
1

Auto-Serve

Restaurant Automation

Getting Served! Now Automatic.

Group 1

All members contributed equally.

Prem Patel

Sai Kotikalapudi

John Bartos

Scott Xu

David Shen

Joshua Devasagayaraj

2

Table of Contents

1. Customer Statement of Requirements ... 9

1.1 Problem ... 9

1.1.1 Keeping Inventory and Determining When to Restock ... 9

1.1.2 Keeping Diners Informed About Their Wait Time .. 10

1.1.3 How to Cook and Deliver Menu Items that Customers Order .. 10

1.1.4 Tracking Menu Item Popularity and The Menu Item Rating System 10

1.1.5 Things to Note before Reading .. 11

1.2 Glossary of Terms ... 12

1.2.1 Technical Terms .. 12

1.2.2 Non-Technical Terms .. 12

2. System Requirements .. 13

2.1 Proposed Solution ... 13

2.1.1 Inventory System .. 13

2.1.2 Inventory Usage Prediction .. 15

2.1.3 Inventory Alerts ... 16

2.1.4 Food Popularity ... 17

2.1.5 Chef’s Interface and Menu Item Queuing ... 19

2.1.6 Shared Ingredient Display ... 23

2.1.7 Queuing of Orders for Waiters .. 24

2.1.8 Deployment of The System .. 27

2.2 Enumerated Functional Requirements ... 28

2.3 Enumerated Non-Functional Requirements .. 30

2.4 On-Screen Appearance Requirements ... 30

2.5 User Interface Mock-Up for On Screen Requirements .. 31

2.6. User Effort Estimation .. 41

2.6.1 Scenario 1: Customer Wishes to Place Order .. 41

2.6.2 Scenario 2: Chef Selecting Dish to Prepare .. 42

2.6.3 Scenario 3: Waiter selects order or menu item to deliver ... 42

2.6.4 Scenario 4: Manager wishes to manually add inventory item ... 42

3. Functional Requirements Specification .. 43

3.1 Stakeholders... 43

3

End Users: ... 43

Restaurant Employees ... 43

Customers .. 43

Manager ... 43

The Software Team ... 43

3.2 Actors and Goals: ... 44

Initiating Actors .. 44

Manager ... 44

Chef .. 44

Waiter .. 44

Customer .. 44

Participating Actors .. 44

Timer .. 44

Database... 44

3.3 Use Cases ... 45

3.3.1 Casual Description .. 45

3.3.2 Use Case Diagrams .. 48

3.3.3 Traceability Matrix .. 49

3.3.4 Fully Dressed Description and System Sequence Diagrams:.. 52

Use Case UC - 1: ManageInventory .. 52

Sequence Diagram: .. 55

Use Case UC - 8: ManageMenu ... 56

Sequence Diagram: .. 58

Use Case UC - 14: ManageOrders .. 58

Sequence Diagram: .. 60

Use Case UC - 18: PlaceOrder .. 60

Sequence Diagram: .. 62

Use Case UC - 21: ViewWaitTime .. 62

Sequence Diagram: .. 64

3.3.5 Use Case Points and Effort Estimation .. 65

4. Domain Analysis .. 66

4.1.1 Concept Definition ... 66

4

4.1.2 Attribute definitions ... 67

4.1.3 Association definitions .. 70

4.1.4 Traceability Matrix .. 71

4.2 System Operation Contracts .. 73

4.2.1 Use Case UC - 1: ManageInventory .. 73

4.2.2 Use Case UC - 8: MangeMenu .. 73

4.2.3 Use Case UC - 14: MangeOrders .. 73

5. Mathematical Model .. 74

5.1 Scheduling Algorithm for Chefs ... 74

5.2 Inventory usage rate estimation and run-out date estimation .. 75

5.3 Wait time estimation .. 76

5.4 Queueing of table orders for waiters ... 77

6. Interaction Diagrams ... 79

6.1 Interaction Diagrams .. 79

7. Class Diagram and Interface Specification .. 85

7.1 Class Diagram .. 85

7.2 Data Types and Operation Signatures ... 86

CommandHandler: ... 86

CommandHandler.communicator: ... 91

Chef: ... 92

Chef.Processor: ... 92

Chef.Communicator: .. 93

Chef.Interface: .. 94

Waiter .. 94

Waiter.Processor: ... 95

Waiter.Communicator: .. 96

Waiter.Interface: .. 96

Customer .. 97

Customer.Processor: .. 97

Customer.Communicator: .. 98

Customer.Interface: .. 99

Manager: .. 99

5

Manager.Processor: ... 100

Manager.Communicator: .. 101

Manager.Interface: ... 101

DataObjects: ... 102

7.3 Traceability Matrix... 104

7.4 Design Patterns .. 105

7.5 Object Constraint Language – Still to be done by Report 3. .. 106

CommandHandler: .. 106

CommandHandler ... 106

MenuHandler ... 106

InventoryHandler ... 106

NotificationHandler ... 106

LogHandler ... 106

OrderHandler ... 106

DatabaseHandler .. 107

CommandHandler.communicator: .. 107

Communicator .. 107

Chef.Processor: .. 107

ChefProcessor .. 107

Chef.Communicator: ... 107

ChefCommunicator ... 107

Chef.Interface: ... 107

ChefGUI.. 107

Waiter.Processor: .. 108

WaiterProcessor .. 108

Waiter.Communicator: ... 108

WaiterCommunicator ... 108

Waiter.Interface: ... 108

WaiterGUI.. 108

Customer.Processor: ... 108

CustomerProcessor ... 108

Customer.Communicator: ... 108

6

CustomerCommunicator ... 108

Customer.Interface: ... 108

CustomerInterface ... 109

Manager.Processor: ... 109

ManagerProcessor ... 109

Manager.Communicator: .. 109

ManagerCommunicator .. 109

Manager.Interface: ... 109

ManagerGUI ... 109

DataObjects: ... 109

Inventory ... 109

MenuItem.. 110

TableOrder .. 110

8. System Architecture & System Design .. 110

8.1 Architectural Styles ... 110

8.1.1: Client/Server Architecture ... 110

8.1.2: Event-Driven Architecture ... 111

8.1.3: Object-Oriented Architecture .. 111

8.2 Identifying Subsystems ... 112

8.3 Mapping Subsystems to Hardware .. 112

8.4 Persistent Data Storage .. 113

8.5 Network Protocol .. 113

8.6 Global Control Flow .. 114

8.6.1 Execution Orderness .. 114

8.6.2 Time Dependency ... 114

8.6.3 Concurrency .. 115

8.7 Hardware Requirement ... 115

8.7.1 Controller .. 115

8.7.2 Computer ... 116

8.7.3 Tablets ... 116

9.1 Algorithms .. 116

9.1.1 Controller .. 117

7

9.1.1.1 Command Handler .. 117

9.1.1.2 Notification System ... 117

9.1.1.3 Logger .. 118

9.1.1.4 Database Connector ... 118

9.1.1.5 Inventory Handler .. 118

9.1.1.6 Menu Handler ... 118

9.1.1.7 Order Handler ... 118

9.1.2 Chef ... 119

9.1.2.1 Java Swing Algorithms for GUI ... 119

9.1.2.2 Queuing orders to be cooked ... 119

9.1.3 Waiter ... 119

9.1.3.1 Java Swing Algorithms for GUI ... 119

9.1.3.2 Queuing of table orders for waiters .. 119

9.1.4 Customer .. 119

9.1.4.1 Java Swing Algorithms for GUI ... 119

9.2 Data Structures ... 120

9.2.1 Controller .. 120

9.2.2 Chef ... 120

9.2.3 Waiter ... 120

9.2.4 Customer .. 121

10. User Interface Design and Implementation – Still to Be Done ... 121

11. Design of Tests ... 122

11.1 Unit Test Cases .. 122

11.1.1 Customer .. 122

11.1.2 Menu.. 124

11.1.3 Chef .. 126

11.1.4 Waiter .. 128

11.1.5 Manager ... 129

11.1.6 Controller ... 132

11.2 Test Coverage .. 144

11.3 Integration Testing Strategy ... 144

11.4 Non-Functional Requirements Testing ... 145

8

12. Project Management & History of Work .. 145

12.1 Merging Contributions from Individual Team Members ... 145

12.2 Project Coordination and Progress Report ... 145

12.3 Plan of Work ... 145

12.4 Breakdown of Responsibilities ... 147

12.5 History of Work, Current Status, and Future Work .. 148

12.5.1 History Of Work ... 148

12.5.2 Current Status .. 150

12.5.3 Future Work .. 151

References ... 152

9

1. Customer Statement of Requirements

Many restaurants today still use the same basic methods from years ago to handle orders

from customers. Often times this leads to complicated coordination of activities between

chefs and waiters. This also means that other tedious tasks, such as inventory checks, fall to

the managers to perform. This project seeks to introduce automation in privately-owned

restaurants to alleviate some of the problems associated with current restaurant

management practices.

1.1 Problem

After researching current restaurant practices and work from previous groups, we narrowed

our focus to these problems:

1.1.1 Keeping Inventory and Determining When to Restock

Managers have the incredibly tedious role of keeping inventory and deciding whether or

not to order more supplies for the restaurant. A survey taken by a previous group who

interviewed the manager at a Buffalo Wild Wings says,

“[The manager] hates the fact that he has to go in and manually check each ingredient and

see what you need more of for the next shipment by paper and hand.” - Group 2, 2011

It was evident that the burden of the accounting work fell on the manager. We know that

this burden could be partially reduced, if not completely eliminated, through automation.

Furthermore, after accounting for the current inventory, the manager must decide whether

to restock or not. This decision requires the manager to estimate how long the restaurant’s

remaining supplies will last. This estimation requires knowledge of past usage rates and

other information about the restaurant’s past performance, and is not a trivial calculation; it

has to take into account past usage rates and predict factors which will affect future usage,

such as seasonal changes in demand and upcoming holidays.

Lastly, managers would need to know if their inventory was getting too low. If it falls below

a certain threshold and they do not catch it, it would lead to costly results for the

restaurants. At the very least, it would lead to a loss in profits and poorer customer ratings.

Software assistance could alleviate many of the above issues and boost restaurant efficiency

by handling the inventory system autonomously, with minimal user input after the system is

fully operational.

10

1.1.2 Keeping Diners Informed About Their Wait Time

One common thing that we noticed was that customers rarely know how long their food will

take to finish. This was evident from our personal experience: waiters can give rough

estimates based on what they know about the kitchen’s current state, but at best those are

still rough guesses.

Common consequences of being left in the dark are feelings of boredom or uncertainty,

leading to the customer thinking, “is there time to step outside for a cigarette, or to the

bathroom? Should I order an appetizer to make the wait more bearable?” Customers

become upset when their food arrives later than expected since they could have ordered

appetizers to soothe their hunger.

Another potential problem is the delay between individual dishes being finished in the

kitchen and then being sent to a table. What if one dish takes much longer than the rest? If

a diner wants his food as soon as possible -- that is, without waiting for the table’s other

orders -- he should be informed of when it’s finished as well as given the ability to request

its early delivery.

1.1.3 How to Cook and Deliver Menu Items that Customers Order

Currently, many restaurants have chefs cook orders on a first come first serve basis. Many

members of our group have seen the classic pen and paper method of organizing incoming

orders at restaurants they have gone to.

Typically, the waiter takes an order and hangs the description of the order at the chef

counter, where the chefs take and prepare orders one by one. After cooking, the food is

placed in a “ready area” with the order description.

Waiters additionally have the job of searching for their respective orders and checking that

all the food is ready; with no system to directly notify waiters, this forces them to

periodically return to the kitchen for essentially no reason.

After looking at this process, we knew there was a lot of room for improvement. The overall

efficiency of the restaurant and consequently customer satisfaction can be improved.

1.1.4 Tracking Menu Item Popularity and The Menu Item Rating System

Restaurant managers can sometimes have a difficult time determining what menu items are

popular and what items are infrequently ordered. Customers too want to know what dishes

are the best and what dishes to avoid. For most small restaurants, advertising is achieved

through word of mouth. New customers of the restaurant usually hear reviews from their

peers. Their peers usually recommend the restaurant because of a certain menu item that

11

they liked or because the service provided by the restaurant is excellent. This influences

what choices the customers have.

When designing or updating the menu, restaurant managers have the difficult dilemma of

adding great new dishes and removing stale, unpopular old dishes. By making customer

satisfaction information available in the form of popularity and ratings numbers, the

manager has a source of hard data and a unified view of the customer preferences to base

his decisions off of.

A list of menu items sorted by popularity and/or rating would serve everyone well: instead

of asking waiters (who have a smaller role in our automated restaurant) for

recommendations, customers can view the popular dish list directly. Instead of trying to

guess what dishes are most and least popular, managers can view this information directly

and easily and make better informed decisions.

1.1.5 Things to Note before Reading

When developing our solutions to these problems, we came across a few issues.

1.1.5.1 Menu Items vs. Dishes

When deciding the names of menu items that customers order, we were debating between

calling them “menu items” or “dishes”. In the customer’s point of view, they can be seen as

menu items. However, in the chef’s point of view, they can be seen as dishes.

There are times in this document when the terms “menu item” and “dish” are both used

interchangeably. Both terms refer to the same concept; in most places, “menu item” will be

used, but in cases where “dish” is more appropriate it is used instead.

1.1.5.2 Table Order vs. Table

When we designed the queue for waiters who had to deliver dishes back to the customers,

we initially decided to represent the table as a “table” that represented the people who

ordered many items from the same table. We realized that this was a poor decision since

tables might order again. Therefore, for clarity, we changed the naming convention from

tables to table orders (or just order) where the table order just represents the composite

order for all people at the table. To represent the actual table that the customers are seated

at, we just use a table ID number since the actual table need not be a concept, just an

attribute.

12

1.2 Glossary of Terms

Many of the terms you see here can be understood as you read the report. They are also

listed here for clarity and formality.

1.2.1 Technical Terms

Order Queue - The queue of menu items, ordered by customers that are ready to be

cooked by the chefs.

Ready Queue - The queue of menu items that are ready to be delivered to the customers.

Wait Queue - The queue of menu items that are currently being prepared by the chef.

Order - A concept that represents the list of items that the customer ordered.

Table - concept that represents the physical table that customers are seated at.

Table Order - concept that represents the actual composite order of all the customers

seated at a certain table.

Inventory System - an electronic book keeping of the current inventory in the restaurant.

This includes its raw ingredients, current menu items, etc.

Scheduling Policy - a predefined set of rules to determine where in the queue or line the

next item should go.

Terminal - a part of the restaurant where a respective user is working. E.g. The kitchen

where the chef is working can be called the “Chef Terminal”

Module – Same thing as terminal described above but refers more to the Applications on

the hardware.

1.2.2 Non-Technical Terms

Chef - Cooks all the food in the restaurant.

Manager - Manages the inventory, orders more supplies, and deals with overall

management and finances of the restaurant.

Waiter - Handles delivering food and

13

Customer - the person who the service provided by the restaurant is being given too.

Ingredient - A food that is used to create a menu item. e.g lettuce, carrots, etc.

Menu Item - The food that that is listed on the menu given to customers to choose from.

e.g various burgers, pasta, etc.

Dish - Equivalent to the menu item, but used when describing queuing related to chefs and

waiters for simplicity and is more appropriate.

2. System Requirements

2.1 Proposed Solution

Our solution focuses on the problems we highlighted in the first section. We have left out

trivial elements of the system such as login, ordering items, indicating dirty tables, etc.

These items were already done by previous groups and their reports are applicable. We

have focused on our core ideas that make our product genuine and worthwhile.

2.1.1 Inventory System

To combat the problems involved with keeping inventory and determining when to restock,

we set out to design a system that takes as much of the burden as possible off of the

manager.

With our smart inventory system and prediction algorithms, we can effectively reduce the

amount of times the manager has to physically check to stockroom for ingredients and

partially automate the restocking process.

To implement this inventory system, we chose to use a database. MYSQL seemed the most

cost effective choice since it is the most popular and freely available. Since it is a medium

sized restaurant, it will suit our needs. Not only can the database hold information about

individual ingredients, but we can create tables in the database to reference these

ingredients so that we can store menu items to represent containers.

In database terminology, a table represents a matrix of r rows and columns that is serialized

and stored as data depending on the type of database.

14

In the database, our table for raw ingredients can be visualized like this:

Figure 1: This is Ingredient table as represented in the database.

Ingredient ID represents the identification of the ingredient inside the table to relative to

the other ingredients. Name is the name of the ingredient. Amount Type is the type of

quantity that the ingredient is measured in. Minimum Threshold is the manager specified

minimum amount of this items that should be in the inventory. Estimated Shelf Life is the

estimated shelf life of the ingredient or the amount of time that the ingredient can be

stored before it goes bad.

When the manager issues an order for raw ingredients to the supplier, this table can be

automatically updated when the order is verified by the manager. As long as the supplier is

a trustworthy source, the inventory will be correctly updated without manager intervention.

Furthermore, a table for menu items will hold all the menu items available to the customer.

Figure 2: This is the Menu Item table as represented in the database.

15

To store mapping between menu items and ingredients, we create an additional table called

“Contains” to store the one-to-many relationship that menu items have with ingredients.

Figure 3: This is Contains table as represented in the database.

When chefs cook menu items from the menu, the inventory system can be automatically

updated to show the remaining inventory after cooking each dish. Of course, when making

each dish, there is going to be some error in measuring by the chefs and the total amount

of inventory usage will have a small percent error. We discuss this issue later.

Since the system is aware of each menu item in the menu, the amount of times the menu

item is ordered, and the contents of each menu item, the system can keep a real-time

measure of the amount of ingredients in the inventory.

Having the system keep track of inventory leads to a plethora of features that we elaborate

on later on such as future predictions of inventory requirements and knowing how much of

an item we can produce.

One thing we must not forget is that the manager will always have access to the inventory

system in the event that he must manually change the stock.

2.1.2 Inventory Usage Prediction

To streamline the management process, our system has the ability to predict ingredient

usage rates. This feature solves the issue of the manager having to use historical data about

the restaurant in his decision of whether to restock.

16

This is a data mining problem in which we take usage data over a lengthy period of time

and develop predictions of how much inventory will be used and how much should be

ordered based on the season, holidays, weekday, etc.

