
1

Auto-Serve

Restaurant Automation

Getting Served! Now Automatic.

Group 1

All members contributed equally.

Prem Patel

Sai Kotikalapudi

John Bartos

Scott Xu

David Shen

Joshua Devasagayaraj

2

Table of Contents

1. Customer Statement of Requirements ... 5

1.1 Problem ... 5

1.1.1 Keeping Inventory and Determining When to Restock ... 5

1.1.2 Keeping Diners Informed About Their Wait Time .. 6

1.1.3 How to Cook and Deliver Menu Items that Customers Order .. 6

1.1.4 Tracking Menu Item Popularity and The Menu Item Rating System 6

1.1.5 Things to Note before Reading .. 7

1.2 Glossary of Terms ... 8

1.2.1 Technical Terms .. 8

1.2.2 Non-Technical Terms .. 8

2. System Requirements .. 9

2.1 Proposed Solution ... 9

2.1.1 Inventory System .. 9

2.1.2 Inventory Usage Prediction .. 11

2.1.3 Inventory Alerts ... 12

2.1.4 Food Popularity ... 13

2.1.5 Chef’s Interface and Menu Item Queuing ... 15

2.1.6 Shared Ingredient Display ... 19

2.1.7 Queuing of Orders for Waiters .. 20

2.1.8 Deployment of The System .. 23

2.2 Enumerated Functional Requirements ... 24

2.3 Enumerated Non-Functional Requirements .. 26

2.4 On-Screen Appearance Requirements ... 26

2.5 User Interface Mock-Up for On Screen Requirements .. 27

2.6. User Effort Estimation .. 37

2.6.1 Scenario 1: Customer Wishes to Place Order .. 37

2.6.2 Scenario 2: Chef Selecting Dish to Prepare .. 38

2.6.3 Scenario 3: Waiter selects order or menu item to deliver ... 38

2.6.4 Scenario 4: Manager wishes to manually add inventory item ... 38

3. Functional Requirements Specification .. 39

3.1 Stakeholders... 39

3

End Users: ... 39

Restaurant Employees ... 39

Customers .. 39

Manager ... 39

The Software Team ... 39

3.2 Actors and Goals: ... 40

Initiating Actors .. 40

Manager ... 40

Chef .. 40

Waiter .. 40

Customer .. 40

Participating Actors .. 40

Timer .. 40

Database... 40

3.3 Use Cases ... 41

3.3.1 Casual Description .. 41

3.3.2 Use Case Diagrams .. 44

3.3.3 Traceability Matrix .. 45

3.3.4 Fully Dressed Description and System Sequence Diagrams:.. 48

Use Case UC - 1: ManageInventory .. 48

Sequence Diagram: .. 51

Use Case UC - 8: MangeMenu ... 52

Sequence Diagram: .. 54

Use Case UC - 14: MangeOrders ... 54

Sequence Diagram: .. 56

Use Case UC - 18: PlaceOrder .. 56

Sequence Diagram: .. 58

Use Case UC - 21: ViewWaitTime .. 58

Sequence Diagram: .. 60

4. Domain Analysis .. 61

4.1.1 Concept Definition ... 61

4.1.2 Attribute definitions ... 62

4

4.1.3 Association definitions .. 64

4.1.4 Traceability Matrix .. 66

4.2 System Operation Contracts .. 68

4.2.1 Use Case UC - 1: ManageInventory .. 68

4.2.2 Use Case UC - 8: MangeMenu .. 68

4.2.3 Use Case UC - 14: MangeOrders .. 68

5. Mathematical Model .. 69

5.1 Scheduling Algorithm for Chefs ... 69

5.2 Inventory usage rate estimation and run-out date estimation .. 70

5.3 Wait time estimation .. 71

5.4 Queueing of table orders for waiters ... 71

6. Project Management - Projected Work Flow ... 74

References .. 75

5

1. Customer Statement of Requirements

Many restaurants today still use the same basic methods from years ago to handle orders

from customers. Often times this leads to complicated coordination of activities between

chefs and waiters. This also means that other tedious tasks, such as inventory checks, fall to

the managers to perform. This project seeks to introduce automation in privately-owned

restaurants to alleviate some of the problems associated with current restaurant

management practices.

1.1 Problem

After researching current restaurant practices and work from previous groups, we narrowed

our focus to these problems:

1.1.1 Keeping Inventory and Determining When to Restock

Managers have the incredibly tedious role of keeping inventory and deciding whether or

not to order more supplies for the restaurant. A survey taken by a previous group who

interviewed the manager at a Buffalo Wild Wings says,

“[The manager] hates the fact that he has to go in and manually check each ingredient and

see what you need more of for the next shipment by paper and hand.” - Group 2, 2011

It was evident that the burden of the accounting work fell on the manager. We know that

this burden could be partially reduced, if not completely eliminated, through automation.

Furthermore, after accounting for the current inventory, the manager must decide whether

to restock or not. This decision requires the manager to estimate how long the restaurant’s

remaining supplies will last. This estimation requires knowledge of past usage rates and

other information about the restaurant’s past performance, and is not a trivial calculation; it

has to take into account past usage rates and predict factors which will affect future usage,

such as seasonal changes in demand and upcoming holidays.

Lastly, managers would need to know if their inventory was getting too low. If it falls below

a certain threshold and they do not catch it, it would lead to costly results for the

restaurants. At the very least, it would lead to a loss in profits and poorer customer ratings.

Software assistance could alleviate many of the above issues and boost restaurant efficiency

by handling the inventory system autonomously, with minimal user input after the system is

fully operational.

6

1.1.2 Keeping Diners Informed About Their Wait Time

One common thing that we noticed was that customers rarely know how long their food will

take to finish. This was evident from our personal experience: waiters can give rough

estimates based on what they know about the kitchen’s current state, but at best those are

still rough guesses.

Common consequences of being left in the dark are feelings of boredom or uncertainty,

leading to the customer thinking, “is there time to step outside for a cigarette, or to the

bathroom? Should I order an appetizer to make the wait more bearable?” Customers

become upset when their food arrives later than expected since they could have ordered

appetizers to soothe their hunger.

Another potential problem is the delay between individual dishes being finished in the

kitchen and then being sent to a table. What if one dish takes much longer than the rest? If

a diner wants his food as soon as possible -- that is, without waiting for the table’s other

orders -- he should be informed of when it’s finished as well as given the ability to request

its early delivery.

1.1.3 How to Cook and Deliver Menu Items that Customers Order

Currently, many restaurants have chefs cook orders on a first come first serve basis. Many

members of our group have seen the classic pen and paper method of organizing incoming

orders at restaurants they have gone to.

Typically, the waiter takes an order and hangs the description of the order at the chef

counter, where the chefs take and prepare orders one by one. After cooking, the food is

placed in a “ready area” with the order description.

Waiters additionally have the job of searching for their respective orders and checking that

all the food is ready; with no system to directly notify waiters, this forces them to

periodically return to the kitchen for essentially no reason.

After looking at this process, we knew there was a lot of room for improvement. The overall

efficiency of the restaurant and consequently customer satisfaction can be improved.

1.1.4 Tracking Menu Item Popularity and The Menu Item Rating System

Restaurant managers can sometimes have a difficult time determining what menu items are

popular and what items are infrequently ordered. Customers too want to know what dishes

are the best and what dishes to avoid. For most small restaurants, advertising is achieved

through word of mouth. New customers of the restaurant usually hear reviews from their

peers. Their peers usually recommend the restaurant because of a certain menu item that

7

they liked or because the service provided by the restaurant is excellent. This influences

what choices the customers have.

When designing or updating the menu, restaurant managers have the difficult dilemma of

adding great new dishes and removing stale, unpopular old dishes. By making customer

satisfaction information available in the form of popularity and ratings numbers, the

manager has a source of hard data and a unified view of the customer preferences to base

his decisions off of.

A list of menu items sorted by popularity and/or rating would serve everyone well: instead

of asking waiters (who have a smaller role in our automated restaurant) for

recommendations, customers can view the popular dish list directly. Instead of trying to

guess what dishes are most and least popular, managers can view this information directly

and easily and make better informed decisions.

1.1.5 Things to Note before Reading

When developing our solutions to these problems, we came across a few issues.

1.1.5.1 Menu Items vs. Dishes

When deciding the names of menu items that customers order, we were debating between

calling them “menu items” or “dishes”. In the customer’s point of view, they can be seen as

menu items. However, in the chef’s point of view, they can be seen as dishes.

