and the previous
prediction. If a change is detected, the notifier sends out a notification through the users
preferred method of notification. !

Figure-23: Alternate design sequence diagram for UC-13: PredictAndNotify

 In an alternate design, as shown in Figure-23, the controller can be used as a buffer
between the initiating actor and the predictor. Although this design appears more eloquent,
where the controller serves as the sole communicator (thus not requiring that the predictor call
the notifier as before) it would also transform the controller into a boundary concept and
therefore leave the entire system to be prone to security faults. Since the controller serves as a
way of coordination between all concepts, it should be paramount that no initiating actors have
direct control over it. Therefore, this design will not be taken into consideration. !!!!!! !!!!!!!

Page �11

UC-12: Update

Figure-24: Design sequence diagram for UC-12: Update !
 Figure-24 shows the design sequence diagram for Use Case 12: Update. A main loop is
first entered for each stock being stored within the database. The Updater compares the date of
the last stored price for a stock with the server data and if the two differ, historical prices for
the missing days are retrieved by the Stock Retriever and then extracted and stored by the
Stock Extractor. The current price for each stock, in a similar fashion, is then retrieved by the
Stock Retriever and then extracted and stored by the Stock Extractor. !!!!!!!

Page �12

Figure-25: Alternate design sequence diagram for UC-12: Update !
 An alternate design is shown in Figure-25 where the request URL creation is handled
by the Updater and then passed onto the Stock Retriever. This method follows the expert doer
principle since the Updater first receives the information necessary to create a request URL.
The high cohesion principle, on the other hand, would suggest that URL creation should
remain a responsibility of the Stock Retriever. If you recall, we have already chosen that the
responsibility of creating URLs remain a process within the Stock Retriever in the design of
UC-2: AddStock, and thus for consistency will also choose the same here. !

UC-8: Track

Page �13

Figure-26: Design Sequence Diagram for UC-8: Track !!
 Figure-26 shows the design sequence diagram for Use Case 8: Track. Once a user clicks
the “track” button, the website notifies the controller of the event. The controller passes the
associated stock to the Tracker which then will verify if the stock already exists within the
user’s “watch list”. If not, the stock is added and the user is displayed the appropriate feedback
through the Website.

Figure-27: Alternate design sequence diagram for UC-8: Track !
 It is questionable whether the controller is even needed in this sequence. Figure-27
shows just that case. The controller is removed, and the website communicates directly with
the tracker. This method is favored by the low coupling principle and the diagram seems to be
greatly simplified. However, as stated before, the controller should be responsible for all
communication between concepts (except for special cases) and thus for consistency as well as
high cohesion we will refrain from using this design. !!!!!!!

Page �14

2. Class Diagram and Interface Specification
¯¯
2.1. Class Diagram

!
Figure-28: Class diagram for the web based stock forecasting system.

!
Figure-28 shows the derived class diagram including all relevant attributes and operations for
our system.
!
!
!

Page �15

2.2. Data Types and Operation Signatures
!
Controller
Coordinates the communication and transfer of data between classes. !
+parse(tickers : string) : string []

Parses the input string of comma separated ticker symbols by converting it into an array
of ticker symbols. !

+doesExist()(ticker : string) : boolean
Calls the searcher to verify if a ticker exists within the database. !

+search(industry : string, sector : string, keyword : string) : string []
Calls the searcher to search for a stocks matching the given industry, sector, and
keyword. !

+retrieve()(ticker : string) : string
Calls the Stock Retriever to retrieve necessary stock data and information and returns
the respective CSV files. !

+extract(doc : string, type : boolean) : void
Calls the Stock Extractor to extract to begin extracting the necessary data from doc
(CSV file). “Type” alerts the method of whether the file contains historical prices or
current stock information. !

+track(ticker : string) : boolean
Calls the tracker to add the given stock to a user’s “watch list”. Returns true, if
successful and false otherwise. !

+createPage() : void
Calls the Page Maker to create the results page after a search is initiated. !

Predictor
Makes predictions based on a variety of models and calculates confidence values for each
prediction. Also calculates an overall predicted price, confidence value, and trade decision
based on each individual model. !
+predict() : double

Calculates and returns predicted stock price. !
+calcConfidence() : int

Calculates and returns confidence value associated with predictions.

Page �16

!
+makeDecision() : string

Returns a trading decision based on prediction results from all models. !
+store(prediction : double, confidence : int, type : string) : void

Stores predicted price and confidence value into the database. “Type” alerts the method
of which prediction model was used and thus which table the information should be
saved under. !

+getHistorical(ticker : string) : double []
Returns an array of historical prices for a given stock. !

+storeDecision(decision : string) : void
Stores the trading decision associated with the overall prediction into the database. !

Timer
Keeps track of the elapsed time for a given prediction session. !
-time : double = 0

The running time since the timer was started. Initial value is set to 0. !
+start() : void

Starts the timer. !
+end() : double

Ends the timer and returns the elapsed time. !
Logger
Logs keywords from user searches and times calculated by the timer. !
+logKeyword(keyword : string) : void

Logs the keyword in a given user search into the database. If the keyword already exists,
the counter associated with the keyword is incremented and then updated within the
database. !

+logTime(time : double) : void
Logs the elapsed time for a given prediction session into the database. !

Query
Used to query the database. !
-sector : string

User’s selected sector.

