

Restaurant Automation Software Suite

https://fastfoood.github.io/SEWebsite/

Group 13

Second Report

Michelle Curreri

Suvranil Ghosh

Ziad Mallah

Anthony Merheb

Roshni Shah

Holly Smith

Hersh Shrivastava

Brandon Tong

Dante Torello

1

Table of Contents

Individual Contributions 2

1. Interaction Diagrams 3

2. Class Diagrams and Interface Specification 14

2.1 Class Diagrams 14

2.2 Data Types and Operation Signatures 15

2.3 Traceability Matrix 25

3 System Architecture and System Design 28

3.1 Architectural Styles 28

3.2 Identifying Subsystems 28

3.3 Mapping Subsystems to Hardware 30

3.4 Persistent Data Storage 31

3.5 Network Protocol 32

3.6 Global Control Flow 32

3.7 Hardware Requirements 32

4 Algorithms and Data Structures 34

4.1 Algorithms 34

4.2 Data Structures 34

5 User Interface Design and Implementation 36

Customer Interface 36

Manager Interface 36

Server Interface 36

 Chef Interface 36

6 Design of Tests 37

6.1 Test Cases 37

6.2 Test Coverage 42

6.3 Integration Testing 42

7 Project Management and Plan of Work 43

7.1 Merging the Contributions from Individual Team Members 43

7.2 Project Coordination and Progress Report 43

7.3 Plan of Work 44

7.4 Breakdown of Responsibilities 46

8 References 49

2

Individual Contributions

Topics Michelle Suvranil Ziad Anthony Roshni Holly Hersh Brandon Dante

Interaction Diagrams 22.22% 11.11% 11.11% 11.11% 16.5% 0% 0% 16.5% 11.11%

Class Diagram 0% 15% 37% 5% 0% 0% 0% 0% 43%

Data Types and

Operation Signatures
16.67% 11.11% 11.11% 10% 11.11% 11.11% 6.66% 11.11% 11.11%

Traceability Matrix 0% 0% 0% 100% 0% 0% 0% 0% 0%

Architectural Styles 25% 5% 0% 0% 35% 0% 35% 0% 0%

Identifying Subsystems 55% 0% 0% 0% 0% 0% 0% 45% 0%

Mapping subsystems

to Hardware
0% 0% 20% 0% 0% 80% 0% 0% 0%

Persistent Data

Storage
40% 0% 40% 0% 0% 0% 0% 10% 10%

Network Protocol 0% 0% 25% 0% 75% 0% 0% 0% 0%

Global Control Flow 0% 0% 0% 0% 75% 0% 0% 0% 25%

Hardware

Requirements
0% 10% 0% 0% 0% 67.5% 0% 0% 22.5%

Algorithms 0% 0% 25% 0% 25% 25% 25% 0% 0%

Data Structures 15.66% 0% 33.33% 15.66% 33.33% 0% 0% 0% 0%

User Interface Design

and Implementation
0% 90% 0% 10% 0% 0% 0% 0% 0%

Test Cases 26.33% 0% 0% 7% 10% 0% 0% 23.33% 33.33%

Test Coverage 0% 0% 0% 60% 0% 30% 10% 0% 0%

3

Integration Testing 10% 0% 0% 0% 10% 0% 0% 0% 80%

Merging the

Contributions from

Individual Team

Members

90% 0% 10% 0% 0% 0% 0% 0% 0%

Project Coordination

and Progress Report
0% 0% 0% 40% 10% 0% 0% 25% 25%

Plan of Work 10% 0% 0% 10% 10% 0% 0% 70% 0%

Breakdown of

Responsibilities
15% 0% 0% 20% 20% 8% 0% 9% 33%

References 85% 0% 0% 0% 0% 0% 0% 15% 0%

Editing 10% 20% 20% 10% 20% 0% 0% 0% 20%

Organization 15% 20% 15% 15% 10% 10% 0% 0% 15%

Table of Contents 0% 0% 0% 0% 100% 0% 0% 0% 0%

UC-2: Payment

4

Figure 1: Payment with Cash

Figure 2: Payment with Card Verification Successful on First Try

These sequence diagrams display some of the potential paths that could be taken when attempting to pay

utilizing the TurboYums payment processing. The second diagram shows a best case scenario while attempting to

pay for a meal with a credit or debit card, after the customer interacts with the interface and enters their payment

information, the information will be sent to the controller, which will then send the data to the specific database

for the card (for e.g.: VISA, American Express, MasterCard etc.) in order to verify that the information sent is in fact

a valid. The second diagram shows this process running smoothly with valid card information being entered on the

first try. The third diagram shows a similar process but with invalid card information being entered, which results in

a loop until the user enters valid information that may be used for payment.

5

Figure 3: Payment with Card Verification Failure

The first diagram shows what would happen if a customer attempts to pay with cash, which results in

additional involvement of a waiter since a waiter must be notified of the payment in order to pick the cash up off

of the table.

The high cohesion and low coupling principles were heavily utilized in various different locations while

creating the diagrams. The employment of a controller utilizes the high cohesion principle because it allows many

of the other objects, such as the interfaces and database to perform their intended tasks (interacting with the user

and checking the card information) without having to send messages to other objects involved in the diagram

about the status of their actions. Instead of the interface sending the card information to the database, or the

customer interface sending information to the waiter interface that cash must be received, the interfaces send this

information to the controller so that the controller may then perform the appropriate tasks as needed. The low

coupling principle was largely utilized in the cash payment process in order to keep things quick and clean.

Information is telephoned down the line from one object to another, through small connections and links,

especially between the controller, waiter interface and waiter, this end of the diagram is mostly singly linked

objects.

The expert doer was most used for the interfaces and the databases because these objects are the only

ones that can successfully perform the tasks that they are undergoing. The interface must serve as the bridge

6

between the user and the software, and the card database is the only thing that can be used to verify the card

information.

UC-3: View Menu

Figure 4: View Menu with Dine-In Selection

One design principle employed in this sequence is the High Cohesion Principle. The High Cohesion Principle

says that an object should not take on too many computational responsibilities. This principle is utilized in that

each class only takes on responsibilities that have to do with its specific functionalities and doesn’t take on more

than it can handle at a time.

Another design principle used was the Expert Doer Principle, which says that each class is an expert in a

specific function. This is shown in the diagram because, as an example, the only function for TableSelection is

simply to display the table layout and have the guest select a table. After this function is over, responsibility is

passed on to FilterOptions, where the sequence continues on.

7

Figure 6: View Menu with Take-Out Selection

Figure SEQ Figure * ARABIC 5: View Menu if Log-In Verification Fails

8

UC-7: Clocking-in/Clocking-out

Figure 7: Clocking In/Clocking Out

The diagram above demonstrates the interaction between objects and/or actors in UC-7: Clocking In/Out.

