
14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

GravyXpress:
A Restaurant Management Software

Team Members

Name

Yehuda Cohen

Shivani Sethi

Abdul Rattu

Amizan Jaleel

Nabil Ali

Rohit Lakshmanatirthakatte

Instructor: Prof. Ivan Marsic

Project URL: http://gravyxpress.appspot.com/

Version No.

1

2

3

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

1

GravyXpress:

A Restaurant Management Software

Group Number: #4

Email

yehuda.cohen@rutgers.edu

shivani.sethi@rutgers.edu

r.abdulsami@gmail.com

najm555@gmail.com

alinabil07@gmail.com

rohit.lakshmana@rutgers.edu

http://gravyxpress.appspot.com/

Revision History:

Date of Revision

03/03/2013

03/10/2013

03/17/2013

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

2

Individual Contributions:

Abdul
Rattu

Amizan
Jaleel

Nabil
Ali

Rohit
Lakshmana

Shivani
Sethi

Yehuda
Cohen

Sec. 1: Interaction
Diagrams (30 points)

16.67%
(5pts)

16.67%
(5pts)

16.67%
(5pts)

16.67%
(5pts)

16.67%
(5pts)

16.67%
(5pts)

Sec. 2: Classes + Specs
(10 points)

50%
(5pts)

50%
(5pts)

Sec. 3: Sys Arch and
Design (15 points)

13.3%
(2pts)

33.33%
(5pts)

 10%
(1.5pts)

38.33%
(5.75pts)

5%
(.75pts)

Sec. 4: Algorithms and
Data Structures (4
points)

37.5%
(1.5pts)

62.5%
(2.5pts)

Sec. 5: User Interface
(11 points)

18.18%
(2pts)

36.36%
(4pts)

22.7%
(2.5pts)

22.7%
(2.5pts)

Sec. 6: Testing Design
(12 points)

45.83%
(5.5pts)

54.17%
(6.5pts)

Sec. 7: Project
Management (18 points)

16.67%
(3pts)

16.67
(3pts)

16.67%
(3pts)

16.67%
(3pts)

16.67%
(3pts)

16.67%
(3pts)

● Yehuda Cohen

- For Part 1, I designed the ServeTable interaction diagram and elaboration. (Also provided a general
template for other Interaction Diagrams by completing less detailed versions in Report 1.)
- For Part 2, I built the class diagram, defining all objects, attributes and methods to make up
GravyXpress. In addition, included a very brief description of each class. Furthermore, dealt with the
network protocols, and aided Amizan by elaborating some fundamentals of the design of the
database.
-For Part 3, Broke down all responsibilities assigning user stories to all members of the group for
development. Tried to ensure the user stories were somewhat related, so members could develop a
level of expertese. Additionally, elaborated technical aspects of user interface and user interface
implementation.

● Abdul Rattu

- For Part 1, I designed ChangeMenu interaction diagram as well as explanation of functions that
have been used within the diagram.
- For Part 2, I wrote “data types and operational signatures” with detailed descriptions as well as did
“mapping subsystems to hardware” part.
- For Part 3, I have improved the user interface design and contributed in project management.

● Nabil Ali
- For Part 1, I designed ManageOrder interaction diagram and explanation of the diagram.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

3

- For Part 2, I constructed hardware requirements tables and wrote descriptions.
● Amizan Jaleel

- For Part 1, I designed ChangeDrinks interaction diagram as well as explanation using comment
bubbles.

 - For Part 2, I did the database design schema as well explanation for it.
-For Part 3, worked on UI along with Abdul and ocntributed to project management

● Shivani Sethi
- For Part 1, I designed CreateWebpage interaction diagram with explanation. I made significant
improvements to the previous diagram in Report 1 and added alternate design ideas.
- For Part 2, I designed the architectural style of the system and identified and explained all of the
subsystems. I drew diagrams to help further explain these sections
- For Part 3, I did most of the Algorithms and Data Structures Section. I also wrote in half of the UI
description.
-For Project Management, I copied Part 2 work into this final google doc, updated the Table of
Contents, setup Google+ hangouts and resolved issues with the distribution of work so that it was
more equally distributed
- I also helped post important updates on the Facebook group page for this Software Group Project
-I compiled and edited the final version of this report

● Rohit Lakshmanatirthakatte

- For Part 1, I designed OrderFood interaction diagram as well as wrote explanations of some
functions using comment bubbles.
- For Part 2, I made the traceability matrix of all classes using the class diagram and wrote the
global control flow for the system architecture and design. For the traceability matrix, I also
added and improved upon the domain concepts.
- For Part 3, I designed all test cases and did 2 unit tests (Cheque and Table).
- I also wrote half of the Table of Contents, Project Management for Parts 1 and 2 only, and 3/4
of the References section of this report.
- For each part of the report I opened up a Google Drive document and made announcements
about the due date of each deliverable as well as provided links to valuable resources. For parts 1
and 2, I wrote the headings for each section so other team members will know where to write
their assigned sections.
- For part 2, I kept a list of assigned tasks in a notepad and posted it on Google Drive for
everyone to see in case they forgot what they were supposed to do. Tasks were assigned by
everyone during a Google+ Hangout session.
- For all parts, I submitted the final pdf document into my Sakai Dropbox.
- With the idea from Yehuda Cohen, I opened up a Facebook Group for all team members
called Software Engineering GravyXpress. The purpose of this group is to allow members to
post announcements, decide meeting times, post pictures and program code, and increase
communication.
- I am the only person maintaining and updating the GravyXpress group website
http://gravyxpress.appspot.com/ by uploading files, making announcements at each deliverable
due date, adding a picture, and adding background color. But the website itself was programmed
and created by Yehuda Cohen.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

4

Table of Contents:

1 Interaction Diagrams..5

2 Class Diagram and Interface Specification..13

A) Class Diagram………………………………………………………………..…………..13

B) Data Types and Operation Signatures…………………………………..………………..15

C) Traceability Matrix…………………………………………………………….………....20

3 System Architecture and System Design..22

A) Architectural Styles………………………………………………………….…………...22

B) Identifying Subsystems and Package Diagram………………………………..………….24

C) Mapping Subsystems to Hardware……………………………………………………....27

D) Persistent Data Storage…………………………………………………………….……28

E) Network Protocols………………………………………………… …………………...28

F) Global Control Flow………………………………………………………………………29

G) Hardware Requirements…………………………………………………………….…...30

4 Algorithms and Data Structures..31

 A) Algorithms...31

 B) Data Structures..31

 5 User Interface Design and Implementation...33

 6 Design of Tests..35

 7 Project Management and Plan of Work..45

 A) Merging the Contributions from Individual Team Members...45

 B) Project Coordination ……………………………………………………….....……….45

C) Progress Report..46

 D) Plain of Work...46

 E) Breakdown of Responsibilities...46

 8. References..50

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

1. Interaction Diagrams

OrderFood Use Case:

The customer can request the Menu class to see the menu items (organized by categories). It can then send a

request to the Menu class to order an item. The Menu class will then send a request to the Cheque class to

add the item to the order cheque for the customer. Furthermore, the item will be added to the order queue as

the Cheque class will immediately send a request to the OrderQueue class to do so. The Cheque class will

send the information about the bill to the customer. To delete an order, the

request to the Menu class which will proceed to tell the Cheque and subsequently the OrderQueue classes to

remove the order.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

5

1. Interaction Diagrams

The customer can request the Menu class to see the menu items (organized by categories). It can then send a

request to the Menu class to order an item. The Menu class will then send a request to the Cheque class to

r the customer. Furthermore, the item will be added to the order queue as

the Cheque class will immediately send a request to the OrderQueue class to do so. The Cheque class will

send the information about the bill to the customer. To delete an order, the Customer class will send a

request to the Menu class which will proceed to tell the Cheque and subsequently the OrderQueue classes to

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

The customer can request the Menu class to see the menu items (organized by categories). It can then send a

request to the Menu class to order an item. The Menu class will then send a request to the Cheque class to

r the customer. Furthermore, the item will be added to the order queue as

the Cheque class will immediately send a request to the OrderQueue class to do so. The Cheque class will

Customer class will send a

request to the Menu class which will proceed to tell the Cheque and subsequently the OrderQueue classes to

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

An alternative design that was considered was to have a single Order button at bottom of the list of or

items. In the interaction diagram above, we have several order buttons, one for each item in the restaurant

menu. So, the system automatically sends the order into the order queue. In the alternative design, the user

can collect all items he/she wants to order and then send them all simultaneously to the order queue. We

chose the automatic submission of orders over the alternative design because the customer might forget to hit

the Order button at the end, and then might complain about where his/her o

did not send them to the order queue.

