
FOOD•E•Z 1

Report 3 Part 1: Restaurant Automation
Food•E•Z (https://sites.google.com/site/sefoodez/home)

Group #3

Sujay Bandarpalle

Julian Esteban

Kanav Tahilramani

Omar El Warraky

Jonathan Du

Paolo Umali

https://sites.google.com/site/sefoodez/home

FOOD•E•Z 2

All members contributed equally!

FOOD•E•Z 3

Summary of Changes

• Logo Updated and Changed

• Labeled All Diagrams and Tables in a clearer fashion

• Added Descriptions to each use case and traceability matrix

• Showed complete evolution of UI and a description and step by step basis of how to go through it

• Fixed Reference Section and Added Titles

• Added Estimation using use case points

• Added Object Constrained Language Contracts

• Updated History of Work and Added Future Work

FOOD•E•Z 4

Table of Contents

1.Customer Statement of Requirements………………………………………7

1.1 Down Time …………………………………………………………………………………..…7

1.2 Wasted time trying to handle customers’ transactions………………….……………..9

1.3 Dissatisfaction due to wait time….…………………………………………………………10

1.4 Managing Profit and loss ……………………………………………………………………9

1.5 Down Time ……………………………………………………………………………….……10

2.Glossary of terms…………………………………………………………….14

2.1 Technical Terms….………………………………………………………………………….…14

2.2 Non-Technical Terms…………………………………….………………….…………..14

3.User Stories…………………………………………………………………16

3.1 Manager …………………………………………………………………………………..…17

3.2 Chef………………….………………………………………………………………………18

3.3 Busboy….………………………………………………………………………..…………18

3.4 Waiter/Waitress ……………………………………………………………………………19

3.5 Bartender……………………………………………………………………………….……20

3.6 Takeout Cashier …………………………………………………………………..………20

3.7 Customer……………………………………………………………………………….……21

3.8 General Employee………………………………………………………………………..…21

4.Functional Requirements Specification……………………………………23

4.1 Stakeholders …………….………………………………………………………………..…23

4.2 Actors and Goals……………………………………………………………………………23

4.3 Use Cases…….…………………………………………………………………..…………25

 i) Casual Descriptions ……………………………………………………………………25

 ii) Use Case Diagram………………………………………………………………….……25

 iii) Traceability Matrix…………………………………………………………….…….……27

 iv) Fully Dressed Descriptions…………………………………………….…….…….…29

FOOD•E•Z 5

5.Effort Estimation…………………………………………………..………….46

6.Domain Analysis……………………………………………………………..49

6.1 Domain Model…….……………………………………………….………..………….……49

 i) Concept Definitions ………………………………………………………………..……49

 ii) Association Definitions………………………………………………….………….……51

 iii) Attribute Definitions……………………………………………………….….…..….……52

 iv) Traceability

Matrix…………………………………………….…….…….……………….55

 v) Domain Model Diagram……………………………………………………….…….……56

6.2 System Contracts……………………………………………………….………..…………57

6.3 Mathematical Model…….………………………………………………………..…………59

7.Interaction Diagrams…………………………………………………….…..63

8.Class Diagram and Interface Specification………………………..………68

8.1 Class Diagram …….…………………………………………………………..….….………68

8.2 Data Types and Operation Signatures……………………………………..……………..71

8.3 Traceability Matrix……………………….……………………………….….……………..81

8.4 Design Patterns……………………….……………………………….…………………..82

8.5 Object Constraint Language………….……………………………….………..………..83

9.System Architecture and System Design..…………………………..……86

9.1 Architectural Styles …….………………………….………………………………………86

9.2 Identifying Subsystems………………………………..…………………………………..87

9.3 Mapping Subsystems to Hardware……………………….…………………………..88

9.4 Persistent Data Storage…………………..……………….…………………………..88

9.5 Network Protocol………………….……………………….…………………………..88

9.6 Global Control Flow……………………………….……….…………………………..89

9.7 Hardware Requirements………….……………………….…………………………..90

FOOD•E•Z 6

10.Algorithms and Data Structures………………………..…………………91

10.1 Process and Prepare Order ………………………………………………..…….………91

10.2 Calculate Business Stats…………….…………………………………………………..93

10.3 Table Designation Algorithm…….…….……………………………….………….……..94

10.4 Information Modification Algorithm……..…………………………….……………..…..95

10.5 Order Progress Queue Algorithm……..…………………………….……………..……96

10.5 Data Structures………………….……..…………………………….……………..……97

11.User Interface and Implementation……….…………..…………………..98

11a.Details of Employee Web Portal……….…………..…………………..120

12.Design of Tests…………………………………………..…………………121

12.1 Manager………………….. ………………………………………………..…….………121

12.2 Chef…………………….…………….…………………………………………………..124

12.3 Waiter…………………………….…….……………………………….………….……..126

12.4 Busboy…………………………….…….……………………………….………….……127

12.5 Employee………….…………….…….……………………………….………….………128

12.6 Controller……..……..………….…….……………………………….………….……..130

12.7 Request Handler……………….…….……………………………….………….……..131

12.8 Coverage and Integration Strategy….……………………………….………….……..133

13.History of work, Current Status, Future Work..…….………………….134

14.References….…………………………..…………………….…..….…..139

FOOD•E•Z 7

Customer Statement of Requirements:

The world is coming to an era of technology. Our restaurant is undergoing a renovation to implement

technology into our stores. We have a deal made with Microsoft to implement tables and hand held tablets with

top notch surfaces using the new Windows environment. We’d like to have a special app to be able to interact

with our new windows environment. Below is a couple of problems we would like to be solved in this app that

we can’t find anywhere else.

Problem: Down Time Associated with Checking in on the Reservation List and Order Preparation

Progress

In the restaurant industry, time is money. The amount of time it takes to serve customers determines the

amount of groups served each day, which will determine the revenue generated from sales and tips. In order to

cut down on time, we have come up with a few features that will remove the need for waiters to have to

manually check in on reservation list at the front entrance as well as the kitchen. In addition, by walking around

the restaurant more, a waiter exposes themselves to opportunities to be asked to for service from other

customers, which will increase the amount of time between when orders are ready and when they are delivered,

which increases the time that the table is occupied by the current party.

In order to solve this we came up with several features. This includes table availability schedule, the order

progress queue, and the chef hotline.

Table Availability Schedule:

When customers walk in they are greeted by a tablet, in which they are asked to input their name and party

size. This information is then sent back to our database, which utilizes an algorithm that assigns a table to each

customer. This algorithm first uses party size to prioritize customers for each table. It does this by checking if

any tables are available that can hold the specified party size. If no table is available, then the next largest party

is prioritized, and so on.

When the party size prioritization part of the algorithm has ended, the next part consists of prioritizing by time.

Here the algorithm checks through the available tables and if several party sizes match the specifications of an

available table, then the party who arrived first is given the priority of being seated at the table. The algorithm

FOOD•E•Z 8

then proceeds to do this for the rest of the customers waiting to be seated as tables become

available/unavailable.

At the end of our algorithm, the tablet at the front of the restaurant displays the name of the customer and

shows a diagram of the restaurant with the table they are assigned highlighted. The customer is prompted to

confirm that they have received the notification and will proceed to the table. This information is also updated

for the waiters so that they know if one of their tables has recently been taken or if no confirmation has been

made by the customer for a while, then to go to the front of the restaurant and manually look for the customer.

This algorithm should also be made in a way that it will rotate the customers around the store. For example a

medium sized store would be split into 4 with 4 waiters. Thus when giving the first customer a table it will send

him to section 1 and then the next to section 2 giving this the ability to spread the customers around the store

making the availability of waiters to a maximum and speeding up all processes at dining peak.

As the customer finishes dinner a tablet will be available for him to pay for his dinner. This payment process

indicates that this table needs to be cleaned which will light up automatically on the application for waiters to

know what tables need to be cleaned. When the table is cleaned the waiter will have to process this manually

by a simple touch of a button letting the system know the table is ready to serve new customers.

Order Progress Queue:

The order progress queue will be a way for the waiters and chefs to have a synchronized electronic list of order

progress and availability. It will consist of a database that stores meals. When a waiter places an order for a

group, all of the meals will be put on the end of the queue in the database. Both the chef and the waiter can see

the queue. The chef will be able to click on an meal, and have the option to select one of three statuses:

stopped, in progress, or complete. The queue will also show how long it has been since the meal was started, so

the waiter can estimate the time to completion. When the chef sets a meal’s status to complete, it will send an

alert to the waiter that placed the meal order so they know it is ready for pick-up.

Our queue will also be able to list orders for take-out, and will designate which meals are to be placed at the

take-out window or the waiter pick-up window upon completion. Priority for which meal is to be prepped is

assessed by the order in which they are placed, regardless of whether the meal is for take-out or dine-in.

FOOD•E•Z 9

Problem: Wasted time trying to handle customers’ transactions

Many restaurant dwellers arrive at a restaurant with an empty stomach, ready to be seated and ready to devour

anything in their path. Once seated, customers begin their watches, timing customer service and the time it

takes for food to come out. As a restaurant employee, it is our job to ensure high-end customer service and

minimize the time taken for food reach the customer. The problem at hand is time: time it takes for servers to

take orders, place orders to the chefs, and bring out the food. With so much time wasted, customers will be

seated longer and arriving guests will have to wait longer to be seated. To maximize profit and keep customers

wanting to come back, we have come up with solutions that will speed up the guest visit.

Create a functional menu to effectively maximize profit and raise customer satisfaction

At restaurants like Applebee's or TGI Fridays, hosts/ess seat guests and hand each guest a menu. Once they

have decided, servers take their orders and walk to the kitchen to give chefs the orders. Once orders are

completed, servers come to the "ready area" and look for the orders to bring to hungry customers. While this is

extremely time consuming, our restaurant automation application can significantly speed up the entire process

and maximize customer satisfaction and restaurant profit.

With our restaurant automation application, we have a functional menu that servers can reference and will be

able to place orders that will be sent directly to the chefs without having to walk to the kitchen to hand them

orders. Having this functional menu will significantly speed up the time it takes for orders to travel from

customer to server to chef. Once orders are completed by chefs, servers will be notified via our restaurant

automation application. Having been notified by the chef that orders are completed, servers will not waste time

checking up on orders and can designate more time tending to customers; tending to customer needs instead of

constantly checking if an order is complete will raise customer satisfaction. The waiters will be holding the

tablets for taking the orders so waiters can always give their personal opinion, customers usually like that. We

would also like to have a personal app customers can order and it will show up that this customer has placed an

order on the system himself so the waiter wouldn't have to go over to them. All in all, speeding up the process

at which customers place orders and receive food will significantly reduce the time customers occupy a table;

thus, allowing more guests to be seated and maximizing profit.

FOOD•E•Z 10

Problem: Dissatisfaction and unhappiness with regards to the wait time for paying the bill

Imagine that you and a group of friends are customers at a restaurant and you are all ready to pay the bill. You

call over the server, but the server is waiting on another table. Five minutes pass by. The server finally comes

and you tell the server that you are ready to pay. Another five minutes pass by where the server has to

calculate the total cost of your meal. He hands you the check, but you wanted the bill split amongst you and

the rest of your group. Another five minutes pass where the server has to recalculate the bill and split amongst

all of you. Finally, you decide to pay with a credit card and another five minutes pass where he has to run to

the swipe machine and process the bill. The overall process for paying the bill took twenty minutes. In that

twenty minutes, another group of customers could have been seated, placed their orders, and possibly begun

eating. Whether its splitting the bill or having multiple frustrating interactions with your server, paying the bill

has always been a long and tiring process at restaurants.

With our restaurant automation application, we can significantly speed up the process of paying the bill. Once

a server has placed an order, the order automatically gets placed in the corresponding table's bill. Furthermore,

the application will keep track of what orders correspond to which guest within each table. Having the order

kept in our database, we will eliminate the use of pencil and paper and the possibility of miscalculations on the

bill (since our application will conduct all the arithmetic from the bill). If the server requests to split the bill,

our application will prompt the server with the question "how many people would you like to split the bill

amongst?". The app should be able to make a personal check for each of the customers on the table if they

wish so. All of these features within the bill payment interface will eliminate the time it takes for servers to

calculate the bill and significantly reduce the time needed for customers to pay the bill.

With less time required to handle transactions, more time can be allocated to seating and assisting new guests.

Not only will we maximize profit, but speeding up the process of paying means customers will leave the

restaurant with a smile and wanting to come back.

Problem of managing Profit/Loss statements efficiently and quickly:

Nowadays finding a complete system that deals with everything is becoming difficult. Managers want to see

their profits and losses whenever they need it on a monthly basis to make sure everything is going well.

Making a P/L calculator on an application will prove to be an essential use to the Manager as he will easily

keep progress of what is occurring in terms of finance for his store wherever he is. Managers have many

tedious things they must attend to so putting all finance matters linked directly with customer checks, payrolls

and store expenses on the spot will allow the manager to see a budget and control when he needs to take action

FOOD•E•Z 11

or make a change on a day to day basis. This also will allow managers to view different profit margins for each

store in the future to be able to grasp a general idea of each store’s performance. This part of the application

will also be able to process the tips separately from the profit and categorize it to each waiter so the manager

can know exactly how much tips go to each individual.

