14:332:452:01 Software Engineering Spring ‘14

Group 4
Full Report 2, Part 1&2&3 Submission: March 19th ,2014

WHY WAIT

A Restaurant Automation System
http://mitulgada.wix.com/whywait

Group Members:

Amgad Armanus

Jake Chou

Mitul Gada

Avni Patel

Nirjan Thayaparan

Diego Urquiza
Christian Youssef

Project Management

All team members contributed equally.

Table of Contents

1). Interaction Diagrams

a. UpdatelnVentory ... e
D. PlaCeOIEr ..ot
C. UpdateTable ..o
d. OrderDONE ..ottt s err e e
2). Class Diagram and Interface Specification................ccccouviieive e
Q. ClasS DIABIAM ...ucuuiiiiee st et ctesee ettt et et et es e st st st stesbesaeereesaes et sesses e e see st stesuesreeaneenseennns
b. Data Types and Operation SigNatUres......ceeririeiee s ee s e aee e
Lo N = Tol=F- | o 11 T AN Y 2 D OSSPSR
3). System Architecture and System DeSIZN.............ccceevereieieeiecetiet et er s

b. [dentifying SUDSYSEEMS ..ot s er s s e s e e s
€. Mapping Subsystems t0 HAardWarec.uceccevesece ettt e e s st sre s e stesae e e
d. Persistent Data StOrage... ittt et s st st sre e e er s et s ben e e
€. NEEWOIK ProtOCOL....cci ittt sttt st st et bt e s st s e b e
f. GlODAl CONLIOI FIOW ... ettt ettt e ettt b et s s e es e
8. Hardware REQUITEMENTS ...uiuiicieiee ettt ettt st s s e st st stesae e e aes et en s besaennes

. Data StIUCTUIES .. vttt sttt ettt e s st st e bbb et ea b st se e s bbb ee e
5) User Interface Design and Implementation.................ooveeveieiie e e

6) Desisgn of Tests...........cccceeuvvervennnen

7) Project Management and Plan of WOrK................cocooviieiiineiceiee ettt s
8). REFEIENCES ...ttt ettt et et ettt e et et st sae e sessesaeb s e et e aeane e st st ene

.18

.18
Q. ArChItECTUAl STYIES. .ottt e s st s st st stesre e s eee s ses s benaees

.18

.20

.20
21

.21
.22

.23
4) Algorithms and Data STFUCTUIE..............ceoiiect et et er e s st st st s s e aer s
Q. AlZOTIENIMS ettt e s st st st s e es et aes s e e e e e sae e

.24
.24
.25

.26
.26
.33
...39

1. Interaction Diagrams

U pdateInventory

ManagerSystem InventoryDatabase

Manager opens inventory page >

< System display page with all current inventory and quantities.

< System will abo display buttons to add item, remove item, and update quantity

Manager chooses add, remove, or update quantity

»

System will update selected item in inventory database’

< return update success flag

< return update failure flag

<System wil display an error message if the selected action could be be completed

ManagerSystem InventoryDatabase

The ManagerSystem interacts with the inventory database and displays the results to the manager

screen. In case of a failure to update the database, the ManagerSystem will display an error message to
inform the manager.

Place Order
Waiter Waiter System Chef
Waiter opens order page ’
_____________________ Systemdisplaysorderpage _ ____________________
E%xs_tefp_@@e'm buttons to place order, add ftem, add notes, show_menwingredients |
Waiter chooses place order, add Item, add notes, show "WIWONS ’
System sends Chef a notification of omsr’

Waiter Waiter System Chef

The Waiter System interacts with and sends a notification the Chef’s PC. The Waiter Screen allows the
Waiter to place an order, add items, add notes, and see the menu/ingredients.

UpdateTable:

Customer

E

System shows all the tables to choose from

Customer picks an available seat

X

System confirms the selection and sends back that the table is
unavailable and Delor_gs 10 ma_l_cgsto_mg' -

System notifees the waiter that a
table has a new customer

.

. Walter acknowledges the .
N nolification, .
L+ .

The warter wil cnatify the system
once the customer is finished

The systemn will update and show the new available tables

The customer sign in PC will be used by both the customers and the waiters. The customers will see the
status of all the tables in real time and be able to choose the available ones. The system will then change
it so that the next customers will see that the table is unavailable. Once finished, the waiter will update
the system so it can send back to the customer PC when an unavailable table will be ready.

OrderDone

Chef Main tem Waiter

select "Order Complete”

>

stop order timer :I
update Inventory :I

Notify Waiter

P
create analysis :I
< ———-Qrderis removed
Chef Main tem Waiter

The Chef PC will utilize this sequence in order to send a notification through the system to the waiter
that an order has been completed and is ready to be served to the customer. The chef will press the
“Order Complete” option, which will tell the system to stop the order times for that specific order,
update the inventory in response to the order completed, notify the waiter that the meal is ready to be
served, and create an analysis based on the order. Through this option, efficiency throughout will be

increased because of all the actions that happen at once through the system instead of manually and
one by one.

2. Class Diagram and Interface Specification

—
==
—
——

Data Types and Operation Signatures

Note For all of our classes we are going to be using spring 2013 ‘Auto-Serve’ as reference for their

classes and we will be optimizing and adding newer functions.

ManagerProcessor

ManagerProcessor is responsible for handling the requests given by the CustomerGUI.

