
1

14:332:452:01 Software Engineering Spring ‘14

Group 4

Final Report

WHY WAIT

A Restaurant Automation System

http://mitulgada.wix.com/whywait

Group Members:

 Amgad Armanus

Jake Chou

Mitul Gada

Avni Patel

Nirjan Thayaparan

Diego Urquiza

 Christian Youssef

http://mitulgada.wix.com/whywait

2

Project Management

All team members contributed equally.

3

Summary of Changes

● Functional Requirements - Use cases

● Effort Estimation

● Domain Analysis - Concept Definitions and Traceability matrix

● User interface design and implementation

● Design pattern

● Future work

4

Table of Contents
1) Customer Requirements ..6

a.) Problem Statements ...6

2) Glossary of Terms ..13

3) System Requirements ..14

a.) Enumerated Functional Requirements ..15

b.) Enumerated Non-Functional Requirements ..16

c.) On- Screen Appearance Requirements ..17

4) Functional Requirements ...18

a.) Stakeholders ..18

b.) Actors and Goals ..19

c.) Use Cases ..20

i) Casual Descriptions ..20

ii) Use Case Diagram ...22

iii) Traceability Matrix ...23

5) Effort Estimation ...30

6) Domain Analysis ...37

a.) Domain Model ..37

i) Concept Definitions ...37

ii) Association Definitions ...38

iii) Attribute Definitions ...40

iv) Traceability Matrix ...42

v) Domain Model Diagram ...43

b.) System Contracts ...44

c.) Mathematical Models ..46

7) Interaction Diagrams ..50

a.) System Design Pattern ...52

8) Class Diagram and Interface Specification ...54

a.) Class Diagram ..54

b.) Data Types and Operation Signatures ..55

5

c.) Traceability Matrix ..66

9) System Architecture and System Design ...66

a.) Architectural Styles ...66

b.) Identifying Subsystems ...68

c.) Mapping Subsystems to Hardware ...69

d.) Persistent Data Storage ...69

e.) Network Protocol ..69

f.) Global Control Flow ...70

10) Algorithms and Data Structures ..72

a.) Algorithms ..72

b.) Data Structures ..74

11) User Interface Design and Implementation ...75

12) Design of Tests ...80

13) History of Work, Current Status, and Future Work ...88

a.) Merging Contributions From Individual Team Members ..88

b.) Project Coordination and Progress Report ...88

c.) Breakdown of Responsibilities ..92

14) References ..97

6

1) Customer Requirements

a.) Problem Statements

The following are problems faced in restaurants today and are divided by the different

positions.

Chef

Problem -Because chefs must constantly remain in the kitchen, they cannot be bothered with

the placement time of orders. There is a great inefficiency between the time customers order

food to the time when they receive the food. The waiter has to take the order and deliver that

order to the kitchen, then the chef must make sure that that meal are prepared on time while

simultaneously preparing other meals as well. The food then sits in the kitchen until it is picked

up by the waiter for table delivery. The inefficiency is even more faulted since there are

multiple customers who face these same problems. For the chef, whose priority is to cook the

food, it is arduous to worry about these external issues especially as there is a multiple of

customers and just as many meals to cook.

Solution - The chef would want a system that would allow them to get orders automatically,

prioritize the meals ordered, and then notify a waiter that the meal is ready to be taken.

Problem - Between cooking and taking orders, there is a ton of room for error when it comes to

supplies. One day there can be too many carrots and another there can be too little onions. This

can entail a huge loss in profit since a customer can order something and the supplies may not

be present. There could also be a loss of profit if we oversupply and the ingredients are

essentially wasted. Lastly, there are certain days of the week when more supplies are needed

than they are on other days. These days, the chances of not having the supplies and evidently

losing profit from making the food is more likely.

7

Solution - It would be very beneficial if chefs could log the amount of ingredients used and what

is needed. Also if there was a way to analyze when more supplies are needed on certain days,

this would make it easier and take away the guesswork on how much is needed.

Problem - In the kitchen, the chef is preparing multiple meals all at the same time. Be it a

gourmet salmon dish or fresh bread, the chef must focus on each detail to ensure quality, but

also making sure it is delivered as quickly as possible. Thus, a problem arises when the chef

must focus on cooking meals and ingredients with different timings while simultaneously

estimating the time for each to complete. With all the different foods that all begin cooking at

different times, it is hard for the chef to keep track of the times of the food, which can lead to

reduced quality in meals and slow down preparations for upcoming meals.

Solution - The chef would want the system to assist in keeping tabs on when multiple

ingredients or meals are being cooked for a certain amount of time, and when they have

completed. This way chefs would not have to worry about cooking time and could instead be

notified when food is finished cooking.

Customer Sign-in

Problem - Restaurants these days are always trying to find a way to satisfy customers. One

thing they always look at is the waiting and seating arrangements in the beginning. Often when

restaurants are packed, customers that come in have to wait. The problem is, restaurants don’t

know exactly how long it will take so they estimate it. Restaurants want to be more organized

with their table management and keep track of their customers. This also leads to another

problem with the status of the tables. Restaurants want to know if tables are ready to clean

immediately so they can be attended to. Restaurants will also want to know how long

customers have been sitting at the table. This will help tell them if they are almost done so the

busboys can clean the table. Overall the problem restaurants are trying to fix these days is the

satisfaction of the customers by giving them seating faster, and the organization of all the

8

tables so they can be attended faster.

Solution - A solution that is appealing to the restaurant will to have a customer seating PC that

will be in GUI. This customer seating PC will be in real time so it can show not only the

customers, but the restaurant workers all the tables occupied or not. This way new customers

can pick the available tables to their liking. For example, some customers might prefer sitting

near a window, or booth, etc. And since this will be in real time, the exact times of when

customers were seated will show up. This will overall give a much more accurate estimate of

how much longer customers will take at the table since the time is there. Customers can see

this when arriving and have a good idea when customers might leave and restaurant workers

can use this information to inform busboys that a table is about to be ready to clean. This

organized system will not only help restaurant workers being faster and efficient, but improve

customer satisfaction.

Cashier

Problem - When doing transactions, restaurants aim for a fast and errorless execution to make

it easier for the customer. One thing restaurants are worried about is receipt handling. Some

customers might prefer an electronic form for a receipt so they won’t lose the hard copy. Many

restaurants only offer hard copies for receipts which may be unsatisfying for some customers.

Another problem is the amount of change given. Often times the receptionist takes longer

handling the change and might even make a mistake forcing to fix the issue which ultimately

slows down the business. It is in the restaurant’s best interest to handle the final transaction

professionally to satisfy the customers and to organized the business.

Solution - A simple solution that restaurants will love is an automated cashier tablet that will

have an option to either print out a receipt, have it emailed, and even both if wanted. This

option will be appealing to all customers. The customers who want the hard copy can get it and

the ones who often lose things or unorganized are able to get an electronic form to access

easily. This also helps the restaurant be organized since they can keep the files tabbed and

9

easily accessible as well as saves money by printing out less receipts. Another problem it solves

is the slower process and human error. By having an automatic change dispenser, it eliminates

the error of the receptionist giving out the wrong change. This not only speeds up the process

but also saves the transaction time which ultimately improves customer service.

BusBoy

Problem - A lot of times, busboys would be standing around waiting for tables to be cleaned

once the customers leave. Restaurants around would want busboys to clean the tables as soon

as the customers left to speed up the service. Also, sometimes the waiter will also need help

bringing out dishes to customers with large parties. Busboys will be needed to help out the

waiters. Restaurant’s want to fix the problem where the busboy will always be ready and there

fast to help out the customers.

Solution - A solution restaurants will need is the busboy tablet. This tablet will notify the

busboys of the tables needed to clean immediately so they can get straight to it. This will speed

up the business and improve customer satisfaction since the tables will be ready faster. The

tablet will notify the busboys of all duties needed to perform which improves efficiency.

Another example is when a waiter needs help to carry food out. The tablet will tell the busboys

and they will go to help the waiters serve food making the restaurant an altogether team

helping out one another to improve the business.

Manager

Problem - Restaurant managers spend a lot of their time managing inventory and manually

counting food items at the end of each day in order to record data in the log book. Managers

also generate payroll for each employee at the end of each week. Although it is difficult to track

popular food items by manually going through the order receipts and counting the number of

times an item is ordered, managers need a simple way to get statistics about food items,

employee performance, restaurant revenue and average wait times.

10

Solution - We believe that managers should be able to view statistics about the restaurant more

efficiently without doing the tedious work of gathering the information themselves. Our tools

will allow the manager use these statistics to make the best business decisions. Whether its to

discontinue an unpopular menu item or to speak to an employee about their lack of

performance or attitude our tools will provide an accurate representation on how the

restaurant is functioning. An inventory system that will monitor incoming orders and adjust the

inventory accordingly is ideal for accomplishing these task. It will also allow the manager to

adjust the inventory manually whenever they need to. An automated system can send a low

stock alert to the manager whenever an item reaches a certain threshold.

Problem- Managing payroll can be difficult for any one person to precisely handle. Usually the

Manager is in charge of payroll but he has a lot of other responsibilities to handle beside

managing hours. And during stressful/hectic days the manager has a lot of deal with and has a

higher chance of making mistakes on an employee’s payroll. Not to mention the old fashion

way of doing payroll is with paper and pencil. The same usually goes for the calendar schedule

of all employee shifts. Managing the calendar can at times be a big hassle especially when shifts

need to be moved around and/or updated.

Solution- Technology is the way to go for more a precise and accurate database of information.

Using a server will keep track of every employee’s work hours that will stored into a database

that will be backed up. This means that manager can easily access all this information without

having to worry about updating unless he needs to. Using automatic software that updates

itself reduces the chance of pencil and paper error alongside saving the manager a lot of time

he can use on running the restaurant instead. Using a calendar interface is far more simplistic,

easy to use, and cleaner to use and manager. The calendar can easily be shared among workers

and offer the ability to allow workers to cover or change shifts in case of emergencies.