As we lack experience in this area, we decided to start out with a relatively simple approach

to the problem. At the suggestion of our advisor, we also investigated more complex

autoregressive, moving-average, and autoregressive-moving-average or ARMA models, but

without the proper background in signal processing and statistics we found these models

too difficult to implement.

 A detailed description of our algorithm is included further in this document, under

“Mathematical Models”.

2.1.3 Inventory Alerts

Another feature of the inventory system that introduces novelty are alerts. This feature

alleviates the issue involved with managers having to determine when inventory falls below

a certain threshold.

Alerts are triggered when inventory of items fall below certain limits. These limits though

obvious it may seem, are not just the bare minimum to cook a menu item but rather is

threshold set by the manager. Again when group 2 in 2011 interview Buffalo Wild Wings

and asked the manager how often he restocks, he said,

“Every Wednesday and Saturday regardless of demand. Always have a surplus.”

After reading this, we found it appropriate to improve this procedure and not only to

automatically determine when it is best to restock, but also send the appropriate demand to

the supplier himself (with manager approval, of course).

Our design of the alert system follows:

 We use the predictive ingredient usage model to estimate when an ingredient falls

below its critical stock threshold. The manager can set these thresholds based on demand

and perishability, but in general it should be no less than 10% of the usage in the time

period between restocks or the amount of the restocking order.

 By recursively applying the equation we can estimate ingredient usage for an

arbitrary day. First we calculate usage for day n+1 and subtract it from our current stock

level. If it is below the threshold, we send the alert. If it is not, we apply the formula for day

n+2 using our estimate for day n+1 as an input; if the total usage on day n+1 and n+2

cause stock levels to fall below the critical threshold, we send the alert. If not, we iterate

17

once more; this process continues until it reaches the day when the stock falls beyond the

threshold.

 In the final system, we will most likely estimate usage extremely conservatively to

prevent any item from going out of stock. With time, the restaurant manager can manually

update/lower the thresholds and other parameters.

Customer Wait Time Estimation

Our system will estimate the wait time for a table order using the existing menu item queue

that exists in the kitchen terminal. Each dish in the queue is associated with a table; by

checking each dish for a given table, we can determine the expected finish time of the last

dish and use it to determine the total wait time for the table. For tables which request dishes

be delivered as they are finished, we will display the estimated wait for each dish instead of

for the entire table.

The detailed algorithm is written in the mathematical model.

2.1.4 Food Popularity

To solve the problem of determining what items are popular on the menu and what items

are not, we have designed a new way so that both the manager and the customer will be

able to know what the “hot items” on the menu are.

Since, we are using an inventory system; the task of providing popular items to the manager

becomes trivial. By knowing which menu items customer’s order, and the number that are

ordered every day, the manager can be provided a clear cut overview of the most popular

items in the current day, week, month, season, etc.

To determine food popularity we need keep track of what items are being bought every

day. As we are using a database, we can add another table to keep track of this.

18

Figure 4: This is Purchased table as represented in the database.

This “Purchased” Table will be updated with the date of every order that is purchased. This

way, it is simple to find the amount of times a menu item is ordered within a certain time

frame.

For instance, if we want to find the most popular items last week. We just need to tabulate

the number of times each item was purchased during that week.

Since this is just a simple search and count procedure, it is not needed to be described, and

therefore not needed to be shown in the mathematical model.

Similarly, the system can also provide popular items to customers; however some customers

may not trust statistics that the restaurant generates. The customer may think that the

restaurant may be trying to sell more of one menu item over another.

Therefore, we designed a rating system so that customers can rate various menu items that

they have eaten and write their own comments about items. Similar to Amazon.com’s rating

system, the rating system is designed so that customers can “like” other customers’ review

and rating so that these higher quality reviews will be higher up in the list of reviews that

the customer may read for each menu item.

Since, the rating system is designed similar to Amazon.com, there is no need to go further

into detail about it.

19

2.1.5 Chef’s Interface and Menu Item Queuing

As we focused on efficiency and time saving in the automation process, one realization was

that chefs can prepare foods faster if they are given similar foods that can be cooked

together or in parallel. One example of this is having a chef cook two burgers and then a

cheesecake rather than have a chef cook a burger, then a cheesecake, and then back to a

burger. This essentially cuts the time by the length of one burger. When the chef gets the

ingredients for one burger, he may also get the ingredients for the other burger and cook

them in parallel.

 Similar to operating system design, this problem becomes similar to that of

scheduling and prioritizing processes, however in this case the processes are menu items to

be cooked, and our cpu is the chef.

Keeping this in mind, we designed an optimal scheduling algorithm based on a priority

queue where the new menu item will be given a priority based on what's currently cooking,

and what's currently on the queue. Of course, menu items cannot be preempted because no

chef would stop halfway in making a menu item as that would be wasteful and sometimes

ruin the menu item in certain cases. Thus we focused on non-preemptive scheduling of

menu items.

Our solution to the problem can be visualized as follows:

 Each menu item on the queue for chefs can be modeled as a compound data

structure. There are many parts to the menu item structure but I will only lay out the parts

that pertain to the chef’s queue.

Figure 5: These are the attributes of the Menu Item that pertain to queuing.

Here we focus on three properties of the menu item,

20

Average time to complete: The average total time that the chef takes to cook the menu

item in questions, this time must be calculated based on real data that the restaurant takes

when operating under normal conditions. In our system, we assume that this data is

available for us.

Menu item Type: The category of menu item that the menu item falls under.

Freshness Time: This is the time that the dish can be kept warm and still retain its

freshness

Table Order: This is a reference to the table order that this menu item belongs to. The

table order is described in detail in the section involving queuing with waiters. A table order

of zero means that the item does not belong to a table order. This is used later on in

queuing for waiters.

Here is the basic scenario of when a burger will move up the queue.

Figure 6: The guacamole burgers get queued with the A.1 peppercorn burger.

 In this situation, since the guacamole burger is a burger, it can be queued together

with the peppercorn burger, allowing the chef to make these burgers in parallel and

essentially cutting the total turnaround time by the time to complete of the Guacamole

Burger. One restriction to this is that the Guacamole Burger is only queued together

because it average time to complete is less than the average time to complete of the

21

Peppercorn Burger. If the Guacamole Burger had an average time to complete greater than

that of the Peppercorn Burger, it would not be queued since that would add time additional

time to the queue that would increase the wait time of the pasta. This is not desirable since

that would increase the wait time of a customer that ordered the pasta caused by someone

who ordered after him. This “customer-first” approach is the key among restaurants and it’s

maintained in this queuing policy.

Figure 7: The Cheeseburger is being queued ahead of the Bacon Burger because it has a

lower average time to complete.

In this situation, we have multiple burgers that already on the queue and we are adding

another burger. In this case, we can find the first burger that has an average time that is

greater than the cheeseburger's average time to complete. Thus, we when we are

scheduling the Cheeseburger, there is more room for other burgers to be scheduled in the

future.
 In the previous two scenarios we have neglected the fact of what table the burgers

are being ordered from. Suppose we have a group of people that are ordering from the

same table. In our current scheduling policy, some members of the group will have food

that will be cooked far ahead of others in the table. Therefore, some of the food will not be

as fresh as others. Even if the food is still kept warm, certain foods rely on freshness for their

taste and consequently customer satisfaction.

22

 Therefore, we added a certain freshness factor to the policy whereby dishes cannot

be put ahead of other dishes from the same table by this freshness time. Thus dishes

cannot be queued earlier than the freshness time away from the rest of the table order.

Here’s is an example of when freshness time comes into play:

Figure 8: The long lasting burger is being queued with the Bacon burger and not the

peppercorn burger because of freshness time constraints.

The first thing you may notice is that “Table Order” is another property of the menu item.

The table order will be described in a later section, but this attribute is just a reference to

the table order that contains this menu item when it was ordered.

What happens in this situation is that the long lasting burger cannot be queued with the

peppercorn burger because the time that it would stay out would be larger than its

freshness time. Therefore it will be queued with the next best item, which is queuing with

the Bacon burger.

The formal algorithm is described in the mathematical model.

23

2.1.6 Shared Ingredient Display

The chef’s interface will show the menu item queue. To further increase the efficiency of the

kitchen, our system will determine the total ingredient usage of each ingredient for all menu

items currently residing in the queue. By displaying this data directly to the chef and sous-

chefs, it will be possible for the kitchen to prepare ingredients and therefore dishes more

quickly.

Figure 9: The Chef will be able to see a list of all the ingredients needed for the the current

dishes in the order queue.

Originally, we intended to show which ingredients were needed for every dish in the queue;

however, doing this quickly caused an unacceptable amount of UI clutter. The current

design only displays these relationships for the dish that is up next to be cooked. This allows

the chef to quickly understand what ingredients must be retrieved immediately, while the

aggregate ingredient usage list shows what ingredients will be needed in the medium and

long term. This enables the chef and kitchen staff to have a clear view of what must be done

now and what can be done later.

24

2.1.7 Queuing of Orders for Waiters

 Similar in design to the chef’s menu item queue, this queue represents finished menu

items grouped by table and ready to be delivered to the diner. However, the items of this

queue are table orders instead of menu items; whenever an entire table order becomes

finished in the kitchen, that table’s order is placed on the table queue. The waiter checks this

queue from the floor terminal and delivers the menu items in a first come first serve

manner. However, most restaurants won’t deliver items to tables if all the items in the table

is ready. We decided to provide the option to the customer whether to wait out till all the

items are ready, or just deliver them on a first come first serve basis.

Therefore, we designed the queuing for table order as two queues. One is the wait queue

and one is the ready queue. The ready queue will hold either tables that are ready, when the

customer chooses to deliver items when all of them are ready, or menu items that are ready

to be delivered to tables where the customer chooses to deliver items on a first come first

serve basis. The wait queue is a structure of tables and each table will hold the menu items

that belong to that table.

Each table structure can be seen as this:

Figure 10: The Table Order structure and its properties that are used in queuing for

waiters.

TotalNumMenuItems: The total number of menu items associated with this order..

CurrentNumReady: The category of menu item that the menu item falls under.

Table: This represents the table that the order is coming from. It will just be a number in

our case.

25

Menu Items List: This is the list of menu items that belong to this order.

If the customer chooses to deliver items by table, then a table structure is created when he

orders as a group. For each menu item that he creates, he adds a reference to it in the Menu

Items List. The total number of menu items and the current number that are ready are also

set so that one can determine when the table is ready. Table represents

Our Wait queue can then be described as a list of tables as such:

Figure 11: An example of the wait list and an expansion of the menu items list for Table

Order 4.

When the customer creates an order, if he selects for the order to be grouped for the table,

a table structure will be created and references to the menu Items will be stored in the

Menu Item List. Then, when items are done cooking, and are ready to be delivered, they go

through each table if the wait list, and if they find themselves in one of the Menu Item lists,

then they add the one to the current number ready attribute. When the current number

26

ready is equal to the total number of menu Items, then the table can be queued to the

ready queue.

Now the ready queue can contain either tables or individual menu items, again depending

on whether the customer chooses to hold out for the group or deliver the item on a first

come first serve basis.

The ready queue can be described as follows:

Figure 12: The ready queue is based on a first come first serve basis where whatever is

added into the queue will get delivered to the appropriate customers. It consists of both

Table orders and individual menu items.

The ready queue has a simple scheduling policy, its a first come first serve basis. We can see

that it consists of both table structures and individual menu items. This way, depending on

whether the customer decided to wait for the group or get his food as soon as its ready, it

will be queued accordingly. A table order of zero represents that the menu item does not

belong to a table order.

27

2.1.8 Deployment of The System

After designing our solutions to the problems, we were left with the decision of determining

how to deploy it in a restaurant environment. The main focus of our deployment was put

into making the system simple, high scalability, easy to setup and cost efficiency.

When thinking about how to deploy the system, We noticed that today’s restaurant systems

are deployed using specific machinery. These machinery are usually built by companies that

contributed to the construction of the restaurant. Therefore, they are meant to be static and

last the lifetime of the restaurant and consequently they are quite expensive and are rarely

expandable.

When we designed our system, we tried to improve on these aspects. We targets a platform

for the system that is both cost efficient and easily expandable, namely the android

operating system.

Our system will run on numerous android tablets. The manager will have a single tablet that

will act as his console. The chefs will have a number of tablets depending on the number of

chefs that are at the restaurant. These tablets may be mounted to station so that the chefs

may cook and handle the tablet easier. The same goes for the waiters. There will be a tablet

at every table so that the customer can interact with the system.

Since Android tablets have become well integrated with society and many people know how

to use them well. Therefore, having them instead of built in consoles are incredibly better

for a number of reasons.

First, having a tablet system will allow us easily scale the system to fit the needs of the

restaurant. A larger restaurant will just need to purchase more tablets than a restaurant of

smaller size.
Second, the system is very cost efficient. Android tablets are relatively very cheaper than the

custom equipment created to hold the system . Custom equipment like the consoles

currently in restaurants.

Third, the system is highly expandable. When the system is deployed on android tablets.

Providing updates to the system becomes simple. For every update that is created for the

system, it can be pushed to the tablets.

28

2.2 Enumerated Functional Requirements

We felt it was best to use requirements over user stories since some of our ideas were

strictly system based. For instance, it was difficult to describe any queuing policy through a

user story since the actual scheduling wasn’t trigger.

Identifier Requirement PW

REQ - 1 The system shall store a database of ingredients and the following

information for each ingredient:

 Name

 Menu items it is used in

 Current stock level

 Estimated shelf life 5

REQ - 2 The system shall store information on the raw ingredients of the menu

items such as the estimated shelf life, and the menu items that the

ingredient is used in. 3

REQ - 3 The system shall store the following information for each menu item:

 Ingredients required

 Amount of each ingredient

 “Freshness” value representing the maximum time this dish should

be allowed to wait after being prepared (used in dish queue

scheduling) 3

REQ - 4 The system shall predict the usage rate of each ingredient and predict the

day that the ingredient is expected to fall below a predefined restocking

threshold using historical information gathered from the restaurant. 4

REQ - 5 The system shall alert the manager when an ingredient’s stock level falls

below a certain threshold. 2

REQ - 6 When an ingredient’s stock level falls below its restock threshold, the

system shall prepare a restock order and send it to the manager for

verification. When it is verified, the system places the order. 3

REQ - 7 The system shall predict inventory usage for the next seven days using

the previous seven days and show it to the manager. 2

REQ - 8 The system shall provide a prediction to the manager when the

restaurant will run out of food or fall below a certain threshold in the

future. 5

29

REQ - 9 The system shall give the customer a choice of delivering menu items all

at once (by default) or deliver each item to the table on a first come first

serve basis. 3

REQ - 10 The system shall queue menu items of the same type together so that

chefs can cook them in parallel. However, if the customer wants items to

be delivered as a table, then items cannot be queued too far ahead of the

rest of the table to maintain freshness. The system shall maintain a log of

each table order that was placed/edited 5

REQ - 11 The system shall show the sous chefs shared ingredients between menu

items on the chef’s queue so that the sous chef can prepare ingredients

beforehand for upcoming menu items. 2

REQ - 12 The system shall predict the wait time for menu items that are on the

menu and display that information to the customer. 5

REQ - 13 The system shall queue orders on a first come first serve basis for waiters

based on table, if the customer chooses for orders to be delivered when

all orders belonging to the table are ready or individually if he chooses to

deliver orders as soon as they are ready. 5

REQ - 14 The system shall rank dishes by rating and popularity and display lists of

the most popular and highest rated dishes on the menu. 3

REQ - 15 The system shall use a menu system to keep a list of all the menu items

offered at the restaurant. 5

REQ - 16 The system shall allow the manager to manage the menu items on the

menu.

3

REQ - 17 The system shall allow the information of the menu item to be viewed by

the customer. 5

REQ - 18 The system shall allow the manager to add, remove, update, and disable

menu items on the menu. The system shall also keep a log of the

information that is edited on the database. 4

30

2.3 Enumerated Non-Functional Requirements

One thing to note is that we do not have any non-functional requirements. The reason for

this is that our report details only our ideas rather than a complete system that incorporates

requirements that may have been done by another group or trivial requirements such as

login, register, display, etc. Since our ideas were completely functional, there were no

requirements that were nonfunctional.

2.4 On-Screen Appearance Requirements

Identifier Requirement PW

REQ - 19 The system shall display the menu and make the menu items selectable

to view to the users.

5

REQ - 20 The system shall display the average wait time for orders to customer

next to the menu items.

3

REQ - 21 The system shall display all the ingredients in the inventory so that the

manager can view them.

2

REQ - 22 The system shall display the ready queue which is list of tables or

individual menu items from which users (usually waiters) can select the

next item to deliver to the table.

3

REQ - 23 The system shall display the order queue to the chef as well as options to

select which dish will be prepared. If the dish is unable to be prepared the

chef will have the option to disable the menu item.

4

REQ - 24 The system shall be able to be able to display an option to the customer

allowing him to choose between delivering items on a first come first

serve basis or holding out until the table’s items are ready.

1

REQ - 25 The system shall display the inventory usage for the next seven days to

the manager.

5

REQ - 26 The system shall be able to show a notification to the manager when it

needs to alert the manager in the form of a pop up notification and

email.

5

REQ - 27 The system shall be able to create a request to the supplier in the form

that the supplier specifies.

3

31

REQ - 28 The system shall be able to send notification to the proper interface. 4

2.5 User Interface Mock-Up for On Screen
Requirements

Figure 13: The chef will be able to select the dish of the order queue by touching on the

button which indicates the dish has been selected to be prepared. Notice that the first

item is actually two items that were queued together.

32

Figure 14: The chef will be able to disable the menu item on the menu if the dish is not

able to be prepared by taping on which items he wants to disable (he can disable more

than one at a time) and then tapping the disable menu item button.

33

Figure 15: The chef can select which dishes are done being prepared by tapping on the

dish and selecting the Dish Done. This will notify the waiter that the dish is ready to be

delivered.

34

Figure 16: The manager will be able to view a list of the inventory item. The manager will

also be able to add, remove, or edit the inventory item.

35

Figure 17: The manager will be able to add and edit inventory items by typing the

inventory item name, quantity, etc.

36

Figure 18: The manager will be able to view a list of popular menu items in the restaurant

according to any time reference.

