

Why W8
Restaurant Automation

https://github.com/SE-Group-4/Why-W8

Group 4

Report 2 - Full Report

Stephan Dimitrovski

Michael Haas

Jimmy Jorge

Nikhil Jiju

Kyungsuk Lee

Yi Xie

https://github.com/SE-Group-4/Why-W8

Why W8 2

Individual Contributions Breakdown

 Project Category
Team Member Name

Stephan Michael Jimmy Nikhil Kyungsuk Yi

Responsibility
Levels

Sec 1.
Interaction
Diagrams

UML Diagrams
10 Points

66% 34%

Prose
Description of

Diagrams
10 Points

50% 50%

Alt. Solution
Descriptions

10 Points
50% 50%

Sec 2.
Class Diagram
and Interface
Specification

Class Diagram &
Description

5 points
 100%

Signatures &
Traceability

Matrix
5 points

 50% 50%

Sec. 3
System

Architecture &
Design

Styles
5 points

 40% 60%

Package
Diagram
2 points

 100%

Map Hardware
2 points

50% 50%

Database
3 points

 20% 80%

Other
3 points

25% 25% 25% 25%

Sec. 4 Alg’s & Data Structures
4 points

 70% 30%

Sec. 5
User Interface

Appearance
6 points

 40% 60%

Prose
Description

5 points
 100%

Why W8 3

Sec. 6 Testing Design
12 points

 50% 50%

Sec. 7
Project

Management

Document
Merge

11 points
40% 40% 20%

Project
Coord./Progress

5 points
50% 50%

Plan of Work
2 points

 100%

Why W8 4

Table of Contents

1. Interaction Diagrams 4

2. Class Diagram and Interface Specification 9
2.1 Class Diagram 9
2.2 Data Types and Operation Signatures 11
2.3 Traceability Matrix 21

3. System Architecture and System Design 24
3.1 Architectural Styles 24
3.2 Identifying Subsystems 25
3.3 Mapping Subsystems to Hardware 25
3.4 Persistent Data Storage 26
3.5 Network Protocol 27
3.6 Global Control Flow 27
3.7 Hardware Requirements 27

4. Algorithms and Data Structures 28
4.1 Algorithms 28
4.2 Data Structures 29

5. User Interface Design and Implementation 30

6. Design of Tests 39
6.1 Unit Testing 39
6.2 Integration Testing 46

7. Project Management & Plan of Work 49
7.1 Merging the Contributions from Individual Team Members 49
7.2 Project Coordination & Progress Report 50
7.3 Plan of Work 50
7.4 Breakdown of Responsibilities 51

8. Cyclomatic Complexity 52

9. References 53

Why W8 5

1. Interaction Diagrams

Figure 1​​ UC-1: Dine-In

This diagram demonstrates the interactions between classes for UC-1: Dine-In. After logging in to our

app, the customer is given a dining options screen, where they would choose to “Dine-In”. This takes us

to the table reservation screen where the user selects the time for reservation and then is shown the

free tables available in the restaurant. After selecting their table, the customer is asked to scan the QR

code for the table they have selected. Once scanned, The customer may view the menu and select all

food items desired for their meal. Clicking on the order button brings the customer to the payment

screen, where they enter their credit card information. Once paid for, the customer’s order is sent to

the Chef in order to be cooked.

The design principles employed in the process of assigning responsibilities to objects were the expert

doer principle and high cohesion principle. The expert doer principle is employed because each class is

an expert for specific functions. For example, the TableReservation object only handles selecting a time

and table for the customer, and once done, it pass on responsibility to the QRScan object to handle

scanning the QR code located on a table. The high cohesion principle is used because each class only

handles computations for its specific functionality, and does not attempt to handle more than needed.

This goes hand in hand with the expert doer principle. Finally, the low coupling principle is not used here

because it conflicts with our expert doer and high cohesion principles. In order to employ the low

coupling principle, we would need to reduce the amount of communication we have in the interactions

Why W8 6

between objects. We opted for more communication and less computations for each object in order to

reduce the amount of work each class would be responsible for.

The alternative solutions considered for UC-1: Dine-In consisted of payment for the customer’s meal as

one of the last steps for the process. We decided that this would not be a favorable idea since some

customers might be motivated to attempt to get a free meal by placing an order and not paying.

Originally, the customer would order their meal, and the chef would immediately start cooking it. Once

the customer was ready to leave the restaurant, they would then be asked to pay for their meal. We

decided that in order to fix this issue, we would have the customer pay for their meal right after hitting

the order button. This way, the order does not get sent to the chef before payment is received and we

know that the customer won’t try to get out of paying their bill.

Figure 2​​ UC-5: Table Selection

This diagram demonstrates the interactions between classes for UC-5: Table Selection. After logging in

to our app, the customer is given a dining options screen, where they would choose to “Dine-In”. This

takes us to the table selection screen where the customer is asked to pick a time to make a table

reservation, and then select the table they would like to sit at, provided that the table is not taken. Once

the table selection process is completed, the customer is asked to scan the QR code provided on the

table where they chose to sit, confirming their reservation.

The design principles employed in the process of assigning responsibilities to objects were the expert

doer principle and high cohesion principle. The expert doer principle and the high cohesion principle are

employed for the same reasons as in UC-1: Dine-In.

Why W8 7

The alternative solutions considered for UC-5: Table Selection consisted of only asking the user to select

a table without a time for reservation. We realized that customers might want to make a reservation for

other days or for more than a couple hours away from their planned meal. We fixed this by first asking

the customer the day/time they would like to make a reservation for and then ask them to choose a free

table. The database holds all the information about free tables and will show the customer in real-time

the tables which are taken or untaken for that day/time.

Figure 3​​ UC-4: View Menu

This diagram demonstrates the interactions between classes for UC-4: View Menu. After logging in to

our app, the customer is given a dining options screen, where they would choose to “View Menu”. This

takes us to the menu screen where we can see all of the food items available at the restaurant. From

this screen, the customer is able to rate a food item by clicking the number of stars (1 to 5 stars) and

also favorite a food item by clicking on the heart icon next to it. This screen is also available when the

Why W8 8

customer picks the “Dine-In” option after selecting their table. The user is able to select the food items

desired for their meal.