Another alternative design that was considered was having a feature that shows the estimated time of food

arrival. However, we realized that this was too difficult to implement, and also t

affect the time that the customer gets the food. The ingredients might run out during preparation or there are

too few kitchen staff workers or the dish takes a long time to prepare. So, estimated time of food arrival will

not be designed and implemented.

CreateWebpage Use Case:

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

6

An alternative design that was considered was to have a single Order button at bottom of the list of or

items. In the interaction diagram above, we have several order buttons, one for each item in the restaurant

menu. So, the system automatically sends the order into the order queue. In the alternative design, the user

s to order and then send them all simultaneously to the order queue. We

chose the automatic submission of orders over the alternative design because the customer might forget to hit

the Order button at the end, and then might complain about where his/her orders are even though he/she

did not send them to the order queue.

Another alternative design that was considered was having a feature that shows the estimated time of food

arrival. However, we realized that this was too difficult to implement, and also there are other factors that can

affect the time that the customer gets the food. The ingredients might run out during preparation or there are

too few kitchen staff workers or the dish takes a long time to prepare. So, estimated time of food arrival will

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

An alternative design that was considered was to have a single Order button at bottom of the list of ordered

items. In the interaction diagram above, we have several order buttons, one for each item in the restaurant

menu. So, the system automatically sends the order into the order queue. In the alternative design, the user

s to order and then send them all simultaneously to the order queue. We

chose the automatic submission of orders over the alternative design because the customer might forget to hit

rders are even though he/she

Another alternative design that was considered was having a feature that shows the estimated time of food

here are other factors that can

affect the time that the customer gets the food. The ingredients might run out during preparation or there are

too few kitchen staff workers or the dish takes a long time to prepare. So, estimated time of food arrival will

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Here the manager can create a subdomain in GravyXpress for his/her restaurant. A manager sends a request

to the Restaurant Builder class and this class asks for basic restaurant information such

hours etc. The Manager sends this information to the Restaurant Builder who then creates the restaurant with

this information. The Restaurant Builder also sends a request to the Customer Interface class to create an

interface for the restaurant. The Manager is redirected to the Dashboard. One alternate plan is that the

Manager class can request the Restaurant Builder class to add an employee by providing information about

the employee. The Restaurant Builder will then request the Employe

then it will add it to the restaurant. Another alternate plan is that the Manager class can request the Builder

class to add a History section to interface for restaurant as shown above. The Manager class sends a requ

to the builder class who then sends a request to the Customer Interface class to add the details in the History

part of the interface. One possible problem with this design is that the cohesion of the Restaurant Builder is

slightly low since it has to respond to all of the requests of the Manager and then convey those requests to

other classes such as Waiter and Customer Interface. In an alternate design, perhaps the Manager should be

allowed to directly make a request to the Waiter and Customer Interfa

them via Restaurant Builder. This would help to increase the cohesion of the Restaurant Builder. However,

since the Restaurant Builder is an expert doer in managing the building of the restaurant, the current design

also makes sense even though it has lower cohesion. Thus, there is always a tradeoff in designs.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

7

Here the manager can create a subdomain in GravyXpress for his/her restaurant. A manager sends a request

to the Restaurant Builder class and this class asks for basic restaurant information such as address, working

hours etc. The Manager sends this information to the Restaurant Builder who then creates the restaurant with

this information. The Restaurant Builder also sends a request to the Customer Interface class to create an

staurant. The Manager is redirected to the Dashboard. One alternate plan is that the

Manager class can request the Restaurant Builder class to add an employee by providing information about

the employee. The Restaurant Builder will then request the Employee class to create such an employee and

then it will add it to the restaurant. Another alternate plan is that the Manager class can request the Builder

class to add a History section to interface for restaurant as shown above. The Manager class sends a requ

to the builder class who then sends a request to the Customer Interface class to add the details in the History

part of the interface. One possible problem with this design is that the cohesion of the Restaurant Builder is

respond to all of the requests of the Manager and then convey those requests to

other classes such as Waiter and Customer Interface. In an alternate design, perhaps the Manager should be

allowed to directly make a request to the Waiter and Customer Interface classes instead of having to reach

them via Restaurant Builder. This would help to increase the cohesion of the Restaurant Builder. However,

since the Restaurant Builder is an expert doer in managing the building of the restaurant, the current design

so makes sense even though it has lower cohesion. Thus, there is always a tradeoff in designs.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Here the manager can create a subdomain in GravyXpress for his/her restaurant. A manager sends a request

as address, working

hours etc. The Manager sends this information to the Restaurant Builder who then creates the restaurant with

this information. The Restaurant Builder also sends a request to the Customer Interface class to create an

staurant. The Manager is redirected to the Dashboard. One alternate plan is that the

Manager class can request the Restaurant Builder class to add an employee by providing information about

e class to create such an employee and

then it will add it to the restaurant. Another alternate plan is that the Manager class can request the Builder

class to add a History section to interface for restaurant as shown above. The Manager class sends a request

to the builder class who then sends a request to the Customer Interface class to add the details in the History

part of the interface. One possible problem with this design is that the cohesion of the Restaurant Builder is

respond to all of the requests of the Manager and then convey those requests to

other classes such as Waiter and Customer Interface. In an alternate design, perhaps the Manager should be

ce classes instead of having to reach

them via Restaurant Builder. This would help to increase the cohesion of the Restaurant Builder. However,

since the Restaurant Builder is an expert doer in managing the building of the restaurant, the current design

so makes sense even though it has lower cohesion. Thus, there is always a tradeoff in designs.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

8

ServeTable Use Case:

For a waiter to serve a table, he must login, using the login module. Once the login has been verified, he may

request his assigned tables. A cookie will be set to ensure that he need not login again until he has closed his

browser. He may then select a table from the list, and view the table’s order. Upon delivery he may mark the

order as served (only served orders will be reflected on the cheque.) He may perform a cash payment for the

customer. Once the table has been cleaned, he may release it so additional customers may be seated.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ManageOrder Use Case:

Here, a kitchen staffer manages orders. There are no log

clicking virtual buttons (order completed). The system then removes the order from the kitchen queue and

notifies the customer, “Order Prepared”. Alternatively, the system notifies the kitchen staffer and the

customer when the order is “In Preperation”. FetchOrder does as its name suggests and compiles an order

from the queue. When an order is completed, MarkCompleteOrder acknowledges the order as complete and

the systems returns to fetch the next order. KitchenQueue and

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

9

Here, a kitchen staffer manages orders. There are no log-ins required and the user’s interaction is limited to

clicking virtual buttons (order completed). The system then removes the order from the kitchen queue and

notifies the customer, “Order Prepared”. Alternatively, the system notifies the kitchen staffer and the

en the order is “In Preperation”. FetchOrder does as its name suggests and compiles an order

from the queue. When an order is completed, MarkCompleteOrder acknowledges the order as complete and

the systems returns to fetch the next order. KitchenQueue and OrderQueue indicate the queue of orders.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

he user’s interaction is limited to

clicking virtual buttons (order completed). The system then removes the order from the kitchen queue and

notifies the customer, “Order Prepared”. Alternatively, the system notifies the kitchen staffer and the

en the order is “In Preperation”. FetchOrder does as its name suggests and compiles an order

from the queue. When an order is completed, MarkCompleteOrder acknowledges the order as complete and

OrderQueue indicate the queue of orders.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ChangeMenu Use Case:

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

10

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

11

Responsibilities:

● Manager or Chef (actor) begins to create menu for the restaurant.

● Menu builder sends request to ActualMenu which will get back to builder as Menu().

● Menu builder then requests to expand menu from actor by adding, removing or editing categories.