37

Figure 19: The manager will be able to view a list of all the automated alerts sent by the

automated inventory system. The manager will also be alerted in the form of a pop up

notification on any screen.

38

Figure 20: The manager will be able to view the alerts and can approve, deny, or edit the

request to restock.

39

Figure 21: The customer will be able to select the menu item and edit the ingredients

within it and be able to place the order. The customer will also be able to request

assistance of the waiter if needed.

40

Figure 22: The customer will be able to view the menu item that were ordered along with

the price and the total cost so far. The customer will also be able to rate the food, pay the

bill, and request assistance by tapping on the appropriate button.

41

Figure 23: The waiter will be able to see which table requires assistance as well as the

dishes that are in the ready queue.

2.6. User Effort Estimation

2.6.1 Scenario 1: Customer Wishes to Place Order

1. Navigation: Selects the Menu Item (2 Taps)

A. Customer selects menu item with finger by tapping on it.
B. After completing the Data Entry as shown below Click Place Order

2. Data Entry: Selects which Ingredients are wanted on the Menu Item (2 or more

Tap)
A. Tap the ingredients that you wish to adjust.
B. Enter amount or yes/no to adjust number or remove ingredient (max 3

taps)
C. Tap additional ingredients to add and then tap the add button.

42

2.6.2 Scenario 2: Chef Selecting Dish to Prepare

1. Navigation: Selects the Dish from the order queue to prepare (4 Taps)
A. Chef taps on the dish that will be prepared and starts preparing it.
B. After the dish is done being prepared the chef switches to “Active” Tab.
C. Chef taps on the dish that is prepared and then Dish Done to notify

waiter.

2.6.3 Scenario 3: Waiter selects order or menu item to deliver

1. Navigation: Selects the next order or menu item on ready queue(1 Tap)
A. Waiter taps on the menu item and goes to kitchen to pick it up.
B. Waiter picks up prepared menu item and delivers it to the appropriate

table.

2.6.4 Scenario 4: Manager wishes to manually add inventory item

1. Navigation: Selects to Add inventory item in the inventory.
A. Manager taps on the inventory tab.
B. Manager Selects “Add Inventory Item”

2. Data Entry: Enters appropriate information in the fill in boxes.
A. Manager enters the Inventory Item Name.
B. Manager enters the Quantity.
C. Manager enters minimum level (Threshold).
D. Manager enters estimated shelf life (Expiration).
E. Manager enters Amount Type.

43

3. Functional Requirements
Specification

3.1 Stakeholders

End Users:

Restaurant Employees

 These are the end users who hold the major interest in the system, as they expect to use it

to simplify their life and improving the time efficiency of the restaurant.

Customers

The end user, who will also be using the system and have some interest in the system as it

could possibly lessen their wait time and the need for constant interaction for the waiter.

Manager

The manager is essentially the administrator of the system and like the restaurant

employees has a major stake in the success of the system as he is able to make his

restaurant more efficient and easier to manage.

The Software Team

The software team is the group responsible for the design, implementation and

manufacturing of the software and hold the highest interest in the success of the system. In

this case, our group is the software team.

44

3.2 Actors and Goals:

Initiating Actors

Manager

The restaurant owner who is responsible for managing the system.

Chef

The chef is the one who cooks all the food.

Waiter

The waiter is the one who attends customers.

Customer

The customer of the restaurant who places orders.

Participating Actors

Timer

The timer responsible for keeping track of time (When making logs or billing) or clocking

the time of an order.

Database

The storage system used to hold the data (usually local).

45

3.3 Use Cases

3.3.1 Casual Description

Use

Case

Name Description

UC -

1

ManageInventory Allows the user to manage the inventory. To review more

detail on sub use cases refer to UC - 1, 2, 3/4, 5, 6, 7, 27.

UC -

2

ViewInventoryList Allows the user to view the list of inventoried items along

with the each items estimated amount left. (sub use case

for UC -1)

UC -

3/4

Add/RemoveInventory

Item

Allows the user to add/remove Inventory Item. When

item is being added user also has to add specific

information concerning the added inventory item which

includes, current amount, and quantity measure(what it

is measured in), and the shelf life. The updated

information is stored as a log(see UC- 20). (sub use case

for UC -1)

UC -

5

ViewInventoryNeed Allows the user to view food trend specific for the past 4

weeks and a list of inventoried Items needed for the

coming 7 days. Optional Implementation: system makes

use of RequestRestock(UC -6) to automatically make the

requests to order inventory needed for the next 7 days.

(sub use case for UC -1)

UC -

6

RequestRestock Allows the system to send a notification (see UC - 26) to

the manager to approve a Inventory restock.The updated

information is stored as a log(see UC- 20). (sub use case

for UC -1)

UC -

7

RestockInventory Allows user to either send an order notification for the

inventory item to the specified supplier or update

information on it manually(see UC - 27).(using

sendNotification, reference UC - 26) .A log is created for

the information on the order or action. (using log,

reference UC - 20)(sub use case for UC -1)

46

UC -

8

ManageMenu Allows user to manage the menu items on the menu. To

review more detail on sub use cases refer to UC - 9/10,

11, 12 .

UC -

9/10

Add/RemoveMenuItem Allows the user to Add/Remove menu items on the

menu. When the chef adds the menu item, he is

responsible for adding the information about the menu

item, which includes: Inventory items (need to make the

menu item) along with quantity of each items for the

menu item along with the estimated cook/ready time,

and the freshness time. The updated information is

stored as a log(see UC- 20). (sub use case for UC -8)

UC -

11

UpdateMenuItem Allows the user to update information on menu

items.(reference UC - 9/10 for description on menu item

information) The updated information is stored as a log(

see UC- 20). (sub use case for UC -8)

UC -

12

DisableMenuItem Allows the user to disable menu items that he cannot

cook or is unable to and updates the menu information.

The updated information is stored as a log(see UC- 20).

(sub use case for UC -8)

UC -

13

ViewMenu Allows the user to view menu containing list of menu

items and information on each menu item. (reference UC

- 9/10 for description on menu item information)

UC -

14

ManageOrders Allows the user to manage the Orders that are on the

order queue. To review more detail on sub use cases

refer to UC - 15, 16, 17.

UC -

15

ViewOrderQueue Allows the user to view the order queue so that he may

select an order to cook/make. (sub use case for UC -14)

UC -

16

SelectOrderToCook Allows the user to choose an order from the order queue

that matches his specialty/skills and removes it from the

order queue. The updated information is stored as a log(

see UC- 20). (sub use case for UC -14)

UC -

17

FlagOrderDone Allows the user to flag the menuItem as ready when the

menu item is ready to be served and notifies the

waiter. The updated information is stored as a log(see

UC- 20). (sub use case for UC -14)

47

UC -

18

PlaceOrder Allows the user to place orders on the menu items that

they want to eat. The order information is stored as a

log(see UC- 20).

UC -

19

EditOrder Allows the user to remove an order or edit its

information. The updated information is stored as a log(

see UC- 20).

UC -

20

Log Allows the user/system to log the information of any

changes onto the database along with a timestamp.

UC -

21

ViewWaitTime Allows the user to view the wait time of the menu Items

they have ordered or approximate arrival time for a

selected a menu item.

UC -

22

RequestWaiter Allows the user to request the waiter to tend to his or her

table. This is done using SendNotification(UC-26). This

action is stored as a log(see UC - 20).

UC -

23

RequestCheck Allows user to request the check after they have finished

eating. This is done using SendNotification(UC-26). This

action is stored as a log(see UC - 20).

UC -

24

RateFood Allows user to rate menu items that they have eaten. This

action is stored as a log(see UC - 20).

UC -

25

ViewPopularity Allows the user to view popularity of menu items.

UC -

26

SendNotification Allows the user/system to send either email notification,

with a predefined message body and recipient specific to

the type of email, or a notification to their GUI. This

action is stored as a log(see UC - 20).

UC -

27

EditInventory Allows the user to edit information on inventoried item(

see UC - 3/4 for more information on editable

information). This action is stored as a log(see UC - 20).

(sub use case of UC-1).

48

3.3.2 Use Case Diagrams

49

3.3.3 Traceability Matrix

P

W

U

C

1

U

C

2

U

C

3

U

C

4

U

C

5

U

C

6

U

C

7

U

C

8

U

C

9

U

C

1

0

U

C

1

1

U

C

1

2

U

C

1

3

U

C

1

4

U

C

1

5

U

C

1

6

U

C

1

7

U

C

1

8

U

C

1

9

U

C

2

0

U

C

2

1

U

C

2

2

U

C

2

3

U

C

2

4

U

C

2

5

U

C

2

6

U

C

2

7

REQ -

1 5 X X X X X X

X

REQ -

2 3 X X

REQ -

3 3 X X

REQ -

4 4 X X

REQ -

5 2 X X X

REQ -

6 3 X X X X

REQ -

7 2 X X

REQ -

8 5 X X X X

X

REQ -

9 3 X X X

REQ -

10 5 X X X X

REQ -

11 2 X X

50

REQ -

12 5 X

REQ -

13 5 X X

REQ -

14 3 X X

REQ -

15 5 X

REQ -

16

3

X

X

X

X

REQ -

17 5 X X

REQ -

18 4 X X X X

REQ -

19 5

REQ -

20 3

REQ -

21 2 X X X

REQ -

22 3 X X

REQ -

23 4 X X

REQ -

24 5 X X

REQ -

25 5 X X

REQ -

26 5 X

51

REQ -

27 3

REQ -

28 4 X X X

MAX

PW 5 5 5 5 5 4 5 5 4 4 3 4 5 5 2 5 5 5 5 5 5 4 4 3 5 4

5

TOTAL

PW

3

1

1

5

1

0

1

0

1

2

1

1 8

2

0 7 7 3 4 8

1

4 2 9 8

1

3 8

1

6 5 4 4 3 8 4

1

0

UC 1 > UC 8 > UC 20 > UC 2 > UC 14 > UC 18 > UC 5 > UC 6 > UC 3 = UC 4 = UC 27 > UC 16 > UC 7 = UC 13 = UC 17 = UC

19 > UC = 9 = UC 10 > UC 21 > UC 12 = UC 22 = UC 23 = UC 26 > UC 11 = UC 24 > UC 15

Therefore, we elaborate UC 1, 8, 14, 18(We chose to Ignore UC 2 it is a sub use cases of 1 and will be elaborated in it) as they

have the highest priority as they not only enclose most of the sub - use cases while also involving most of the functionality

presented for the restaurant. These use cases, ManageInventory, ManageMenu and ManageOrders and PlaceOrders, are the

backbone features of our system and so have the highest priority as they take and make up the most significant amount of our

system requirements. Although UC-20 (Log) has a high priority weight, we will not be describing this in our fully-dressed or

considering it of importance as it is a trivial aspect of our system and only aids in keeping track of the ever-changing database.

Also, as this functionality has no influence or interaction with the user, a back-end feature aptly put, but rather a sub use case,

or a system use case to be more descriptive, we do not wish to describe it in detail. However, we chose to focus on UC – 21,

ViewWaitTime, as it represents one of our systems most essential features that we feel not only is an frontal feature, one to

market our product, but also an elaborate use-case that requires description and very involved with the user.

52

3.3.4 Fully Dressed Description and System
Sequence Diagrams:

From now on we will focus on these five use cases and elaborate them since they pertain to

our ideas.

 Use Case UC - 1: ManageInventory

 Use Case UC - 8: ManageMenu

 Use Case UC - 14: ManageOrders

 Use Case UC - 18: PlaceOrder

 Use Case UC - 21: ViewWaitTime

Other use cases may be included as sub-use-cases in these five, or will be elaborated at a

future time.

Use Case UC - 1: ManageInventory

Initiating Actor: Manager, Chef
Actor’s Goal: To manipulate the information on the current inventoried items.
Participating Actor: Database, Timer
Related Requirements: REQ - 1, 25
Sub - Use Cases: UC - 2, 3/4, 5, 6, 7, 27
Precondition: The user is either a chef or manager or someone who has privilege to view

inventory. The database is up and functional. For UC - 6,7, the send notification (UC - 26) is

functioning.
Postcondition: The desired manipulation has been made to the database and a log has

been stored of the action that took place.

Flow of Events:
1. -> User selects the Inventory Management Option
2. <- System shows an interface that displays selectable options which include: View

Inventory, Add/Remove Inventory, View Inventory Need,Request Restock, Restock Inventory
3. User either

a. -> Selects View Inventory (UC - 2)

1. <- System either

 a. displays a list of inventory items from the database and goes to 6
b. is unable to contact database and goes to alt: 4

b. -> Selects Add/Remove Inventory Item (UC - 3/4)

1. <- System displays an option of either add or remove

53

 User either
a. -> Selects Add option (UC - 3)

1. <- System displays a list of information required to be

filled(view UC-3/4 for this list)

2. -> User fills in all the information and selects done after he

completes it.

3. <- System either

a. enters new Inventory Item into the database and updates the database with the user

filled information and and goes to 4
b. is unable to contact database and goes to alt: 4

 b. -> Selects Remove option (UC - 4)
a. do 3. a. 1.

b. -> User selects the inventory item he wants to remove

c. -> System requests confirmation of the removal of the inventory item

d. -> User confirms action

e. System either

a. <- removes new Inventory Item from the database and
 goes to 4
b.<- is unable to contact database and goes to alt: 4

c. -> Selects View Inventory Need (UC - 5)

 2. -> System either
a. Shows the Inventoried Item usage of the last 4 weeks along with the inventoried items

and amount of each inventoried items needed for the next 7 days.
b. is unable to contact database and goes to alt: 4

d. -> Selects Request Restock (UC - 6)

1. do 3. a. 1.

 2. -> user selects the Inventory Item to restock
 3. <- System uses SendNotification with information of the inventoried item
 and a predefined message.
4. include:: Send Notification (UC - 26) (may be unable to send message and
 goes to Alt: 4)
5. go to 4.

e. -> Selects Restock Inventory (UC - 7)

 1. -> User either

54

 a. selects to send an order request
 1. ->System either

 a. if User come from an Request Inventory Alert selects the
 Inventoried Item on the alert
 b. does 3. a. 1.

 1. -> User selects the inventory item to order
 2. <- System queries how much to order
3. -> User selects amount to order
4. <- System uses SendNotification with information on amount of
 inventoried item to order and a predefined message.
5. include:: Send Notification (UC - 26) (may be unable to send
 message and goes to Alt: 4)
6. go to 4.
 b. selects to update inventory manually
1. ->System either

 a. if User come from an Request Inventory Alert selects the
 Inventoried Item on the alert
 b. does 3. a. 1.

 1. -> User selects the inventory item to update
2. <- System queries how much to update
3. -> User selects amount
4. <- System either
a. <- removes the Inventory Item from the database and goes to
 4
b.<- is unable to contact database and goes to alt: 4

f. -> Selects Edit Inventory Item (UC - 27)

 1. do 3. a 1.
 2. -> User selects Inventory Item to edit
 3. <- System either
 a. displays list of information of the select Inventory Item from the
 database
b. is unable to contact database and goes to alt: 4
 4.-> User updates information and selects done.
 5. <- System either
a. updates the database with the user filled information and and goes
 to 4
b. is unable to contact database and goes to alt: 4

4. <- System confirms with a success message.

55

5. Include::log (UC - 20) (Makes a log of any updated information)
6. <end>
Alt:
4. <- System returns an error message
5. Include::log (UC - 20)
6. <end>

Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 6 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 4-6 will be our fail scenarios.

Sequence Diagram:

56

Use Case UC - 8: ManageMenu

Initiating Actor: Manager, Chef, Waiter
Actor’s Goal: To manipulate the information on the Menu which consists of information on

each menu item.
Participating Actor: Database, Timer
Related Requirements: REQ - 3, 15,16,17,18
Sub - Use Cases: UC - 9/10, 11,12
Precondition: The user is either a chef or waiter or someone who has privilege to view

inventory. The database is up and function
Postcondition: The desired manipulation has been made to the database and a log has

been stored of the action that took place.
Flow of Events:

1. -> User selects the Menu Management Option
2. <- System shows an interface that displays selectable options which include:

Add/Remove Menu Item, Update Menu Item, Disable Menu Item
3. User either

a. -> Selects Add/Remove Menu Item (UC - 9/10)

1. <- System displays an option of either add or remove

2. User either
a. -> Selects Add option (UC - 9)

a. <- System displays a list of information required to be filled(view UC-9/10 for

this list)

b. -> User fills in all the information and selects done after he completes it.

c. <- System either

a. enters new Menu Item into the database and updates the database with the user filled

information and and goes to 4
b. is unable to contact database and goes to alt: 4

b. -> Selects Remove option (UC - 10)
a. include::View Menu (UC - 13)

b. -> User selects the Menu item he wants to remove

c. -> System requests confirmation of the removal of the Menu item

d. -> User confirms action

e. System either

a. <- removes the Menu Item from the database and
 goes to 4
b.<- is unable to contact database and goes to alt: 4

57

b. -> Selects Update Menu Item (UC - 11)

1. include::View Menu (UC - 13)
 2. -> User selects Inventory Item to edit
 3. <- System either
 a. displays list of information of the selected Menu Item from the
 database
b. is unable to contact database and goes to alt: 4
 4.-> User updates information and selects done.
 5. <- System either
a. updates the database with the user filled information and and goes
 to 4
b. is unable to contact database and goes to alt: 4

c. -> Selects Disable Menu Item (UC - 12)

1. include::View Menu (UC - 13)
2. -> User selects the Menu item he wants to disable
3. -> System requests confirmation for disabling of the Menu item
4. -> User confirms action
5. System either
a. <- disables the Menu Item and flags it disables in the database
 and goes to 4
b.<- is unable to contact database and goes to alt: 4

4. <- System confirms with a success message.
5. Include::log (UC - 20) (Makes a log of any updated information)
6. <end>

Alt:
4. <- System returns an error message
5. Include::log (UC - 20)
6. <end>

Flow of Events for Main Success Scenario:
Any flow of events that pass through all the way to 6 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:

58

Any flow of events that led up to Alt sequences 4-6 will be our fail scenarios.

