14:332:452:01 Software Engineering, Spring 2013

Course Project

Team Members

GravyXpress:

A Restaurant Management Software

Group Number: #4

Gravo'Xpres

t RAbout GContact

Rutgers University

[Name [Email

Yehuda Cohen yehuda.cohen@rutgers.edu
Shivani Sethi shivani.sethi@tutgers.edu
Abdul Rattu t.abdulsami@gmail.com
Amizan Jaleel najm>555@gmail.com

[Nabil Ali alinabil07@gmail.com

Rohit Lakshmanatirthakatte rohit.lakshmana@rutgers.edu

Instructor: Prof. Ivan Marsic

Project URL: http://gravyxpress.appspot.com/

Revision History:

[Version No.

Date of Revision

1 03/03/2013
2 03/10/2013
3 03/17/2013

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Individual Contributions:

Abdul Amizan Nabil Rohit Shivani Yehuda
Rattu Jaleel Ali Lakshmana Sethi Cohen
Sec. 1: Interaction 16.67% 16.67% 16.67% 16.67% 16.67% 16.67%
Diagrams (30 points) (5pts) (5pts) (5pts) (5pts) (5pts) (5pts)
Sec. 2: Classes + Specs 50% 50%
(10 points) (5pts) (5pts)
Sec. 3: Sys Arch and 13.3% 33.33% 10% 38.33% 5%
Design (15 points) (2pts) (5pts) (1.5pts) (5.75pts) (.75pts)
Sec. 4: Algorithms and 37.5% 62.5%
Data Structures (4 (1.5pts) (2.5pts)
points)
Sec. 5: User Interface 18.18% 36.36% 22.7% 22.7%
(11 points) (2pts) (4pts) (2.5pts) (2.5pts)
Sec. 6: Testing Design 45.83% 54.17%
(12 points) (5.5pts) (6.5pts)
Sec. 7: Project 16.67% 16.67 16.67% 16.67% 16.67% 16.67%
Management (18 points) (3pts) (3pts) (3pts) (3pts) (3pts) (3pts)

e Yechuda Cohen
- For Part 1, I designed the ServeTable interaction diagram and elaboration. (Also provided a general
template for other Interaction Diagrams by completing less detailed versions in Report 1.)
- For Part 2, I built the class diagram, defining all objects, attributes and methods to make up
GravyXpress. In addition, included a very brief description of each class. Furthermore, dealt with the
network protocols, and aided Amizan by elaborating some fundamentals of the design of the
database.
-For Part 3, Broke down all responsibilities assigning user stories to all members of the group for
development. Tried to ensure the user stories were somewhat related, so members could develop a
level of expertese. Additionally, elaborated technical aspects of user interface and user interface
implementation.

® Abdul Rattu
- For Part 1, I designed ChangeMenu interaction diagram as well as explanation of functions that
have been used within the diagram.
- For Part 2, I wrote “data types and operational signatures” with detailed descriptions as well as did
“mapping subsystems to hardware” part.
- For Part 3, I have improved the user interface design and contributed in project management.

e Nabil Ali
- For Part 1, I designed ManageOrder interaction diagram and explanation of the diagram.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

- For Part 2, I constructed hardware requirements tables and wrote descriptions.

® Amizan Jaleel
- For Part 1, I designed ChangeDrinks interaction diagram as well as explanation using comment
bubbles.
- For Part 2, I did the database design schema as well explanation for it.
-For Part 3, worked on Ul along with Abdul and ocntributed to project management

e Shivani Sethi
- For Part 1, I designed CreateWebpage interaction diagram with explanation. I made significant
improvements to the previous diagram in Report 1 and added alternate design ideas.
- For Part 2, I designed the architectural style of the system and identified and explained all of the
subsystems. I drew diagrams to help further explain these sections
- For Part 3, I did most of the Algorithms and Data Structures Section. I also wrote in half of the Ul
description.
-For Project Management, I copied Part 2 work into this final google doc, updated the Table of
Contents, setup Google+ hangouts and resolved issues with the distribution of work so that it was
more equally distributed
- I also helped post important updates on the Facebook group page for this Software Group Project
-1 compiled and edited the final version of this report

® Rohit Lakshmanatirthakatte
- For Part 1, I designed OrderFood interaction diagram as well as wrote explanations of some
functions using comment bubbles.
- For Part 2, I made the traceability matrix of all classes using the class diagram and wrote the
global control flow for the system architecture and design. For the traceability matrix, I also
added and improved upon the domain concepts.
- For Part 3, I designed all test cases and did 2 unit tests (Cheque and Table).
- I also wrote half of the Table of Contents, Project Management for Parts 1 and 2 only, and 3/4
of the References section of this report.
- For each part of the report I opened up a Google Drive document and made announcements
about the due date of each deliverable as well as provided links to valuable resources. For parts 1
and 2, I wrote the headings for each section so other team members will know where to write
their assigned sections.
- For part 2, I kept a list of assigned tasks in a notepad and posted it on Google Drive for
everyone to see in case they forgot what they were supposed to do. Tasks were assigned by
everyone during a Google+ Hangout session.
- For all parts, I submitted the final pdf document into my Sakai Dropbox.
- With the idea from Yehuda Cohen, I opened up a Facebook Group for all team members
called Software Engineering GravyXpress. The purpose of this group is to allow members to
post announcements, decide meeting times, post pictures and program code, and increase
communication.
- I am the only person maintaining and updating the GravyXpress group website
http://gravyxpress.appspot.com/ by uploading files, making announcements at each deliverable
due date, adding a picture, and adding background color. But the website itself was programmed
and created by Yehuda Cohen.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Table of Contents:

1 Interaction DIAGIAMS. ...ttt 5

2 Class Diagram and Interface SPecifiCation......ccieeuieuiirrecieecieecieeeeeneeiseesesesesessesesesseaessesenns 13
A) Class DIagram........oooiiiiiii 13
B) Data Types and Operation SIgNatures.o.vvuiiriiniiiiiiiii it 15
C) Traceability MatriX.oouuiutit ittt 20

3 System Architecture and System DeSiZN.....c.ccuuveeirenieenieiieiceeeteteree et sesennes 22
A) Architectural STYES.ot 22
B) Identifying Subsystems and Package Diagram.................oooi 24
C) Mapping Subsystems to Hardware..............ooooi 27
D) Persistent Data StOrage.o.oouiiiiiiiiii 28
E) Network Protocols.o.uiuui i e, 28
F) Global Control FIOW.ooiii e 29
G) Hardware Requirements. . ..o.ovviuiniiniiiiiiiii i 30

4 Algorithms and Data StIUCTULES......c.veueeerrieirieeireieirieireies et sseaesesse e e senas 31
A) ALGOTITIMIS ..ttt 31
B) Data SHUCHULES..c.voviaeeeieriieieierierereeiceerere ettt eres st e sestaesesseses s sesessasesesesenensesenencs 31

5 User Interface Design and Implementation.........c.coccirieiniciniiiienieieiesiieissseessesseesseens 33

0 DESIZN O TESES.vuruenieeiiieiriicieieeetee ettt sttt bttt s e eaees 35

7 Project Management and Plan of WorK........ccvviiniiissies 45
A) Merging the Contributions from Individual Team Members........ccocvvvieecicnininiinnnnns 45
B) Project Coordinationoiuiiiiuiii i e 45
C) Progress REPOTt. ...t 46
D) Plaint Of WOLK .ottt s e nnne 46
E) Breakdown of ReSpOnSIDILIES.coviuiiuieiiieiiriiiiie it 46

8. RELEIENCES vttt sttt e e 50

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

1. Interaction Diagrams

OrdetFood Use Case:

LL2] Chagque 2 Ordhar T
T T
A ohar press e e | |
“ienar Beru® anfion I :
| |
Capegaries of faad | I
| Pz, Burgers, pasta, : :
spacals, ele. i |
I I
i i
: .
I I
) I 1|l ardars addad s
Ao e ta Chegue] | | arder cjuea
3: cledten|) b I
Jd:a | |
> s 3.1.1: ackfToDrderCue ue) J
: , 4: add Cuden)
Cherqua i rescard of wha 4120 unckreCany |
cus farmer arcered, 3.1.3 updateTaral |
3.1.4: ardarCoaur] |
5 mdum arderSusus
b —————————————— H——————— _————— T————
315 retum sotaliemaur e i o 4-
e H——————— S e Acior can e s tabus of
Il mumoderCawt || 000000 T 7T 7" arder, tokl armund fa
——————————————— H-———————————— ey, and rurmber of
Sy 1~ {2 ardared

Fesmawe Orclesnesd [18am)