Problem of Menu addition and Availability:

Having a part of this application to allow the manager to simply add and remove products off the menu will be

very convenient. Managers won’t need to buy new menus or update customer menus (takeaway), as for

everything will be online and ready to go. We’d like the manager to have the ability to add an item or remove it

with ease as well as keep track of the items availability in the kitchen and view how many orders are put on a

particular item. Being able to access this from any place including his home or car allows the manager a lot of

ease to carry out other tedious manners he needs to attend. Such as meetings or looking at other stores and so

on. It also allows in the future managers to contact different stores in the chain and see the differences of Menu

formats.

Employee Portal

Managers find trouble seeing employees checking in and out and watching their work schedules and seeing

when and where they log in. Checking activity on spot wherever the manager is. Thus we need an Employee

Portal.

The employee portal works as a universal scheduling manager and tool for workers at the restaurant. It will be

accessible in two ways. Employees can login to the application on a tablet and view a calendar which shows all

available shifts as well as those which they are signed up for. A similar interface will be available through a

website as an online web portal.

This functionality enables several options for the staff. It allows them to sign up for future shifts, open a

previously taken shift for coverage, and let go of a shift with a provided reason. This is used as opposed to

manually taking note of all such information; it automates the documentation and shift management in the

backend with minimal input required from employees.

In addition, there is possibility for expansion in that that employees can use either the tablet application or the

website to clock their hours. The purpose behind this feature is to assist in automating the weekly paycheck

distribution as it stores details pertinent to those calculations, i.e hours worked, sick leave, etc. This

information can be used by managers to minimize the amount of time spent on related tasks per pay cycle.

FOOD•E•Z 12

Employees also find this a way to feel comfortable around technology. It helps them make sure their hours are

all logged in correctly while as to see a clear schedule to their work and those around them.

The scheduler works to keep an organized log of work hours as opposed to keeping track of the shifts by hand,

and the purpose behind the clock in/out is to reduce routine tasks and automate menial work that is required

frequently. Lastly, the whole portal has added convenience of being accessible in two ways.

Plan of Work and Product Ownership

Within our group of 6 members, we have split into 3 pairs to maximize productivity. The pairs are as follow:

Jonathan and Paolo, Julian and Sujay, and Omar and Kanav. Each pair will have specific tasks during the next

few weeks that they will contribute. The main objective for the next few weeks will be to create the basis of

the restaurant automation application before we branch off into sub-features using Windows.

Jonathan and Paolo: Our plan to accomplish in the next few weeks is to create a layout of the restaurant with

tables. Within the layout, we want to add different functionalities which include:

• Create interface for customers’ bill (http://pay.opentable.com/)

• Average Tip calculator for Managers to Gauge Waiter Service/Attractiveness

• Display of common tip denominations in the billing screen in order for a waiter to gauge the satisfaction of

each party

Julian and Sujay: Our plan to fulfill is to create a login screen that will have different functionalities for

different users.

• Speak to the Chef

• Create a functional menu for waiters/waitresses to use

• Table Availability and Wait Time

• Chef mode = The chef will be able to see the database listing the meals in the order of which they were

placed. Upon clicking the meal, it will open up and show the individual items of the meal, along with three

buttons that are Stopped, In Progress, and Complete. Shows time since start, estimated time to completion

(can go negative which indicates a slower than usual prep time, and a likelihood of the meal finishing). The

selection of these buttons will update the meal database queue for the waiter/waitress as well, so that they

can see which meals are ready for pickup.

Omar and Kanav:

• Our plan to accomplish in the next few weeks is to design and create a menu that allows waiters/waitresses

to place orders that can be directed to chefs.

FOOD•E•Z 13

• Online employee portal which handles scheduling tasks (add, remove w/ reason, swap, etc)

• Profit/Loss tracking with database

FOOD•E•Z 14

Glossary of Terms:

Technical Terms:

Database: the file where the menu items, inventory, scheduling and orders are stored.

Employee Portal: Schedule accessible by employees that lists their shifts and any open shifts they may cover.

Restaurant Automation: Use of an internal restaurant management application to automate and carry out

major operations within a restaurant establishment.

Graphical User Interface (GUI): The interface that allows allows easier user communication via pictures and

texts

Table Availability Schedule: A database that shows the availability of the tables in the restaurant.

Order Progress Queue: A priority queue that shows the progress of each order and what will be prepared

first.

Non-Technical Terms:

Foodies: A person who has an ardent or refined interest in food and alcoholic beverages and seeks

Bartender: Serves beverages and maintains the supply and inventory of the bar.

Bill: A statement which contains details of the menu items that have been purchased and the money that is

owed for them.

Busboys: Clears tables, takes dirty dishes to the dishwasher, sets tables.

Chef: Responsible for creating and planning menus, overseeing food preparation, and supervising the kitchen

staff.

Chef Hotline: The functionality that allows customers to contact the chef from the waiter’s tablet to inquire

about menu items.

FOOD•E•Z 15

Customer: A person or party who visits the restaurant to dine, and can order food and place reservations from

a smartphone or tablet app.

Customer Satisfaction: Measurement of how food preparation, customer service, and overall experience

surpasses customer expectation

Dine-in: When a customer would like to eat in the store.

Manager: The person that is responsible for inventory management, employee scheduling, payroll and

customer satisfaction.

Menu: A list of dishes from which customers can choose from.

Profit: Revenue subtracted by expenses

Restaurant Customer: Any person that orders an item from the menu or walks into the restaurant.

Take-out: Orders that are prepared for customers that are not eating in the restaurant.

Waiter/ Waitress: Takes customers’ orders, brings completed orders to customers, and marks recently vacated

tables.

FOOD•E•Z 16

User Stories:

Size Key:

For each user story we include a size of 1 - 10 points. The sizes are rough estimates of how much effort is

needed to implement each user story based on our group’s technical skills and each user story’s perceived

complexity.

Priority Key:

ST-X-#: High priority (highly likely to be implemented)

ST-X-#: Middle priority (likely to be implemented)

ST-X-#: Low priority (highly unlikely to be implemented)

FOOD•E•Z 17

As a manager…..

Identifier User Story Size

ST-M-1 I can modify the menu based on

inventory and customer feedback so

that we can serve available and

desirable dishes..

8 points

ST-M-2 I can add and hire employees with a

given reason.

7 points

ST-M-3 I can quickly find openings in the

schedule that need to be filled so that I

can easily ask employees to cover

those openings.

4 points

ST-M-4 I can easily pull the profits and loss of

the store for the week, month or year.

7 points

ST-M-5 I can add expenses and change salaries

of employees.

5 points

ST-M-6 I can change item pricing. 5 points

ST-M-7 I can view the amount of tips

accumulated from each employee to

gauge good customer service

3 points

ST-M-8 I can track inventory lifetime and

quantity.

4 points

ST-M-9 I can create new accounts and

delegate/ revoke privileges to other

employees based on employee rank.

3 points

ST-M-10 I can view timeclock sign-ins for all

employees to see arrival and departure

times.

5 points

FOOD•E•Z 18

As a chef……

Identifier User Story Size

ST-Ch-1 I can see the queue of orders

waiting to be prepared.

4 points

ST-Ch-2 I can mark orders as “In Preparation”
and “Complete” .

5 points

ST-Ch-3 I can speak to the

waiters/waitresses through their

tablet

4 points

ST-Ch-4 I can modify the menu to make certain

dishes available or unavailable if

supplies are limited.

5 points

ST-Ch-5 I can record what orders and how

many orders I made each shift to

track accountability and

performance.

3 points

ST-Ch-6 I can adjust and update the supply

inventory to let the manager know of

any lacking ingredients.

4 points

As a busboy…..

Identifier User Story Size

ST-B-1 I can view the tables that need to be

cleaned.

4 points

ST-B-2 I can mark dirty tables, tables being

cleaned, and clean tables

4 points

FOOD•E•Z 19

As a Waiter/Waitress….

Identifier User Story Size

ST-W-1 I can input my customers’ orders

quickly and have the chef notified of

the order without walking to the

kitchen.

 7 points

ST-W-2 I can view my customers’ bill and

enter their payment information.

5 points

ST-W-3 I can apply coupons and discounts to

the customers’ bill.

6 points

ST-W-4 I can mark tables as recently vacated

so that tables can be cleaned by

busboys as soon as possible.

5 points

ST-W-5 I can see when a party has made their

way to their table, and can mark it on

the table availability page

6 points

ST-W-6 I can add special instructions to an

order in case the customer has a

specific request.

3 points

ST-W-7 I can see my average tip, as well as

my tip percentage history in order to

gauge the quality of my service

8 points

FOOD•E•Z 20

As a bartender…..

Identifier User Story Size

ST-BT-1 I can see the queue of drinks to

prepare in the order they were placed,

and mark each order as in progress or

completed

5 points

ST-BT-2 I can pull up a list of cocktail recipes,

in case a customer asks for something

that I have never made

5 points

ST-BT-3 I can see and alter the status of the

inventory of all wines, beers, hard

liquor

5 points

ST-BT-4 I can click on a cocktail recipe, and it

through color coding the ingredients,

it will tell me which we still have

stocked

5 points

As a Takeout Cashier……

Identifier User Story Size

ST-T-1 I can enter the payment information

for customers’ ordering takeout.

5 points

ST-T-2 I can place orders for customers

ordering takeout and send those orders

to the chef’s queue.

6 points

ST-T-3 I can view the progress of customer’s

takeout orders.

4 points

FOOD•E•Z 21

As a customer…..

Identifier User Story Size

ST-C-1 I can quickly order from a smartphone

or tablet without having to wait for my

waiter.

7 points

ST-C-2 I can remotely place reservations for

my party to be entered into the seating

queue through the app.

4 points

ST-C-3 I can set what time I would like my

order to be added to the kitchen’s list,

so I am able to order long in advance

4 points

ST-C-4 I can walk in and place my party size

and name into the tablet which will

notify me where our table is when it’s

ready

5 points

As an Employee (General)…….

Identifier User Story Size

ST-E-1 As an employee, I can view my shifts. 4 points

ST-E-2 As an employee, I can pick up open

shifts.

5 points

ST-E-3 The menu should give descriptions of

the items (ingredients, calories, etc.)

4 points

ST-E-4 As an employee, I can put my shift up

for coverage.

6 points

ST-E-5 As an employee, I can sign-in and

sign-out of my scheduled shifts.

4 points

ST-E-6 As an employee, I can view all shifts

to see who I am working with.

3 points

FOOD•E•Z 22

Identifier User Story Size

ST-E-7 As an employee, I can access and

view my paycheck stubs and

important work-related forms (W-2

Wage and Tax form, Promotion

Letter, Termination Letter, etc.)

8 points

FOOD•E•Z 23

Functional Requirements Specification:

Stakeholders

There are several types of stakeholders starting with end users, those who will be directly utilizing the system-

to-be in an effort to automate periodic tasks. This would include any kind of employee, i.e waiters, bartenders,

busboys, chef, and managers. Customers are stakeholders who do not directly make use of the system, but their

interest is held in the enriched experience as a result of the system. Another set of stakeholders includes all

those involved in development and management of the system. The interest comes from working to design and

implement solutions to create the system.

Actors and Goals

Initiating Actors

Bartender

Role - The employee who is in charge of the bar and preparing drinks.

Goal - Manage the liquor inventory, and prepare drinks on the drinks queue.

Busboy

Role - The employee who is in charge of the cleanliness of the restaurant.

Goal - Manage the status of tables, and clean tables that are marked dirty on the app.

Chef

Role - The employee who is in charge of the kitchen and preparing meals.

Goal - Manage the ingredient inventory, manage the menu, and prepare meals on the order queue.

Customer

Role - The restaurant visitor who orders food and drink from the restaurant for dining-in or taking-out.

Goal - Place, pay for, and receive orders quickly, and choose whether to eat-in or take-out.

Manager

Role - The employee who manages the entire restaurant.

Goal - Manage employees and scheduling, keep track of inventory, and keep track of profits/losses.

Takeout Cashier

Role - The employee who interacts with and serves take-out customers.

Goal - Place orders for take-out customers, keep track of the take-out order queue and charge take-out

customers.

FOOD•E•Z 24

Waiter

Role - The employee who interacts with and serves dine-in customers.

Goal - Place orders for dine-in customers, keep track of the dine-in order queue and charge dine-in customers.

Participating Actors

Database

Role - The object that stores information needed for the system.

Goal - Store and modify information pertaining to inventory, employees, profits, losses, etc..