For this task system will send MenuCategories() function to actor.

● Actor sends request for AddCat() which will return back to actor in form of RequestName() for

category

● Actor then selects the Name() and it goes to actual menu after submission.

● Actor can also remove categories. Actor sends request RemoveCat() which will return back to actor

from menu builder as ConfrimReq().

● Actor then confirms the request which removes the category from the actual menu.

● If item exists in the menu already "cat==true" check that and takes actor to edit the category, else

"cat==false" takes actor back to CreatMenu() function where he can start over.

● Actor can also delete individual items. Where actor sends request to menu builder as RemoveItem()

form which will then confirm the request from actor.

● Once actor confirmed the request it will then get deleted from the actual menu.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ChangeDrinks Use Case:

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

12

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

13

2. Class Diagram and Interface Specification

A) Class Diagram:

The class diagram includes the following:

GravyXpress is a container class to hold all restaurant domains in the system. This also contains an about

attribute representing generic data containing information about GravyXpress.

Restaurant is a class representing the structure of each overall restaurant. It contains attributes such as the

restaurant’s name, owner, unique identifier, and contact details. In addition, it contains a list of tables in the

the restaurant, as well as the Restaurant and Kitchen Queues, and a list of the employees working at the

restaurant.

Each of these compounded attributes is further broken down within its own class.

Employee is a class containing an Employee’s data. A restaurant’s Employees are aggregated into a main data

structure where they are associated with their particular restaurant. The detailed Employee class is illustrated

in the class diagram below.

Table is a class representing a physical table in a restaurant. The table has a unique identifier, in addition to

the number of seats and its availability status.

Menu is a class with all the menu categories on a restaurant’s menu.

MenuCategory is a class with the menu items in a category. The reason for separating menu into subsections

is to allow for more flexibility, and the ability to perform operations on entire categories rather than merely

individual menu items.

MenuItem is a class representing each item on the menu and the information associated with it.

OrderItem is a class that couples a menu item with a table and a timestamp to be ordered. The timestamp

determines whether the order can be fetched by the kitchen.

OrderQueue is a data structure that collates these orders for the KitchenQueue and Cheque modules to

access.

KitchenQueue is a class representing the queue that the kitchen sees. Items can be retrieved and updated

from and within the OrderQueue.

Customer is a self explanatory class representing each customer, their party size, table location and cheque.

Cheque is an object used to store a dynamic cheque for a customer detailing his every purchase from the

restaurant and enabling a gratuity feature.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Play! Controller is the controller class from the Play! webframework for Java. The

inherits from this class.

Play! Secure is Play!’s security module.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14

is the controller class from the Play! webframework for Java. The Request Handler

is Play!’s security module.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Request Handler

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

15

B) Data Types and Operation Signatures:

GravyXpress

 Attributes:

 -restaurants : string

 // Name of the restaurant

 -about : string

 // Restaurant "about" description

 Operations:

 +addRestaurant(owner) : string

 +getRestaurant(id) : string

 +delRestaurant(id) : string

 // adding/modifying restaurant's information

Restaurant

 Attributes:

 -name : string

 -table : int

 // Number of tables

 -contactDetails : string

 // Restaurant contact detail

 -orderQueue : void

 // Control over order queue

 -kitchenQueue : void

 // Control over kitchen queue

 -employees : string

 // Employees database

 -menu : string

 // Menu detail

 -id : int

 // Restaurant ID number

 -owner : string

 // Restaurant owner name

 Operations:

 +getName(): string

 // Control over name

 +setName(name) : void

 +addTables(seats) : void

 // Control over adding number of tables

 +Restaurant() : string

 +Restaurant(name) : string

 // Control over restaurant name

 +Restaurant(name, contactDetail) : string

 // Control over restaurant contact detail

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

16

 +addEmployee(employee) : string

 // For adding employee's name

 +getContactDetails(): string

 // For employee's detail

 +setContactDetails(contactDetails) : void

 +getId() : int

 // Control over restaurant's id

 +getOwner(): string

 // Control over owner name

 +setOwner(owner) : void

KitchenQueue

 Attributes:

 -kitchenItmes : string

 // Name of kitchen items

 -OrderQueue : int

 -lenght : int

// Length of orders

 Operations:

 +getNextOrder() : string

 // Control on getting next order details

 +markCompelete(orderId) : boolean

 // If order is complete mark Yes, else No

 +getLenght() : int

Employee

 Attributes:

 -name : string

 // Name of the employees

 -contactDetail : string

 // Contact details of the employees

 -employeeType : string

 // Employees job title, such as waiter, chef etc

 Operations:

 +getName(): string

 // Control over getting the name of the employee

 +setName(name) : void

 +getContactDetails(): string

 // Control over getting the contact detail of the employee

 +setContactDetails(contactDetails) : void

 +getEmployeeType : string

 // Control over getting employee's type

 +setEmployeeType(employeeType) : void

Menu

 Attributes:

 -menuCategories : string

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

17

 // Menu categories such as fastfood, breakfast etc

 -length : int

 Operations:

 +addMenuItem(item, category) : void

 +getMenuItem(id, category) : int

 // Control on getting menu's ID

 +addCategory(name) : string

 // Adding the name of the menu's categories

 +removeCategory(id) : boolean

 // Control over deleting menu's categories

MenuItem

 Attributes:

 -name : string

 // Menu item's name

 -description : string

 // Menu item's descriptions

 -price : int

 // Menu item's prices

 -id : int

 // Menu item's IDs

 Operations:

 +getName(): string

 // Control over getting the name of the item

 +setName(name) : void

 +getDescription(): string

 // Control over getting the description of the item

 +setDescription(description) : void

 +getPrice() : int

 // Control over getting the price of the item

 +setPrice(price) : void

 +getId() : int

 // Control over getting the id of the item

Table

 Attributes:

 -seats : int

 // total seats associated with the tables

 -status : boolean

 // available / unavailable statuses

 -id : int

 // ID numbers of the seats

 Operations:

 +getSeats() : int

 // Control over getting the seats

 +setSeats(seats) : void

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

18

 +getStatus() : boolean

 // Control over getting the status of the seats

 +setStatus(status) : void

 getId() : int

 // Control over getting the IDs of the seats

MenuCategory

 Attributes:

 -menuItems : string

 -length : int

 -id : int

 Operations:

 +addMenuItem(item) : void

 +getMenuItem(id) : int

 // Control over getting the menu item

 +getId() : int

 // Control over getting the menu's ID

 +getLength() : int

OrderItem

 Attributes:

 -menuItem : string

 // Name of the menu's item

 -time : int

 // Time for the order

 -table : int

 // Assigned table number

 -fetchable : boolean

 -status : boolean

 -priority : string

 // Priority such a high, medium & low

 -id : int

 // order ID

 Operations:

 +isFetchable() : boolean

 +getStatus() : boolean

 +setStatus(status) : void

 +getPriority() : string

 // Control over getting the priority of the order

 +setPriority(priority) : void

PageMaker

 Attributes:

 -map : void

 Operations:

 +makePage(template) : void

 +addMapping(key, value) : void

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

19

 +setMap(inputMap) : void

Customer

 Attributes:

 -table : int

 // customer's desired table

 -partySize : int

 // Number of person's for the order

 -order : int

 -id : int

 // Customer's order id

 -cheque : double

 Operations:

 +getTable() : int

 // Control over getting the table

 +setTable(table) : void

 +getPartySize() : int

 // Control over getting the party size

 +setPartySize(attribute) : void

 +getOrderItem(id) : int

 // Control over getting the order items

 +orderItem(orderItem) : void

 +getId() : int

 // Control over getting the order ID number

 +payCheque() : double

 // Control over cheque

Cheque

 Attributes:

 -order : int

 -total : int

 // total price of the order

 -gratuity : int

 // Calculated TIP for the order

 -paid : boolean

 // Paid status

 Operations:

 +printCheque() : boolean

 +setGratuity() : int

 // Control over setting the gratuity

 +getGratuity() : void

 +getTotal() : int

 // Control over getting the total price of the order

 +getPaid() : boolean

 +setPaid(boolean) : void

OrderQueue

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

20

 Attributes:

 -orderItems : string

 -lenght : int

 Operations:

 +addOrderItem(orderItem) : void

 +removeOrderItem(id) : int

 // Control over removing the item from the cart

 +getOrderItem(id) : int

 +getLength() : int

C) Traceability Matrix:

Below is the traceability matrix that maps all software classes to all derived domain concepts. The

development team realized that in the previous report, the original domain concepts were insufficient and not

well developed. Therefore, more detailed domain concepts were derived when creating this traceability matrix.