ManagerProcessor

-conn:ManagerCommunicator
-employee:Employee

+HandleMessage(message:String).void

+viewlnventory ():String

+ addinventoryltem(inventoryltem :invnetoryltem). Boolean
+ removelnventoryltem (name:String) :Boolean

+ editinvetoryltem(name:String, ...):Boolean
+viewPopularity(name:String):int
+viewAllPoplarity(name:String):String

Attributes
-conn:ManagerCommunicator
-employee:Employee

Methods
+HandleMessage(message:String):void

Used to handle requests that are being passed to this function.
+viewlnventory():String

Views inventory items that are in the system.
+addlInventoryltem(inventoryltem:Inventory):Boolean

Allows the user to add an inventory item to the system.
+editlnventory(name:String,...):Boolean

Allows used to edit a selected inventory item.
+viewPopularity(name:String):int

Displays the popularity of the selected menu item.
+viewAllPopularity(name:String):String

Displays popularity of all items on the menu.

Managerinterface

ManagerGUI is the what the manager interacts with on their display. This is responsible for
communication between the manager and the system.

Managerinterface
-proc:ManagerProcessor

+main(args:String[0...*]:void
- initialize ().void

Attributes
-proc:ManagerProcessor
Processes all requests made and calls the appropriate function.

Methods

+main(args:String[0....*]):void

The main function that calls the initialize to prompt the initialization of the GUI.
-initialize():void

Creates the GUI that is displayed for the manager.

ManagerCommunicator

The ManagerCommunicator class will take care of all the connections to the server from
the client side. The functions in this class will be responsible for sending requests to the
CommandHandler as well as sending information to the ManagerGUI.

ManagerCommunicator

-portint
-host:String
-sock:Socket

+ManagerCommunicator(portint,host:String):void
+setUpConn():boolean

+closeConn():boolean
+getMessage(sock:Socket):String
+sendMessage(sock:Socket. message:String):boolean
+testconnection(): boolean

Attributes
-port:int
The port number of the client.
-host:String
protocol string that will be string compared in order to make sure it has the name pipe
sql protocol
-sock:Socket
The socket of the client used to communicate to the server

Methods
+ManagerCommunicator(port:int,host:String):void
ManagerCommunicator will set up the port number and the host string
+setUpConn():boolean
This function will use port number and string initialized from MangerCommunicator in
order to set up the socket connection
+closeConn():boolean
Terminates the socket connection
+getMessage(sock:Socket):String
Gets request coming into the client socket
+sendMessage(sock:Socket,message:String):boolean
Takes the socket information and sends it as a string which is formated to sql protocols
to the server alongside with a message.
+testConnection():boolean
Test the connection to the server. If the value returns false as in failed connection, it will
invoke setUpConn

Employee
The Employee class will set up all or remove employees from the system. This class will

be friends with the ManagerProcessor class since we want the manager to have the
ability to change employee information on the go.

Employee

-name:String
-email:String
-phoneNumber:int
-employeelD:int
-payRate:int

+Employee(String:name.String:emailint:phoneNumver,int:employeelD):boolean
+EmployeeRate(int:payRate):boolean

+getinfo(void):String

+getEmployeelD(void):int

+changePay(int;payRate):void

+Editinfo(void):boolean

+RemoveEmployee(int:employeelD):boolean

Attributes
-name:String

First and last name of the employee.
-email:String

Employee primary email information.
-phoneNumber:int

Employee primary contact phone number.
-employeelD:int

ID that will be used in order to keep better track of employees.
-payRate:int

Hourly rate of employees

Methods
+Employee(String:name,String:email,int:phoneNumber,int:employeelD):boolean
This function will set up a new employee into the system based off of there name,email,
and phone number. After successfully entering a valid new employee the system will
display employee information as will as generated employee ID.
+EmployeeRate(int:payRate,int:employeelD):boolean
Manager can set initial pay rate for the employee.
+getinfo(int:employeelD):String
Pull up all of employee’s information.
+getEmployeelD(void):int
Bring up a list of all current employees organized by ID order.
+changePay(int:payRate,int:employeelD):void
Change the hourly rate of employees payroll.
+EditInfo(int:employeelD):boolean
Allows manager to edit basic employee information (name,email, or phonenumber).
+RemoveEmployee(int:employeelD):boolean
Removes employee completely from the system (except payroll information).

CustomerSeatingProcessor

The Customer Seating Processor’s task organizes all of the tables and gives the status of each one to the
customer and waiters. The customers will be able to see all of the tables and the status of each and
choose the available ones. These requests will be sent to the waiters to notify them to bring the
customer to the selected table. The system will then update for the next customer.

CustomerSeatingProcessor

-singleton:CustomerSeatingProcessor

HcreateTable(table:String):string
+deleteTable(table:String):string
HupdateTable(table:String):boolean
HtimeTable(table:int):int
HalertCustomer(message:string):String
Hnotify Waiter(message:String):String
+notify System(message:String):String

Attributes
-singleton:CustomerSeatingProcessor
The function only calls to itself

Methods

+createTable(table:String):string
This method will create a new string and insert a new table.
+deleteTable(table:String):string
This method will delete an existing string and delete a table
+updateTable(table:String):boolean
This method will change the status of a table. There are only 2 statuses, available or
unavailable.
+timeTable(table:int):int
This method will show the current time of the table of how long the customer was at
that table to show the customers and waiters and estimate time of how much longer
they will take.
+alertCustomer(message:string):String
This alert will show the customer when a table has become available again if a
customer at the table has just left or change the table they just selected to
unavailable for the next customer to see.
+notifyWaiter(message:String):String
This alert will notify the waiter that a customer has just chosen a table and is ready
to be seated.
+notifySystem(message:String):String
The system will update accordingly to give real time updates and statuses of every
table

Waiter.Communicator

The WaiterCommunicator is responsible for all communications between the CommandHandler and the
WaiterGUI. This class is actively listening for requests from the CommandHandler and is responsible for
all changes made to the WaiterGUI.