FOOD•E•Z 25

Use Cases:

i) Casual Descriptions:

Our group’s user stories will serve as the casual descriptions of our use cases.

ii) Use Case Diagram:

FOOD•E•Z 26

FOOD•E•Z 27

iii) Traceability Matrix:

User Stories UC-1 UC-2 UC-3 UC-4 UC-5

ST-M-1

ST-M-2

ST-M-3

ST-M-4

ST-M-5

ST-M-6

ST-M-7

ST-M-8

ST-M-9

ST-M-10

ST-Ch-1

ST-Ch-2

ST-Ch-3

ST-Ch-4

ST-Ch-5

ST-Ch-6

FOOD•E•Z 28

User Stories UC-1 UC-2 UC-3 UC-4 UC-5

ST-W-1

ST-W-2

ST-W-3

ST-W-4

ST-W-5

ST-W-6

ST-W-7

ST-B-1

ST-B-2

ST-BT-1

ST-BT-2

ST-BT-3

ST-BT-4

ST-T-1

ST-T-2

ST-T-3

FOOD•E•Z 29

User Stories UC-1 UC-2 UC-3 UC-4 UC-5

ST-G-1

ST-G-2

ST-G-3

ST-G-4

ST-G-5

ST-G-6

ST-G-7

ST-C-1

ST-C-2

ST-C-3

ST-C-4

Matrix provides relationship with use cases and their user stories showing which user story incorporates which use case.

iv) Fully Dressed Use Cases:

USE CASE UC-1: PLACE ORDER

USE CASE UC-1: PLACE ORDER

Related User Stories::

ST-Ch-1to2, ST-W-1to3, ST-W-5, ST-BT-1, ST-T-1to3,

ST-C-1

Initiating Actor: Customer

Actor’s Goal: To order food from the restaurant using the application on

their smartphone or tablet.

FOOD•E•Z 30

USE CASE UC-1: PLACE ORDER

Participating Actors: Takeout Cashier, Waiter

Pre-Conditions: The GUI is displayed with the menu of food items and an

option to add and order them.

Post-Conditions: The food status is shown on the screen.

Flow of Events for Main Success Scenario: → 1) Customer picks the option to see the menu in the

application.

← 2) The system shows all the food and drink items in

their respective categories, as well as the current order’s

bill on the right side.

→ 3) Customer chooses which food category they would

like to add to the order.

← 4) The system displays all the items associated with the

picked category, with an ability to view more information

about an item (price and an option to see the nutritional

facts) and an option to add to order.

→ 5) Customer selects the option to add the desired item

to the order.

← 6) The system stays in the food and drinks menu page,

with a newly updated bill on the right which includes every

item added, their total cost, and options to remove an item

or send the order request to the restaurant.

→ 7) Customer selects the option to send the order request

to the restaurant.

← 8) System sends the order to the restaurant.

← 9) System displays the status of the order (i.e. if it has

been cooked or not), with an option to go back to the main

menu.

→ 10) The customer chooses to stay on the status page.

FOOD•E•Z 31

USE CASE UC-1: PLACE ORDER

Flow of Events for Extension(Alternate Scenarios): → 1a) Customer picks the option to see the status of a

current order.

← The system prompts the customer to provide their

order’s unique ID.

→ Customer inputs their order ID.

← The system displays the status of the order.

→ 1b) Customer picks the option to see the status of a

current order.

← The system prompts the customer to provide their

order’s unique ID.

→ Customer inputs an incorrect order ID.

← The system displays the message, “Invalid order

ID entered, please check to make sure that you have put it

in right.

→ 3a) Customer presses the back button to go back to the

main menu.

← The system goes back to the main menu.

→ 5a) Customer selects option to see the nutritional facts

of an item.

← The system displays the selected items nutritional

facts.

→ Customer presses back button to return to the

menu page.

→ 7a) Customer selects the option to remove an item from

the bill.

← The system removes the item from the bill.

→ 7b) Customer selects adds another item to his order.

← The system stays in the food and drinks menu

page, with a newly updated bill on the right which includes

every item added.

→ 7c) Customer specifies the ready times of all food

items.

← The system sends the order to the restaurant’s

queue with the order type: “Takeout”, and the ready times

for each item. It also sends the details of the order to the

database for the takeout cashier to see.

← 10a) Customer selects the option to go back to the main

menu.

← The system enables an option to view an existing

order’s status on the main menu.

FOOD•E•Z 32

Use Case UC-1: Place Order

The Use Case Diagram shows how the customer

interacts with the system and how the system reacts

back such as placing the order in this case and how the

system responds with the different scenarios as well as

the next steps to be made.

FOOD•E•Z 33

USE CASE UC-2: VIEW BUSINESS STATS
USE CASE UC-2: VIEW BUSINESS

STATS

Related User Stories::

ST-M-4,ST-M-5,ST-M-6

Initiating Actor: Manager

Actor’s Goal: To view profit/losses and edit expenses of the store and

salaries of employees.

Participating Actors: None

Pre-Conditions: Manager Must be logged in. Screen Displays GUI of

FoodEZ and allows manager to Enter Business Stats

Section

Post-Conditions: Goes back to Main Menu so Manager can Continue to do

something else.

Flow of Events for Main Success Scenario: → 1) Manager Logs in to FoodEZ and chooses “View

Business Stats”.

← 2) System Opens up Profit/Loss Page

→ 3) Manager has the ability to choose stats of a single

month or year.

→ 5) System Shows Options to choose from: Expenses or

Salaries or Main Menu.

← 6) Manager Presses Main Menu

→ 7) System returns Manager to Main GUI Interface.

FOOD•E•Z 34

USE CASE UC-2: VIEW BUSINESS STATS
Flow of Events for Extension(Alternate Scenarios): → 3a) Manager Chooses “A Single Month”.

← The system prompts the customer to provide which

month he would like to see

→ Manager Chooses Month from drop down list

← Manager Can Return to Profit/loss Section

→ 3a) Manager Chooses “Year”.

← Manager can choose “Chart” to view the flow chart of

Profit/Loss of the year.

← Manager Can Return to Profit/loss Section

→ 5a) Manager Selects “Expenses”

← Manager has ability to see total expenses of store.

→ Manager presses “edit” to edit a single expense of the

store (Food or Electricity)

→ Manager presses back button to return to the

Profit/Loss page.

→ 5b) Manager Selects “Salaries”

← Manager has ability to view all Salaries of employees.

→ Manager Presses “edit” to edit a salary of an

employee.

→ Manager presses back button to return to the

Profit/Loss page.

FOOD•E•Z 35

Use Case UC-2: View Business Stats

The Use Case Diagram shows how the manager

interacts with the system and how the system reacts

back such as finding the profit and loss statements as

well as editing the expenses and salaries of

employees.

FOOD•E•Z 36

USE CASE UC-3: MANAGEF QUEUE
USE CASE UC-3: MANAGE QUEUE

Related User Stories::

ST-Ch-1, ST-Ch-2, ST-W-1, ST-BT-1

Initiating Actor: Waiter

Actor’s Goal: To add an order to the queue

Participating Actors: Chef, Bartender

Pre-Conditions: The waiter using the order screen to select the items that a

seated party orders

Post-Conditions: The order progresses through the various stages from “not

started” to “ready for pickup”

FOOD•E•Z 37

USE CASE UC-3: MANAGEF QUEUE
Flow of Events for Main Success Scenario: → 1) Waiter acknowledges customer’s desired item, and

goes to the “Place Order” screen. adds each item to the list

of the order, then submits

← 2) System displays the list of the various item classes

(entree, dessert, beverages, appetizer).

→ 3) Waiter clicks on the class of the customer’s desired

item

← 4) System displays the list of items within each class.

A “view order” option is present

→ 5) Waiter clicks on the item to add to the order, and

option “ingredients” and “add note” is displayed next to

each item

← 6) System adds the item to the list of the whole table’s

orders.

→ 7) Waiter repeats steps 1,3, and 5 until all of the table’s

desired items are in the order, then presses the “Place

Order” option, which will add the order to the queue.

← 8) The system shows the whole queue, which can be

navigated via scrolling. Each order that has been placed

through the waiter’s device will have an option to cancel

the order or revise the order, as well as a progress status.

Orders are added to the end of the queue when they are

placed. Items that are prepared at the bar will be sent to the

bartenders’ devices, and items that the kitchen is

responsible for will be sent to the chefs’ devices.

→ 9) Chef or bartender finish their current task, then check

the queue to see what needs to be prepared next.

→ 10) The chefs and bartenders can also see the queue.

When an order is pressed, it will go to a new screen that

shows each item and several options are displayed. The

options are to set the progress status of the whole order.

These options will be “not started”, “in-progress”, “on

hold”, or “ready for pick-up”. They will set the item that

they are preparing to “in-progress”. There is also an option

for “recipe”

→ 11) Upon successful completion and delivery to the

waiter pick-up area of the kitchen or bar, they will set the

status to “ready for pick-up”.

← 12) The device of the waiter who placed the order that

is complete will be alerted via a notification, and they can

retrieve the order to bring to the customers.

FOOD•E•Z 38

USE CASE UC-3: MANAGEF QUEUE
Flow of Events for Extension(Alternate Scenarios): → 3a) Waiter can select “back” to return to the item class

screen in the event that they selected the wrong item class

 ← System will return to the item class selection screen

→ 4a) Waiter selects the “view order” tab to see all items.

 ← System will display the order list

→ Waiter selects the “add note” in order to list details such

as the rareness of steak or exclusion of certain ingredients

 ← System will add the item to the order list, with the

note displayed under the item in the order list

→ 5a) Waiter clicks on the item multiple times to increase

the quantity of the item

 ← System will show multiple instances of the item in the

order list

→ 5b) Waiter selects the ingredients option because the

customer inquired about the ingredients in a recipe for

allergy/dietary reasons

→ 10a) The chefs forgets the exact recipe for the item, and

selects the “recipe”

 ← System displays ingredients and instructions for

making the item

FOOD•E•Z 39

The Use Case Diagram shows how the waiter interacts

with the system and how the system reacts back such

adding items into the queue and looking at the status

also viewing the queue.

Use Case UC-3: Manage Queue

FOOD•E•Z 40

USE CASE UC-4: MANAGE SHIFTS
USE CASE UC-4: MANAGE SHIFTS

Related User Stories::

ST-G-1, ST-G-2, ST-G-4 to ST-G-6

Initiating Actor: Bartender, Busboy, Chef, Take-out Cashier, Waiter

Actor’s Goal: To add, replace, or request coverage for shift in the work

week.

Participating Actors: None

Pre-Conditions: User has logged in as staff and has the “Employee Portal”
open.

Post-Conditions: Shift information has been updated and is visible by all

users with access.

Flow of Events for Main Success Scenario: → 1) User selects the “View Schedule” option.

← 2) The system shows the schedule for the next two

weeks by displaying all shifts in that

 time period – including those which are taken, up for

coverage, or need to be filled.

→ 3) User selects a shift which needs to be filled and

clicks the corresponding timeslot.

← 4) The system gives a confirmation that the shift is now

theirs and updates the information

 accordingly in the backend which will show for any user

on the employee portal in the future.

FOOD•E•Z 41

USE CASE UC-4: MANAGE SHIFTS
Flow of Events for Extension(Alternate Scenarios): → 1a) User selects the “View Schedule” option.

← 2) The system shows the schedule for the next two

weeks by displaying all shifts in that time period –
including those which are taken, up for coverage, or need

to be filled.

→ 3) User selects a shift which is taken by them and clicks

the option “Put up for coverage.”

← 4) The system gives a confirmation that the shift is now

up for coverage and updates the information accordingly in

the backend which will show for any user on the employee

portal in the future.

→ 1b) User selects the “View Schedule” option.

← 2) The system shows the schedule for the next two

weeks by displaying all shifts in that time period –
including those which are taken, up for coverage, or need

to be filled.

→ 3) User selects a shift which is up for coverage and

clicks “Fill.”

← 4) The system gives a confirmation that the shift is now

theirs and updates the information accordingly in the

backend which will show for any user on the employee

portal in the future.

FOOD•E•Z 42

Use Case UC-4: Manage Shifts

The Use Case Diagram shows how any employee

interacts with the system and how the system reacts

back with managing their shifts with the database

describing how they log in and update shifts and what

messages will be displayed.

FOOD•E•Z 43

USE CASE UC-5: MANAGE MENU
USE CASE UC-5: MANAGE MENU

Related User Stories::

ST-M-1, ST-M-6, ST-M-7, ST-Ch-4, ST-Ch-6, ST-BT-2,

ST-BT-3, ST-BT-4

Initiating Actor: Managerial Staff, Chefs

Actor’s Goal: To modify the menu based on various different reasons.

Participating Actors: None.

Pre-Conditions: User has the "Edit Restaurant Menu" screen open.

Post-Conditions: Restaurant menu is updated with user's changes and

modifications

Flow of Events for Main Success Scenario: → 1. Persons who have privileges to edit the restaurant

menu select the "Edit Restaurant Menu" option in the

"View Menu" screen

← 2. Internal system displays existing menu with multiple

options for editing purposes: add or delete menu items to

each category, modify the ingredients in a dish (menu

subject to changes due to ingredient availability), create

new categories

→ 3. User can modify category names and add or delete

items from specific categories

← 4. Internal system displays qualities of each menu item

within the categories including the price, name, ingredients

used, and ingredient count.

→ 5. Persons who have privileges selects the "Add New

Item" option

← 6. Internal system prompts the user to enter information

about the new item including "Name", "Price",

"Ingredients Used", "Inventory Count", and "Customer

Favorite".

→ 7. Persons who have privileges clicks "Save and Add

Item to Menu".

← 8. Internal system adds the item to the menu based on

price.

→ 9. User saves changes and clicks "Return to Main

Menu" after completion of editing the menu.

← 10. Internal system returns to main menu in FoodEZ

application interface.

FOOD•E•Z 44

USE CASE UC-5: MANAGE MENU
Flow of Events for Extension(Alternate Scenarios): → 2a. Persons with privileges selects "Delete Menu

Category".