Sequence Diagram:

Use Case UC - 14: ManageOrders

Initiating Actor: Chef, Waiter
Actor’s Goal: To manipulate information on the orders placed
Participating Actor: Database, Timer

59

Related Requirements: REQ - 10
Sub - Use Cases: UC - 15, 16, 17
Precondition: The user is either a chef or waiter or someone who has privilege to view

inventory.The database is up and running.
Postcondition: The desired manipulation has been made to the database and a log has

been stored of the action that took place.
Flow of Events
1. -> User selects the Menu Management Option
2. <- System displays interface for managing customer orders with options to view the

order
 queue, select an order to cook, and flag an order as done.
3. -> User chooses to either

a. select view order queue (UC -15)

1. <- System either
 a. displays order queue and wait queue from the database and goes to 6
b. is unable to contact database and goes to alt: 4

b. select an order to cook (UC - 16)

 1. do 3. a. 1.
 2. ->User select order to cook.
3. System either
a. <- removes the Menu Item/Items from the Order Queue and puts them
 on wait queue and updates the database and goes to 4
b. <- is unable to contact database and goes to alt: 4

c. flag an order as done (UC -17)

 1. do 3. a. 1.
 2. ->User select order to flag as done.
 3. System either
a. <- removes the Menu Item/Items from the wait Queue and puts them
 on the ready queue and updates the database and goes to 4
b. <- is unable to contact database and goes to alt: 4

4. <- System confirms with a success message.
5. Include::log (UC - 20) (Makes a log of any updated information)
6. <end>

Alt:

60

4. <- System returns an error message
5. Include::log (UC - 20)
6. <end>
Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 6 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 4-6 will be our fail scenarios.

Sequence Diagram:

Use Case UC - 18: PlaceOrder

Initiating Actor: Waiter, Customer
Actor’s Goal: To place an order of menu item/items.
Participating Actor: Database, Timer
Related Requirements: REQ - 13, 24

61

Precondition: The user is either a or waiter or someone who has privilege to view

inventory. The database is up and running. The selected menu item/items are not disabled

or unable to be cooked.
Postcondition: The selected menu item/items are put on the order queue.
Flow of Events

1. include::ViewMenu(UC - 13)

2. -> User selects menu item/items and selects done.

3. <- System queries it user wants to make delivery of orders together or individually.

4. -> User selects option.

5. System either

a. <- puts the menu item/items selected on the order queue and updates the database
 and goes to 6
b. <- is unable to put menu item/items on the order queue as menu item/items has been
 either disable or is unable to be queued due to low amount of inventory item needed
 for the the menu item/items and goes to alt: 6
c. <- is unable to contact database and goes to alt: 6

6. <- System confirms with a success message.
7. Include::log (UC - 20) (Makes a log of any updated information)
8. <end>

Alt:
6. <- System returns an error message
7. Include::log (UC - 20)
8. <end>

Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 8 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 6-8 will be our fail scenarios.

62

Sequence Diagram:

Use Case UC - 21: ViewWaitTime

Initiating Actor: Waiter, Customer
Actor’s Goal: To view the estimated wait time of either an orders placed (either entire

order or specific menu items of the order) or the estimated wait time of a menu item on the

menu.
Participating Actor: Database, Timer
Related Requirements: REQ - 12
Precondition: The database is up and running.
Postcondition: The display shows the wait time of the selected item
Flow of Events :

63

2. -> User selects view wait time and chooses to either
 a. View Wait Time of Order
 1. -> System either
 a. shows wait time of item with the most wait time as the time of order

if
 customer chooses to have all menu items on the order to be

delivered
 together.
 b. shows the wait time of each menu item ordered, if the customer

chose
 to have the menu items order to be delivered individually.

 b. View Wait Time of Selected Menu Item
 1. -> System displays information on select menu item if it was placed on the
 order queue and references the database to do so and goes to 3
 2. <- is unable to put menu item/items on the order queue as menu item/items
 has been either disable or is unable to be queued due to low amount of
 inventory item needed for the the menu item/items and goes to alt: 3
3. <- is unable to contact database and goes to alt: 3

3. <- System confirms with a success message.
4. Include::log (UC - 20) (Makes a log of any updated information)
5. <end>

Alt:
3. <- System returns an error message
4. Include::log (UC - 20)
5. <end>

Flow of Events for Main Success Scenario:
any flow of events that pass through all the way to 3 and not through the Alt sequences are

success scenarios.
Flow of Events for Fail Scenario:
Any flow of events that lead up to Alt sequences 3-5 will be our fail scenarios.

64

Sequence Diagram:

65

3.3.5 Use Case Points and Effort Estimation

Actor Points:

Actor Actor Weight

Manager 3

Chef 3

Waiter 3

Customer 3

Timer 1

Database 2

UAW 15

Use Case Points:

Use Case
Weight

TCF Technical
Complexity
Factor
Weight

TCF perceived
complexity

Complexity
Factor

UC-1 15

1 2 5 10

UC-2 5

2 1 1 1

UC-3/4 10

3 1 4 4

UC-5 5

4 1 5 5

UC-6 10

5 1 3 3

UC-7 10

6 0.5 4 2

UC-8 15

7 0.5 4 2

UC-9/10 10

8 2 3 6

UC-11 10

9 1 4 4

UC-12 5

10 1 5 5

UC-13 5

11 1 3 3

UC-14 10

12 1 0 0

UC-15 5

13 1 1 1

UC-16 5

TCF total points 46

UC-17 5

TCF 1.06

UC-18 15

 UC-19 15

 UC-20 5

 UC-21 5

 UC-22 10

 UC-23 10

 UC-24 10

 UC-25 5

 UC-26 15

66

UC-27 15

 UUCP 230

 ECF Environmental
Complexity
Factor weight

ECF perceived
impact CF

Adjusted UCP 213.325

1 1.5 4 6

PF 28

2 0.5 2 1

Duration 5973.1

3 1 1 1
 4 0.5 3 1.5
 5 1 2 2
 6 2 4 8
 7 -1 0 0
 8 -1 2 -2

ECF total points 17.5

ECF 0.875

The values in the above tables were arrived at using the course textbook’s methods of effort

estimation from section 4.2.1.

4. Domain Analysis

4.1.1 Concept Definition

Requirement

Concept Responsibility Type

R1 OrderTaker Takes the diner’s order and sends it to the

kitchen. Also capable of updating/editing

orders after they are made.

D

R2 Menu Displays restaurant menu to diner K

R3 AssistButton Allows diner to request aid and notifies

waiters of the request

D

R4 FoodTimeDisplay Allows diner to view time until their food

arrives

K

67

R5 ReadyOrderQueue Contains knowledge of what orders are done

waiting and are ready to be delivered

K

R6 TableStatusView Displays to the waiter the status of each table

in the restaurant: occupied, ready, or needs

attention

K

R7 DishQueue Contains knowledge of dishes that must be

made

K

R8 DishCompleteNotifier Notifies the system that the current dish is

complete

D

R9 InventoryDatabase Contains the total list of ingredients stored in

the inventory

K

R10 InventoryNotifier Notifies manager of the predicted date when

an ingredient will run out, when stock for an

item falls below a predefined threshold, when

an item goes bad, and when restock orders

need to be made

D

R11 InventoryChanger Allows restaurant staff to make changes to the

inventory

D

R12 MenuChanger Allows restaurant staff member to make

changes to the menu

D

R13 Logger Logs order information and restaurant

operational information

D

4.1.2 Attribute definitions

Concept Attributes Attribute Description

Dish Price The price of the dish

Ingredients The ingredients that make

up the dish

Popularity The popularity of the dish

Ingredient Price The price of the ingredient

68

Amount The amount of the

ingredient currently present

in the inventory

Type The type of ingredient:

vegetable, meat, dairy,

grains, fruits, spices, oils, and

other. The other type is a

catch-all for items that do

not fit into the regular

categories.

EstimatedDepletionTime The estimated time, based

on our depletion prediction

algorithm, until the

ingredient is depleted

EstimatedExpirationTime The estimated time, based

on our expiration prediction

algorithm, until the

ingredient expires

OrderTaker TableNumber The number of the table

where the order was placed

Dish The dish that the customer

had ordered

Menu Dish A dish that is currently on

the menu

AssistButton TableNumber The number of the table

where assistance was

requested

FoodTimeDisplay TableNumber The number of the table

where the request for the

arrival time was placed

Dish The dish the customer

requested the arrival time for

Time The time until the requested

dish arrives

ReadyOrderQueue TableNumber The number of the table

where the dish is to be

delivered to

Dish The dish to be delivered

TableStatusView TableNumber The number of the table

displaying its status

TableStatus The current status of the

69

table: occupied, ready, or

needs attention

EditOrder TableNumber The table number where the

updated dish is to be

delivered

CurrentDish The current dish that is to be

edited

EditedDish The updated dish that will be

delivered to the customer. If

the dish was deleted, this

field will indicate it

DishQueue TableNumber The table number

corresponding to where the

dish was ordered

Dish A dish currently present in

the queue

DishQueuePosition The position of the dish in

the queue

DishCompleteNotifier TableNumber The table number

corresponding to where the

dish was ordered

Dish The dish that has been

completed

InventoryDatabase Ingredient An ingredient in the

inventory database

InventoryNotifier Ingredient An ingredient in the

inventory that has been

alerted to the manager by

the system

NotificationType The type of notification sent

out by the system to the

manager. These notifications

can be a predicated date when

the ingredient will run out,

when stock for an item falls

below a predefined threshold,

when an item goes bad, and

when restock orders need to

be made

InventoryChanger Ingredient The ingredient to be added,

70

changed, or removed from

the inventory

MenuChanger Dish The dish to be changed

4.1.3 Association definitions

Concept pair Association description Association

name

OrderTaker <->

DishQueue

OrderTaker takes orders from tables and

sends them to DishQueue for queueing

sends order

information

OrderTaker <-> Menu OrderTaker reads menu item information

from the menu to construct the object it

sends to the DishQueue

reads dish

information

AssistButton <->

TableStatusView

AssistButton sends the assistance request to

TableStatusView for display

sends assistance

request

FoodTimeDisplay <->

DishQueue

FoodTimeDisplay receives information from

DishQueue in order to calculate food wait

time

receives dish

information

ReadyOrderQueue <->

DishCompleteNotifier

ReadyOrderQueue receives finished dishes

from DishCompleteNotifier and queues

them for delivery to tables

receives finished

dish events

DishQueue <->

DishCompleteNotifier

DishQueue sends a dish complete event to

DishCompleteNotifier

sends finished

dish events

DishQueue <->

InventoryChanger

When new items are added to DishQueue,

DishQueue updates the inventory with the

ingredients used in that item

sends inventory

update

information

InventoryDatabase <->

InventoryNotifier

When a warning event happens (restock

confirmation, no stock remaining, etc),

InventoryDatabase sends the type of event

to InventoryNotifier

generates

inventory

warnings

InventoryDatabase <-> InventoryChanger sends information on receives

71

InventoryChanger what ingredients and fields to update to

InventoryDatabase

inventory

update

information

MenuChanger <-> Menu MenuChanger sends information on what

dishes and fields to update to the Menu

sends menu

update

information

4.1.4 Traceability Matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

UC1

X

X

UC2

X

UC3

X

X

UC4

X

X

UC5

X

UC6

X X

UC7

X X X

UC8

X

X

UC9

X

X

72

UC10

X

X

UC11

X

X

UC12

X

X

UC13

X

UC14

X

UC15

X

UC16

X

UC17

X

X X

UC18 X X

X

UC19 X X

X

UC20

X

UC21

X

UC22

X

UC23

X

UC24

X

73

UC25

X

UC26

X

X

4.2 System Operation Contracts

4.2.1 Use Case UC - 1: ManageInventory

Preconditions:
 IsLoggedIn = True

 IsAuthorized = True

 IsDatabaseOperational = True

 IsNotifierOperational = True

Postconditions:
 DatabaseChange = True

 Database and Inventory have been updated

 The changes made have been saved in the log

4.2.2 Use Case UC - 8: MangeMenu

Preconditions:
 IsLoggedIn = True

 IsAuthorized = True

 IsDatabaseOperational = True

Postconditions:
 DatabaseChange = True

 Database and Menu have been updated

 The changes made have been saved in the log

4.2.3 Use Case UC - 14: MangeOrders

Preconditions:
IsLoggedIn = True

 IsAuthorized = True

 IsDatabaseOperational = True

 IsQueueEmpty = False

PostConditions:

74

 DatabaseChange = True

 Database and OrderQueue have been updated

5. Mathematical Model

5.1 Scheduling Algorithm for Chefs

Since this algorithm is for placing a new menu item into the queue for chefs to cook, it must

be run every time a customer places an order.

Our algorithm for scheduling is described as follows:

ItemToBeQueued - The next item that needs to be added to the queue

OrderQueue - The current queue of menu items ready to be cooked by a chef

CurrentItem - First Item in Queue, it is not the item that the chef is currently checking.

When the chef takes an item from the queue to be cooked, it is removed from the queue.

Freshness time - Menu Item “freshness” time or the length of time it can be sitting out.

while CurrentItem’s Average Time to complete > ItemToBeQueued’s Average Time to

Complete

if ItemToBeQueued’s menu item type is the same as the currentitem’s menu item type
 for each menu item at position until end of queue
 if(menu item belongs to same order)
 length + = menu item’s average wait time
 if length < Current Item’s freshness factor
 position = CurrentItem’s position
Until all menu items in ChefQueue
if(!position)
 position = end of queue.
ItemToBequeued’s position = position

75

The scheduler will loop through the current queue and find the best place to place the item

to be queued. It will check if the item is of the same type as the item to be queued, then it

will determine if the average time to complete is greater than that of the item to be queued

and also it will check to see if the freshness time rule is kept. If these things are true, it will

store that position and at the very end check if a position was found. If it wasn’t found then

we know that none of these were met and the item will be added at the end of the queue.

5.2 Inventory usage rate estimation and run-out date estimation

Our recursive algorithm estimates ingredient usage for a single ingredient i for day n (today)

based on estimated past daily ingredient usage (day n-1, n-2 ... n-7) and real-world weekly

ingredient usage (week w-1 ... w-4). Four weeks was chosen because the window excludes

long term seasonal weighting; that is, if a menu item is extremely popular in the winter but

not in spring its past popularity won’t affect ingredient usage estimates for spring.

Daily ingredient usage will be estimated by adding the usage per menu item of ingredient i

for all menu items ordered on that day. Weekly ingredient usage will be real-world data

obtained from manual inventory updates by restaurant employees.

In the beginning, there will be no data for past weeks or days. Because weekly information

isn’t estimated but is based on real-world data, the algorithm will have to take the first few

weeks to gather data. At minimum, the algorithm could be run after a single week using

only one week’s real-world data instead of the average of four weeks. After the first four

weeks, the algorithm will be running optimally. Alternatively, the restaurant manager can

manually input his own estimate of when an ingredient will run out; until enough real data is

gathered, the rate of usage based on this estimate can be used to tune the initial

predictions and allow an experienced restaurant manager to guide the system until it has

enough data.

First, we determine the relative usage of ingredient i on day n-7 compared to total

estimated usage that week, aka the proportion of that ingredient used on the same day of

the week last week. That proportion is multiplied by the averaged real-world weekly usage,

and yields the estimated ingredient usage for today.

Day n proportional usage: U(n-7) / (U(n-1) + U(n-2) + U(n-3) + U(n-4) + U(n-5) + U(n-6) +

U(n-7))

Weekly average = U(w-1) + U(w-2) + U(w-3) + U(w-4)) / 4

Ui(n) = [(U(w-1) + U(w-2) + U(w-3) + U(w-4)) / 4] * [U(n-7) / (U(n-1) + U(n-2) + U(n-3) +

U(n-4) + U(n-5) + U(n-6) + U(n-7))]

76

where U(week) is the actual weekly usage taken from the inventory system’s data, and NOT

a value returned by the recursive function. This shorthand was used to increase readability.

To take into account holidays and other special occasions, we propose a table of dates and

“usage modifiers” which can either multiply an entire day’s overall ingredient usage (for

nonspecific busy days) or multiply only certain ingredients, such as cranberries on

Thanksgiving. With this modification, the final equation is:

Ui(n) = M * {[(U(w-1) + U(w-2) + U(w-3) + U(w-4)) / 4] * [U(n-7) / (U(n-1) + U(n-2) + U(n-3) +

U(n-4) + U(n-5) + U(n-6) + U(n-7))]}

5.3 Wait time estimation

Basic design for a function WaitTime which returns the wait time for a single item/dish is

shown below:

WaitTime_D(Dish currentDish)
{
 Time waitTime;
 Time now = currentTime;

 waitTime = currentDish.getArrivalTime() + currentDish.getCookTime() - now;
 return waitTime;
}

Finding wait time for an entire table is almost equally as simple: the finish time for a table is

equal to the finish time of the dish that is finished last. In simple pseudocode, it could be

modeled as such:

WaitTime_O(Order currentOrder)
{
Time maxWaitTime = currentTime;
Time temp;
Time now = currentTime;

for this Dish = each dish belonging currentOrder
{
 temp = WaitTime_D(thisDish);
 if temp > maxWaitTime
 maxWaitTime = temp;
}

77

return now + maxWaitTime;
}

5.4 Queueing of table orders for waiters

Before we describe the algorithm for queuing, we need to describe how the wait list gets

built.

Necessary Precondition: Customer chooses to hold menu items until entire table’s menu

items are ready

Create table order with id equivalent to customers table
set total number of menu items
set current number ready to zero
set table = number equivalent to customer’s table
create empty MenuItemList

for each menu item in customers order
 add reference to item in MenuItemList

add table order to wait queue

When the customer creates a composite order and specified that he wants to wait until the

the entire order is ready, a corresponding table order will be created. If the customer creates

a singular order or specifies that he wants the items on a first come first serve basis, then a

table order will not be created. Finally this table order is added to the wait queue. This is

important for how the queuing algorithm works.

Now we can describe our final algorithm for queueing table orders for waiters.