There are times in this document when the terms “menu item” and “dish” are both used

interchangeably. Both terms refer to the same concept; in most places, “menu item” will be

used, but in cases where “dish” is more appropriate it is used instead.

1.1.5.2 Table Order vs. Table

When we designed the queue for waiters who had to deliver dishes back to the customers,

we initially decided to represent the table as a “table” that represented the people who

ordered many items from the same table. We realized that this was a poor decision since

tables might order again. Therefore, for clarity, we changed the naming convention from

tables to table orders (or just order) where the table order just represents the composite

order for all people at the table. To represent the actual table that the customers are seated

at, we just use a table ID number since the actual table need not be a concept, just an

attribute.

8

1.2 Glossary of Terms

Many of the terms you see here can be understood as you read the report. They are also

listed here for clarity and formality.

1.2.1 Technical Terms

Order Queue - The queue of menu items, ordered by customers that are ready to be

cooked by the chefs.

Ready Queue - The queue of menu items that are ready to be delivered to the customers.

Order - A concept that represents the list of items that the customer ordered.

Table - concept that represents the physical table that customers are seated at.

Table Order - concept that represents the actual composite order of all the customers

seated at a certain table.

Inventory System - an electronic book keeping of the current inventory in the restaurant.

This includes its raw ingredients, current menu items, etc.

Scheduling Policy - a predefined set of rules to determine where in the queue or line the

next item should go.

1.2.2 Non-Technical Terms

Chef - Cooks all the food in the restaurant.

Manager - Manages the inventory, orders more supplies, and deals with overall

management and finances of the restaurant.

Waiter - Handles delivering food and

Customer - the person who the service provided by the restaurant is being given too.

Ingredient - A food that is used to create a menu item. e.g lettuce, carrots, etc.

Menu Item - The food that that is listed on the menu given to customers to choose from.

e.g various burgers, pasta, etc.

9

Dish - Equivalent to the menu item, but used when describing queuing related to chefs and

waiters for simplicity and is more appropriate.

2. System Requirements

2.1 Proposed Solution

Our solution focuses on the problems we highlighted in the first section. We have left out

trivial elements of the system such as login, ordering items, indicating dirty tables, etc.

These items were already done by previous groups and their reports are applicable. We

have focused on our core ideas that make our product genuine and worthwhile.

2.1.1 Inventory System

To combat the problems involved with keeping inventory and determining when to restock,

we set out to design a system that takes as much of the burden as possible off of the

manager.

With our smart inventory system and prediction algorithms, we can effectively reduce the

amount of times the manager has to physically check to stockroom for ingredients and

partially automate the restocking process.

To implement this inventory system, we chose to use a database. MYSQL seemed the most

cost effective choice since it is the most popular and freely available. Since it is a medium

sized restaurant, it will suit our needs. Not only can the database hold information about

individual ingredients, but we can create tables in the database to reference these

ingredients so that we can store menu items to represent containers.

In database terminology, a table represents a matrix of r rows and columns that is serialized

and stored as data depending on the type of database.

10

In the database, our table for raw ingredients can be visualized like this:

Figure 1: This is Ingredient table as represented in the database.

Ingredient ID represents the identification of the ingredient inside the table to relative to

the other ingredients. Name is the name of the ingredient. Amount Type is the type of

quantity that the ingredient is measured in. Minimum Threshold is the manager specified

minimum amount of this items that should be in the inventory. Estimated Shelf Life is the

estimated shelf life of the ingredient or the amount of time that the ingredient can be

stored before it goes bad.

When the manager issues an order for raw ingredients to the supplier, this table can be

automatically updated when the order is verified by the manager. As long as the supplier is

a trustworthy source, the inventory will be correctly updated without manager intervention.

Furthermore, a table for menu items will hold all the menu items available to the customer.

Figure 2: This is the Menu Item table as represented in the database.

To store mapping between menu items and ingredients, we create an additional table called

“Contains” to store the one-to-many relationship that menu items have with ingredients.

11

Figure 3: This is Contains table as represented in the database.

When chefs cook menu items from the menu, the inventory system can be automatically

updated to show the remaining inventory after cooking each dish. Of course, when making

each dish, there is going to be some error in measuring by the chefs and the total amount

of inventory usage will have a small percent error. We discuss this issue later.

Since the system is aware of each menu item in the menu, the amount of times the menu

item is ordered, and the contents of each menu item, the system can keep a real-time

measure of the amount of ingredients in the inventory.

Having the system keep track of inventory leads to a plethora of features that we elaborate

on later on such as future predictions of inventory requirements and knowing how much of

an item we can produce.

One thing we must not forget is that the manager will always have access to the inventory

system in the event that he must manually change the stock.

2.1.2 Inventory Usage Prediction

To streamline the management process, our system has the ability to predict ingredient

usage rates. This feature solves the issue of the manager having to use historical data about

the restaurant in his decision of whether to restock.
This is a data mining problem in which we take usage data over a lengthy period of time

and develop predictions of how much inventory will be used and how much should be

ordered based on the season, holidays, weekday, etc.

12

As we lack experience in this area, we decided to start out with a relatively simple approach

to the problem. At the suggestion of our advisor, we also investigated more complex

autoregressive, moving-average, and autoregressive-moving-average or ARMA models, but

without the proper background in signal processing and statistics we found these models

too difficult to implement.

 A detailed description of our algorithm is included further in this document, under

“Mathematical Models”.

2.1.3 Inventory Alerts

Another feature of the inventory system that introduces novelty are alerts. This feature

alleviates the issue involved with managers having to determine when inventory falls below

a certain threshold.

Alerts are triggered when inventory of items fall below certain limits. These limits though

obvious it may seem, are not just the bare minimum to cook a menu item but rather is

threshold set by the manager. Again when group 2 in 2011 interview Buffalo Wild Wings

and asked the manager how often he restocks, he said,

“Every Wednesday and Saturday regardless of demand. Always have a surplus.”

After reading this, we found it appropriate to improve this procedure and not only to

automatically determine when it is best to restock, but also send the appropriate demand to

the supplier himself (with manager approval, of course).

Our design of the alert system follows:

 We use the predictive ingredient usage model to estimate when an ingredient falls

below its critical stock threshold. The manager can set these thresholds based on demand

and perishability, but in general it should be no less than 10% of the usage in the time

period between restocks or the amount of the restocking order.

 By recursively applying the equation we can estimate ingredient usage for an

arbitrary day. First we calculate usage for day n+1 and subtract it from our current stock

level. If it is below the threshold, we send the alert. If it is not, we apply the formula for day

n+2 using our estimate for day n+1 as an input; if the total usage on day n+1 and n+2

cause stock levels to fall below the critical threshold, we send the alert. If not, we iterate

once more; this process continues until it reaches the day when the stock falls beyond the

threshold.

13

 In the final system, we will most likely estimate usage extremely conservatively to

prevent any item from going out of stock. With time, the restaurant manager can manually

update/lower the thresholds and other parameters.

Customer Wait Time Estimation

Our system will estimate the wait time for a table order using the existing menu item queue

that exists in the kitchen terminal. Each dish in the queue is associated with a table; by

checking each dish for a given table, we can determine the expected finish time of the last

dish and use it to determine the total wait time for the table. For tables which request dishes

be delivered as they are finished, we will display the estimated wait for each dish instead of

for the entire table.

The detailed algorithm is written in the mathematical model.

2.1.4 Food Popularity

To solve the problem of determining what items are popular on the menu and what items

are not, we have designed a new way so that both the manager and the customer will be

able to know what the “hot items” on the menu are.

Since, we are using an inventory system; the task of providing popular items to the manager

becomes trivial. By knowing which menu items customer’s order, and the number that are

ordered every day, the manager can be provided a clear cut overview of the most popular

items in the current day, week, month, season, etc.

To determine food popularity we need keep track of what items are being bought every

day. As we are using a database, we can add another table to keep track of this.

14

Figure 4: This is Purchased table as represented in the database.

This “Purchased” Table will be updated with the date of every order that is purchased. This

way, it is simple to find the amount of times a menu item is ordered within a certain time

frame.

For instance, if we want to find the most popular items last week. We just need to tabulate

the number of times each item was purchased during that week.

Since this is just a simple search and count procedure, it is not needed to be described, and

therefore not needed to be shown in the mathematical model.

Similarly, the system can also provide popular items to customers; however some customers

may not trust statistics that the restaurant generates. The customer may think that the

restaurant may be trying to sell more of one menu item over another.