5 mmcreeindean] | =S
5.1 ol et oy e ey] | i
i h E.1.1: dedateaF rarmndearCuay o |
"““”“’“9”““’&‘] 8.1.2: updaeCany} ‘_l il
5.1.3: updataToralk)

8.1.4: arderCourd] |
A: mium arderSunus

]

T PR A e T |

1 | 1

| | |
1 i i i
The customer can request the Menu class to see the menu items (organized by categories). It can then send a
request to the Menu class to order an item. The Menu class will then send a request to the Cheque class to
add the item to the order cheque for the customer. Furthermore, the item will be added to the order queue as
the Cheque class will immediately send a request to the OrderQueue class to do so. The Cheque class will
send the information about the bill to the customet. To delete an order, the Customer class will send a
request to the Menu class which will proceed to tell the Cheque and subsequently the OrderQueue classes to
remove the order.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

An alternative design that was considered was to have a single Order button at bottom of the list of ordered
items. In the interaction diagram above, we have several order buttons, one for each item in the restaurant
menu. So, the system automatically sends the order into the order queue. In the alternative design, the user
can collect all items he/she wants to order and then send them all simultaneously to the order queue. We
chose the automatic submission of orders over the alternative design because the customer might forget to hit
the Order button at the end, and then might complain about where his/her orders ate even though he/she
did not send them to the order queue.

Another alternative design that was considered was having a feature that shows the estimated time of food
arrival. However, we realized that this was too difficult to implement, and also there are other factors that can
affect the time that the customer gets the food. The ingredients might run out during preparation or there are
too few kitchen staff workers or the dish takes a long time to prepare. So, estimated time of food arrival will
not be designed and implemented.

CreateWebpage Use Case:

Wanager sends 2 request B : Restaurant Builder - Customer : Employee
to Restaurantluilder to Interface
create 3 subdamain
within Gravy}press for
Restaurant Manager R

L: Create Rekmumnt
I ' RestaurantBuider asks Manager for
Name of Restaurant, Address of
1.1: Request Basic Restaurant Information Restaurant, Working Hours, and
ather basic information

B T =

using Dashboard

_ -) |_ The Restaurant Interface i
2: Send Basic Restaurant Information | Creates the Manager's created by the Class
'J. JE——— Restaurant as 2 subdomain Customerinterface by using
| 4| |in GrawXpress the information provided
The Manager is redirected to the) by the Manager to
Dashboard where he can make changes to 2.1: Create Restaurant RestaurantBuikder
Employees, Menus etc.
: 4: Redirect to Dashboard |.I'.| 3. Create w/Restaurant Information |
I i
5: Create Restaurant Interface !
Manager Requests to Add Employee :
i
i

|
|
§: This s alternative path Numk’ker 1 (not necessary): Add Employee
i p—

6.1 This is alternative path Number 1 {not|necessary):Request Employee Information Asks class Employee to create an Employee with

| [E— information provided by Restaurant Manager to Il‘

Restaurant Builder

7. This is alternative path Number 1 (not pecessary):Send Employee Information
L

| |
|
| i
|
7.1: This is alternative path Numb%r 1 fnot necessary):Create With Employee Info
1
I 8: This is alternative path Number 1 (not necessary):.Create Employee
|

9: This is alternative path Number L (not necessary):Add Employee to Restaurant
|

10: This is an alternative path (Number 2): Add Higtpry Section to Home Page of Restaurantlntel[hce:
. ' i L
If the Manager wants to

add the history of his
restaurant to the interface

Employee is added to restaurant subdomain B‘

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

i
10.1: This is aL alternative path (Number 2); Request History|Information |
|
|

11: This is|an alternative path (Number 2): Send History Jnformation |

11.1: This ih‘f‘ alternative path (Number 2): Send History [nformation

|
|
12: This is an alternative path {Number 2): Adc{ History of Restaurant to Interface
|
I

Here the manager can create a subdomain in GravyXpress for his/her restaurant. A manager sends a request
to the Restaurant Builder class and this class asks for basic restaurant information such as address, working
hours etc. The Manager sends this information to the Restaurant Builder who then creates the restaurant with
this information. The Restaurant Builder also sends a request to the Customer Interface class to create an
interface for the restaurant. The Manager is redirected to the Dashboard. One alternate plan is that the
Manager class can request the Restaurant Builder class to add an employee by providing information about
the employee. The Restaurant Builder will then request the Employee class to create such an employee and
then it will add it to the restaurant. Another alternate plan is that the Manager class can request the Builder
class to add a History section to interface for restaurant as shown above. The Manager class sends a request
to the builder class who then sends a request to the Customer Interface class to add the details in the History
part of the interface. One possible problem with this design is that the cohesion of the Restaurant Builder is
slightly low since it has to respond to all of the requests of the Manager and then convey those requests to
other classes such as Waiter and Customer Interface. In an alternate design, perhaps the Manager should be
allowed to directly make a request to the Waiter and Customer Interface classes instead of having to reach
them via Restaurant Builder. This would help to increase the cohesion of the Restaurant Builder. However,
since the Restaurant Builder is an expert doer in managing the building of the restaurant, the current design
also makes sense even though it has lower cohesion. Thus, there is always a tradeoff in designs.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

ServeTable Use Case:

% RequestHandler Lagin : Tables : Order g J

Waiter : : : : Employees
. i |
1. Login [. I [I I
~ 1.1: Login . I I |
.‘ I | |
[I I
1.1.1: RequestCredentials : : :
£ttt I I I I
[[
2: EnterCredentials [[:
2.1: EnterCredentials | [I
| 2.1.1: GetEmployeelnfo
P_l.z: ReturnEmployeelnfo :
e ——— - ———————————- T ——————
2.1.3: Verify] [
- 2.1.4: SetSecureCookie Credentials : |
3 Request Tables™ || . T T T T TT i i I
> 3.1: RequestTables [[I
| b | [
3.1.1: ReguestedTables : ! :
"“: _________________________ I |
4: Select Table I I
[H_ 4.1: GetTableOrder |
T [!
[) ; [[
e g A1d:OrderObject , L] |
5: Mark Order Served | : I 1 !
- | 5.1t MarkServed | H :
: - » \
B: Cash Payment I 5.1.1: MarkServed |
6.1: PayTableCOrder | I
I > 6.1.1: PayOrder |
71 Acknowledge Paymﬂ : :
7.1: AcknowledgePayment | 6.1.1.1: MarkPaid |
: > 4_—| [
6.1.1.2: ConfirmPaid [:
L — I —— - .
I I I
&: ReleaseTable I I I
8.1: Relnas-:TabIc: : [
[> [:
[8.1.1: ReleaseTable | I
[[
| T | :
- I [I I
I I [I I
| | [[[[i

For a waiter to serve a table, he must login, using the login module. Once the login has been verified, he may
request his assigned tables. A cookie will be set to ensure that he need not login again until he has closed his

browser. He may then select a table from the list, and view the table’s order. Upon delivery he may mark the
order as served (only served orders will be reflected on the cheque.) He may perform a cash payment for the
customer. Once the table has been cleaned, he may release it so additional customers may be seated.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

ManageOrder Use Case:

sd Maragednder|)
loop |
: Kbt Oueus) : Dieghor Cuimia{}
Kilchan Siaf

1 etk O chai) |

1.1: Gttt Oedor])

1120 rotumi o Ondor () 1.1.1; Coul == “In Properation”;
e e e
1.1.3; i (propcount = prepoount + 1) ML

|
| 1
|]
| 1
| |
4 4
| 1

=2 | :

&: MarkComplebeCedoe [4: orderoount = aerdecouni + 1;
] X coul <O Order Propaned”;

2 PopOrdar
6: Bjordercount = ondorcount *1 Lrekum

b o o e o

Here, a kitchen staffer manages orders. There are no log-ins required and the user’s interaction is limited to
clicking virtual buttons (order completed). The system then removes the order from the kitchen queue and
notifies the customer, “Order Prepared”. Alternatively, the system notifies the kitchen staffer and the
customer when the order is “In Preperation”. FetchOrder does as its name suggests and compiles an order
from the queue. When an order is completed, MarkCompleteOrder acknowledges the order as complete and
the systems returns to fetch the next order. KitchenQueue and OrderQueue indicate the queue of orders.