ReadyMenuItem = menu item that has been cooked and needs to be queued.
Wait List = The current wait list of table orders
ready queue = the current ready queue of either table order or menu items that are ready

to be delivered.

boolean foundTable = false
for each table order in wait list
 for each menu item in table order’s menu item list
 if readyMenuItem == menu item
 table order.currentNumReady++
 if table order.currentNumReady == table order.totalNumItems

78

 move table order to ready queue
 foundTable = true

if (! foundTable)
add readyMenuitem to Ready Queue

When a menu item is finished cooking, the chef flags that it is done cooking and the

scheduling algorithm places it either in the ready queue or the wait queue. It will first search

every menu order that is in the wait queue to see if the item corresponds to any of the table

orders in the wait queue. If it finds the item in a menu order, then it will increment the

number of ready of items that are ready for that table order. If all the items are ready after

this one has been added then the table order can be added to the ready queue. if the menu

item could not be found in any of the table through the boolean foundTable, then we know

what the item either belongs to a singular order or the customer requested his items to

come in a first come first serve fashion and therefore can be directly placed onto the ready

queue.

79

6. Interaction Diagrams

6.1 Interaction Diagrams

Manager ManagerInterface CommandHandler InventoryHandler DatabaseHandler

manageInventory()

showInventoryOptions()

manageInventory(opType,
itemInfo)

message(opType, itemInfo)

manageInventory(opType,
itemInfo)

write(itemInfo*)

Database

write itemInfo* to inventory

return success

return success

return success

message(opType, success)

display(opType, success)

read()

read inventory

return success

return success

opt

viewInventory()

addItem()
delItem()

return failure

return failure

return failure

message(opType, failure)

display(opType, failure)

alt

database
failure

Sequence diagram for UC-1, 2, 3, 4

80

Manager ManagerInterface CommandHandler MenuHandler DatabaseHandler

manageMenu()

showMenuOptions()

manageMenu(opType,
itemInfo)

message(opType, itemInfo)

manageMenu(opType,
itemInfo)

write(itemInfo*)

Database

write itemInfo* to menu

return success

return success

return success

message(opType, success)

display(opType, success)

read()

read menu

return success

return success

opt

viewMenu()

addItem()
delItem()

return failure

return failure

return failure

message(opType, failure)

display(opType, failure)

alt

database
failure

Sequence diagram for UC-8, 9, 10, 11, 12, 13

The two sequence diagrams above display the command design pattern. The

CommandHandler class is the Command object, the ManagerInterface is the invoker, and

InventoryHandler and MenuHandler are respectively the receivers. More information on

design patterns can be found in section 7.4.

81

Chef ChefInterface CommandHandler WaiterInterface

viewOrderQueue()

alt

empty queue
display(emptyQueueError)

displayOrderQueue()

cookItem(menuItem)

addToCookingBuffer(menuItem)

schedule(orderQueue)

displayOrderQueue()

finishedItem(menuItem)

opt

view queue

delFromCookingBuffer(menuItem)

message(opType, menuItem)

opt

select item to cook

enqueue(menuItem)

return success

message(opType, success)

display(opType, success)

opt

item finished cooking

Sequence diagram for UC-14, 15, 16, 17

82

Customer CustomerInterface CommandHandler ChefInterface

beginOrder()

displayMenu()

selectItem(menuItem)

addToOrder(menuItem)

message(opType, tableOrder)

enqueue(order)

return failure

loop

while
orderFinished == 0

finishOrder()

alt

order failed
message(opType, failure)

display(opType, failure)

Sequence diagram for UC-18

83

SourceInterface CommandHandler NotificationHandler

message(opType, notifInfo)

DestInterfaceA

notify(notifInfo*)

publish(notifInfo*)

DestInterfaceB .

publish(notifInfo*)

publish(notifInfo*) .

loop

for all subscribers
of notification type
specified by opType

Sequence diagram demonstrating publisher-subscriber notifications

84

SourceInterface CommandHandler Logger

message(opType, logInfo)

DatabaseHandler

log(logInfo*)

write(logInfo*)

Database

return success

return success

return success

message(opType, success)

write logInfo* to log

Sequence diagram for logging operations

85

7. Class Diagram and Interface
Specification

7.1 Class Diagram

CommandHandler

DatabaseConnector

OrderHandler

InventoryHandler

LogHandler

MenuHandler

NotificationHandler

Communicator

ChefCommunicator

ChefProcessor
<<Interface>>

ChefGUI

CustomerCommunicator

CustomerProcessor
<<Interface>>

CustomerGUI

WaiterCommunicator

WaiterProcessor
<<Interface>>

WaiterGUI

ManagerCommunicator

ManagerProcessor
<<Interface>>

ManagerGUI

Inventory

MenuItem

1

0...*

TableOrder

1 0...*

1

0...*

0..*

1

1

0...*

1

0...*

1

0...*

1

0...*

Rating

1

0...*

86

7.2 Data Types and Operation Signatures

CommandHandler:

CommandHandler

DatabaseHandler

OrderHandler

InventoryHandler

LogHandler

MenuHandler

NotificationHandler

-inv:Inventory[0...*]

-singleton:NotificationHandler

-singleton:CommandHandler

-singleton:OrderHandler

Communicator

-sock:Socket

-singleton:MenuHandler

-invHandle:InventoryHandler

+setUpConn():boolean

-menuHandle:MenuHandler
-notifyHandle:NotificationHandler

-conn:Communicator
-orderHandle:OrderHandler

-newConnThreads: Thread[0....*]
+getConn():Socket

+main(args:String[0...*]):void

+spawnThread():Thread

+init():boolean

-con:mysqlConnection

+sendToHandler(handler: int ,
message:String):void

+sendMessage(sock:Socket,message:
String):boolean

+handleConn(Socket):void

+MenuHandler()

+Communicator(port:int,host:String)

+closeConn():boolean

-port:int
-host:String

+getMessage(sock:Socket):String

+handleMessage(message:String)
:String
-AddMenuItem(menuItem:MenuItem)
:boolean
-RemoveMenuItem(name:String)
:boolean

-datahandle:DatabaseHandler

-getMenu():String
-updateMenu():boolean

+shutDown():void

-updateMenuItem(item:MenuItem)
:boolean
-DisableMenuItem(name:String)
:boolean

+handleMessage(message:String):String
-notify(recv:int, notification: String,
conn:communicator)

-addOrder(order:String):boolean

-getRatingList():String
-getRating(name:String):String

-setRating(name:String):boolean

-editOrder(order:int,edit:String):boolean

-flagItemDone(order:int,edit:String)
:boolean

-getMenuItem(name:String)
:String

+getInventoryInfo(name:String):String

-getWaittime(order:int):String

+updateInventory(message:string):String

-datahandle:DatabaseHandler

+isLow():boolean
+deduct(name:String):boolean

-invHandle:Inventoryhandler

-writeLog(String s): Boolean
-readLogs():List<String>

-datahandle:DatabaseHandler

+getInvetory():List<String>
+addNewInventory(String name,
...):Boolean
+removeFromInventory(String
name):Boolean
+writeLog(String log):Boolean
+getPrevLogs():List<String>
+updateInvetory(String name, int
num):Boolean
+removeOneInventory(String
name):Boolean

+handelMessage(message:String):String
+getInventory():String

87

CommandHandler

The CommandHandler is responsible for the handling of all the requests that involve

the interaction of multiple interfaces in order to complete a task. These Request will

be sent by respective processors.

Attributes

 -singleton:CommandHandler

 To show that this class has only one instantiation

 -menuHandle:MenuHandler

 This object is used to handle all requests that involve the menu.

 -notifyHandle:NotificationHandler

 This object is used to handle all requests that are notifications.

 -orderHandle:InventortyHandler

 This object is used to handle all request that involve the Inventory.

 -conn:Communicator

This object is used to send and receive requests along with setting up the

communication for the server

 -newConnThreads:Thread[0…*].

This object hold the threads created for each connection (connections can be

abstracted to requests received).

Methods

 +spawnThread():Thread

 This method spawn a new thread which is created for each connection.

 +handleConn(Socket):void

 This method handles the request that it received on a socket.

 +sendToHandler(handler:int, message:String):void

 This method send the request to the appropriate handler.

 +init():Boolean

This method initiates the CommandHandler for accepting request and

handling them.

 +shutdown():void

 This terminates the command handler and all processing requests.

 +main(args:String[0….*]):void

This method is used to initialize and pass arguments to the

CommandHandler.

MenuHandler

The MenuHandler is responsible for the handling any changes in the menu that

requires the change in all the costumer interfaces. This has to be done in a

88

synchronized way as there are multiple customers who need to have the information

to be updated when any menu information is updated.

Attributes

 -singleton:MenuHandler

 To show this class has only one instantiation

 -datahandle:DatabaseHandler

 This object handles all requests made to the database

Methods

 +MenuHandler()

 This is used by external classes to initialize a menuHandler.

+handleMessage(message:String):String

 This class is uses to handles the request give to handle.

 -AddMenuItem(menuItem:MenuItem):Boolean

 This method is used to add Menu Items to the menu.

 -RemoveMenuItem(name:String):String

 This method is used to remove any Menu Items from the menu.

 -getMenu():String

 This method is used to get the whole menu list from the database.

 -UpdateMenu():boolean

 This method is used to update the local view of the menu from the database.

 -DisableMenuItem(name:String):boolean

 This method is used to disable a menuItem.

 -getRatingList():String

 This method is used to get an ordered list of all the highly rated menu Items.

 -getRating(name:String):Boolean

 This method is used to get the rating of a specific menuItem.

-getMenuItem(name:String):String

 This method is used to get the menuItem information.

-setRating(name:String):boolean

 This method is used to set the rating for a specific menu item.

InventoryHandler

The InventoryHandler is responsible for the handling any changes or interfaces with

the Inventory. This has to be done in a synchronized way as multiple customers can

request Inventory information on menu Items while others can change them.

Attributes

 -inv:Inventory[0…*]

 This object is used to hold all the inventoried list and their descriptions.

 -datahandle:DatabaseHandler

89

 This object is used to handle all the requests made to the server.

Methods

+getInventoryInfo(name:String):String

 This method is used to get the inventoried information.

+getInventory():String

 This method is used to get the list of inventoried information.

+handleMessage(message:String):String

 This method is used to handle any requests that need handling.

+updateInventory(message:String):String

 This method is used to update the information on an inventoried item.

+isLow():Boolean

 This method is used to check if any Inventoried Items are low;

+deduct(name:String):Boolean

 This method is used to deduct the amount for an inventoried item.

 NotificationHandler

The NotificationHandler is responsible for redirecting requests or notification of

alerts to and from any interface. Example of the notifications is, Inventory low

notification from the Inventory handler to the Manager GUI.

Attributes

 -singleton:NotificationHandler

 This shows that the notification handler is limited to one instantiation

Methods

 +handleMessage(message:String):String

 This method is used to handle any request that needs to be handled.

 -notify(recv:int, notification:String, conn:communicator)

 This method is used to notify the

LogHandler

The LogHandler is responsible for the logging any changes or requests handled by

the CommandHandler. As the CommandHandler is the Mediator of requests and

processing done by the system, it can log all the actions that takes place on the

system.

Attributes

-dataHandler: DataHandler

This object Is used to interact with the database to store the logs in

persistence storage.

90

Methods

+ writeLog(String s) : Boolean

This function will write the log passed into the database, using the database

handler.

+ readLogs() : ArrayList<String>

This function is used to return the list of logs that have previously been

written to the logger by interacting with the database.

 OrderHandler

The OrderHandler is responsible for the handling any Order requests that need to be

sent to the Chef Interface or the Waiter Interface. An Example of these changes can

be the sending or a finished order to the WaiterProcessor.

Attributes

Methods

 DatabaseHandler

The DatabaseHandler is responsible for being a mediator between the Database and

any other handlers. This is needed as the requests need to be synchronized to avoid

race conditions involved in the writing and reading by the handlers..

Attributes

-con:mysqlConnection

This is the connector for the mysql database used for persistent storage.

Methods

+getInventory():List<String>

This method will get the list of inventory items as a string which then must be

parsed later on.

+addNewInventory(String name, ...):Boolean

This method will add an inventory item into the inventory.

+removeFromInventory(String name):Boolean

This method will remove an item from the inventory that matches the name

that’s passed as an argument.

+writeLog(String log):Boolean

This method will write to the log a message that’s passed in as a string.

91

+getPrevLogs():List<String>

This method will return a list of previous logs.

+updateInvetory(String name, int num):Boolean

This method will update the inventory of the inventory item with the name

that matches the argument with the number that’s passed in.

+removeOneInventory(String name):Boolean

This method will remove one from the counter of the inventory item that

matches the name that’s passed in.

CommandHandler.communicator:

Communicator

The Communicator is responsible being the gateway of receiving and sending

requests. This class is responsible for creating the connections between the different

communicators and to actively receive and send to their communicators on the

sockets it created for them.

Attributes

 -port:int

 The port through which the class is going to listen through.

 -host:String

 The Hostname of the local computer

 -sock:Socket

 The socket that going to be used to send and receive requests on.

Methods

 +Communicator(port:int,host:String)

 The constructor used to initialize.

 +setUpConn():boolean

 The method used to setup the connection on the socket.

 +getConn():Socket

 The method used to listen and return any incoming information

 +closeConn():Boolean

 The method used to close the connection on the socket.

 +getMessage(sock:Socket):String

 The method used to receive a request on a connected socket

 +sendMessage(sock:Scoket,message:String):Boolean

 The method used to send a message on the socket.

92

Chef:

ChefProcessor

+HandleMessage(message:String):void
+AddOrder(menuItem:MenuItem)
:boolean
+DeleteItem(order:int)
:boolean
+NotifyCatastrophe(order:int):boolean
+FinishedItem(order:int):boolean
+FlagOrderToCook(order:int):boolean
+ViewQueue():String <<Interface>>

ChefGUI

ChefCommunicator

-sock:Socket

+setUpConn():boolean

+getConn():Socket

+sendMessage(sock:Socket,message:
String):boolean

+ChefCommunicator(port:int,host:String
)

+closeConn():boolean

-port:int
-host:String

+getMessage(sock:Socket):String

+conn:ChefCommunicator
+OrderQueue:Queue<MenuItem>
+WaitQueue:Queue<MenuItem>

+main(args:String[0...*]:void
-initialize():void

-proc:ChefProcessor

Chef.Processor:

ChefProcessor

The ChefProcessor is responsible for the maintaining the OrderQueue and

BeingCookedQueue locally while also handing the requests given by the chefGUI. An

Example of a request is: Flaging order done which has to send the order to the

WaiterGUI.

Attributes

 +conn:ChefCommunicator

 This object is used to send and receive requests.

 +OrderQueue:Queue<MenuItem>

 This object holds the menuItems on the OrderQueue

 +WaitQueue:Queue<MenuItem>

 This object holds the menuItem on the Orders to cook.

Methods

+HandleMessage(message:String):void

 This method handles any message passed to the chef.

93

+AddOrder(menuItem:MenuItem):boolean

 This method add a menu item to the chef’s ready queue .

+DeleteItem(order:int):boolean

 This method removes an item from the chef’s ready queue and puts it on the

waiter queue.

+NotifyCatastrophe(order:int):Boolean

This method will notify the controller of a catastrophe and to halt the current

queue.

+FinishedItem(order:int):Boolean

This method will take an item from the wait queue and flag it as done. This

will send a message to the controller to forward the item to the waiter to be

delivered.

+FlagOrderToCook(order:int):Boolean

This method will flag an order to be cooked which will move it to the wait

queue.

+ViewQueue():String

 This method will return the current queue for the chef.

Chef.Communicator:

ChefCommunicator

The ChefCommunicator is responsible for sending and receiving any communication

between the ChefGUI and the CommandHandler. This class is actively listening for

requests from the CommandHandler and can be responsible for any changes made

in the ChefGUI.

Attributes

 -port:int

 The port through which the class is going to listen through.

 -host:String

 The Hostname of the local computer

 -sock:Socket

 The socket that going to be used to send and receive requests on.

Methods

 +ChefCommunicator(port:int,host:String)

 The constructor used to initialize.

94

 +setUpConn():boolean

 The method used to setup the connection on the socket.

 +getConn():Socket

 The method used to listen and return any incoming information

 +closeConn():Boolean

 The method used to close the connection on the socket.

 +getMessage(sock:Socket):String

 The method used to receive a request on a connected socket

 +sendMessage(sock:Scoket,message:String):Boolean

 The method used to send a message on the socket.

Chef.Interface:

ChefGUI

The ChefGUI is the front end of the system and is responsible for the interface

between the Chef and the system. This class will be using the ChefProcessor to aid in

processing the requests by the chef.

Attributes

 -proc:ChefProcessor

 This object is used to process all the requests.

Methods

+main(args:String[0….*]):void

 This method is used to initialize the GUI.

-intialize():void

 This method creates the GUI.

Waiter

95

WaiterProcessor

+HandleMessage(message:String):void
+AddItem(menuItem:MenuItem):
boolean
+DeleteItem(int Order):boolean
+ViewQueue():String
+Notify(TableID:int):void

<<Interface>>

WaiterGUI

WaiterCommunicator

-sock:Socket

+setUpConn():boolean
+getConn():Socket

+sendMessage(sock:Socket,message:
String):boolean

+WaiterCommunicator(port:int,host:Stri
ng)

+closeConn():boolean

-port:int
-host:String

+getMessage(sock:Socket):String

-DeliveryQueue:Queue<MenuItem>
-conn:WaiterCommunicator

+main(args:String[0...*]:void

-proc:WaiterProcessor

-initialize():void

Waiter.Processor:

WaiterProcessor

The WaiterProcessor is responsible for the maintaining the DeliverQueue locally

while also handing the requests given by the WaiterGUI.

Attributes

 -conn:WaiterCommunicator

 This is the socket connections used to communicate with other components of the

system.

 -DeliveryQueue:Queue<MenuItem>

 This is the container for the queue that holds menu items that are ready to be

delivered to customers.

Methods

 +HandleMessage(message:String):void

 This method handles all the messages passed to the waiter.

 +DeleteItem(int Order):Boolean

This method removes an order form the deliveryqueue that matches in order

number passed.

+ViewQueue():ArrayList<MenuItem>

This methods returns the current delivery queue.

+Notify(tableId:int):void

96

This methods notifies the customer corresponding the table id passed.

Waiter.Communicator:

WaiterCommunicator

The WaiterCommunicator is responsible for only receiving any communication

between the CommandHandler and the WaiterGUI. This class is actively listening for

requests from the CommandHandler and can be responsible for any changes made

in the WaiterGUI.