The design principles employed in the process of assigning responsibilities to objects were the expert

doer principle and high cohesion principle. The expert doer principle and the high cohesion principle are

employed for the same reasons as in UC-1: Dine-In.

The alternative solutions considered for UC-1: Dine-In consisted of only allowing the user to rate foods

after having purchased them. We realized that this would require the menu screen to be brought up

again at the end of the customer’s meal, at which point the customer may not be interested in rating the

food items. Our solution was to allow the customer to interact with the menu as they are ordering,

allowing them to rate or favorite foods they have eaten before.

Why W8 9

2. Class Diagram and Interface Specification

2.1 Class Diagram

Why W8 10

Why W8 11

2.2 Data Types and Operation Signatures

NoBackActivity​​:

Attribute: Type:

Method: Return Type:

onBackPressed() void

BusBoy:

Attribute: Type:

lv ListView

Method: Return Type:

onCreate(Bundle) void

MangerOptions:

Attribute: Type:

ib ImageButton

editItem Button

editEmployee Button

statistics Button

Method: Return Type:

onCreate(Bundle) void

Chef:

Attribute: Type:

Method: Return Type:

Why W8 12

onCreate(Bundle) void

MainScreen:

Attribute: Type:

customer Button

chef Button

waiter Button

manager Button

busboy Button

privateKey String

username String

Method: Return Type:

onCreate(Bundle) void

clickBusboy() void

clickCustomer() void

clickChef() void

clickWaiter() void

clickManager() void

ManagerEditEmployee:

Attribute: Type:

add Button

delete Button

Method: Return Type:

Why W8 13

onCreate(Bundle) void

ManagerInventory:

Attribute: Type:

chart BarChart

barWidth float

barSpace float

groupSpace float

Method: Return Type:

onCreate(Bundle) void

ManagerTraffic:

Attribute: Type:

chart BarChart

barWidth float

barSpace float

groupSpace float

Method: Return Type:

onCreate(Bundle) void

ManagerEditItem:

Attribute: Type:

add Button

delete Button

Why W8 14

Method: Return Type:

onCreate(Bundle) void

Waiter:

Attribute: Type:

Method: Return Type:

onCreate(Bundle) void

Menu:

Attribute: Type:

placeOrder Button

listViewMenu ListView

Method: Return Type:

onCreate(Bundle) void

clickPlaceOrder() void

ManagerProfits:

Attribute: Type:

chart BarChart

barWidth float

barSpace float

groupSpace float

Method: Return Type:

onCreate(Bundle) void

Why W8 15

TableImage:

Attribute: Type:

Method: Return Type:

onCreate(Bundle) void

TableAvailability:

Attribute: Type:

Method: Return Type:

onCreate(Bundle) void

Payment:

Attribute: Type:

button Button

Method: Return Type:

onCreate(Bundle) void

clickButton() void

MenuAdapter:

Attribute: Type:

Method: Return Type:

getView(int, View,ViewGroup) View

Message:

Why W8 16

Attribute: Type:

toSpinner Spinner

messageSpinner Spinner

send Button

Method: Return Type:

onCreate(Bundle) void

clickButton() void

ThreeDiningOptions:

Attribute: Type:

dineIn Button

Method: Return Type:

onCreate(Bundle) void

clickDineIn void

FoodItem:

Attribute: Type:

rating float

name String

Method: Return Type:

getRating() float

setRating(float) void

getName() String

Why W8 17

setName(String) void

ListViewAdapter:

Attribute: Type:

activity AppCompatActivity

foodItemList List<FoodItem>

Method: Return Type:

getItem(int) FoodItem

getView(int,View,ViewGroup) View

onRatingChangedListener void

ViewHolder:

Attribute: Type:

ratingBar RatingBar

movieName TextView

Method: Return Type:

RatingPage:

Attribute: Type:

listView ListView

adapter ArrayAdapter<FoodItem>

arrayList ArrayList<FoodItem>

Method: Return Type:

Why W8 18

onCreate(Bundle) void

onItemClickListener() OnItemClickListener

setListData() void

ReservationTime:

Attribute: Type:

lv ListView

tv TextView

Method: Return Type:

onCreate(Bundle) void

clickText() void

LoginServerRequest:

Attribute: Type:

username String

password String

Method: Return Type:

ReservationTime:

Attribute: Type:

lv ListView

Method: Return Type:

onCreate(Bundle) void

Why W8 19

SignUpActivity:

Attribute: Type:

emailText EditText

addressText EditText

phoneText EditText

passwordText EditText

reEnterPasswordText EditText

signupButton Button

loginLink TextView

Method: Return Type:

onCreate(Bundle) void

signUp() void

onSignUpSuccess() void

checked() boolean

CustomAdapterReservation:

Attribute: Type:

field type

Method: Return Type:

getView(int,VIew,ViewGroup) View

LoginActivity:

Attribute: Type:

TAG String

Why W8 20

REQUEST_SIGNUP int

progressBar ProgressBar

password String

auth FirebaseAuth

emailText EditText

passwordText EditText

loginButton Button

signUpLink TextView

Method: Return Type:

onCreate(Bundle) void

login() void

onActivityResult(int, int, Intent) void

onBackPressed() void

onLoginFailed() void

passwordChecked() boolean

Why W8 21

2.3 Traceability Matrix

Classes

Domain Concepts

MenuAdapter X

RatingPage X

ReservationTime X

Message X

SignUpActivity X

ThreeDinningOptions X

FoodItem X

LoginServerRequest X

CustomAdapterReservation X

ViewHolder X

ListViewAdapter X

LoginActivity X

MainScreen X

ManagerStatistics X

ManagerEditEmployee X

ManagerEditItem X

ManagerProfits X

ManagerInventory X

ManagerOptions X

Waiter X

Why W8 22

TablesImage X

TableAvailability X

ManagerTraffic X

Menu X

Payment X

NoBackActivity X

Chef X

Busboy X

● Customer Profile​: the initial design features of this domain concept were implemented into

other classes, such as implementing the ‘ReservationTime’ class and utilizing the ‘RatingPage’