The user must interact with the interface in order to open the application and log in. Once the user enters their

login details, the interface will check them with the database and confirm their credentials. The user is then

brought to an interface where they are presented with the option to clock in. Once they select the option to clock

in, the system logs the user’s name, time of clock-in, location, and ip address. Later on in the day, the user is able

to use the system again to clock out, where the system again logs the user’s name, time, location, and IP address.

One design principle that is used is the High Cohesion Principle. All of the objects don’t take on many

computation responsibilities. Each object only focuses on the tasks they are specialized to do. The database has all

the logged information required for objects to perform their task, while the objects simply have a calculation

dedicated to their specified task (E.g. Clock in logs data at time of clock in, and vice versa for clock out).

9

UC-11: Earning Rewards

The diagram above demonstrates the interactions involved in UC-11: Earning Rewards. Initially the Customer will

launch the application and select their dining option. The interface will prompt the user for their Once the user

enters their login details, the interface will check them with the database and confirm their credentials. Upon sign

in, the interface will display a menu and allow them to place their order (This process was left out of the diagram,

as this process is lengthy, and doesn’t differ in this use case). Once the customer is done with the ordering process,

they will be directed to payment (see UC-2). Upon completing payment, the interface will carry details of the

transaction to the reward calculator. The reward calculator will calculate an amount of points to give the user

proportional to their total (as determined by the restaurant owner). The reward calculator will then update the

database with the customer’s new balance, then the interface will display their new balance to the user along with

their receipt confirming the transaction was completed successfully.

One design principle that is used is the High Cohesion Principle. All of the objects don’t have many

computation responsibilities. The interface simply displays information to the user and prompts them for input.

The database will store and return related information for each task. Also, the reward calculator will only be

responsible for calculating rewards.

Figure SEQ Figure * ARABIC 8: Earning Rewards

10

2.1 Class Diagrams

11

2.2 Data Types and Operation Signatures

Class: Menu

Attributes:

● menuItems: list of Item- food items available to the customer.

Methods:

● filterItem(preference)-allows allergens and preferences to be filtered

out as indicated by the customer.

● removeItem(foodID#)- removes food from existing order- will take a

food ID and quantity.

● addItem(foodID#)-adds food/beverage indicated by the customer to the current order.

● sendOrder(Order)- sends the order to the kitchen to be made.

Class: Order

Attributes:

● totalPrice:double - the total price of all items in the order.

● orderedItems: Item[] - the list of food items in the cart picked by

the customer.

● specialRequest: String - a place for customers to express any

request not available in the UI.

Class: Item

Attributes:

● itemName: String - The name of an item.

● itemPrice: double - price of each item.

● ingredients: list of String - a list of the different ingredients

needed to make the item.

● description: String - each item is described with a few short

sentences.

● rating: int - a number to indicate the overall satisfaction with an item calculated using previous user

feedback.

● foodID: double- a unique number used to reference the item.

● itemQuantity: int - the number of a specific item ordered in that single order.

Class: TableSelection

Attributes:

● tableLayout: two dimensional array of tables - Display the

current table layout.

Methods:

● selectTable() - Customer has to select a table.

● verifyTable() - This is will verify that the table that the

customer selected is still open (to make sure they do not

select an occupied table).

12

● displayTables() - Customer is shown a picture of the available tables, with unavailable table shown

greyed out.

Class: Table

This class is made so that status of tables can be altered and table

layout can be changed.

Attributes:

● tableId: int - Each table is assigned a specific number, so that

they are easy to keep track of.

● tableStatus: int - Returns a 0 for when a table is

unoccupied/open and returns a 1 for when the table is

occupied and returns a 2 for when a table is dirty and unoccupied, so that a busboy can know when

to clean a table

Methods:

● moveTable(): void - A manager is allowed to move and rearrange the tables in the layout.

● markTable(): boolean - A table will be able to be marked, so that it’s status can be updated.

Class: Reservation

Attributes:

● name: String - The name of the reservation group.

● Date: Date - The date of the transaction.

● numPeople: int - The amount of people for the reservation.

● TableSelection: Class - Inherits the TableSelection Class in order

for customers to have the option to select their table.

Methods:

● makeReservation() - Customers can make reservations ahead of

time.

● cancelReservation() - Customers can cancel the reservations they made.

● editReservationTime() - Customers can edit their reservation time.

Class: User

Attributes:

● userId: String - The ID of the user.

● firstName: String - The first name of the user.

● lastName: String- The last name of the user.

● userName: String - The username for the user.

● password: String - The password for the user’s account.

● rewardPoints: int - How many rewards points the user has.

● accountType: int - The type of user account.

● address: String - The user’s address.

 Methods:

13

● addPoints() - Add an integer of reward points to the user’s balance.

● removePoints() - Remove an integer of reward points to the user’s balance.

● getPoints() - Get the user’s point balance.

● notifyUser() - If the user has an active session, send them a message.

Class: Employee Portal

This class is made to allow employees to clock-in and clock-out of

their shifts (including breaks).

Attributes:

● userName: String - This is the individual employee’s self-made

username to be able to have an account.

● password: String - This is the individual employee’s self-made

password to keep their profile protected.

● firstName: String - This is the individual employee’s first name.

● lastName: String - This is the individual employee’s last name.

● timeWorked: int - This will keep track of the amount of time that

the individual employee has worked during the current shift.

● timeStamp: Date - The time and date of the clock-in/clock-out.

● employeeID: String - This is an employee specific ID, so that the system and manager can identify the

employee’s role and have the ability to edit and track.

Methods:

● clockIn(): boolean - Employee has the ability to clock in when beginning their shift.

● clockOut(): boolean - Employee has the ability to clock out when ending their shift.

● enter(username, password) - Employee has to enter their username and password to login at the

beginning of the shift.

● verify(username, password) - This will check if the username and password entered are correct. If not,

the employee has to enter again.

Class: Employee Info

This class is made to hold employee information, if the employee

wishes to access it.

Attributes:

● totalTimeWorked: int - This will keep track of the total amount

of time that the individual employee has worked during the

payment cycle.

● hourlyWage: double - This will keep track of the individual

employee’s working hourly wage.

● schedule: int[][] - This will keep track of the work schedule during the current pay cycle.

Methods:

● displaySchedule(): int[][] - This will display a 2D array that holds the scheduling information.

● displayWorkTime(): int - This will display the employee’s total amount of time worked during the pay

cycle.

14

Class: Chef

This class is made to display the Chef Interface and the options for the chef.

Attributes:

● mealInProgress: boolean - This is for the chef to track which

meals they have began to make, and helps with giving a time

estimate to the customer.

● timeEstimate: int - This is the estimate for how long the

customer’s meal might take to arrive.

● mealReady: boolean - This is to notify other users when the

meal is ready.