Attributes

 -port:int

 The port through which the class is going to listen through.

 -host:String

 The Hostname of the local computer

 -sock:Socket

 The socket that going to be used to send and receive requests on.

Methods

 +WaiterCommunicator(port:int,host:String)

 The constructor used to initialize.

 +setUpConn():boolean

 The method used to setup the connection on the socket.

 +getConn():Socket

 The method used to listen and return any incoming information

 +closeConn():Boolean

 The method used to close the connection on the socket.

 +getMessage(sock:Socket):String

 The method used to receive a request on a connected socket

 +sendMessage(sock:Scoket,message:String):Boolean

 The method used to send a message on the socket.

Waiter.Interface:

WaiterGUI

The WaiterGUI is the front end of the system and is responsible for the interface

between the Waiter and the system. This class will be using the WaiterProcessor to

aid in processing the requests by the Waiter.

97

Attributes

 -proc:WaiterProcessor

 This object is used to process all the requests.

Methods

+main(args:String[0….*]):void

 This method is used to initialize the GUI.

-intialize():void

 This method creates the GUI.

Customer

CustomerProcessor

+HandleMessage(message:String):void
+SendToOrder(order:String):boolean
+RequestAssist():boolean
+ViewWaitTime(order:int)
+Rate(name:String):boolean
+ViewMenu(name:String):String
+CancelOrder(order:int):boolean

<<Interface>>

CustomerGUI

CustomerCommunicator

-sock:Socket

+setUpConn():boolean
+getConn():Socket

+sendMessage(sock:Socket,message:
String):boolean

+CustomerCommunicator(port:int,host:
String)

+closeConn():boolean

-port:int
-host:String

+getMessage(sock:Socket):String

-conn:CustomerCommunicator
-orders:List<TableOrder>

+main(args:String[0...*]:void
-initialize():void

-proc:CustomerProcessor

Customer.Processor:

CustomerProcessor

The CustomerProcessor is responsible for the maintaining the Order placed by the

customer locally while also handing the requests given by the CustomerGUI.

Attributes

-orders:List<TableOrder>

 -conn:CustomerCommunicator

 This object will be used to communicate with other components of the system using

sockets.

98

Methods

 +HandleMessage(message:String):void

 This method will handle all message sent to the customer.

 +SendToOrder(order:String):Boolean

 This method will send an order to the controller to be forwarded to the chef for

cooking.

 +RequestAssist():Boolean

 This method will send a message to the controller to forward a request to the waiter

for assistance.

 +ViewWaitTime(order:int)

 This method will return the wait time for the current order sent.

 +Rate(int rating, string comment, name:string):Boolean

 This method is used to rate a menu item.

 +ViewMenu(name:String):String

 This method is used to view the current menu with updated inventory.

 +CancelOrder(order:int):Boolean

 This method is used to cancel an order with an id matching the one passed into the

function.

Customer.Communicator:

CustomerCommunicator

The CustomerCommunicator is responsible for only receiving any communication

between the CommandHandler and the CustomerGUI. This class is actively listening

for requests from the CommandHandler and can be responsible for any changes

made in the CustomerGUI.

Attributes

 -port:int

 The port through which the class is going to listen through.

 -host:String

 The Hostname of the local computer

 -sock:Socket

 The socket that going to be used to send and receive requests on.

99

Methods

 +CustomerCommunicator(port:int,host:String)

 The constructor used to initialize.

 +setUpConn():boolean

 The method used to setup the connection on the socket.

 +getConn():Socket

 The method used to listen and return any incoming information

 +closeConn():Boolean

 The method used to close the connection on the socket.

 +getMessage(sock:Socket):String

 The method used to receive a request on a connected socket

 +sendMessage(sock:Scoket,message:String):Boolean

 The method used to send a message on the socket.

Customer.Interface:

CustomerInterface

The CustomerGUI is the front end of the system and is responsible for the interface

between the Customer and the system. This class will be using the

CustomerProcessor to aid in processing the requests by the Customer.

Attributes

 -proc:CustomerProcessor

 This object is used to process all the requests.

Methods

+main(args:String[0….*]):void

 This method is used to initialize the GUI.

-intialize():void

 This method creates the GUI.

Manager:

100

ManagerProcessor

<<Interface>>

ManagerGUI

+HandleMessage(message:String):void
+viewInventory():String
+ addInventoryItem(inventoryItem:
invnetoryItem): Boolean
+ removeInventoryItem(name:String)
:Boolean
+editInvetoryItem(name:String,
...):Boolean
+ viewPopularity(name:String):int
+viewAllPoplarity(name:String):String

ManagerCommunicator

-sock:Socket

+setUpConn():boolean
+getConn():Socket

+sendMessage(sock:Socket,message:
String):boolean

+ManagerCommunicator(port:int,host:S
tring)

+closeConn():boolean

-port:int
-host:String

+getMessage(sock:Socket):String

-conn:ManagerCommunicator

+main(args:String[0...*]:void
-initialize():void

-proc:ManagerProcessor

Manager.Processor:

ManagerProcessor

The ManagerProcessor is responsible for handing the requests given by the

CustomerGUI.

Attributes

 -conn:ManagerCommunicator

Methods

+HandleMessage(message:String):void

 This method handles all the requests it receives.

+viewInventory():String

 This method is used to view all the inventoried items of the system.

+addInventoryItem(inventoryItem:Inventory):Boolean

 This method is used to add Inventoried Item onto the inventory.

+editInventory(name:String,…):Boolean

 This method edits an inventoried Item.

+viewPopularity(name:String):int

 This method is used to view popularity of a menuItem.

+viewAllPopularity(name:String):String

 This method is used to view an ordered list of all the popular menu Items.

101

Manager.Communicator:

ManagerCommunicator

The ManagerCommunicator is responsible for only receiving any communication

between the CommandHandler and the ManagerGUI. This class is actively listening

for requests from the CommandHandler and can be responsible for any changes

made in the ManagerGUI.

Attributes

 -port:int

 The port through which the class is going to listen through.

 -host:String

 The Hostname of the local computer

 -sock:Socket

 The socket that going to be used to send and receive requests on.

Methods

 +ManagerCommunicator(port:int,host:String)

 The constructor used to initialize.

 +setUpConn():boolean

 The method used to setup the connection on the socket.

 +getConn():Socket

 The method used to listen and return any incoming information

 +closeConn():Boolean

 The method used to close the connection on the socket.

 +getMessage(sock:Socket):String

 The method used to receive a request on a connected socket

 +sendMessage(sock:Scoket,message:String):Boolean

 The method used to send a message on the socket.

Manager.Interface:

ManagerGUI

The ManagerGUI is the front end of the system and is responsible for the interface

between the Manager and the system. This class will be using the ManagerProcessor

to aid in processing the requests by the Manager.

Attributes

 -proc:ManagerProcessor

 This object is used to process all the requests.

102

Methods

+main(args:String[0….*]):void

 This method is used to initialize the GUI.

-intialize():void

 This method creates the GUI.

DataObjects:

MenuItem

+itemID:int
+name:String
+Ingredients:ArrayList<Inventory>
+Rating:List<Rating>

TableOrder

+tableNum:int
+orderNum:int
+items:ArrayList<MenuItem>

Inventory

+totalNumItems:int
+itemList:ArrayList<MenuItem>

-toString():String

-toString():String

-toString():String

Rating

+RatingNum:int
+comment:String
+menuItemID:int

Inventory

This data object is used to store the Inventory information of an Inventoried item.

Attributes

 +totalNumItems:int

 This object represents the total number of items in the inventory.

 +itemList:ArrayList<String>

 This object represents the list of items as strings.

Methods

 -toString():String

 This method will represent the inventory as a string to be used for displaying the

inventory.

MenuItem

This Data object is used to store the Menu Item information of any dish on the

Menu.

103

Attributes

 +itemID:int

 This object represents the unique id for this menu item.

 +name:String

 This object represents the name of the menu item being represented.

 +Ingredients:ArrayList<String>

 This object represents the list of ingredients as strings.

 +Rating:list<rating>

 This object represents the list of ratings for this menu item.

Methods

 +toString():String

TableOrder

This Data object is used to store the TableOrder placed by the customer.

Attributes

+tableNum:int

This object represents the table number for this order.

+orderNum:int

This object represents the unique order number for this order.

+items:ArrayList<MenuItem>

This object represents the list of menu items associated with this order.

Methods

 +toString():String

 This method returns a string of the object to easily display the contents.

Rating

This Data object is used to store the TableOrder placed by the customer.

Attributes

 +int ratingNum

 This object represents the rating from 1-5

 +String comment

 This object represents the comment for this menu item.

104

 +int menuItemID

 This object represents the menu item id associated with this rating.

7.3 Traceability Matrix

Tab
leO

rd
er

M
en

u
Item

In
ven

to
ry

O
rd

erH
an

d
ler

M
en

u
H

an
d

ler

N
o

tificatio
n

H
an

d
ler

C
o

m
m

an
d

H
an

d
ler

In
ven

to
ryH

an
d

ler

Lo
gH

an
d

ler

D
atab

aseC
o

n
n

ecto
r

W
aiterP

ro
cesso

r

W
aiterG

U
I

W
aiterC

o
m

m
u

n
icato

r

M
an

agerP
ro

cesso
r

M
an

agerG
U

I

M
an

agerC
o

m
m

u
n

icato
r

C
u

sto
m

erP
ro

cesso
r

C
u

sto
m

erG
U

I

C
u

sto
m

erC
o

m
m

u
n

icato
r

C
h

efP
ro

cesso
r

C
h

efG
U

I

C
h

efC
o

m
m

u
n

icato
r

C
o

m
m

u
n

icato
r

C
1 X X X X X X X X X

C
2 X X X X X X X

C
3 X X X X X X X X

C
4 X X X X X X X

C
5 X X X X

C
6 X X X X X X X

C
7 X X X X X X

C
8 X X X X X X X X X X X

C
9 X X X X

C
1
0 X X X X X

C
1
1 X X X X X X X X X X X

C
1
2 X X X X X X X X

105

C
1
3 X X X X X X X

7.4 Design Patterns

Our system utilizes design patterns in two major areas. The class commandHandler

implements the command design pattern. It receives messages and uses the information

encapsulated within those messages to execute methods of other handler or interface

classes. We did not implement unexecute functionality because it would be unneccessary

for our system -- undoing a placed order is implemented through the editOrder() call, and

undoing any other event would make little sense. It is not possible to un-finish a cooked

dish, or un-deliver a dish to the customer. We chose this pattern to implement the core

communications protocol of our system because the controller and user interfaces will be

running on separate machines. The command pattern can be easily implemented using

sockets, and centralizing communication around a robust hub reduces the number of

potential points of failure compared to a system where each individual machine has a

separate line of communication to each other machine. A side benefit is that most error

handling can be done on the controller's machine as well. Altogether, this design promotes

high cohesion and low coupling for the user interface classes at the cost of a rather large

and complex controller module which is further split into its sub-classes.

The notification system uses the publisher-subscriber pattern to deliver notifications to all of

the appropriate parties. When a notification is generated and sent to notificationHandler,

the handler can parse the type of notification, its content, and its source and determine

which interfaces need to receive the notification. It then publishes the notification out to

those interfaces. For example, when the system detects that the stock level of an item in the

inventory is empty, it will generate a notification which includes a "notification ID" that

identifies the type of notification and also any other necessary information; in this case, it

would pass the name of the item whose stock has run out. notificationHandler reads the ID

and determines that it is a no-stock notification. It reads the input information and

constructs the full notification message (e.g. "Warning: Dried pineapple slices are now out of

stock"), then publishes the notification to the chefInterface and managerInterface, the two

parties who would need to see the notification. The notificationHandler will know each

notification type and choose which subscribers should be notified. While notifications could

106

have been implemented using direct communication, using the publisher subscriber pattern

makes the system easier to maintain and update. If another user interface must be added

for a new employee class, it is simple to include it in the subscribers list and include it in the

notification system.

7.5 Object Constraint Language – Still to be done by
Report 3.

CommandHandler:

CommandHandler

1. Invariants:

2. Pre-conditions:

3. Post-conditions:

MenuHandler

1. Invariants

2. Pre-conditions:

3. Post-conditions:

InventoryHandler

1. Invariants

2. Pre-conditions:

3. Post-conditions:

NotificationHandler

1. Invariants

2. Pre-conditions:

3. Post-conditions:

LogHandler

1. Invariants

2. Pre-conditions:

3. Post-conditions:

OrderHandler

107

1. Invariants

2. Pre-conditions:

3. Post-conditions:

DatabaseHandler

1. Invariants

2. Pre-conditions:

3. Post-conditions:

CommandHandler.communicator:

Communicator

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Chef.Processor:

ChefProcessor

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Chef.Communicator:

ChefCommunicator

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Chef.Interface:

ChefGUI

1. Invariants

2. Pre-conditions:

3. Post-conditions:

108

Waiter.Processor:

WaiterProcessor

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Waiter.Communicator:

WaiterCommunicator

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Waiter.Interface:

WaiterGUI

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Customer.Processor:

1. Invariants

2. Pre-conditions:

3. Post-conditions:

CustomerProcessor

Customer.Communicator:

1. Invariants

2. Pre-conditions:

3. Post-conditions:

CustomerCommunicator

Customer.Interface:

1. Invariants

109

2. Pre-conditions:

3. Post-conditions:

CustomerInterface

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Manager.Processor:

ManagerProcessor

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Manager.Communicator:

ManagerCommunicator

1. Invariants

2. Pre-conditions:

3. Post-conditions:

Manager.Interface:

ManagerGUI

1. Invariants

2. Pre-conditions:

3. Post-conditions:

DataObjects:

Inventory

1. Invariants

2. Pre-conditions:

3. Post-conditions:

110

MenuItem

1. Invariants

2. Pre-conditions:

3. Post-conditions:

TableOrder

1. Invariants

2. Pre-conditions:

3. Post-conditions:

8. System Architecture & System
Design

8.1 Architectural Styles

Due to complex architectural nature of our project, we chose to use several patterns

together to model the system. We can categorize the structure our system by identifying

the main parts, and then apply architectural considerations with respect to each piece.

Our system is as follows:

 People (Manager, Chef, Waiter, Customer)

 Controller

 Database

8.1.1: Client/Server Architecture

Our system requires persistent data storage to maintain the records and inventory for the

restaurant, and constant access to this stored data. Therefore, we require a server, and with

that a client/server architecture. On the server side, we have the Database subsystem which

contains the persistent information for our restaurant. This server can handle the requests

from the client and send or receive information as needed. The client side contains the

Controller subsystem, which has access to the information in the Database. In our system,

the Controller and the Database reside on the same computer, and is implemented with

MySQL. MySQL allows us to create a local server that takes a chunk of the hard drive, and

through communication protocols we can use any common language (such as Java) to

access the stored information. Utilizing this software, we can eliminate the need to a

111

dedicated server computer and complicated communication protocols, making our product

cheaper and easier to implement.

8.1.2: Event-Driven Architecture

Event-driven architecture (EDA) is a software pattern promoting the production, detection,

consumption of, and reaction to events [3]. An event is defined as a significant change in

the state of an object in the system. This pattern consists typically of event emitters and

consumers. Event emitters are parts of the system which could trigger events, and

consumers are the parts of the system that react to these events.

In our system, we are utilizing our notification messages as states. When an emitter sends a

message, the controller (which acts as the event processing engine), handles the message

and evokes the appropriate response from the event consumer. The customer and inventory

are event generators, while the waiter, chef, and manager are consumers. For example, when

the help button is pressed at the customer’s computer, it sends a message to the controller

which will then interpret it as a help message and pass it off to the waiter, who will provide

assistance. Another example is when an item in the inventory falls below the amount

threshold, the inventory handler will send a notification to the controller, which will interpret

the message as a low-ingredient warning and pass it off to the manager.

8.1.3: Object-Oriented Architecture

Object-oriented architecture is a design paradigm based on the division of responsibilities

for an application or system into individual reusable and self-sufficient objects, each

containing the data and the behavior relevant to the object [4]. Within an objected-

orientated system, objects cooperate amongst each other to complete tasks and form the

system. These objects are independent and loosely-coupled modules which communicate

by sharing certain datum or methods, in addition to sending and receiving messages.

Our system is heavily object-oriented. At the core, all of our objects are separate modules-

the Chef Interface, Waiter Interface, Manager Interface, and Customer Interface objects are

all derived from the a common class, since they all share basic methods of displaying

information and communicating with the controller. The Controller object is composed of

several other classes which regulate the system and function independently but work to

compose the whole. Our menu is composed of individual menu item objects, which contain

their own attributes.

 From the bottom up, our system was designed with object-oriented programming in mind,

and our design choices reflect this.

112

8.2 Identifying Subsystems

This UML Package Diagram compartmentalizes the general responsibilities of our

subsystems into singular objects in order to more easily describe our system. The controller

archetype contains a major object, called the Handler, which regulates most of the tasks in

our system. It has a co-dependency with DatabaseCommunicator, which talks with

DatabaseInterface. This interface is an access point for the information stored in the

database including Logs, Inventory, and Menu (which is dependent on the inventory). The

handler also has a co-dependency with the Communicators object, which delegates

information to Processors. The processors communicate directly with Interfaces, which

control the GUIs of the system. The processors control the underlying business logic, while

the interfaces display it. The Interfaces and Processors objects are supertypes of

processors/interfaces needed for the Manager, Chef, Waiter, and Customer.

8.3 Mapping Subsystems to Hardware

113

The Subsystem diagram, as seen in the above figure, can easily be mapped to our hardware

specifications.

 The Database and Controller are allocated on the central computer.

o The Database is a MySQL server running on this central computer.

 Each specific actor (Manager, Chef, Waiter, Customer) has a separate tablet

computer, which allocate their respective Interfaces, Processors, and Communicators.

8.4 Persistent Data Storage

Auto-Serve needs to store data that will outlast a single execution of the system in order to

keep track of the different transactions that are going on. The transactions can involve

customer orders, inventory restocks, popularity ratings, and any changes made to the menu

o the order. For each table in the restaurant, the controller will log all the transaction into

the database. The database will be maintained and implemented using MySQL. The

controller will be communicating with the database only and all other terminals will retrieve

data from the database through the controller as the middle person. Updates to the existing

tables in the database occur when a new transaction is made or an old transaction is edited.