WaiterCommunicator

Fport:int
thost:String
-sock:Socket

+WaiterCommunicator(port:int,host:String)
+setUpConn():boolean

+closeClonn():boolean
+getMessage(sock:Socket):String
+sendMessage(sock:Socket,message:String):boolean
+testconnection():boolean

Attributes
-port:int

The port through which the class listens through.
-host:String

The Hostname of the local computer
-sock:Socket

The socket that sends and receives requests on.

Methods
+WaiterCommunicator(port:int,host:String)

The constructor.
+setUpConn():boolean

The method used to setup the connection for the socket.
+closeConn():Boolean

The method used to close the connection on the socket.
+getMessage(sock:Socket):String

The method used to receive a request on a connected socket
+sendMessage(sock:Scoket,message:String):Boolean

The method used to send a message from the socket.
+testConn():Socket

The method used to test the socket’s connection.

Waiter.Processor
The WaiterProcessor is responsible for the maintaining the OrderQueue locally while also handing the

requests given by the WaiterGUI.

WaiterProcessor

-conn:WaiterCommunicator
-DeliveryQueue:Queue<Menultem=>

+HandleMessage(message:String):void
+AddItem(menultem:Menultem):boolean
+Deleteltem(int Order):boolean
+ViewQueue():String

<<Interface>>
Waiter GUI

-proc:WaiterProcessor

+main(args:String[0....*]:void
+initialize():void

Attributes
-conn:WaiterCommunicator
This is the socket connection used to communicate with other components in the system.

-DeliveryQueue:Queue<Menultem>
This is the container for the queue that holds the items that were ordered and are ready to be

delivered to customers.

Methods
+HandleMessage(message:String):void

This method handles all the messages the waiter sends to the Chef.
+Addltem(int Order):Boolean

This method adds an order to the Deliveryqueue and gives an order number.
+Deleteltem(int Order):Boolean

This method removes an order form the Deliveryqueue based on the order number.
+ViewQueue():ArrayList<Menultem>

This methods returns the current delivery queue.

WaiterGUI

The WaiterGUI is the front end of the system. It is the interface that the Waiter uses and is the liaison
between the Waiter and the system. This class will be using the WaiterProcessor to aid in processing the
requests by the Waiter.

Attributes
-proc:WaiterProcessor
This object is used to process all the requests.

Methods
+main(args:String[0....*]):void

This method is used to initialize the GUI.
-intialize():void

This method creates the GUI

Chef.Processor

The ChefProcessor is responsible for the maintaining the OrderQueue and
BeingCookedQueue locally while also handling the requests given by the chefGUI. An example of a
request is: Flagging order done which has to send the order to the WaiterGUI.

Chef Processor

+conn:ChefCommunicator
+0OrderQueue:Queue<Menuliem=
+WaitQueue:Queue<Menultem=

+HandleMessage(message:String):Void
+AddOrder(menultem:Menultem:boolean
+NotifyCatastrophe(order:int):boolean
+Finisheditem(order:int):boolean
+FlagOrderToCook(order:int):boolean
+ViewQueue():String

Attributes
+conn:ChefCommunicator
This object is used to send and receive requests.
+0OrderQueue:Queue<Menultem>
This object holds the menultems on the OrderQueue
+WaitQueue:Queue<Menultem>
This object holds the menultem on the Orders to cook.

Methods
+HandleMessage(message:String):void
This method handles any message passed to the chef. 93
+AddOrder(menultem:Menultem):boolean
This method add a menu item to the chef’s ready queue .
+Deleteltem(order:int):boolean
This method removes an item from the chef’s ready queue and puts it on the
waiter queue.
+NotifyCatastrophe(order:int):Boolean
This method will notify the controller of a catastrophe and to halt the current
queue.
+Finishedltem(order:int):Boolean
This method will take an item from the wait queue and flag it as done. This
will send a message to the controller to forward the item to the waiter to be
delivered.
+FlagOrderToCook(order:int):Boolean
This method will flag an order to be cooked which will move it to the wait queue.
+ViewQueue():String
This method will return the current queue for the chef.

Chef.Communicator

The ChefCommunicator is responsible for sending and receiving any communication between the
ChefGUI and the CommandHandler. This class is actively listening for requests from the
CommandHandler and can be responsible for any changes made in the ChefGUI.

ChefCommunicator

-portint
-host:String
-sock:Socket

+getConn():Socket
+ChefCommunicator(portint,host:String)
+setUpConn():boolean

+closeConn():boolean
+getMessage(sock:Socket):String
+sendMessage(sock:socket,message:String:Boolean

Attributes
-port:int
The port through which the class is going to listen through.
-host:String
The Hostname of the local computer
-sock:Socket

The socket that going to be used to send and receive requests on.

Methods

+ChefCommunicator(port:int,host:String)

The constructor used to initialize. 94
+setUpConn():boolean

The method used to setup the connection on the socket.
+getConn():Socket

The method used to listen and return any incoming information
+closeConn():Boolean

The method used to close the connection on the socket.
+getMessage(sock:Socket):String

The method used to receive a request on a connected socket
+sendMessage(sock:Scoket,message:String):Boolean

The method used to send a message on the socket.

Chef.Interface

The ChefGUI is the front end of the system and is responsible for the interface
between the Chef and the system. This class will be using the ChefProcessor to aid in
processing the requests by the chef.

<<Interface>>
ChefGUI

-proc:ChefProcessor

+main(args:String(0...*):void
-initialize():void

Attributes
-proc:ChefProcessor
This object is used to process all the requests.
Methods
+main(args:String[0....*]):void
This method is used to initialize the GUI.
-intialize():void
This method creates the GUI.