Methods:

● viewRecipe(): String - This will display the recipe if the chef desires - in case they need a reminder.

Class: Busboy

Attributes:

● Table: Class - Inherits the Table class in order to be able to see

marked tables and mark them.

Methods:

● viewTableStatus(): int - This will allow the busboy to see the

statuses of the tables.

Class: Server

This class is made to display the Waiter/Waitress Interface and the

options for the waiter/waitress.

Attributes:

● TableSelection: Class - Inherits the TableSelection class, so that the waiter/waitress can select a table

for the customer if he hasn’t done so yet.

Class: Manager

This class is made to display the options specifically for a manager.

Attributes:

● Employee Info: Class - Inherits Employee Info class.

● Table: Class - Inherits Table class.

● Transactions: String[] - Transactions that were made.

Methods:

● editMenu(): void - This allows the manager to edit the available

menu.

● editEmployee(employeeID): void - This allows the manager to edit

the information of an individual employee.

● editSchedule(): void - This allows the manager to edit the schedule for the current pay cycle.

● viewEmployees(): void - This allows the manager to view all employees currently working.

15

● editTableLayout(): void - This allows the manager to edit the table layout of the restaurant.

● viewTransactions(): void - This allows the manager to view all recent transactions.

Class: Transaction

This class is created to help maintain the information that is

associated with a transaction occurring.

Attributes:

● transactionId: int- This will keep track of the designated ID of

the transaction, which will start counting up with the first item

having an ID of 1.

● userId: String - This will hold the ID of the user making the

transaction.

● employeeUserId: String - The user ID of the employee.

● methodOfPayment: PaymentMethod - keep track of how the

payment was made (card, cash, etc) as well as the information

that is associated with paying by card such as card number,

CVV code, and expiration date.

● items: list of Items - This attribute will be a list of all of the

items associated with the order that the customer must pay

for.

● timeStamp: Date - The time and date that the transaction was

enacted.

● subtotal: double - The subtotal amount of the order.

● tax: double - The tax amount on the order.

● tip: double - The tip amount that is being paid.

● total: double - The amount of the order total.

● rewardsEarned: int - The amount of rewards earned.

● state : int - This is the status of the transaction, 0 pending, -1 indicates an error, 1 is a success.

Methods:

● addItem() - boolean - Adds and item to the transaction.

● removeItem() - boolean - Removes an item from the transaction.

● payBill() - void - Allows user to pay their bill.

● updateTotal() - double - Updates the total of the transaction.

● addPaymentMethod() - boolean - Allows user to add a payment

method.

Class: PaymentMethod

This class will keep track of all of the details about the method of

payment, if it was done by cash or card, and if the transaction is

completed by card then the card information will be stored.

16

Attributes:

● type: int - 0 for Cash, 1 for Credit Card, 2 for Debit Card - The different potential methods of payment.

● nameOnCard: string - Stores name on Debit/Credit Card - The name associated with the card that is

paying.

● billingAddress: Object of Type Address - The billing address associated with the card that is paying.

● cvv: int - stores CVV of Credit/Debit Card - The cvv associated with the card that is paying.

● expDate: Date- the expiration date that is associated with the card that is paying.

● userId: - the Customer ID that is associated with the account that is paying.

Method:

● verifyMethod() - boolean - Checks if it is a valid method of payment.

● chargePayment() - void - Allows user to change their payment.

● editPayment() - void - Allows user to edit their payment.

● deletePayment() - void - Allows user to delete their payment.

Class: Address

This class stores the strings/ints required for address.

Attributes:

● address_line_1: String - Stores address line 1.

● address_line_2: String - Stores address line 2.

● city: String - Stores the name of the city.

● state: String - Stores the name of the state.

● zip: int - Stores the ZIP code.

● country: String - Stores the name of the country.

● user_id: String - The user ID corresponding to the address.

 Method:

● getAddress() - String - Gets the address of a user.

● deleteAddress() - boolean - Allows user to delete their address.

● updateAddress() - boolean - Allows user to update their address.

17

2.3 Traceability Matrix

Domain Concepts
Me

nu

Ord

er

Ite

m

Tab

leS

ele

ctio

n

Tab

le

Res

erv

ati

on

Use

r

Em

plo

yee

Por

tal

Em

plo

yee

Inf

o

Che

f

Bus

boy

Ser

ver

Ma

nag

er

Tra

nsa

ctio

n

Pay

me

nt

Me

tho

d

Ad

dre

ss

Customer Profile X X X X X

Interface X X X X X X X X X X X X X

Payment System X X X

Food Status X X X

Order Queue X X

Controller X X X X X

Communicator X X X X X X

Floorplan X X X X

Employee Profile X X X X X X X X

Table Status X X X X X X

Reward System X X

DB Connection X X X X X X X X X

● Customer Profile:

○ User: Allows customer to view and edit account specific data.

○ PaymentMethod: Allows customer to select preferred payment method.

○ Address: Allows customer to store their personal address

● Interface:

○ Menu: The restaurant’s menu is accessible via the interface.

○ Order: Orders can be placed through the interface.

○ Item: All available items are presented on the interface.

○ TableSelection: Table selection is done via the interface.

○ Table: Table availability and status is available via the interface.

○ Reservation: Table reservation is done via the app interface.

○ User: User data is presented via the app interface.

○ Employee Portal: The portal is accessible via the app interface.

○ Chef: Can access their respective UI via the interface.

○ Busboy: Can access their respective UI via the interface.

○ Server: Can access their respective UI via the interface.

○ Manager: Can access their respective UI via the interface.

18

○ PaymentMethod: Chosen through the interface.

● Payment System:

○ User: The purchase is logged to the user’s account after the payment is made.

○ Transaction: The system attempts to validate and confirm payment has been made.

○ Payment Method: The system uses the selected payment method in order to complete payment.

● Food Status:

○ Order: Food Status initiates once an order is placed.

○ Chef: Chef is able to update Food Status depending on the stage of the order.

○ Server: Server is able to see once status is complete and clear it.

● Order Queue:

○ Order: Ordering a food item adds it to the queue.

○ Chef: Chef is able to view Order Queue and dequeue them as they handle it.

● Controller:

○ Menu: Controller requires that items be chosen from the menu.

○ TableSelection: Controller requires that a valid table is selected.

○ Reservation: Controller requires that the customer enters reservation details.

○ PaymentMethod: Controller requires a valid Payment Method from customer.

● Communicator:

○ Order: Communicator allows the customer’s order to be communicated to the chef via

queue.

○ User: Allows accounts to validate information from server, such as login.

○ Chef: Allows Chefs to receive important notifications and data.

○ Busboy: Allows Busboys to receive important notifications and table status updates.

○ Server: Allows Servers to receive important notifications and table status updates.

○ Manager: Allows Managers to receive important notifications and data.