11

Waiter

Problem- In a customer service oriented business, customer satisfaction is the greatest asset. A

common problem restaurants face is customers having to wait a long time to be able to speak

with their waiters. This is caused by many issues: the wait staff might not be the fastest people

around, they are constantly going back and forth to the kitchen so they aren’t around to be able

to help customers, also they have so many things to do at once so, sometimes they forget that

a customer didn’t get their food or something. These are all things that affect a restaurant’s

customer satisfaction rating because no one likes having to wait for their food. When people

come to a restaurant, they come hungry. So serving them as soon as possible is essential

otherwise customers will be unhappy.

Solution- To fix this, waiters should get some sort of reminder every few minutes to check the

tables that they were assigned to. Also, it would be great if waiters could place and check the

status of the orders without having to go to the kitchen. Anything to keep the waiters on the

floor and out of the kitchen would help.

Problem- Another issue is sometimes waiters don’t have the best handwriting. This creates

miscommunication between the customers and the chefs. Customers who order one thing and

get something different, they would not be happy with that. Also, this significantly decreases

profit margins because food is thrown away and more money is spent making another order.

Solution- It would be good if there could be something to make communication easier between

the waiters and chefs.

Problem- Sometimes another problem is the wait staff doesn’t have the entire menu

memorized. So, if a customer has a question about what ingredients are in the food, waiters

have to go to the kitchen to ask the chefs. This is a big waste of time, and time is money in any

industry. Also, the menu changes from time to time so its difficult to keep track of what is

12

actually on the menu.

Solution- It would be beneficial to have a menu with the ingredients listed so that the waiter

wouldn’t have to make the extra trip to the kitchen every time a customer has a question.

Problem- Another matter in restaurants is a customer complaining about the wait time after

their done eating. At this point customers want to leave as soon as possible and waiters are

generally busy taking care of other customers. This process takes a long time. Waiters will come

to the customers with their bill and in the mean time take care of some other work. Then they

go back to get the payment, take care of some more work, and then finally give the customer a

chance to give a tip. The entire process takes anywhere from 5-15 minutes. Also, a lot of times

restaurants will get big groups and splitting the bill is a hassle. Sometimes one person gets

charged for another person’s bill or the split is incorrect. This is very taxing on the waiters who

are thinking about the other tables they are waiting on and sometimes customers just walk

away without paying. This increasing problem of theft is solely due to the latency between

waiters giving the bill and getting the payment from customers.

Solution- If there is a way for the waiters to immediately charge the customers for their tab

with a portable credit card reader that would allow the waiters to split the bills that would

make it easier for both parties. This would decrease theft because payment would be taken on

the spot from the customers.

13

2) Glossary of Terms

Technical Terms

Database: the file where the menu items, inventory, scheduling and orders are stored.

Order Queue: a list of orders that are placed in first in, first out order. These orders are sent to

the Chef PC when the chef can prepare them.

Inventory System: a system that can be accessed by the manager or the chef, this system is

used to manage the inventory of food items.

Walk-in Queue: a list of table reservations that are placed in first in, first out order. These

reservations are made on the Customer PC when the customer walks into the restaurant.

Graphical User Interface (GUI) - interface that allows allows easier user communication via

pictures and texts

Non-Technical Terms

Customer: Any person that orders an item from the menu or walks into the restaurant.

Waiter: The person that takes the orders of the customers, enters the orders into the system

and delivers the orders to the customers.

Manager: The person that is responsible for inventory management, employee scheduling,

payroll and customer satisfaction.

14

Chef: The person that receives the orders on the Chef PC and prepares the food.

Cashier: The person that charges the customers after their meal.

Ingredient: Inventory items that are used to prepare menu item.

3) System Requirements

Figure 1.
This is the general flow of how the restaurant will work with the Server. Each peach rectangular object represents a

15

tablet/device that will communicate with the server

a.) Enumerated Functional Requirements

Identifier PW Requirement

REQ - 1 1 The customer sign in PC shall keep track of the
customers at the table and record the time they’ve
been waiting.

REQ - 2 1 The cashier tablet shall have an option for the
customer on what kind of receipt they want (printed
copy or email)

REQ - 3 2 The busboy tablet shall notify the busboy what tables
to clean.

REQ - 4 4 The chef PC will see customers meals prioritized by
order time(when did they order)

REQ - 5 5 The chef PC shall receive orders from waiters

REQ - 6 3 The chef PC must be able to notify the waiter that a
meal is ready to be delivered

REQ - 7 2 The chef PC must be able to set cooking timers and
be notified when they are done

REQ - 8 4 The chef PC should notify the system to update
inventory when a meal is ready to be delivered

REQ - 9 2 The manager PC shall be able to analyze and predict
supply usage

REQ - 10 3 The manager PC will keep track of all employee hours
for payroll alongside a calendar GUI with everyone’s
work schedule

REQ - 11 4 The manager PC will dynamically update inventory as
orders ready to be delivered. Also, when ordering
shipments of supplies, quantity of each supply with
be updated.

REQ - 12 1 The manager PC will have statistics on food
popularity and employee performances.

16

REQ - 13 4 The manager PC will have the ability to add, edit or
remove items from the menu.

REQ - 14 2 The manager’s PC shall alert the manager when the
inventory has a low stock of a particular item.

REQ - 15 2 The manager’s PC shall keep track of daily, weekly,
monthly, and annual revenue.

REQ - 16 5 The waiter PC will allow the menu to be viewed with

what ingredients are used.

REQ - 17 4 The waiter PC will be able to place separate orders

per customer.

REQ - 18 1 The waiter PC will allow bills to be split and paid on

the spot with credit card reader.

REQ - 19 1 The waiter PC will send reminders to user to go

check on table periodically.

REQ - 20 3 The customer sign in PC will let waiter PC know

which customers came first.

REQ - 21 4 The waiter PC must be able to notify the chef PC of
any food allergies/special instructions

b.) Enumerated Non-Functional Requirements

Identifier PW Requirement

REQ - 22 1 The program should be aesthetically pleasing and
meet the standard of the restaurant.

REQ - 23 5 Security measures need to be made to make sure
non-users do not login.

REQ - 24 4 Users should read the manual before using the
program.

REQ - 25 5 The system should be backed up in case of failures to
avoid losing inventory count and orders.

17

REQ - 26 5 The system should have a low mean time between
failures(MTBF)

REQ - 27 2 Time between different screens on the program
should be minimized.

REQ - 28 1 The system should work on any type of device or PC.

REQ - 29 3 The system should be easy to use by users that are
not technologically advanced.

REQ - 30 4 The system should be easy to debug.

REQ - 31 1 The system should be compatible with the assistance
button.

REQ - 32 2 The device each employee uses should be sized
based on what would be most convenient to them.

c.) On- Screen Appearance Requirements

Identifier PW Requirements

REQ - 33 4 The system shall display real time table availability.

REQ - 34 2 The system should display average wait time for the
next available table.

REQ - 35 5 The system shall display menu items, ingredients and
price.

REQ - 36 5 The system shall display the order total price.

REQ - 37 4 The system shall display inventory for the manager
and chef.

REQ - 38 1 The system should display employee schedules.

REQ - 39 4 The system shall display order queue for the kitchen.

REQ - 40 3 The system shall display revenue, employee and
order statistics for the manager.

REQ - 41 3 The system shall display available payment options.

18

REQ - 42 2 The system shall display a comment box for
allergy/special requests.

4) Functional Requirements

a.) Stakeholders

Restaurant Owners: The restaurant owners would be most interested in this system

because it immediately affects their business and he wants to improve efficiency and

customer satisfaction.

Software Designers: The software designers will also be interested since it will be their

job to design it the best to their ability and sell it to people who need it.

Customers: The customers are the ones who will rely on the system to order their food

and for their food to arrive as quickly as possible while also desiring the best possible

restaurant experience

Restaurant Employees: The employees will have an interest in the system because they

will rely on it to ease the burden of their responsibilities and help create more efficiency

within the restaurant

19

 b.) Actors and Goals

 Initiating Actors

Manager: The employee in charge of the restaurant who must manage the system. The

goal of the manager is to make sure the system is up-to-date, properly functioning, keep

track of employee information and activities, and manage the restaurant

Waiter: The employee who must attend to customers and service them. The goal of the

waiter is to take and deliver the orders to the customers.

Chef: The employee who must cook the food. The goal of the chef is to make the food

and maintain ingredients.

Customer: The person who places an order. The goal of the customer is to place their

order and pay for their meal.

Customer Sign-In: The employee who checks in customers. The goal of the customer

sign in is to seat customers faster and efficiently.

Cashier: The employee who processes checks. The goal of the cashier is to make sure

the customer pays their bill in the quickest and most efficient way.

Busboy: The employee who cleans the tables. The goal of the busboy is to clean a table

20

right after a customer leaves and to help the waiters delivering food if necessary.

Participating Actors:

Database: Stores the data of the system. The goal of the database is to update

inventory, keep track of employee information, and manage any other data

Timer: Keep track of cooking time for an order. The goal of the timer is to make sure an

order/ingredient is cooked properly

c.) Use Cases

i) Casual Descriptions

Use Case # Use Case Name Description

UC -1 UpdateTable The waiters can change the
status of all tables to
available or not

UC -2 SelectTable The tables will be shown and
customers can select which
one to sit

UC -3 SelectReceipt The option of receipt with
either paper or email is given.

UC - 4 StartTimer The chef will start the timer
to cook an order

UC - 5 EndTimer The timer will end, notifying
the chef

21

UC - 6 ReceiveOrder The chef receives the order
which is automatically
prioritized

UC - 7 OrderReady The order is ready to be
delivered to the customer
and inventory must also be
update

UC - 8 EditOrder The chef can edit any order
or remove them as well

UC - 9 SendOrder Waiter places customer order
to the system

UC - 10 SplitBills Waiter charges customer
using a credit card swiper,
which can be used to split
bills if necessary

UC - 11 ManageCalendar Manager can make changes
to the Calendar GUI in order
to move/add/remove shifts

UC - 12 UpdateInventory Manager can manually
update the Inventory system.
System will also update
inventory as orders are
placed and as supplies are
ordered.