Most of the domain concepts were derived from what functions each class contained.

In addition, a RequestHandler class has been created in order to handle all webpage http requests. First, the

user request will be processed through this class before being directed to the appropriate classes(s).

Two domain concepts (AddMenuItem and DeleteMenuItem) belong to two classes, Menu and MenuCategory. This

is because adding/deleting a menu item or category will be done by the same member functions. The team

will develop a virtual function where the system will decide which virtual function to use for the appropriate

request.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

21

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

3. System Architecture a

A) Architectural Styles:

The client-server architecture system we will use allows for multiple clients (such as managers, waiters etc.) to

start communication sessions with and interact with the centralized database server. First, clie

successfully login to establish the connection. The clients can then connect to the services of the subdomains

via the centralized server. This is a 2

and the server.

This client-server system is beneficial since it offers more centralized data (data stored only in server), has a

better security(just need to control security of server), and is easier to maintain (roles are distributed among

several subdomain units which connect via network). One downside of this system is its high dependence on

the central server which can negatively influence system reliability.

Each user has his or her own terminal that uses a graphical UI to start communication with the database

server. The server awaits requests from the clients and then passes along the requests to the correct

subdomain. Clients can also communicate with one another through the server. The server also may read data

and store in the database as needed. The database is

In the diagram below, the Client is the Waiter. After logging in with the Database Server, the Waiter is given

access to communication with the server. When the Waiter requests to access the order domain unit, the

Database allows for this by establishing a connection with the Order Domain Unit.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

22

3. System Architecture and System Design

server architecture system we will use allows for multiple clients (such as managers, waiters etc.) to

start communication sessions with and interact with the centralized database server. First, clie

successfully login to establish the connection. The clients can then connect to the services of the subdomains

via the centralized server. This is a 2-tier architecture style since communication is directly between the client

server system is beneficial since it offers more centralized data (data stored only in server), has a

better security(just need to control security of server), and is easier to maintain (roles are distributed among

onnect via network). One downside of this system is its high dependence on

the central server which can negatively influence system reliability.

Each user has his or her own terminal that uses a graphical UI to start communication with the database

r. The server awaits requests from the clients and then passes along the requests to the correct

subdomain. Clients can also communicate with one another through the server. The server also may read data

and store in the database as needed. The database is used for backup purposes as well.

In the diagram below, the Client is the Waiter. After logging in with the Database Server, the Waiter is given

access to communication with the server. When the Waiter requests to access the order domain unit, the

se allows for this by establishing a connection with the Order Domain Unit.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

server architecture system we will use allows for multiple clients (such as managers, waiters etc.) to

start communication sessions with and interact with the centralized database server. First, clients must

successfully login to establish the connection. The clients can then connect to the services of the subdomains

tier architecture style since communication is directly between the client

server system is beneficial since it offers more centralized data (data stored only in server), has a

better security(just need to control security of server), and is easier to maintain (roles are distributed among

onnect via network). One downside of this system is its high dependence on

Each user has his or her own terminal that uses a graphical UI to start communication with the database

r. The server awaits requests from the clients and then passes along the requests to the correct

subdomain. Clients can also communicate with one another through the server. The server also may read data

In the diagram below, the Client is the Waiter. After logging in with the Database Server, the Waiter is given

access to communication with the server. When the Waiter requests to access the order domain unit, the

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

There will be one common bus to which the subdomain units connect to and this bus will be connected to

the database server.The subdomain units and the server are connected via a

the database server can establish a connection to a particular subdomain unit via the ESB. When a request is

sent from the client to the database server, it is passed along the ESB to the appropriate subdomain unit. The

subdomain units are free to communicate with one another using the ESB and Subscribe/Publish message

bus. Subdomains can use the subscribe/publish methods to read, write and update information by directly

communicating amongst each other (without use of the se

and it also does not store the exchange of information in the database.

Overall, the client server and message bus system will define the overall architecture of the system. The client

server model allows the clients to gain access to the subdomains and make requests to them. The

message bus system allows for efficient communication amongst the server and the subdomains as well

as amongst the subdomains themselves.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

23

There will be one common bus to which the subdomain units connect to and this bus will be connected to

the database server.The subdomain units and the server are connected via an Enterprise Service Bus. Thus,

the database server can establish a connection to a particular subdomain unit via the ESB. When a request is

sent from the client to the database server, it is passed along the ESB to the appropriate subdomain unit. The

omain units are free to communicate with one another using the ESB and Subscribe/Publish message

bus. Subdomains can use the subscribe/publish methods to read, write and update information by directly

communicating amongst each other (without use of the server). This is quicker than going through the server

and it also does not store the exchange of information in the database.

Overall, the client server and message bus system will define the overall architecture of the system. The client

allows the clients to gain access to the subdomains and make requests to them. The

message bus system allows for efficient communication amongst the server and the subdomains as well

as amongst the subdomains themselves.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

There will be one common bus to which the subdomain units connect to and this bus will be connected to

n Enterprise Service Bus. Thus,

the database server can establish a connection to a particular subdomain unit via the ESB. When a request is

sent from the client to the database server, it is passed along the ESB to the appropriate subdomain unit. The

omain units are free to communicate with one another using the ESB and Subscribe/Publish message

bus. Subdomains can use the subscribe/publish methods to read, write and update information by directly

rver). This is quicker than going through the server

Overall, the client server and message bus system will define the overall architecture of the system. The client

allows the clients to gain access to the subdomains and make requests to them. The

message bus system allows for efficient communication amongst the server and the subdomains as well

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

B) Identifying Subsystems and Package Diagram:

Package Diagram:

This maps out the main components of the software. Each individual package corresponds to several classes

and use cases that have been documented prior to this. Each restaurant in GravyXpress will consist of i

employees and its menu, the information for both of which will be stored in the database. Employees are of 4

main types: manager, chef, waiter, and the kitchen staff. Any customer of GravyXpress would use the web

app to transact with the restaurant of t

database.

Subsystems:

Each subsystem/set of subsystems must connect to the database server and fulfill the requirements indicated

at the beginning of the report.

List of Subsystems that Fulfill Requirements/User Stories:

Restaurant Builder Domain - Used by Manager to create a restaurant subdomain within GravyXpress

Order Domain - Keeps track of Customers Orders, Customers can Add/Delete Items From Here

Kitchen Queue Domain - Keeps track of food items to be prepared in the Kitchen

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

24

ms and Package Diagram:

This maps out the main components of the software. Each individual package corresponds to several classes

and use cases that have been documented prior to this. Each restaurant in GravyXpress will consist of i

employees and its menu, the information for both of which will be stored in the database. Employees are of 4

main types: manager, chef, waiter, and the kitchen staff. Any customer of GravyXpress would use the web

app to transact with the restaurant of their choice. Information about each customer is also stored in the main

Each subsystem/set of subsystems must connect to the database server and fulfill the requirements indicated

ms that Fulfill Requirements/User Stories:

Used by Manager to create a restaurant subdomain within GravyXpress

Keeps track of Customers Orders, Customers can Add/Delete Items From Here

Keeps track of food items to be prepared in the Kitchen

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

This maps out the main components of the software. Each individual package corresponds to several classes

and use cases that have been documented prior to this. Each restaurant in GravyXpress will consist of its

employees and its menu, the information for both of which will be stored in the database. Employees are of 4

main types: manager, chef, waiter, and the kitchen staff. Any customer of GravyXpress would use the web

heir choice. Information about each customer is also stored in the main

Each subsystem/set of subsystems must connect to the database server and fulfill the requirements indicated

Used by Manager to create a restaurant subdomain within GravyXpress

Keeps track of Customers Orders, Customers can Add/Delete Items From Here

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

25

Waiter Call and View Waiter Call Domains - Used for Customers to call upon Waiters and for Waiters to

check which tables require their service (such as cleaning)

View Menu - Used by customers and employees to view the menu items

Menu Manager - Used by Manager, Chefs and Bartenders to edit the Menu

View Employee Info - Used by Manager to view the profiles of his/her employees

Employee Info - Used by Manager to edit Employee information/ Send messages to Employees

Restaurant Sales - Used by Manager to view restaurant sales

Reservation Center - Used by customers to make a reservation

Reservation - Reservation Center uses this subdomain to create a reservation

View Reservation - Used by employees to view the reservations

Payment - Used by customers to pay for the food they ordered

Interface Domain - Used for a customer interface and for a dashboard for the Manager to use

View Table Info - Used by employees to see which tables are available, dirty or clean

View Floor Layout/Floor Layout Domains - Used to see and update the floor layout of the restaurant

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

Note that all of these subdomains connect to the central database server, which is connected to the database.