Traceability Matrix

A B C D E F G H I J K L M N o) P Q R S r U VW Yl
s H g
= o g
o
) ez & § 1 S SR B £ 3 2 § g8 § ¢
e & 3 3 & 2 8 3 £ & > § 3 3 & g 3 3 &8 % 3 2 2
: 0 F F & T 8 g8 £ 3 £ 3 g 9
58 2 5 o] & o §g -§n -] ‘32 R H) 3
LIl S ek Tl Temk Teml- Yol Teml Jeml- Jemt Semf Femk- feml | sl em it dmis o
;vgvav‘vﬁvagvgvgvgvgv‘vsv2v§vgvgvgvgvsvgvavsvgvgv
1 X X X X X
2 X X X X X X X X
3 X X X X X X X
4 X X X
S x x X
6 X X X X
7 x x X X
8 X X x X X
9 X x X X
10 X X X X X
n X X X X
12 X X
13 X X X X X X
14 X X
15 X X X X
16 X X X X
17 X X
18 X X

3. Architectural Styles

a. An architectural style is a set of principles that provides an abstract framework for a set of systems.
The main purpose is to improve partitioning and promote design to our problems by providing detailed
solutions. We will be focusing on multiple architectural styles that correspond to our project. These
topics will include communication, deployment, domain and structure.

Communication: Service-Oriented Architectural Style

Service-oriented architecture enables application functionality to be provided as a set of services and
creation of applications that make use of software services. they basically focus on providing a message
based interaction with an application through interfaces that are applicable. Our project will have a
main home system that will communicate and interact with all the PCs and tablets. However, these
tablets will be autonomous since they all will have a different task and job that will notify the system to
update the overall components. Services are also distributable since these portable PCs can be carried
around throughout the restaurant and used whenever. Services will also share contracts when

communicating and not internal classes.

Deployment: Client/Server

The client/server architecture will distribute the system that involves a separate client and server
system with the overall connecting network. It describes the relationship between them whereas the
client will initiate requests and wait for the reply from the system. We will use our system as the client
and the tables as the server. The servers will be able to request information from the system, and the

system will distribute accordingly. Our communication protocols will also have a common language
when deploying and we are looking at either C or C++.

Domain: Event Driven Design

Event Driven Design is a software pattern that helps promote the production, detection, consumption,
and reaction to all events. An event can be considered a significant change of an object or state of it
embedded in the system. Our system will have notifications that will move the events along. For
example, our chef will have notifications that will send out to the waiters when the food is ready. The
waiters will be notified once the customers are seated at a certain table. The manager will be notified if
an item in the inventory is about to run out or expire. All these main events and more will be crucial for
the restaurant business and the event design will be sent out by the system by sending notifications.

Structure: Object-Oriented Architectural Style

Object-oriented architecture is a design pattern that divides all the responsibilities of an application or
system into individual reusable objects that still maintains the data. These independent objects will
communicate through our interfaces by calling methods or accessing properties of other objects by
sending and receiving messages. Our structure is composed of many different tablets and PCS. Referring
to abstraction, the manager tablet will have functions like Get() and Update() with the inventory and
items. Encapsulation makes it easy for the tablets to delete or update items to have the newest possible
update. Inheritance allows objects to be functional throughout since a single update on any machine will
influence other machines by updating the system instead of one individual tablet.

b. Identifying Subsystems

Package Diagram

1

User Interface .
Communicator
L1 — Franager | \
BusBoy i
- - - -
SgET—) [T
)
' A
\J |
—
Processor
Database
linventory [Menu Employees \
-
—
Controller
-—-
-+ - - -

T
I
I

Based on the packaging diagram above, the packages are divided into 5 main parts. The user interface
contains the 5 different interface: Chef, Waiter, Manager, Busboy and Customer Sign- In. These are the 5
different interfaces that an employee or customer may access. There is a separate package for database.
This contains all the information on the menu and inventory as well as information on the employees.
The database may also contain other folders. The communicator package is the accessor of information.
It sends interactions from the interface to the controller. The controller delegates what the
communicator can do. It accesses the database and uses the information to interact with the
communicator and the processor.

A

L

c. Mapping Subsystems to Hardware

From our subsystem diagram above, our subsystem will be mapped to our hardware in a very simple
way. The database will be a MySQL server that will run either on a portable or a centralized computer.
The controllers will also be on this computer as well in order to bridge the gap between the user
interfaces and the database. Both the database and controller will serve the back end of the process.
But each user interface which will serve as the front end, such as the chef, the waiter,or the manager,
will be set on individual computer or separate tablets for each user. Each of these interfaces will
incorporate the necessary corresponding processor and communicator.

d. Persistent Data Storage

For our database, all the data is permanently saved and updated frequently. So, persistent data storage
is essential in the transactions done in our system on a daily basis. Some transactions are customer’s
orders, menu changes, and inventory changes. For our system, all the transactions depend on the table
selected. Each table will hold different transactions, which go into our database. This is all done using
SQL, which will maintain our database and everything does coincide with each other in some way. Our
database works in a way that the applications in our system acts as the customer to the sever. This does
not interact with the database directly, but simply just asks the server to perform an operation. With
this built in server, our data is maintained and allows alteration of features.

e. Network Protocol

For our system, we are going to have an application which can run on a computer(for prototyping) that
will be communicating back and forth with a server. We decided to go with a Microsoft SQL server since
the backend will be on C++ and the front end of the computer application will also be in C++. This way
we can maximize performance and compatibility by communicating locally through a network. Since we
will not need to go through the internet, we can avoid TCP/IP and go straight for a Named Pipe. Named
Pipes have an advantage over TCP/IP because they are usually faster for sending information, and have
more free network stack resources. Named pipes are easily configured through the SQL server and the
client through options and code.