UC - 13 EditMenu Manager can modify menu
items or add/remove an item
to the menu

UC - 14 ViewStatistics Manager can look at all stats
of the restaurant ranging
from food popularity to
payroll

UC - 15 AddEmployee Enter a new employee into
the system

UC - 16 RemoveEmployee Remove an employee from
the system

22

UC - 17 ClockIn Employee clocks into their
shift

UC - 18 ClockOut Employee clocks out of their
shift

UC - 19 UpdateDrinkOrder Bartender can update drink
orders of customers

UC - 20 ViewOrderfromMenus Show how drink orders are
separate from food orders

ii) Use Case Diagram

23

iii) Traceability Matrix

 UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 UC11 UC12 UC13 UC14 UC15 UC16

RQ1 X X

RQ2 X X X

RQ3 X X

RQ4 X X

RQ5 X X X

RQ6 X X X

RQ7 X X X

RQ8 X X

RQ9 X X X

RQ10 X X X

RQ11 X X X

RQ12 X X X X X X

RQ13 X X X X X X

RQ14 X X X

RQ15 X X X X X X X

RQ16 X X

RQ17 X X X

RQ18 X X

RQ19 X

24

RQ20 X

RQ21 X X X

RQ22 X X

RQ23 X X X X X X X

RQ24 X X X X X X X X

RQ25 X X X X X

RQ26 X X X X X X

RQ27 X X X X

RQ28 X X X X X X

RQ29 X X X X X

RQ30 X X X X X X X

RQ31 X X X X X X

RQ32 X X X X X

RQ33 X X X

RQ34 X X X

RQ35 X X X X X

RQ36 X X X X X

RQ37 X X X X X

RQ38 X

RQ39 X X X X

RQ40 X X

RQ41 X X X

RQ42 X X X X

MX
PW 4 4 5 4 5 5 5 5 5 5 4 5 5 5 5 5

25

d.) Fully Dressed Descriptions with Sequence Diagrams

Manager

26

27

Customer Sign-In/Busboy

28

Chef

29

Waiter

30

5) Effort Estimation

 Use Case
Weight

UC - 1 15

UC - 2 10

UC - 3 5

UC - 4 10

UC - 5 10

UC - 6 15

UC - 7 15

31

UC - 8 10

UC - 9 15

UC - 10 5

UC - 11 10

UC - 12 15

UC - 13 5

UC - 14 10

UC - 15 10

UC - 16 10

UC - 17 5

UC - 18 5

UC - 19 10

UC - 20 5

UUCP 195

TCF Technical
Complexity Factor

Weight

TCF perceived
complexity

Complexity
Factor

1 2 5 10

2 1 1 1

3 1 5 5

4 1 2 2

5 1 4 4

6 0.5 3 1.5

7 0.5 3 1.5

32

8 2 4 8

9 1 3 3

10 1 2 2

11 1 1 1

12 1 2 2

13 1 1 1

 TCF total Points 42

 TCF 1.02

ECF Environmental
Complexity Factor Weight

ECF perceived impact CF

1 1.5 4 6

2 0.5 3 1.5

3 1 3 3

4 0.5 2 1

5 1 3 3

6 2 4 8

7 -1 1 -1

8 -1 3 -3

 ECF total points 18.5

 ECF 0.84
5

33

Adjusted UCP 196.865

PF 28

Duration 5512.2

5.2 User Effort Estimation:

Scenario 1:

 Customer Sign in PC

1. Customer wanting to select a table to sit in. (2 taps)

 A. Customer selects the table they want

 B. Customer taps choose table.

 2. Busboy updating the table. (2 taps)

 A. Busboy selects the table

 B. Busboy taps table is available

Scenario 2:

 Manager Tablet

 1. Manager ordering supplies (5 taps)

 A. Manager selects inventory section

 B. Manager selects item

 C. Manager selects order

 D. Manager picks quantity

 E. Manager confirms order

 2. Manager deleting an item (4 taps)

 A. Manager selects inventory section

 B. Manager selects an item

 C. Manager selects delete

 D. Manager confirms the deletion

 3. Manager adding an item (4 taps)

 A. Manager selects inventory section

34

 B. Manager selects add item

 C. Manager types in the item

 D. Manager confirms the addition

 4. Manager adding an employee (multiple taps)

 A. Manager selects employee list

 B. Manager selects add employee

 C. Manager fills out information about employee

 D. Manager confirms the addition

 5. Manager deleting an employee (3 taps)

 A. Manager selects employee list

 B. Manager clicks on employee that he/she wants to delete

 C. manager confirms the deletion

Scenario 3:

 Waiter Tablet

 1. Waiter splitting the bill (3 taps)

 A. Waiter selects table(if not already on the current table)

 B. Waiter selects split bill

 C. Waiter selects how many people to split bill for

 2. Waiter sending the order (multiple taps)

 A. Waiter selects table(if not already on the current table)

 B. Waiter selects food/drink items depending on what the customer asks

 C. Waiter adds/removes toppings from item

 D. Waiter confirms the order

 3. Waiter selects table where customer is sitting (1 tap)

 A. Waiter selects table

 4. Waiter selects receipt (4 taps)

 A. Waiter selects table(if not already on the current table)

 B. Waiter selects pay and charges all customers on respective table

 C. Waiter gives receipt option in form of paper or email

 D. Waiter confirms the option

35

 5. Waiter cancels current order (3 taps)

 A. Waiter selects table(if not already on the current table)

 B. Waiter selects Void

 C. Waiter selects Yes on ‘Are you sure?’ pop up

 6. Waiter quick search (food/drink)items (2 taps)

 A. Waiter selects quick search and can type in any item

 B. Item will appear in menu section where he can select the item

 7. Waiter logs out/clocks out

 A. Waiter selects option

 B. waiter can choose whether he wants to clock out or log out

Scenario 4:

 Any Employee Tablet (hitting the ‘home’ or ‘back key)

 1. Employee clocks in the system (2 tap)

 A. Employee clicks clock in

B. Employee enters his/her own specific code

C. Employee presses done

 2. Employee clocks out of the system (1 tap)

 A. Employee clicks clock out and enters code

 B. Employee enters his/her own specific code

 C. Employee presses done

 3. Employee can check table layout (1 tap) if privileged user

 A. Employee clicks table icon

Scenario 5:

 Chef Tablet

 1. Chef selects item that is ready to be queued for cook timer (1 taps)

 A. Chef toggles a check mark button next to the item that is ready

 2. Chef selects order ready (1 tap)

 A. Chef selects Food Ready: Yes? when current meal is ready for the table

36

 3. Chef switches between Order Pending or Order Complete (1 tap)

 A. Chef can hit the corresponding tab labeled ‘Order Pending’ or ‘Order Complete

Scenario 6:

 Cashier Tablet

 1. Customer wants to pay (4-5 taps)

 A. Customer selects pay transaction

 B. Waiter hits pay button

 C. Select cash or credit

 D. Select paper or email receipt then submit

 E. (if email route) enter email then submit

37

6) Domain Analysis

a.) Domain Model

i) Concept Definitions

Responsibility Type Concept

R-01: Prompt customer to choose what table they would

like to sit at

D Table

R-02: Update status of table (Available, Not Available, Dirty) D Table

R-03: Prompt waiter to go to customer’s table, give menus K Menu

R-04: Prompt waiter to take customer’s order and send to

Chef’s Tablet

K Order

R-05: Notification telling waiter to check on customer’s

table

K customerNotification

R-06: Notification telling waiter to pick up customer’s order

from kitchen

K Order

R-07: Update status of customer’s order (Ready or Not

Ready)

D Order

R-08: Notify Chef of customer’s order K Order

R-09: Notification to manager when items are: almost

finished, almost expired, finished, and expired

K Inventory

R-10: Display list of inventory (including quantity) Inventory

R-11: Change Inventory (add, remove, modify expiration

date)

D Inventory

R-12: Prompt waiter to get payment from customers

including if customer wants to split bill

K Payment

R-13: Prompt waiter to ask customer if they want receipt

printed or emailed

K Payment

38

R-14: Displays employee information (position, status,

wage, contact info, add, remove) as well as status (Working

or Off)

 EmployeeInfo

R-15: Change employee information (position, status, wage,

contact info, add, remove)

D EmployeeInfo

R-16: Change menu (add, remove, modify) D Menu

R-17: Display Statistics Statistics

R-18: Employees can either log in or out of the system D Clock

R-19: System that the waiter uses as the liaison between

the customer and the chef

D WaiterTablet

R-20: System that customers choose their table with D CustomerSigninTablet

R-21: System that the manager uses which oversees

everything happening in the store

D ManagerTablet

R-22: System that chef/bartender uses for all food/drink

updates

D ChefTablet

R-23: System that the Busboy uses for all table updates D BusBoyTablet

R-24 System that waiter uses, separates drink menu from

food menu

D WaiterTablet

ii) Association Definitions

Concept pair Association Description Association Name

CustomerSigninTablet < - >

Table

CustomerSigninTablet updates the

table based on the Table’s availability

Updates the table

status

WaiterTablet < - > Table Table updates the WaiterTablet and

prompts waiter to get menus for

customer

Gives customers

menu

39

WaiterTablet < - >

customerNotification

customerNotification sends notification

to WaiterTablet to go to table and place

order

Placing order

ChefTablet < - > Order Order sends a notification of order to

ChefTablet

Sends Order

WaiterTablet < -> Order Order sends a notification to

WaiterTablet to pick up food from

kitchen

Notifies waiter to

pick up food

WaiterTablet < - >

customerNotification

customerNotification sends a

notification to WaiterTablet to check on

table, give bill, and get payment

Pay bill

WaiterTablet < - > Payment Payment sends notification to

WaiterTablet for the waiter to ask the

customer if they want a paper receipt

or e-receipt using

Print Receipt

BusBoyTablet < - > Payment Payment updates BusBoyTablet that

the table is dirty after customer pays

Marks table as dirty

ManagerTablet < - > Inventory ManagerTablet uses Inventory to add,

remove, and modify expiration date of

inventory using Inventory

Updates Inventory

ManagerTablet < - > Inventory Inventory sends a notification to

MangerTablet based on status (almost

expired, almost finished, expired, and

finished) using inventoryNotification

Notifies manager

about inventory

ManagerTablet < - >

EmployeeInfo

ManagerTablet uses EmployeeInfo to

update employee information (position,

status, wage, contact info, add,

remove) using updateEmployeeInfo

Updates employee

information

WaiterTablet < - > Menu

WaiterTablet can display ingredients

and modify customer’s orders on Menu

update/display

menu

ManagerTablet < - > Statistics ManagerTablet uses Statistics to display

item popularity, wait time, and dine in

time

displays statistics of

store

40

ManagerTablet < - > Clock For use of the ManagerTablet, Manager

uses his specific employee number and

Clocks in or out

Clock in or out

ChefTablet < - > Clock For use of the ChefTablet, Chef uses his

specific employee number and Clocks in

or out

Clock in or out

BusBoyTablet < - > Clock For use of the BusBoyTablet, Busboy

uses his specific employee number and

Clocks in or out

Clock in or out

WaiterTablet <- > Clock For use of the WaiterTablet, Waiter

uses his specific employee number and

Clocks in or out

Clock in or out

iii) Attribute Definitions

Concept Attribute Description

1. Table selectTable Where the customer sits and
eats

2. Sit in Tablet OrderQueue

getFood

requests customers send in

Subsistence customers consume

3. Employee OrderQueue Worker at the restaurant

4. Order getFood

OrderQueue

Items ordered by customer

Order is added to the kitchen’s
order queue

5. Notification TabletAlert Alert that is sent from
customer’s table to waiter’s PC

6. Notification KitchenAlert Alert that is sent from the
kitchen the waiter’s PC

7. order OrderQueue Order is added to the kitchen’s

41

 order queue

8. inventory LowStockNotification

The system notifies the
manager about low stock items.