Thus, information can be sent and stored in the database as necessary. In the figure above, most of the

subdomains are shown. There was not enough room to show all.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

26

Note that all of these subdomains connect to the central database server, which is connected to the database.

be sent and stored in the database as necessary. In the figure above, most of the

subdomains are shown. There was not enough room to show all.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Note that all of these subdomains connect to the central database server, which is connected to the database.

be sent and stored in the database as necessary. In the figure above, most of the

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

27

C) Mapping Subsystems to Hardware:

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

D) Persistent Data Storage:

These 4 tables summarize the database design of GravyXpress. The users table is general to all users of

GravyXpress, be they customer or employee of a restaurant. The user would use his/her e

username for their GravyXpress account. The employees tabl

and inherits the UserID as a foreign key. Each restaurant has one menu and several employees, thus the 1

1 and 1-to-many relationship with the menu and employees tables, respectively. Other objects, such

OrderQueue and the customer’s Cheque, are not stored in the database due to the

fact that these objects are more dynamic in nature, and can easily be stored in main memory.

E) Network Protocols:

HTTP:

The main network protocol that GravyXpress will

choice given the webapp nature of GravyXpress. Browsers should be able to remotely deliver and retrieve

data to and from the central GravyXpresss server. Such requests map easily to the GET and

POST requests native to HTTP.

HTML5 Websockets

In addition to HTTP, we will be utilizing the fairly new websocket protocol. The websocket protocol is

advantageous in its capability to enable servers to send content to clients that has not been solicited by the

client. This is achieved by keeping a connection opened by the client open, and passing data along this

channel back to the client.

Modern browsers support HTML5 websockets, and for real

constant barrage of HTTP requests sent by the client to solicit content, such as is achieved with Comet or

other similar technologies. It is also simpler.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

28

4 tables summarize the database design of GravyXpress. The users table is general to all users of

GravyXpress, be they customer or employee of a restaurant. The user would use his/her e-

username for their GravyXpress account. The employees table has a 1-to-1 relationship with the users table,

and inherits the UserID as a foreign key. Each restaurant has one menu and several employees, thus the 1

many relationship with the menu and employees tables, respectively. Other objects, such

OrderQueue and the customer’s Cheque, are not stored in the database due to the

fact that these objects are more dynamic in nature, and can easily be stored in main memory.

The main network protocol that GravyXpress will employ is HTTP. The choice of HTTP is an obvious

choice given the webapp nature of GravyXpress. Browsers should be able to remotely deliver and retrieve

data to and from the central GravyXpresss server. Such requests map easily to the GET and

In addition to HTTP, we will be utilizing the fairly new websocket protocol. The websocket protocol is

advantageous in its capability to enable servers to send content to clients that has not been solicited by the

t. This is achieved by keeping a connection opened by the client open, and passing data along this

Modern browsers support HTML5 websockets, and for real-time alerts this protocol is far superior to a

requests sent by the client to solicit content, such as is achieved with Comet or

other similar technologies. It is also simpler.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

4 tables summarize the database design of GravyXpress. The users table is general to all users of

-mail as the

1 relationship with the users table,

and inherits the UserID as a foreign key. Each restaurant has one menu and several employees, thus the 1-to-

many relationship with the menu and employees tables, respectively. Other objects, such as the

fact that these objects are more dynamic in nature, and can easily be stored in main memory.

employ is HTTP. The choice of HTTP is an obvious

choice given the webapp nature of GravyXpress. Browsers should be able to remotely deliver and retrieve

data to and from the central GravyXpresss server. Such requests map easily to the GET and

In addition to HTTP, we will be utilizing the fairly new websocket protocol. The websocket protocol is

advantageous in its capability to enable servers to send content to clients that has not been solicited by the

t. This is achieved by keeping a connection opened by the client open, and passing data along this

time alerts this protocol is far superior to a

requests sent by the client to solicit content, such as is achieved with Comet or

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

29

Our application will use websockets to push updates to users in real-time.

F) Global Control Flow:

Execution orderness: GravyXpress is both a procedure-driven and an event-driven software. When the

customer orders food, manager or chef adds or removes an item from the menu, or the manager creates a

subdomain for his particular restaurant, the user(s) must all go through the same steps every time for each

goal. For example, in the process of ordering food, the restaurant customer must select the “View Menu”

option. Then, he/she must choose a food category (Pizza, Pasta, Sandwiches, Drinks, etc.). Then, the

customer must choose the food item he/she desires from the list in that category. Finally, the customer must

select the order button to send to the order queue. This is all procedure-driven, or in other words, the

customer must always go through these steps in order to complete the ordering process. There are many

more procedure-driven events that cannot all be described here.

GravyXpress is also event-driven in that it stays idle in a loop until an action is taken while the user tries to

accomplish his/her goal. For example, the system is in fact running and already in a loop when the restaurant

customer sees the main menu of the system in the tablet or smartphone. Another example is when the

restaurant customer selects a menu item in a particular category. When the customer selects the category, the

system goes into a loop (idle) until the customer then selects the menu item he/she wants to order.

Time dependency: GravyXpress has multiple timers. The system will have a timer when the user starts a

procedure to accomplish his or her goal. A timer will start and reset every time an action is taken during the

procedure. If the user does not take any action and the timer reaches a maximum allowed time, a “time-out”

will occur where the system will give out a “Time-out” message and will go back to the beginning of the

procedure and reset the timer. So for example, if the restaurant customer does not do anything for a long

time after selecting a menu category, the system will go back to its Main Menu.

Another timer that will be used is for the current date and time. When the customer orders food and requests

the cheque, the system records the date and time the customer ordered food and prints the date and time on

the cheque. This will also be sent out to the manager who also wants to see the date and time each customer

ordered food.

The timer that starts and resets between procedures is not considered real-time since it keeps resetting and

there is a maximum threshold where it will reset automatically if no user action is taken. However, the timer

used to display the date and time a customer ordered food is considered real-time, since it uses the actual date

and time outside the system.

Concurrency: GravyXpress will be processing multiple requests at the same time. Customers will be ordering

food at the same time as the manager will be viewing the order history. The kitchen staff will be marking

orders complete as orders will simultaneously move from the order queue to the kitchen queue. Many other

concurrent processes will occur that are too great in numbers to describe fully here. As a result, multiple

threads will be used for multiple processes.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

30

G) Hardware Requirements:

SQL Server

Our service will use an SQL database to store orders, ingredients, menu items, etc. We plan to use a server

with the following minimum and desired performance requirements. These are the 2012 edition specifications

for the SQL server. Some restaurants will need a server with demanding performance requirements, so the

Recommended Requirements will be set as our default specification setting.

Hardware Component

Minimum Requirements Recommended

Requirements

Processor 1.0 GHz 1.4 GHz

RAM 512 MB 1.0 GB

Hard Drive Space 3.6 GB 4.0 GB

Network 10/100/1000 NIC

Wifi 802.11n

10/100/1000 NIC

Wifi 802.11n

Desktop Client

Many restaurants have desktop terminals that employees will interact with, so the following table provides

minimum and recommended requirements for a desktop client. The most common desktop monitors are

between 19 and 20 inches, so recommended requirements will be set as our default specification setting.