Page �17

!
-industry : string

User’s selected industry. !
-keyword : string

User’s entered search keyword. !
Searcher
Queries the database based on a users unique search. !
+createQuery(industry : string, sector : string, keyword : string) : Query

Creates a query object with the given sector, industry, and keyword. !
+search(q : Query) : result []

Queries the database with the given query and returns the results. !
+doesExist(ticker : string) : boolean

Returns true if the given stock exists within the database and false otherwise. !
DB: Connection
Establishes a connection to the database. !
-username : string

Username required to access the database. !
-password : string

Password required to access the database. !
Stock Retriever
Retrieves specific stock information from the Price Provider. !
-requestURL : string

The initial part of the URL necessary to request a CSV file of stock information from
the Price Provider. !

+retrieveHistorical(ticker : string, startDate : int, endDate : int) : string
Retrieves and returns a CSV file of historical prices for the given stock within the given
time interval. !

+retrieveCurrent(ticker : string) : string
Retrieves and returns a CSV file of current stock information for the given stock,
including industry, sector, current price, etc. !

Page �18

Stock Extractor
Extracts and stores relevant data from the CSV files returned from the Stock Retriever !
+extract(ticker : string, doc : string, type : boolean) : void

Extracts and stores the necessary information from the input CSV file. “Type” alerts the
method of whether the file contains historical prices or current stock information. !

+storeHistorical() : void
Stores the extracted historical prices into the database. !

+storeInfo() : void
Stores the extracted current stock information into the database. !

+updatePrice() : void
Updates the current price of a stock within the database. !

Updater
Makes sure that prices stored within the database are kept up to date. !
+retrieveDate(ticker : string) : int

Retrieves and returns the date of the last stored price for a given stock. !
+retrieveHistorical(ticker : string, startDate : int, endDate : int) : string

Calls the Stock Retriever to retrieve and return a CSV file of historical prices for the
given stock within the given time interval. !

+retrieveCurrent(ticker : string) : string
Calls the Stock Retriever to retrieve and return a CSV file of current stock information
for the given stock, including industry, sector, current price, etc. !

+extract(ticker : string, doc : string, type : boolean) : void
Calls the extractor to extract the relevant information from the given input file. “Type”
specifies whether the file contains historical prices or current stock information. !

PageMaker
Creates and organizes a page of results after a user initiates a search. !
+createPage()

Creates the results page after a search is initiated. !
GraphMaker
Retrieves a graph of historical prices from the Grapher. !

Page �19

-historicalPrices : double[]
An array of historical prices for a given stock. !

+createGraph() : void
Graphs the information within the array of historical prices. !

AccountHandler
Handles user accounts, specifically the creation of new accounts and the authentication of
existing accounts. !
+createAccount(username : string, password : string, email : string, phoneNumber : int) : void

Creates an account with the given username, password, email, and phone number. !
+authenticate(username : string, password : string) : boolean

Checks if a user is a registered user stored within the system. Returns true if so, and
false otherwise. !

Hasher
Hashes passwords when creating new accounts to ensure security. !
+hash(password : string) : string

Hashes a given password. !
Tracker
Handles the addition of new stocks into a user’s “watch list”. !
+track(ticker : string) : boolean

Verifies whether a stock is stored within a user’s “watch list” and if not, adds the given
stock.

!
Notifier
Handles the notification of users when a trade decision is predicted !
+email(email : string, subject : string, message : string) : void

Sends an email to the given email address with the given subject and message. !
+text(phoneNumber : int, message : string) : void

Sends a text message to the given phone number with the given subject. !
+compare(d1 : string, d2 : string) : boolean

Compares two trade decisions and returns true if they are the same and false otherwise. !

Page �20

2.3.Traceability Matrix
!
!
!
!
!

Figure-29: Domain model to software classes traceability matrix !

DOMAIN CONCEPTS

Controller x
Query x
Credentials x
Website

PageMaker x
Account

DB: Connection x
Searcher x
Logger x
Account Handler x
Securer x
Tracker x
Graph: Connection x
Time Keeper x
Stock Retriever x
Stock Extractor x
Current Information Doc