● Floorplan:

○ TableSelection: Allows the table to be moved to be selected.

○ Table: Floorplan will edit the properties of the Table after it is changed.

○ Server: Servers will be able to edit the current floorplan.

○ Manager: Managers will be able to edit the current floorplan.

● Employee Profile:

○ User: Contains employee personal information.

○ Employee Portal: Allows employees to clock in/out and view work status.

○ Employee Info: Allows employees to view their current earnings and status.

○ Chef: Chefs are able to see all relevant personal information via their portal.

○ Busboy: Busboys are able to see all relevant personal information via their portal.

○ Server: Servers are able to see all relevant personal information via their portal.

○ Manager: Managers are able to see all relevant personal information via their portal.

○ Address: Employee home addresses are stored on their profile.

● Table Status:

○ Table Selection: Allows users to select a table and view its status.

○ Table: Contains the different variables pertaining to table status.

19

○ Reservation: Allows users to preserve table status for a later time.

○ Busboy: Can be viewed and edited by a Busboy after it is cleaned.

○ Server: Can be viewed and edited by a Server after it is being used.

○ Manager: Can be viewed and edited by a Manager depending on restaurant status.

● Reward System:

○ User: All rewards points are saved to a user’s profile.

○ Transaction: Points allocated after a transaction, can be used before a transaction.

● DB Connection:

○ Order: Orders will be sent to the database once sent by the customer.

○ Table: Table information is stored on the database.

○ Reservation: Reservation information will be stored on the database.

○ User: User account information will be stored on the database.

○ Employee Info: Employee information will be stored on the database.

○ Transaction: Transaction history will be stored on the database.

○ Payment Method: Saved and preferred payment methods will be stored on the database.

○ Address: Saved address will be stored on the database.

3.1 Architectural Styles

For our application, we are using the Layered Pattern mode which is commonly used for general desktop

applications. The three layers are presentation, application, and data layers. The presentation layer is seen by the

users on the front-end, both customers and restaurant staff. Application and data layers are on the back-end and

keep track of user-entered information, as well as respond to commands from the presentation layer. This model is

appropriate for our application as the layers are abstracted from each other to therefore run parallel with the

code.

Our application also uses the Client-Server architecture model which is a one to many relationships. The

server provides/stores data. In the restaurant, the servers are the many different interfaces for customers and for

the restaurant staff. Users are the clients that have to enter information into three interfaces for; ordering food

from the menu, making reservations, logging in to the rewards system, and making payments. The employees are

clients who use the clocking in/out server to log their shifts so they will be paid. Managers are clients who use their

options server to edit employee information and scheduling, edit the menu, and edit table information.

Another architectural style utilized is the Peer-to-Peer model. This model is a distributed application

architecture that partitions tasks between peers. This will be used for the payment of the order by a customer to

the restaurant and the model is decentralized so every payment gets processed separately. In our application this

model is used when if the customer pays by card then the peer to peer model becomes a payment service to

transfer funds from customers bank account to the restaurant account.

20

3.2 Identifying Subsystems

Figure 9: UML Package Diagram

The subsystem above displays our three-layer architecture - which consists of a Presentation Layer, an Application

Layer, and a Data Layer. Each layer has a specific responsibility to the entire system.

The presentation layer handles the user interface level. This layer holds the information dealing with the

Bartender/Chef, Manager, Busboy/Waiter/Waitress, and Customer Interfaces. The application layer is the middle

tier of this architecture, which handles communication between the top and bottom layers, essentially managing

the overall operation. It will run the business logic, which is the set of rules required for running the application for

the guidelines given by the organization. Contained within this layer is the Communicator and Controller. The

Controller is utilized to facilitate tasks between the layers and the Communicator is used to pass information

between the layers. The lowest layer is the data layer, which deals with the storage and retrieval of data. This tier

will hold information pertaining to the Employee and Customer Profiles, as well as the available menu and

restaurant transactions.

Each layer doesn’t need to worry about the other layers, due to separation of concerns. Also, due to layers

of isolation, changes made in one layer don’t generally affect the other layers. Because of this, the architecture

makes testing and diagnosing issues more manageable.

21

3.3 Mapping Subsystems to Hardware

For our software there will be a client running on tablets and cellphones in the restaurant. There will also

be a database server that the client will communicate with over Wi-Fi. The application can be ran on many

different devices as long as it meets the requirements listed in Section 3.7 Hardware Requirements. React Native

will be used to run our client on various mobile devices. Our system will have a RESTful API and will communicate

with our servers in the fetch() phase. POST and GET are requests that will come from the server and communicate

with the client. POST requests supply additional data from the client to the server. GET requests include all

required data in the URL. There also is a physical server that we will control using Node.js. For the server Node.js

contains packages Express and Sequelize which helps the communication between the server and the database.

Express is a minimal and flexible Node.js web application framework that provides a robust set of features to

develop web and mobile applications. Express is used to create handle routing and process requests from the

client. It facilitates the rapid development of Node based web applications. Sequelize is a promise-based ORM for

Node.js, which will enable the object to create objects from our relational database. This supports MySQL and

features solid transaction support, relations, read replication and more. For our database we will be using MySQL.

MySQL is a driver for Node JS. MySQL is a Relational Database Management System that uses Structured Query

Language (SQL). SQL helps with adding, accessing and managing content in a database. The data will communicate

with the server with the help of SQL.

22

3.4 Persistent Data Storage

Our software does need to store persistent data that needs to outlive a single execution of the system. For

one, the Customer Profile needs to be saved. Within the Customer Profile, our software needs to remember the

customer’s first and last name, username and password, as well as their Reward Points earned and payment

information. The Employee Profile also needs to be saved. Within the Employee Profile, our software needs to

remember the employee’s first and last name, username and password, salary, time worked, work schedule, etc.

Our software will also need to hold onto the restaurant’s transactions, so that the manager will be able to access it

whenever they please and have the ability to track earnings (total revenue and profit). Since the manager should

also be able to adjust the table layout, our software needs to have the ability to remember the restaurant’s current

table layout. Other important information that needs to be saved is the available menu, along with the totaled

ratings calculated for each item, item prices, item names, the recipes, and item number. This information will all

be stored in a MySQL database running on our web server.

23

3.5 Network Protocol

In order to complete the restaurant automation application, our team is implementing a REST API. A REST

API will perform actions on the server based on HTTP POST and GET requests. HTTP REST lends itself well to a

client server architecture. The front-end of the application will be built with React Native, which will handle

performing the requests. The user interacts with the application and when they perform a task, a request will be

sent to a server via HTTP where the information will be processed. For example, if the user orders food after

clicking confirm, the order will be sent via HTTP POST request to the server which will respond back with

information including estimated wait time, which is necessary for the client to display to user. Another example is

when the user seeks information about how many reward points the user earned, a GET request from the client to

the server will be issued requesting the user’s reward points balance, the server will process this request and, in its

response, body will include the balance.