Hardware Component

Minimum Requirements Recommended

Requirements

Processor 1.0 GHz 1.4 GHz

RAM 512 MB 1.0 GB

Hard Drive Space 4.2 GB 6.6 GB

Network 10/100/1000 NIC

Wifi 802.11n

10/100/1000 NIC

Wifi 802.11n

Screen Size 15” 17”-19” or 20”

Resolution 1024 x 768 1280 x 1024 or 1600 x 1200

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

31

4. Algorithms and Data Structures

A) Algorithms

There are many important algorithms that will help us to implement the use cases. Most of our algorithms are

not complex in nature. For instance, many algorithms will deal with adding items to and deleting items from

linked lists. Since we will be using lists to represent the OrderQueue and the KitchenQueue, whenever the

waiters or chefs must update and alter these queues such algorithms will come in handy.

Furthermore, another algorithm that can be used to calculate total bills is the algorithm for summing all the

terms in an array. If each item ordered is placed in an array cell along with its price, one can see how this

algorithm will come in handy at bill time.

Some search/sort algorithms which are more complicated will also be used as well. Sometimes data records

about sales need to searched. Other times, to figure out the popularity of items, items must be sorted

according to the largest number of sales. Such information helps the manager run the restaurant.

An example algorithm to check the stock of restaurant items, checkStock, can retrieve the amount of each

item in the restaurant’s inventory. An added function can be used to display a bar graph displaying the

amount of data. A smaller algorithm that can be a part of checkStock can also sort items into different

categories to make it easier for the manager to view data. With this algorithm the data can be further divided

into Alcohol/Wine brands and quantities, spices (salt, pepper, oregano, etc) quantities, types of grains (wheat,

flour, etc), and even foods that can be possible allergens (shellfish, peanuts, etc). This shows how algorithms

are an essential part of any software system and how they are so beneficial.

Overall, Algorithms are a very crucial part of GravyXpress. They help facilitate the implementation of all key

user stories in an efficient manner.

B) Data Structures

There are several key data structures that we will use in this project, for instance, arrays, linked lists, lists,

priority lists, queues, stacks etc. Data structures are very vital to the efficiency of the software system. When it

comes to improving upon the time it takes for execution of algorithms and improving on performance, arrays

will be used. Arrays are by far the fastests from a performance point of view. For instance, Arrays can be used

to store a customer’s order. Each item that is ordered can be placed in a cell of the array and then then an

algorithm for finding the sum of all elements in the array can be used to to calculate the price the customer

should pay.

However, for implementing certain aspects of our project it makes the most sense to use lists. For example,

in order to implement the “Kitchen Queue” we will use a priority list. This list will work much like a queue in

the sense that items that are entered in the queue first will be the first to be cooked. Thus, items that are

entered first are given priority over items that are entered last. The priority list will also have several pointers

that we will use to implement the functions of the “Kitchen Queue.” For instance, there will be a pointer at

the beginning and end of the list. There will also be a pointer called “CooksHere.” To the left of the

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

32

“CooksHere” pointer will be food items that have already been assigned to a chef to cook. To the right of the

“CooksHere” pointer will be food items that have not been cooked already. Also, there will be another

pointer called “ReadyToServe” which will indicate which items have already been cooked and are ready to

serve and which are not. When an item is ready to serve, the Waiter for the table it is to be sent to will be

notified. To the left of the “ReadyToServe” pointer will be food items that are ready to serve and have been

cooked, to the right will be items that are not ready to serve.

Another instance where a list will be used will be for OrderQueue. The list will also be a priority list since

items entered in the list first will be the items that exit the list first. There will be a pointer called

“SentToKitchen” which will distinguish between the items sent to the kitchen queue and those that have not

been sent to the kitchen queue. To the left of the pointer will be items sent to the KitchenQueue already and

to the right will be items that have yet to be sent. Another pointer that will be used will be the “Delivered”

pointer. To the left of this pointer will be items that have already been sent to kitchen, have been cooked, and

have been sent by the waiters to the customers. The items to the left of the “Delivered” pointer will be added

to the cheque for the corresponding customers. The items to the right will be those that have not been

delivered to the customers yet by the waiters.

Last but not least, hash tables can be used to map keys to values. This can be used for many aspects of

implementation. For instance, a hash table can be used to map the keys (employee names) to their values

(payroll amount, telephone number etc.).

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

33

5. User Interface Design and Implementation

On the next page is our improved graphical user interface design in which we focused mainly on ease-of-use

rather changing the colors and design as described in the description of report.Customers can use their own

mobile device or a tablet to access the GravyXpress app. After sitting down on a table, the waiter will give the

customers at the table he/she is serving the tablet showing the Home page shown below. Here Customers

may select to view different sections of the menu (as shown by the list below) and may order food, view the

order and pay the bill. Under the menu tab show below, customers can view the different menu items broken

up by category. For instance, there is a breakfast, lunch special, fast food etc. category. Improved user

interface will have hover over menus. That is, if user will hover the mouse pointer or on touch interface

user’s first touch to menu buttons will give him drop down menu which will give him sneak peek of what’s

inside. These menus will be implemented using a mixture of CSS and Javascript. The CSS will be used to style

the HTML elements, while Javascript will be used to alter the HTML DOM as needed. All of this will be

handled on the client side so no requests need to be made to the server in order to achieve this functionality.

This maximizes speed, and minimizes the complexity of the code.

 Furthermore, under the order page, customers can select menu items to order and then place their order.

The prices of the items are shown on the order as well. The Contact tab will have an active hover over drop

down menu. That is, it will give user a text field in which user can input the zip code and hit enter. It will then

give him the nearest stores information. The About tab will provide general information about the

Restaurant such as hours of operation and special offers on certain days. The About tab will also have some

information about the hotel manager. The design of the Main Portal (in the previous report) is still the same.

It can be used by the Manager to create a subsystem for his/her Restaurant under GravyXpress.

Towards the bottom of the home page, there are also links for Careers, Locations, Contact, About Us and

History. Careers is where the manager may wish to post job openings for the public to see and apply to.

Locations will list the location(s) of the restaurant. The contact link is the site contact. The History link

provides the user with the history and heritage of the restaurant. This adds a cultural aspect to the design.

Although these pages like all other pages will be served dynamically, these pages themselves will be served

from static HTML styled with CSS styling sheet content. These pages merely serve content to the end-user

and no content needs to be sent from the client to the server, making these pages very simple to render.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

34

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

6. Design of Tests

A) Test Cases

OrderFood

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

35

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

RemoveOrder

CreateWebpage

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

36

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

AddEmployee

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

37

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ServeTable

CustomerAssistance

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

38

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ManageOrder

CancelOrder

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

39

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ChangeMenu

DeleteCategory

We will also test for the bartender use cases, but there is no need to write test cases for these because the use

cases are very similar to UC-5 ChangeMenu

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

40

We will also test for the bartender use cases, but there is no need to write test cases for these because the use

5 ChangeMenu. So, the test cases are similar to TC-9 and TC-10.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

We will also test for the bartender use cases, but there is no need to write test cases for these because the use

10.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

B) Unit Tests

This is the state diagram for the Cheque class. This shows how the cheque for the restaurant customer is
calculated and printed on the screen. This includes the total price
before leaving. To test all states of this class, we will use the following method calls as described in the class
diagram:

getTotal()
setGratuity(total, gratuity, order)
getGratuity()
printCheque()
setPaid(paid)
getPaid()

First, the system collects all ordered items and prices that the customer ordered from the restaurant menu
database. It then calculates the total price by adding all prices for each food item and then sets the gratuity
rate on the total price. getGratuity() method call simply prints the gratuity rate it calculated. Then it prints the
cheque with the ordered items, the total price, and gratuity all in one screen. Finally, setPaid(paid) which
returns a boolean value sets the variable paid either 1 o
customer pays, the variable paid becomes 1 and the “Customer Paid” is printed in the order history.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

41

1. Cheque

This is the state diagram for the Cheque class. This shows how the cheque for the restaurant customer is
calculated and printed on the screen. This includes the total price and gratuity that the customer must pay
before leaving. To test all states of this class, we will use the following method calls as described in the class