14:332:452:01 Software Engineering, Spring 2013
Course Project

ChangeMenu Use Case:

Visual Paradigm for %'&Jnmmn ty Edition ot lor -'.WE
Manager/ Chef i
|

1: CrealehMeanul)

1.3 MenuCategonn s()

i S A e ot o i B i e

3.1: AddCal{)

5.1: RemoweCal{)

sd if cat==true:) 6 SoelectCal()

€.1: RetumCat()

toop] 7: AddEdiICat()

[Add / Edit Menu ltems]
7.1: NewlnfoReq()

8: Newlnta()

8.1: AddEditCan()

8 Creatahanul)

10: Remowaliemi)

11.1: Removeltem{)

10

Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Responsibilities:

Manager or Chef (actor) begins to create menu for the restaurant.

Menu builder sends request to ActualMenu which will get back to builder as Menu().

Menu builder then requests to expand menu from actor by adding, removing or editing categories.
For this task system will send MenuCategories() function to actor.

Actor sends request for AddCat() which will return back to actor in form of RequestName() for
category

Actor then selects the Name() and it goes to actual menu after submission.

Actor can also remove categories. Actor sends request RemoveCat() which will return back to actor
from menu builder as ConfrimReq().

Actor then confirms the request which removes the category from the actual menu.

If item exists in the menu already "cat==true" check that and takes actor to edit the category, else
"cat==false" takes actor back to CreatMenu() function where he can start over.

Actor can also delete individual items. Where actor sends request to menu builder as Removeltem()
form which will then confirm the request from actor.

Once actor confirmed the request it will then get deleted from the actual menu.

11

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

ChangeDrinks Use Case:

VIII'III“”“LW““mhH““IIIIIIIIII IIIII.IIII
I

1. Dispiay Drinks
ey 1.1: gotDrnks(al)

1.2 nisluree

[N RS

' 2.1.1: Name, Fnce, Count

s . s . e el s s

2.4.1.1: oroataDrink({ Mama, Price, Count

2.1.1.2 mium

2.1; Request Info
3.1.1 Provioe Into

3.1.1.1: createS ubcatogory

I
]
[
]
FALE ki l
]
]
1
1
]
1

sd Charge Drinks J: Change Hem
4.1: Request Info
407 Provide Infa

1

]

1

1

1

]

]

1

1
4.1.1,2: rebum I

4.1.2: rabum 1
_________________ 1

1

| 1 1
I I 1
| 1 1
T T T
| [} 1
| I]
| 1 1
! ! !
sd Delete ltem 1 H
: 5: Delate lem \ !
E.1: Request Conlrmation :

5.1.1: Confirm :

5.1.1.1: debebeDdinks(llem) 1

5.1.1.2: mtum I

5.1.2: mtum H

12

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

2. Class Diagram and Interface Specification

A) Class Diagram:
The class diagram includes the following:

GravyXpress is a container class to hold all restaurant domains in the system. This also contains an about

attribute representing generic data containing information about GravyXpress.

Restaurant is a class representing the structure of each overall restaurant. It contains attributes such as the
restaurant’s name, owner, unique identifier, and contact details. In addition, it contains a list of tables in the
the restaurant, as well as the Restaurant and Kitchen Queues, and a list of the employees working at the
restaurant.

Each of these compounded attributes is further broken down within its own class.

Employee is a class containing an Employee’s data. A restaurant’s Employees are aggregated into a main data
structure where they are associated with their particular restaurant. The detailed Employee class is illustrated

in the class diagram below.

Table is a class representing a physical table in a restaurant. The table has a unique identifier, in addition to
the number of seats and its availability status.

Menu is a class with all the menu categories on a restaurant’s menu.

MenuCategory is a class with the menu items in a category. The reason for separating menu into subsections
is to allow for more flexibility, and the ability to perform operations on entire categories rather than merely
individual menu items.

Menultem is a class representing each item on the menu and the information associated with it.

OrderItem is a class that couples a menu item with a table and a timestamp to be ordered. The timestamp
determines whether the order can be fetched by the kitchen.

OrderQueue is a data structure that collates these orders for the KitchenQueue and Cheque modules to

access.

KitchenQueue is a class representing the queue that the kitchen sees. Items can be retrieved and updated
from and within the OrderQueue.

Customer is a self explanatory class representing each customer, their party size, table location and cheque.

Cheque is an object used to store a dynamic cheque for a customer detailing his every purchase from the
restaurant and enabling a gratuity feature.

13

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Play! Controller is the controller class from the Play! webframework for Java. The Request Handler

inherits from this class.

Play! Secure is Play!’s security module.

14

14:332:452:01 Software Engineering, Spring 2013
Course Project

B) Data Types and Operation Signatures:

GravyXpress
Attributes:
-restaurants : string
// Name of the restaurant
-about : string
// Restaurant "about" desctiption
Operations:
+addRestaurant(owner) : string
+getRestaurant(id) : string
+delRestaurant(id) : string

// adding/modifying restaurant's information

Restaurant
Attributes:
-name : string
-table : int
// Number of tables
-contactDetails : string
// Restaurant contact detail
-orderQueue : void
// Control over order queue
-kitchenQueue : void
// Control over kitchen queue
-employees : string
// Employees database
-menu : string
// Menu detail
-id : int
// Restaurant ID number
-owner : string
// Restaurant owner name
Operations:
+getName(): string
// Control over name
+setName(name) : void
+addTables(seats) : void
// Control over adding number of tables
+Restaurant() : string
+Restaurant(name) : string
// Control over restaurant name
+Restaurant(name, contactDetail) : string
// Control over restaurant contact detail

15

Rutgers University

14:332:452:01 Software Engineering, Spring 2013
Course Project

+addEmployee(employee) : string

// For adding employee's name
+getContactDetails(): string

// For employee's detail
+setContactDetails(contactDetails) : void
+getld() : int

// Control over restaurant's id
+getOwner(): string

// Control over owner name
+setOwner(owner) : void

KitchenQueue
Attributes:

-kitchenltmes : string

// Name of kitchen items
-OrderQueue : int
-lenght : int

// Length of orders

Operations:

+getNextOrder() : string

// Control on getting next order details
+markCompelete(orderld) : boolean

// If order is complete mark Yes, else No
+getLenght() : int

Employee
Attributes:
-name : string
// Name of the employees
-contactDetail : string
// Contact details of the employees
-employeeType : string
// Employees job title, such as waiter, chef etc
Operations:
+getName(): string
// Control over getting the name of the employee
+setName(name) : void
+getContactDetails(): string
// Control over getting the contact detail of the employee
+setContactDetails(contactDetails) : void
+getEmployeeType : string
// Control over getting employee's type
+setEmployeeType(employeeType) : void
Menu
Attributes:

-menuCategories : string

16

Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

// Menu categories such as fastfood, breakfast etc
-length : int
Operations:
+addMenultem(item, category) : void
+getMenultem(id, category) : int
// Control on getting menu's ID
+addCategory(name) : string
// Adding the name of the menu's categories
+removeCategory(id) : boolean
// Control over deleting menu's categories
Menultem
Attributes:
-name : string
// Menu item's name
-description : string
// Menu item's desctiptions
-price : int
// Menu item's prices
-id : int
// Menu item's IDs
Operations:
+getName(): string
// Control over getting the name of the item
+setName(name) : void
+getDescription(): string
// Control over getting the description of the item
+setDescription(description) : void
+getPrice() : int
// Control over getting the price of the item
+setPrice(price) : void
+getld() : int
// Control over getting the id of the item
Table
Attributes:
-seats : int
// total seats associated with the tables
-status : boolean
// available / unavailable statuses
-id : int
// ID numbers of the seats
Operations:
+getSeats() : int
// Control over getting the seats
+setSeats(seats) : void

17

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

+getStatus() : boolean
// Control over getting the status of the seats
+setStatus(status) : void
getld() : int
// Control over getting the IDs of the seats
MenuCategory
Attributes:
-menultems : string
-length : int
-id : int
Operations:
+addMenultem(item) : void
+getMenultem(id) : int
// Control over getting the menu item
+getld() : int
// Control over getting the menu's ID
+getLength() : int
OrderItem
Attributes:
-menultem : string
// Name of the menu's item
-time : int
// Time for the order
-table :int
// Assigned table number
-fetchable : boolean
-status : boolean
-priority : string
// Ptiotity such a high, medium & low
-id : int
// order ID
Operations:
+isFetchable() : boolean
+getStatus() : boolean
+setStatus(status) : void
+getPriority() : string
// Control over getting the priority of the order
+setPriority(priority) : void
PageMaker
Attributes:
-map : void
Operations:
+makePage(template) : void
+addMapping(key, value) : void

18

14:332:452:01 Software Engineering, Spring 2013

Course Project

+setMap(inputMap) : void

Customer
Attributes:
-table : int
// customer's desired table
-partySize : int
// Number of person's for the order
-order : int
-id : int
// Customet's order id
-cheque : double
Operations:
+getTable() : int
// Control over getting the table
+setTable(table) : void
+getPartySize() : int
// Control over getting the party size
+setPartySize(attribute) : void
+getOrderltem(id) : int
// Control over getting the order items
+orderltem(orderltem) : void
+getld() : int
// Control over getting the order ID number
+payCheque() : double
// Control over cheque
Cheque
Attributes:
-order : int
-total : int
// total price of the order
-gratuity : int
// Calculated TIP for the order
-paid : boolean
// Paid status
Operations:
+printCheque() : boolean
+setGratuity() : int
// Control over setting the gratuity
+getGratuity() : void
+getTotal() : int
// Control over getting the total price of the order
+getPaid() : boolean
+setPaid(boolean) : void
OrderQueue

19

Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Attributes:
-orderltems : string
-lenght : int
Operations:
+addOrderltem(orderltem) : void
+removeOrderltem(id) : int
// Control over removing the item from the cart
+getOrderltem(id) : int
+getLength() : int

C) Traceability Matrix:

Below is the traceability matrix that maps all software classes to all derived domain concepts. The
development team realized that in the previous report, the original domain concepts were insufficient and not
well developed. Therefore, more detailed domain concepts were derived when creating this traceability matrix.