9. Inventory InventoryCheck The system queries the
inventory database to check on
an item’s stock.

10. Inventory StockItems Items in stock are added,
removed or updated in the
inventory database.

11. Payment OrderTotal

PaymentType

Displays the order total for the
waiter

Displays accepted payment
types

12. Receipt RecieptType Provide an option to print a
paper receipt or email the
receipt to the customer or both.

13. Employee EmployeeName

EmployeeID

EmployeeAddress

EmployeeTitle

Stores employee name in
payroll database

Stores employee ID in payroll
database

Stores employee address in
payroll database

Allows the manager to update
an employee’s title such as,
waiter, busboy, chef, manager.

14. updateEmployee EmployeeName

EmployeeID

EmployeeAddress

Allows manager to update
employee name.

Allows manager to update
employee ID.

Allows manager to update
employee address.

15. Menu AddItem

Add an item to the menu

42

RemoveItem

SuspendItem

Ingredients

Remove an item from the menu

Temporary suspend item from
menu due to an out of stock
ingredient.

Update an item’s ingredients on
the menu.

16. Statistics ItemPopularity

WaitTime

DineInTime

The number of times an item
was ordered.

An average wait time for each
party to be seated.

The average time each party
stays at the restaurant.

17. Clock ClockIn

ClockOut

when workers start their shift

when workers end their shift

iv) Traceability Matrix

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

UC-1 X X

UC-2 X

UC-3 X

UC-4 X

UC-5 X

UC-6 X X

43

UC-7 X

UC-8 X

UC-9 X

UC-
10

 X

UC-
11

 X

UC-
12

 X X X

UC-
13

 X

UC-
14

 X

UC-
15

 X

UC-
16

 X

UC-
17

 X

UC -
18

 X

UC
-19

 x x x

UC
-20

 x

Our traceability matrix coordinates our domain model with our use cases. It shows which use cases

interact with each classes to help while writing the code. The updated traceability matrix includes our

updated usecases and how they interact with each class. Most of these were derived from the functions

of each class.

v) Domain Model Diagram

44

b.) System Contracts

Name: Update Inventory

Responsibilities: To update inventory in real- time

Use Case: UC- 12

Exceptions: none

Preconditions: Inventory database is already created and already inputted with data.

Each item has either 0 or n amount.

Postconditions: Inventory either increments or decrements the quantity of item(s).

Inventory will notify if there is an item out of stock

45

Name: Select Table

Responsibilities: To select and update tables to either sit customers or to be cleaned

Use Case: UC- 2

Exceptions: none

Preconditions: Table must be empty, either before cleaning or after cleaning

Postconditions: Table is ready to be cleaned or table can now sit customers

Name: Send Order

Responsibilities: To notify chef to make the meal for the customer

Use Case: UC- 9

Exceptions: None

Preconditions: All items to be ordered are from the menu. Customer(s) notifies waiter

what to order and waiter creates the order(s)

Postconditions: Chef receives the orders in the order that they were made

Name: Order Ready

Responsibilities: To notify the waiter that the meal is ready to be delivered to the customer

and to automatically update inventory

Use Case: UC- 7

Exceptions: None

Preconditions: Food is ready to be delivered. Inventory is ready to be updated

Postconditions: Meal is no longer listed as an order to be cooked. Inventory is updated

46

c.) Mathematical Models

Chef: Algorithm for Orders

Orders must be cooked based on the time they come in. Customers who order their food first should

receive their food before customers who order later. Also orders from a single table should come out at

the same time. In order to do this, orders should be placed into a queue where a single tables orders are

placed into one location in the queue. These table orders should then be placed into a sub-queue for

just the table. New orders get placed at the end of the queue.

while (queue is not empty) {

if (table order is at the beginning of queue)

 place table orders into a sub-queue based on longest cooking time

while(table order is not complete) {

 start cooking timer for order in the front of the sub-queue

start cooking order in the front of the sub-queue

 if (chef is idle)

 start cooking next order in the sub-queue

if (order is complete)

 end cooking timer for the order in the sub-queue

 remove item from sub-queue and start next order in the sub-queue

}

remove table order from the beginning of the queue and start next table order

}

“Chef is idle” - The chef is able to start another order because the current order is being cooked and

does not require the chef’s attention. This can happen more than once per order so the chef should be

able to see the list of the all items in the sub-queue until the order is completed.

47

Customer sitting: Order to sit customers and clear tables

Customers are sat down based on first come. The customer will be able to select any available table they

choose. Once selected, the table will become unavailable to other customers. Customers and waiters

will see the real time status of all the tables. Once the customer is finished, the waiter or busboy will

update the system to show that the table is available again.

print (array{all tables})

 if(table has no customer)

 show table as green and available

 else(table has customer)

 show table as red and unavailable

if (customer chooses table)

 change table to red and unavailable

if (customer leaves table)

 change table to green and available

Manager Inventory prediction

For the manager inventory prediction algorithm, we decided to use what Group #1 from Spring

2013 semester started. Algorithms are difficult to formulate and much harder to perfect as it

can be an ongoing process even after the system is done. So as a team we are going to try and

improve on what last year’s team did.

The predictions will be based off of a recursive algorithm that will estimate ingredient usage for

foods. We can say that ‘i’ will be ingredients for food on any day ‘n’ which will be based off of

estimated previous usage(day n-1,n-2,…,n-7) and weekly usage (week w-1,w-2,w-3,w-4). Going

with a four week schedule helps to better predict popular seasons such as fall, winter, spring,

48

and summer since the popularity of items will fluctuate.

For predictions of daily ingredient usage, every time an order is placed it will tally up the

popularity of ingredient ‘i’ until the end of the day ‘n’. Weekly tallies of ingredients will be

based on what the manager decided to manually order at the end of each week ‘w.’ These

prediction will take some time (about 1-2 months) to begin working properly as the system will

need some data to predict off of.

Below is an idea of how the prediction will be calculated based off of last year’s formula that we

will be looking to improve. The daily usage will take into account the day you are on over the

average of all the other days to give the manager an estimate. The weekly average will be based

off of what the manager ordered and will be estimated over month periods.

Day n proportional usage:

U(n − 7)

(U(n − 1) + U(n − 2) + U(n − 3) + U(n − 4) + U(n − 5) + U(n − 6) + U(n − 7))

Weekly average :

U(w−1) + U(w−2) + U(w−3) + U(w−4)

4

Ui(n) =
U(n−7)

(U(n−1) + U(n−2) + U(n−3) + U(n−4) + U(n−5) + U(n−6) + U(n−7))
*

U(w−1) + U(w−2) + U(w−3) + U(w−4)

4

Note* U(week) is the actual weekly usage taken from the inventory system’s data, and NOT a

value returned by the recursive function.

49

Plan of Work:

Task Start Date Deadline

Estimated

time(days) Responsibility

Part 1 (Interaction Diagrams) 3/2/2014

a. Interaction Diagrams 2/25/2014 3/1/2014 4D ALL

b. Describe bubble diagram 2/25/2014 3/1/2014 4D ALL

Part 2 (Class Diagram and System

Architecture)

3/9/2014

a.Class Diagram 3/4/2014 3/6/2014 2D MG

b. Data Types and Operation Signatures 3/4/2014 3/6/2014 2D AP

c. Traceability Matrix 3/4/2014 3/6/2014 2D NT

System Architecture

a. Architectural Styles 3/4/2014 3/6/2014 2D ALL

b. Identifying Subsystems 3/4/2014 3/6/2014 2D JC

c.Mapping Subsystems to Hardware 3/4/2014 3/6/2014 2D AA

d.Persistent Data Storage 3/4/2014 3/6/2014 2D MG

e.Network Protocol 3/4/2014 3/6/2014 2D NT,AP

f.Global Control Flow 3/4/2014 3/6/2014 2D JC

g.Hardware Requirements 3/4/2014 3/6/2014 2D CY

Part 3 3/9/2014

a.Algorithms 3/5/2014 3/6/2014 1D ALL

b.Data Structures 3/6/2014 3/7/2014 1D AA,DU

c.User Interface Design and Implementation 3/6/2014 3/7/2014 1D DU,CY

d.Design of Tests 3/6/2014 3/7/2014 1D ALL

f. Merge Project 3/7/2014 3/8/2014 1D ALL

Full Report# 2 3/11/2014 3/15/2014 3D ALL

First Demo 3/16/2014 3/28/2014 10D ALL

Reflective essay 3/29/2014 4/1/2014 1D ALL

Part 1 (Sections) 3/30/2014 4/4/2014 3D ALL

Second Demo 4/5/2014 4/7/2014 2D ALL

Full Report# 3 (rest of sections) 4/5/2014 4/8/2014 2D ALL

AA= Amgad Armanus

JC= Jake Chou

MG= Mitul Gada

AP= Avni Patel

NT= Nirjan Thayaparan

DU= Diego Urquiza

CY= Christian Youssef

ALL= all team members

50

7) Interaction Diagrams

The ManagerSystem interacts with the inventory database and displays the results to the manager

screen. In case of a failure to update the database, the ManagerSystem will display an error message to

inform the manager.