First, the system collects all ordered items and prices that the customer ordered from the restaurant menu
database. It then calculates the total price by adding all prices for each food item and then sets the gratuity

tGratuity() method call simply prints the gratuity rate it calculated. Then it prints the
cheque with the ordered items, the total price, and gratuity all in one screen. Finally, setPaid(paid) which
returns a boolean value sets the variable paid either 1 or 0. 1 being paid and 0 being not paid. After the
customer pays, the variable paid becomes 1 and the “Customer Paid” is printed in the order history.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

This is the state diagram for the Cheque class. This shows how the cheque for the restaurant customer is
and gratuity that the customer must pay

before leaving. To test all states of this class, we will use the following method calls as described in the class

First, the system collects all ordered items and prices that the customer ordered from the restaurant menu
database. It then calculates the total price by adding all prices for each food item and then sets the gratuity

tGratuity() method call simply prints the gratuity rate it calculated. Then it prints the
cheque with the ordered items, the total price, and gratuity all in one screen. Finally, setPaid(paid) which

r 0. 1 being paid and 0 being not paid. After the
customer pays, the variable paid becomes 1 and the “Customer Paid” is printed in the order history.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

This is the state diagram for the Table class that shows the status of the restaurant tab
following method calls will be used to test every behavior of the Table class:

getid()
getStatus()
setStatus(status)

First, the system gets the table number by calling the getid() function. Once the table number is acquired, the
status of the table can be 1 of 3 values. We will use enumeration to assign integer values to the status of the
table: 1=Open, 2=Occupied, 3=Cleaning. Finally, we will use getStatus to print the status of the table onto
the screen.

For efficiency, first we test to see if orders have been cancelled. We test the first invalid call with invalidOrder.

It is a Boolean test, so if the call is true the order is valid, otherwise it is invalid. Invalid cases can be when the

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

42

2. Table

This is the state diagram for the Table class that shows the status of the restaurant table in the system. The
following method calls will be used to test every behavior of the Table class:

First, the system gets the table number by calling the getid() function. Once the table number is acquired, the
tus of the table can be 1 of 3 values. We will use enumeration to assign integer values to the status of the

table: 1=Open, 2=Occupied, 3=Cleaning. Finally, we will use getStatus to print the status of the table onto

3. OrderFood

ncy, first we test to see if orders have been cancelled. We test the first invalid call with invalidOrder.

It is a Boolean test, so if the call is true the order is valid, otherwise it is invalid. Invalid cases can be when the

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

le in the system. The

First, the system gets the table number by calling the getid() function. Once the table number is acquired, the
tus of the table can be 1 of 3 values. We will use enumeration to assign integer values to the status of the

table: 1=Open, 2=Occupied, 3=Cleaning. Finally, we will use getStatus to print the status of the table onto

ncy, first we test to see if orders have been cancelled. We test the first invalid call with invalidOrder.

It is a Boolean test, so if the call is true the order is valid, otherwise it is invalid. Invalid cases can be when the

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

ordered dish does not have an ingredient in stock, or if the order is cancelled. At this stage in the test, the

waiter is notified. In addition, because the dish has not yet been prepared, the customer can request the order

to be cancelled. The option to cancel an order after this sta

First, the database connection is closed. When a method (ex, openConne

opening. If the connection is invalid, the state goes from opening to closed. There is a limited number of

attempts to contact the server. If the connection is valid, it will go to the state open, otherwise, it will go t

the state closed.

When a connection is established, we test to see if we can request a query with a method. This method goes

from the state open to retrieving, and then reverts to open. It does not matter if the query is valid or invalid

because an SQL database will always return a request.

The closing connection is also tested with another method (ex, closeConnection). This method will move the

state from open to closing to closed. The state will always go from closing to closed because the database

allows safe connection closings and the server closes the connection after any inactivity

C) Integration Testing

For our system, we can implement both top down integration testing and bottom up integration testing. An

instance where top down testing can be used is where the system locks out an una

the user for a user id and password is given. When an authorized user submits the correct password to the

user id, the system grants the user access. However, if an unauthorized user attempts to gain access by

repeatedly submitting an incorrect password, the system will then lock that terminal and record the intrusion

attempt into a log. The manager can have access to this log.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

43

ingredient in stock, or if the order is cancelled. At this stage in the test, the

waiter is notified. In addition, because the dish has not yet been prepared, the customer can request the order

to be cancelled. The option to cancel an order after this stage will not be given.

4. CreateWebpage

First, the database connection is closed. When a method (ex, openConnection) is called, the state goes to

opening. If the connection is invalid, the state goes from opening to closed. There is a limited number of

attempts to contact the server. If the connection is valid, it will go to the state open, otherwise, it will go t

When a connection is established, we test to see if we can request a query with a method. This method goes

from the state open to retrieving, and then reverts to open. It does not matter if the query is valid or invalid

database will always return a request.

The closing connection is also tested with another method (ex, closeConnection). This method will move the

state from open to closing to closed. The state will always go from closing to closed because the database

lows safe connection closings and the server closes the connection after any inactivity.

For our system, we can implement both top down integration testing and bottom up integration testing. An

instance where top down testing can be used is where the system locks out an unauthorized user. A request to

the user for a user id and password is given. When an authorized user submits the correct password to the

user id, the system grants the user access. However, if an unauthorized user attempts to gain access by

ting an incorrect password, the system will then lock that terminal and record the intrusion

attempt into a log. The manager can have access to this log.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

ingredient in stock, or if the order is cancelled. At this stage in the test, the

waiter is notified. In addition, because the dish has not yet been prepared, the customer can request the order

ction) is called, the state goes to

opening. If the connection is invalid, the state goes from opening to closed. There is a limited number of

attempts to contact the server. If the connection is valid, it will go to the state open, otherwise, it will go to

When a connection is established, we test to see if we can request a query with a method. This method goes

from the state open to retrieving, and then reverts to open. It does not matter if the query is valid or invalid

The closing connection is also tested with another method (ex, closeConnection). This method will move the

state from open to closing to closed. The state will always go from closing to closed because the database

For our system, we can implement both top down integration testing and bottom up integration testing. An

uthorized user. A request to

the user for a user id and password is given. When an authorized user submits the correct password to the

user id, the system grants the user access. However, if an unauthorized user attempts to gain access by

ting an incorrect password, the system will then lock that terminal and record the intrusion

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

44

Cases where we can use bottom up testing is where we test individual classes that are independent of each

other. For many cases, our system has lower level components that are maintained by controllers, so top

down testing isn’t the best form of integration testing. After each leaf class is tested, we test the next level of

the hierarchy and its leaves. An additional advantage to this type of testing is that if an error in testing occurs

in a higher level class, bottom up testing helps us to find the error in one of the lower level classes. Because

the classes are independent of each other, we can narrow down which of the lower level class contains the

problem and search that level’s hierarchy instead of a parallel class’s hierarchy.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

45

7. Project Management and Plan of Work.

A) Project Coordination

Part 1:

● Rohit Lakshmanatirthakatte opened up a fresh Google Drive document particularly for Report 2 Part

1, and reminded all team members of the due date. Here, we simply built up on the document by

adding our assigned use case interaction diagrams.

● Yehuda Cohen arranged a Google+ Hangout for everyone to discuss each team member’s

responsibilities and who’s doing which interaction diagram.

● We also discussed questions and concerns need to be addressed on Facebook chat.

● Finally, Rohit reformatted the entire report as Garamond 11-pt font black text, made a pdf document,

and submitted to his Dropbox.

Part 2:

● Rohit Lakshmanatirthakatte opened up a fresh Google Drive document particularly for Report 2 Part

2 and copied and pasted the information from Part 1. Rohit also reminded all team members of the

due date. Then, the entire team built up of the information required for part 2 starting from the

section “2. Class Diagram and Interface Specification”.

● Before writing the report, everyone decided to have a Google+ Hangout to divide up the work, who

was responsible to which part. The meeting date and time was set up on Facebook chat and by

considering everyone’s convenience.

● During the Google+ Hangout, Rohit recorded a note of tasks (who was doing what) using the

Notepad feature, and posted this on Google Drive for everyone to see.