3.6 Global Control Flow

Execution Orderness: This is procedure driven in a “linear” fashion. The order of the application differs depending

on the different users. The initial action is the same for all users, which is logging in or continuing as a guest. If the

user is a customer, then the order of the application are as follows: user will be able to choose dining option, select

a table, filter out allergies/dietary restrictions, select items from menu into cart, then proceed to cart, with an

option to view the order progress, and finally to the payment screen. The user has very little control of the

execution orderness. The owner/manager experience is less linear than the customer. They have the option to

view the table layout and change it whenever needed. The manager can view/manage employees/employee

information through an employee management screen. The employees also have more flexibility in their

application order, they can few the table selection and move the table around, clock in and clock out, and view

orders.

Time Dependency: While there are no timers in the application, some things do rely on the physical time such as

keeping track of orders. The customer/user will be able to view the order progress. This will depend on when the

chef finishes preparing the order and notifying when done. Also, the employees will be having a clocking in/out

view where the timer will keep track of the time from when the employee signs in to the time the user signs out

this will have a time stamp to each employeeID.

Concurrency: We utilize different threads in our database because you can do multithreading as every order will

be taken care separately. Hence, there are some threads running the UI and another running the backend.

24

3.7 Hardware Requirements

Our software application will be able to be run on mobile devices such as smartphones and tablets utilizing

network support (WiFi or Mobile data). This software also needs GPS usage. This software will be compatible with

iOS and Android operating systems. For iOS, we are going to support the latest operating system, iOS 12, which will

cover 80% of the iPhones in circulation. For the Android operating system, we are aiming to support API 23-

Marshmallow, by supporting this operating system we will be supporting 71% of current Android phones. This

software will be touchscreen interactive. Our software will have a color display, with a minimum resolution of 1330

x 700 pixels upto 2960 x 1440 pixels. There needs to be a minimum of 50 Megabytes of storage. The application

will communicate over the restaurant Wi-Fi and will push and pull requests to communicate with a server.

const Sequelize = require('sequelize');

const sequelize = require('./sequelizeConf.js');

module.exports = (sequelize, DataTypes)=>

{

 return sequelize.define('item',

 {

 itemName: Sequelize.STRING,

 itemPrice: Sequalize.DOUBLE,

 ingredient: Sequalize.STRING,

 description: Sequalize.STRING,

 rating: Sequalize.INTEGER,

 foodId: Sequalize.DOUBLE

 })

}

item.belongsToMany(ingredient);

ingredient.belongsToMany(item);es

4.1 Algorithms

For employee working information and clocking in/out, Team C’s algorithms will be calculations for how much an

employee works. One calculation will be put in a method called hoursWorked(). This method will take the timeOut,

and timeIn variables, and convert both to “military time” (24-hour time). This will make calculations simple. Next,

25

the method will subtract timeIn from timeOut, and return the result. The Salary() method will calculate the annual

salary of the given worker given hourly wage (wage), and number of hours worked (hoursWorked). This method

gives a running total of a worker’s salary for the year. The worker’s salary for the day is calculated by hoursWorked

* wage, this salary is added to expectedPay, then this process is repeated for every working day throughout the

year.

When a customer is making a transaction, the order which they are making will be converted into a transaction

object. When the transaction is created, a subtotal is calculated by adding the price of all items in the order, then a

tax rate is applied to calculate a total. Once this information is presented to the user, and they enter their tip, that

is added to calculate the total amount due for the transaction. The stripe API will be used to implement payment,

and so all the information attached to this transaction object will be used to call the stripe API. Once the

transaction goes through, the rewards system will increment a counter of how many visits the visiting customer

has. Once they reach a set amount of visits (decided by the restaurant), they will earn a reward, which will be a set

amount off of their next purchase (as decided by the restaurant as well)

For the menu side of our application, which will be worked on by Team A, customers will have the option to view a

menu. Once customers view the menu, they will have the option to browse through everything in the menu or

they can filter things out. For example, if a customer has a food allergy they can chose to filter out all items that

have that ingredient in the meal. This is very helpful for customers with food allergies and also other dietary

restrictions. Once we an ingredient is selected on the filter, out system will check the database for all the items

including that ingredient. Then our database will send back the list of foods without the filtered ingredient and

only display food items without the filtered ingredient. Once customers know what they want, they will be able to

add and remove food items from their order as they please.

4.2 Data Structures

We can utilize is queue data structure for the Chef Interface. A queue is an ordered collection of items where the

addition of new items happens at one end and the removal of existing items occur at the other end. This structure

of a queue using the ordering principle of first in first out also known as “first come first served”. In the Chef

Interface, the queue is used when orders come in from the system the chef is notified first of that one and works

on that meal and then serves it out which removes it from the queue. This performance of accessing is O(n) and to

remove is O(1) this is a very efficient data structures to use for this scenario.

There will be a menu table within the SQL database. A database is good for querying and selecting items based on

attributes. This tables primary key will be foodId and the other columns necessary will be food name, food price,

food ingredients and to improve efficiency it may be helpful to add common allergies and restrictions as columns

for example, contains nuts in a meal.

In order to keep track of employee working information, such as time worked and current status, we will use a SQL

database. The table employee in the database will have primary key, employee’s username, so that we can easily

find an entry pertaining to that employee. The columns keep track of the employee’s time clocked in, time clocked

26

out, whether or not the clocking was done on site, their current clock status, the total numbers of hours worked,

each employee’s individual wage, and the estimated pay that is to be received on the next pay cycle.

When a customer is preparing an order, the system will create an order object, which will include a collection of

items included in the order, as well as an associated table, customer, and server. When the customer goes to

complete a purchase, this order object will be used to create a transaction object, which will include method of

payment information, as well as a total. The method of payment will be represented by an object, there will be a

field dictating what method of payment this is (cash, card, etc..), a field associating it with a user, and also fields

detailing the information regarding the method of payment (card number, expiration date, billing address…).
When a payment goes through, This will also update the User object’s rewards information. All the objects used

are stored tables in our relational SQL database.

Customer Interface

The customer interface is pretty straight forward, allowing the user to login/signup/continue as guest/view menu

right off the home page. Clicking on the different options takes the user through different Interface flows as shown

in the diagram. For example, if a returning customer wants to login and order food after choosing a table and order

again before checking out using either Payment by cash or Payment by credit/debit card, he/she can. The

customer can also leave a feedback on his/her order and see the order progress/cart total meanwhile if he/she

insists.

27

Manager Interface

The manager interface includes several administrator-level controls such as viewing Employee schedule and info,

viewing orders, table status and edit table layout. In terms of flow, the manager first logs in and clocks in.