Therefore, we designed a rating system so that customers can rate various menu items that

they have eaten and write their own comments about items. Similar to Amazon.com’s rating

system, the rating system is designed so that customers can “like” other customers’ review

and rating so that these higher quality reviews will be higher up in the list of reviews that

the customer may read for each menu item.

Since, the rating system is designed similar to Amazon.com, there is no need to go further

into detail about it.

15

2.1.5 Chef’s Interface and Menu Item Queuing

As we focused on efficiency and time saving in the automation process, one realization was

that chefs can prepare foods faster if they are given similar foods that can be cooked

together or in parallel. One example of this is having a chef cook two burgers and then a

cheesecake rather than have a chef cook a burger, then a cheesecake, and then back to a

burger. This essentially cuts the time by the length of one burger. When the chef gets the

ingredients for one burger, he may also get the ingredients for the other burger and cook

them in parallel.

 Similar to operating system design, this problem becomes similar to that of

scheduling and prioritizing processes, however in this case the processes are menu items to

be cooked, and our cpu is the chef.

Keeping this in mind, we designed an optimal scheduling algorithm based on a priority

queue where the new menu item will be given a priority based on what's currently cooking,

and what's currently on the queue. Of course, menu items cannot be preempted because no

chef would stop halfway in making a menu item as that would be wasteful and sometimes

ruin the menu item in certain cases. Thus we focused on non-preemptive scheduling of

menu items.

Our solution to the problem can be visualized as follows:

 Each menu item on the queue for chefs can be modeled as a compound data

structure. There are many parts to the menu item structure but I will only lay out the parts

that pertain to the chef’s queue.

Figure 5: These are the attributes of the Menu Item that pertain to queuing.

Here we focus on three properties of the menu item,

16

Average time to complete: The average total time that the chef takes to cook the menu

item in questions, this time must be calculated based on real data that the restaurant takes

when operating under normal conditions. In our system, we assume that this data is

available for us.

Menu item Type: The category of menu item that the menu item falls under.

Freshness Time: This is the time that the dish can be kept warm and still retain its

freshness

Table Order: This is a reference to the table order that this menu item belongs to. The

table order is described in detail in the section involving queuing with waiters. A table order

of zero means that the item does not belong to a table order. This is used later on in

queuing for waiters.

Here is the basic scenario of when a burger will move up the queue.

Figure 6: The guacamole burgers get queued with the A.1 peppercorn burger.

 In this situation, since the guacamole burger is a burger, it can be queued together

with the peppercorn burger, allowing the chef to make these burgers in parallel and

essentially cutting the total turnaround time by the time to complete of the Guacamole

Burger. One restriction to this is that the Guacamole Burger is only queued together

because it average time to complete is less than the average time to complete of the

17

Peppercorn Burger. If the Guacamole Burger had an average time to complete greater than

that of the Peppercorn Burger, it would not be queued since that would add time additional

time to the queue that would increase the wait time of the pasta. This is not desirable since

that would increase the wait time of a customer that ordered the pasta caused by someone

who ordered after him. This “customer-first” approach is the key among restaurants and it’s

maintained in this queuing policy.

Figure 7: The Cheeseburger is being queued ahead of the Bacon Burger because it has a

lower average time to complete.

In this situation, we have multiple burgers that already on the queue and we are adding

another burger. In this case, we can find the first burger that has an average time that is

greater than the cheeseburger's average time to complete. Thus, we when we are

scheduling the Cheeseburger, there is more room for other burgers to be scheduled in the

future.
 In the previous two scenarios we have neglected the fact of what table the burgers

are being ordered from. Suppose we have a group of people that are ordering from the

same table. In our current scheduling policy, some members of the group will have food

that will be cooked far ahead of others in the table. Therefore, some of the food will not be

as fresh as others. Even if the food is still kept warm, certain foods rely on freshness for their

taste and consequently customer satisfaction.

18

 Therefore, we added a certain freshness factor to the policy whereby dishes cannot

be put ahead of other dishes from the same table by this freshness time. Thus dishes

cannot be queued earlier than the freshness time away from the rest of the table order.

Here’s is an example of when freshness time comes into play:

Figure 8: The long lasting burger is being queued with the Bacon burger and not the

peppercorn burger because of freshness time constraints.

The first thing you may notice is that “Table Order” is another property of the menu item.

The table order will be described in a later section, but this attribute is just a reference to

the table order that contains this menu item when it was ordered.

What happens in this situation is that the long lasting burger cannot be queued with the

peppercorn burger because the time that it would stay out would be larger than its

freshness time. Therefore it will be queued with the next best item, which is queuing with

the Bacon burger.

The formal algorithm is described in the mathematical model.

19

2.1.6 Shared Ingredient Display

The chef’s interface will show the menu item queue. To further increase the efficiency of the

kitchen, our system will determine the total ingredient usage of each ingredient for all menu

items currently residing in the queue. By displaying this data directly to the chef and sous-

chefs, it will be possible for the kitchen to prepare ingredients and therefore dishes more

quickly.

Figure 9: The Chef will be able to see a list of all the ingredients needed for the the current

dishes in the order queue.

Originally, we intended to show which ingredients were needed for every dish in the queue;

however, doing this quickly caused an unacceptable amount of UI clutter. The current

design only displays these relationships for the dish that is up next to be cooked. This allows

the chef to quickly understand what ingredients must be retrieved immediately, while the

aggregate ingredient usage list shows what ingredients will be needed in the medium and

long term. This enables the chef and kitchen staff to have a clear view of what must be done

now and what can be done later.

20

2.1.7 Queuing of Orders for Waiters

 Similar in design to the chef’s menu item queue, this queue represents finished menu

items grouped by table and ready to be delivered to the diner. However, the items of this

queue are table orders instead of menu items; whenever an entire table order becomes

finished in the kitchen, that table’s order is placed on the table queue. The waiter checks this

queue from the floor terminal and delivers the menu items in a first come first serve

manner. However, most restaurants won’t deliver items to tables if all the items in the table

is ready. We decided to provide the option to the customer whether to wait out till all the

items are ready, or just deliver them on a first come first serve basis.

Therefore, we designed the queuing for table order as two queues. One is the wait queue

and one is the ready queue. The ready queue will hold either tables that are ready, when the

customer chooses to deliver items when all of them are ready, or menu items that are ready

to be delivered to tables where the customer chooses to deliver items on a first come first

serve basis. The wait queue is a structure of tables and each table will hold the menu items

that belong to that table.

Each table structure can be seen as this:

Figure 10: The Table Order structure and its properties that are used in queuing for

waiters.

TotalNumMenuItems: The total number of menu items associated with this order..

CurrentNumReady: The category of menu item that the menu item falls under.

Table: This represents the table that the order is coming from. It will just be a number in

our case.

21

Menu Items List: This is the list of menu items that belong to this order.

If the customer chooses to deliver items by table, then a table structure is created when he

orders as a group. For each menu item that he creates, he adds a reference to it in the Menu

Items List. The total number of menu items and the current number that are ready are also

set so that one can determine when the table is ready. Table represents

Our Wait queue can then be described as a list of tables as such:

Figure 11: An example of the wait list and an expansion of the menu items list for Table

Order 4.

When the customer creates an order, if he selects for the order to be grouped for the table,

a table structure will be created and references to the menu Items will be stored in the

Menu Item List. Then, when items are done cooking, and are ready to be delivered, they go

through each table if the wait list, and if they find themselves in one of the Menu Item lists,

then they add the one to the current number ready attribute. When the current number

22

ready is equal to the total number of menu Items, then the table can be queued to the

ready queue.

Now the ready queue can contain either tables or individual menu items, again depending

on whether the customer chooses to hold out for the group or deliver the item on a first

come first serve basis.

The ready queue can be described as follows:

Figure 12: The ready queue is based on a first come first serve basis where whatever is

added into the queue will get delivered to the appropriate customers. It consists of both

Table orders and individual menu items.

The ready queue has a simple scheduling policy, its a first come first serve basis. We can see

that it consists of both table structures and individual menu items. This way, depending on

whether the customer decided to wait for the group or get his food as soon as its ready, it

will be queued accordingly. A table order of zero represents that the menu item does not

belong to a table order.

23

2.1.8 Deployment of The System

After designing our solutions to the problems, we were left with the decision of determining

how to deploy it in a restaurant environment. The main focus of our deployment was put

into making the system simple, high scalability, easy to setup and cost efficiency.

When thinking about how to deploy the system, We noticed that today’s restaurant systems

are deployed using specific machinery. These machinery are usually built by companies that

contributed to the construction of the restaurant. Therefore, they are meant to be static and

last the lifetime of the restaurant and consequently they are quite expensive and are rarely

expandable.