← Internal system prompts user with "Deleting X menu

category will result in a loss of all proceeding menu items

within X menu category. Will you proceed to delete X

category?", where X is a category name. System will

prompt the user to choose "Accept" or "Decline".

→ User selects "Accept".

←System deletes category, as well as all menu items

within the category, and returns back to the editing menu.

→ 3a. Users select "Delete Item" within a category.

← System prompts user with "Are you sure you want to

delete item: X", where X is an item name. System will

prompt the user to chose "Accept" or "Decline".

→ User selects "Accept".

← System will automatically delete the item, and returns

back to the editing menu.

→ 4a. User selects "Edit Menu Item Properties", where

user can alter the price, name, ingredients used, and

ingredient count.

← Internal system prompts user with textboxes to modify

the price, name, ingredients used, and ingredient count of

the menu item.

→ Persons with privileges edits the appropriate

information and clicks "Update All".

← System will update the edited information and return to

the editing menu.

FOOD•E•Z 45

Use Case UC-5: Manage Menu

The Use Case Diagram shows how the manager

interacts with the system and how the system reacts

back with updating the menu.

FOOD•E•Z 46

User Effort Estimation:

Scenario 1: Waiter Places Order

1. Navigation: Select the option to go to menu.
 a) Select the desired item category
 b) Select the desired item, tap more than once to increase quantity
 i. Waiter may choose to remove certain ingredients at customers
 request, or attach a brief note to the item.
 c) Once all desired items are in the order, select “place order” to add the order
 to the queue.

Scenario 2: Chef Prepares Order
 2. Navigation: Select the option to go to the queue.
 a) Chef selects an order from the queue, the items within the order (including
 attached notes or ingredients alterations) are displayed
 b) Chef selects “in progress” once the order preparation is about to begin
 c) Chef selects “complete” once the order is ready for pick-up

Scenario 3: Busboy Cleans Table
 3. Navigation: Select the option to go to the table layout.
 a) Busboy selects a table that is “ready for cleaning” and click on it once to
 change its status to “cleaning in progress”
 b) Busboy clicks on it once more to change its status to “ready for seating”
 upon completion of cleaning

Scenario 4: Customer enters their party into the seating queue
 4. Navigation: Select “Add my party”.
 a) Customer enter his/her name into the text box labeled “Party leader”.
 b) Customer enter his/her party size into the text box labeled “Party size”.

FOOD•E•Z 47

UCP = UUCPxTCFxECF

Weight: 5 -> Simple
 10 -> Medium
 15-> Difficult

UC Use Case Weight

UC -1: Place Order 5

UC -2: View Business Stats 10

UC -3: Manage Queue 15

UC -4: Manage Shifts 15

UC -5: Manage Menu 5

UUCP = 50

TCF Technical Complexity
Factor Weight

TCF perceived
complexity

Complexity Factor

1 0.5 4 2

2 1 4 4

3 2 5 10

4 2 5 10

5 0.5 4 2

TCF = 0.6 + (Total Complexity Factor x 0.01)
 = 0.6 + (28x0.01)
 = 0.88

ECF Environmental
Complexity Factor

weight

ECF perceived impact Complexity Factor

FOOD•E•Z 48

ECF Environmental
Complexity Factor

weight

ECF perceived impact Complexity Factor

1 0.5 2 1

2 1 3 3

3 2 4 8

4 2 4 8

5 0.5 2 1

ECF = 1.4 - (0.03xECF)
 = 1.4 - (0.03x21)
 = 0.77

UCP = UUCP x TCF x ECF
 = 50 x 0.88 x 0.77
 = 33.88

Duration = 33.88 x 28
 = 948.6 Hours

FOOD•E•Z 49

Domain Analysis:

1) Domain Model:
i) Concept Definitions:

Responsibility Description Type Concept

R-01: Coordinates scheduling, views profit/losses, delegates work to

other employees

D Manager

R-02: System knows all expenses and profits and losses K Profit/Loss

R-03: Can edit expenses of store D Manager

R-04:Customer accesses the menu online and places orders. D OrderItem

R-05: Knows all orders from all customers/tables. K OrderQueue

R-06: System sends orders to the restaurant. D Order

R-07: System knows and displays status of online order for customer

viewing

K OrderStatus

R-08: System knows when customer provides an incorrect order ID K Order

R-09: Change employee information including position, status, wage,

contact information, etc.

D InfoChanger

R-10: Modify menu D MenuModifier

R-11: Place food orders within the restaurant D Waiter

R-12: Place drink orders within the restaurant D Bartender

FOOD•E•Z 50

R-13: System knows count of ingredients K IngredientCount

R-14: System adds item to list of entire table’s orders D Check

R-15: Waiter places table’s orders D Order

R-16: System tracks order status within restaurant K OrderStatus

R-17: Chefs update order status D OrderStatus

R-18: System order status changed to “ready for pick-up” K OrderStatus

R-19: System keeps track of entire table’s bill and tip calculations K Check

R-20: Waiter returns to system to retrieve check D Check

R-21: System receives payment and notifies busboy to clean table D CleanTable

R-22: Busboy alerts system upon table cleaning completion D CleanTable

R-23: System knows schedule of all employees K Schedule

FOOD•E•Z 51

ii) Association Definitions:

Concept Pair Association Description Association Name

Manager ↔ MenuModifer Allows manager to modify menu Modifies

Manager ↔ Profit/Loss Manager tracks profit gain and profit

loss

Provides Data

Manager ↔ IngredientCount Manager requests updates on

IngredientCount to manage menu

items

Requests Updates

Manager ↔ InfoChanger Manager alters confidential employee

information

Modifies

Customer ↔ Waiter Customer passes order requests to

waiter

Conveys Requests

Waiter ↔ Chef Waiter passes order requests to chef Conveys Requests

Customer ↔ OrderItem Customer adds a menu to the bill, and

places the order.

Conveys Requests/Requests Save

Check ↔ OrderQueue Bill provides the data of the ordered

items to the OrderQueue

Provides Data

Waiter ↔ OrderStatus Waiter periodically requests updates

to OrderStatus

Requests Updates

Chef ↔ OrderStatus Chef passes updates to OrderStatus Provides Data

Waiter ↔ Check Waiter retrieves and requests check

for appropriate table

Conveys Requests/Provides Data

Waiter ↔ Customer Waiter passes check and requests

payment

Provides Data/Conveys Requests

BusBoy ↔ Check BusBoy prepares cleans table once

check is paid

Prepares

Waiter ↔ Tables Waiter updates the the status of tables Provides Data

FOOD•E•Z 52

iii) Attribute Definitions:

Concept Attributes Attribute Description

Manager

Name Name of Manager

Manager ID Manager has a unique identification

credential associated with login

Privileges Manager has specific privileges

including menu modifications,

hire/terminate employees, track

profit/loss, etc.

Waiter

Name Name of the waiter

Waiter ID Each waiter has a unique identification

credential associated with them

Table Association The tables to which the waiter is

serving

Employee

Name Name of the employee

Identity Each employee has a unique

identification credential associated

with them

Contact Information The employee’s address, email

address, phone number, etc.

Position Position held by the employee at the

restaurant

Profit/Loss

Total Gain Total amount of income made from

restaurant transactions

Total Expenses Total amount of costs spent by

restaurant

Net Profit/Net Loss Profit or loss made by the restaurant

OrderQueue Orders Orders are placed on a queue within

the system, which can be accessed by

the chef

FOOD•E•Z 53

OrderItem

Name Name of the menu item

Cost Price of the menu item

Category Category with which the menu item is

associated

OrderStatus

Order Placed OrderStatus changes to Order Placed

Preparation OrderStatus changes from Order

Placed to Preparation

Bake OrderStatus changes from Order

Placed to Bake (when applicable)

Quality Check OrderStatus changes from Bake to

Quality Check

Ready to Pick-Up OrderStatus changes from Quality

Check to Ready to Pick-Up

InfoChanger

Name Allows for altering the name of

Employee

Wage Allows for altering the payment

Contact Info Allows for altering the contact

information of an employee

Schedule Allows for altering the schedule of an

employee

Position Allows for altering the position of an

employee

MenuModifier

Name of Item Allows for altering the name of the

selected item

Ingredients Allows for altering ingredients of a

selected item

Price Allows for altering the price of a

selected item

 Name Name of the bartender

FOOD•E•Z 54

Bartender Bartender ID Each bartender has a unique

identification credential associated

with them

IngredientCount

Name Name of the ingredient

Total Stock Amount of stock available in the

kitchen for each ingredient

Order

Customer Information Information about the customer who

placed the order (if a takeout order)

Order Number The order has a unique identification

number

Table Number The table number with which the

order is associated

Check The most updated check for the order

Check

Order ID The order ID with which the check is

associated

Number of Items The total number of items ordered

Total Cost The total cost of all the items in the

order

Tip Tip paid by customer

CleanTable Status Ready to be cleaned once customer

departs

Schedule

Date The various dates available on the

schedule

Time The time slots available on each day

Employee Name Name of the employee working a

certain shift

FOOD•E•Z 55

iv) Traceability Matrix

The traceability matrix describes the relationship between the domain concepts we defined and the use cases

implemented in the project. It shows how the use cases may contain many domain concept as well as the fact

that a domain concept can be used by more than one use case.

FOOD•E•Z 56

v) Domain Model Diagram

FOOD•E•Z 57

System Operations Contract:

Name: Customer Places Order

Responsibilities: Order food from the restaurant using the application on their smartphone or

tablet.

Use Cases: UC-1

Exceptions: None

Preconditions: The application’s GUI is displaying a menu with various food and drinks items,

and an option to add them to bill and order them.

Postconditions: The order is placed and added to the restaurant queue, after which its status is

shown.

Name: View Business Stats

Responsibilities: View profit/losses and edit expenses of the store and salaries of employees.

Use Cases: UC-2

Exceptions: None

Preconditions: Manager must be logged in. Screen displays GUI of FoodEZ and allows manager to

enter the business stats section.

Postconditions: Goes back to main menu so the manager can continue to do something else.

Name: Manage Queue

Responsibilities: Add an order placed by the customer to the queue.

Use Cases: UC-3

Exceptions: None

Preconditions: The order screen on the Waiter’s device allows him to select the items that a

seated party orders.

FOOD•E•Z 58

Postconditions: The order progresses through the various stages from “not started” to “ready

for pickup”.

Name: Manage Shifts

Responsibilities: Add, replace, or request coverage for shift in the work week.

Use Cases: UC-4

Exceptions: None

Preconditions: User has logged in as staff and has the “Employee Portal” open.

Postconditions: Shift information has been updated and is visible by all users with access.

Name: Manage Menu

Responsibilities: Modify the menu based on various different reasons.

Use Cases: UC-5

Exceptions: None

Preconditions: User has the "Edit Restaurant Menu" screen open.

Postconditions: Restaurant menu is updated with user's changes and modifications

FOOD•E•Z 59

Mathematical Model:

Table Designation Algorithm

As customers enter the restaurant they are asked to specify their party size among other things into a tablet.

This algorithm uses the party size and compares it against the available tables to see which table should be

designated to the customer. The algorithm utilizes a sorted list (which is sorted and prioritized by a first come

first serve basis) to take input from and then compares the party sizes of all customers and find a suitable table.

If the table size matches the party size, then those two are matched, otherwise if the party size is less than the

table size and no other party size matches the table then they are given the table.

Pseudo Code:

while (sorted list of customers does not equal 0)

{

 while (iterating through the list of available tables)

 {

 while (iterating through sorted list of customers)

 {

 if (size of table is equal to a party size in the customer list)

 {

 //Display customer name and table on the tablet

 //Along with map of restaurant highlighting the table

 }

 else if(size of table is greater than party size and no other party matches

 table size)

 {

 //Display customer name and table on tablet

 //Along with map of restaurant highlighting the table

 }

 }

 }

}

FOOD•E•Z 60

Information Modification Algorithm

Whether it’s hiring or terminating an employee, the manager will need the necessary options in order to modify

information concerning an employee. Below gives a quick pseudocode algorithm on how a manager can edit

and modify confidential information.

if (credentials entered match manager’s credentials, allow access)

{

 //search for profile of employee manager wants to modify

 {

 while(1)

 {

 switch (manager chooses options)

 {

 case name:

 //edit name of employee

 break;

 case wage:

 //edit wage of employee

 break;

 case contact info:

 //edit contact info of employee

 break;

 case schedule:

 //edit schedule of employee

 break;

 case position:

 //edit position of employee

 break;

 }

 if (finished editing)

 {

 //save profile of employee

 //break and return to search screen

 }

 else

 {

 return to switch

 }

 }

 }

}

else

FOOD•E•Z 61

{

 print(“Incorrect credentials.”)

 return to login screen

}

Order Progress Queue Algorithm

Each order that is entered into the order queue most likely contains several items. Orders that have not yet

been started have display an order status of “Not Started”. Upon beginning preparation of the items in an order,

the order status associated with that specific order will become “In Progress (0%)”. Each item within the order

also has a status, which can be either “Not Started” or “Complete”. During the time in which the order is “In

Progress”, the percentage shown represents the amount of completed items within the order. Each time the chef

marks an order as complete, the new percentage is displayed on the status bar of the order in the order queue.

Once all items are complete, the order status changes to “Ready for Pick-Up”, at which time the device of the

waiter who placed the order will receive a notification.