Most of the domain concepts were derived from what functions each class contained.

In addition, a RequestHandler class has been created in order to handle all webpage http requests. First, the
user request will be processed through this class before being directed to the appropriate classes(s).

Two domain concepts (AddMenultens and DeleteMenultems) belong to two classes, Menn and MenuCategory. This
is because adding/deleting a menu item or category will be done by the same member functions. The team
will develop a virtual function where the system will decide which virtual function to use for the appropriate

request.

20

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Software Classes

Fmployes
Table

S goeid aker

Pagetd akex

Customer

Oipder]tem

Crravy X press
fulenn
tlenul tem

Festanrant
Flitchenuene
tdenuC ategory

Cheque
RequestlTandler
Cirderuene

Domain Concepts
AddBestanrant

DeeleteFestancant X
AddCremner

BestaurantInfo

b

b

Fe |

Setlame
AddTables
MWextOrder 3
MumberOfDrders
Exploveelnfo X
AddlIesnltem
Dreletellennltem

bet

bt

bt |44

AddCatepory
DeleteCatepory

bt b

b

TiemMName
IternDescription
EditPrice

SetSeats X

OederStatus X

PrioririzeCrder X
IMakePape X
Mappine
PartvSize bl
GetTable
FarCheque
PantChegue

et

bt |4

b |1

Gratuity
HrrpRegquest X
AddOrderltem
Remorelederltem X |

B

21

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

3. System Architecture and System Design

A) Architectural Styles:

The client-server architecture system we will use allows for multiple clients (such as managers, waiters etc.) to
start communication sessions with and interact with the centralized database server. First, clients must
successfully login to establish the connection. The clients can then connect to the services of the subdomains
via the centralized server. This is a 2-tier architecture style since communication is directly between the client
and the server.

This client-server system is beneficial since it offers more centralized data (data stored only in server), has a
better security(just need to control security of server), and is easier to maintain (roles are distributed among
several subdomain units which connect via network). One downside of this system is its high dependence on

the central server which can negatively influence system reliability.

Each user has his or her own terminal that uses a graphical Ul to start communication with the database
server. The server awaits requests from the clients and then passes along the requests to the correct
subdomain. Clients can also communicate with one another through the server. The server also may read data

and store in the database as needed. The database is used for backup purposes as well.

In the diagram below, the Client is the Waiter. After logging in with the Database Server, the Waiter is given
access to communication with the server. When the Waiter requests to access the order domain unit, the
Database allows for this by establishing a connection with the Order Domain Unit.

Wireless
connection

Verifies
Login
Info

Database
Server

Login Request

Database
Stores to

simultaneously

Initialize
communication

Eends Request

Unit provides Access

Server
Establishes
atils Request Connection With

Waiter

Access Order
Domain

Order Domain
Waiter Unit

Subsystem

22

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

There will be one common bus to which the subdomain units connect to and this bus will be connected to
the database server. The subdomain units and the server are connected via an Enterprise Service Bus. Thus,
the database server can establish a connection to a particular subdomain unit via the ESB. When a request is
sent from the client to the database server, it is passed along the ESB to the appropriate subdomain unit. The
subdomain units are free to communicate with one another using the ESB and Subsctibe/Publish message
bus. Subdomains can use the subsctibe/publish methods to read, write and update information by directly
communicating amongst each other (without use of the server). This is quicker than going through the server

and it also does not store the exchange of information in the database.

Waiter Vi
Restaurant Call 'E_w
Builder Waiter

Call

Establishes Domain
Connection Through

Reservation

Reservation
Center

Maote: There are other
subdomains that were not
shown due to lack of space in
diagram

Overall, the client server and message bus system will define the overall architecture of the system. The client
server model allows the clients to gain access to the subdomains and make requests to them. The
message bus system allows for efficient communication amongst the server and the subdomains as well

as amongst the subdomains themselves.

23

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

B) Identifying Subsystems and Package Diagram:

Package Diagram:

This maps out the main components of the software. Each individual package corresponds to several classes
and use cases that have been documented prior to this. Each restaurant in GravyXpress will consist of its
employees and its menu, the information for both of which will be stored in the database. Employees are of 4
main types: manager, chef, waiter, and the kitchen staff. Any customer of GravyXpress would use the web
app to transact with the restaurant of their choice. Information about each customer is also stored in the main
database.

Subsystems:

Each subsystem/set of subsystems must connect to the database server and fulfill the requirements indicated
at the beginning of the report.

List of Subsystems that Fulfill Requirements/User Stories:

Restaurant Builder Domain - Used by Manager to create a restaurant subdomain within GravyXpress
Order Domain - Keeps track of Customers Orders, Customers can Add/Delete Items From Here

Kitchen Queue Domain - Keeps track of food items to be prepared in the Kitchen

24

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Waiter Call and View Waiter Call Domains - Used for Customers to call upon Waiters and for Waiters to
check which tables require their service (such as cleaning)

View Menu - Used by customers and employees to view the menu items

Menu Manager - Used by Manager, Chefs and Bartenders to edit the Menu

View Employee Info - Used by Manager to view the profiles of his/her employees

Employee Info - Used by Manager to edit Employee information/ Send messages to Employees
Restaurant Sales - Used by Manager to view restaurant sales

Reservation Center - Used by customers to make a reservation

Reservation - Reservation Center uses this subdomain to create a reservation

View Reservation - Used by employees to view the reservations

Payment - Used by customers to pay for the food they ordered

Interface Domain - Used for a customer interface and for a dashboard for the Manager to use
View Table Info - Used by employees to see which tables are available, dirty or clean

View Floor Layout/Floor Layout Domains - Used to see and update the floor layout of the restaurant

25

14:332:452:01 Software Engineering, Spring 2013

Course Project

Restaurant Builder

Domain

Employee
Info

Reservations

Reservation
Center

Kitchen
Queue

Database
Server

Menu
Manager

View
Menu

Rest Sales

Rutgers University

COrder Domain

View Employee Info

Waiter Call

View Waiter Call

Note that all of these subdomains connect to the central database server, which is connected to the database.

Thus, information can be sent and stored in the database as necessary. In the figure above, most of the

subdomains are shown. There was not enough room to show all.

26

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

C) Mapping Subsystems to Hardware:

Manager': Termmsl

http Interface Chefs Teenmnal
Waiter's Terminal

hop Interface

htp Interface

T4

Restaurant’s
20L Server

Bestaurant’s
Mlain Terminal

http Interface

Customer’s Comp.

hitp Interface Customer’s Mobils

Custoomer’s Table

hitp Interface

hitp Interface

27

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

D) Persistent Data Storage:

i Menu ™
[bl S L] 2 [Item D integer(10)
|/ RestaurantID integer(10) 7 emName varchar(255)
D Name varchar(255) D = integer(10}
] Owner i vl 3 ttem Type varchar(255)
[] Contactinfo varchar(255) [}] S F] Description varchar(1000) [
D Enabled bit
. P “onm Restaurant D integer(10)
~ e o
r Users ' g
|{ UserID integer(10) O Employees)
[] First Name varchar(255) S, User ID integer(10)
|:| Last Name wvarchar2554 H----- F D Role varchar(255)
[] Emai varchar(255) [] Contactinfo wvarchar(265) [)]
[] Password varchar(255) “pa Restaurant ID integer(10)
[] Phone varchar(255) [}f] .
|:| Role varchar(255)
L 4

These 4 tables summarize the database design of GravyXpress. The users table is general to all users of
GravyXpress, be they customer or employee of a restaurant. The user would use his/her e-mail as the
username for their GravyXpress account. The employees table has a 1-to-1 relationship with the users table,
and inherits the UserID as a foreign key. Each restaurant has one menu and several employees, thus the 1-to-
1 and 1-to-many relationship with the menu and employees tables, respectively. Other objects, such as the
OrderQueue and the customer’s Cheque, are not stored in the database due to the

fact that these objects are more dynamic in nature, and can easily be stored in main memory.