Sample code to set up server and database:
QCoreApplication a(argc, argv);

QString servername = “LOCALHOST\\SQLEXPRESS”; //server name
QSTRING dbname = “test”; //database name

QSqlDatabase db = QSqlDatabase::addDatabase(“QODBC”); //database driver
db.setConnectionOptions(); //set connections

QString dsn = QString(“DRIVER={SQL Native Client};SERVER
=%1;DATABASE=%2;Trusted_Connection=Yes;”).arg(servername).arg(dbname);
//connection string

db.setDatabaseName(dsn); //database name to connection string

f. Global Control Flow

Execution Orderness

“Why Wait” is procedure-driven. Everything executes in the following linear fashion:

When the customer first comes in, they will choose a table which is empty using the Customer Sign in PC.
Once they are seated the waiter will come to get the customer’s order. The waiter will then place the
order. The Chef will receive the order on the Chef’s PC and begin preparing the food. The inventory will
get adjusted as needed. Once the food is ready the Chef will use the Chef’s PC to notify the Waiter PC.
The Waiter will come get the food and deliver it to the customer’s table. Once the customer is finished
eating the waiter will get the payment from the customer on the Waiter’s PC. Once the payment goes
through, tables will be marked as dirty and the Busboy PC will call the busboy to come clean.

Time Dependency

“Why Wait” has an event-response time for the inventory alerts, but the rest of the system is a real-time
system that is periodic. The procedure shown in the Execution Orderness section is what is periodic. The
customers choosing a table and ordering their food, the chef preparing their food, the waiter delivering
the customer’s food and taking the payment from the customer, and the BusBoy cleaning the table is all
periodic. All of the previously mentioned processes are time dependent as the time that each actor
takes to do their function will be taken into consideration for our system processes. Another factor
where real-time plays a role is when the system estimates the amount of time the customer will have to
wait for their order to be ready.

The inventory functions are also time dependent because when an ingredient comes close to expiration
date the system will send out a notification to the manager. Also, if the inventory is low, a notification
gets sent to the manager.

Concurrency

“Why Wait” will use multi-threading because there are multiple subsystems running independently of
each other. All interactions between the subsystems are controlled through a central server. Multiple
customers will be taken care of at once so multiple orders will be placed at the same time. The event
where multiple customers are served will be taken care of by running the different threads through the
order queue. Another situation where multi-threading would be used is when the manager is checking
the inventory and updating it. The manager would have to spawn one thread for checking the inventory

and another thread to handle the update request in the database. The synchronization of these threads
are not necessary because they would not be working together.

Hardware Requirements

The system will need a server that would store the databases and allow communication between
different subsystems. The system will also need a tablet for each of the waiter, host, manager, and chef.

Server:
Hardware Minimum Requirements
Processor Intel Xeon E5 2.3 GHz
Hard Drive 500 GB
RAM 8 GB
Network Card 10/100/1000Mbps
Tablets:
Hardware Minimum Requirements
Processor Intel i5 E5 2.4 GHz
Hard Drive 32GB
RAM 2 GB
Display Multi-touch screen - 1024 x 760 Resolution
Network Card 802.11b/g/n Wireless LAN

4. Algorithms and Data Structures

a. Algorithms

Waiter:
If (timeSinceLastVisit==8)
return notification;

The way this algorithm would work is if the waiter has not checked on the table in under 8min,
the WaiterPC tablet will notify the waiter to check on the table. When the customer is seated,
the waiter will greet the customers after the 1st minute; bring drinks after the 3rd minute;
appetizers by the 8th minute if ordered; entree by the 20th minute but if no appetizers are
ordered, then by 15th minute; and desserts 15 minutes after the entree; If no dessert then check
within 15 after entree, otherwise 5 minutes after dessert is served

Customer Dine In Experience

Manager:

In the manager system there are some simple algorithms being used, one of which updates the
inventory as items are used or restocked. Therefore, the inventory system will increment the quantity by
one or decrement it by one automatically. Another algorithm is the not that queries the database, this
is used the the database management system and this communicates with the database tables
themselves. Some of these algorithms include, adding an new item to the database, removing an item
from the database, and updating an item’s status. These database tables include, user account
information, food menu information, table size and occupancy, and inventory items.

Chef:

The chef uses an algorithm for cooking orders in a queue. There is a queue within a queue as described
in the mathematical section. The chef also uses an algorithm when an order is cooked to decrement the
supplies as they are used. When an order is cooked, the ingredients are automatically subtracted and
the database is updated.

Customer:

The customer will use a given algorithm for the seating process. The tables will have a toggle option that
will show whether it is available or unavailable. The customer will pick the a table that they will like but
it has to be unavailable. There will also a timer function that goes along with it that keeps going up and
counting when a table is selected. It will then reset once the customer leaves.

b. Data Structures

DIfferent data structures are needed for each of the user. Array lists are used for storing data such as
the items in stock or the employee information. Array lists make it easy to store data. Items can be
removed and added to the list. Queues are used for prioritizing primarily by the chef and waiter.
Queues are essential to make sure that orders that come first are served so that customers have shorter
and more equal waiting times.

Manager

The manager would use array lists. This is because of flexibility. In an array list. ltems can be deleted
and added to any part of the queue therefore it would be easier to implement and easier to manipulate
in the future. Itis also essential in keeping track of employees who also need to be added and deleted.

Chef

The chef uses queues for making sure that orders that come first are made to order before orders that
come after. This is because of performance. If an order comes earlier and is cooked later, then the
customer will have a long waiting time and the waiting times of all customers will be uneven and
disorganized. The strict format of the queue allows these processes to be easier.