Historical Prices Doc

Notifier x
Predictor x
Stock Info

Co
nt

ro
lle

r

Qu
er

y

Pr
ed

ict
or

Se
ar

ch
er

Ti
m

er

Lo
gg

er

St
oc

k
Re

tri
ev

er

St
oc

k
Ex

tra
ct

or

Up
da

te
r

Gr
ap

he
r M

ak
er

Ac
co

un
t H

an
dl

er

Ha
sh

er

Tr
ac

ke
r

DB
: C

on
ne

ct
io

n

Pa
ge

 M
ak

er

SOFTWARE CLASSES

No
tif

ie
r

Page �21

 Figure-29 shows how the software classes map to the domain model. As the matrix
shows, a few concepts could not be mapped to. The website is simply the html page a user
views on his/her browser. Account and StockInfo are concepts that are storing specific data
which will already be stored within the relational database. The concepts of Current
Information Doc and Historical Prices Doc will be provided to the system by the Price Provider
as CSV files. All of these concepts do not require to be mapped to a specific class since they are
all of the “knowing” type and thus perform no important tasks. !
3. System Architecture and System Design
¯¯
3.1. Architectural Styles
!
Our software uses several architectural styles. They follow:
1) Client/Server
2) Event-driven
3) Rule-based system
4) Database-centric !
Client/Server Architecture
 Client/Server is our main architectural style; it separates our system requirements into
two easily programmable systems. First, the client, which acts as the User Interface, requests
data from the server, and waits for the server’s response. Secondly, the server, which authorizes
users and processes stock data into information the user can use. It then sends this processed
information to the client to display to the user. !
Event-driven Architecture
 Our system will only need to execute its functions after some major state change. It has
no real time components like a video game. Instead, we’ll have two event emitters, the user
and the timer. Both will drive the application to execute relevant operations though the
execution of different events. These events include login, adding new stocks, deleting stocks,
and requesting an updated lists of stocks for the user; and a time-based update for the timer. !
Rule-Based System
 Our application will be rule-based. In other words, the system will use a set of rules
that we determine it to analyze the stock information it gathers. These rules comprise a
semantic reasoned which makes decisions for the application and the user. It uses a match
cycle act cycle to deduct which stocks will be best to buy and which stocks would be best to
sell. Then, it outputs these results to the user-interface. !
Database-centric Architecture
 Our system relies heavily on its database, both the store relevant stock data and to
analyze the data we give it. The database-centric architecture offers:

Page �22

!
1) A standard relational database management system. This means the data will be stored away
from the client side application.
2) Dynamic table-driven logic. We need to update the tables every time stock prices change.
3) Stored procedures running on database servers to analyze our data.
4) A shared database for communication between parallel processes !
In short, it’s a good way of managing a large amount of data !
3.2. Identifying Subsystems

Figure-30: Package diagram showcasing the three subsystems within the main system. !
 Digging deeper into the system we observe three subsystems emerge as shown by
Figure-30 as well as the classes relating to each subsystem. The user interaction subsystem
deals with the web interface and basic input/outputs and encompasses any class that assists in
such matters. The data mining subsystem deals with gathering relevant stock information at a
fairly frequent intervals and storing that data locally, incorporating the classes of Updater,
Stock Retriever, and Stock Extractor. The data analysis subsystem holds the responsibility of

Page �23

implementing prediction models on the previously mined data and storing those predictions
for later use. !
3.3. Mapping Subsystems to Hardware !
 Our software employs the use of a client/server system. The client–server model of
computing is a dispersed application structure that divides tasks between the provider of a
resource or service, called the server, and an entity making a request, called the client. This
establishment can be made with a network connection between host (the server) and client or
it is possible for this relationship to exist on the same system, sharing hardware. !
 The web-based stock forecasting design we presume to execute will need to be
accessible anywhere that web access exists. This means the client in our client/server
relationship will be a web client. A web browser is an example of a web client, and can
remotely access requested documentation from the server via HTTP. This web client/server
model will need to be run across multiple computers, or subsystems. !
 A web browser will be used to request the various data from our server, as well as
retrieve stock information and updates that can be sent and retrieved via communication with
that server. The GUI, which will run on the web browser, will be executed client side while the
process itself is handled by the server’s web service. The web service will ensure for proper
transmission of user data between the client and the server. !
3.4. Persistant Data Storage
!
 The system-to-be requires data to be saved in order to outlive a single execution of the
system. This data includes historical stock prices for all relevant stocks, related information for
all relevant stocks, user account information, user search queries, and the timers dictating
when the system should update current stock prices as well as begin calculating predictions. In
order to organize this data, one must first elaborate on the different methods of storage.

 A flat file database typically consists of multiple text files storing one record per line.
Text files are simple and portable and can, in most cases, be used without requiring special
software. They make it, however, difficult to search for specific information or to create reports
that include only certain fields from each record. Thus, when creating new records, numerous
redundancies occur as a portion of information in one file must be rewritten to all others. !
 A relational database, on the other hand, consists of multiple tables linked by “keys” —
certain pieces of information shared by two or more tables. This model takes advantage of the
uniformity to build completely new tables out of required information from existing tables. In
other words, it uses the relationship of similar data to increase the speed and versatility of the
database.

Page �24

!
 The implementation of the timers previously stated will be through a Cronjob and thus
a flat file is ultimately the best case for storing them since they require a simple line of code
each such as:

0 */2 * * * /home/username/test.php!!
Which makes the user script test.php run every two hours, at midnight, 2am, 4am, 6am, 8am,
and so on. !
 For all other information the system-to-be relies heavily on large amounts of data
storage, organization, analysis, and security. Thus, a relational database will be used for its
efficiency and power. The tables are organized as follows: !

Table-1: Organization of the table Stocks within the database. !
The Stocks table, as shown by Table-1, holds all stock related information including the
company name, ticker symbol, industry, and sector. An auto incremented ID is used to insure
that each entry is unique. !

Table-2: Organization of the table Historical Price within the database. !
The Historical Prices table, as shown by Table-2, holds all historical data for all stocks. This
historical data includes the data, opening price, daily high price, daily low price, closing price,

STOCKS
Field Type Null Key Default Extra

StockID int(11) NO PRI NULL auto_increment

Company varchar(20) NO NULL

Ticker varchar(5) NO NULL

Industry varchar(20) NO NULL

Sector varchar(20) NO NULL

HISTORICAL PRICES
Field Type Null Key Default Extra

StockID int(11) NO PRI NULL

Date date NO NULL

Open decimal(10,0) NO NULL

High decimal(10,0) NO NULL

Low decimal(10,0) NO NULL

Close decimal(10,0) NO NULL

Volume int(11) NO NULL

Page �25

and volume. Stocks are differentiated from each other using the stockID established in the
Stocks table. !