Storing the data in a relational database will allow for efficient querying and manipulation of

data to needs of each particular client module (terminal).

8.5 Network Protocol

Auto-Serve will utilize Java Sockets built upon TCP/IP protocol. The terminals within the

restaurants will be communicating with the controller using this protocol. The controller will

act as a server and every other module (terminal) as a client. The algorithms that are being

used in the restaurant communicate between different modules (terminals) in the system by

Java sockets that are created on top of the TCP/IP protocol. The messages we will be

sending through the sockets will be object messages. We made the choice to use this due

us programming our demo in Java. A diagram of how this should look like is below:

114

8.6 Global Control Flow

8.6.1 Execution Orderness

Auto-Serve is procedure-driven and everything executes in a linear fashion. The linear

fashion can be described as followed:

Each customer that comes in will follow the same pattern of ordering menu items from their

respective table. Afterwards, the chef will be following the same pattern of choosing menu

items from the order queue and flagging them when the food is done cooking. The waiter

then will be notified of the food item that is done cooking, so he can deliver it. The manager

will be doing a daily routine check on the system ensuring all is properly functioning within

the restaurant.

8.6.2 Time Dependency

Auto-Serve is event-response time for the automation of our inventory alerts, but for the

rest of the system it is a real-time system. The real-time system is periodic. The scenario that

is explained in the Execution Orderness is what is periodic with the customer ordering a

menu item, to the chef preparing it, and the waiter delivering it to the customer. All of this is

time dependent as the time that the customer orders will be taken into consideration in our

algorithm for queuing menu items. Another factor where real-time comes into consideration

is wait time where the customer will be able to see how long he will have to wait before he

will received his food. The wait time will help the customer decide what food to order and

the chef to increase output of the food to the waiter to be delivered to the customer.

The inventory freshness factor is also time dependent. The ingredients inside the inventory

will eventually go bad after the expiration time on it. When an inventory item is added into

115

the inventory system the time of expiration is added also to ensure that the ingredient is

used up in the preparation of the menu item before the expiration time.

8.6.3 Concurrency

Auto-Serve will contain multiple threads, which involves multiple subsystems running

independently of each other. All interactions between the subsystems are controlled

through the controller. Multiple customers will be placing order at the same time which is

one way we need concurrency. This situation of multiple customer can be taken care of by

running the different threads through the order queue. Another scenario could be the

manager checking the restaurant inventory amount and updating it. This would have to be

done by spawning another thread in the controller which would handle this update request

in the database. The synchronization of the threads aren’t really needed as they would be

working independently of each other.

8.7 Hardware Requirement

The hardware requirements that are needed for auto-serve are quite simple. There will be

four types of different terminals. The terminals will be respectively for the Chef, Customer,

Waiter, and Manager. There will be more than one terminal for the Customer as there will be

one placed on every table in the restaurant. The controller will be one central server which

will be connected to all the terminals through an internal Local Area Network which will

send the proper data to the proper terminal as well as log all the transactions that are going

on at the same time. The terminals can be in the form of a computer for the manager to

view everything that is going on in the restaurant. For the chef it can be an android based

tablet attached to the wall where he can either use a keyboard or touch screen to navigate

through the different options. For the waiter it can be a touchscreen android tablet

embedded in the corner of the restaurant. For the customers it will be touch screen android

tablet (one for each table in the restaurant). The tablets for the customers should have a

minimum display of 1ft by 6 inches. An internet connection is needed for Local Area

Network communication within the restaurant and for external communication with the

inventory vendor and others. The device internal specifications are elaborated below.

8.7.1 Controller

The controller should have the following specifications to function properly:

HARDWARE MINIMUM REQUIREMENTS

PROCESSOR Intel Xeon E7

RAM 4 GB

HARD DRIVE 250 GB

116

NETWORK CARD 10/100/1000Mbps

8.7.2 Computer

The computer should have the following specifications to accomplish daily tasks.

HARDWARE MINIMUM REQUIREMENTS

PROCESSOR Intel Core 2 Duo

RAM 4 GB

HARD DRIVE 250 GB

NETWORK CARD 10/100Mbps

DISPLAY 1920 x 1080 Resolution

8.7.3 Tablets

The tablets will vary for the chef, waiter, and the customer. The tablet for the chef and waiter

will have the same specifications, but the customer will have different ones.

Tablets for Waiter/Chef

HARDWARE MINIMUM REQUIREMENTS

PROCESSOR Quad Core

MEMORY 4 GB

HARD DRIVE 32 GB

NETWORK CARD 10/100Mbps or Wifi Enabled

DISPLAY 1024 x 760 Resolution

Tablets for Customer

HARDWARE MINIMUM REQUIREMENTS

PROCESSOR Dual Core

MEMORY 2 GB

HARD DRIVE 16 GB

NETWORK CARD 10/100Mbps or Wifi Enabled

DISPLAY 1024 x 760 Resolution

The resolution has to be above the minimum requirement to ensure that the chef, waiter,

and customer are able to read the data presented to them on the tablets properly.

9.1 Algorithms

The most noteworthy functions have been already described in the mathematical model

section of the report. The algorithms described here are only ones that are noteworthy and

117

should be mentioned for completeness and understanding of how the system works. Some

algorithms are either very trivial or a duplicate of one already mentioned and will not be

described here.

9.1.1 Controller

9.1.1.1 Command Handler

The controller is essentially the center of remote procedure call communication. Its

subcomponent, the command handler implements a simple algorithm to pass messages to

internal components of the controller. Message objects are created for the types of

messages in the system. These objects may contain data or may just be made to signal that

an event occurred. These messages, shared by all parties in the system, when passed to the

command handler, will go through a switch case to determine what component of the

controller that it goes to next.

The algorithm is implemented using a switch case.

For example, a message for an order will first go to the command handler from the

customer and the command handler, determines its message for an order and then sends

this message to the order handler, which will then process it.

//for just the order message

Switch(message m) {

Case Message.order:

 orderHandler.process(m);

}

9.1.1.2 Notification System

The notification system uses a publisher – subscriber design pattern where it is the publisher

and the other components subscribe to certain messages that it sends out. The algorithm

behind this is the same as any publisher-subscriber system. It can be summarized as

118

For each Message M to be published

 For each Subscriber S of M.type

 Send (notification, S)

9.1.1.3 Logger

The logger logs events that come through the command handler to the database or a file.

There is no specific algorithms that are worth mentioning.

9.1.1.4 Database Connector

The database provides an interface to the MYSQL database on the controller’s system. More

details about MYSQL and how the database is implemented behind the programmer’s

interface can be found through its creator, Oracle, Inc. This includes algorithms for sorting

and manipulating data.

9.1.1.5 Inventory Handler

The Inventory handler deals with updating the inventory on successful placements of orders,

it does not have any specific algorithms that are worth mentioning since it will only add or

subtract a count based on the number of items ordered, number of ingredients used, etc.

9.1.1.6 Menu Handler

The menu handlers handles updating the menu list that the customers can order from. Just

as the inventory handler, it will add or remove an item

9.1.1.7 Order Handler

The order handler will handle orders that customers create. There are no specific algorithms

worth mentioning.

119

9.1.2 Chef

9.1.2.1 Java Swing Algorithms for GUI

These algorithms are described in the customer section.

9.1.2.2 Queuing orders to be cooked

This algorithm is also described in the mathematical section, but is in more detail here, since

it will incorporate the actual elements from other components of the system.

9.1.3 Waiter

9.1.3.1 Java Swing Algorithms for GUI

These algorithms are described in the customer section.

9.1.3.2 Queuing of table orders for waiters

This algorithm is also stated in the theoretical model section. Before we describe the

algorithm for queuing, we need to describe how the wait list gets built.

9.1.4 Customer

9.1.4.1 Java Swing Algorithms for GUI

 The algorithms used in the customer GUI are quite simple. The GUI itself has

predefined buttons, labels, and lists that will dynamically update themselves based on the

data that the customer is dealing with. The algorithms behind this is JAVA Swing. Swing has

a set of APIs that allow the programmer to interface with the graphical elements. Since the

programmer is abstracted from any algorithms used internally in swing, further information

can be found through the JAVA website.

120

9.2 Data Structures

Other than the database, which was used for consistent storage during system down time,

the main data structures that were used throughout the system were array lists and queues.

The queues form the backbone of the chef and waiter components. And Array lists were

used through the project for storing data as a list. We chose to use array lists because of its

simplicity and because the actual data that it represented performs the best in a list because

the operations that are done are always in a first to last order. For instance, the GUIs will

always take the list as is and display it on the GUI elements.

In terms of performance of retrieval and traversal, both array and linked lists structures have

O(1) insertion and O(n) retrieval. The linked list has an O(1) deletion while the array list has

an O(n) deletion. However, we chose to use array lists over linked lists because of their

ability to dynamically resize and ability to fit the data better. Because deletion is rarely

needed when we store our data, array lists are the better choice.

9.2.1 Controller

For the controller, there are no advanced data structures that specifically need to be

mentioned. There are temporary structures for instance when dealing with the database, to

hold items that are coming to and from the database. A list would be used if the database

returns a list. These data structures have no use other than to temporary store data to be

passed along to other components. And therefore have no criteria in deciding between

performance, flexibility, etc. These structures were the bare minimum to contain the

corresponding data.

9.2.2 Chef

The chef’s primary data structure is his queue. This queue is list of composite objects,

namely table orders that are coming from customer. This queue is an array that is

dynamically updated every time the scheduling algorithm is applied.

9.2.3 Waiter

The waiter’s primary data structure is his queue. This queue is essentially the same as chef

queue except it contains a different composite object. In this case, it contains table orders as

a whole.

121

9.2.4 Customer

The customer’s menu is stored in an array of composite menu item objects. Each of these

objects will contain information that the customer GUI will display about the item. This list is

also an array.

10. User Interface Design and
Implementation – Still to Be Done

The user interfaces have not changed much from our initial mock up developed in report 1.

All the functionality that we have discussed in the report are illustrated in the mock up that

were developed for report 1. The use cases that we will be implementing for demo 2 are

the following in which we will be bringing the integration of the different GUI’s together for

demo 2.

Use Cases to be implemented for demo:

UC – 1: ManageInventory

UC – 2: ViewInventoryList

UC – 3: Add Inventory Item

UC – 4: Remove Inventory Item

UC – 5: View Inventory Need

UC – 6: RequestRestock

UC – 7: RestockInventory

UC – 8: ManageMenu

UC – 9: Add MenuItem

UC – 10: Remove MenuItem

UC – 11: UpdateMenuItem

UC – 12: DisableMenuItem

UC – 13: ViewMenu

UC – 14: ManageOrder

UC – 15: ViewOrderQueue

UC – 16: SelectOrderToCook

UC – 17: FlagOrderDone

UC – 18: PlaceOrder

UC – 19: EditOrder

UC – 20: Log

UC – 21: ViewWaitTime

UC – 22: RequestWaiter

UC – 23: RequestCheck

122

UC – 24: RateFood

UC – 25: ViewPopularity

UC – 26: SendNotification

UC – 27: EditInventory

11. Design of Tests

11.1 Unit Test Cases

11.1.1 Customer

Test-case Identifier: TC - 1

Function Tested: Customer::sendOrder (MenuOrder order) : Boolean throws exception

Pass/Fail Criteria: The test passes if menu order is successfully sent to the controller.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Controller receives the menu order, returns

true whether order can be placed

-function returns false if order cannot be

placed (ingredients low, etc.)

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 2

Function Tested: Customer::requestAssist () : Boolean throws exception

Pass/Fail Criteria: The test passes if the customer successfully able to send a message to

the controller indicating that he needs assistance.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Controller receives the message, returns true

whether the waiter has received the request

Waiter does not receive the request, returns

false.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 3

Function Tested: Customer::viewWaitTime (Menuitem m) : int throws exception

Pass/Fail Criteria: The test passes if the correct wait time in seconds is returned from the

controller for the menu item passed as a parameter.

Test procedure Expected Results

123

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Controller receives the message, returns the

number of seconds for the menu item that

has been already ordered.

Otherwise will return -1 if the items has not

been ordered yet.

- message fails to be sent, function throws

exception

Test-case Identifier: TC-4

Function Tested: Customer::Rate (Menuitem m, int rating, string comment) : Boolean

throws exception

Pass/Fail Criteria: The test passes if the controller receives the rating for the menu item and

returns true if the rating was applied, false if not.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Controller receives the message, returns true

if the rating was successful

-controller determines rating cannot be

applied due to incorrect arguments, and

function returns false.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 5

Function Tested: Customer::ViewMenu() : Menu throws exception

Pass/Fail Criteria: The test passes if a Menu object is returned populated with all the menu

items on the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Controller receives the message, returns the

menu object.

Otherwise will return null, indicating a

serious error has occurred or a menu has not

been set.

- message fails to be sent, function throws

exception

Test-case Identifier: TC- 6

Function Tested: Customer::CancelOrder (TableOrder o) : Boolean throws exception

Pass/Fail Criteria: The test passes if the table order is successfully removed from the chef’s

124

queue via the controller.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Controller receives the message, returns true

on successful cancelations

Function returns false if the order cannot be

cancelled.

- message fails to be sent, function throws

exception

11.1.2 Menu

Test-case Identifier: TC - 8

Function Tested: Menu::AddItem (Menuitem m) : Boolean

Pass/Fail Criteria: The test passes the menu item passed is added to the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, item is

added to the menu.

- Item cannot be added returns false.

Test-case Identifier: TC - 9

Function Tested: Menu::RemoveItem (Menuitem m) : Boolean

Pass/Fail Criteria: The test passes if the menu item passed is removed from the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Item is removed from the menu.

- Item fails to be removed, function returns

false.

Test-case Identifier: TC - 10

Function Tested: Menu::ViewItem (String name) : MenuItem M

Pass/Fail Criteria: The test passes if a menu item object is returned with the corresponding

name.

Test procedure Expected Results

125

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Function returns a menu item corresponding

to the name passed.

- menu item does not exists, function fails

and returns null.

Test-case Identifier: TC - 11

Function Tested: Menu::DisableItem (Menuitem m) : Boolean

Pass/Fail Criteria: The test passes the items pass in as an argument is disabled from the

menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true of item is disabled from the

menu.

- item cannot be disabled, function returns

false

Test-case Identifier: TC - 12

Function Tested: Menu::ViewMenu () : ArrayList<MenuItem>

Pass/Fail Criteria: The test passes if the list of menu items associated with the menu is

returned.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, list of

menu items is returned.

- List cannot be returned or is nonexistent,

function returns null.

Test-case Identifier: TC - 13

Function Tested: Menu::ViewRatedList () : ArrayList<Rating>

Pass/Fail Criteria: The test passes if the correct wait time in seconds is returned from the

126

controller for the menu item passed as a parameter.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, list of

ratings for the menu is returned.

- List cannot be returned or there are no

ratings for the menu, function returns null.

11.1.3 Chef

Test-case Identifier: TC - 14

Function Tested: Chef::AddOrder (TableOrder o) : Boolean

Pass/Fail Criteria: The test passes if the menu items in the order pass in as an argument are

successfully scheduled into the chef queue.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true if all the menu items part of the

table order passed are scheduled

successfully.

- if functions fails to schedule all the orders,

returns false

Test-case Identifier: TC - 15

Function Tested: Chef::DeleteItem (Menuitem m) : Boolean

Pass/Fail Criteria: The test passes if the menu item passed as an argument is removed from

the chef queue.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed,

Function returns true if the menu item is

removed from the chef queue.

- Function returns false, of the item cannot

127

be removed or cannot be found.

Test-case Identifier: TC - 16

Function Tested: Chef::NotifyCatastrophe () : Boolean throws exception

Pass/Fail Criteria: The test passes if the controller receives the message for a catastrophe

and function returns true.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, functions

returns true when controller acknowledges

message.

Controllers does not acknowledge

catastrophe.

- message fails to be sent, function returns

false,

Test-case Identifier: TC - 17

Function Tested: Chef::FinishedItem (MenuItem m) : Boolean throws exception

Pass/Fail Criteria: The test passes if the item is removed from temporary storage and

passed to the waiter via the controller.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true if the controller successfully

passes the MenuItem to the waiter to be

delivered.

MenuItem incorrect or controller error,

function returns false.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 18

Function Tested: Chef::AddItem (Menuitem m) : Boolean

Pass/Fail Criteria: The test passes if the menu item that is passed is successfully scheduled

into the chef’s queue.

Test procedure Expected Results

-Call Function (Pass) -Correct data to be sent is passed, function

128

-Call Function (Fail)

returns true if menu item is scheduled.

Function returns false, if menu item is

incorrect or cannot be scheduled.

Test-case Identifier: TC - 19

Function Tested: Chef::ViewQueue () : ArrayList<MenuItem>

Pass/Fail Criteria: The test passes if the list of menu items that are currently in the queue

are returned.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns the list of menu items.

List does not exist, function returns null.

11.1.4 Waiter

Test-case Identifier: TC - 20

Function Tested: Waiter::AddItem (MenuItem m) : Boolean

Pass/Fail Criteria: The test passes if menu item is added to the ready queue or added to a

table order currently being waited on.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, menu

items is added to the ready queue or added

to a table order that is waiting, function

returns true.

Menu item cannot be added or is improper

format, function returns false.

Test-case Identifier: TC - 21

Function Tested: Waiter::DeleteItem (Menuitem m) : Boolean

Pass/Fail Criteria: The test passes if the menu item passed is removed from the ready

queue.

Test procedure Expected Results

-Call Function (Pass)

-Correct data to be sent is passed, menu

item is removed from the waiter’s ready

129

-Call Function (Fail)

queue, function returns true.

- item cannot be removed, or does note

exists or improper format, function returns

false.

Test-case Identifier: TC - 22

Function Tested: Waiter::ViewQueue () : ArrayList<MenuItem>

Pass/Fail Criteria: The test passes if the list of menu items that are currently in the waiter’s

queue are returned.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns list of menu items in the waiter’s

queue.

- The list of items are empty or failed to be

retrieved, function returns null.