//assume order has data members numberComplete and numberIncomplete

//...and completionPercentage, as well as member function setPercent

//assume item has data members status and member functions setStatus

void changeItemStatus(order, item, newStatus)

{

 //if item was not started and is being started, change status

 if ((if (item.status()==”Not Started”) && (newStatus== ”In

 Progress”))

 {

 item.setStatus(“In Progress”);

 }

 //if item was started and is now completed, change status and

 //... recalculate and display new completion percentage

 if ((if (item.status()==”In Progress”) && (newStatus ==

 ”Complete”))

 {

 item.setStatus(“Complete”);

 order.setPercentage((order.numberComplete()/(order.numberComplete()

 +order.numberIncomplete()))*100);

 }

FOOD•E•Z 62

 //check if order is complete, if so, notify the waiter who

 //entered the order

 if (order.completionPercentage==100)

 {

 notifyWaiter(order);

 }

FOOD•E•Z 63

Interaction Diagrams:

UC1: Place Order

The Customer can start ordering by opening the GUI as a customer and the menu will be displayed. He can

also edit it as long as his order has not been set complete. The order goes into the database and onto the queue

for the waiter to be able to retrieve.

FOOD•E•Z 64

UC2: View Business Stats

The manager can view the view business stats option from his GUI. Inside this option Manager can

communicate with it by viewing or editing the salaries and expenses of the store. He can also view total

Profit/Loss of the store. The information stored in and that comes out is all in the database that is held. The

Program communicates efficiently with the database keeping everything up to date.

FOOD•E•Z 65

UC3: ManageQueue

The Chef can view items in the queue added by the waiter or customer for order. The Chef can access his interface to view the queue. It

will also return an empty error if there are no orders available. The chef can also interact with his interface by adding the item he will be

cooking from the queue and thus adding it to the list of items in progress. After the chef finishes cooking he will Enter the finished item

and thus remove form the list of Items in progress. This will also trigger communication with the waiter interface notifying him that the

order is ready to be served.

FOOD•E•Z 66

UC4: ManageShifts

The Employee can access his interface and login to view his shifts which are saved on the database. He can

also log which shifts he took or which shift he covered for or did extra time.

FOOD•E•Z 67

UC5: ManageMenu

The manager can interact with his interface to manage the menu. The manager has the ability to update the

menu in the database whether by adding or deleting an item. The database will return the success showing the

manager the success of his actions when doing so. It will also show failure in actions when deemed necessary

or an error has occurred somewhere in the database.

FOOD•E•Z 68

Class Diagram and Interface Specification:

Class Diagram:

FOOD•E•Z 69

Class Descriptions:

The class diagram includes the following:

Menu - Menu is a class which contains all the menu items and each item’s corresponding information.

RestaurantQueue - RestaurantQueue is a class which contains each table’s food and/or drink orders, as

well as specific information for each order.

Inventory - Inventory is a class that contains the quantity of items used in orders. Upon calling the function

‘ItemList’ within the Inventory class, it will display the current quantity of all items.

BusinessStats - BusinessStats is a class which contains functions that allow the Manager to view profits

and expenses either quarterly or yearly.

Schedule - Schedule is a class that represents the timetable of all employees working during a given time.

Upon calling the function ‘shift’ within the Schedule class, it will display which employees are working.

EmployeeInfo - EmployeeInfo is a class which contains information about each employee including the

name, position, and pay rate.

Tables - Tables is a class which allows Busboys and waiters to view the status of specified tables.

Database - Database is a class which stores all information about FoodEZ including the schedule, employee

information, inventory, business statistics, menu information, table information, etc.

Controller - The Controller requests, updates, and shares information between the RequestHandler and the

Database.

CustomerInterface - This is the interface that is used by the customer. Through it, a customer is able to

view and choose menu items to create their take out order. It contains attributes that give critical information

such as the order items and the bill total.

RequestHandler - The request handler receives and processes all requests that come from the interfaces.

EmployeeInterface - The employee interface allows employees to view their shifts, to take on extra shifts

or place unwanted shifts up for coverage. Each employee interface is tied to an employee via an ID number

contained within the class.

Waiter Interface - The waiter interface is similar to the customer interface, in function however it is used

by the employee to create orders for customers that are dining in the restaurant. Each employee interface is tied

to an employee via an ID number contained within the class. Consequently, the waiter will be alerted when an

order tied to their interface is completed.

FOOD•E•Z 70

BusboyInterface - The busboy interface shows all tables, along with their current status. The status is

indicated by the color of the table as well as the text displayed on the table. The bus boy can view the whole

restaurant layout with, as well as change the status of a table once its cleaning is “in progress” and when it is

“completed”.

ChefInterface - The chef interface is utilized by the chef to prepare meals efficiently. Through it, he/she can

view the queue and the contents of orders, as well as change the status of each meal as it goes from “in

progress” to “completed”.

ManagerInterface - The manager interface is used to carry out essential tasks to the managing of the

restaurant. Through it, the manager can fire or hire employees, track revenue and operating costs, alter the

menu. The manager can also place orders for individual items through his/her interface that will be independent

of any customer party’s bill, this is useful for customer services purposes when providing a free replacement or

alternative item for customers who have complaints on meal preparation time, poor service, steak doneness,

etc.

FOOD•E•Z 71

Data Types and Operation Signatures:

Customer Interface:

The first class, Customer Interface, is built so that a customer can interact with the system to place or cancel

orders.

Attributes:

 +customerID: Int Integer variable corresponding to the

customer’s unique ID.

+billInfo: billInfo* Struct containing information

corresponding to the customer bill.

+orderInfo: orderInfo*

Struct containing information

corresponding to the customer order.

Methods:

 updateBill(): bool Method updates the values in the

billInfo* struct (e.g. the price change

as the customer adds/removes items

from an order).

 +placeOrder(): bool

Method called to finalize an order and

send the request to the order

queue.

 +cancelOrder(orderInfo* o):

bool

Given a struct corresponding to an

already placed order, this method

requests that the order be canceled.

 +editBill(itemInfo* i, int

editAmt): bool

Will change the amount of the given

item i by the amount given in editAmt

on the customer’s bill.

 +viewMenu(): void

Method called to display the menu on

the customer’s interface.

FOOD•E•Z 72

Waiter Interface

The second class, waiter interface, is built such that a waiter has the ability to interact with the system to place

orders, and find open tables.

Attributes:

 +waiterID: int Integer variable corresponding to the

waiter’s unique ID.

+orderInfo: orderInfo* Struct containing information about

the waiter’s current customer’s order.

+tableInfo: tableInfo*

Struct containing information about a

certain table such as the status of

the table and the table’s id.

Methods:

 +placeOrder(): bool Method requests that the current order

is placed to the queue.

 +cancelOrder(orderInfo* o):

bool

Given a struct corresponding to an

already placed order, this method

requests that the order be canceled.

 +viewMenu(): void Method called to display the menu on

the waiter’s interface.

 +viewTables(): void Method called to display the tables

and their statuses on the waiter’s

interface.

FOOD•E•Z 73

Busboy Interface

The third class, busboy interface, is built such that a busboy has the ability to easily find dirty tables to clean.

Attributes:

 +busboyID: int Integer variable corresponding to the

busboy’s unique ID.

+tableInfo: tableInfo* Struct containing information about a

certain table such as the status of

the table and the table’s id.

Methods:

 +cleanTable(): bool Method called to request that a dirty

table’s status be changed to clean.

 +viewTables(): void Method called to display the tables

and their statuses on the busboy’s

interface.

FOOD•E•Z 74

Chef Interface

The fourth class, chef interface, is built such that a chef can easily manage the queue and the menu.

Attributes:

 +chefID: int Integer variable corresponding to the

chef’s unique ID.

Methods:

 +viewQueue(): void Method used to update the queue

displayed on the chef’s interface.

 +updateQueue(orderInfo* o):

bool

Method used to update the status of an

order the restaurant queue

represented by orderInfo* o.

 +removeFromMenu(itemInfo*

i): bool

Method to send a request to edit an

item represented by itemInfo* i.

 +addToMenu(string itemName,

double Price): bool

Takes in an item name and its

corresponding price. Creates the

object itemInfo and adds it to the

menu structure. Returns true if

successfully added to the menu

structure, false otherwise.

FOOD•E•Z 75

Manager Interface

The fifth class, manager interface, is built such that a manager can manage the menu, employees, and

inventory.

Attributes:

 +manID: int An integer that is unique to each

manager and is used to identify which

manager is making changes, and

which things he/she has can change.

Methods:

 +fire(eInfo* e): bool Method used to update (remove) the

employee database represented by

eInfo* e

 +hire(eInfo* e): bool Method used to update (add) the

employee database represented by

eInfo* e

 +removeFromMenu(itemInfo*

i): bool

Method to send a request to edit an

item represented by itemInfo* i.

 +addToMenu(string itemName,

double Price): bool

Takes in an item name and its

corresponding price. Creates the

object itemInfo and adds it to the

menu structure. Returns true if

successfully added to the menu

structure, false otherwise.

 +orderItem(itemInfo* i): bool Takes in an object of item info as

argument and requests to add it to the

queue for preparation. Upon the order

being marked as “complete”, the

managers device is alerted. Returns

true if order successfully added to the

queue.

 +view(itemInfo* i): bool Displays the info for a given item, the

string name of the item and the

double price of the item

FOOD•E•Z 76

Employee Interface

The sixth class, employee interface, is built such that any employee can view their information and manage

shifts (either placing their shifts for coverage or picking up.

Attributes:

 +empID: int An integer that is a unique ID number

used to determine which

employee is accessing the interface,

and making changes to their

scheduled shifts

Methods:

 +verify(eInfo* e): bool Verifies the identity of the employee

 +takeShift(sInfo* s): bool Takes an argument sInfo (shift info),

and adds it to the list of the

specific employee’s shifts, and

removes it from the list of available

shifts. Returns true, if successful, false

otherwise.

 +placeShift(sInfo* s): bool Takes an argument sInfo (shift info),

and removes it from the list of the

specific employee’s shifts, and adds it

to the list of available shifts.

Returns true if successful, false

otherwise.

 +viewInfo(): void Displays the info on the current

employee that is logged on.

FOOD•E•Z 77

Request Handler

The seventh class, request handler, is built such that multiple attempts to access the database from multiple

interfaces is handle quick and concurrently using a multithreaded design.

Attributes:

 #numOfRequest: int Integer variable storing the number of

request at a given time.

Methods:

 processRequest(): void Method used to send a request to the

controller when the controller is ready

to receive another request.

 getRequest(): void Method used to get an incoming

request from a user interface.

 thread(): void

Method used by threads to process

multiple requests concurrently.

Controller

The controller class, sits between the request handler and the database and handles information sharing, and

updating information in the database as well as in the user interfaces.

Methods:

 DBConnection(): void Method used to establish a connection

with the database.

 DataRequest(): void Method used to request data from the

database.

 DataUpdate(): void Method used to update data in the

database and interfaces.

 DataAnalyze(): void Method used to run algorithms on data

to analyze business stats, order queue

efficiency, etc.

FOOD•E•Z 78

 InterfaceConnection(): void Method used to establish a connection

with interfaces.

FOOD•E•Z 79

Database

The database object consist of multiple entries of different objects including tables, employee informations,

schedule shifts, business statistics, items in the inventory, orders in the restaurant queue and items on the menu.

Attributes:

 Database:database: DB Database identifier (the ID of the

database).

 Tables:tableID: int Integer variable that represent the

unique ID of a table in the

restaurant.

 Tables:tableStatus: int Integer variable that represents the

current status of a table (0, 1 , 2, 3)

corresponds to (Do Not Use, Open, In

Use, Dirty).

 EmployeeInfo:employeeName:

string

String variable the represents the name

of the employee represented

by this object.

 EmployeeInfo:employeeTitle:

string

String variable the represents the title

of the employee represented

by this object.

 EmployeeInfo:employeePay:

double

Double value that tracks the pay that

an employee receives

 Schedule:shift: shiftInfo*

Object that contains the information

for a specific shift, int day, int

month, int year, int startHours, int

startMinute, int endHours, int

endMinutes.

 BusinessStats:Profit: double -A double that gives the value of the

profits generated during this

quarter, namely money and tips

generated from sales and service.

 BusinessStats:Expenses: double A double that gives the value of all

expenses incurred over this quarter,

namely overhead, operating costs,

inventory, and taxes.

FOOD•E•Z 80

Attributes:

 BusinessStats:quarter: int An integer value representing which

quarter of the year this instance of

BusinessStats represents

 BusinessStats:year: int

An integer value representing which

year this instance of BusinessStats

represents

 Menu:item: itemInfo* Object that displays information about

a menu item

 RestaurantQueue:order:

orderInfo*

Object that holds information about an

order, int totalCost, string

percentProgress, int itemCount, int

waiterID

 Inventory:itemList:

list<iteminfo*>

List of all menu items which entails

information about quantity, expiration

date, type

FOOD•E•Z 81

Traceability Matrix

The Concepts were derived very simply from the idea of a restaurant in sync with its employees. Everything is

connected one way or another and it can be told by simply looking at the names of the classes. For example a

Manager Interface was needed to put the concept of a manager and profit/loss and modifications in total. The

rest of the classes were derived in the same manner with pure common sense.