Table-3: Organization of the table Users within the database. !
The Users table, as shown by Table-3, holds all user account related information including
userID, email address, password (hashed), security key provided by the hasher, and phone
number. The userID field is an auto incrementing integer, ensuring that every stored user is
unique. !

Table-4: Organization of the Overall Prediction table within the database. !
The Overall Prediction table, as shown by Table-4, holds the overall prediction results and
related information. This includes the prediction date, predicted price, calculated overall
confidence value, and predicted trade decision. The stockID from the Stocks table is used to
differentiate between different stocks. !

!!

USERS
Field Type Null Key Default Extra

UserID int(11) NO PRI NULL auto_increment

Email varchar(20) NO NULL

Password varchar(20) NO NULL

SecurityKey varchar(30) NO NULL

Phone int(10) NO NULL

OVERALL PREDICTION
Field Type Null Key Default Extra

StockID int(11) NO NULL

Date date NO NULL

PredictedPrice int(11) NO NULL

ConfidenceValue int(11) NO NULL

PredictedDecision varchar(10) NO NULL

PREDICTION1
Field Type Null Key Default Extra

StockID int(11) NO NULL

Date date NO NULL

PredictedPrice int(11) NO NULL

ConfidenceValue int(11) NO NULL

Page �26

.

.

. !

Table-5: Organization of the intermediate prediction tables within the database. !
The system will utilize a total of eight intermediate prediction models and a table will exist to
store predictions results and related data for each, ash shown by Table-5. This includes the
current data, the predicted price, and the calculated confidence value. The stockID from the
Stocks table is used to differentiate between stocks. !

Table-6: Organization of the Tracked Stocks table within the database. !
A table will be used to keep track of user’s “watch lists”. The Tracked Stocks table, as shown by
Table-6, will associate a userID from the Users table to a stockID in the Stocks table. !

Table-7: Organization of the Keywords table within the database. !
The Keyword table, as shown by Table-7, will store all keywords used for user search queries.
Each entry gets a unique identifier, the keyword, and counter specifying the number of times
the keyword was queried. !

PREDICTION8
Field Type Null Key Default Extra

StockID int(11) NO NULL

Date date NO NULL

PredictedPrice int(11) NO NULL

ConfidenceValue int(11) NO NULL

TRACKEDSTOCKS
Field Type Null Key Default Extra

UserID int(11) NO NULL

StockID int(11) NO NULL

KEYWORDS
Field Type Null Key Default Extra

KeywordID int(11) NO PRI NULL auto_increment

keyword varchar(20) NO NULL

counter int(11) NO NULL

TIMES
Field Type Null Key Default Extra

Page �27

Table-7: Organization of the Times table within the database. !
The Times table, as shown by Table-7, holds the amount of time a given prediction session
takes. Each time is associated with the date the prediction session had taken place. This will
serve useful for future analytics. !
Figure-31 below shows the relationship between all the aforementioned tables. Tables Keywords
and Times share no relation and thus were omitted from the diagram. !

Figure-31: Relationship between tables within the database

!
3.5. Network Protocol
!
Simply, our software will communicate with a single main database. This database will use
PHP scripts to both send data to our user’s localized systems and call data from Yahoo stocks
for analysis. The data itself will be managed by SQL software, and the PHP will output HTML
to user’s systems.

Date date NO PRI NULL

time double(10) NO NULL

HISTORICAL PRICES
StockID

Date

Open

High

Low

Close

Volume

USERS
UserID

Email

Password

SecurityKey

Phone

TRACKEDSTOCKS
StockID

UserID

STOCKS
StockID

Company

Ticker

Industry

Sector

OVERALL PREDICTION
StockID

Date

PredictedPrice

ConfidenceValue

PredictedDecision

PREDICTION1
StockID

Date

PredictedPrice

ConfidenceValue

PREDICTION8
StockID

Date

PredictedPrice

ConfidenceValue

……

Page �28

!
The components will be connected in the following way:
1) PHP requests for raw stock data from Yahoo
2) The data is stored by using SQL
3) Using SQL, we will apply our stock analysis algorithms
4) PHP waits for prompt from user’s systems.
5) When prompted, PHP converts analyzed data into HTML
6) User’s system converts HTML to working UI !
We decided to use PHP because it is standard in creating dynamic web pages. Furthermore, it
works well with relational database management systems. We chose SQL because it is the
standard RDMS used to manage and manipulate large amounts of data. Lastly, we use HTML
because, with the release of HTML 5, HTML has become one of the most powerful and simple
markup languages for developing web pages. !
3.6. Global Control Flow
!
Execution Orderliness:
The system can generally be defined as event-driven; it will wait for a user to make an action
before processing data. The user’s interaction will characterize their visit and the control
structure will wait for the user’s request, remaining idle until it receives such information. This
allows for a user to sequence their actions upon a visit in different patterns without confusing
the system. Some actions may require multithreading in order for updating to be accomplished
thoroughly. !
Time dependency:
The software will make use of timers to keep current, up-to-date, information regarding stocks
in our database at all times. This is a real-time system that will update the database at exact
defined times throughout a given day. !
Concurrency:
Our system has been implemented to function on the Web; this means that multithreading
must be supported. We expect that at some instance there will be concurrent users accessing
either the website or the database, so that will be accounted for using multiple threads. !
3.7. Hardware Requirements
!
There are really three instances that need to be addressed when looking at hardware
specification; the hardware to run the server, the hardware to access the website, and what type
of hardware is needed to use any supplemental mobile technology. !
The server