E) Network Protocols:

HTTP:
The main network protocol that GravyXpress will employ is HI'TP. The choice of HTTP is an obvious
choice given the webapp nature of GravyXpress. Browsers should be able to remotely deliver and retrieve

data to and from the central GravyXpresss server. Such requests map easily to the GET and
POST requests native to HT'TP.

HTML5 Websockets

In addition to HTTP, we will be utilizing the fairly new websocket protocol. The websocket protocol is
advantageous in its capability to enable servers to send content to clients that has not been solicited by the
client. This is achieved by keeping a connection opened by the client open, and passing data along this
channel back to the client.

Modern browsers support HTML5 websockets, and for real-time alerts this protocol is far superior to a

constant barrage of HTTP requests sent by the client to solicit content, such as is achieved with Comet or
other similar technologies. It is also simpler.

28

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Our application will use websockets to push updates to users in real-time.

F) Global Control Flow:

Execution orderness: GravyXpress is both a procedure-driven and an event-driven software. When the
customer orders food, manager or chef adds or removes an item from the menu, or the manager creates a
subdomain for his particular restaurant, the user(s) must all go through the same steps every time for each
goal. For example, in the process of ordering food, the restaurant customer must select the “View Menu”
option. Then, he/she must choose a food category (Pizza, Pasta, Sandwiches, Drinks, etc.). Then, the
customer must choose the food item he/she desites from the list in that category. Finally, the customer must
select the order button to send to the order queue. This is all procedure-driven, or in other words, the
customer must always go through these steps in order to complete the ordering process. There are many
more procedure-driven events that cannot all be described here.

GravyXpress is also event-driven in that it stays idle in a loop until an action is taken while the user tries to
accomplish his/her goal. For example, the system is in fact running and already in a loop when the restaurant
customer sees the main menu of the system in the tablet or smartphone. Another example is when the
restaurant customer selects a menu item in a particular category. When the customer selects the category, the
system goes into a loop (idle) until the customer then selects the menu item he/she wants to order.

Time dependency: GravyXpress has multiple timers. The system will have a timer when the user starts a
procedure to accomplish his or her goal. A timer will start and reset every time an action is taken during the
procedure. If the user does not take any action and the timer reaches a maximum allowed time, a “time-out”
will occur where the system will give out a “Time-out” message and will go back to the beginning of the
procedure and reset the timer. So for example, if the restaurant customer does not do anything for a long
time after selecting a menu category, the system will go back to its Main Menu.

Another timer that will be used is for the current date and time. When the customer orders food and requests
the cheque, the system records the date and time the customer ordered food and prints the date and time on
the cheque. This will also be sent out to the manager who also wants to see the date and time each customer
ordered food.

The timer that starts and resets between procedures is not considered real-time since it keeps resetting and
there is a maximum threshold where it will reset automatically if no user action is taken. However, the timer
used to display the date and time a customer ordered food is considered real-time, since it uses the actual date

and time outside the system.

Concurrency: GravyXpress will be processing multiple requests at the same time. Customers will be ordering
food at the same time as the manager will be viewing the order history. The kitchen staff will be marking
orders complete as orders will simultaneously move from the order queue to the kitchen queue. Many other
concurrent processes will occur that are too great in numbers to describe fully here. As a result, multiple

threads will be used for multiple processes.

29

14:332:452:01 Software Engineering, Spring 2013

Course Project

G) Hardware Requirements:

SQL Server

Rutgers University

Our service will use an SQL database to store orders, ingredients, menu items, etc. We plan to use a server

with the following minimum and desired performance requirements. These are the 2012 edition specifications

for the SQL server. Some restaurants will need a server with demanding performance requirements, so the

Recommended Requirements will be set as our default specification setting.

Hardware Component Minimum Requirements Recommended
Requirements
Processor 1.0 GHz 1.4 GHz
RAM 512 MB 1.0 GB
Hard Drive Space 3.6 GB 4.0 GB
Network 10/100/1000 NIC 10/100/1000 NIC
Wifi 802.11n Wifi 802.11n

Desktop Client

Many restaurants have desktop terminals that employees will interact with, so the following table provides
minimum and recommended requirements for a desktop client. The most common desktop monitors are
between 19 and 20 inches, so recommended requirements will be set as our default specification setting.

Hardware Component Minimum Requirements Recommended
Requirements
Processor 1.0 GHz 1.4 GHz
RAM 512 MB 1.0 GB
Hard Drive Space 42 GB 6.6 GB
Network 10/100/1000 NIC 10/100/1000 NIC
Wifi 802.11n Wifi 802.11n
Screen Size 157 177-19” or 20”
Resolution 1024 x 768 1280 x 1024 or 1600 x 1200

30

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

4. Algorithms and Data Structures
A) Algorithms

There are many important algorithms that will help us to implement the use cases. Most of our algorithms are
not complex in nature. For instance, many algorithms will deal with adding items to and deleting items from
linked lists. Since we will be using lists to represent the OrderQueue and the KitchenQueue, whenever the

waiters or chefs must update and alter these queues such algorithms will come in handy.

Furthermore, another algorithm that can be used to calculate total bills is the algorithm for summing all the
terms in an array. If each item ordered is placed in an array cell along with its price, one can see how this
algorithm will come in handy at bill time.

Some search/sort algorithms which are more complicated will also be used as well. Sometimes data records
about sales need to searched. Other times, to figure out the popularity of items, items must be sorted

according to the largest number of sales. Such information helps the manager run the restaurant.

An example algorithm to check the stock of restaurant items, checkStock, can retrieve the amount of each
item in the restaurant’s inventory. An added function can be used to display a bar graph displaying the
amount of data. A smaller algorithm that can be a part of checkStock can also sort items into different
categories to make it easier for the manager to view data. With this algorithm the data can be further divided
into Alcohol/Wine brands and quantities, spices (salt, peppet, oregano, etc) quantities, types of grains (wheat,
flour, etc), and even foods that can be possible allergens (shellfish, peanuts, etc). This shows how algorithms
are an essential part of any software system and how they are so beneficial.

Opverall, Algorithms are a very crucial part of GravyXpress. They help facilitate the implementation of all key
user stories in an efficient manner.

B) Data Structures

There are several key data structures that we will use in this project, for instance, arrays, linked lists, lists,
priority lists, queues, stacks etc. Data structures are very vital to the efficiency of the software system. When it
comes to improving upon the time it takes for execution of algorithms and improving on performance, arrays
will be used. Arrays are by far the fastests from a performance point of view. For instance, Arrays can be used
to store a customer’s order. Each item that is ordered can be placed in a cell of the array and then then an
algorithm for finding the sum of all elements in the array can be used to to calculate the price the customer
should pay.

However, for implementing certain aspects of our project it makes the most sense to use lists. For example,
in order to implement the “Kitchen Queue” we will use a priority list. This list will work much like a queue in
the sense that items that are entered in the queue first will be the first to be cooked. Thus, items that are
entered first are given priority over items that are entered last. The priority list will also have several pointers
that we will use to implement the functions of the “Kitchen Queue.” For instance, there will be a pointer at
the beginning and end of the list. There will also be a pointer called “CooksHere.” To the left of the

31

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

“CooksHere” pointer will be food items that have already been assigned to a chef to cook. To the right of the
“CooksHere” pointer will be food items that have not been cooked already. Also, there will be another
pointer called “ReadyToServe” which will indicate which items have already been cooked and are ready to
serve and which are not. When an item is ready to serve, the Waiter for the table it is to be sent to will be
notified. To the left of the “ReadyToServe” pointer will be food items that are ready to serve and have been
cooked, to the right will be items that are not ready to serve.

Another instance where a list will be used will be for OrderQueue. The list will also be a priority list since
items entered in the list first will be the items that exit the list first. There will be a pointer called
“SentToKitchen” which will distinguish between the items sent to the kitchen queue and those that have not
been sent to the kitchen queue. To the left of the pointer will be items sent to the KitchenQueue already and
to the right will be items that have yet to be sent. Another pointer that will be used will be the “Delivered”
pointer. To the left of this pointer will be items that have already been sent to kitchen, have been cooked, and
have been sent by the waiters to the customers. The items to the left of the “Delivered” pointer will be added
to the cheque for the corresponding customers. The items to the right will be those that have not been
delivered to the customers yet by the waiters.