FOOD•E•Z 82

Design Patterns:

The notification system uses the publisher-subscriber pattern to deliver notifications to all of the appropriate

parties. When a notification is generated and sent to notificationHandler, the handler can parse the type of

notification, its content, and its source and determine which interfaces need to receive the notification. It then

publishes the notification out to those interfaces. For example, when the system detects that the stock level of

an item in the inventory is empty, it would pass the name of the item whose stock has run out. It reads the input

information and constructs the full notification message, then updates the rest of the interfaces. The

notificationHandler will know each notification type and choose which subscribers should be notified. While

notifications could have been implemented using direct communication, using the publisher subscriber pattern

makes the system easier to maintain and update. If another user interface must be added for a new employee

class, it is simple to include it in the subscribers list and include it in the notification system.

FOOD•E•Z 83

OCL: Object Constraint Language Contracts

waiterInterface:placeOrder() : bool

//The Waiter is the one placing the order

Invariants: self.Waiter -> True

//The table has customers on it

Pre-Conditions: table.occupied -> True

//Order Succesful and pushed into Queue

Post-Condtions: placeOrder == true

waiterInterface:cancelOrder(orderinfo* o) : bool

//The Waiter is the one placing the order

Invariants: self.Waiter -> True

//The table has customers on it

Pre-Conditions: table.occupied -> True

//Order Deleted and removed from Queue

Post-Condtions: cancelOrder(orderinfo* o) == true

busboyInterface:cleantable() : bool

//The busboy is the one cleaning the table

Invariants: self.busboy -> True

//The table is dirty on it and not occupied

Pre-Conditions: table.occupied -> False

 table.dirty -> True

//Table Cleaned and updates table status

Post-Condtions: cleantable == true

chefInterface::addToMenu(string itemName, double Price): bool

//The chef is the one updating the menu

inv: self.chef -> True

//Item is not available on Menu

pre: MenuItem == NULL

//Update item in menu

post: addToMenu(string itemName, double Price) == true

chefInterface::removeFromMenu(itemInfo* i): bool

//The chef is the one updating the menu

inv: self.chef -> True

//Item is available on Menu

pre: MenuItem != NULL

//Removing Item succesful from menu

post: removeFromMenu(itemInfo* i) == true

managerInterface::fire(eInfo* e): bool

FOOD•E•Z 84

//The manager is the one firing the employee

inv: self.manager -> True

//employee is in database

pre: employeeinfo != NULL

//Removing employee succesful from database

post: fire(eInfo* e) == true

managerInterface::hire(eInfo* e): bool

//The manager is the one hiring the employee

inv: self.manager -> True

//employee is not in database

pre: employeeinfo == NULL

//Adding employee succesful from database

post: hire(eInfo* e) == true

managerInterface::addToMenu(string itemName, double Price): bool

//The manager is the one updating the menu

inv: self.manager -> True

//Item is not available on Menu

pre: MenuItem == NULL

//Update item in menu

post: addToMenu(string itemName, double Price) == true

managerInterface::removeFromMenu(itemInfo* i): bool

//The manager is the one updating the menu

inv: self.manager -> True

//Item is available on Menu

pre: MenuItem != NULL

//Removing Item succesful from menu

post: removeFromMenu(itemInfo* i) == true

managerInterface:placeOrder() : bool

//The manager is the one placing the order

Invariants: self.manager -> True

//The table has customers on it

Pre-Conditions: table.occupied -> True

//Order Succesful and pushed into Queue

Post-Condtions: placeOrder == true

managerInterface:cancelOrder(orderinfo* o) : bool

//The manager is the one placing the order

FOOD•E•Z 85

Invariants: self.manager -> True

//The table has customers on it

Pre-Conditions: table.occupied -> True

//Order Deleted and removed from Queue

Post-Condtions: cancelOrder(orderinfo* o) == true

FOOD•E•Z 86

System Architecture and System Design:

Architectural Styles

Our design architecture is based on the 2-tier client-server model in which a client directly connects with one

integrated server. This kind of system works to establish unified infrastructure in that all correspondence and

traffic runs through the server independent of the client attempting or requesting access.

The primary server acts as a database as well as a provider which fulfills requested services. From a database

point of view, its role is to store information regarding employees, work schedules, and other details crucial to

management. This is due to the implementation of the employee portal which lets clients login and adjust their

individual particulars depending on access level.

In the sense of restaurant automation, the system incorporates several different types of users (clients) and their

corresponding functionality; credentials are first verified with the server followed by granting the client their

appropriate permissions. An example of such a verification could be a manager logging into the system to

make changes or verify paystub distribution. In another case, a waiter could request access in order to sign up

for a shift in a certain work week.

The client-server model is supposed to be straightforward, but that is also one of its flaws. Due to its work

processing allocation (i.e the server handles everything), constancy and uptime is affected. A fault in the server

results in issues across the entire system. Compared to, for instance, component based architecture, client-

server is essentially a one man's job.

A large positive is ease of maintenance in the future. By minimizing the number of objects interacting in the

system, the need to maintain relationships between components is reduced. Client-server emphasizes this by

leaving all work to the server.

Other than the database required for the employee portal, the server also keeps its local database which sends

and receives information pertinent to the proceedings in the restaurant. With this system, the server (regardless

indirectly or directly) handles cross-client requests. To illustrate this, a waiter may take a table's order; to relay

it to the chef, the information is sent to the server which then proceeds to be accessible by the chef.

FOOD•E•Z 87

Identifying Subsystems

The package diagram consists of the composing elements in the system. Firstly, the interface package contains

all types of employees and the portal as it presents different options and viewership depending on the user

accessing its elements. The database holds all pertinent information for restaurant tasks, i.e transactions,

inventory, and menu (changes). In addition, for the employee portal, it stores shifts, hours worked, and other

related employee specific details. The controller handles flow of information transfer between the database and

other packages which request or send anything. The communicator package, it acts as a medium through which

the controller can receive authorization on interactions through package control. Lastly, the handler is

responsible for spawning the interface and receiving information from the communicator about tasks that must

be processed.

FOOD•E•Z 88

Mapping Subsystems to Hardware

Due to the nature of client-server architecture, the hardware hierarchy of the system is straightforward.

Understanding that the system is running on the client-server model, the server runs on the master computer

which has the database and all applicable data. Employees and management have tablets through which they

access the restaurant automation application which all contain the communicator, interface processing, and

controller. From a work allocation standpoint, this structure allows for each user to control what information

they get (based on their permissions) and keeps the traffic/transfer of data simple.

Persistent Data Storage

The system stores information which needs to be longstanding. In particular, we document details which make

management's work easier and also provide clean documentation for future reference. This includes hours

worked per employee in each week, changes made to restaurant proceedings (i.e the menu), transactions, and

other employee records. In SQL terms, we have tables and fields which are to hold this data permanently with

backups planned. Backups ensure long term reliability and establish that maintenance of the data is of

paramount importance which is the backbone of persistent data storage acting highly appropriate for our

purposes.

Network Protocol

We will be implementing a Microsoft Azure Mobile Services SQL database which offers the ability to create

highly functional mobile applications, such as FoodEZ. Microsoft Azure SQL database stores information in a

cloud-based server, and allows for complete flexibility when programming for Windows Phones or tablets. By

storing data on a cloud-based server, there is virtually no limit to the amount of space that we can use, our

operation can be scaled according to current needs.

FOOD•E•Z 89

Global Control Flow

Execution Orderness:

“FoodEZ” is a procedure driven software. Practically everything executes in a linear fashion. The customer

would enter the restaurant and push in the details (ex. Number of seats) allowing the program to seat him in a

optimal position. Then the customer would make his order whether through tablet or waiters tablet. The order

will be received by the Chef and when it is ready will notify the waiter to take the order directly to the

customer. When the customer finishes eating he will pay the bill whether through the tablet or waiter and thus

marking the table dirty for the busboy to come clean it. This clearly shows that all actions are made in a linear

fashion all depending on the previous action.

Time Dependency

FoodEZ has an event-response time for the inventory alerts (Low Inventory), but for the rest of the system is is

on real-time basis. This system is periodic as for everything done from being seated to paying the bill is done in

a periodic manner. This is all time dependent because the time the customer makes the order places it in a

queue for the chef to cook. Also calculation of wait time for the customer to receive the order is also on

realtime basis. While as when the inventory is low will only respond when an item has reached a certain

number.

Concurrency

FoodEZ will contain multiple threads, which will involve multiple systems running independently at once.

Multiple customers will be placing orders at the same time which is why we need concurrency. The solution is

to run multiple threads into the queue. Another reason is when an employee is editing the inventory or

expenses. A thread will have to be spawned to handle the update in the database. Synchronization is not needed

because each thread is independent of the other.

FOOD•E•Z 90

Hardware Requirement

With the portability of using a Windows Phone, employees and customers can now utilize all of the

functionalities of FoodEZ in a small form factor. These types of functionalities require the following:

With a Windows tablet, employees and customers can now utilize all of the functionalities of FoodEZ. These

tablets offer the same capabilities as the phone but in a more expansive form factor. These types of

functionalities require the following:

FOOD•E•Z 91

Algorithms and Data Structures

Process and Prepare Orders

Once the system has validated a waiter’s credentials, the system will allow the waiter to select the option to

enter the menu. From there, the waiter can select the desired item category, desired item, increase or decrease

quantity, and attach comments to the chef indicating specific requests made by the customer. After the order is

ready to be sent to the chef, the waiter selects “place order” and the order will be sent to the chef’s order queue.

Once the system has sent the order to the chef’s order queue, the system displays the first order and its order’s

corresponding attributes (customer requests). When the chef begins preparing the order, the chef selects “in

progress” to indicate that the order has begun preparing. After the order is completed and ready for pick-up,

the chef selects “complete”. Then, the system will notify the waiter that the order is ready for pick-up.

Pseudo Code:

// assume tableOrder is a queue of type itemInfo

// itemInfo is a struct containing info about the waiter’s current table’s order.

// assume menuItem is an object of type itemInfo

// assume the chef has already entered credentials and is viewing the chef’s order queue on the chef interface.

if (credentials entered match the waiter’s credentials, allow access to waiter interface)

{

 while (1) // allows the waiter to continuously view the waiter interface

 {

 // display waiter interface

 ...

 // assume that the waiter has selected “place a table’s orders” within the waiter’s

interface

 if (waiter selects “view menu” && entered a specific table number)

 {

 // waiter will be prompted with the entire FoodEZ menu

 ...

// assume the waiter selected a specific menu item within the menu

 switch (waiter chooses different options for a selected menu item)

 {

case addItem:

// adds the menu item selected to the table’s order

tableOrder.enqueue(menuItem)

break;

case addComment:

// adds a comment to the chef about the menu item

break;

case returnToMenu

// returns back to menu without adding item or comments

FOOD•E•Z 92

break;

 }

 if (waiter is finished entering the table’s orders)

 {

 waiter.PlaceOrder();

 // waiter will place the completed table’s order

 break; // break from while loop

 }

 else if (waiter needs to place more menu items

 {

 return to switch statement and continue adding items

 }

 else // if the waiter needs to access something else in the waiter UI

 {

 //break from switch statement

 return to the waiter interface

 }

 }

 }

}

FOOD•E•Z 93

Calculate Business Stats

When the manager is on the main menu, his login identification number is recognized as belonging to a person

of authority and provides him the permission to access business data. Selecting the option to view business data

will divert him to a screen that displays various metrics for determining how effectively the restaurant is

running. The displayed values factor in incurred costs such as overhead (utilities, promotional costs, rent, etc),

inventory, labor costs, as well as revenue generated from sales and gratuity. The algorithm that is documented

here is the method through which the values in the “Business Data” page are displayed.

//assume that the database has several sections: overhead, inventory, labor, sales, tips, miscellaneous expenses.

recalculateAndDisplayBusinessStats(){

double revenue = 0;

 for (int i = newest entry in item sales; i == oldest entry in item sales; i++){

 revenue += entry i;

 }

for (int i = newest entry in tips; i == oldest entry in tips; i++){

 revenue += entry i;

 }

 double costs = 0;

for (int i = newest entry in inventory; i == oldest entry in inventory; i++){

 costs += entry i;

 }

for (int i = newest entry in labor costs; i == oldest entry in labor costs; i++){

 costs += entry i;

 }

for (int i = newest entry in overhead; i == oldest entry in overhead; i++){

 costs += entry i;

 }

 double profit = revenue-costs;

 display(“Total Revenue: $”<<revenue);

 display(“Total Costs: $”<<costs);

display(“Total Profit: $”<<profit);}

FOOD•E•Z 94

Algorithms we already discussed in our mathematical section in report 1:

Table Designation Algorithm

As customers enter the restaurant they are asked to specify their party size among other things into a tablet.

This algorithm uses the party size and compares it against the available tables to see which table should be

designated to the customer. The algorithm utilizes a sorted list (which is sorted and prioritized by a first come

first serve basis) to take input from and then compares the party sizes of all customers and find a suitable table.

If the table size matches the party size, then those two are matched, otherwise if the party size is less than the

table size and no other party size matches the table then they are given the table.