● Interface

○ MenuAdapter: Allows users to few menu via interface

○ RatingPage: Allows customers to interact with ratings

○ SignUpActivity: Allows users to interact in creating new accounts

○ ViewHolder: Is shown via interface

○ ListViewAdapter: Can be interacted with through the interface

○ LoginActivity: Can be accessed through the interface

○ MainScreen: Can be interacted with through the interface

○ ManagerOptions: Manager accesses options through interface

○ Waiter: Waiter can interact with their UI via interface

○ TablesImage: Can be seen via interface

○ Chef: Chef can interact with their UI via interface

○ Busboy: Busboy can interact with their UI via interface

● Controller

○ ReservationTime: Controller requires customer to set reservation

○ ThreeDinningOptions: Only permits customers three options upon login

○ CustomAdapterReservation: Allows reservations to be made

○ Menu: Allows customers to pick meals from menu

○ NoBackActivity: Allows users to log into their designated accounts

● Communicator

○ Message: Communicator allows manager to contact employees

○ LoginServerRequest: Allows accounts to acquire information from the server

○ ManagerEditEmployee: Allows manager to modify employee info via communicator

● Order Queue​: the initial design features of this domain concept were implemented into other

classes, such as in ‘FoodItem’ to place orders from and in ‘Chef’ for cooks to view and make said

orders

● Analytic Calc

Why W8 23

○ ManagerStatistics: Calculates statistics in manager account

○ ManagerProfits: Calculates profits in manager account

○ ManagerInventory: Allows manager to view inventory

● Table Status

○ TableAvailability: No changes were made; all features described in the ‘Table

Status’ concept were implemented into the ‘TableAvailability’ class

● Food Status

○ FoodItem: No changes were made; all features described in the ‘Food Status’

concept were implemented into the ‘FoodItem’ class

● Payment System

○ Payment: No changes were made; all features described in the ‘Payment System’

concept were implemented into the ‘Payment’ class

Why W8 24

3. System Architecture and System Design

3.1 Architectural Styles

The function of a system architecture is to provide mechanisms and an abstraction of the underlying

process of our entire framework. Our system uses a 3-layer architecture consisting of a presentation

layer, an application layer, and a data layer. This is analogous to the frontend/backend in website

development, where the presentation layer is what is seen by the user, and the application and data

layers work behind the scenes.

This scheme is the most logical as the layers are abstracted from each other and will run parallel into the

code. The differences in UI design, application code, and database calls are apparent. Our project is

constructed through Android Studio, where the UI is designed through the program’s graphical

interface. The application will be “connected” where different parts of UI are matched with the

application code. Within the code, database calls will be made via using an API, which will help pull

information real-time in order to aid the user in their day-to-day actions. This structure is easy to follow

and implement.

Our application also utilizes a client/server architectural style in which the server is consistently updating

the database of our application. This architectural style segregates the system into two applications,

where the client makes requests to the server. In our case, the server is a database with application logic

represented as stored procedures. The database is responsible for a list of all menu items, their prices,

wait times, and even ratings each item. Also, the statistics such as inventory tracking, customer peak

times, and total profits are also stored. On top of all of this, the database also holds all information

regarding user logins and account permissions, leading to an efficient user experience after logging in.

Why W8 25

3.2 Identifying Subsystems

The subsystem shows our three layer system of an application layer, presentation layer, and

data layer. The data layer consists of the database which stores information of different user profiles,

menu, customer metrics, and transactions. The presentation layer holds the different screens that the

user will see depending on their profile. This layer can pull information from the database when

displaying the screens. The presentation layer consists of the waiter/busboy, chef, manager, and

customer will have their own interface system with their own unique screens. The application layer

contains what will call and manage the whole operation. The controller will facilitate the tasks between

the packages. It uses the communicator which will handle the authorizations between packages. It also

assigns tasks to the handler which is responsible for loading events which it is told to from the

communicator.

3.3 Mapping Subsystems to Hardware

Our application works with a native device (Android) and a database server. Our application will utilize a

database with a public API and will run as long as it is active. The application can run on various android

Why W8 26

devices that meet the minimum operating system requirements as listed in Section 3.7 Hardware

Requirements. The Database subsystem will naturally run the database with the Application subsystem

interacting with it. To store a user's personal data, the application needs an external database that is

hosted on a different server to send the information to the application in real time. The application

subsystem will run on Android devices using Android operating systems that are version 4.0 and above

since they meet the minimum software requirements to run the application. The server subsystem runs

on a external online server called Firebase which hosts all necessary database information for the all the

users and can transfer information to the application. Each instance of the client will be on different

mobile devices, with each mobile device communicating with the database of the system.

3.4 Persistent Data Storage

The system does store persistent data which need to be accessed after logging out of the app. These

data include customer profiles which needs to store each customer’s ratings as well as favorites.

Customer profile information will be stored in the database provided by Firebase, which also acts as a

realtime database with cloud storage. The database will be set up such that each customer username is

the key for the database and all ratings and foods will be stored as entries under this name. When a

customer logs in, his entry will be pulled from the database and written into a list for ratings and a

seperate one for favorites.The restaurant itself will also have a lot of information consisting of inventory

and other information which the manager needs to know. All this data will be stored in Firebase as well

but in a different format. We will have a table for inventory, customer peak times, and other

information which the manager requires. For the inventory, we will have an entry for each item as well

as a corresponding amount of that item. This list will be constantly updated as the orders are placed. It

will be loaded into the app when the manager logs in and views the inventory. The customer peak times

will be stored in the database periodically. Every hour, the app will send information to the database of

how many customers confirmed a table for that hour. Each hour will be its own entry. This data will be

pulled into the app on manager request as well.

Customer :: {

name:String,

username:String

password:String

orders:[Order]

}

Order :: {

customer:Customer

items:[Item]

date:Date

}

Item :: {

name:String

Why W8 27

quantity:Number

price:Number

rating:Double

}

Menu :: {

items:[Item]

}

3.5 Network Protocol

The network protocol to be used for our purposes is normal sockets. The purpose for going about

transmitting information in this manner is that all the backend information processing will be done on

the server computer, while the app will mainly serve as little more than a graphical frontend for the end

user. The types of messages and message format are thus similarly as simple to reflect this design

decision, with type of messages reflecting the type of information requested, and message format being

that one entry is sent per line, and if that entry has multiple items they will be separated with delimiters.