28

Server/Chef Interface

The chef/server interface is more less similar to the manager interface except for that the chef/server cannot view

other employees’ information and schedule. The chef/server cannot also edit table layout. The chef/server, like

the manager has to log in and clock-in before accessing any tabs of the menu.

29

6.1 Test Cases

Test Case Identifier: TC-1

Use Case Tested: UC-16

Pass/Fail Criteria: The test will pass if the user is able to successfully log in to the system. The test will fail if the

user inputs an invalid username or password.

Input Data: username, password

Test Procedure: Expected Result:

Step 1: User types in an invalid

username and/or password.

Step 2: User types in a valid

username and password.

Server denies the log-in attempt. Message pops up, instructing the user to try

again using a valid log-in.

Server allows the log-in attempt. Depending on the user type, the system

allows the user to access the specified interface.

Test Case Identifier: TC-2

Use Case Tested: UC-7

Pass/Fail Criteria: The test will pass if the user is able to successfully clock in and out for their shift and the

server is able to verify their location. The test will fail if the user is unable to clock in or out, or the server is

unable to verify the location.

Input Data: Selecting either the clock-in or clock-out button

Test Procedure: Expected Result:

Step 1: User selects to

clock-in or out outside of

the restaurant.

Step 2: User selects to

clock-in or out within the

restaurant.

Server allows the clock-in/out attempt. The employee’s current status updates to

keep track of whether they are currently clocked in/out. Database records that a

clock-in/out attempt has been made in a foreign location, along with the current

time, user, location, updated status, and a tag stating it was done outside of the

restaurant. System allows the user to access the specified interface.

Server allows the clock-in/out attempt. The employee’s current status updates to

keep track of whether they are currently clocked in/out. Database records the

clock-in/out attempt, along with the current time, user, location, and updated

30

 status. Depending on the employee type, the system allows the user to access the

specified interface.

Test Case Identifier: TC-3

Use Case Tested: UC-6

Pass/Fail Criteria: The test will pass if the user is able to successfully select different filters and the menu is able

to adapt in real time and filter out the items that contain the selected ingredients. The test will fail if the menu

does not properly remove the items containing the selected filters.

Input Data: selecting different filters checkboxes

Test Procedure: Expected Result:

Step 1: User selects

different filters in the menu

options

Step 2: User does not select

any filters

Menu allows the filter options to be selected and the new get request to the

server will not contain the items made with the filtered ingredients. The

remaining items are re-organized, and the user is able to order any of the

remaining items.

Server get request contains all items available on the menu and the menu displays

them.

Test Case Identifier: TC-4

Use Case Tested: UC-9

Pass/Fail Criteria: The test will pass if the user is able to successfully able to add items to the checkout cart and

place the order

Input Data: item array

Test Procedure: Expected Result:

Step 1: User selects different items

and presses confirm order button

Step 2: User does not select any

items and presses confirm order

button

Server verifies that all items added to the cart are valid and the system

prints “order successful”. The order is sent to the chef’s profile to be

added to the order queue.

System recognizes the order as invalid and and indicates that the user

must add items to the cart before placing an order.

31

Test Case Identifier: TC-5

Use Case Tested: UC -2

Pass/Fail Criteria: This test will pass if the user puts a valid credit or debit card into the program and it is

recognized and accepted, or if an invalid credit card is inputted and is rejected. This test will fail if a valid card

number is put in and rejected, or if an invalid card is accepted.

Input Data: Credit or debit card information

Test Procedure: Expected Result:

Step 1: Type in incorrect card

information.

Step 2: Type in correct card

information.

System indicates an invalid card number to the user, and then prompts the user

to try again.

The system processes the card number, accepts the card number and then

deducts the charge from the users account and add the balance to the restaurant

account.

Test Case Identifier: TC-6

Use Case Tested: UC-2 (Payment)

Pass/Fail Criteria: The test passes if the program properly sums the total amount of items, and applies tax and

tip appropriately. The test case fails if the program cannot properly sum the items, apply tax or tip.

Input Data: User selects which items of food that they wish to add to the cart and input what tip they would like

to add

Test Procedure: Expected Result:

Step 1: User finishes selecting the

desired items.

Step 2: Automatically calculate

appropriate total.

Step 3: Manually calculate the total and

compare the results with the program.

System will keep track of the selected items and their prices.

System will add the price of the items together, calculate and add tax,

and add tip in order to formulate the total.

Person must calculate the total in order to check whether or not the

system is doing it correctly.

Test Case Identifier: TC-7

Use Case Tested: UC-11

Pass/Fail Criteria: The tests passes if the program successfully calculates the proper amount of reward points for

the user and adds it to their user account

Input Data: Customer Attendance

32

Test Procedure: Expected Result:

Step 1: User must have an account or create one.

Step 2: User must log into their account in order to have

points awarded to them.

Step 3: Manually calculate the total amount of points that

they should have and compare the results with the

program.

User has an fully functioning account.

User successfully logs in.

The program is successfully able to add the proper

amount of new reward points to the existing

balance.

Test Case Identifier: TC-8

Use Case Tested: UC-11

Pass/Fail Criteria: The tests passes if the program successfully calculates the proper amount of reward points for

the user and adds it to their user account

Input Data: Customer Attendance

Test Procedure: Expected Result:

Step 1: User must have an account or create one.

Step 2: User must log into their account in order

to have points awarded to them.

Step 3: System calculate the appropriate amount

of total points the user has.

Step 4: Manually calculate the total amount of

points that they should have and compare the

results with the program.

User has an fully functioning account.

User successfully logs in.

The program is successfully able to add the proper amount of

new reward points to the existing balance.

Compare correct answer to the answer that the program

calculated.

Test Case Identifier: TC-9

Use Case Tested: UC-12

Pass/Fail Criteria: The system passes if the user is able to successfully redeem their reward points on a reward

that they have enough points for. The system fails if the user is able to get a reward that they did not have

33

enough points for, or if they are denied a reward that they should have been rewarded because they had

sufficient points.

Input Data: User input, the user must select that they wish to redeem their reward at that point in time.

Test Procedure: Expected Result:

Test Case Identifier: TC-10

Use Case Tested: UC-12

Pass/Fail Criteria: The system passes if the user is able to successfully apply their reward to their order, ie:if the

reward was a free beverage the user should not be charged for that beverage. The test fails if the award is not

properly applied to the bill

Test Procedure: Expected Result:

Step 1: The user must select the reward that they want

to redeem and must meet the criteria for that reward.

Step 2: The user goes to pay his bill.

Step 3: The user pays his bill.

The user successfully selects that reward that they

would like to get with their redeemed points.

The system displays the corresponding screens and

allows the user to input his payment information.

The user is successfully able to pay the bill and did not

have to pay for the item that was awarded.