Last but not least, hash tables can be used to map keys to values. This can be used for many aspects of

implementation. For instance, a hash table can be used to map the keys (employee names) to their values
(payroll amount, telephone number etc.).

32

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

5. User Interface Design and Implementation

On the next page is our improved graphical user interface design in which we focused mainly on ease-of-use
rather changing the colors and design as described in the description of report.Customers can use their own
mobile device or a tablet to access the GravyXpress app. After sitting down on a table, the waiter will give the
customers at the table he/she is serving the tablet showing the Home page shown below. Here Customers
may select to view different sections of the menu (as shown by the list below) and may order food, view the
order and pay the bill. Under the menu tab show below, customers can view the different menu items broken
up by category. For instance, there is a breakfast, lunch special, fast food etc. category. Improved user
interface will have hover over menus. That is, if user will hover the mouse pointer or on touch interface
user’s first touch to menu buttons will give him drop down menu which will give him sneak peck of what’s
inside. These menus will be implemented using a mixture of CSS and Javascript. The CSS will be used to style
the HTML elements, while Javascript will be used to alter the HTML DOM as needed. All of this will be
handled on the client side so no requests need to be made to the server in order to achieve this functionality.
This maximizes speed, and minimizes the complexity of the code.

Furthermore, under the order page, customers can select menu items to order and then place their order.
The prices of the items are shown on the order as well. The Contact tab will have an active hover over drop
down menu. That is, it will give user a text field in which user can input the zip code and hit enter. It will then
give him the nearest stores information. The About tab will provide general information about the
Restaurant such as hours of operation and special offers on certain days. The About tab will also have some
information about the hotel manager. The design of the Main Portal (in the previous report) is still the same.
It can be used by the Manager to create a subsystem for his/her Restaurant under GravyXpress.

Towards the bottom of the home page, there ate also links for Careers, Locations, Contact, About Us and
History. Careers is where the manager may wish to post job openings for the public to see and apply to.
Locations will list the location(s) of the restaurant. The contact link is the site contact. The History link
provides the user with the history and heritage of the restaurant. This adds a cultural aspect to the design.

Although these pages like all other pages will be served dynamically, these pages themselves will be served

from static HTML styled with CSS styling sheet content. These pages merely serve content to the end-user
and no content needs to be sent from the client to the server, making these pages very simple to render.

33

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Contact

34

14:332:452:01 Software Engineering, Spring 2013

Course Project

6. Design of Tests

A) Test Cases

OrderFood

Rutgers University

Test-case Identifier:

TCA1

Use Case Tested: UC-1, main success scenanc

Pass/Fail Criteria: System passes testif the restaurant customer successfully places order, and at the
end of the process the system tells the customer that "Food is Ready and
Arriving” and goes back to main menu after 1 minute.

Input Data: Food Item

Test Procedure: Expected Result:

Step 1. Select "View Menu" option.
Step 2. Select any foed catepory.

Step 3: Cheoose any food item and select
the "Add to Cart" option next to that

item.

Step 4: Select the "View Status" option.

System displavs menu categories (drinks, appetizers, specials, lunch, dinner, etc.)

System displays all items in that catepory, price of the item, attach note option,
and the "Add to Cart” option.

Svstem keeps a count of the number of items and calculates the total cost, both at
the bottom-right comer of the screen.

System automatically sends the orders from the cart to the kitchen’s order queue.

System displavs the status of order (whetherit's “In Order Quene” or “In
Kitchen Queue”) and has the options to “Add More Items” or “Remove Items™.
When system displays "Food is Ready and Arriving”, system goes back to main
menu after 1 minute.

35

14:332:452:01 Software Engineering, Spring 2013

Course Project

RemoveOrder

Rutgers University

Test-case Identifier:
Use Case Tested:

Pass/Fail Criteria:

Input Data:

TC-2
TC-1, alternate scenario

Complete TC-1 first. Svstem passes testif it removes ordered items while the
status reads "In Order Queue”, and displays error message if status reads "In
Kitchen Queue".

"Remove Items" option is selected.

Test Procedure:

Expected Result:

Step 1. Select "Remove Items" option.

Step 2. Check any item whose status
reads "In Order Quene".

Step 3: Select the "Delete Item" button
at the bottom of screen.

Step 4: Check any item whose status
reads "In Kitchen Queue"

Step 5: Select the "Delete Item" button
at the bottom of screen.

System displays list of all ordered items, their statuses ("In Order Queue" or "In
Kitchen Queue"), a check box next to each item, and a "Delete Item"” button at
the bottom of screen.

Svstem checks the check box of thatitem and also highlights the entire row.
Svstem successfully removes the item from the List

Svstem checks the check box of thatitem and also highlights the entire row.

System displays an error message "Item being prepared. Cannot delete item!"

Svstem returms to the "Remove Items" list.

CreateWebpage

Test-case Identifier:

Use Case Tested:

TC-3

UC-2Z, main success sCENanc

Pass/Fail Criteria: Svstem passes testif it displavs a subdomain with the restaurant manager's
preferences.

Input Data: Restaurant name, manager name, hours of operation, address

Test Procedure: Expected Result:

Step 1. Go to GravyXpress application
and select "Create My Restaurant”
option.

Step 2. Enter all information
accordingly.

Systemn displavs some textboxzes that ask for name of restaurant, manager name,
hours of operation, and address.

Svstem displavs the restaurant name, manager name, hours of operation, and
address on the home page of the user interface for the restaurant.
System provides manager with a dashboard interface.

36

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

AddEmPlo_yee

Test-case Identifier:
Use Case Tested:

TC-4

UC-2, alternate scenano

Pass/Fail Criteria: Complete TC-3. Svstem passes testif it successfully adds an emplovee mnto the
subdomain and retumns to manager's dashboard.

Input Data: Emplovee name, type of emplovee (full-time or part time}, pay roll for emplovee,
and work schedule of emplovee.

Test Procedure: Expected Resuit:

Step 1. Login to manaper's interface and
select the "Add Emplovee” option.

Step 2. Enter all information
accordingly.

Svstem displavs some textbozes that ask for name of emplovee, trpe of emplovee,
pav roll for emplovee, and work schedule of emplovee

System displays message "Emplovee Added!" and shows the list of emplovee
names somewhere on the manager's interface. Each emplovee name is a hypedink
to their information.

37

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ServeTable

Test-case Identifier:
Use Case Tested:
Pass/Fail Criteria:

Input Data:

TC-5
UC-3, main success SCenario
System passes testif waiteris informed of table's order status and whether

customer has left at the end.
All of the assigned table's orders.

Test Procedure:

Expected Result:

Step 1. Login to interface and select the
"Assigned Tables" option.

Step 2. Select one of the table mumbers

assigned.

Step 3. Select the "Acknowledged"”
button.

Step 4. Select the "Acknowledged"
button.

Step 5. Select the "Acknowledged"”
button.

Svstem displavs the table numbers that the user is to serve, the status of the
table's orders (Ordering, In Order Quene, In Kitchen Queue, Order Ready,
Served), and the table's cheque hyperdink.

Svstem displavs the order details of the table, including table number, the price of
gach item, and order status.

Order status becomes "[Drder Ready" for that table number. The entire table row
1s highlighted in green.

System changes the status of table to "Served” and removes the highlighting,

Systemalerts user that table wants to pay by cash. Displays "Pavment by Cash”
for that table and highlights the row vellow.
System removes the "Pavment by Cash" message and removes the highlighting.

Systemalerts user that table needs to be cleaned. Displays "Cleaning Required”.

System deletes the table from the list of tables to serve.

CustomerAssistance
Test-case Identifier: TC-6
Use Case Tested: TC-3, altemate scenario
Pass/Fail Criteria: Svstem passes testif waiteris successfully signaled to assist restaurant customers.
Input Data: Call to assistance from waiter.
Test Procedure: Expected Result:

Step 1. Login to interface and select the
"Assigned Tables" option.

Step 2. Atany moment of time, a table
signals for waiter's assistance through
system.

Step 3. Select the "Acknowledged"
button.

System displays the table numbers that the user s to serve, the status of the
table's orders (Ordering, In Order Quene, In Kitchen Queune, Order Ready,
Served), and the table's cheque hypedink.

System displavs a pop-up message thatinforms waiter " Assistance Required.
Table: X" where X is the table number.

Svstemalso highlights that table row as red.