3.6 Global Control Flow

Execution Orderness

This project will be an event-driven system. The user will have complete control over how they use the

application. There is no linear procedure for the user to take, and they do not even have to use all of the

features that the app provides. The user can use the app’s interface to use any function at any time.

Time Dependency

The system depends on real time. In order to keep track of the customer traffic, inventory, and profits

the system must know when to reset its daily timer as well as when to notify managers of shortages, etc.

There is a 24 hour timer for daily resets and a weekly timer to show the progress over a week. Along

with this, there are timers within the system for daily tasks. These include the countdown to when an

order is prepared by the chef, and when a reservation for a specific table is made for dining in. The

customers will be able to view both of these timers in real-time, to be alert of how much time has

passed.

Concurrency

As we utilize different threads per request to our database, synchronization is automatically enforced via

Firebase because of the fact that there is a level of mutual exclusion that occurs when the data is called

or manipulated.

3.7 Hardware Requirements

This software will be run on mobile smartphones with touch screen display and network/WiFi

support. The required operating system will be Android, with a minimum and target API 23:

Why W8 28

Marshmallow. By targeting API 23, the application is set to run on approximately 62.6% of devices. This

platform is accessible and the requirements are met through most Android phones. The amount of

space needed to download the application on an Android phone is at least 1MB while the space needed

to install the app is .5 MB. The minimum resolution to properly display the images in the application and

view them is 640 x 480 pixels. The minimum bandwidth required to access the server and database is 56

kbps. The minimum RAM requirements to display and render the graphics and images of the application

is 1 GB. To allow the user to use the QR scanning functionality, the phone must have an inbuilt camera

that is at least 1 megapixel.

4. Algorithms and Data Structures

4.1 Algorithms
Customer: ​​The customer has the option of choosing whether he/she wants to dine in, takeout, or simply

just view the menu. After this, they can select items from the menu and to maximize efficiency, the

items selected are added to an expandable arraylist as they are selected by the customer. If the

customer un-selects an item, the item will be removed from the arraylist. This process will be O(n) time

and O(n) space. For the customers choosing to dine in, the table selecting algorithm will come into play.

For reserved tables, as the time nears the time of reservation selected by the customer, an alert will be

given. For the tables that are currently unavailable (taken by others), or dirty from previous customers,

the algorithm will only free up the tables for new customer selection after the busboy or waiter chooses

the option to do so, on their end of the portal. This would be based off of how much traffic is occurring

within the restaurant, but a timing of O(n) would be efficient for most customers.

Manager: ​​The manager end of the application will be quite straightforward. The statistics of the

different information stored daily will be pushed to our front end to form visual graphs for ease of use.

For this to happen fluently, the database, which has constant updates from the customer’s end (for each

meal ordered), will be queried for the information whenever the manager enters the portal. Accessing

the particular table will be O(1) time. When it comes to waiting for the updated information from the

database and outputting it into the proper table/chart, the Big O time will be closer to O(n). This

algorithm is still being worked on to help optimize the timings.

Chef: ​​The chef will be able to view all of the orders placed by every customer within their portal. After

the customer’s order is placed into the arraylist, the chef will have the updated list in real time. When

the chef begins cooking a specific meal, he will be able to alert the system (and the customer) that he

has begun, with an approximate timer for how much time he needs to finish cooking the meals. The

algorithm will be constantly querying for any new items in the arraylist within the loop. When a specific

meal is finished cooking, it is removed from the arraylist and the chef is left with only the next meals he

must cook. The big O timing for this all is O(n^2).

Why W8 29

4.2 Data Structures

The primary data structure we are using is arraylist. This is because it has a simple O(n) look up time

which does not add much delay to our performance. More so, this data structure is very flexible. It is

very easy to add onto an arraylist as it only takes O(1) time.

Arraylists are also compatible with listview. This is very important as we are constantly using listviews to

display menu, ordered items, and other information. An arraylist can be easily passed into an

arrayadapter to be displayed in a listview. Other data structures such as hash tables or linked lists

require more work to convert.

We wanted a list type structure also due to the compatibility with the database. Since our database is

SQL based, it can be looked at as a list. The values on the tables in our database can be very easily read

into lists. It also does not take much effort to write the list back into the database.

Why W8 30

5. User Interface Design and Implementation

Customer Interface:

The customer is first asked to select one of the three options: Dine In, Takeout, and View Menu. If

Takeout or View Menu are selected, the user is taken to the main menu, where they can view the entire

menu, ratings, and how long each food takes to cook. If Dine In is selected, the user is directed to the

Reservation Page.

Why W8 31

As mentioned, if the customer selects Dine In, they are brought to the Reservation Page. This is an

interactive scroll menu that is populated with times in 15 minute intervals. Once the user selects a time,

the user is directed to the Table Selection page.

After selecting a time the user is brought to the table selection page, this is an interactive scroll menu

that lists all of the tables in the restaurant. If a table is crossed out, this means that the table is

unavailable at the current time. For the new customers that are unsure of which tables are which, they

can view the table seating chart at the top of the page, which shows an image of an overhead view of

the entire restaurant. Once they know which table they want to sit at, they choose the corresponding

table number. The table is then reserved for the user at that time selected.

Why W8 32

Once the customer sits at the table, they will be prompted to confirm their seat with the in-app QR

scanner. The customer will then scan the QR code swiftly, and the table seating will be confirmed. The

customer will then be brought to the full menu page.

The full menu page will be yet another interactive scrolling list. Each food item will have a rating, a time

it takes to cook, and an adjustable quantity to order. The customer will also be able to hold down on the

menu item to input any specific notes to the chef, such as any allergies/requests. Once the customer is

satisfied with their order, they can confirm the order is accurate with the real-time receipt being

populated on the right side. After that, they can click place order to fully confirm their order. After the

order is confirmed, the customer can pay with Credit Card or Cash, and can also rate their meal

afterwards, 1-5 stars. These ratings will be inputted into our system and averaged into our menu page

for future customers to view.

Why W8 33

Chef Interface:

The chef’s interface will always contain the same page, but will have a lot of information being

constantly updated and populated. The table number display shows the specific table’s order in a queue

that it was received in. Once the table is selected by the chef, the chef can click the Start button to begin

working on that specific order. This notifies the customer that their order has commenced cooking. As

the timer ticks down, the chef can then pre-maturely select the Complete button to notify the waiter

that the order has been finished. The order is then removed from the chef’s queue, and the server is

able to pick up the order and distribute it to the correct table.