Page �29

The server requires a processor that has at least one 1.4 GHz single core (64-bit) or a 1.3 GHz
dual-core, 2 Gigabytes of RAM, and has at least 10 gigabytes of hard drive available. The server
computer must have networking capability allowing access to a router either via network cable
or wirelessly. The router should be an UPnP-certified device; however this is not a
requirement. !
To access the website (via Computer or Mobile)
The website is accessible through any web-enabled device. Although having a display
resolution of 1024x768 or greater is highly recommended. !
Mobile App
In the event that a mobile app is developed, a smartphone will be required (iOS or Android). !
These requirements are based off the use of a smaller database that if expanded may require more resources.
Also, note that these not necessarily the minimal requirements, but are recommended for optimal
performance. !
4. Algorithms and Data Structures
¯¯
4.1. Algorithms
!
Artificial Neural Network (ANN)
An Artificial Neural Network is a system built upon the observation of how neural networks
behave naturally. The practice of how artificial neurons relate to neural network training, or
learning, is what the task at hand demands. This essentially means how we can adapt a
mathematical algorithm to simulate the human brain. !
These networks are excellent for designing the behavior of more complicated structures
because of there ability to learn. A major advantage in using this method for what we seek to
accomplish is that they can be used to model a system of events, stock trends, that are totally
unknown and how it will react to distortion and interference or in our case the imperfections of
the stock market.

Page �30

!
Neuron networks can have up to three layers; the use of more layers will not improve the
quality but will extend the learning process. !
MATLAB features a special add-on application as one of their toolbox features known as the
neural network toolbox. This means through the use of this software we can adapt the
information we know about stocks to their system that is already set up to handle neural
networks. Also, the code for all the activation and training algorithms has already been
developed. It has all the information regarding structure that is required; structure of layers,
and connectivity between them. !
In order to do this MATLAB must first be “trained” with data. The data will be imported via a
file that is created from historical data from a database, such as our database or a database such
as Yahoo Finance. This data will have to be defined into a fitting problem for the toolbox. A set
of input vectors will be arranged into columns in a matrix, while target vectors will be arranged
in a second matrix.

� !
Once the data is ready, the neutral network can be created. Through the use of various
properties such as network type, layer number, train, adapt, performance, properties for, and
the actual training itself a created network will be visualized graphically and made available to
the user. !
At this point our data will be pre-trained. Meaning our software team will have to manually
upload historical data into MATLAB and analyze it to create graphical data. Our software
proposes to give the user access to view these models versus actual graphical data, and for
insight into the future. This is subject to change to a more dynamic and automated method
that we seek to implement. !
Autoregressive integrated moving average (ARIMA)
ARIMA models are said to be one of the most generic models for forecasting a time series of
events that can be predict future trends. This technique is a regressive analysis that is an

Page �31

established version of the random-walk and random-trend models used in stock prediction.
The random walk model is a mathematical and financial theory approach to moving randomly
forward, while random trend looks at the random walk model over a period of time to compare
differences. This model will build upon that by adding lags of the differenced series and lags of
forecasting errors.

The mathematical model below is the theoretical approach to the "ARIMA(p,d,q)" model;

The p, q, and d are defined as follows:

p is the number referring to order of autoregressive terms
d is the number of differences
q is the moving average

Given a time series of data Xt and index t an ARIMA model is:

L is the lag, is a parameter of auto regression, is a parameter of moving average and
is the error. !
Now, given that the term has a root of d, it can be rewritten as: !!!!!
To get this model into ARIMA(p,d,q) form, p=p’−d: !!!!!
Simple Moving Average (SMA)
A Simple Moving Average can be calculated by adding closing prices over a time period and
then dividing that total by the time periods. This means that slow reactions are formed from
long-term averages while faster reactions can be seen in a shorter term. These are averages over
a given time-frame, traders can watch how short-term and long-term averages relate to one
another and seen beginnings to an uptrend.

A generic mathematical model can be seen below. !

Page �32

The n day simple moving average for day d is computed by: !!!!
For ten measurements, M1 to M10, we can calculate a four day moving average using the moving
averages from these consecutive days: !

" !
Four days of data are required before a four day moving average can be calculated, hence why
the first term is A4. !
Exponential Moving Average (EMA)
The Exponential Moving Average is very similar to the aforementioned SMA, but in this case
more weight is given to the latest data. This model will change even more rapidly than the
SMA to recent changes in price. This approach is generally more commonly used than the
SMA.

The mathematical approach would be:

" !
Where P = Current Price, = Smoothing factor = 2/(1+N), and N = Number of time
periods. !
Rate of Change (ROC)
Rate of Change is a technical indicator that is a measurement of percent changes between
recent prices and the price over a period of the past. It is an indication of the momentum of
trends. Divergence in the ROC is generally a great indication that a drastic decline (or incline)
may be in the near future by comparison of it with the price of its asset.