Pseudo Code:
while (sorted list of customers does not equal 0)

{

 while (iterating through the list of available tables)

 {

 while (iterating through sorted list of customers)

 {

 if (size of table is equal to a party size in the customer list)

 {

 //Display customer name and table on the tablet

 //Along with map of restaurant highlighting the table

 }

 else if(size of table is > than party size and no other party matches table size)

 {

 //Display customer name and table on tablet

 //Along with map of restaurant highlighting the table

 }

 }

 }

}

FOOD•E•Z 95

Information Modification Algorithm

Whether it’s hiring or terminating an employee, the manager will need the necessary options in order to modify

information concerning an employee. Below gives a quick pseudocode algorithm on how a manager can edit

and modify confidential information.

Pseudo Code:
if (credentials entered match manager’s credentials, allow access)

 {

 //search for profile of employee manager wants to modify

 while(1)

 {

 switch (manager chooses options)

 {

 case name:

 //edit name of employee

 break;

 case wage:

 //edit wage of employee

 break;

 case contact info:

 //edit contact info of employee

 break;

 case schedule:

 //edit schedule of employee

 break;

 case position:

 //edit position of employee

 break;

 }

 if (finished editing)

 {

 //save profile of employee

 //break and return to search screen

 }

 else return to switch

 }

 }

 else

 {

 print(“Incorrect credentials.”)

 return to login screen

 }

FOOD•E•Z 96

Order Progress Queue Algorithm

Each order that is entered into the order queue most likely contains several items. Orders that have not yet been

started have display an order status of “Not Started”. Upon beginning preparation of the items in an order, the

order status associated with that specific order will become “In Progress (0%)”. Each item within the order also

has a status, which can be either “Not Started” or “Complete”. During the time in which the order is “In

Progress”, the percentage shown represents the amount of completed items within the order. Each time the chef

marks an order as complete, the new percentage is displayed on the status bar of the order in the order queue.

Once all items are complete, the order status changes to “Ready for Pick-Up”, at which time the device of the

waiter who placed the order will receive a notification.

Pseudo Code:

//assume order has data members numberComplete and numberIncomplete

//...and completionPercentage, as well as member function setPercent

//assume item has data members status and member functions setStatus

void changeItemStatus(order, item, newStatus)

{

 //if item was not started and is being started, change status

 if ((if (item.status()==”Not Started”) && (newStatus== ”InProgress”))

 {

 item.setStatus(“In Progress”);

 }

 //if item was started and is now completed, change status and

 //... recalculate and display new completion percentage

 if ((if (item.status()==”In Progress”) && (newStatus == ”Complete”))

 {

 item.setStatus(“Complete”);

 order.setPercentage((order.numberComplete()/(order.numberComplete()

 +order.numberIncomplete()))*100);

 }

 //check if order is complete, if so, notify the waiter who

 //entered the order

 if (order.completionPercentage==100)

 {

 notifyWaiter(order);

 }

}

FOOD•E•Z 97

Data Structures

The system will be implemented using a few different data structures including priority queues, arrays, and

hash tables. These will be used differently depending on the employee working and utilizing the application

.

Waiters will be working with queues when attending to customers – particularly, this refers to how tables will

be stored. Parties come in, get seated at a table, and that table is added to the waiter’s queue structure to enable

a FCFS (first come first served) order in the restaurant.

On the other hand, chefs uses the priority queue to manage all orders that come in. This can be attributed to the

idea that though tables are being handled in FCFS, the food may have to be cooked in a slightly different order.

Considering that certain dishes take longer to cook than others, the priority queue allows the chef to perhaps

begin cooking one dish before another even if the preceding dish was ordered by a party that came in at a later

time.

Menu items will be stored in an array. Looking at the variety of structures from a performance point of view,

arrays clearly win for our purposes. The menu is important for performance due to its use in several different

scenarios. Two quick examples of this would be customers browsing the menu and managers using it for

statistical analysis on popularity of dishes and modifying the menu based on that. Both of these operations

benefit greatly from high performance set, i.e the array.

In practical use, hash tables are generally preferred for fast data lookup due to their mapping nature. As a

result, in the system, they will be implemented in the employee portal to map details of each employee (not

limited to just payment and scheduling information). In such a case, each key in the hash table will represent an

employee while the values correspond with pertinent details which can be accessed through the manager’s

portal.

FOOD•E•Z 98

User Interface and Implementation

Pre Evolution of UI

The user of the app will enter the main menu and be able to press order food. Allowing to pick a category and

easily press the food of his/her choice while adding it to the bill simultaneously.

FOOD•E•Z 99

FOOD•E•Z 100

The Queue will show which tables had ordered and be able to see which ordered first. The user of
the app will also be able to press on the table of their choice to see what exactly this table has asked
for and be able to update the progress of the table.

FOOD•E•Z 101

The waiters can also open from the main Menu the view of tables in the restaurant to view which is
taken and which needs to be cleaned. Simply the user will press on View Tables and will be able to
see it very clearly. Allowing him to edit the status of each table.

FOOD•E•Z 102

Full Evolution:

The User Interface of our application has gone through some changes, but the overall basis of the uses of each

page has not changed much from the originally proposed design. Below is the manager’s view of the employee

list.

FOOD•E•Z 103

Editing of employee information

FOOD•E•Z 104

Tracking of business statistics

FOOD•E•Z 105

List of inventory amounts for each ingredient sorted by category

FOOD•E•Z 106

Manual changing of inventory amounts for bananas

FOOD•E•Z 107

Manual ordering of inventory through the application

FOOD•E•Z 108

The order tab for buffalo sauce

FOOD•E•Z 109

The waiter’s view of the menu category selection page

FOOD•E•Z 110

Displaying the appetizers

FOOD•E•Z 111

Removal of allergens/undesired ingredients from item in order

FOOD•E•Z 112

Setting a special request for an item in the order

FOOD•E•Z 113

Specifying the brand of a fountain drink in the order

FOOD•E•Z 114

Bartender’s view of the drink containing a special request

FOOD•E•Z 115

Waiter’s view of the order progress percentage

FOOD•E•Z 116

Host’s view of customer table information, including customer passcode

FOOD•E•Z 117

Host’s view of the customer queue for seated and waiting customers

FOOD•E•Z 118

Waiter and busboy view of the floor plan

FOOD•E•Z 119

Waiter’s view of the bill page

FOOD•E•Z 120

Details of Employee Web Portal

The employee portal is a means for restaurant management to add an element of automation to the

scheduling process by allowing workers to log in online and make use of features such as taking

shifts, dropping shifts, and viewing upcoming shifts.

For stored data (i.e all shifts), MySQL was used as the database language of choice. Different

databases represent the type of employee including waiters, chefs, etc. Each database has seven tables

corresponding to each day of the week. Under each table, there exists a row for each date. For

example, under the "sunday" table, three of the rows would coincide with 5/3/15, 5/10/15, and

5/17/15. Each row has ten different columns - an ID (auto incrementing for each entry), a date, and

four pairs of a one character boolean matched with multi character "username" field.

The reason for these four pairs is that there are four shifts per day in the restaurant hours and

scheduling: 12p-3p, 3p-6p, 6p-9p, and 9p-12a. The boolean for the corresponding shift serves to show

whether the shift has been taken. If the boolean is false, the matching username is NULL, and if the

boolean is true, the matching username field is populated with the username of the employee that

picked up the shift.

These data fields are later used in the frontend to show those accessing the portal the names of the

employees which have taken certain shifts, and it is especially helpful for the manager. One such case

is when utilizing "View Upcoming Shifts" - PHP cycles through the database to appropriately print all

shifts coming up in the week relevant to the employee which requests the information.

The front-end was primarily implemented using HTML, CSS, and JavaScript. One of the things

required in the implementation was to bridge the gap between front-end and back-end due to the

highly supported accessibility. As an example, if we consider "Take Shift" buttons that pair with

shifts around the page, upon clicking the button, the database needs to be updated with relevant

information and forcing a page reload. We solved this problem by making use of AJAX, or

Asynchronous JavaScript and XML.

AJAX enabled interaction with back-end structures with nearly any kind of user action on the front-

end. This meant that buttons, links, and the menu were all fair game in actively editing data and

running PHP catalyzed by the user. It is important in this type of website that AJAX is asynchronous;

by leaving the browser unlocked, user activity remains unmitigated while the database is receiving

requests and being manipulated.

A large aspect of the automation involved in the website was that when a user logged in, their local

time was stored as a persisting session variable in PHP. Independent of one moving around or flipping

through weeks of shifts, the time remained as a global variable its main purpose being to create a

FOOD•E•Z 121

minimal maintenance model. As a result, an assortment of features blended in as convenience and

ease of use.

The user is always presented with their current week of shifts when logging in by calculating the last

Sunday (start of the week) from their date. Dropping shifts (also enabled by AJAX) is only possible

forty-eight hours before the shift; the reasoning here was to allow time for management to find a

replacement. It is inferred that anything sooner than forty-eight hours would rarely be enough time to

properly populate all shifts that need to be taken. Shifts only from the current week and next week are

open for interaction. Beyond that, shifts are not available so that users do not pick up shifts weeks in

advance. For fairness, the next-next week opens up on Sundays at 12am.

On the topic of fairness, another feature which strongly supports this notion is that of implementing a

hard cap for maximum hours allowed per employee in a week. It is set to twenty four, and employees

are not able to take anymore shifts in a particular week once they have twenty four hours scheduled

for that week; instead, they receive an informative popup to remind them of this cap.

In the scheduler, switching week functionality (i.e next week, previous week) is handled by keeping

an ID number as a global, persisting variable. AJAX updates this when the user clicks the

corresponding button to increment or decrement the ID so that the user is shown the appropriate

week.

Employees other than the manager view the schedule for their type (i.e chefs see the chef schedule,

waiters see the waiter schedule, etc.) while the manager can view the schedule for any type of

employee. This is to enable proper management by giving them an interface to cleanly see any

unclaimed shifts for the week.

Design of Tests

Manager:

Test-Case Identifier: TC-01

Function Tested: addToMenu(string itemName, double Price): bool

Pass/Fail Criteria: Test will pass if a new Item is added to Menu List.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Item will be added to the menu.

If similar name and price is already there, it will return

false. If only price is different it will update Price and

return true.

FOOD•E•Z 122

Test-Case Identifier: TC-02

Function Tested: removeFromMenu(itemInfo* i): bool

Pass/Fail Criteria: Test will pass if an existing Item is removed from Menu List.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Item will be removed from the menu.

If similar name is already there, it will return true and

remove item. If this item is not located on menu it will

return false and do nothing.

Test-Case Identifier: TC-03

Function Tested: hire(eInfo* e): bool

Pass/Fail Criteria: Test will pass if an employee is added to the database.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Employee will be added to the database.

If employee info is correct or modified from a previous

employee it will update database with employee and

function returns true.

(Employee is just on system still pending hiring process

must be authorized later once more)

Test-Case Identifier: TC-04

Function Tested: fire(eInfo* e): bool

Pass/Fail Criteria: Test will pass if an employee is removed from the database.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Employee will be added to the database.

If employee info is correct from a previous employee it

will update database with employee and return true.

If information does not match that on system it will return

false and do nothing.

(Employee is just on system still pending firing process

must be authorized later once more after legal procedure

and severance package)

FOOD•E•Z 123

Test-Case Identifier: TC-05

Function Tested: Business Stats in Database (UC-2)

Pass/Fail Criteria: Test will pass if change in expenses, salaries and viewing of profit/loss occurs.

Test Procedure Expected Results

1. Enter a salary for a given employee

2. Enter a new expense in database

3. View Profit/Loss

Salary will be changed.

Expense will be added.

Profit/Loss Sheet will be viewed

FOOD•E•Z 124

Chef:

Test-Case Identifier: TC-06

Function Tested: addToMenu(string itemName, double Price): bool

Pass/Fail Criteria: Test will pass if a new Item is added to Menu List.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Item will be added to the menu.

If similar name and price is already there, it will return

false. If only price is different it will update Price and

return true.

Test-Case Identifier: TC-07

Function Tested: removeFromMenu(itemInfo* i): bool

Pass/Fail Criteria: Test will pass if an existing Item is removed from Menu List.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Item will be removed from the menu.

If similar name is already there, it will return true and

remove item. If this item is not located on menu it will

return false and do nothing.

FOOD•E•Z 125

Test-Case Identifier: TC-08

Function Tested: viewQueue(): void

Pass/Fail Criteria: Test will pass if the queue is successfully displayed

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Queue is shown when the chef selects the view queue

option in their interface

Queue is not displayed when the chef selects the view

queue option in their interface.

Test-Case Identifier: TC-09

Function Tested: updateQueue(): void

Pass/Fail Criteria: Test will pass if the progress of an order is successfully updated.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

The progress indicator percentage of an order is updated

when the function is called, a value of true indicating

success is returned.

The progress indicator percentage of an order is not

updated when the function is called, a value of false

indicating failure is returned.

FOOD•E•Z 126

Waiter:

Test-Case Identifier: TC-10

Function Tested: placeOrder(): bool

Pass/Fail Criteria: The test will pass if an order is successfully placed to the chef’s queue.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

Information about the order is processed and sent to the

chef’s queue. The function placeOrder() will return true.

The menu item cannot be added, i.e. out of stock. The

function placeOrder() will return false.

Test-Case Identifier: TC-11

Function Tested: cancelOrder(orderInfo* o): bool

Pass/Fail Criteria: The test will pass if the return value is true and the placed order is canceled.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

The placed order is canceled and removed from the chef’s

queue. The function returns true.