Why W8 34

Server Interface:

The server interface is the most simple interface. The server Order Status is derived from the Chef’s

interface. When a chef starts cooking an order, it appears on the server’s interface as “cooking”. This

lets the server know that the chef has begun cooking that specific order. Once the chef is finished

cooking and changes the status to Ready, the server is notified. The server can pick up the food and

bring it to the customer flawlessly. After the customer has eaten, paid, and left, the table is removed

from the Server’s table list, and then a notice is sent to the busboy’s interface for cleaning.

Why W8 35

Busboy Interface:

Once the busboy receives the message from the Server that a customer has paid and left, the

corresponding table appears on the Table Status list. This notifies the busboy which tables are available

for cleaning. After the table has been cleaned and prepped for future customers to use, the busboy

simply selects the table that was cleaned and clicks the “Ready” button. This will remove the table from

the list and sets the table as available for all future customers.

Why W8 36

Manager Interface:

The first options available for the manager are Edit Item, Edit Employee, and Statistics. If the manager

chooses to edit an item or an employee, they will be forwarded to an interactive page with text boxes to

edit the chosen information. If the statistics page is selected, the manager will be forwarded to the

Statistics Selection page.

If Edit Item is selected, the manager simply inputs the information for the item and selects Add or

Delete. These buttons will query our database for the menu item, and if it is not found after the Add

button was selected, it will add that item to the arraylist of our menu.

If the manager selects the Edit Employee button, the manager simply has to input the information for

the employee and selects Add or Delete. This will add or remove the employee from the corresponding

employee system. This is directly tied to the clocking in and payroll features that we plan to implement

in the future. Also, to give waiter, chef, or busboy permissions to a certain account, that employee must

be in the system via the manager’s portal.

Why W8 37

If the manager selects Statistics, they will be forwarded to the Statistics selection page. This is where all

of the manager statistics are displayed. The manager can then choose specifically which statistics he or

she wants to view.

Inventory, traffic, and profits interfaces:

Why W8 38

Within all of these interfaces, if the user wishes to go navigate back to a previous page, the user can

simply swipe right on the edge of their screen. Also, with most android phones, there is a dedicated

backwards navigate button that they can also use.

Our design has improved a lot since the beginning stages of our initial ideas. From the original GUI

drawings to now, there has been a lot of optimizations within the menu, the manager portal, and even

the backend algorithms and database. We have streamlined the design to help guide the user through

the entire process--which really helps optimize the app and make users want to use it again in the

future. This also keeps the user on task which results in a faster transaction time which in the end,

benefits the restaurant and customers, alike.

As mentioned, there have been many design alterations from our original GUI drawings to our current

layouts. In the initial GUI design, the restaurant owner was only able to view statistics such as inventory

and customer info. Now in addition to statistics, our design allows the owner to send messages to their

employees and edit employee and menu information. Initially chefs could only view incoming orders,

but now they can interact with these orders, being able to set once they’ve started on a meal and when

they’ve completed a meal. They can also view meals based on what tables the orders came from and

what priority the tables have based on time an order was placed and how long each meal from a table

will take to complete. The only other type of employee specified in the initial drawings was a waiter,

whom could only view the status of tables. Now we have both busboys and servers; a busboy is notified

when a table needs to be cleaned and can set a table’s status as ‘open’ upon cleaning a table, and a

server is notified when to take out an order and can set an order to ‘paid’ after it’s paid (in the case the

payment is in cash) and can set an order as ‘delivered’ after being delivered to a table. As for the

customer user interface, a customer from the main window can view the restaurant’s menu in addition

to selecting ‘Dine In’ and ‘Takeout’. Also, upon selecting ‘Dine In’ the customer is asked to select a time

in which they would like to dine prior to being taken to the table selection window. Another

modification is from the payment window, the customer is automatically taken to the rate meal window

as opposed to making the viewing of the rate meal window optional; the customer is not required to

rate their meal, however having the rate meal window viewing automated encourages them to make a

rating, which in turn helps the restaurant improve customer satisfaction.

The new and improved design rewards regular customers with a faster and more efficient interface, but

at the same time, has optimizations to make it easier for the first time users who choose to use our

application. Overall, the interface is very simple and user friendly. Each interface was constructed

specifically to reduce the amount of user effort. Which, in the end, creates an overall easy to use,

all-in-one application that will appeal to many users, employees, and managers across the restaurant

industry.

Why W8 39

6. Design of Tests

6.1 Unit Testing

The following are the test cases to be used for unit testing:

TC - 1: Tests login functionality and accuracy

TC - 2: Tests user ability to select dine in

TC - 3: Tests users ability to takeout food from the menu

TC - 4: Tests user ability to reserve table before hand

TC - 5: Tests menu viewability

TC - 6: Tests ability to select an available table

TC - 7: Tests that user sat at the correct table by scanning QR

TC - 8: Tests payment is implemented correctly and that the order is confirmed

TC - 9: Tests users ability to rate food

TC-10: Tests managers ability to view reports regarding restaurant

TC-11: Tests users ability to register for an account

TC-12: Tests estimation time for food arrival

Test-Case Identifier: TC - 1

Use Case Tested: UC - 10

Pass/Fail Criteria: Test passes if the user is able to login to their account with their combination of email and

password. Test fails if the user is able to login to their account with the wrong username or password.

Input Data: email, password

Test Procedure: Expected Result: Actual Result:

Step 1: Enter a username and
password combination that is valid
for customers and select login.

Step 2: Enter a username and
password combination that is valid
for manager and select login.

Step 3: Enter a username and
password combination that is valid

The app sees that the enter
credentials are valid and takes the
user to the user’s main page.

The app sees that the entered
credentials are valid for manager
and displays the manager main
page.

The app displays the customer
home page.

The app displays the main page for
the manager.

Why W8 40

for chef and select login.

Step 4: Enter a username and
password combination that is
invalid and select login

The app takes the user to the main
page for the chef after confirming
that information is valid.

The app stays at the main page and
displays an error message.

The app displays the main page for
the chef

App states that the login was not
successful.