When we designed our system, we tried to improve on these aspects. We targets a platform

for the system that is both cost efficient and easily expandable, namely the android

operating system.

Our system will run on numerous android tablets. The manager will have a single tablet that

will act as his console. The chefs will have a number of tablets depending on the number of

chefs that are at the restaurant. These tablets may be mounted to station so that the chefs

may cook and handle the tablet easier. The same goes for the waiters. There will be a tablet

at every table so that the customer can interact with the system.

Since Android tablets have become well integrated with society and many people know how

to use them well. Therefore, having them instead of built in consoles are incredibly better

for a number of reasons.

First, having a tablet system will allow us easily scale the system to fit the needs of the

restaurant. A larger restaurant will just need to purchase more tablets than a restaurant of

smaller size.
Second, the system is very cost efficient. Android tablets are relatively very cheaper than the

custom equipment created to hold the system . Custom equipment like the consoles

currently in restaurants.

Third, the system is highly expandable. When the system is deployed on android tablets.

Providing updates to the system becomes simple. For every update that is created for the

system, it can be pushed to the tablets.

24

2.2 Enumerated Functional Requirements

We felt it was best to use requirements over user stories since some of our ideas were

strictly system based. For instance, it was difficult to describe any queuing policy through a

user story since the actual scheduling wasn’t trigger.

Identifier Requirement PW

REQ - 1 The system shall store a database of ingredients and the following

information for each ingredient:

 Name

 Menu items it is used in

 Current stock level

 Estimated shelf life 5

REQ - 2 The system shall store information on the raw ingredients of the menu

items such as the estimated shelf life, and the menu items that the

ingredient is used in. 3

REQ - 3 The system shall store the following information for each menu item:

 Ingredients required

 Amount of each ingredient

 “Freshness” value representing the maximum time this dish should

be allowed to wait after being prepared (used in dish queue

scheduling) 3

REQ - 4 The system shall predict the usage rate of each ingredient and predict the

day that the ingredient is expected to fall below a predefined restocking

threshold using historical information gathered from the restaurant. 4

REQ - 5 The system shall alert the manager when an ingredient’s stock level falls

below a certain threshold. 2

REQ - 6 When an ingredient’s stock level falls below its restock threshold, the

system shall prepare a restock order and send it to the manager for

verification. When it is verified, the system places the order. 3

REQ - 7 The system shall predict inventory usage for the next seven days using

the previous seven days and show it to the manager. 2

REQ - 8 The system shall provide a prediction to the manager when the

restaurant will run out of food or fall below a certain threshold in the

future. 5

25

REQ - 9 The system shall give the customer a choice of delivering menu items all

at once (by default) or deliver each item to the table on a first come first

serve basis. 3

REQ - 10 The system shall queue menu items of the same type together so that

chefs can cook them in parallel. However, if the customer wants items to

be delivered as a table, then items cannot be queued too far ahead of the

rest of the table to maintain freshness. The system shall maintain a log of

each table order that was placed/edited 5

REQ - 11 The system shall show the sous chefs shared ingredients between menu

items on the chef’s queue so that the sous chef can prepare ingredients

beforehand for upcoming menu items. 2

REQ - 12 The system shall predict the wait time for menu items that are on the

menu and display that information to the customer. 5

REQ - 13 The system shall queue orders on a first come first serve basis for waiters

based on table, if the customer chooses for orders to be delivered when

all orders belonging to the table are ready or individually if he chooses to

deliver orders as soon as they are ready. 5

REQ - 14 The system shall rank dishes by rating and popularity and display lists of

the most popular and highest rated dishes on the menu. 3

REQ - 15 The system shall use a menu system to keep a list of all the menu items

offered at the restaurant. 5

REQ - 16 The system shall allow the manager to manage the menu items on the

menu.

3

REQ - 17 The system shall allow the information of the menu item to be viewed by

the customer. 5

REQ - 18 The system shall allow the manager to add, remove, update, and disable

menu items on the menu. The system shall also keep a log of the

information that is edited on the database. 4

26

2.3 Enumerated Non-Functional Requirements

One thing to note is that we do not have any non-functional requirements. The reason for

this is that our report details only our ideas rather than a complete system that incorporates

requirements that may have been done by another group or trivial requirements such as

login, register, display, etc. Since our ideas were completely functional, there were no

requirements that were nonfunctional.

2.4 On-Screen Appearance Requirements

Identifier Requirement PW

REQ - 19 The system shall display the menu and make the menu items selectable

to view to the users.

5

REQ - 20 The system shall display the average wait time for orders to customer

next to the menu items.

3

REQ - 21 The system shall display all the ingredients in the inventory so that the

manager can view them.

2

REQ - 22 The system shall display the ready queue which is list of tables or

individual menu items from which users (usually waiters) can select the

next item to deliver to the table.

3

REQ - 23 The system shall display the order queue to the chef as well as options to

select which dish will be prepared. If the dish is unable to be prepared the

chef will have the option to disable the menu item.

4

REQ - 24 The system shall be able to be able to display an option to the customer

allowing him to choose between delivering items on a first come first

serve basis or holding out until the table’s items are ready.

1

REQ - 25 The system shall display the inventory usage for the next seven days to

the manager.

5

REQ - 26 The system shall be able to show a notification to the manager when it

needs to alert the manager in the form of a pop up notification and

email.

5

REQ - 27 The system shall be able to create a request to the supplier in the form

that the supplier specifies.

3

27

REQ - 28 The system shall be able to send notification to the proper interface. 4

2.5 User Interface Mock-Up for On Screen
Requirements

Figure 13: The chef will be able to select the dish of the order queue by touching on the

button which indicates the dish has been selected to be prepared. Notice that the first

item is actually two items that were queued together.

28

Figure 14: The chef will be able to disable the menu item on the menu if the dish is not

able to be prepared by taping on which items he wants to disable (he can disable more

than one at a time) and then tapping the disable menu item button.

29

Figure 15: The chef can select which dishes are done being prepared by tapping on the

dish and selecting the Dish Done. This will notify the waiter that the dish is ready to be

delivered.

30

Figure 16: The manager will be able to view a list of the inventory item. The manager will

also be able to add, remove, or edit the inventory item.

31

Figure 17: The manager will be able to add and edit inventory items by typing the

inventory item name, quantity, etc.

32

Figure 18: The manager will be able to view a list of popular menu items in the restaurant

according to any time reference.

33

Figure 19: The manager will be able to view a list of all the automated alerts sent by the

automated inventory system. The manager will also be alerted in the form of a pop up

notification on any screen.

34

Figure 20: The manager will be able to view the alerts and can approve, deny, or edit the

request to restock.

35

Figure 21: The customer will be able to select the menu item and edit the ingredients

within it and be able to place the order. The customer will also be able to request

assistance of the waiter if needed.

36

Figure 22: The customer will be able to view the menu item that were ordered along with

the price and the total cost so far. The customer will also be able to rate the food, pay the

bill, and request assistance by tapping on the appropriate button.

37

Figure 23: The waiter will be able to see which table requires assistance as well as the

dishes that are in the ready queue.

2.6. User Effort Estimation

2.6.1 Scenario 1: Customer Wishes to Place Order

1. Navigation: Selects the Menu Item (2 Taps)

A. Customer selects menu item with finger by tapping on it.
B. After completing the Data Entry as shown below Click Place Order

2. Data Entry: Selects which Ingredients are wanted on the Menu Item (2 or more

Tap)
A. Tap the ingredients that you wish to adjust.
B. Enter amount or yes/no to adjust number or remove ingredient (max 3

taps)

38

C. Tap additional ingredients to add and then tap the add button.

2.6.2 Scenario 2: Chef Selecting Dish to Prepare

1. Navigation: Selects the Dish from the order queue to prepare (4 Taps)
A. Chef taps on the dish that will be prepared and starts preparing it.
B. After the dish is done being prepared the chef switches to “Active” Tab.
C. Chef taps on the dish that is prepared and then Dish Done to notify

waiter.

2.6.3 Scenario 3: Waiter selects order or menu item to deliver

1. Navigation: Selects the next order or menu item on ready queue(1 Tap)
A. Waiter taps on the menu item and goes to kitchen to pick it up.
B. Waiter picks up prepared menu item and delivers it to the appropriate

table.

2.6.4 Scenario 4: Manager wishes to manually add inventory item

1. Navigation: Selects to Add inventory item in the inventory.
A. Manager taps on the inventory tab.
B. Manager Selects “Add Inventory Item”

2. Data Entry: Enters appropriate information in the fill in boxes.
A. Manager enters the Inventory Item Name.
B. Manager enters the Quantity.
C. Manager enters minimum level (Threshold).
D. Manager enters estimated shelf life (Expiration).
E. Manager enters Amount Type.