System closes the " Assistance Required” message and removes highlighting

38

14:332:452:01 Software Engineering, Spring 2013

Course Project

ManageOrder

Rutgers University

Test-case Identifier:

Use Case Tested:

TC-7

TC-4, main success scenario

Pass/Fail Criteria: System passes testif it can show the list of orders in the order queue, have option
to move orders to Kitchen queue, and have option to view notes on some orders.

Input Data: List of incoming orders in the order queue.

Test Procedure: Expected Result:

Step 1. In the shared Eitchen staff
interface, select "View Order Quene”.
Step 2. Select the "View Kitchen Queue"
option.

Step 3. In the order queue, selectany
number of orders using check bozes and
select the "Move to Kitchen Queue"
option.

Step 4. Select order completed button
next to completed order item.

Svstem displays the list of orders in the order queue.

Svstem displavs the list of orders in the kitchen queue.

Svetem removes the crder from the crder queue.

Svstem adds the same order into the kitchen queue.

Svstem removes the item from the kitchen queue.

Inthe waiter's interface, system displays "Order Readv" message for that order.

Inthe customer's interface, system displays “Food is Ready and Arriving™
message for that order.

CancelOrder

Test-case Identifier:

TC-8

Use Case Tested: UC-4, alternate scenario

Pass/Fail Criteria: Svstem passes if the order queue refreshes and removes any orders that were
cancelled by customer. The kitchen queue 13 not affected.

Input Data: Command to cancel order.

Test Procedure: Expected Result:

Step 1. In the shared kitchen staff
interface, select "View Order Queue".
Step 2. Customer interface sends a
message to cancel an order that is
already in the order queue.

Step 3. Customer interface sends
message to cancel an order that is in the
kitchen queue.

Svstem displavs the list of orders in the order queue.

Svstem deletes the order from the order queue.

Svstem does NOT delete the order in the kitchen queue.

39

14:332:452:01 Software Engineering, Spring 2013

Course Project

ChangeMenu

Rutgers University

Test-case Identifier:

Use Case Tested:

TC-2

UC-3, main success SCenaro

Pass/Fail Criteria: System passes if the chef can successfully change the restaurant menu by adding
anitem into a category.

Input Data: Name of item, price, and inventory count.

Test Procedure: Expected Result:

Step 1. Login to chef's interface and
select the "Create Restaurant Menu"
option.

Step 2. Selecta category to add a new
food item.

Step 3. Select the "Add New Item"
option.

Step 4. Enter information and hit the
"Add Item" button when finished.

System displays existing menu categories (appetizers, lunch, specials, etc) (ifany)
and gives the option to "Delete” next to each category. At the beginning of listis
the "Add New Category" option. Suppose categories do exist.

System displays names of allitems in that category including price, inventory
count, and gives options to "Delete Item" and "Change Item" for eachitem At
beginning of list, system gives option to "Add New Item".

System displays pop-up window with some textboxes that ask for the "Name:",
"Price:", and "Inventory Count:" of the new item.

System adds the item into the list in alphabetical erder.

DeleteCategory

Test-case Identifier:

TC-10

Use Case Tested: UC-3, alternate scenario

Pass/Fail Criteria: Svstem passes if the chef is successfully able to delete a category in the restaurant
menu.

Input Data: Delete command.

Test Procedure: Expected Result:

Step 1. Login to chef's interface and
select the "Create Restaurant Menu"
option.

Step 2. Select the "Delete" button next
to the category wished to be deleted.
Step 3. Select "Yes".

Svstem displavs existing menu categories (appetizers, lunch, specials, etc) (if ant)
and gives the option to "Delete" next to each category. At the beginning of listis
the "Add New Category” option. Suppose categories do exist.

System displays pop-up "Are you sure you want to delete category: X", where X
is 4 category name. System give options "Yes" and "No".

Svstem deletes the category and retums to category list.

We will also test for the bartender use cases, but there is no need to write test cases for these because the use

cases atre very similar to UC-5 ChangeMenu. So, the test cases are similar to TC-9 and TC-10.

40

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

B) Unit Tests

1. Cheque

get ilems ordered from the Print ﬂI'IB calculaled
restaurant menu Use addition algorithm value in cheque

Collecting Items Ordered r Printed ltems] Calculating Total Price
with Prices Ordered

id
Use algorithm and
collect prices for

| items ordered

[Calculating Gratuity]

Print the
calculated value

ctal Price Printed

Add it to total price

in cheque

Gratuity Printed

This is the state diagram for the Cheque class. This shows how the cheque for the restaurant customer is
calculated and printed on the screen. This includes the total price and gratuity that the customer must pay
before leaving. To test all states of this class, we will use the following method calls as described in the class
diagram:

getTotal()

setGratuity(total, gratuity, order)
getGratuity()

printCheque()

setPaid(paid)

getPaid()

First, the system collects all ordered items and prices that the customer ordered from the restaurant menu
database. It then calculates the total price by adding all prices for each food item and then sets the gratuity
rate on the total price. getGratuity() method call simply prints the gratuity rate it calculated. Then it prints the
cheque with the ordered items, the total price, and gratuity all in one screen. Finally, setPaid(paid) which
returns a boolean value sets the variable paid either 1 or 0. 1 being paid and 0 being not paid. After the
customer pays, the variable paid becomes 1 and the “Customer Paid” is printed in the order history.

41

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

2. Table
Waiters finished
cleaning. Table is
neat again
No cugtomers Customers
are using table \/ are at table
. - Open [Occupied Cleaning
— -~

-

No customers

Customers left
‘ restaurant.
using table Waiters cleaning

This is the state diagram for the Table class that shows the status of the restaurant table in the system. The
following method calls will be used to test every behavior of the Table class:

getid()
getStatus()
setStatus(status)

First, the system gets the table number by calling the getid() function. Once the table number is acquired, the
status of the table can be 1 of 3 values. We will use enumeration to assign integer values to the status of the
table: 1=Open, 2=Occupied, 3=Cleaning. Finally, we will use getStatus to print the status of the table onto
the screen.

3. OrderFood

Oirder is valid, Chalf and Kitchan st notifed

-

Order 10 be canceled equested d
] Required item notin stock and the waiter is notified

Cirdar
Cancallad

For efficiency, first we test to see if orders have been cancelled. We test the first invalid call with invalidOrder.
It is a Boolean test, so if the call is true the order is valid, otherwise it is invalid. Invalid cases can be when the

42

14:332:452:01 Software Engineering, Spring 2013
Course Project

Rutgers University

ordered dish does not have an ingredient in stock, or if the order is cancelled. At this stage in the test, the

waiter is notified. In addition, because the dish has not yet been prepared, the customer can request the order

to be cancelled. The option to cancel an order after this stage will not be given.

4. CreateWebpage

Server Failure where numattemptFailed <
maxattemptFail

%7 Invalid Cannection

Valid Connection

Valid Connection

Valid Connection and Server Failure

Valid/Invalid Request

Closing

Retrieving

Valid/Invalid Reguest

First, the database connection is closed. When a method (ex, openConnection) is called, the state goes to

opening. If the connection is invalid, the state goes from opening to closed. There is a limited number of

attempts to contact the server. If the connection is valid, it will go to the state open, otherwise, it will go to

the state closed.

When a connection is established, we test to see if we can request a query with a method. This method goes

from the state open to retrieving, and then reverts to open. It does not matter if the query is valid or invalid

because an SQL database will always return a request.

The closing connection is also tested with another method (ex, closeConnection). This method will move the

state from open to closing to closed. The state will always go from closing to closed because the database

allows safe connection closings and the server closes the connection after any inactivity.

C) Integration Testing

For our system, we can implement both top down integration testing and bottom up integration testing. An

instance where top down testing can be used is where the system locks out an unauthorized user. A request to

the user for a user id and password is given. When an authorized user submits the correct password to the

user id, the system grants the user access. However, if an unauthorized user attempts to gain access by

repeatedly submitting an incorrect password, the system will then lock that terminal and record the intrusion

attempt into a log. The manager can have access to this log.

43

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Cases where we can use bottom up testing is where we test individual classes that are independent of each
other. For many cases, our system has lower level components that are maintained by controllers, so top
down testing isn’t the best form of integration testing. After each leaf class is tested, we test the next level of
the hierarchy and its leaves. An additional advantage to this type of testing is that if an error in testing occurs
in a higher level class, bottom up testing helps us to find the error in one of the lower level classes. Because
the classes are independent of each other, we can narrow down which of the lower level class contains the

problem and search that level’s hierarchy instead of a parallel class’s hierarchy.