Test-Case Identifier: TC - 2

Use Case Tested: UC - 1

Pass/Fail Criteria: The test passes if the available tables screen is shown on button click. The test fails if no

screen is loaded or the wrong screen is loaded.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Click on Dine In button. The available table screen is loaded
for the user to select from.

The available table screen is loaded
for the user to select from.

Test-Case Identifier: TC - 3

Use Case Tested: UC - 2

Pass/Fail Criteria: Test passes if the take out menu button is clicked and it opens up the takeout menu options

for the customers to pick from. Customer can then click to add items and click confirm to confirm order. Test

will fail if the takeout menu does not open or the items are not added.

Input Data: Button click

Test Procedure: Expected Result: Actual Result:

Step 1: ​​Click on takeout button.

Step 2: Add item and check that it
appears on the ordered list

Step 3: Delete item from the list
and check ordered list is properly
updated

Step 4: Confirm purchase and click
order.

Takeout menu screen opens.

Ordered item appears on ordered
list with quantity and price
displayed along the side.

Items are deducted in quantity and
the price is adjusted accordingly.

Order is sent to the queue for the
chef to select and make.

Takeout menu screen opens

Ordered item appears on the list
with price and quantity shown.

Items are deducted in quantity and
the price is adjusted accordingly.

This has yet to be implemented

Why W8 41

Test-Case Identifier: TC - 4

Use Case Tested: UC - 3 and UC -5

Pass/Fail Criteria: This test will pass if a customer can select an unreserved table. This test will fail if the

customer is able to reserve a table that is previously reserved or if the table the customer reserved is not

marked as reserved.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Test 1: Select time for which the
table is to be reserved.

Test 2: Select an available table to
reserve in advance.

Test 3: Select a table that is marked
as reserved or taken.

Test 4: Select a table for the
current time (not reserving table)

Only tables that are available
during this are shown as available
while the rest are marked as taken.

Table is set to be reserved for time
the user has chosen.

Table cannot be selected by the
user.

Table screen is taken to the QR
scan code page to confirm that the
user is sitting at the selected table.

All tables in the restaurant is shown
without any distinctions.

This feature has yet to be
implemented.

This feature has yet to be
implemented.

The screen with the QR code
confirmation is loaded.

Test-Case Identifier: TC - 5

Use Case Tested: UC - 4

Pass/Fail Criteria: This test will pass if menu items are all seen but cannot be selected. The test will fail if the

item can be ordered from the view menu or if the menu is not displayed correctly.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: ​​Click on View Menu button.

Step 2: Select items on the menu.

A screen with the full menu
appears

No items in the menu are
selectable.

A screen with a menu appears

Items can be selected and a
purchase can be made which links
to confirm payment page.

Why W8 42

Test-Case Identifier: TC - 6

Use Case Tested: UC - 6

Pass/Fail Criteria: The test will pass if the camera is able to be opened, camera detects the correct QR and then

loads the next screen. The test will fail if the camera cannot open or if the QR cannot read the correct QR code

or reads the wrong code as correct.

Input Data: Button Selection

Test Procedure: Expected Result: Actual Result:

Step 1: Load the scan QR page on
the app.

Step 2: Steady the camera over the
QR code of the table the user has
selected.

Step 3: Steady the camera over the
QR code of a table that does not
correspond with the table that is
selected.

The camera opens within the app
and is ready to scan the QR code.

The system recognizes that the QR
code corresponds with the table
and loads the next screen.

The system does not confirm the
QR code and prompts the user to
go to the correct table.

If the app is not allowed to use the
camera, the user must first allow
access and then manually reload
the page. Otherwise the camera
opens properly.

The system recognizes the QR code
and makes a Scan QR button
visible. Clicking on this button loads
the next page.

The system does not confirm the
QR code and prompts the user to
go to the correct table.

Test-Case Identifier: TC - 7

Use Case Tested: UC - 7

Pass/Fail Criteria: The test will pass if the customer can pay with credit or cash and the order is sent to the chef

afterwards. The test will fail if customer cannot pay or if the chef does not receive the order.

Input Data: Button selection and numerical input for credit card

Test Procedure: Expected Result: Actual Result:

Step 1: Select to pay with cash.

The system continues and someone
will come later to retrieve the cash.

The system continues but there is
nothing in place to notify a worker
to come and collect the cash.

Why W8 43

Step 2: Select to pay by card.

Step 3: Select the submit payment
button.

The app will provide fields for the
person to type credit card
information in and enter.

The app will send the order the
customer has paid for to the chef’s
queue.

This feature has not been
implemented.

This feature has not been
implemented.

Test-Case Identifier: TC - 8

Use Case Tested: UC - 8

Pass/Fail Criteria: The test will pass if the review the user is able to review and that review is stored for the user

to use later on. The test will pass if the review does not work properly or if the review is not stored.

Input Data: User Star Selection

Test Procedure: Expected Result: Actual Result:

Step 1: Load the confirm payment
page.

Step 2: Select a number of stars
corresponding to what to rate the
food.

Step 3: Submit the review

Step 4: Load the menu page

Step 5: Select a number of stars
corresponding to what to rate the
food.

Step 6: Order food which are rated.

Foods that are ordered should
appear along with a star rating
system next to each type of food
the user has ordered.

The appropriate number of stars
can be selected out of the
maximum number of stars there
are.

The submitted reviews are stored
in the user profile.

The menu should be appear with a
star rating system next to each
item.

The appropriate number of stars
can be selected out of the
maximum number of stars there
are.

The rated objects should be stored
in the user profile.

Foods that are ordered appear
along with a star rating system next
to each type of food the user has
ordered.

The stars cannot be selected or
changed.

This feature has not been
implemented yet.

The menu appears with a star
rating system next to each item.

The appropriate number of stars
can be selected out of the
maximum number of stars there
are.

This feature has not been
implemented yet.

Why W8 44

Could not be implemented

Test-Case Identifier: TC - 9

Use Case Tested: UC - 9

Pass/Fail Criteria: The test will pass if the user can favorite food items and these food items appear in their

profile for the next time they order. If this does not happen then the test fails.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Load the confirm payment
page.

Step 2: Select the favorite button

Step 3: Submit the review

Step 4: Load the menu page

Step 5: Select a favorite button
next to the food item.