39

3. Functional Requirements
Specification

3.1 Stakeholders

End Users:

Restaurant Employees

 These are the end users who hold the major interest in the system, as they expect to use it

to simplify their life and improving the time efficiency of the restaurant.

Customers

The end user, who will also be using the system and have some interest in the system as it

could possibly lessen their wait time and the need for constant interaction for the waiter.

Manager

The manager is essentially the administrator of the system and like the restaurant

employees has a major stake in the success of the system as he is able to make his

restaurant more efficient and easier to manage.

The Software Team

The software team is the group responsible for the design, implementation and

manufacturing of the software and hold the highest interest in the success of the system. In

this case, our group is the software team.

40

3.2 Actors and Goals:

Initiating Actors

Manager

The restaurant owner who is responsible for managing the system.

Chef

The chef is the one who cooks all the food.

Waiter

The waiter is the one who attends customers.

Customer

The customer of the restaurant who places orders.

Participating Actors

Timer

The timer responsible for keeping track of time (When making logs or billing) or clocking

the time of an order.

Database

The storage system used to hold the data (usually local).

41

3.3 Use Cases

3.3.1 Casual Description

Use

Case

Name Description

UC -

1

ManageInventory Allows the user to manage the inventory. To review more

detail on sub use cases refer to UC - 1, 2, 3/4, 5, 6, 7, 27.

UC -

2

ViewInventoryList Allows the user to view the list of inventoried items along

with the each items estimated amount left. (sub use case

for UC -1)

UC -

3/4

Add/RemoveInventory

Item

Allows the user to add/remove Inventory Item. When

item is being added user also has to add specific

information concerning the added inventory item which

includes, current amount, and quantity measure(what it

is measured in), and the shelf life. The updated

information is stored as a log(see UC- 20). (sub use case

for UC -1)

UC -

5

ViewInventoryNeed Allows the user to view food trend specific for the past 4

weeks and a list of inventoried Items needed for the

coming 7 days. Optional Implementation: system makes

use of RequestRestock(UC -6) to automatically make the

requests to order inventory needed for the next 7 days.

(sub use case for UC -1)

UC -

6

RequestRestock Allows the system to send a notification (see UC - 26) to

the manager to approve a Inventory restock.The updated

information is stored as a log(see UC- 20). (sub use case

for UC -1)

UC -

7

RestockInventory Allows user to either send an order notification for the

inventory item to the specified supplier or update

information on it manually(see UC - 27).(using

sendNotification, reference UC - 26) .A log is created for

the information on the order or action. (using log,

reference UC - 20)(sub use case for UC -1)

42

UC -

8

ManageMenu Allows user to manage the menu items on the menu. To

review more detail on sub use cases refer to UC - 9/10,

11, 12 .

UC -

9/10

Add/RemoveMenuItem Allows the user to Add/Remove menu items on the

menu. When the chef adds the menu item, he is

responsible for adding the information about the menu

item, which includes: Inventory items (need to make the

menu item) along with quantity of each items for the

menu item along with the estimated cook/ready time,

and the freshness time. The updated information is

stored as a log(see UC- 20). (sub use case for UC -8)

UC -

11

UpdateMenuItem Allows the user to update information on menu

items.(reference UC - 9/10 for description on menu item

information) The updated information is stored as a log(

see UC- 20). (sub use case for UC -8)

UC -

12

DisableMenuItem Allows the user to disable menu items that he cannot

cook or is unable to and updates the menu information.

The updated information is stored as a log(see UC- 20).

(sub use case for UC -8)

UC -

13

ViewMenu Allows the user to view menu containing list of menu

items and information on each menu item. (reference UC

- 9/10 for description on menu item information)

UC -

14

ManageOrders Allows the user to manage the Orders that are on the

order queue. To review more detail on sub use cases

refer to UC - 15, 16, 17.

UC -

15

ViewOrderQueue Allows the user to view the order queue so that he may

select an order to cook/make. (sub use case for UC -14)

UC -

16

SelectOrderToCook Allows the user to choose an order from the order queue

that matches his specialty/skills and removes it from the

order queue. The updated information is stored as a log(

see UC- 20). (sub use case for UC -14)

UC -

17

FlagOrderDone Allows the user to flag the menuItem as ready when the

menu item is ready to be served and notifies the

waiter. The updated information is stored as a log(see

UC- 20). (sub use case for UC -14)

43

UC -

18

PlaceOrder Allows the user to place orders on the menu items that

they want to eat. The order information is stored as a

log(see UC- 20).

UC -

19

EditOrder Allows the user to remove an order or edit its

information. The updated information is stored as a log(

see UC- 20).

UC -

20

Log Allows the user/system to log the information of any

changes onto the database along with a timestamp.

UC -

21

ViewWaitTime Allows the user to view the wait time of the menu Items

they have ordered or approximate arrival time for a

selected a menu item.

UC -

22

RequestWaiter Allows the user to request the waiter to tend to his or her

table. This is done using SendNotification(UC-26). This

action is stored as a log(see UC - 20).

UC -

23

RequestCheck Allows user to request the check after they have finished

eating. This is done using SendNotification(UC-26). This

action is stored as a log(see UC - 20).

UC -

24

RateFood Allows user to rate menu items that they have eaten. This

action is stored as a log(see UC - 20).

UC -

25

ViewPopularity Allows the user to view popularity of menu items.

UC -

26

SendNotification Allows the user/system to send either email notification,

with a predefined message body and recipient specific to

the type of email, or a notification to their GUI. This

action is stored as a log(see UC - 20).

UC -

27

EditInventory Allows the user to edit information on inventoried item(

see UC - 3/4 for more information on editable

information). This action is stored as a log(see UC - 20).

(sub use case of UC-1).

44

3.3.2 Use Case Diagrams

45

3.3.3 Traceability Matrix

P

W

U

C

1

U

C

2

U

C

3

U

C

4

U

C

5

U

C

6

U

C

7

U

C

8

U

C

9

U

C

1

0

U

C

1

1

U

C

1

2

U

C

1

3

U

C

1

4

U

C

1

5

U

C

1

6

U

C

1

7

U

C

1

8

U

C

1

9

U

C

2

0

U

C

2

1

U

C

2

2

U

C

2

3

U

C

2

4

U

C

2

5

U

C

2

6

U

C

2

7

REQ -

1 5 X X X X X X

X

REQ -

2 3 X X

REQ -

3 3 X X

REQ -

4 4 X X

REQ -

5 2 X X X

REQ -

6 3 X X X X

REQ -

7 2 X X

REQ -

8 5 X X X X

X

REQ -

9 3 X X X

REQ -

10 5 X X X X

REQ -

11 2 X X

46

REQ -

12 5 X

REQ -

13 5 X X

REQ -

14 3 X X

REQ -

15 5 X

REQ -

16

3

X

X

X

X

REQ -

17 5 X X

REQ -

18 4 X X X X

REQ -

19 5

REQ -

20 3

REQ -

21 2 X X X

REQ -

22 3 X X

REQ -

23 4 X X

REQ -

24 5 X X

REQ -

25 5 X X

REQ -

26 5 X

47

REQ -

27 3

REQ -

28 4 X X X

MAX

PW 5 5 5 5 5 4 5 5 4 4 3 4 5 5 2 5 5 5 5 5 5 4 4 3 5 4

5

TOTAL

PW

3

1

1

5

1

0

1

0

1

2

1

1 8

2

0 7 7 3 4 8

1

4 2 9 8

1

3 8

1

6 5 4 4 3 8 4

1

0

UC 1 > UC 8 > UC 20 > UC 2 > UC 14 > UC 18 > UC 5 > UC 6 > UC 3 = UC 4 = UC 27 > UC 16 > UC 7 = UC 13 = UC 17 = UC

19 > UC = 9 = UC 10 > UC 21 > UC 12 = UC 22 = UC 23 = UC 26 > UC 11 = UC 24 > UC 15

Therefore, we elaborate UC 1, 8, 14, 18(We chose to Ignore UC 2 it is a sub use cases of 1 and will be elaborated in it) as they

have the highest priority as they not only enclose most of the sub - use cases while also involving most of the functionality

presented for the restaurant. These use cases, ManageInventory, ManageMenu and ManageOrders and PlaceOrders, are the

backbone features of our system and so have the highest priority as they take and make up the most significant amount of our

system requirements. Although UC-20 (Log) has a high priority weight, we will not be describing this in our fully-dressed or

considering it of importance as it is a trivial aspect of our system and only aids in keeping track of the ever-changing database.