The Waiter System interacts with and sends a notification the Chef’s PC. The Waiter Screen allows the

Waiter to place an order, add items, add notes, and see the menu/ingredients.

51

UpdateTable:

The customer sign in PC will be used by both the customers and the waiters. The customers will see the

status of all the tables in real time and be able to choose the available ones. The system will then change

it so that the next customers will see that the table is unavailable. Once finished, the waiter will update

the system so it can send back to the customer PC when an unavailable table will be ready.

52

The Chef PC will utilize this sequence in order to send a notification through the system to the waiter

that an order has been completed and is ready to be served to the customer. The chef will press the

“Order Complete” option, which will tell the system to stop the order times for that specific order,

update the inventory in response to the order completed, notify the waiter that the meal is ready to be

served, and create an analysis based on the order. Through this option, efficiency throughout will be

increased because of all the actions that happen at once through the system instead of manually and

one by one.

a.) System Design Pattern

A design pattern that we used in our project is the publisher-subscriber pattern. This specific

design pattern is used to implement indirect communication between our software objects. In

other words, the object cannot or does not want to know the identity of the object whose

method it calls. The purpose is to enable reusable components and it can facilitate separation

of the business logic of objects. For our project we used this pattern for mainly our system and

when it communicates with other employees. When sending commands and signals, our

system will be able to incorporate it and handle the source and content to link it to the

53

appropriate interface. For example, if a manager is updating the inventory or if the chef is

sending back completed food orders, the system will separate each command and recognize

that the first one being the manager and needing to send the notification for the inventory

around while the second one being sending the notification to the waiter signaling that the chef

completed the order. This pattern will help keep our system more organized and easier to use.

We can send back multiple commands and reuse it and the system will take it accordingly. In

our system the one-to-many dependency between objects occurs when the waiter’s tablet

sends out the order and the other parts of the system get notified and updated automatically.

54

8) Class Diagram and Interface Specification

a.) Class Diagram

55

b.) Data Types and Operation Signatures
Note For all of our classes we are going to be using spring 2013 ‘Auto-Serve’ as reference for their

classes and we will be optimizing and adding newer functions.

ManagerProcessor

ManagerProcessor is responsible for handling the requests given by the CustomerGUI.

Attributes

-conn:ManagerCommunicator

-employee:Employee

Methods

+HandleMessage(message:String):void

Used to handle requests that are being passed to this function.

+viewInventory():String

Views inventory items that are in the system.

+addInventoryItem(inventoryItem:Inventory):Boolean

Allows the user to add an inventory item to the system.

+editInventory(name:String,…):Boolean

Allows used to edit a selected inventory item.

+viewPopularity(name:String):int

Displays the popularity of the selected menu item.

+viewAllPopularity(name:String):String

Displays popularity of all items on the menu.

56

ManagerInterface

ManagerGUI is the what the manager interacts with on their display. This is responsible for

communication between the manager and the system.

Attributes

-proc:ManagerProcessor

Processes all requests made and calls the appropriate function.

Methods

+main(args:String*0….*+):void

The main function that calls the initialize to prompt the initialization of the GUI.

-initialize():void

Creates the GUI that is displayed for the manager.

ManagerCommunicator

 The ManagerCommunicator class will take care of all the connections to the server from

 the client side. The functions in this class will be responsible for sending requests to the

 CommandHandler as well as sending information to the ManagerGUI.

57

Attributes

-port:int

 The port number of the client.

-host:String

 protocol string that will be string compared in order to make sure it has the name pipe

 sql protocol

-sock:Socket

 The socket of the client used to communicate to the server

Methods

+ManagerCommunicator(port:int,host:String):void

 ManagerCommunicator will set up the port number and the host string

+setUpConn():boolean

 This function will use port number and string initialized from MangerCommunicator in

order to set up the socket connection

 +closeConn():boolean

 Terminates the socket connection

+getMessage(sock:Socket):String

 Gets request coming into the client socket

+sendMessage(sock:Socket,message:String):boolean

 Takes the socket information and sends it as a string which is formated to sql protocols

 to the server alongside with a message.

+testConnection():boolean

 Test the connection to the server. If the value returns false as in failed connection, it will

 invoke setUpConn

58

Employee

 The Employee class will set up all or remove employees from the system. This class will

 be friends with the ManagerProcessor class since we want the manager to have the

 ability to change employee information on the go.

Attributes

-name:String

 First and last name of the employee.

-email:String

 Employee primary email information.

-phoneNumber:int

 Employee primary contact phone number.

-employeeID:int

 ID that will be used in order to keep better track of employees.

-payRate:int

 Hourly rate of employees

Methods

+Employee(String:name,String:email,int:phoneNumber,int:employeeID):boolean

 This function will set up a new employee into the system based off of there name,email,

and phone number. After successfully entering a valid new employee the system will

display employee information as will as generated employee ID.

+EmployeeRate(int:payRate,int:employeeID):boolean

 Manager can set initial pay rate for the employee.

+getInfo(int:employeeID):String

 Pull up all of employee’s information.

+getEmployeeID(void):int

59

 Bring up a list of all current employees organized by ID order.

+changePay(int:payRate,int:employeeID):void

 Change the hourly rate of employees payroll.

+EditInfo(int:employeeID):boolean

 Allows manager to edit basic employee information (name,email, or phonenumber).

+RemoveEmployee(int:employeeID):boolean

 Removes employee completely from the system (except payroll information).

CustomerSeatingProcessor

The Customer Seating Processor’s task organizes all of the tables and gives the status of each

one to the customer and waiters. The customers will be able to see all of the tables and the

status of each and choose the available ones. These requests will be sent to the waiters to

notify them to bring the customer to the selected table. The system will then update for the

next customer.

Attributes

-singleton:CustomerSeatingProcessor

 The function only calls to itself

Methods

+createTable(table:String):string
 This method will create a new string and insert a new table.
+deleteTable(table:String):string
 This method will delete an existing string and delete a table
+updateTable(table:String):boolean
 This method will change the status of a table. There are only 2 statuses, available or
 unavailable.
+timeTable(table:int):int
 This method will show the current time of the table of how long the customer was at

60

 that table to show the customers and waiters and estimate time of how much longer
 they will take.
+alertCustomer(message:string):String
 This alert will show the customer when a table has become available again if a
customer at the table has just left or change the table they just selected to
unavailable for the next customer to see.
+notifyWaiter(message:String):String
 This alert will notify the waiter that a customer has just chosen a table and is ready
 to be seated.
+notifySystem(message:String):String
 The system will update accordingly to give real time updates and statuses of every

 table

Waiter.Communicator

The WaiterCommunicator is responsible for all communications between the CommandHandler and the

WaiterGUI. This class is actively listening for requests from the CommandHandler and is responsible for

all changes made to the WaiterGUI.

Attributes

-port:int

The port through which the class listens through.

-host:String

The Hostname of the local computer

-sock:Socket

The socket that sends and receives requests on.

Methods

+WaiterCommunicator(port:int,host:String)

The constructor.

61

+setUpConn():boolean

The method used to setup the connection for the socket.

+closeConn():Boolean

The method used to close the connection on the socket.

+getMessage(sock:Socket):String

The method used to receive a request on a connected socket

+sendMessage(sock:Scoket,message:String):Boolean

The method used to send a message from the socket.

+testConn():Socket

The method used to test the socket’s connection.

Waiter.Processor

The WaiterProcessor is responsible for the maintaining the OrderQueue locally while also handing the

requests given by the WaiterGUI.

Attributes

-conn:WaiterCommunicator

This is the socket connection used to communicate with other components in the system.

-DeliveryQueue:Queue<MenuItem>

This is the container for the queue that holds the items that were ordered and are ready to be

62

delivered to customers.

Methods

+HandleMessage(message:String):void

This method handles all the messages the waiter sends to the Chef.

+AddItem(int Order):Boolean

This method adds an order to the Deliveryqueue and gives an order number.

+DeleteItem(int Order):Boolean

This method removes an order form the Deliveryqueue based on the order number.

+ViewQueue():ArrayList<MenuItem>

This methods returns the current delivery queue.

WaiterGUI

The WaiterGUI is the front end of the system. It is the interface that the Waiter uses and is the liaison

between the Waiter and the system. This class will be using the WaiterProcessor to aid in processing the

requests by the Waiter.

 Attributes

-proc:WaiterProcessor

This object is used to process all the requests.

Methods

+main(args:String*0….*+):void

This method is used to initialize the GUI.

-intialize():void

This method creates the GUI

63

Chef.Processor

The ChefProcessor is responsible for the maintaining the OrderQueue and

BeingCookedQueue locally while also handling the requests given by the chefGUI. An example of a

request is: Flagging order done which has to send the order to the WaiterGUI.

Attributes

 +conn:ChefCommunicator

 This object is used to send and receive requests.

+OrderQueue:Queue<MenuItem>

 This object holds the menuItems on the OrderQueue

 +WaitQueue:Queue<MenuItem>

 This object holds the menuItem on the Orders to cook.

Methods

+HandleMessage(message:String):void

 This method handles any message passed to the chef. 93

+AddOrder(menuItem:MenuItem):boolean

 This method add a menu item to the chef’s ready queue .

+DeleteItem(order:int):boolean

This method removes an item from the chef’s ready queue and puts it on the

waiter queue.

+NotifyCatastrophe(order:int):Boolean

This method will notify the controller of a catastrophe and to halt the current

queue.

+FinishedItem(order:int):Boolean

This method will take an item from the wait queue and flag it as done. This

will send a message to the controller to forward the item to the waiter to be

delivered.

+FlagOrderToCook(order:int):Boolean

This method will flag an order to be cooked which will move it to the wait

64

queue.

+ViewQueue():String

 This method will return the current queue for the chef.

Chef.Communicator

The ChefCommunicator is responsible for sending and receiving any communication between

the ChefGUI and the CommandHandler. This class is actively listening for requests from the

CommandHandler and can be responsible for any changes made in the ChefGUI.