Test Case Identifier: TC-11

Use Case Tested: UC-5

Pass/Fail Criteria: The test will pass if the user is able to successfully rate the food by selecting how many stars it

deserves. The test fails if this is not so.

Test Procedure: Expected Result:

Step 1: User is on payment screen and user will be able

to select how many stars the meal was.

When the amount of stars are selected then the stars

should turn a solid color to indicate that was a star

selected.

34

6.2 Test Coverage

All of our test cases cover all of the essential classes that are necessary to the operation of TurboYums. As we

develop more and more of our classes and methods, we will add and adjust test cases as needed. Testing will be

done for as many possible cases that a class could go through. The test procedures for the classes will have the

format of both a pass procedure and a fail procedure in response to a user input. If the test fails due to a faulty

user input, the system will prompt the user to try again and correct the input. An example of a test is testing the

login screen, where if the user inputs username and/or password incorrectly, the system will have the user enter

their information again. This fail case will repeat until the user inputs their correct information, at which point the

user can login and start their shift. There are test cases for inputs from customers, employees, managers. Some

test cases for the customers could be when they are creating an order. There could be a test case that makes sure

if a customer wants to remove an item from an empty order it should display an error on the screen. Test cases for

an employee trying to modify the table status could be that an error shows up if an employee is trying to clean a

table that current has customers sitting at it. Our test cases will be specific so that if can cover all possible cases.

We want our app to be efficient as possible with no errors which is why we will have test cases to show that it

works properly.

6.3 Integration Testing

We decided on utilizing the strategy of bottom up testing. Bottom-up testing is an approach to integrated testing

in that the lowest level components are tested first, and those components are used to help test the higher level

components, this ensures that the building blocks of the code operate as needed before using them in other

sections of the code. With this approach, we will be able to test what we are working on as we complete the

different modules, since the lower level modules and components will be completed first and are part of the

foundation of the higher-level components. This method of testing is the most appropriate for our project because

if we were to choose a different method of testing, it would be much more difficult to understand what the cause

of the bug is, whether the issue is coming from the interaction and integration of the different code components

or if the problem is with how the classes are fundamentally designed and coded.

With bottom up testing we will be able to isolate where the problem is coming from because we will ensure the

parts work properly prior to integration. By understanding the relationships between the objects in the system, the

bottom up testing approach is more efficient and straightforward in that you can quickly narrow down where the

problem lies prepping it for remedy.

A concrete way of representing the components of our system and how they would relate in this context would be

that we test each of the employees independent and personalized job tasks in the application. For example, for the

chef, we would test the implementation of the queuing system and make sure that it updates the server when the

chef proclaims that a dish is cooked and ready to serve. After going through the individual functions, we test the

features which call for interactions between more than one object or class.

35

7.1 Merging the Contributions from Individual Team Members

In order to maintain consistency throughout the report, each individual member was granted access to a Google

Drive folder, containing each report and resources. This way, each member can see the entirety of the report while

it is still being actively updated and worked on. To merge individual contributions of team members when it came

to coding, our group utilized a shared GitHub repository, each feature oriented mini group branched the

repository, and worked on implementing their features in that branch. Each group stayed in sync by continuously

committing and pulling to the same branch. Upon completing pieces of functionality, a pull request will be made to

merge those changes into the master branch and reviewed by the entire group. When completing the written

parts of the reports, we were able to maintain overall consistency also by having multiple weekly meetings in

person and online.

One problem we encountered when writing our reports is keeping our overall report format consistent. We had

noticed that some headings were different and fonts/font sizes were varying. To fix this, we came up with a

general format to stick to and we would all proof-read and compare our format to the other members’ formats.

Also, whichever member would be turning in the report each week would look it over and adjust any

inconsistencies. Another issue was that our group has so many features we would like to implement that it can be

easy to get overwhelmed. To solve this issue, we split our large group into three subgroups, which would

specifically deal with tasks pertaining to their overall goal. We had a group working on the menu, a group working

on the employee portal, and a group working on payment and the rewards system. This was done to divide the

tasks evenly and by similarity, making it easier to get things done.

7.2 Project Coordination and Progress Report

We are currently focusing on UC-2 (Payment), UC-3 (View Menu), UC-5 (Rate Food), UC-6 (Food Filters), UC-7

(Clocking In/Out), UC-9 (Placing an Order), UC-11 (Earning Rewards), and UC-12 (Redeeming Rewards), which are

all in early stages of implementation. Each of these use cases has been assigned to one of our smaller teams who

specialize in each.

A database has been created for the application using MySQL and some of the individual tables for the classes

have been created and added to the database. For the use cases mentioned, the classes that they require to

operate have begun to be implemented as well as some of the more basic methods for a handful of the classes. For

UC-9 both the user class, which is a class that contains all of the attributes and methods that any of the users of

the software could potentially need and use, and the paymentMethod class, which is a class that will keep track of

the type of payment made (cash or card) and if done by card will contain and store the card information, have

been created, but have not yet been given all of the methods that they require to be fully functioning. The needed

36

tables for these two classes are created within the database. There is also in works of a table made for ingredients

in the database to use for menu and placing order.

For UC-7 (Clocking In/Out), we have developed a class that keeps track of all information that is vital to the action

of an employee clocking in/out. There currently exists variables within the class to keep track of the employee’s

unique identifier (employee id), the time of when they have clocked, their current clocking status, and whether or

not their last clock attempt was on site.

For UC-4 (View Menu), an item class which represents a food selection available at the given restaurant using our

software. It contains the item name, price, ingredients, and description has been created as the building block of

the menu which will be necessary for all future classes pertaining to the menu.

For UC-9 (Placing an Order) an order class has been developed to represent the customer’s order. This class utilizes

the item class mentioned above when calculating the total price of an order and holding a list of the items selected

by the customer. It also has an attribute called special request so that any need that the customer wishes to

express that is not available through our interface can be entered on the tablet.

We have two designated meeting times a week (Wednesdays 4:40 PM and Thursdays 3:00 PM) as well as

spontaneous meetings throughout the week when everyone is available in addition to our mandatory two

meetings. We have approximately 2-3 voice chat meetings on evenings when people are available so we can keep

in touch and update each other on our individual progress. In addition to this, we have established a group chat

where we are kept in touch with each other 24/7 regarding important information and developments to the

project. Lastly, working with more of our mini groups each group has their own group chat where they discuss

about progress/code and have their own meeting times but usually break up into the mini groups at mandatory

meetings.

7.3 Plan of Work

As a group, we decided to split up the work of reports evenly as possible. Since report 1, we have assigned more

specific tasks to our mini-groups, in order to focus on code specific features. After finishing report 2, we will

continue testing and adding to our code, while continuing to look for ways to improve and will continue prepping

for the demo.