Also, as this functionality has no influence or interaction with the user, a back-end feature aptly put, but rather a sub use case,

or a system use case to be more descriptive, we do not wish to describe it in detail. However, we chose to focus on UC – 21,

ViewWaitTime, as it represents one of our systems most essential features that we feel not only is an frontal feature, one to

market our product, but also an elaborate use-case that requires description and very involved with the user.

48

3.3.4 Fully Dressed Description and System
Sequence Diagrams:

From now on we will focus on these five use cases and elaborate them since they pertain to

our ideas.

 Use Case UC - 1: ManageInventory

 Use Case UC - 8: ManageMenu

 Use Case UC - 14: ManageOrders

 Use Case UC - 18: PlaceOrder

 Use Case UC - 21: ViewWaitTime

Other use cases may be included as sub-use-cases in these five, or will be elaborated at a

future time.

Use Case UC - 1: ManageInventory

Initiating Actor: Manager, Chef
Actor’s Goal: To manipulate the information on the current inventoried items.
Participating Actor: Database, Timer
Related Requirements: REQ - 1, 25
Sub - Use Cases: UC - 2, 3/4, 5, 6, 7, 27
Precondition: The user is either a chef or manager or someone who has privilege to view

inventory. The database is up and functional. For UC - 6,7, the send notification (UC - 26) is

functioning.
Postcondition: The desired manipulation has been made to the database and a log has

been stored of the action that took place.

Flow of Events:
1. -> User selects the Inventory Management Option
2. <- System shows an interface that displays selectable options which include: View

Inventory, Add/Remove Inventory, View Inventory Need,Request Restock, Restock Inventory
3. User either

a. -> Selects View Inventory (UC - 2)

1. <- System either

 a. displays a list of inventory items from the database and goes to 6
b. is unable to contact database and goes to alt: 4

b. -> Selects Add/Remove Inventory Item (UC - 3/4)

1. <- System displays an option of either add or remove

49

 User either
a. -> Selects Add option (UC - 3)

1. <- System displays a list of information required to be

filled(view UC-3/4 for this list)

2. -> User fills in all the information and selects done after he

completes it.

3. <- System either

a. enters new Inventory Item into the database and updates the database with the user

filled information and and goes to 4
b. is unable to contact database and goes to alt: 4

 b. -> Selects Remove option (UC - 4)
a. do 3. a. 1.

b. -> User selects the inventory item he wants to remove

c. -> System requests confirmation of the removal of the inventory item

d. -> User confirms action

e. System either

a. <- removes new Inventory Item from the database and
 goes to 4
b.<- is unable to contact database and goes to alt: 4

c. -> Selects View Inventory Need (UC - 5)

 2. -> System either
a. Shows the Inventoried Item usage of the last 4 weeks along with the inventoried items

and amount of each inventoried items needed for the next 7 days.
b. is unable to contact database and goes to alt: 4

d. -> Selects Request Restock (UC - 6)

1. do 3. a. 1.

 2. -> user selects the Inventory Item to restock
 3. <- System uses SendNotification with information of the inventoried item
 and a predefined message.
4. include:: Send Notification (UC - 26) (may be unable to send message and
 goes to Alt: 4)
5. go to 4.

e. -> Selects Restock Inventory (UC - 7)

 1. -> User either

50

 a. selects to send an order request
 1. ->System either

 a. if User come from an Request Inventory Alert selects the
 Inventoried Item on the alert
 b. does 3. a. 1.

 1. -> User selects the inventory item to order
 2. <- System queries how much to order
3. -> User selects amount to order
4. <- System uses SendNotification with information on amount of
 inventoried item to order and a predefined message.
5. include:: Send Notification (UC - 26) (may be unable to send
 message and goes to Alt: 4)
6. go to 4.
 b. selects to update inventory manually
1. ->System either

 a. if User come from an Request Inventory Alert selects the
 Inventoried Item on the alert
 b. does 3. a. 1.

 1. -> User selects the inventory item to update
2. <- System queries how much to update
3. -> User selects amount
4. <- System either
a. <- removes the Inventory Item from the database and goes to
 4
b.<- is unable to contact database and goes to alt: 4

f. -> Selects Edit Inventory Item (UC - 27)

 1. do 3. a 1.
 2. -> User selects Inventory Item to edit
 3. <- System either
 a. displays list of information of the select Inventory Item from the
 database
b. is unable to contact database and goes to alt: 4
 4.-> User updates information and selects done.
 5. <- System either
a. updates the database with the user filled information and and goes
 to 4
b. is unable to contact database and goes to alt: 4

4. <- System confirms with a success message.

51

5. Include::log (UC - 20) (Makes a log of any updated information)
6. <end>
Alt:
4. <- System returns an error message
5. Include::log (UC - 20)
6. <end>

Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 6 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 4-6 will be our fail scenarios.

Sequence Diagram:

52

Use Case UC - 8: MangeMenu

Initiating Actor: Manager, Chef, Waiter
Actor’s Goal: To manipulate the information on the Menu which consists of information on

each menu item.
Participating Actor: Database, Timer
Related Requirements: REQ - 3, 15,16,17,18
Sub - Use Cases: UC - 9/10, 11,12
Precondition: The user is either a chef or waiter or someone who has privilege to view

inventory. The database is up and function
Postcondition: The desired manipulation has been made to the database and a log has

been stored of the action that took place.
Flow of Events:

1. -> User selects the Menu Management Option
2. <- System shows an interface that displays selectable options which include:

Add/Remove Menu Item, Update Menu Item, Disable Menu Item
3. User either

a. -> Selects Add/Remove Menu Item (UC - 9/10)

1. <- System displays an option of either add or remove

2. User either
a. -> Selects Add option (UC - 9)

a. <- System displays a list of information required to be filled(view UC-9/10 for

this list)

b. -> User fills in all the information and selects done after he completes it.

c. <- System either

a. enters new Menu Item into the database and updates the database with the user filled

information and and goes to 4
b. is unable to contact database and goes to alt: 4

b. -> Selects Remove option (UC - 10)
a. include::View Menu (UC - 13)

b. -> User selects the Menu item he wants to remove

c. -> System requests confirmation of the removal of the Menu item

d. -> User confirms action

e. System either

a. <- removes the Menu Item from the database and
 goes to 4
b.<- is unable to contact database and goes to alt: 4

53

b. -> Selects Update Menu Item (UC - 11)

1. include::View Menu (UC - 13)
 2. -> User selects Inventory Item to edit
 3. <- System either
 a. displays list of information of the selected Menu Item from the
 database
b. is unable to contact database and goes to alt: 4
 4.-> User updates information and selects done.
 5. <- System either
a. updates the database with the user filled information and and goes
 to 4
b. is unable to contact database and goes to alt: 4

c. -> Selects Disable Menu Item (UC - 12)

1. include::View Menu (UC - 13)
2. -> User selects the Menu item he wants to disable
3. -> System requests confirmation for disabling of the Menu item
4. -> User confirms action
5. System either
a. <- disables the Menu Item and flags it disables in the database
 and goes to 4
b.<- is unable to contact database and goes to alt: 4

4. <- System confirms with a success message.
5. Include::log (UC - 20) (Makes a log of any updated information)
6. <end>

Alt:
4. <- System returns an error message
5. Include::log (UC - 20)
6. <end>

Flow of Events for Main Success Scenario:
Any flow of events that pass through all the way to 6 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:

54

Any flow of events that led up to Alt sequences 4-6 will be our fail scenarios.

Sequence Diagram:

Use Case UC - 14: MangeOrders

Initiating Actor: Chef, Waiter
Actor’s Goal: To manipulate information on the orders placed
Participating Actor: Database, Timer

55

Related Requirements: REQ - 10
Sub - Use Cases: UC - 15, 16, 17
Precondition: The user is either a chef or waiter or someone who has privilege to view

inventory.The database is up and running.
Postcondition: The desired manipulation has been made to the database and a log has

been stored of the action that took place.
Flow of Events
1. -> User selects the Menu Management Option
2. <- System displays interface for managing customer orders with options to view the

order
 queue, select an order to cook, and flag an order as done.
3. -> User chooses to either

a. select view order queue (UC -15)

1. <- System either
 a. displays order queue and wait queue from the database and goes to 6
b. is unable to contact database and goes to alt: 4

b. select an order to cook (UC - 16)

 1. do 3. a. 1.
 2. ->User select order to cook.
3. System either
a. <- removes the Menu Item/Items from the Order Queue and puts them
 on wait queue and updates the database and goes to 4
b. <- is unable to contact database and goes to alt: 4

c. flag an order as done (UC -17)

 1. do 3. a. 1.
 2. ->User select order to flag as done.
 3. System either
a. <- removes the Menu Item/Items from the wait Queue and puts them
 on the ready queue and updates the database and goes to 4
b. <- is unable to contact database and goes to alt: 4

4. <- System confirms with a success message.
5. Include::log (UC - 20) (Makes a log of any updated information)
6. <end>

Alt:

56

4. <- System returns an error message
5. Include::log (UC - 20)
6. <end>
Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 6 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 4-6 will be our fail scenarios.