Waiter

The main data structure for the WaiterPC is for placing the order. Each table’s order will be a

multi-dimensional array. l.e.

Table 1 Table 1 Table 1 Table 1
Customer 1 Customer 2 Customer 3 Customer 4
Drink Drink Drink Drink
Appetizer Appetizer Appetizer Appetizer
Entree Entree Entree Entree
Dessert Dessert Dessert Dessert

This design was used based on the flowchart shown in the algorithm section for the WaiterPC.

Customer:

The tables given for the customers will be an array list. This will make it easier for employees to
add or delete tables at a given time. Selecting the tables will be a toggle or a boolean. It simply
will allow a customer to select the table or not, depending on the 2 statuses of either available
or unavailable.

5. User Interface Design and Implementation

During the initial interface design of our system we took careful consideration on minimizing user effort
while keeping Ease-of-use in mind. Our main objective was have our system do exactly what the
customer requirements entailed for each specified goals. Therefor, we have not made any significant
chances to the chef, bus boy, or waiter GUIl implementation. However, we feel that the manager side of
the system needs some more work. The manager GUI implementation has a difficult Ease-of-use
because as admin you need to make changes to the system on the fly. As far as the user effort for the
manager, we feel that the system is optimized and straight to the point.

6. Design of Tests

Note For the following Test case diagrams we decided to use Spring 2013 template since we felt it was clean,
easy to understand, and straight to the point. We are also going to implement some of their test cases.

Manager

For the manager system we plan on testing every function in the system besides the few we highlighted
below. Since the manager has admin rights to the system, all the changes he or she makes will be
reflected across all the devices. In the testing phase will be consistently adding and removing items such

as employees and food items in order to make sure everything is working as intended. For algorithm
testing in the case of the manager will be Inventory prediction. we plan manualing inputting dummy
variables and changing dates over a long period of time in order to see how well it can predict food

outcomes.

Test-case Identifier: TC - 01

Function Tested: addInventoryltem(inventoryltem:inventoryltem) :Boolean
Pass/Fail Critera: the test will only pass if new item appears on list

Test Procedure

Expected Results

-Call Function(Pass)

-Call Function(Fail)

-New item shows up on an updated inventory list

-Function will return NULL value if no new item is
added to the list

Test-case Identifier: TC - 02

Function Tested: removelnventoryltem(name:String) :Boolean
Pass/Fail Critera: This test will only pass if item is successfully removed

Test Procedure

Expected Results

-Call Function(Pass)

-Call Function(Fail)

-Old item does not show up on the updated
inventory list

-Function will return NULL value if item fails to be
removed

Test-case Identifier: TC - 03
Function Tested: viewInventory():ArrayList

Pass/Fail Critera: the test will only pass if a list with all inventory items appear

Test Procedure

Expected Results

-Call Function(Pass)

-All inventory items are return to screen

-Call Function(Fail) -Function will return NULL value if nothing is
returned

Test-case Identifier: TC - 04
Function Tested: viewPopularity(name:String):int
Pass/Fail Critera: the test will only pass if the popularity stat of an item is returned

Test Procedure Expected Results

-The corresponding item will be returned to
-Call Function(Pass) screen with its popularity

-Call Function(Fail) -Function will return -1 value if the stat does not
successfully return

Customer

The customer will have many options and functions that will implement how the restaurant system will
go. They will be able to select the tables they want which will set the flow for the restaurant. There will
also be a function to add or remove the tables. There will also be the status for the tables, showing if
they are either available or unavailable. In addition, they can also view the wait time for each table and
the time the customers are there for satisfaction.

Test-case Identifier: TC - 05

Function Tested: Customer::SelectTable(Table):

Pass/Fail Criteria: The system will pass if customer selected available table, it will fail if customer
selects a table that can’t be selected.

Test Procedure: Expected Results:

-Call Function(Pass) The system will pass if customer selects correct
table, it will be given to customer and the table
will become not available.

-Call Function(Fail) The system will fail if customer selects a table
that is already taken, the system will return an
error message requesting customer to select a
different table.

Test-case Identifier: TC - 06

Function Tested: Customer::viewWaitTime (Menuitem m) : int throws exception
Pass/Fail Criteria: The test passes if the correct wait time in seconds is returned from the
controller for the menu item passed as a parameter.

Test Procedure: Expected Results:

-Call Function(Pass) Customer will be able to see correct wait time
and time of customer.

-Call Function(Fail) An error will occur and the time will be failed to
sent, function will throw exception.

Test-case Identifier: TC - 07
Function Tested: Customer::viewStatus()
Pass/Fail Criteria: The system will pass if it shows the correct status, it will fail otherwise.

Test Procedure: Expected Results:

-Call Function(Pass) Customer will be able to see correct status of the
table.

-Call Function(Fail) An error will occur and the status will be failed to
sent, function will throw exception.

Test-case Identifier: TC - 08

Function Tested: addTable(Table)

Pass/Fail Criteria: The test will pass if a table is added correctly, otherwise an error will occur it if it
doesn’t.

Test Procedure: Expected Results:

-Call Function(Pass) The new table will be added correctly and it will
show up on the system.

-Call Function(Fail) An error will occur and the table won’t be added

and the system will ask for you to try again or
quit.

Test-case Identifier: TC - 09
Function Tested: deleteTable(Table)

Pass/Fail Criteria: The test will pass if a table is deleted correctly, otherwise an error will occur it if it

doesn’t.

Test Procedure:

Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The current table will be deleted correctly and it
will not show up on the system.