The chef has set the placed order from “In Progress” to

“Completed” and is awaiting pick-up from the waiter. The

order cannot be undone, and the function returns false.

Test-Case Identifier: TC-12

Function Tested: viewMenu(): void

Pass/Fail Criteria: The test will request the system to display the menu on the waiter’s interface.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

The menu items are displayed on the waiter’s interface.

No menu items are shown.

FOOD•E•Z 127

Test-Case Identifier: TC-13

Function Tested: viewTables(): void

Pass/Fail Criteria: The test will display all tables in the restaurant and their occupancy statuses on the waiter’s

interface.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

On the waiter’s interface, a diagram of all the tables in the

restaurant are displayed with corresponding colors to

distinguish if a table is occupied or available: red signifies

that a table is occupied, whereas green signifies that a table

is available.

The system fails to retrieve data about the tables and their

statuses.

Busboy:

Test-Case Identifier: TC-14

Function Tested: cleanTable(): bool

Pass/Fail Criteria: The test will pass if a dirty table’s status changes to clean and the function returns true.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

The busboy taps the button to change the status of the table

after cleaning it. The status of the table is changed to

“Clean”.

The busboy tries to change the status of the table to

“Clean” but the table is already clean, so the function

returns false.

Test-Case Identifier: TC-15

Function Tested: viewTables(): void

Pass/Fail Criteria: The test will pass if the tables and their statuses are displayed on the busboy’s interface.

Test Procedure Expected Results

Call Function (Pass)

Call Function (Fail)

The tables and their statuses are displayed on the busboy’s

interface.

The system cannot retrieve data about tables and their

statuses.

FOOD•E•Z 128

Employee:

Test-Case Identifier: TC-16

Function Tested: verify(eInfo* e): bool

Pass/Fail Criteria: The test passes if the employee’s information is successfully verified.

Test Procedure Expected Results

Call Function (Pass) with employee login information that

is correct, meaning the password is the one that is

associated with the login identification number that was

entered.

Call Function (Fail) with an incorrect combination of login

information and password.

The system recognizes the combination of password and

login identification number, the system moves on to

display the corresponding interface that is associated with

the position of the employee, true is returned by the

function since login was successfull.

The system fails to recognize the information, and returns

false as the login is unsuccessful.

Test-Case Identifier: TC-17

Function Tested: takeShift(sInfo* s): bool

Pass/Fail Criteria: The test will display all tables in the restaurant and their occupancy statuses on the waiter’s

interface.

Test Procedure Expected Results

Call Function (Pass) on an sInfo object that is present in

the list of shifts that are up for coverage

Call Function (Fail) on an sInfo object that is not present in

the list of shifts that are up for coverage

The sInfo* s object containing the shift information should

be added to the list of shifts for the employee that called

the function, true should be returned since it was

successful.

The list of sInfo* shift information for the specific

employee should remain the same as it was prior to the

function call, since this sInfo object is not present in the

list of shifts for coverage. The function should return false

since unsuccessful.

FOOD•E•Z 129

Test-Case Identifier: TC-18

Function Tested: placeShift(sInfo* s): bool

Pass/Fail Criteria: The test will display all tables in the restaurant and their occupancy statuses on the waiter’s

interface.

Test Procedure Expected Results

Call Function (Pass) with a sInfo object that is in the

employee’s list of shifts.

Call Function (Fail) with an sInfo object that is not in the

employee’s list of shift

The sInfo object that is passed as argument now appears in

the list of shifts that are available for coverage, and is no

longer present in the employee’s list of shifts. The function

returns true since the shift was successfully placed up for

coverage.

The system returns false, since the sInfo object is not

present in the employee’s list of shifts, meaning that they

cannot put it up for coverage because it does not exist or it

does not belong to them.

Test-Case Identifier: TC-19

Function Tested: viewInfo(): void

Pass/Fail Criteria: The information for a given

Test Procedure Expected Results

Call Function (Pass) from the employee interface of an

employee who has information to display.

Call Function (Fail) from the employee interface of an

employee who does not have information to display, such

as a new hire.

The system displays the information associated with an

employee’s identification tag.

The system does not display the information associated

with an employee’s identification tag.

FOOD•E•Z 130

Controller:

Test-Case Identifier: TC-20

Function Tested: DBConnection(): void throws exception

Pass/Fail Criteria: The test passes if a the controller is able to connect to and access the database.

Test Procedure Expected Results

Call function (Pass) as the system initializes while system

is connected to network.

Call function (Fail) as the system initializes while system

is not connected to network.

Controller is able to connect to the database

If connection cannot be established, function throws

exception.

Test-Case Identifier: TC-21

Function Tested: DataRequest(): void throws exception

Pass/Fail Criteria: The test passes if a the controller receives valid data.

Test Procedure Expected Results

Call function (Pass) when the controller is connected to the

database.

Call function (Fail) when the controller is not to the

database

Controller is able to receive data from the database

If request function fails, function throws an exception.

Test-Case Identifier: TC-22

Function Tested: DataUpdate(): void throws exception

Pass/Fail Criteria: The test passes if a the controller is able to update data in interface and database

Test Procedure Expected Results

Call function (Pass) when the system is fully initialized.

Call function (Fail) when the controller has not established

the needed connections.

Controller is able to update information in the database and

interfaces.

If update fails, function throws exception.

FOOD•E•Z 131

Test-Case Identifier: TC-23

Function Tested: DataAnalyze(): void throws exception

Pass/Fail Criteria: The test passes if a the controller is able to run algorithms on data and store results in database.

Test Procedure Expected Results

Call function (Pass) when the system is fully initialized.

Call function (Fail) when the controller has not established

the needed connections.

Controller is able to run needed algorithms and updates

information in database.

If analysis fails, function throws exception.

Test-Case Identifier: TC-24

Function Tested: InterfaceConnection(): void throws exception

Pass/Fail Criteria: The test passes if the controller is able to connect to and access interfaces(through the request

handler).

Test Procedure Expected Results

Call function (Pass) when the system is fully initialized.

Call function (Fail) when the controller is not connected to

the network.

Controller is able to connect to the interfaces.

If connection cannot be established, function throws

exception.

Request Handler:

Test-Case Identifier: TC-25

Function Tested: processRequest(): void

Pass/Fail Criteria: The test passes if the request handler successfully processes the request to the controller from an

interface or vice-versa.

Test Procedure Expected Results

Call function (Pass) when the system is fully initialized.

Call function (Fail) when the request handler is not

connected to the network.

Request is processed as needed.

If request cannot be processed, function notifies calling

interface/controller and request handler waits for/processes

next process in queue.

FOOD•E•Z 132

Test-Case Identifier: TC-26

Function Tested: getRequest(): void

Pass/Fail Criteria: The test passes if the request handler successfully gets a request being sent from one of the

interfaces or the controller

Test Procedure Expected Results

Call function (Pass) when the system is fully initialized.

Call function (Fail) when the request handler is not

connected to the network.

Next request is received by the request handler.

If request cannot be processed, function notifies calling

object and request handler waits for/gets next request.

Test-Case Identifier: TC-27

Function Tested: thread(): void throws exception

Pass/Fail Criteria: The test passes if the request handler successfully creates a new thread to process a request.

Test Procedure Expected Results

Call function (Pass) when the system is fully initialized.

Call function (Fail) when the system reaches max number

of threads (out of memory).

New thread is created and able to process a given request.

If thread creation fails, function will throw exception and

close system (can indicate memory leak).

FOOD•E•Z 133

Test Coverage:

The tests cover most essential classes implemented and some useless as well as synchronization of the database

to the application. More tests will be designed when we see it needed in the future as we develop more into the

app.

Integration Testing Strategy

We deemed our system to be best suited for bottom up testing. This approach is more practical due to the

structure of the modules in the application. For instance, if we consider the possibility that there could be a

problem with the interaction between the chef and waiter, i.e hiccups in the waiter sending the chef orders. If

we take a different approach to testing, it would be much more difficult to understand whether that issue comes

down to the actual interaction or integration of the modules or if it is a problem with how the individual classes

were originally designed.

Bottom up testing alleviates this quite a bit by first solidifying the foundation and moving onto the top of the

system. This comes down to hierarchy of the classes and more of how they relate to each other attribute wise

rather than the interactivity. By understanding the relationships between the objects in the system, a bottom up

approach makes testing more efficient and straightforward in that you quickly narrow down where the problem

lies prepping it for remedy.

A concrete way of representing the components of our system and how they would relate in this context would

be that we test each employee’s independent, personalized job tasks in the application first – example being,

for the chef, we would test the implementation of the queuing system and add make sure that it updates the

server when the chef proclaims that a dish is cooked. After going through individual functionality, we test the

features which call for interactions between more than one object or class, i.e the busboy being notified to clean

a table after a party has paid their check and made their leave.

FOOD•E•Z 134

Project Management and History of Work

Merging and Collecting Contributions:

All information is first gathered on a google doc and each member contributes his part of the project onto the

google doc. A team member then takes all information and forms a PDF separately to keep consistent with the

rest.

Problems:

For computer engineering students, our workload this semester required excellent management. Another

problem was that we had to learn the necessary skills in order to program the application, since we were not

taught exceedingly relevant skills in the pre-requisites for the course. Coordinating times to meet and discuss

our progress was difficult since some of us have very different schedules.

History of Work:

January 25 - January 29:

This team was made during the break before the semester started. We began to look through which projects

seemed interesting and doable with the school schedule we had this semester. Restaurant Automation seemed

to be the best decision due to the fact that one of our fathers’ used to own a franchise and had an adequate

amount of information of what is needed in a software like this. It also seemed to be the most interesting out of

all the projects and do able in a sense where we can learn to program and make it functional. The proposal was

finally written after several meetings and additions to google docs on what to add to this previously made idea.

January 30- February 22:

Feedback was given after submitting the proposal allowing us to continue in our report. We began to structure

the report into parts and split features between the members. Each member was responsible of his own feature

unless his feature was not included in the part that was being worked on thus he would help with the other

teams. We finally were able to gather a report and complete Report 1.

February 23 - March 14:

We began analyzing lectures and previous reports to understand the Requirements for this report as it all

seemed to be new information that we haven't encountered before. As usual our team would gather info on a

doc to discuss easily and communicate using GroupMe to finalize our plans. The report ended and finally

submitted. We began implementation during this period.

March 15 – April 29:

FOOD•E•Z 135

During this period we continued to work diligently on the documentation and implementation for our

application in preparation demo 1. Then we continued to work on the documentation for the submission two

days after the demo.

April 30 – May 2:

After a successful demo 1, we continued to improve upon our program and analyze our problem frame for key

features that would highlight our solutions to the restaurant automation problem. We continued to work on the

documentation as well, and completed the documentation for report 3, after demo 2.

Current Status:

We are currently finishing up report 3, and gathering the required contents for the Electronic Project Archive.

Future Status:

Though the second demo is over, we look forward to continue improving upon our product in the hopes of

having a real marketable product in the near future and improving our skillset as developers and software

engineers.

FOOD•E•Z 136

Plan of Work (Gantt Chart):

FOOD•E•Z 137

End of Project Responsibility Breakdown:

Sujay Bandarpalle and Julian Esteban:

 Microsoft Azure database setup and interaction

 Waiter floor plan and table status settings

 Waiter order placement, allergens or undesired ingredients removal from selected menu item, menu

item note for special requests

 Food queue interaction by chef and order progress percentage tracking for waiter

 Automated inventory updating and reordering, manual inventory updating and reordering

 Tracking of business statistics (revenue, expenses, and profits)

 Host interface, waiting party list, and automated seating algorithm

 Log in and user authentication of employees and customers

 User interface and user experience throughout the application (UI/UX)

Jonathan Du and Paolo Umali:

 Customer order progress portal

 Busboy interface

 Busboy floor plan

 Manager addition and removal of employees

 Research to obtain ingredients for menu items

 Bill total calculation

 Waiter interface

 Menu pages and item selection

Kanav Tahilramani and Omar El Warraky:

 Employee portal

 Employee portal database

 Employee automatic scheduling algorithm and manual override for schedule changes

 Bartender Interface

 Drink Preparation Queue

 Removal of items from bill

 Removal of items from new order

 Item addition confirmation

FOOD•E•Z 138

The Coordination of the integration will be a team effort where everyone helps each other while focusing on

their own functions.

FOOD•E•Z 139

References:

1) Group 4’s Report 2013 on format of Document:

 http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2013-g4-report3.pdf

2) The Software Engineering textbook by Ivan Marsic. Link at:

 http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

3) Wikipedia Definition of User Stories:

 http://en.wikipedia.org/wiki/User_story

4) Group 4’s Report 2014 on format of Document:

 http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2014-g4-report3.pdf

5) Group 1’s Report 2013 on format of Document

 http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2013-g1-report3.pdf

6) UML Design: gliffy.com

7) Report1 Appendix A by Professor Marsic:

 http://www.ece.rutgers.edu/~marsic/Teaching/SE1/report1-appA.html

http://en.wikipedia.org/wiki/User_story
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2014-g4-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2013-g1-report3.pdf
http://gliffy.com/
http://www.ece.rutgers.edu/~marsic/Teaching/SE1/report1-appA.html