Sequence Diagram:

Use Case UC - 18: PlaceOrder

Initiating Actor: Waiter, Customer
Actor’s Goal: To place an order of menu item/items.
Participating Actor: Database, Timer
Related Requirements: REQ - 13, 24

57

Precondition: The user is either a or waiter or someone who has privilege to view

inventory. The database is up and running. The selected menu item/items are not disabled

or unable to be cooked.
Postcondition: The selected menu item/items are put on the order queue.
Flow of Events

1. include::ViewMenu(UC - 13)

2. -> User selects menu item/items and selects done.

3. <- System queries it user wants to make delivery of orders together or individually.

4. -> User selects option.

5. System either

a. <- puts the menu item/items selected on the order queue and updates the database
 and goes to 6
b. <- is unable to put menu item/items on the order queue as menu item/items has been
 either disable or is unable to be queued due to low amount of inventory item needed
 for the the menu item/items and goes to alt: 6
c. <- is unable to contact database and goes to alt: 6

6. <- System confirms with a success message.
7. Include::log (UC - 20) (Makes a log of any updated information)
8. <end>

Alt:
6. <- System returns an error message
7. Include::log (UC - 20)
8. <end>

Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 8 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 6-8 will be our fail scenarios.

58

Sequence Diagram:

Use Case UC - 21: ViewWaitTime

Initiating Actor: Waiter, Customer
Actor’s Goal: To view the estimated wait time of either an orders placed (either entire

order or specific menu items of the order) or the estimated wait time of a menu item on the

menu.
Participating Actor: Database, Timer
Related Requirements: REQ - 12
Precondition: The database is up and running.
Postcondition: The display shows the wait time of the selected item
Flow of Events :

59

2. -> User selects view wait time and chooses to either
 a. View Wait Time of Order
 1. -> System either
 a. shows wait time of item with the most wait time as the time of order

if
 customer chooses to have all menu items on the order to be

delivered
 together.
 b. shows the wait time of each menu item ordered, if the customer

chose
 to have the menu items order to be delivered individually.

 b. View Wait Time of Selected Menu Item
 1. -> System displays information on select menu item if it was placed on the
 order queue and references the database to do so and goes to 3
 2. <- is unable to put menu item/items on the order queue as menu item/items
 has been either disable or is unable to be queued due to low amount of
 inventory item needed for the the menu item/items and goes to alt: 3
3. <- is unable to contact database and goes to alt: 3

3. <- System confirms with a success message.
4. Include::log (UC - 20) (Makes a log of any updated information)
5. <end>

Alt:
3. <- System returns an error message
4. Include::log (UC - 20)
5. <end>

Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 3 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 3-5 will be our fail scenarios.

60

Sequence Diagram:

61

4. Domain Analysis

4.1.1 Concept Definition

Requirement

Concept Responsibility Type

R1 OrderTaker Takes the diner’s order and sends it to the

kitchen. Also capable of updating/editing

orders after they are made.

D

R2 Menu Displays restaurant menu to diner K

R3 AssistButton Allows diner to request aid and notifies

waiters of the request

D

R4 FoodTimeDisplay Allows diner to view time until their food

arrives

K

R5 ReadyOrderQueue Contains knowledge of what orders are done

waiting and are ready to be delivered

K

R6 TableStatusView Displays to the waiter the status of each table

in the restaurant: occupied, ready, or needs

attention

K

R7 DishQueue Contains knowledge of dishes that must be

made

K

R8 DishCompleteNotifier Notifies the system that the current dish is

complete

D

R9 InventoryDatabase Contains the total list of ingredients stored in

the inventory

K

R10 InventoryNotifier Notifies manager of the predicted date when

an ingredient will run out, when stock for an

item falls below a predefined threshold, when

an item goes bad, and when restock orders

need to be made

D

62

R11 InventoryChanger Allows restaurant staff to make changes to the

inventory

D

R12 MenuChanger Allows restaurant staff member to make

changes to the menu

D

R13 Logger Logs order information and restaurant

operational information

D

4.1.2 Attribute definitions

Concept Attributes Attribute Description

Dish Price The price of the dish

Ingredients The ingredients that make

up the dish

Popularity The popularity of the dish

Ingredient Price The price of the ingredient

Amount The amount of the

ingredient currently present

in the inventory

Type The type of ingredient:

vegetable, meat, dairy,

grains, fruits, spices, oils, and

other. The other type is a

catch-all for items that do

not fit into the regular

categories.