Mathematically, ROC can be simply looked at as: !!!
Where N = number of elapsed periods. !
Relative Strength Index (RSI)

Page �33

Relative Strength Index is another technical momentum indicator where the magnitude of
recent changes in gain or loss determines conditions of assets that are bought and sold over
their intended limit. This is generally done on a scale of 100 where overbought is 70 and
above(overvalued asset) and when the RSI goes to 30 or below it is an indication that it is
being sold too frequently and is under its intended value. !
A simple mathematical approach: !

 !
Where RS is = (average gain)/(average loss) !
Average True Range (ATR)
Average True Range is a moving average of true ranges. A true range indicator is an indication
of the greatest factor when considering whether a current high is less than a current low, the
absolute value of the current low are less than the previous close, and the absolute value of the
current high is less than the previous close. Generally a stock with a high level of volatility will
have a higher ATR while a low volatility stock has a lower ATR. !
ATR calculation is as follows: !
The range is simply defined as high minus low.

!
The true range is the largest of the following:
- Recent period's high minus recent period's low
- Absolute value of recent high minus the previous close
- Absolute value of recent low minus the previous close !
The ATR at the moment of time t is calculated using the following formula: !!!
Where the first ATR value is calculated using the arithmetic mean formula: !!!!
Average Directional Index (ADX)
Average Directional Index is an indicator of trend strengths based off of an objective value.
ADX will show the strength of trend regardless of whether it is up or down. This is a bit
different from the other methods in that it does not indicate direction or momentum. This

Page �34

indicator is usually observed verses the DMI, (Directional Movement Indicators) since ADX is
a derivation of the relationship it has among these DMI lines in graphical terms. !
The ADX is a combination of two other indicators, the positive directional indicator (+DI) and
negative directional indicator (-DI). The ADX combines them and smooths the result with an
exponential moving average. !
Calculation of +DI and –DI needs price data consisting of high, low, and closing prices for
every time period. First calculate the directional movement (+DM and −DM): !
UpMove = today's high − yesterday's high
DownMove = yesterday's low − today's low
if UpMove > DownMove and UpMove > 0, then +DM = UpMove, else +DM = 0
if DownMove > UpMove and DownMove > 0, then −DM = DownMove, else −DM = 0 !
After selecting the number of periods, +DI and −DI are: !!!!!!!
The EMA is calculated over the number of time periods, and the ATR is an exponential average
of the true ranges. Thus: !!!!
Accumulative Swing Index (ASI)
Accumulative Swing Index is a variation of Welles Wilder's swing index. It is a way of
comparison of bars that contain high, low, opening, and closing prices in a given time period.
These bars can be defined as a value from 0 to 100 is an up bar and 0 to -100 is a down bar.
When this index is an up bar it conveys that the long-term trend will be higher, and when it is
a down bar it suggests that this trend may be lower. !
The mathematical approach: !!!
The variables are defined as;

PO = Prior day’s Open

Page �35

CO = Current day’s Open
PH = Prior day’s High
CH = Current day’s Open
PL = Prior day’s Low
CL Current day’s Low
PC = Prior day’s Close
CC = Current day’s Close
K = (the larger of the two) (1) CH – PC or (2) CL – PC
L = Limit move
Choosing R is a multi-step process.

R = the largest of the three choices
(1) CH - PC
(2) CL - PC
(3) CH – CL

If (1), R= (CH – PC) – 0.5(CL – PC) + 0.25(PC – PO)
If (2), R= (CL – PC) – 0.5(CH – PC) + 0.25(PC – PO)
If (3), R= (CH – CL) + 0.25(PC – PO) !
4.2. Data Structures
!
Our system, that is to be developed, will ultimately use a database to store all of its data.
Making use of SQL, our database will contain tables holding the information being stored and/
or retrieved. The timers, implemented through a CronJob, will be stored in a flat-file. We
thought this approach was the most simple and accurate way of storing data thoroughly. The
benefits of using both the flat file as well as the relational database have been extensively
discussed in section 3.4 and can be read through again for further clarification. A brief
summary is given below: !
Text files are simple and portable and can, in most cases, be used without requiring special
software. Since, we only need to store two timers, a relational database will offer no benefits in
speed or organization. The implementation of the timers previously stated will be through a
Cronjob and thus a flat file is ultimately the best case for storing them since they require a
simple line of code each such as: !

0 */2 * * * /home/username/test.php!!
Which makes the user script test.php run every two hours, at midnight, 2am, 4am, 6am, 8am,
and so on. !
A relational database consists of multiple tables linked by “keys” — certain pieces of
information shared by two or more tables. This model takes advantage of the uniformity to

Page �36

build completely new tables out of required information from existing tables. In other words, it
uses the relationship of similar data to increase the speed and versatility of the database. For
most of its information the system-to-be relies heavily on large amounts of data storage,
organization, analysis, and security. Thus, a relational database will be used for its efficiency
and power when dealing with these large amounts of data. !
5. User Interface Design and Implementation
¯¯¯

Figure 32: Home Page !
Upon entering the site, the user is presented with the following interface. A search function is
included on the home page for ease-of-use as the user can now quick search any stock without
the hassle of logging in. The login button has been moved to the top right corner so as to
separate it from the search button — this saves the user from having to differentiate between
buttons.