Step 6: Select confirm payment
page.

Foods that are ordered should
appear along with a favorite button
next to each type of food the user
has ordered.

The food item next to the selected
button is shown as favorited.

The food items the user clicked the
favorite button on are stored in the
user profile.

The menu should be appear with a
favorite button next to each item.

The button displays that the food
item is favorited.

The food items the user clicked the
favorite button on is selected.

These features have not been
implemented.

Test-Case Identifier: TC - 11

Use Case Tested: UC - 11

Pass/Fail Criteria: The test will pass if the manager can view the reports on clicking view reports button. Test will

fail if this does not occur.

Input Data: Button selection

Test Procedure: Expected Result: Actual Result:

Step 1: Select category inventory

Display the current inventory in a
graph.

An older version of the inventory is
displayed.

Why W8 45

Step 2: Login as a customer and
order an item. Log back in as a
manager and select category
inventory.

The inventory should be updated
with the ordered item using up
some inventory.

The same version of the inventory
as before is displayed.

Could not implement

Test-Case Identifier: TC - 12

Use Case Tested: UC - 12

Pass/Fail Criteria: ​Test passes if the user is able to register account when the user enters a username that is not

in use already and password that is at least six characters long. Test fails if the user users a username and

password combination that is already in use to register.

Input Data: email and password

Test Procedure: Expected Result: Actual Result:

Step 1: Type in username that is
already in use and an invalid
password

Step 2: Type in new email address
and valid password

System will not allow the user to
register an account. System will ask
user to choose a username that not
in use or a valid password.

System will notify user that a new
account has been created to
indicate a successful registration;
access to user enabled to use other
features

These features have not yet been
implemented.

Test-Case Identifier: TC - 13

Use Case Tested: UC - 13

Pass/Fail Criteria: ​The test passes if the chef is able to update the wait time for food arrival. The test fails if this is

not so.

Input Data: Wait time

Test Procedure: Expected Result: Actual Result:

Step 1: Login to Chef account and
navigate to the Order Queue.

The Order queue is displayed along
with the percentage of each dish
the chef has completed.

This has yet to be implemented.

Why W8 46

Step 2: Update the status of one of
the dishes.

The wait time for the order should
now decrease.

6.2 Integration Testing

● Login Screen to…

○ Manager UI: cannot go back to login screen from this UI

■ Can edit…

● Employee list: currently no functionality

● Item list: currently no functionality

○ Chef UI: cannot go back to login screen from this UI

■ Views orders of tables

■ Can set an order as ‘started’; currently no functionality

■ Can set an order as ‘completed’; currently no functionality

○ Busboy UI: cannot go back to login screen from this UI

■ Can view the statuses across all tables

● Can set tables to ‘ready’ after being cleaned; currently no

functionality

○ Server UI: cannot go back to login screen from this UI

■ View order status

● Can set order as ‘paid’; currently no functionality

● Can set order as ‘delivered’; currently no functionality

○ Customer UI: can logout and return to login screen

■ View menu

■ Takeout selection: goes straight to ‘Menu’

■ Dine In Selection

● Select Time; currently no functionality

● Select Table; stores the desired table and sends the selection to

the next window

● Scan QR Code; will only allow the customer to proceed to the

‘Menu’ screen if they scan the QR Code at their selected table

■ Menu: either accessed via the ‘Dine In’ or ‘Takeout’ options

● Select food to be ordered

● After selection, the user can either pay with ‘cash’ or ‘credit’;

currently either option leads the user to the ‘Submit Rating’

window

● Submit Rating: allows user to rate 0-5 stars on what they ordered;

currently the user can rate anything on the menu despite whether

Why W8 47

or not they ordered it, and currently the inputted ratings are not

stored into a database and thus currently have no functionality

● After rating, the user is sent back to the Costumer UI page

Integration Tests:

1. Q: Can a user return to the previous window from any window on the app?

A: No; neither manager, chef, busboy, nor server accounts can currently log off and

return to the login page. As of every other window, yes.

2. Q: After a customer scans the QR code of their selected table, if they accidently go

back to the QR scanner page, will the app recall what their selected table was if

they rescan the QR code?

A: Currently yes, however in the future it should be implemented to not allow the