Attributes

 -port:int

 The port through which the class is going to listen through.

 -host:String

 The Hostname of the local computer

 -sock:Socket

 The socket that going to be used to send and receive requests on.

Methods

 +ChefCommunicator(port:int,host:String)

 The constructor used to initialize. 94

 +setUpConn():boolean

 The method used to setup the connection on the socket.

 +getConn():Socket

 The method used to listen and return any incoming information

 +closeConn():Boolean

 The method used to close the connection on the socket.

 +getMessage(sock:Socket):String

 The method used to receive a request on a connected socket

65

 +sendMessage(sock:Scoket,message:String):Boolean

 The method used to send a message on the socket.

Chef.Interface

The ChefGUI is the front end of the system and is responsible for the interface

between the Chef and the system. This class will be using the ChefProcessor to aid in

processing the requests by the chef.

Attributes

 -proc:ChefProcessor

 This object is used to process all the requests.

Methods

+main(args:String*0….*+):void

 This method is used to initialize the GUI.

-intialize():void

 This method creates the GUI.

66

c.) Traceability Matrix

9) System Architecture and System Design

a.) Architectural Styles

 An architectural style is a set of principles that provides an abstract framework for a set of

systems. The main purpose is to improve partitioning and promote design to our problems by

providing detailed solutions. We will be focusing on multiple architectural styles that

correspond to our project. These topics will include communication, deployment, domain and

structure.

Communication: Service-Oriented Architectural Style

Service-oriented architecture enables application functionality to be provided as a set of

services and creation of applications that make use of software services. they basically focus on

providing a message based interaction with an application through interfaces that are

applicable. Our project will have a main home system that will communicate and interact with

all the PCs and tablets. However, these tablets will be autonomous since they all will have a

different task and job that will notify the system to update the overall components. Services are

also distributable since these portable PCs can be carried around throughout the restaurant and

used whenever. Services will also share contracts when communicating and not internal

classes.

67

Deployment: Client/Server

The client/server architecture will distribute the system that involves a separate client and

server system with the overall connecting network. It describes the relationship between them

whereas the client will initiate requests and wait for the reply from the system. We will use our

system as the client and the tables as the server. The servers will be able to request information

from the system, and the system will distribute accordingly. Our communication protocols will

also have a common language when deploying and we are looking at either C or C++.

Domain: Event Driven Design

Event Driven Design is a software pattern that helps promote the production, detection,

consumption, and reaction to all events. An event can be considered a significant change of an

object or state of it embedded in the system. Our system will have notifications that will move

the events along. For example, our chef will have notifications that will send out to the waiters

when the food is ready. The waiters will be notified once the customers are seated at a certain

table. The manager will be notified if an item in the inventory is about to run out or expire. All

these main events and more will be crucial for the restaurant business and the event design will

be sent out by the system by sending notifications.

Structure: Object-Oriented Architectural Style

Object-oriented architecture is a design pattern that divides all the responsibilities of an

application or system into individual reusable objects that still maintains the data. These

independent objects will communicate through our interfaces by calling methods or accessing

properties of other objects by sending and receiving messages. Our structure is composed of

many different tablets and PCS. Referring to abstraction, the manager tablet will have functions

like Get() and Update() with the inventory and items. Encapsulation makes it easy for the

tablets to delete or update items to have the newest possible update. Inheritance allows

objects to be functional throughout since a single update on any machine will influence other

machines by updating the system instead of one individual tablet.

68

b.) Identifying Subsystems
 Package Diagram

Based on the packaging diagram above, the packages are divided into 5 main parts. The user

interface contains the 5 different interface: Chef, Waiter, Manager, Busboy and Customer Sign-

In. These are the 5 different interfaces that an employee or customer may access. There is a

separate package for database. This contains all the information on the menu and inventory as

well as information on the employees. The database may also contain other folders. The

communicator package is the accessor of information. It sends interactions from the interface

to the controller. The controller delegates what the communicator can do. It accesses the

database and uses the information to interact with the communicator and the processor.

69

c.) Mapping Subsystems to Hardware

From our subsystem diagram above, our subsystem will be mapped to our hardware in a very

simple way. The database will be a MySQL server that will run either on a portable or a

centralized computer. The controllers will also be on this computer as well in order to bridge

the gap between the user interfaces and the database. Both the database and controller will

serve the back end of the process. But each user interface which will serve as the front end,

such as the chef, the waiter,or the manager, will be set on individual computer or separate

tablets for each user. Each of these interfaces will incorporate the necessary corresponding

processor and communicator.

d.) Persistent Data Storage

For our database, all the data is permanently saved and updated frequently. So, persistent data

storage is essential in the transactions done in our system on a daily basis. Some transactions

are customer’s orders, menu changes, and inventory changes. For our system, all the

transactions depend on the table selected. Each table will hold different transactions, which go

into our database. This is all done using SQL, which will maintain our database and everything

does coincide with each other in some way. Our database works in a way that the applications

in our system acts as the customer to the sever. This does not interact with the database

directly, but simply just asks the server to perform an operation. With this built in server, our

data is maintained and allows alteration of features.

e.) Network Protocol

For our system, we are going to have an application which can run on a computer(for

prototyping) that will be communicating back and forth with a server. We decided to go with a

Microsoft SQL server since the backend will be on C++ and the front end of the computer

application will also be in C++. This way we can maximize performance and compatibility by

communicating locally through a network. Since we will not need to go through the internet,

we can avoid TCP/IP and go straight for a Named Pipe. Named Pipes have an advantage over

TCP/IP because they are usually faster for sending information, and have more free network

stack resources. Named pipes are easily configured through the SQL server and the client

through options and code.

70

Sample code to set up server and database:

QCoreApplication a(argc, argv);

QString servername = “LOCALHOST\\SQLEXPRESS”; //server name

QSTRING dbname = “test”; //database name

QSqlDatabase db = QSqlDatabase::addDatabase(“QODBC”); //database driver

db.setConnectionOptions(); //set connections

QString dsn = QString(“DRIVER=,SQL Native Client};SERVER

=%1;DATABASE=%2;Trusted_Connection=Yes;”).arg(servername).arg(dbname);

 //connection string

db.setDatabaseName(dsn); //database name to connection string

f.) Global Control Flow

Execution Orderness

“Why Wait” is procedure-driven. Everything executes in the following linear fashion:

When the customer first comes in, they will choose a table which is empty using the Customer

Sign in PC. Once they are seated the waiter will come to get the customer’s order. The waiter

will then place the order. The Chef will receive the order on the Chef’s PC and begin preparing

the food. The inventory will get adjusted as needed. Once the food is ready the Chef will use

the Chef’s PC to notify the Waiter PC. The Waiter will come get the food and deliver it to the

customer’s table. Once the customer is finished eating the waiter will get the payment from the

customer on the Waiter’s PC. Once the payment goes through, tables will be marked as dirty

and the Busboy PC will call the busboy to come clean.

Time Dependency

“Why Wait” has an event-response time for the inventory alerts, but the rest of the system is a

real-time system that is periodic. The procedure shown in the Execution Orderness section is

what is periodic. The customers choosing a table and ordering their food, the chef preparing

their food, the waiter delivering the customer’s food and taking the payment from the

customer, and the BusBoy cleaning the table is all periodic. All of the previously mentioned

processes are time dependent as the time that each actor takes to do their function will be

taken into consideration for our system processes. Another factor where real-time plays a role

71

is when the system estimates the amount of time the customer will have to wait for their order

to be ready.

 The inventory functions are also time dependent because when an ingredient comes close to

expiration date the system will send out a notification to the manager. Also, if the inventory is

low, a notification gets sent to the manager.

Concurrency

“Why Wait” will use multi-threading because there are multiple subsystems running

independently of each other. All interactions between the subsystems are controlled through a

central server. Multiple customers will be taken care of at once so multiple orders will be

placed at the same time. The event where multiple customers are served will be taken care of

by running the different threads through the order queue. Another situation where multi-

threading would be used is when the manager is checking the inventory and updating it. The

manager would have to spawn one thread for checking the inventory and another thread to

handle the update request in the database. The synchronization of these threads are not

necessary because they would not be working together.

Hardware Requirements

The system will need a server that would store the databases and allow communication

between different subsystems. The system will also need a tablet for each of the waiter, host,

manager, and chef.

Server:

Hardware Minimum Requirements

Processor Intel Xeon E5 2.3 GHz

Hard Drive 500 GB

RAM 8 GB

Network Card 10/100/1000Mbps

Tablets:

Hardware Minimum Requirements

Processor Intel i5 E5 2.4 GHz

72

Hard Drive 32GB

RAM 2 GB

Display Multi-touch screen - 1024 x 760 Resolution

Network Card 802.11b/g/n Wireless LAN

10) Algorithms and Data Structures

a.) Algorithms

Waiter:

If (timeSinceLastVisit==8)

return notification;

The way this algorithm would work is if the waiter has not checked on the table in under 8min,

the WaiterPC tablet will notify the waiter to check on the table. When the customer is seated,

the waiter will greet the customers after the 1st minute; bring drinks after the 3rd minute;

appetizers by the 8th minute if ordered; entree by the 20th minute but if no appetizers are

ordered, then by 15th minute; and desserts 15 minutes after the entree; If no dessert then

check within 15 after entree, otherwise 5 minutes after dessert is served

73

Manager:

In the manager system there are some simple algorithms being used, one of which updates the

inventory as items are used or restocked. Therefore, the inventory system will increment the

quantity by one or decrement it by one automatically. Another algorithm is the not that

queries the database, this is used the the database management system and this communicates

with the database tables themselves. Some of these algorithms include, adding an new item to

the database, removing an item from the database, and updating an item’s status. These

database tables include, user account information, food menu information, table size and

occupancy, and inventory items.

74

Chef:

The chef uses an algorithm for cooking orders in a queue. There is a queue within a queue as

described in the mathematical section. The chef also uses an algorithm when an order is cooked

to decrement the supplies as they are used. When an order is cooked, the ingredients are

automatically subtracted and the database is updated.