● Finally, Rohit reformatted the entire report as Garamond 11-pt font black text, made a pdf document,

and submitted to his Dropbox.

 Part 3:

● Rohit Lakshmanatirthakatte opened up a fresh Google Drive document particularly for Report 3 and

Shivani Sethi along with Rohit copied and pasted the information from Part 2. Shivani also updated

the Table of Contents section and wrote down the headings for the new sections of Report 3

● Shivani organized a Google+ Hangout and invited people to join. Shivani divided the remaining

work among the group members and noted down the responsibilities of each of the group members

in a table.

● Finally, Shivani formatted the entire report Garamond 11-pt font black text and sent it to Rohit so

that he could submit it via Dropbox.

B) Issues Encountered during Project Management

One of the main issues in project management was dividing up the work more equally so that everyone had a

chance to work on a significant amount of work and contribute effectively. We dealt with this problem by

looking at the breakdown of points in the diagram for report 2 and trying our best to assign an equal number

of points to each person. We tried to spread out the work so that everyone got to learn from each other and

work together on multiple sections. People were happier that they got a fair chance at contributing so they

did more work and were more productive.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

C) Progress Report

Of the 71 user stories documented in the first report, we have finally chosen 30 that we will implement for

sure in our final design, with an additional 26 that we will implement if time permits. Those 56 user stories

have been organized into a backlog by order of priority in the previous report. The various items of this

report, such as the class diagrams, database ta

operation those user stories that we have selected. Our next step is to derive and employ the actual code from

these designs, and thereafter we will go through all of our test cases to ensure ou

demo.

D) Plan of Work

E) Breakdown of Responsibilities

The first 30 user stories defined in report one are divided below between the six group members. Each group

member is entirely responsible to his/her assigned gro

the work backlog: the items identified as essential to the GravyXpress system. Five user stories have been

assigned to each of the six group members.

Assignments are as follows:

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

46

Of the 71 user stories documented in the first report, we have finally chosen 30 that we will implement for

our final design, with an additional 26 that we will implement if time permits. Those 56 user stories

have been organized into a backlog by order of priority in the previous report. The various items of this

report, such as the class diagrams, database tables, and user interface designs show how we plan to put into

operation those user stories that we have selected. Our next step is to derive and employ the actual code from

these designs, and thereafter we will go through all of our test cases to ensure our project is ready for the first

The first 30 user stories defined in report one are divided below between the six group members. Each group

member is entirely responsible to his/her assigned groups. These items include only the first 30 items from

the work backlog: the items identified as essential to the GravyXpress system. Five user stories have been

assigned to each of the six group members.

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Of the 71 user stories documented in the first report, we have finally chosen 30 that we will implement for

our final design, with an additional 26 that we will implement if time permits. Those 56 user stories

have been organized into a backlog by order of priority in the previous report. The various items of this

bles, and user interface designs show how we plan to put into

operation those user stories that we have selected. Our next step is to derive and employ the actual code from

r project is ready for the first

The first 30 user stories defined in report one are divided below between the six group members. Each group

ups. These items include only the first 30 items from

the work backlog: the items identified as essential to the GravyXpress system. Five user stories have been

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

47

Yehuda

1 ST-M-1 I want to create a subdomain within the GravyXpress web

application specific to my restaurant, so that my restaurant’s

services are available over the internet.

9

2 ST-G-1 I want to be able to login and logout of GravyXpress securely, so
I and only I have access to the areas of GravyXpress that
concern me.

3

20 ST-M-2 I want to be able to alter my restaurant’s contact information &
hours of operation from my dashboard, so that those who visit my
restaurant’s subdomain always receive up to date information.

2

5 ST-M-10 I want a restaurant's menu that I can modify at a moments
notice, so that adding/removing items from my menu as well as
changing their price info is not a hassle.

5

12 ST-M-11 I want to enable and disable items from my menu, so that I can
perform temporary alterations to my menu.

2

Abdul

24 ST-V-2 I want to learn about GravyXpress and the service it provides. 1

25 ST-V-1 I want to view an attractive web page that looks professional and

draws me in.

7

26 ST-Ch-4 I want to modify existing items on the menu, changing their name

or altering their details if necessary, so that I can always change or

improve each item on the menu.

4

27 ST-Ch-2 I want to add and delete new items to and from the menu, so that I

can offer variety to my customers.

5

29 ST-Ch-5 I want to disable and enable items on the menu, so that they can be

temporarily available or unavailable to customers (as needed).

3

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

48

Amizan

4 ST-M-5 I want to create new user accounts for my employees, so that

they may perform their relevant duties through GravyXpress.

5

21 ST-M-6 I want to alter an employee’s permissions, so that they only retain

access to the services on GravyXpress that concern them.

2

3 ST-M-4 I want to add and remove tables to my restaurant, specifying the
number of seats they have, so that customers are only offered
tables with enough seats for their party.

3

11 ST-W-1 Once I am logged in, I want to see only information pertaining to
the customers I am assigned to, so that I don’t serve other waiter’s
customers inadvertantly.

1

16 ST-W-2 In my own profile, I want to be able to view which tables (by table
number) I am assigned to, so I know exactly which customers to
serve.

2

Shivani

6 ST-C-1 I want to order food quickly and efficiently through a web page,
so that I can order without the help of a waiter.

8

9 ST-C-5a I want to be able to view the cheque, so that I can be aware of

the amount of money I am spending.

5

14 ST-C-4 I want to be able to signal a waiter while seated at a table, so that
I don’t need to wave my hands about flailing for attention.

1

15 ST-C-12 I want to be able to cancel or change selected orders if they haven’t
been sent to the kitchen, so I can continue changing my mind until
the kitchen has begun preparing.

3

30 ST-W-6 I want to be able to modify a table’s orders, so the restaurant
customers can tell me to order for them if they want.

5

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

49

Rohit

28 ST-W-11 I want to seat a customer at an available table, so that the system

can keep an updated account of the status of the tables in the

restaurant.

2

7 ST-K-1 I want to fetch the orders from the customers, which are stored in

the order queue, and add them to the kitchen queue, so that I am

always aware of all of the items I am currently cooking.

5

8 ST-K-3 I want to mark an order item as ready and see it removed
automatically from the kitchen queue, so that my list of tasks
remains uncluttered.

5

13 ST-K-6 I want to see how many orders await in the order queue waiting
to be fetched, so that I know how busy the restaurant is and pace
myself accordingly.

2

17 ST-K-5 I want the system to send a signal to the waiter once an order has
been marked ready, so that customers receive their food in a timely
fashion.

4

Nabil

10 ST-W-4 I want to be able to see what items my assigned table(s) are

ordering, so I can bring the correct orders to the table.

4

18 ST-W-5 I want to see any customer-help signals, so I can attend to them

without delay.

1

19 ST-W-7 I want to be able to simply view my assigned table’s check, so I

know what they ordered and how much they owe.

3

22 ST-W-9 After cleaning the tables, I want to be able to change the status of

my tables to ready so the system knows the customer has left.

4

23 ST-W-10 After a customer has left, I want to see that my table responsibility

has been deleted in my profile, so I don’t get confused about which

table to serve next.

4

14:332:452:01 Software Engineering, Spring 2013 Rutgers University

Course Project

50

8. References

1 The Software Enginnering textbook by Ivan Marsic. Link at:

http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

2 Microsoft Visual Paradigm for UML 10.1 Community Edition downloadable at

http://www.visual-paradigm.com/download/vpuml.jsp

3 Group 2’s project from Spring 2012 as a reference to see how interaction diagrams are created:

http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g2-report3.pdf

4 Group 11’s project from Spring 2012 as a reference for Parts 2 and 3:

http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-report3.pdf

5 A Youtube video about how to draw sequence diagrams:

http://www.youtube.com/watch?v=18_kVlQMavE

6 A tutorial on using Visual Paradigm for database design: http://knowhow.visual-

paradigm.com/database-design/design-database-with-schema/

7 Microsoft’s Website on SQL servers:

http://msdn.microsoft.com/en-us/library/ms143506.aspx

8 Microsoft’s Website on screen and resolution settings:

http://windows.microsoft.com/en-us/windows-vista/getting-the-best-display-on-your-monitor