An error will occur and the table won’t be deleted
and the system will ask for you to try again or
quit.

Test-case Identifier: TC-10
Use Case Tested: Waiter::notification (Table)

Pass/Fail Criteria: The test passes if the system is able to notify the waiter according to our algorithm

Test Procedure:

Expected Results:

-Call Function(Pass)

-Call Function(Fail)

WaiterPC tablet gets a notification if customer is
at table and waiter has not checked in 8 minutes

Waiter tablet doesn’t get a notification because
no customers at table or an error occurred in the
system

Test-case Identifier: TC-11
Use Case Tested: Waiter::AddItem (Menuitem m)

Pass/Fail Criteria: The test passes if the item is added to the queue

Test Procedure:

Expected Results:

-Call Function(Pass)

The correct data is sent through and the item that

-Call Function(Fail)

needs to be added goes on the queue of the
ChefPC and as well as an added item on the
specific table for the waiter to view

Item is not available or an error occurred in the
system

Test-case Identifier: TC-12
Use Case Tested: Waiter::Deleteltem (Menuitem m)

Pass/Fail Criteria: The test passes if the item is deleted from the queue

Test Procedure:

Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The correct data is sent through and the item that
needs to be removed comes off on the queue of
the ChefPC and as well as deleted on the specific
table for the waiter to view

Item is not available or an error occurred in the
system

Test-case Identifier: TC-13

Use Case Tested: Waiter::ViewQueue () : ArrayList<Menultem>

Pass/Fail Criteria: The test passes if the menu items
Waiter

are viewed from each table on the queue for the

Test Procedure:

Expected Results:

-Call Function(Pass)

-Call Function(Fail)

The correct data is sent through and the items
ordered by each customer on each table can be
viewed on the queue for the Waiter

Table is empty or an error occurred in the system

Chef

The chef will have basic actions and functions to utilize in the testing phase. The chef will only need to
communicate with the waiter in order to receive the order. Within the testing phase, the chef will be
able to also view the order queue of the current orders. The chef will also be able to add or delete items
within an order in accordance to the customers preferences. However, the chef can ultimately
determine when the order has been completely prepared and be ready to be taken to the customer
using the function of itemfinished as call to the waiter that the order is done.

Test-case Identifier: TC-14

Use Case Tested: Chef::ViewQueue () : ArrayList<Menultem>

Pass/Fail Criteria: The test passes if the menu items are viewed from each table on the queue for the
Waiter

Test Procedure: Expected Results:

-Call Function(Pass) The correct data is sent through and the items
ordered by each customer on each table can be
viewed on the queue for the Waiter

-Call Function(Fail) Table is empty or an error occurred in the system

Test-case Identifier: TC-15

Use Case Tested: Chef::ItemFinished () : ArrayList<Menultem> : Boolean throws exception
Pass/Fail Criteria: The test passes if the item is removed from temporary storage and passed to the
waiter via the controller

Test Procedure: Expected Results:

-Call Function(Pass) Correct data to be sent is passed, function
returns true if the controller successfully
passes the Menultem to the waiter to be
delivered.

-Call Function(Fail) Menultem incorrect or controller error,
function returns false.

Message fails to be sent, function throws
exception

Test-case Identifier: TC - 16

Function Tested: Chef::AddOrder (TableOrder o) : Boolean

Pass/Fail Criteria: The test passes if the menu items in the order pass in as an argument are
successfully scheduled into the chef queue.

Test Procedure: Expected Results:

-Call Function(Pass) Correct data to be sent is passed, function
returns true if all the menu items part of the
table order passed are scheduled
successfully.

-Call Function(Fail) If functions fails to schedule all the orders,
returns false

Test-case Identifier: TC - 17

Function Tested: Chef::RemoveOrder (TableOrder o) : Boolean

Pass/Fail Criteria: The test passes if the menu items in the order pass in as an argument are
successfully removed from the chef queue.

Test Procedure: Expected Results:

-Call Function(Pass) Correct data to be sent is passed, function
returns true if menu item is removed.

-Call Function(Fail) Function returns false, if menu item is
incorrect or cannot be removed.

7. Project Management and Plan of Work

a. Merging Contributions From Individual Team Members

In order to merge our work together and be organized, we made a google document. This was the best
way since we are able to work together in different locations and have our work saved at the same time
on one final document we are able to edit together. Some issues that we encountered were that our
format would be a little different and we would be unorganized since our parts would be at different
locations. This problem was not that hard to solve. We fixed the format issue by agreeing on a specific
font and spacing. We fixed the unorganization part by labeling everything beforehand when making the
template so we are able to put the correct parts in the same place.

b. Project Coordination and Progress Report

History of Work
January 21st- January 29th

Our team decided to take on the restaurant automation project and created the proposal of
how we would go about tackling this project and how we would decide to implement this. We
began by reading through past projects and understanding where they did well, and where they
also had weaknesses, and we decide to create a system that would build upon those
weaknesses

February 1st- February 23rd

We received feedback on how to improve our proposal and how we could plan better for our
project as well. Our aim was to build upon the new proposal and incorporate those new ideas
into our first report. A theoretical model of our system was built using the report guidelines
given, incorporating Customer Statement of Requirements, Glossary of Terms,

Functional Requirements, Effort Estimation, and Domain Analysis. We divided the work evenly
and pieced together the report at the end, submitting our report on February 23rd

February 24th- March 19th
The team then began planning for the second report, building on what we learned from drafting

our first report on the specification of our system. This time we would focus on the design
aspect of the system. Through the drafting of the second report, we began to develop part of
the system that we would be using during the first demo. Through the Interaction Diagrams, the
Class Diagrams and Interface Specification, System Architecture and System Design, Algorithm
and Data Structures, User Interface Design and Implementation, and Design of Tests, we drafted
our second report and began to build our system. We focused on building the server and the
GUI and divided the work evenly between all team members.