Page �37

Figure-33: Login !
Clicking the Login button calls the above interface. It is a standard login query which requires
the user input two pieces of data: a username and a password. An account registration link is
also included on this interface so the user does not have to close the login interface to register
an account.

Figure-34: Dashboard !
Upon logging in, the user is sent to the dashboard where users’ stocks are saved and presented
in the above card form. The dashboard’s search module has been changed. The dashboard’s
original search module was unintuitive — it contained an arrow which “pulled” the search text
field down. The arrow contained no clear indication it was connected to the search query, so we
replaced it with three search fields: Sector, Industry, and General Search. All three are clearly
labeled, easily accessible by the user, and intuitive. This will cut user effort by at least one click
per search.

Page �38

Figure-35: Search result. !
Upon searching a stock and hitting enter, the user will be presented with either a match or a
list of relevant stocks. All stocks will be shown with company name, price, change in price, and
price charts clearly displayed because they are the most relevant data for the user. Furthermore,
the user will be able to add stocks to their list of stock cards by clicking on the stock’s company
name or its details and traverse back to the dashboard by clicking anywhere else, keeping user
effort low. !
6. Design of Tests
¯¯
A good controller is efficient for the stability and functionality of the proposed model and
application. One can compare it to the engine of a car. Therefore, an important aspect of the
controller is to keep track of certain stocks. This test can also check many other smaller issues
along its path like an odometer that keeps track of the speed of a car. If an incorrect output is
received then we can trace it to the cause(s) (engine, tire-rotation, pressure on gas-pedal,other
calibrations) of the fault. Similarly, if the tracking of a stock is incorrect, perhaps it was a
search of the stocks in the database or the current external website(YahooFinance). This can be
checked through creating more boolean values. This test case is focused on the search function
and uses the track function to display its findings (Function requirement 4). It will use state
testing, to determine what the history of the grabbed stocks was so that it did grab the right
ones. This is because in history there might be similar data such as industry, sector, and
keyword however there will also be a timestamp.

public class ControllerTest{!!
! void checktracking(){!!
! //1. Set up!
! Controller one = new Controller(/*set parameters*/);!
! bool value = false;!
! //make sure stocks are in the repository!!
! //2. act!
! string[] tickers = one.search(/*parameters*/);!!
! /*it should be greater than one at least*/!
! if(length of tickers >= 1){!
! ! string retrievedone = tickers[1];!
! ! if(!
! ! /*Compared the retrieved stock with its history(using the stock name)
and!
! ! preform certain analysis to make sure search generated the current of
true!
 stock(s) (Can be done through checking timestamps.*/){!
! ! value = track[retrievedone];}!
! ! }!
! ! else!

Page �39

For the predictor, not only must the confidence level be accurate but also the decisions that are
made. Therefore, based on the comparison of what each prediction models and confidence level
provided it makes only logical sense that the two should be directly related. Also the decisions
made should be related to what the predicted price of a stock is based on the current price.
Therefore certain events and scenarios need to be checked. This is probably the most important
test case. This is because it is in the closest proximity of the customer. This covers important
functional requirements 4 & 5.

! ! value = false;!
! !
! //3.verify!
! if(value == 0)!
! ! cout<<”Could not track”;!
! else!
! ! cout<<”Tracking was fine”;!
! ! !
}!
}

public class predictorTest{!!
! void validconfidencemaking{!!
! //1.SetUp!
! bool isFine;!
Predictor oracle = new Predictor();!!
! //2.Act!
! if(no stocks are in database)!
! ! if(oracle.calcConfidence !=0)!
! ! ! isFine = false;! ! !
! else{!
! //required that some stocks are already in database!
! predict();!
! if(oracle.calcConfidence ==0)!
! ! //check various models to see if that does make sense if so set isFine
to true!
! else if(oracle.calcConfidence>0)!
! ! //check various models to see if that does make sense if so set isFine
to true!!
! else if(oracle.calcConfidence<0)!
! ! //check various models to see if that does make sense if so set isFine
to true!!
! else!
! ! isFine = false;! ! !
}!
//3. Verify!
if(isFine==false)!
! cout<<”Something is wrong”;!
else!
! cout<<”Everything is fine”;!!

Page �40

Boundary Testing can be performed for this too. Pass the confidence value thresholds as inputs
to another test case and check what happens to the state and confidence as each prediction is
sequentially entered. !
Another important functional requirement - Req2 is tested by the case below. The regulation
here is to make sure everything is up to do since we do not wish to derive any incorrect or out
of date decisions for the customer. This test case is the first gatekeeper in that regulatory
process.

}!!
bool validDecisionMaking{!
//1.Setup!
Predictor oracle = new Predictor();!
double value = oracle.predict();!
bool isFine;!!
//2.Act!
if(oracle.predict > current price && oracle.makePredicton is buy)!
! isFine = true; !
else if(oracle.predict < current price && oracle.makePredicton is sell){!
! isFine = true; !
else if(oracle.predict > current price && oracle.makePredicton is do nothing){!
! isFine = true; !
else!
! isFine = false;!!
//Verify!
return isFine;!
}!
}!

class UpdaterChecker{!!
bool isUpdaterworking{!!
! 1. SetUp!
! Updater process = new Updater();!
! //collect date of last known update from direct contact with Yahoo Finance!
! int truedate = /*from external.!
! bool isUptodate;!!
! 2. Act!
! if(truedate == process.retrievedate(/*specifiedticker*/)!
! ! isUptodate == true;!
! else!
! ! isUptodate == false;!
! 3.Verify!
! return isUptodate;!
}!
}!