EstimatedDepletionTime The estimated time, based

on our depletion prediction

algorithm, until the

ingredient is depleted

EstimatedExpirationTime The estimated time, based

on our expiration prediction

algorithm, until the

ingredient expires

OrderTaker TableNumber The number of the table

where the order was placed

63

Dish The dish that the customer

had ordered

Menu Dish A dish that is currently on

the menu

AssistButton TableNumber The number of the table

where assistance was

requested

FoodTimeDisplay TableNumber The number of the table

where the request for the

arrival time was placed

Dish The dish the customer

requested the arrival time for

Time The time until the requested

dish arrives

ReadyOrderQueue TableNumber The number of the table

where the dish is to be

delivered to

Dish The dish to be delivered

TableStatusView TableNumber The number of the table

displaying its status

TableStatus The current status of the

table: occupied, ready, or

needs attention

EditOrder TableNumber The table number where the

updated dish is to be

delivered

CurrentDish The current dish that is to be

edited

EditedDish The updated dish that will be

delivered to the customer. If

the dish was deleted, this

field will indicate it

DishQueue TableNumber The table number

corresponding to where the

dish was ordered

Dish A dish currently present in

the queue

DishQueuePosition The position of the dish in

the queue

DishCompleteNotifier TableNumber The table number

corresponding to where the

64

dish was ordered

Dish The dish that has been

completed

InventoryDatabase Ingredient An ingredient in the

inventory database

InventoryNotifier Ingredient An ingredient in the

inventory that has been

alerted to the manager by

the system

NotificationType The type of notification sent

out by the system to the

manager. These notifications

can be a predicated date when

the ingredient will run out,

when stock for an item falls

below a predefined threshold,

when an item goes bad, and

when restock orders need to

be made

InventoryChanger Ingredient The ingredient to be added,

changed, or removed from

the inventory

MenuChanger Dish The dish to be changed

4.1.3 Association definitions

Concept pair Association description Association

name

OrderTaker <->

DishQueue

OrderTaker takes orders from tables and

sends them to DishQueue for queueing

sends order

information

OrderTaker <-> Menu OrderTaker reads menu item information

from the menu to construct the object it

sends to the DishQueue

reads dish

information

AssistButton <->

TableStatusView

AssistButton sends the assistance request to

TableStatusView for display

sends assistance

request

FoodTimeDisplay <-> FoodTimeDisplay receives information from receives dish

65

DishQueue DishQueue in order to calculate food wait

time

information

ReadyOrderQueue <->

DishCompleteNotifier

ReadyOrderQueue receives finished dishes

from DishCompleteNotifier and queues

them for delivery to tables

receives finished

dish events

DishQueue <->

DishCompleteNotifier

DishQueue sends a dish complete event to

DishCompleteNotifier

sends finished

dish events

DishQueue <->

InventoryChanger

When new items are added to DishQueue,

DishQueue updates the inventory with the

ingredients used in that item

sends inventory

update

information

InventoryDatabase <->

InventoryNotifier

When a warning event happens (restock

confirmation, no stock remaining, etc),

InventoryDatabase sends the type of event

to InventoryNotifier

generates

inventory

warnings

InventoryDatabase <->

InventoryChanger

InventoryChanger sends information on

what ingredients and fields to update to

InventoryDatabase

receives

inventory

update

information

MenuChanger <-> Menu MenuChanger sends information on what

dishes and fields to update to the Menu

sends menu

update

information

66

4.1.4 Traceability Matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

UC1

X

X

UC2

X

UC3

X

X

UC4

X

X

UC5

X

UC6

X X

UC7

X X X

UC8

X

X

UC9

X

X

UC10

X

X

UC11

X

X

UC12

X

X

UC13 X

67

UC14

X

UC15

X

UC16

X

UC17

X

X X

UC18 X X

X

UC19 X X

X

UC20

X

UC21

X

UC22

X

UC23

X

UC24

X

UC25

X

UC26

X

X

68

4.2 System Operation Contracts

4.2.1 Use Case UC - 1: ManageInventory

Preconditions:
 IsLoggedIn = True

 IsAuthorized = True

 IsDatabaseOperational = True

 IsNotifierOperational = True

Postconditions:
 DatabaseChange = True

 Database and Inventory have been updated

 The changes made have been saved in the log

4.2.2 Use Case UC - 8: MangeMenu

Preconditions:
 IsLoggedIn = True

 IsAuthorized = True

 IsDatabaseOperational = True

Postconditions:
 DatabaseChange = True

 Database and Menu have been updated

 The changes made have been saved in the log

4.2.3 Use Case UC - 14: MangeOrders

Preconditions:
IsLoggedIn = True

 IsAuthorized = True

 IsDatabaseOperational = True

 IsQueueEmpty = False

PostConditions:

 DatabaseChange = True

 Database and OrderQueue have been updated

69

5. Mathematical Model

5.1 Scheduling Algorithm for Chefs

Since this algorithm is for placing a new menu item into the queue for chefs to cook, it must

be run every time a customer places an order.

Our algorithm for scheduling is described as follows:

ItemToBeQueued - The next item that needs to be added to the queue

OrderQueue - The current queue of menu items ready to be cooked by a chef

CurrentItem - First Item in Queue, it is not the item that the chef is currently checking.

When the chef takes an item from the queue to be cooked, it is removed from the queue.

Freshness time - Menu Item “freshness” time or the length of time it can be sitting out.

while CurrentItem’s Average Time to complete > ItemToBeQueued’s Average Time to

Complete

if ItemToBeQueued’s menu item type is the same as the currentitem’s menu item type
 for each menu item at position until end of queue
 if(menu item belongs to same order)
 length + = menu item’s average wait time
 if length < Current Item’s freshness factor
 position = CurrentItem’s position
Until all menu items in ChefQueue
if(!position)
 position = end of queue.
ItemToBequeued’s position = position

The scheduler will loop through the current queue and find the best place to place the item

to be queued. It will check if the item is of the same type as the item to be queued, then it

will determine if the average time to complete is greater than that of the item to be queued

and also it will check to see if the freshness time rule is kept. If these things are true, it will

store that position and at the very end check if a position was found. If it wasn’t found then

we know that none of these were met and the item will be added at the end of the queue.

70

5.2 Inventory usage rate estimation and run-out date estimation

Our recursive algorithm estimates ingredient usage for a single ingredient i for day n (today)

based on estimated past daily ingredient usage (day n-1, n-2 ... n-7) and real-world weekly

ingredient usage (week w-1 ... w-4). Four weeks was chosen because the window excludes

long term seasonal weighting; that is, if a menu item is extremely popular in the winter but

not in spring its past popularity won’t affect ingredient usage estimates for spring.

Daily ingredient usage will be estimated by adding the usage per menu item of ingredient i

for all menu items ordered on that day. Weekly ingredient usage will be real-world data

obtained from manual inventory updates by restaurant employees.

In the beginning, there will be no data for past weeks or days. Because weekly information

isn’t estimated but is based on real-world data, the algorithm will have to take the first few

weeks to gather data. At minimum, the algorithm could be run after a single week using

only one week’s real-world data instead of the average of four weeks. After the first four

weeks, the algorithm will be running optimally. Alternatively, the restaurant manager can

manually input his own estimate of when an ingredient will run out; until enough real data is

gathered, the rate of usage based on this estimate can be used to tune the initial

predictions and allow an experienced restaurant manager to guide the system until it has

enough data.

First, we determine the relative usage of ingredient i on day n-7 compared to total

estimated usage that week, aka the proportion of that ingredient used on the same day of

the week last week. That proportion is multiplied by the averaged real-world weekly usage,

and yields the estimated ingredient usage for today.

Day n proportional usage: U(n-7) / (U(n-1) + U(n-2) + U(n-3) + U(n-4) + U(n-5) + U(n-6) +

U(n-7))

Weekly average = U(w-1) + U(w-2) + U(w-3) + U(w-4)) / 4

Ui(n) = [(U(w-1) + U(w-2) + U(w-3) + U(w-4)) / 4] * [U(n-7) / (U(n-1) + U(n-2) + U(n-3) +

U(n-4) + U(n-5) + U(n-6) + U(n-7))]

where U(week) is the actual weekly usage taken from the inventory system’s data, and NOT

a value returned by the recursive function. This shorthand was used to increase readability.

To take into account holidays and other special occasions, we propose a table of dates and

“usage modifiers” which can either multiply an entire day’s overall ingredient usage (for

nonspecific busy days) or multiply only certain ingredients, such as cranberries on

Thanksgiving. With this modification, the final equation is:

71

Ui(n) = M * {[(U(w-1) + U(w-2) + U(w-3) + U(w-4)) / 4] * [U(n-7) / (U(n-1) + U(n-2) + U(n-3) +

U(n-4) + U(n-5) + U(n-6) + U(n-7))]}

5.3 Wait time estimation

Basic design for a function WaitTime which returns the wait time for a single item/dish is

shown below:

WaitTime_D(Dish currentDish)
{
 Time waitTime;
 Time now = currentTime;

 waitTime = currentDish.getArrivalTime() + currentDish.getCookTime() - now;
 return waitTime;
}

Finding wait time for an entire table is almost equally as simple: the finish time for a table is

equal to the finish time of the dish that is finished last. In simple pseudocode, it could be

modeled as such:

WaitTime_O(Order currentOrder)
{
Time maxWaitTime = currentTime;
Time temp;
Time now = currentTime;

for this Dish = each dish belonging currentOrder
{
 temp = WaitTime_D(thisDish);
 if temp > maxWaitTime
 maxWaitTime = temp;
}
return now + maxWaitTime;
}

5.4 Queueing of table orders for waiters

Before we describe the algorithm for queueing, we need to describe how the wait list gets

built.

72

Necessary Precondition: Customer chooses to hold menu items until entire table’s menu

items are ready

Create table order with id equivalent to customers table
set total number of menu items
set current number ready to zero
set table = number equivalent to customer’s table
create empty MenuItemList

for each menu item in customers order
 add reference to item in MenuItemList

add table order to wait queue

When the customer creates a composite order and specified that he wants to wait until the

the entire order is ready, a corresponding table order will be created. If the customer creates

a singular order or specifies that he wants the items on a first come first serve basis, then a

table order will not be created. Finally this table order is added to the wait queue. This is

important for how the queuing algorithm works.

Now we can describe our final algorithm for queueing table orders for waiters.

ReadyMenuItem = menu item that has been cooked and needs to be queued.
Wait List = The current wait list of table orders
ready queue = the current ready queue of either table order or menu items that are ready

to be delivered.

boolean foundTable = false
for each table order in wait list
 for each menu item in table order’s menu item list
 if readyMenuItem == menu item
 table order.currentNumReady++
 if table order.currentNumReady == table order.totalNumItems
 move table order to ready queue
 foundTable = true

if (! foundTable)
add readyMenuitem to Ready Queue

73

When a menu item is finished cooking, the chef flags that it is done cooking and the

scheduling algorithm places it either in the ready queue or the wait queue. It will first search

every menu order that is in the wait queue to see if the item corresponds to any of the table

orders in the wait queue. If it finds the item in a menu order, then it will increment the

number of ready of items that are ready for that table order. If all the items are ready after

this one has been added then the table order can be added to the ready queue. if the menu

item could not be found in any of the table through the boolean foundTable, then we know

what the item either belongs to a singular order or the customer requested his items to

come in a first come first serve fashion and therefore can be directly placed onto the ready

queue.

74

6. Project Management - Projected Work
Flow

These start and finish dates are estimates and might change in the future.

75

References

[1] http://www.enewsbuilder.net/peoplereport/e_article000657699.cfm?x=b11,0,w (Robot

Picture)
[2]http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-report3.pdf

(Group 2, 2011 report)

http://www.enewsbuilder.net/peoplereport/e_article000657699.cfm?x=b11,0,w
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-report3.pdf