Customer:

The customer will use a given algorithm for the seating process. The tables will have a toggle

option that will show whether it is available or unavailable. The customer will pick the a table

that they will like but it has to be unavailable. There will also a timer function that goes along

with it that keeps going up and counting when a table is selected. It will then reset once the

customer leaves.

b.) Data Structures

DIfferent data structures are needed for each of the user. Array lists are used for storing data

such as the items in stock or the employee information. Array lists make it easy to store data.

Items can be removed and added to the list. Queues are used for prioritizing primarily by the

chef and waiter. Queues are essential to make sure that orders that come first are served so

that customers have shorter and more equal waiting times.

Manager

The manager would use array lists. This is because of flexibility. In an array list. Items can be

deleted and added to any part of the queue therefore it would be easier to implement and

easier to manipulate in the future. It is also essential in keeping track of employees who also

need to be added and deleted.

Chef

The chef uses queues for making sure that orders that come first are made to order before

orders that come after. This is because of performance. If an order comes earlier and is cooked

later, then the customer will have a long waiting time and the waiting times of all customers

will be uneven and disorganized. The strict format of the queue allows these processes to be

easier.

Waiter

The main data structure for the WaiterPC is for placing the order. Each table’s order will be a

multi-dimensional array. I.e.

75

Table 1 Table 1 Table 1 Table 1

Customer 1 Customer 2 Customer 3 Customer 4

Drink Drink Drink Drink

Appetizer Appetizer Appetizer Appetizer

Entree Entree Entree Entree

Dessert Dessert Dessert Dessert

This design was used based on the flowchart shown in the algorithm section for the WaiterPC.

Customer:

The tables given for the customers will be an array list. This will make it easier for employees to

add or delete tables at a given time. Selecting the tables will be a toggle or a boolean. It simply

will allow a customer to select the table or not, depending on the 2 statuses of either available

or unavailable.

11) User Interface Design and Implementation

During the initial interface design of our system we took careful consideration on minimizing

user effort while keeping Ease-of-use in mind. Our main objective was have our system do

exactly what the customer requirements entailed for each specified goals. Therefor, we have

not made any significant chances to the chef, bus boy, or waiter GUI implementation. However,

we feel that the manager side of the system needs some more work. The manager GUI

implementation has a difficult Ease-of-use because as admin you need to make changes to the

system on the fly. As far as the user effort for the manager, we feel that the system is optimized

and straight to the point.

76

Preliminary Design(draft images)

Figure 1
Image of the waiter’s GUI(graphical user interface) and the image below is the pop up interface if the user would hit the pizza option on the

menu.
We are going to look at the Use case #9 SendOrder from the perspective of the waiter as a user. In figure 1 above(Page25), after

the waiter gets an order from the customer he can use the Menu section to navigate to a specific item and what toppings they

77

would like. In this particular case the customer choose to order a ‘Large Pizza Pie’ and requested ‘Extra Cheese.’ So using the

menu the user would navigate to the ‘Pizza’ item that will invoke a pop up that will have all of the available toppings. After

Selecting a topping the receipt section will automatically update to show a draft of the Receipt which can be used for the user

to easily repeat back or edit the order. When the order is ready to be placed, the user can ‘Place Order’ which will invoke the

SendOrder function. This will send a signal to the server and then back to the chef.

Figure 2
Image of the Chef’s GUI and all his/her incoming orders.

The Chef will be receiving automatic updates of new orders once the system receives SendOrder. In figure 2 above, the

interface will automatically update itself on new incoming orders based off of Use Case #6 RecieveOrder(more detail later).

Here the Chef can Queue in items to the Cook Timer once prepared and ready to cook. After the chef feels that the order is

ready they can use the ‘Food Ready: Yes?’ button in order to invoke Use Case #7 OrderReady. The Waiter’s pad will receive a

pop up notification with the table # in which the food is ready. After the order has been sent the interface will update and

move the order into the ‘Orders Completed’ tab.

78

Final user interface design

We have simplified the interface to fit as many features as possible on the waiter’s tablet or even the

customer’s phone application.

On this screen the waiter or the customer is able to selected their table. After they select their table

they will be prompted to log in. The waiter can log in using their username and password to any table,

the customer can log in using the specified log in information located on each table.

79

After the user logs in successfully they will be able to access the menu and select the items they would

like to order.

After the user selects the items they would like to order they will be able review the items in their cart

before they place the order.

80

After the order is placed, the kitchen will see the order on their queue. The chef can change the status

of the order and mark it as, in progress or done.

If the order includes any drink items, the bartender will be notified and the drink items will show up on

their system. The bartender is also to change the status of the drink order to, in progress or done.

12) Design of Tests
Note For the following Test case diagrams we decided to use Spring 2013 template since we

felt it was clean, easy to understand, and straight to the point. We are also going to implement

some of their test cases.

Manager

For the manager system we plan on testing every function in the system besides the few we

highlighted below. Since the manager has admin rights to the system, all the changes he or she

makes will be reflected across all the devices. In the testing phase will be consistently adding

and removing items such as employees and food items in order to make sure everything is

81

working as intended. For algorithm testing in the case of the manager will be Inventory

prediction. we plan manualing inputting dummy variables and changing dates over a long

period of time in order to see how well it can predict food outcomes.

Test-case Identifier: TC - 01
Function Tested: addInventoryItem(inventoryItem:inventoryItem) :Boolean
Pass/Fail Critera: the test will only pass if new item appears on list

 Test Procedure Expected Results

-Call Function(Pass)

-Call Function(Fail)

-New item shows up on an updated inventory
list

-Function will return NULL value if no new
item is added to the list

Test-case Identifier: TC - 02
Function Tested: removeInventoryItem(name:String) :Boolean
Pass/Fail Critera: This test will only pass if item is successfully removed

 Test Procedure Expected Results

-Call Function(Pass)

-Call Function(Fail)

-Old item does not show up on the updated
inventory list

-Function will return NULL value if item fails
to be removed

Test-case Identifier: TC - 03
Function Tested: viewInventory():ArrayList
Pass/Fail Critera: the test will only pass if a list with all inventory items appear

82

Test Procedure Expected Results

-Call Function(Pass)

-Call Function(Fail)

-All inventory items are return to screen

-Function will return NULL value if nothing is
returned

Test-case Identifier: TC - 04
Function Tested: viewPopularity(name:String):int
Pass/Fail Critera: the test will only pass if the popularity stat of an item is returned

Test Procedure Expected Results

-Call Function(Pass)

-Call Function(Fail)

-The corresponding item will be returned to
screen with its popularity

-Function will return -1 value if the stat does
not successfully return

Customer

The customer will have many options and functions that will implement how the restaurant

system will go. They will be able to select the tables they want which will set the flow for the

restaurant. There will also be a function to add or remove the tables. There will also be the

status for the tables, showing if they are either available or unavailable. In addition, they can

also view the wait time for each table and the time the customers are there for satisfaction.

Test-case Identifier: TC - 05
Function Tested: Customer::SelectTable(Table):
Pass/Fail Criteria: The system will pass if customer selected available table, it will fail if
customer selects a table that can’t be selected.

Test Procedure: Expected Results:

83

-Call Function(Pass)

-Call Function(Fail)

The system will pass if customer selects
correct table, it will be given to customer and
the table will become not available.

The system will fail if customer selects a table
that is already taken, the system will return
an error message requesting customer to
select a different table.

Test-case Identifier: TC - 06
Function Tested: Customer::viewWaitTime (Menuitem m) : int throws exception
Pass/Fail Criteria: The test passes if the correct wait time in seconds is returned from the
controller for the menu item passed as a parameter.

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

Customer will be able to see correct wait time
and time of customer.

An error will occur and the time will be failed
to sent, function will throw exception.

Test-case Identifier: TC - 07
Function Tested: Customer::viewStatus()
Pass/Fail Criteria: The system will pass if it shows the correct status, it will fail otherwise.

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

Customer will be able to see correct status of
the table.

An error will occur and the status will be
failed to sent, function will throw exception.

84

Test-case Identifier: TC - 08
Function Tested: addTable(Table)
Pass/Fail Criteria: The test will pass if a table is added correctly, otherwise an error will occur
it if it doesn’t.

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The new table will be added correctly and it
will show up on the system.

An error will occur and the table won’t be
added and the system will ask for you to try
again or quit.

Test-case Identifier: TC - 09
Function Tested: deleteTable(Table)
Pass/Fail Criteria: The test will pass if a table is deleted correctly, otherwise an error will
occur it if it doesn’t.

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The current table will be deleted correctly
and it will not show up on the system.

An error will occur and the table won’t be
deleted and the system will ask for you to try
again or quit.

Test-case Identifier: TC-10
Use Case Tested: Waiter::notification (Table)
Pass/Fail Criteria: The test passes if the system is able to notify the waiter according to our
algorithm

Test Procedure: Expected Results:

-Call Function(Pass)

WaiterPC tablet gets a notification if
customer is at table and waiter has not

85

-Call Function(Fail)

checked in 8 minutes

Waiter tablet doesn’t get a notification
because no customers at table or an error
occurred in the system

Test-case Identifier: TC-11
Use Case Tested: Waiter::AddItem (Menuitem m)
Pass/Fail Criteria: The test passes if the item is added to the queue

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The correct data is sent through and the item
that needs to be added goes on the queue of
the ChefPC and as well as an added item on
the specific table for the waiter to view

Item is not available or an error occurred in
the system

Test-case Identifier: TC-12
Use Case Tested: Waiter::DeleteItem (Menuitem m)
Pass/Fail Criteria: The test passes if the item is deleted from the queue

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The correct data is sent through and the item
that needs to be removed comes off on the
queue of the ChefPC and as well as deleted
on the specific table for the waiter to view

Item is not available or an error occurred in
the system

86

Test-case Identifier: TC-13
Use Case Tested: Waiter::ViewQueue () : ArrayList<MenuItem>
Pass/Fail Criteria: The test passes if the menu items are viewed from each table on the queue
for the Waiter

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The correct data is sent through and the
items ordered by each customer on each
table can be viewed on the queue for the
Waiter

Table is empty or an error occurred in the
system

Chef

The chef will have basic actions and functions to utilize in the testing phase. The chef will only

need to communicate with the waiter in order to receive the order. Within the testing phase,

the chef will be able to also view the order queue of the current orders. The chef will also be

able to add or delete items within an order in accordance to the customers preferences.