Current Status
Our system is currently being developed, the building being separated into two components, the
server and the GUI. We have divided the overall team into two teams to work separately on
either component. As of right now, we do not have any functional components, but we are
focusing our maximum effort into completing parts of the server and the GUI in time for our first
demo presentation

Future Work
Currently, we are in the middle of developing a working version of our server and GUI for the
first demo presentation. For the demo, we hope to have a server and GUI that interact with
each other, and communicate with other modules as well, such as the chef and waiter modules.
Achieving this communication is a top level priority because that communication is what will

allow the entire system to work as a whole. But it also poses a problem as the modules will be
worked on with separate groups, so the modules won't work together at first due to maybe
different programming languages or even errors in the coding of the modules. But ultimately,
we want to have our server and GUI combine with all of the modules and interact as a single
system.

c. Plan of work

2014
014 April 2014

Activity |uRosowee. i 8| Status 18 19 20 21 24 25 26 27 28 31[01 02 03 04 07 08 09 10 11 14 15 16 17 18 21 22 23 24 25 28 29 30 01 02 05 06 07 08 09

Frstoeme T ——

Waiter i Mitul, Christian

Chef i Anvi, Nifjan

Server i Diego, Amgad

Bus Boy Implementation Jake |

GUI Avni, Mitul Christian

\

Section 1 Mitul

Section 2 Christian

Section 3 Christian

Section 4 Nirjan

Section 5 Amgad

Section 6 Jake

Section 7 Jake

Section 8* Nirjan, Jake Avni

Section 9 Diego

Section 10 Diego, Amgad Avni,Nirjan

Section 11* Diego, Amgad

Section 12* Christian,Mitul

Section 13 Anvi

Section 14 Everyone | | |

Everyone | |
 — I | |
Manager Implementation Amgad,Diego |
Touch up other Implement...) Avni Nirjan,Mitul Jake,Chri... : | [
[|
Electronic Project Archive | [] | | [
[
d. Breakdown of Responsibilities

WaiterPC Mitul Christian | Amgad | Diego | Jake | Nirjan | Avni
Responsibilities:
Customer Statement of X X X X X X X
Requirements (CSR)
System Requirements X X X X X X X
Functional X X X X X X X
Requirements

Specification

User Interface X X X X X X X
Specification

Domain Analysis X X X X X X X
Interaction Diagrams X X X X X X X
Class Diagram and X X X X X X X
Interface Specification

System Architecture X X X X X X X
and System Design

Algorithms and Data X X X X X X X
Structure

User Interface Design X X X X X X X
and Implementation

Design of Tests X X X X X X X
Project Management X X X X X X X
Plan of Work X X X X X X X
References X X X X X X X
ManagerPC Mitul Christian | Amgad | Diego | Jake | Nirjan | Avni
Responsibilities:

Customer Statement of X X X X X X X
Requirements (CSR)

System Requirements X X X X X X X
Functional X X X X X X X
Requirements

Specification

User Interface X X X X X X X

Specification

Domain Analysis X X X X X X X
Interaction Diagrams X X X X X X X
Class Diagram and X X X X X X X
Interface Specification

System Architecture X X X X X X X
and System Design

Algorithms and Data X X X X X X X
Structure

User Interface Design X X X X X X X
and Implementation

Design of Tests X X X X X X X
Project Management X X X X X X X
Plan of Work X X X X X X X
References X X X X X X X
ChefPC Responsibilities: | Mitul | Christian | Amgad | Diego | Jake | Nirjan | Avni
Customer Statement of X X X X X X X
Requirements (CSR)

System Requirements X X X X X X X
Functional Requirements X X X X X X X
Specification

User Interface X X X X X X X
Specification

Domain Analysis X X X X X X X
Interaction Diagrams X X X X X X X
Class Diagram and X X X X X X X
Interface Specification

System Architecture and X X X X X X X

System Design

Algorithms and Data X X X X X X X
Structure

User Interface Design and X X X X X X X
Implementation

Design of Tests X X X X X X X
Project Management X X X X X X X
Plan of Work X X X X X X X
References X X X X X X X
BusBoyPC Mitul Christian | Amgad | Diego | Jake | Nirjan | Avni
Responsibilities:

Customer Statement of X X X X X X X
Requirements (CSR)

System Requirements X X X X X X X
Functional X X X X X X X
Requirements

Specification

User Interface X X X X X X X
Specification

Domain Analysis X X X X X X X
Interaction Diagrams X X X X X X X
Class Diagram and X X X X X X X
Interface Specification

System Architecture X X X X X X X
and System Design

Algorithms and Data X X X X X X X

Structure

User Interface Design X X X X X X X
and Implementation

Design of Tests X X X X X X X
Project Management X X X X X X X
Plan of Work X X X X X X X
References X X X X X X X

8. References

"Concepts: Requirements." Concepts: Requirements. Polytechnique Montreal, 2012. Web.
5 Feb. 2014. -(Used for Non-Functional Requirements)

Nick Leshi. (2010). Good Restaurants Come and Go. Available:
http://open.salon.com/blog/kikstad/2010/06/25/good_restaurants_come_and_
go. Last accessed 8th Feb 2014. -(Used for Cover picture).

Group#l Spring 2013. (2013). Inventory usage rate estimation and runout date estimation. Auto-Serve.
1(2), 75-116.

Group#l Spring 2013. (2013). Inventory usage rate estimation and runout date estimation. Auto-Serve.
1(2), 129-151.