Use

Case

Functional Feature and Description Start Date End Date

UC-3

UC-5

UC-6

UC-9

Menu

● Food rating

● Food filter

● Placing an Order

02/26/19 03/25/19

37

UC-2 Payment 02/26/19 03/25/19

UC-11

UC-12

Earning/Redeeming Rewards 02/26/19 03/25/19

UC-7 Clocking In/Out

● User profile

● Employee portal

02/26/19 03/25/19

UC-14

UC-15

Table Layout

● Table adjustment

● Table selection

● Table Status

03/26/19 04/22/19

UC-1 Reservation 03/26/19 04/22/19

UC-4 Meal Prep 03/26/19 04/22/19

UC-8 Serving Guests 03/26/19 04/22/19

38

7.4 Breakdown of Responsibilities

Outlined below are the teams, and the proposed work plan over the course of the next few weeks.

Team Code Name Members

Menu Team A Brandon, Holly & Roshni

Rewards and Payment Team B Dante, Suvranil & Ziad

Clock in/Clock out Team C Anthony, Hersh & Michelle

Short Term Plan of Work Team

Create an interactive customer menu, in which a

customer can order from

Team A

Create a menu filtering system Team A

Create a rating food system Team A

Implement a payment system Team B

Create a rewards system Team B

Create a standard Customer Profile to keep track of

each customer’s reward points

Team B

Implement a way for users to have the ability to log-in

to our application

Team C

Create an Employee Portal for the employees Team C

Implement an interface where employees can clock in

and clock out

Team C

Team A:

Team A has been tasked with creating the menu system for the application which requires different classes such as

a menu class, order class, and item class each containing their own attributes. These classes will allow the

customers to browse the menu to see what foods and drinks the restaurant has. The customers can filter out

certain foods that include ingredients specified. This will also allow customers to order food they would like to.

Once customers are done eating, they will be allowed to rate the food they had. With all the coding that we do for

these classes we plan to integrate our code with sequelize so that we can connect our application with our

database.

39

Holly has created the item class which represents a food option and contains the item name, price, ingredients,

description, rating, foodID, and item quantity. This class will be vital to the construction of the menu as it will be

needed for almost all future menu classes and methods. Holly has also created the order class which represents

the items that have been ordered from the menu. An order consists of the total price of the order, a list of ordered

items, and special requests. She will later be working on removing food items that were added to the order that

customers would like to remove from the order. The remove items will be a part of the menu class.

Roshni will be working on creating methods that will filter out items on the menu, this is part of the menu class.

This method is the most important part of the menu as it is a unique option that users will be choosing which

ingredients they are allergic/restrictions in food. Roshni will also be making the database for ingredients.

Brandon will be working on adding food items to cart. This will allow customers to look at the menu and then add

food that they want to their order. This method is the add food method and will be part of our menu class.

Without this method customers would not be able to add food to an order.

Team B:

Team B has been tasked with completing rewards and payment system for the application. As a result, this team

will be implementing the following classes: Transaction, paymentMethod, and address since they are crucial to the

two use cases.

Ziad and Dante work closely together and will do a combination of individual programming as well as peer coding

in order to complete the three classes, transaction, paymentMethod, and address. The two will focus on creating

the classes and their respective tables within the database and heavily focus on the backend components that are

associated with the payment and rewards. They will also help with some of the of the interface and help Suvranil

make decisions if help is needed.

Suvranil will play a smaller part in creating the classes, mostly to have an idea of the structure of the classes and

database, but will have a large hand in creating the interface and be the connection between all of the different

teams ensuring that the interfaces are consistent across the board.

Since the group only consists of three people, and Ziad and Dante will be closely working together while creating

the classes and other modules, integration of the different component will not be very difficult and will likely be

done as we are coding, with final integrations being completed by all three of us together.

Integration testing will be completed by Ziad and Dante, who will ensure that the different components are

properly coming together.

Team C:

Team C has been tasked with completing a functioning Clock In/Out system for employees using the application. In

order to implement this, the team must work on developing the Employee Portal object as well as the Employee

Info object. The Employee Portal Object will contain information and methods that will be able to be called upon

clocking in/out. The Employee Info object will contain information specific to an individual’s clocking status.

40

Anthony has begun making a prototype of the class that will contain the data and methods to be used when an

employee issues a clocking request. Those using the portal will be able to access the methods of the class to

update their current clocking/working status.

Michelle will work on coding the individual methods of our features, while making sure our code is successful, as

well as consistent with the other groups that are coding the other features. Michelle will also discuss with Suvranil

from Team B to make decisions on the specific Employee Interfaces and how they should appear.

Hersh will work on coding the individual methods of our features, while making sure our code is successful, as well

as consistent with the other groups that are coding the other features.

41

Richards, Mark. “Software Architecture Patterns.” O'Reilly | Safari, O'Reilly Media, Inc.,

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html

Marsic, Ivan. “Software Engineering.” Professor Zoran Gajic - Home Page,

www.ece.rutgers.edu/~marsic/Teaching/SE/.

Hanov Solutions Inc., “WebSequenceDiagrams”

https://www.websequencediagrams.com/

Dimitrovski, Stephan, et al. Why W8. 2018, Why W8.

https://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2018f-g4-report3.pdf

El Warraky, Omar, et al. “Food•E•Z.” Google Sites, sites.google.com/site/sefoodez/home.

https://hub.packtpub.com/what-is-multi-layered-software-architecture/

“Distribution Dashboard | Android Developers.” Android Developers, developer.android.com/about/dashboards.

https://developer.android.com/about/dashboards

“IOS.” Wikipedia, Wikimedia Foundation, 5 Mar. 2019, en.wikipedia.org/wiki/IOS.

https://en.wikipedia.org/wiki/IOS

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
http://www.ece.rutgers.edu/~marsic/Teaching/SE/
https://www.websequencediagrams.com/
https://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2018f-g4-report3.pdf
https://hub.packtpub.com/what-is-multi-layered-software-architecture/
https://developer.android.com/about/dashboards
https://en.wikipedia.org/wiki/IOS

	Individual Contributions
	4 Algorithms and Data Structure
	const Sequelize = require('sequelize'); const sequelize = require('./sequelizeConf.js'); module.exports = (sequelize, DataTypes)=> { return sequelize.define('item', { itemName: Sequelize.STRING, itemPrice: Sequalize.DOUBLE, ...
	4.1 Algorithms
	4.2 Data Structures

	5 User Interface Design and Implementation
	Customer Interface
	Manager Interface

	6 Design of Tests
	6.1 Test Cases
	6.2 Test Coverage
	6.3 Integration Testing

	7 Project Management and Plan of Work
	7.1 Merging the Contributions from Individual Team Members
	7.2 Project Coordination and Progress Report
	7.3 Plan of Work
	7.4 Breakdown of Responsibilities

	8 References