44

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

7. Project Management and Plan of Work.

A) Project Coordination
Part 1:
® Rohit Lakshmanatirthakatte opened up a fresh Google Drive document particulatly for Report 2 Part
1, and reminded all team members of the due date. Here, we simply built up on the document by
adding our assigned use case interaction diagrams.
® Ychuda Cohen arranged a Google+ Hangout for everyone to discuss each team member’s
responsibilities and who’s doing which interaction diagram.
We also discussed questions and concerns need to be addressed on Facebook chat.
Finally, Rohit reformatted the entire report as Garamond 11-pt font black text, made a pdf document,
and submitted to his Dropbox.
Part 2:
® Rohit Lakshmanatirthakatte opened up a fresh Google Drive document particulatly for Report 2 Part
2 and copied and pasted the information from Part 1. Rohit also reminded all team members of the
due date. Then, the entire team built up of the information required for part 2 starting from the
section “2. Class Diagram and Interface Specification”.
® Before writing the report, everyone decided to have a Google+ Hangout to divide up the work, who
was responsible to which part. The meeting date and time was set up on Facebook chat and by
considering everyone’s convenience.
® During the Google+ Hangout, Rohit recorded a note of tasks (who was doing what) using the
Notepad feature, and posted this on Google Drive for everyone to see.
® Tinally, Rohit reformatted the entire report as Garamond 11-pt font black text, made a pdf document,
and submitted to his Dropbox.

® Rohit Lakshmanatirthakatte opened up a fresh Google Drive document particulatly for Report 3 and
Shivani Sethi along with Rohit copied and pasted the information from Part 2. Shivani also updated
the Table of Contents section and wrote down the headings for the new sections of Report 3

e Shivani organized a Google+ Hangout and invited people to join. Shivani divided the remaining
work among the group members and noted down the responsibilities of each of the group members
in a table.

® Finally, Shivani formatted the entire report Garamond 11-pt font black text and sent it to Rohit so
that he could submit it via Dropbox.

B) Issues Encountered during Project Management

One of the main issues in project management was dividing up the work more equally so that everyone had a
chance to work on a significant amount of work and contribute effectively. We dealt with this problem by
looking at the breakdown of points in the diagram for report 2 and trying our best to assign an equal number
of points to each person. We tried to spread out the work so that everyone got to learn from each other and
work together on multiple sections. People were happier that they got a fair chance at contributing so they
did more work and were more productive.

45

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

C) Progress Report

Of the 71 user stories documented in the first report, we have finally chosen 30 that we will implement for
sure in our final design, with an additional 26 that we will implement if time permits. Those 56 user stories
have been organized into a backlog by order of priority in the previous report. The various items of this
report, such as the class diagrams, database tables, and user interface designs show how we plan to put into
operation those user stories that we have selected. Our next step is to derive and employ the actual code from

these designs, and thereafter we will go through all of our test cases to ensure our project is ready for the first

demo.
D) Plan of Work
1/26 2/15 37 3/27 4716 5/6 5/26
Full Repart #2 -
Algorithms and Data Structures I
UserInterface Designand Implementation I

Designof Tests I

Project Management I

Second Demo

Electronic Project Archive I

E) Breakdown of Responsibilities

The first 30 user stories defined in report one are divided below between the six group members. Each group
member is entirely responsible to his/her assigned groups. These items include only the first 30 items from
the work backlog: the items identified as essential to the GravyXpress system. Five user stories have been

assigned to each of the six group members.

Assignments are as follows:

46

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Yehuda

1 ST-M-1 I want to create a subdomain within the GravyXpress web 9
application specific to my restaurant, so that my restaurant’s
services are available over the internet.

2 ST-G-1 I want to be able to login and logout of GravyXpress securely, so | 3

I and only I have access to the areas of GravyXpress that
concern me.

20 | ST-M-2 I want to be able to alter my restaurant’s contact information & |2
hours of operation from my dashboard, so that those who visit my
restaurant’s subdomain always receive up to date information.

5 ST-M-10 1 want a restaurant's menu that I can modify at a moments 5
notice, so that adding/removing items from my menu as well as
changing their price info is not a hassle.

12 | ST-M-11 I want to enable and disable items from my menu, so that I can | 2
perform temporary alterations to my menu.

Abdul

24 | ST-V-2 1 want to learn about GravyXpress and the service it provides. 1

25 | ST-V-1 I want to view an attractive web page that looks professional and |7
draws me in.

26 | ST-Ch-4 I want to modify existing items on the menu, changing their name |4
or altering their details if necessary, so that I can always change or
improve each item on the menu.

27 ST-Ch-2 [want to add and delete new items to and from the menu, so that I|5
can offer variety to my customers.

29 | ST-Ch-5 I want to disable and enable items on the menu, so that they can be[3
temporarily available or unavailable to customers (as needed).

47

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Amizan

4 ST-M-5 I want to create new user accounts for my employees, so that 5

they may perform their relevant duties through GravyXpress.

21 ST-M-6 I want to alter an employee’s permissions, so that they only retain |2
access to the services on GravyXpress that concern them.

3 ST-M-4 I want to add and remove tables to my restaurant, specifying the | 3

number of seats they have, so that customers are only offered
tables with enough seats for their party.

11 ST-W-1 Once I am logged in, I want to see only information pertaining to |1
the customers I am assigned to, so that I don’t serve other waiter’s
customers inadvertantly.

16 ST-W-2 In my own profile, I want to be able to view which tables (by table [2
number) I am assigned to, so I know exactly which customers to
serve.

Shivani

6 ST-C-1 1 want to order food quickly and efficiently through a web page, | 8

so that I can order without the help of a waiter.

9 ST-C-5a I want to be able to view the cheque, so that I can be aware of 5

the amount of money I am spending.

14 ST-C-4 I want to be able to signal a waiter while seated at a table, so that | 1

I don’t need to wave my hands about flailing for attention.

15 ST-C-12 I want to be able to cancel or change selected orders if they haven’t| 3
been sent to the kitchen, so I can continue changing my mind until
the kitchen has begun preparing.

30 ST-W-6 [want to be able to modify a table’s orders, so the restaurant 5
customers can tell me to order for them if they want.

48

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

Rohit

28 | ST-W-11 I want to seat a customer at an available table, so that the system | 2
can keep an updated account of the status of the tables in the
restaurant.

7 ST-K-1 [want to fetch the orders from the customers, which atre stored in | 5
the order queue, and add them to the kitchen queue, so that I am
always aware of all of the items I am currently cooking,

8 ST-K-3 I want to mark an order item as ready and see it removed 5

automatically from the kitchen queue, so that my list of tasks
remains uncluttered.

13 | ST-K-6 I want to see how many orders await in the order queue waiting | 2
to be fetched, so that I know how busy the restaurant is and pace
myself accordingly.

17 |ST-K-5 I want the system to send a signal to the waiter once an order has |4
been marked ready, so that customers receive their food in a timely
fashion.

Nabil

10 ST-W-4 I want to be able to see what items my assigned table(s) are 4

ordering, so I can bring the correct orders to the table.

18 ST-W-5 I want to see any customer-help signals, so I can attend to them |1
without delay.

19 ST-W-7 I want to be able to simply view my assigned table’s check, soI ~ [3
know what they ordered and how much they owe.

22 ST-W-9 After cleaning the tables, I want to be able to change the status of 4
my tables to ready so the system knows the customer has left.

23 ST-W-10 After a customer has left, I want to see that my table responsibility (4
has been deleted in my profile, so I don’t get confused about which
table to serve next.

49

14:332:452:01 Software Engineering, Spring 2013 Rutgers University
Course Project

8. References

1 The Software Enginnering textbook by Ivan Marsic. Link at:
http://www.ece.rutgers.edu/~marsic/books/SE /book-SE marsic.pdf

2 Microsoft Visual Paradigm for UML 10.1 Community Edition downloadable at
http://www.visual-paradigm.com/download /vpuml.jsp

3 Group 2’s project from Spring 2012 as a reference to see how interaction diagrams are created:
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g2-report3.pdf

4 Group 11’s project from Spring 2012 as a reference for Parts 2 and 3:
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-report3.pdf

5 A Youtube video about how to draw sequence diagrams:
http://www.youtube.com/watch?v=18 kVIQMavE

6 A tutorial on using Visual Paradigm for database design: http://knowhow.visual-

paradigm.com/database-design/design-database-with-schema/

7 Microsoft’s Website on SQL servers:
http://msdn.microsoft.com/en-us/library/ms143506.aspx

8 Microsoft’s Website on screen and resolution settings:
http://windows.microsoft.com/en-us/windows-vista/getting-the-best-display-on-your-monitor

50