Page �41

Integration Testing Strategy !
The best one to utilize for this application is vertical integration. The most important reason is
because it delivers a working testing platform quickly and time is of the essence. Time is
precious here since time is money. Every second wasted could potentially cause customers to
miss lucrative opportunities. Therefore when customers or programmers log tickets it should
be answered quickly. !
Testing Algorithms !
To test algorithms that predict future stock prices we will simply wait and compare the
predicted price to the actual price. We can further test these methods on past prices as well.
The confidence value’s will be calculated using a percent error between the predicted price and
actual price and will be used to gauge an algorithms accuracy and effectiveness. !
Testing Non-functional Requirements !
Non-functional requirements that requires keeping track of time, can be tested easily by
issuing a dummy variable and sleeping the program for that specified time, and checking the
state of the program afterwards. Furthermore, third party browser extensions will be used to
measure website loading times. Other tests such as gauging the ability of a user to intuitively
utilize the system will be conducted through observing random users’ inputs when told to
perform a certain task. For example, a certain user might be told to perform a search and the
number of correct/incorrect mouse clicks will be recorded.

!
7. Project Management and Plan of Work
¯¯
7.1. Merging the Contributions from Individual Team Members
!
Once work was divided up between team members the majority of issues encountered were
communication related. Although the modern era of technology allows for an almost abundant
means of communication some of which including phone, texts, email, instant messaging, etc,
they simply cannot replace face to face meetings. The use of technology, in this rare case, has
begun to hinder our development when it came to assigning and meeting deadlines, reviewing
team members work, and brainstorming new as well as improving old software ideas. For
example, a team member might submit his/her assigned work only to later find out that most,
if not all, of it is incomplete and unsatisfactory when judged by the rest of the team. To tackle
issues like these we have created stricter deadlines and allowed for more face to face meetings
throughout the week. This will give us more time to peer review work as well as better
communicate as a group allowing for a surge of different viewpoints into each individual’s task.

Page �42

Further dilemmas faced were a lack of examples within the textbook for certain diagrams
necessary in the report. We simply did not know how the diagram should be explained, mainly
which points to emphasize and which to ignore. We have tackled this issue by using other
recourses such as the internet to retrieve a myriad of further examples. !
7.2. Project Coordination and Progress Report
!
So far the relational database has been established and use cases Search and Suggest
implemented. Research on further use cases such as Predict and Notify, Update, and AddStock
has been extensively done and are in the process of being implemented. A preliminary user
interface has been created and we will be using the following weeks leading up to demo one to
finalize our most important use cases as well as full UI. If timer permits, we will move on to
implementing less priority use cases and if not, these will be saved for the second demo. !
7.3. Plan of Work
!
We plan to have the use case of Search, Suggest, Predict and Notify, Update, and AddStock
implemented within the next two weeks in time for demo one. We set a designated date of
March 23 for a deadline for our individual parts of the demo so we can use the following week
for integration. Once the demo is completed the following week will be used to implement
lesser priority use cases Track, Login, RemoveTrackedStock, Register, and Logout. The
following week will be used to implement the remaining use cases of EditUpdateTimer,
EditPredictionTimer, Learn, and Support. Throughout this time period we will also be
incrementally optimizing both the appearance and functionality of the user interface. Any
remaining time will be used to optimize the system as a whole. !
7.4. Breakdown of Responsibilities
!
Currently Mohammed and Vince are in charge of developing, coding, and testing the classes of
Updater, Stock Retriever, and Stock Updater, or the data mining subsystem. !
Robert, Robin, and Manoj are in charge of developing, coding, and testing the classes of
Predictor, Timer, and Controller, mainly the data analysis subsystem. !
Syedur and Peter are in charge of developing, coding, and testing the classes of Searcher,
Logger, PageMaker, and Grapher. !
We will determine the difficulty of each task assigned as we dig deeper into development and
assign further classes and modules to those members that have easier tasks. !

Page �43

Integration and integration testing will be coordinated by all members since each sub group
will be familiar with their own class. We feel this will be the most efficient method of
integration. !!!
8. References
¯¯
1.1. Useful Information  
!

1. Mathematical Models:
 http://www.vatsals.com/Essays/MachineLearningTechniquesforStockPrediction.pdf
 http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average !
2. Introduction to ARIMA
 http://people.duke.edu/~rnau/411arim.htm !
3. Autoregressive integrated moving average
 http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average !
4. Average true range
 http://en.wikipedia.org/wiki/Average_true_range !
5. Stock Market Prediction – Neural Networks toolbox - MATLAB
 http://www.breakyourhead.com/2013/03/stock-prediction-artificial-neural.html !
6. Trend Forecasting in Capital Markets with Neural Networks in MatLab
 http://www.cvis.cz/eng/hlavni.php?stranka=novinky/clanek.php&id=69 !
7. Python: Accumulative Swing Index Mathematics and stock Indicators
 http://sentdex.com/sentiment-analysisbig-data-and-python-tutorials-algorithmic-
trading/python-accumulative-swing-index-asi-mathematics-stock-indicators/ !
8. Average directional movement index
 http://en.wikipedia.org/wiki/Average_directional_movement_index !!