However, the chef can ultimately determine when the order has been completely prepared and

be ready to be taken to the customer using the function of itemfinished as call to the waiter

that the order is done.

Test-case Identifier: TC-14
Use Case Tested: Chef::ViewQueue () : ArrayList<MenuItem>
Pass/Fail Criteria: The test passes if the menu items are viewed from each table on the queue
for the Waiter

Test Procedure: Expected Results:

-Call Function(Pass)

The correct data is sent through and the
items ordered by each customer on each

87

-Call Function(Fail)

table can be viewed on the queue for the
Waiter

Table is empty or an error occurred in the
system

Test-case Identifier: TC-15
Use Case Tested: Chef::ItemFinished () : ArrayList<MenuItem> : Boolean throws exception
Pass/Fail Criteria: The test passes if the item is removed from temporary storage and passed
to the waiter via the controller

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

Correct data to be sent is passed, function
returns true if the controller successfully
passes the MenuItem to the waiter to be
delivered.

MenuItem incorrect or controller error,
function returns false.

Message fails to be sent, function throws
exception

Test-case Identifier: TC - 16
Function Tested: Chef::AddOrder (TableOrder o) : Boolean
Pass/Fail Criteria: The test passes if the menu items in the order pass in as an argument are
successfully scheduled into the chef queue.

Test Procedure: Expected Results:

-Call Function(Pass)

Correct data to be sent is passed, function
returns true if all the menu items part of the
table order passed are scheduled
successfully.

88

-Call Function(Fail)

If functions fails to schedule all the orders,
returns false

Test-case Identifier: TC - 17
Function Tested: Chef::RemoveOrder (TableOrder o) : Boolean
Pass/Fail Criteria: The test passes if the menu items in the order pass in as an argument are
successfully removed from the chef queue.

Test Procedure: Expected Results:

-Call Function(Pass)

-Call Function(Fail)

Correct data to be sent is passed, function
returns true if menu item is removed.

Function returns false, if menu item is
incorrect or cannot be removed.

13) History of Work, Current Status, and Future Work

a.) Merging Contributions From Individual Team Members

In order to merge our work together and be organized, we made a google document. This was

the best way since we are able to work together in different locations and have our work saved

at the same time on one final document we are able to edit together. Some issues that we

encountered were that our format would be a little different and we would be unorganized

since our parts would be at different locations. This problem was not that hard to solve. We

fixed the format issue by agreeing on a specific font and spacing. We fixed the unorganization

part by labeling everything beforehand when making the template so we are able to put the

correct parts in the same place.

b.) Project Coordination and Progress Report

 History of Work

 January 21st- January 29th

89

Our team decided to take on the restaurant automation project and created the

proposal of how we would go about tackling this project and how we would decide to

implement this. We began by reading through past projects and understanding where

they did well, and where they also had weaknesses, and we decide to create a system

that would build upon those weaknesses

February 1st- February 23rd

We received feedback on how to improve our proposal and how we could plan better

for our project as well. Our aim was to build upon the new proposal and incorporate

those new ideas into our first report. A theoretical model of our system was built using

the report guidelines given, incorporating Customer Statement of Requirements,

Glossary of Terms,

Functional Requirements, Effort Estimation, and Domain Analysis. We divided the work

evenly and pieced together the report at the end, submitting our report on February

23rd

February 24th- April 19th

The team then began planning for the second report, building on what we learned from

drafting our first report on the specification of our system. This time we would focus on

the design aspect of the system. Through the drafting of the second report, we began to

develop part of the system that we would be using during the first demo. Through the

Interaction Diagrams, the Class Diagrams and Interface Specification, System

Architecture and System Design, Algorithm and Data Structures, User Interface Design

and Implementation, and Design of Tests, we drafted our second report and began to

build our system. We focused on building the server and the GUI and divided the work

evenly between all team members.

Current Status

Our system is currently being developed, the building being separated into two

components, the server and the GUI. We have divided the overall team into two teams

to work separately on either component. As of right now, we do not have any functional

components, but we are focusing our maximum effort into completing parts of the

server and the GUI in time for our first demo presentation

Future Work

Currently, we are in the middle of developing a working version of our server and GUI

for the first demo presentation. For the demo, we hope to have a server and GUI that

interact with each other, and communicate with other modules as well, such as the chef

90

and waiter modules. Achieving this communication is a top level priority because that

communication is what will allow the entire system to work as a whole. But it also poses

a problem as the modules will be worked on with separate groups, so the modules

won't work together at first due to maybe different programming languages or even

errors in the coding of the modules. But ultimately, we want to have our server and GUI

combine with all of the modules and interact as a single system.

Below is a pseudo code on our chef queuing algorithm. The way it would work is the chef would

start his/her system which would invoke StartChefPrep() function. The StartChefPrep() function

has an infinite for loop that is going to listen for signals from the waiter. Once the waiter sends

in a stream of order information, the algorithm separates the appetizer from main courses and

then starts queueing in food according to predetermined cook times. The way the function

figures out the what order to cook the times in is by finding the largest cook time item and then

finds the difference in time between the other items and queues them accordingly. Once the

chef hits the exit button, the function closes.

//we are going to assume that all appetizer take a set time

void StartChefPrep(void)

for(; ;)

{

 prompt close button = false

 listen for signal from waiter

 read order

 if(appetizer in order)

 {

prompt a prep button = false

while(button press == false)

{

if(button pressed)

{

Queue in appetizer and set a buffer timer of 5 minutes

button press = true

}

 }

 button press = false

91

 }

 prompt a prep button = false

 while(button press == false)

 {

if(button is pressed)

{

Take in all items into cooktimerorder()

button press = true

}

 }

 button press = false

 if (close button == true)

{

 {

 close chef screen

 }

}

}

cooktimeroder()

{

 find longest cook time item

 for(each item i)

{

new timer = longest item cook time - item(i)

if(new timer == 0)

 {

 break

 }

queue in item(i) in new timer minutes

}

}

One feature for future work is to implement an inventory database. This database would

92

update in real-time as soon as an order is placed. This would allow the manager to track the

inventory and order inventory items whenever the stock reaches a certain threshold.

Another feature we would like to implement for the future is the integration of a credit card

reader. This credit card reader would process the transaction on the spot instead of the waiter

going to another PC like what is usually done in restaurants. This credit card reader will also be

able to split payments and refunds. This will further improve efficiency as well as security and

increase customer satisfaction because customers don’t normally see the waiters charging their

credit cards in front of them and also since they will be charged right after the customers are

done eating it will speed up the whole payment process.

c.) Breakdown of Responsibilities

WaiterPC

Responsibilities:

Mitul Christian Amgad Diego Jake Nirjan Avni

Customer Statement of

Requirements (CSR)

X X X X X X X

93

System Requirements X X X X X X X

Functional

Requirements

Specification

X X X X X X X

User Interface

Specification

X X X X X X X

Domain Analysis X X X X X X X

Interaction Diagrams X X X X X X X

Class Diagram and

Interface Specification

X X X X X X X

System Architecture

and System Design

X X X X X X X

Algorithms and Data

Structure

X X X X X X X

User Interface Design

and Implementation

X X X X X X X

Design of Tests X X X X X X X

Project Management X X X X X X X

Plan of Work X X X X X X X

References X X X X X X X

ManagerPC

Responsibilities:

Mitul Christian Amgad Diego Jake Nirjan Avni

Customer Statement of

Requirements (CSR)

X X X X X X X

94

System Requirements X X X X X X X

Functional

Requirements

Specification

X X X X X X X

User Interface

Specification

X X X X X X X

Domain Analysis X X X X X X X

Interaction Diagrams X X X X X X X

Class Diagram and

Interface Specification

X X X X X X X

System Architecture

and System Design

X X X X X X X

Algorithms and Data

Structure

X X X X X X X

User Interface Design

and Implementation

X X X X X X X

Design of Tests X X X X X X X

Project Management X X X X X X X

Plan of Work X X X X X X X

References X X X X X X X

ChefPC Responsibilities: Mitul Christian Amgad Diego Jake Nirjan Avni

Customer Statement of

Requirements (CSR)

X X X X X X X

System Requirements X X X X X X X

95

Functional Requirements

Specification

X X X X X X X

User Interface

Specification

X X X X X X X

Domain Analysis X X X X X X X

Interaction Diagrams X X X X X X X

Class Diagram and

Interface Specification

X X X X X X X

System Architecture and

System Design

X X X X X X X

Algorithms and Data

Structure

X X X X X X X

User Interface Design and

Implementation

X X X X X X X

Design of Tests X X X X X X X

Project Management X X X X X X X

Plan of Work X X X X X X X

References X X X X X X X

BusBoyPC

Responsibilities:

Mitul Christian Amgad Diego Jake Nirjan Avni

Customer Statement of

Requirements (CSR)

X X X X X X X

System Requirements X X X X X X X

96

Functional

Requirements

Specification

X X X X X X X

User Interface

Specification

X X X X X X X

Domain Analysis X X X X X X X

Interaction Diagrams X X X X X X X

Class Diagram and

Interface Specification

X X X X X X X

System Architecture

and System Design

X X X X X X X

Algorithms and Data

Structure

X X X X X X X

User Interface Design

and Implementation

X X X X X X X

Design of Tests X X X X X X X

Project Management X X X X X X X

Plan of Work X X X X X X X

References X X X X X X X

97

14) References

"Concepts: Requirements." Concepts: Requirements. Polytechnique Montreal, 2012. Web.

5 Feb. 2014. -(Used for Non-Functional Requirements)

Nick Leshi. (2010). Good Restaurants Come and Go. Available:

http://open.salon.com/blog/kikstad/2010/06/25/good_restaurants_come_and_

go. Last accessed 8th Feb 2014. -(Used for Cover picture).

Group#1 Spring 2013. (2013). Inventory usage rate estimation and runout date estimation.

Auto-Serve. 1 (2), 75-116.

Group#1 Spring 2013. (2013). Inventory usage rate estimation and runout date estimation.

Auto-Serve. 1 (2), 129-151.

easymenu-restaurant-menu

https://code.google.com/p/easymenu-restaurant-menu/