customer to return to the QR scanner after having already sat at their table; it

may cause glitches in the system

3. Login:

1. Enter the email of your account

2. Enter your associated password

3. Press the ‘LOGIN’ button

4. Create Account:

1. From the ‘LOGIN’ page, press “No account yet? Create one”

2. Enter your name

3. Enter your address

4. Enter your email

5. Enter your phone number

6. Enter your password

7. Re-enter your password for confirmation

8. Press ‘CREATE ACCOUNT’

5. Select ‘TAKEOUT’ as a Customer:

1. Logic as a customer (go through integration test 3)

2. Select ‘TAKEOUT’

3. Press the plus button on each item desired to be ordered the number of times

equivalent to the desired quantity of each item

4. Press ‘CONFIRM ORDER’

5. Either select ‘PAY WITH CASH’ or ‘PAY WITH CREDIT’ depending on one’s payment

preferences

Why W8 48

6. Optional: To provide feedback, rate each ordered item from 0-5 stars

7. Press ‘SUBMIT RATING’

8. Select ‘Yes’ when asked “Are you sure?”

6. Select ‘DINE IN’ as a customer:

1. Login as a customer (go through integration test 3)

2. Select ‘DINE IN’

3. Select a desired time

4. Select a desired table

5. Select ‘SCAN BARCODE’

6. Scan the QR code on the desired table

7. Select ‘HAVE A SEAT!’

8. Follow steps 3-8 of integration test 5

7. Logout as a Customer:

1. Login as a customer (go through integration test 3)

2. Select ‘LOGOUT’

8. View Menu as a Customer:

1. Login as a customer (go through integration test 3)

2. Select ‘VIEW MENU’

9. Send Message to Employee as Manager

1. Login as a manager (go through integration test 3)

2. Select the message icon

3. Select what employee to send a message to in the ‘To’ section

4. Select the pre-generated message to send in the ‘Message’ section

5. Select ‘SEND’

10. Edit Item as Manager

1. Login as a manager (go through integration test 3)

2. Select ‘EDIT ITEM’

3. Enter the name of the item

4. Enter the price of the item

5. Enter the time of the item

6. Either select ‘ADD’ or ‘DELETE’

11. Edit Employee as Manager

1. Login as a manager (go through integration test 3)

Why W8 49

2. Select ‘EDIT Employee’

3. Enter the name of the employee

4. Enter the salary of the employee

5. Enter the SSN of the employee

6. Either select ‘ADD’ or ‘DELETE’

12. Start Order as Chef

1. Login as a chef (go through integration test 3)

2. Select table of order

3. Select ‘START’

13. Complete Order as Chef

1. Login as a chef (go through integration test 3)

2. Select table of order

3. Select ‘COMPLETE’

14. Clean Table as Busboy

1. Login as a busboy(go through integration test 3)

2. Select table to clean

3. Select ‘READY’

15. Set Status of Order as Server

1. Login as a server (go through integration test 3)

2. Select order

3. Select either ‘PAID’ or ‘DELIVERED’

7. Project Management & Plan of Work

7.1 Merging the Contributions from Individual Team Members

To develop the final copy of the report all team members were independently developing their assigned

tasks of the report in one shared Google document for each part of the report. Once the first two parts

of each report was completed, they were merged into the full report which was shared by all members

in a Google document. The issues we encountered were checking to see if the formatting was consistent

throughout the document and the tables were formatted correctly. To format the document we made

sure the table of contents accurately matched the page numbers and the headings of the parts of the

project. We also reviewed all figure and table names and numbers to verify that everything was in order.

Why W8 50

7.2 Project Coordination & Progress Report

UC-1: Dine-In, UC-4: View Menu, UC-5: Table Selection, UC-6: QR Scan, UC-7: Payment, UC-8: Rate Food,

UC-10: Login, UC-11: Generate Report, UC-12: Register, and UC-13: Estimate Time, are currently all

implemented. However, some use cases were more focused on than others, so although they are

functional, they are not fully implemented currently. For example, UC-6: QR Scan if fully functional and

works as intended, but UC-13: Estimate Time is implemented in a way such that the chef is able to notify

the user of the start time and the end time, but in its current state does not estimate the time beside

the time listed in the menu. We are currently working on implementing UC-2: Take Out, UC-3:

Reservation, and UC-9: Favorite Food.

7.3 Plan of Work

We will continue to split up the work done evenly amongst the group for the future parts of reports.

After finalizing report 1, we will allocate more of our weekly time towards coding our actual application

and continuing to be progressive by working on making our app as efficient as possible, while solving

each of the niche issues that may appear in the restaurant business.

Functional Feature and Description Start Date End Date

Menu - an interactive menu that allows customers to view items in
greater detail i.e ingredients, estimated cook time, ratings, etc.

9/23/18 10/21/18

Rating System - collecting information from customers on how well
the food was prepared via a 1 to 5 star rating.

10/7/18 10/28/18

Seating Chart - have an interactive chart that shows available seats
to customers, and “dirty” seats to busboys.

9/23/18 10/14/18

Payment System - allow customers to pay through the app, and give
them the ability to add tip and split the bill.

10/28/18 11/11/18

Reservation List - Customers that wish to dine in at a specific time
will be able to choose the time, and will be placed on a reservation
list.

10/7/18 10/28/18

Food Wait Time - implementing an active system that updates how
long the customer has before their food is finished.

10/7/18 10/28/18

Inventory Tracker - a system that allows the manager to view in real
time the current inventory for specific items. Alerts when below a
certain threshold will also be a feature.

10/28/18 11/11/18

Why W8 51

Table Alerts - method of alerting busboys that a table has been
recently vacated so that they can clean it up.

10/7/18 10/28/18

Account Interface Coordinator - depending on which account logs in
(customer, waiter, or manager), take the user to the correct portal
for a seamless user experience

10/21/18 11/18/18

7.4 Breakdown of Responsibilities

Outlined below are the teams, and the proposed work plan over the course of the next few weeks.

TEAM CODE NAME MEMBERS

Administration/Management Team α Stephan, Nikhil

Employees/Waiters Team β Jimmy, Michael

Customers Team ¢ Kyungsuk, Yi

SHORT TERM PLAN OF WORK TEAM

Create a communication bridge between

manager and company material via a server

Team β, Team ¢

Create an interactive customer order menu Team α, Team β

Implement the available table seating chart Team ¢

Administration information and data trends Team α

Customer reservations via data capture and

storage to populate a list

All

Why W8 52

8. Cyclomatic Complexity

Number of Nodes: n = 33

Number of Edges: e = 36

Number of Exit Points: p = 1 (Although there seems to be 11 exit points, the user simply cannot progress

any further in the application, but can go backwards, so we chose a value of 1 here to represent the end

of the application)

Cyclomatic Complexity: V = e - n + p + 1 = 36 - 33 + 1 + 1 = 5

Why W8 53

9. References

[1]
Bandarpalle, Sujay, et al. “Report 3 Part 1: Restaurant Automation.”
http://www.ece.rutgers.edu/
 ~marsic/books/SE/projects/Restaurant/2015-g3-report3.pdf

[2]

“Concepts: Requirements.” ​Razor Tie Artery Foundation Announce New Joint Venture Recordings

 | Razor & Tie​, Rovi Corporation, web.archive.org/web/20180402153505/http://www.uped

 u.org/process/gcncpt/co_req.htm

[3] “Creately - Online Diagram Editor - Try It Free.” ​Creately Blog​, creately.com/app/#

[4]
“Go: Implement a FIFO Queue.” ​Go: Implement a FIFO Queue | Programming.Guide​,
programming.guide/go/implement-fifo-queue.html.

[5] Marsic, Ivan. Software Engineering. New Brunswick: Ivan Marsic, 2012. Print.

[6]

“QR Code Features | QR Code.com.” ​Razor Tie Artery Foundation Announce New Joint Venture

 Recordings | Razor & Tie​, Rovi Corporation,

web.archive.org/web/20130129064920/http://

 www.qrcode.com/en/qrfeature.html

[7]
“UML 2 Sequence Diagrams: An Agile Introduction.” ​UML 2 Sequence Diagrams: An Agile Introdu

 ction​, www.agilemodeling.com/artifacts/sequenceDiagram.htm.