Test-case Identifier: TC - 23

Function Tested: Waiter::Notify (int tableNum) : Boolean throws exception

Pass/Fail Criteria: The test passes if the table with the table number passed as a parameter

is notified that a waiter is on the way.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true if the customer at table

tableNum is notified via the controller.

Function returns false if tableNum does not

exists or did not request assistance from

waiter.

- message fails to be sent, function throws

exception

11.1.5 Manager

Test-case Identifier: TC - 24

Function Tested: Manager::ViewInventory () : ArrayList<InventoryItem> throws exception

Pass/Fail Criteria: The test passes if the function returns the list of inventory items.

Test procedure Expected Results

-Call Function (Pass) -function returns list of inventory items .

130

-Call Function (Fail)

-function returns null if there are not

inventory items.

- message fails to be sent, function throws

exception

Test-case Identifier: TC – 25

Function Tested: Manager::AddInventoryitem (InventoryItem i) : Boolean throws exception

Pass/Fail Criteria: The test passes if the InventoryItem passes is successfully added to the

inventory.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true if item is added.

Function returns false if item cannot be

added or improper data is passed.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 26

Function Tested: Manager::RemoveInventoryItem (InventoryItem i) : Boolean throws

exception

Pass/Fail Criteria: The test passes if the function successfully removes the inventory item

passes as an argument.

Test procedure Expected Results

-Call Function (Pass)

-Correct data to be sent is passed, function

returns true if Inventory Item is removed.

131

-Call Function (Fail) - Function returns false if item could not be

removed or improper item was passed.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 27

Function Tested: Manager::EditInventoryItem (InvetoryItem) : Boolean throws exception

Pass/Fail Criteria: The test passes if the inventory item passes replaces the one currently in

the inventory.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after inventory item is

successfully replaced.

Function returns false if improper data

passed or could not edit the item.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 28

Function Tested: Manager::ViewPopularity () : ArrayList<Rating> throws exception

Pass/Fail Criteria: The test passes if the function returns a list of ratings for the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns the list of ratings for the current

menu.

Function returns null of there are no ratings

132

in the system.

- message fails to be sent, function throws

exception

11.1.6 Controller

Test-case Identifier: TC - 28

Function Tested: Controller::CommandHandler::SpawnThread(Message m) :Boolean

Pass/Fail Criteria: The test passes if the function successfully spawns a new thread which

can handle the message passed in as an argument.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, starts a

new thread which will handle the message.

Function returns false if passed message is

not proper

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 29

Function Tested: Controller::CommandHandler::handleConn(Socket) : void

Pass/Fail Criteria: The test passes if the function successfully accepts a connection on the

socket passed in.

Test procedure Expected Results

-Call Function (Pass)

-Correct data to be sent is passed, function

will block until a connection has been

133

-Call Function (Fail)

accepter

Function returns without accepting the

connection on the socket.

Test-case Identifier: TC - 30

Function Tested: Controller::CommandHandler::SendToHandler(Message m) : Boolean

throws exception

Pass/Fail Criteria: The test passes if the function successfully sends the message to the

appropriate handler.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true when handler has received the

message.

Function returns false if message is improper

or handler has not received the message.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 31

Function Tested: Controller::CommandHandler::init(): Boolean

Pass/Fail Criteria: The test passes if the function initializes the command handler.

Test procedure Expected Results

-Call Function (Pass)

-function returns true on successful

initialization.

Function returns false if an error occurred

134

-Call Function (Fail) during initialization.

Test-case Identifier: TC - 32

Function Tested: Controller::CommandHandler::ShutDown : void

Pass/Fail Criteria: The test passes If the command handler successfully shuts down.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-function shuts down the command handler.

- command handler fails to shutdown

Test-case Identifier: TC - 33

Function Tested: Controller::InventoryHandler::getInventoryInfo() : Inventory

Pass/Fail Criteria: The test passes if the function returns an inventory object updated with

the correct inventory information.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

- Function returns correct inventory object.

- function returns null if inventory does not

exist,

Test-case Identifier: TC - 34

Function Tested: Controller::InventoryHandler::updateInventory (Message m) : Boolean

throws exception

Pass/Fail Criteria: The test passes if the function correctly updates the inventory with the

passed object.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-correct data is passed, function returns true

if inventory is successfully updated.

Function returns false, if inventory cannot be

updated or arguments is improper.

135

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 35

Function Tested: Controller::InventoryHandler::isLow(String item) : Boolean

Pass/Fail Criteria: The test passes if the function successfully returns true or false

depending on if the item is low

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true or false after determining if the

item is low.

Function returns null or an incorrect value if

the passed item was not found.

Test-case Identifier: TC - 36

Function Tested: Controller::InventoryHandler::deduct(String name) : boolean

Pass/Fail Criteria: The test passes if the function successfully deducts one from the count of

the number of items in the inventory with an item matching name.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after deducting one from the

count of the passed in item

Function returns null or false if it cannot find

the item or cannot access the inventory.

Test-case Identifier: TC - 37

Function Tested: Controller::NotificationHandler::handleMessage(String message) : Boolean

throws exception

Pass/Fail Criteria: The test passes if the function successfully sends the message to the

appropriate subscribers of the message.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after sending the message to

the appropriate subscribers.

Function returns false if an improper

message was passed.

136

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 38

Function Tested: Controller::NotificationHandler:: notify(String notification, Socket

connection) : Boolean throws exception

Pass/Fail Criteria: The test passes if the function successfully sends the notification to the

socket passed in.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after sending notification over

socket

Function returns false notification or socket

is improper,

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 40

Function Tested: Controller::LogHandler::writeLog(String s) : Boolean

Pass/Fail Criteria: The test passes if the function successfully writes the log passed in as an

argument.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after writing to the log.

Function returns false if it cannot write to the

log.

Test-case Identifier: TC - 41

Function Tested: Controller::LogHandler::readLogs() : List<String>

Pass/Fail Criteria: The test passes if the function successfully returns a list of logs.

Test procedure Expected Results

-Call Function (Pass)

-function returns list of logs.

Function returns null of there are no logs in

137

-Call Function (Fail) the system.

Test-case Identifier: TC - 42

Function Tested: Controller::OrderHandler::addOrder(TableOrder order) : Boolean

Pass/Fail Criteria: The test passes if the function successfully adds the table order passed.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after adding the table order.

Function returns false if table order is

improper or cannot be added.

Test-case Identifier: TC - 43

Function Tested: Controller::OrderHandler::editOrder(int orderNum, TableOrder o) :

Boolean

Pass/Fail Criteria: The test passes if the function successfully updates the order with id,

orderNum with the table order passed.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after successfully updates the

order.

Function returns false if order cannot be

updated, improper order passed, or cannot

id cannot be found.

Test-case Identifier: TC - 44

Function Tested: Controller::OrderHandler::getWaittime(int orderNum) : int

Pass/Fail Criteria: The test passes if the function successfully return the wait time for the

order.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

correctly returns the wait time for the order.

Function returns -1 if order cannot be found.

Test-case Identifier: TC - 45

138

Function Tested: Controller::OrderHandler::flagItemDone(MenuItem item) Boolean throws

exception

Pass/Fail Criteria: The test passes if the function successfully signals the waiter to add the

item to be delivered.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after sending item to the waiter.

Function returns false if item is improper.

- message fails to be sent, function throws

exception

Test-case Identifier: TC - 46

Function Tested: Controller::DatabaseHandler::getInventory() : Menu

Pass/Fail Criteria: The test passes if the function successfully returns the menu updated

with the current inventory.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-function returns the menu updated with the

current inventory.

Function returns null if there is no inventory.

Test-case Identifier: TC - 47

Function Tested: Controller::DatabaseHandler::addNewInventory(String name, ...) : Boolean

Pass/Fail Criteria: The test passes if the function successfully adds a new item to the

inventory

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after adding a new item to the

inventory.

Function returns false if item cannot be

added.

Test-case Identifier: TC - 48

Function Tested: Controller::DatabaseHandler:: removeFromInventory(String name):Boolean

139

Pass/Fail Criteria: The test passes if the function successfully remove the item matching the

name passed.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after the item associated with

the name is removed.

Function returns false if it cannot find the

item.

Test-case Identifier: TC - 49

Function Tested: Controller::DatabaseHandler:: writeLog(String log) : Boolean

Pass/Fail Criteria: The test passes if the function successfully writes a log string to the log.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after writing a string to the log.

Function returns false if it cannot add a

string to the log, or string pass in is

improper.

Test-case Identifier: TC - 50

Function Tested: Controller::DatabaseHandler:: getPrevLogs():List<String>

Pass/Fail Criteria: The test passes if the function successfully returns the list of logs

previously recorded

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-function returns the list of previous logs.

Function returns null of there are no

previous logs.

140

Test-case Identifier: TC - 51

Function Tested: Controller::DatabaseHandler:: updateInventory(String name, int num) :

Boolean

Pass/Fail Criteria: The test passes if the function successfully updates inventory in the

database.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after updating the database.

Function returns false, if data passed is

improper or cannot be updated .

Test-case Identifier: TC - 52

Function Tested: Controller::DatabaseHandler:: removeOneInventory(String name) :

Boolean

Pass/Fail Criteria: The test passes if the function successfully removes one from the item

passed in

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after removing one from the

inventory of the item passed.

Function returns false if the argument is

improper or cannot be found.

Test-case Identifier: TC - 53

Function Tested: Controller::MenuHandler::init() : boolean

Pass/Fail Criteria: The test passes if the function successfully initializes the menu handler

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-function returns true after initializing the

menu handler.

Function returns false if it cannot initialize

the menu handler.

141

Test-case Identifier: TC - 54

Function Tested: Controller::MenuHandler::handleMessage(Message m)

:Boolean throws exception

Pass/Fail Criteria: The test passes if the function successfully handles the message

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after handling the message.

Function returns false if it cannot handler the

message.

Test-case Identifier: TC - 55

Function Tested: Controller::MenuHandler::AddMenuItem(MenuItem m) : Boolean throws

exception

Pass/Fail Criteria: The test passes if the function successfully adds the menu items passed

to the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after adding the menu item.

Function returns false if the menu item is

improper.

Test-case Identifier: TC - 56

Function Tested: Controller::MenuHandler::RemoveMenuItem(MenuItem m) : Boolean

Pass/Fail Criteria: The test passes if the function successfully removes the menu item

passed.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after removing the menu item.

Function returns false if it cannot remove the

menu item, the menu item passed is

improper, or it cannot find the menu item in

the list.

142

Test-case Identifier: TC - 57

Function Tested: Controller::MenuHandler::getMenuItems(): ArrayList<MenuItem>

Pass/Fail Criteria: The test passes if the function successfully returns the list of menu items

that are part of the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns the list of menu items that are part of

the menu.

Function returns null if there are no menu

items in the menu.

Test-case Identifier: TC - 58

Function Tested: Controller::MenuHandler::updateMenu(MenuItem m): Boolean

Pass/Fail Criteria: The test passes if the function successfully updates the old menu item

with the one passed in as a parameter.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after updating the old menu

item with the one passed in as an argument.

Function returns false if it cannot find the

menu item or the item passed is improper. .

Test-case Identifier: TC - 59

Function Tested: Controller::MenuHandler::DisableMenuItem(String name) : Boolean

Pass/Fail Criteria: The test passes if the function successfully disables the menu item

passed in

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after disabling the menu items

matching the name passed in.

Function returns false if there

- message fails to be sent, function throws

exception

143

Test-case Identifier: TC - 60

Function Tested: Controller::MenuHandler::getRatingList() : ArrayList<Rating>

Pass/Fail Criteria: The test passes if the function successfully returns the list of ratings

associated with the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns the list of ratings for the current

menu.

Function returns null of there are no ratings

in the system.

Test-case Identifier: TC - 61

Function Tested: Controller::MenuHandler::getRating(String name) : ArrayList<Rating>

Pass/Fail Criteria: The test passes if the function successfully returns the list of ratings

associated with the menu item that matches the given name.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns the list of ratings for the menu item

that matches the name.

Function returns null if it cannot find the

menu item.

Test-case Identifier: TC - 62

Function Tested: Controller::MenuHandler::getMenuItems() : ArrayList<MenuItem>

Pass/Fail Criteria: The test passes if the function successfully returns the list of menu items

associated with the menu.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns the list of menu items for this menu.

Function returns null of there are no menu

items in this menu

144

Test-case Identifier: TC - 63

Function Tested: Controller::MenuHandler::setRating(String name, int rating, String

comment) : Boolean

Pass/Fail Criteria: The test passes if the function successfully adds a rating for the menu

item.

Test procedure Expected Results

-Call Function (Pass)

-Call Function (Fail)

-Correct data to be sent is passed, function

returns true after adding a rating for the

menu item that matches the name passed in.

Function returns false if the arguments are

improper or it cannot find the menu item.

11.2 Test Coverage

The test cases cover all the functionality of every class, however since the functions of

classes will communicate and talk to other classes, the test coverage also ensures that

testing is through for cross class communication and therefore covers the system as a

whole. In essence, by testing the individual functions of every class, we cover the entire

system as a whole. However, the way we test these functions are important for integration

between the different classes which is discussed in the next section.

11.3 Integration Testing Strategy

Integration is highly important for our system since the functionality of the system as a

whole depends on the interaction of each component of the system. Our approach to

testing the integration of all the components is a bottom-up approach. We will first start

with unit testing functions that belong to the classes and do not require communication

with the network. For example, many of the classes contained in the controller are data

processing classes and are created to improve the efficiency and robustness of the

controller as a whole. For instance, the database handler and the logger are classes are just

created to interact with the data base or log events. After testing these classes, we move on

to testing communication between the classes. We start with testing the server

communication of the controller, as it is the main communication of the system. We then

move on to testing communication of pairs of controller-component. This way, when a

problem occurs it is easy to pinpoint it early on. If we were to take on a different approach,

we would encounter problems that would have ambiguous roots. After testing pairs of

145

components, we move on to events that require multiple components, and finish the unit

tests that use these events. For the initial parts of the testing we need to create test stubs

for some of the input so that we can test edge cases that might not occur on a day to day

basis and also to create data that needs to come in from different components before

actually connecting the components. After testing all of the communication and using test

stubs to test a variety of input, we will have a stable system.

11.4 Non-Functional Requirements Testing

To test the system’s nonfunctional requirements, we will need to implement the system in

an actual restaurant to see what functionality seemed to be better appealing visually or

functionality that could be included that would increase the ease of use of the product. We

would need to survey users of the product and ask questions of this sort: “What screens

seemed hard to navigate?”, “Chef, were you able to easily remove items from the queue?”.

Because the system is designed in such a way that upgrading is elementary, it will be easy to

include these changes into an update that can be pushed to the system.

12. Project Management & History of
Work

12.1 Merging Contributions from Individual Team
Members

Compiling our group members’ work for the reports was not too difficult. We used

SkyDrive to collaborate on one document, so we were able to edit and add our parts

simultaneously. We initially had a few issues with SkyDrive being buggy, but in the end, it

resolved itself.

12.2 Project Coordination and Progress Report

For the current functionalities of the project, see the “Current Status” section below. Our

History of Work describes what we have done so far, as well as some problems we

encountered, and how we adapted to these situations.

12.3 Plan of Work

146

Due to shortage of time, most of our items are being split among group members and

worked on in parallel. Once we finish the documentation for reports two and three, we plan

on using the rest of semester to integrate our GUIs for the final demo.

147

12.4 Breakdown of Responsibilities

Task Prem David John Joshua Scott Sai

Statement of Requirement X X X X X X

System Requirements X X X X X X

Mock Up Interfaces X X X X X X

Functional Requirements X X X X X X

Use Cases X X X X X X

Fully Dressed Descriptions X X X X X X

Domain Analysis X X X X X X

Mathematical Model X X X X X X

Interaction Diagrams X X X X X X

Class Diagrams and Interface X X X X X X

System Architecture & Design X X X X X X

Algorithms X X X X X X

Data Structures X X X X X X

UI Design & Implementations X X X X X X

Design of Tests X X X X X X

Project Management X X X X X X

History Of Work X X X X X X

References X X X X X X

The above chart summarizes the contributions from various team members in terms of

effort. The course website states to quantify the breakdown to what person did what for

each section. However, we the group, would like to state that all members have equally

0

2

4

6

8

10

12

14

16

18

Prem Joshua David Sai John Scott

U
se

r
C

o
n

tr
ib

u
ti

o
n

 %

148

contributed to the report since we believe that the website does not accurately describe

contributions.

12.5 History of Work, Current Status, and Future
Work

12.5.1 History Of Work

In this section of the report, we will discuss the history of our work. This part serves as a
journal of our accomplishments and highlights each milestone in our project.

January 22nd - February 5th
At the start of the semester, we initially worked on the personal health monitoring
project. We began by looking at health monitoring devices and thinking of ways to integrate
these devices to create a system that would promote healthy living to the general
public. The three aspects of personal health we decided to focus on were diet, exercise,
and sleep. Then, we chose to purchase the Bodymedia Fit as well as the Motorola
MotoActv. These devices would be used to monitor the wearer’s calories burned, exercise
periods, and sleep patterns. We decided to design a system which would integrate these
three aspects of personal health, and interact with users to encourage them to improve in
these three areas of their lives. On February 5th, we submitted our proposal.

February 6th - February 23rd
During this time, our group focused on refining our ideas and writing the first report. We
received approval of our proposal from the professor and proceeded to formulate use cases
and functional requirements. We also created system sequence diagrams. On February
23rd, we submitted our first report.

February 24th - March 12th
During this time, we began planning for the arrival of our devices and designing our
system. We created a webpage for our system’s web application. Afterwards, while waiting
for our devices to arrive, we began working on the second report. We received the health
monitoring devices on March 12th.

March 13th - March 29th
On March 13th, we received an email from the professor stating that he was unsatisfied with
our project ideas after reviewing our first report. After a lengthy group meeting, we
revamped our project with some new ideas, which we emailed to the professor for
review. These included: a workout aid to help users track workouts and repetitions,
hydration notifications, and a social workout gaming system which used GPS to record
routes and find local workout buddies. From here, we worked closely with the professor to
refine our ideas and to make sure he was satisfied with our project. Despite the professor
liking our new ideas, he determined that we would not have enough time to collect sufficient
data for a working demo. We decided to scrap the project and start over with a new

149

topic. The professor granted us an extension for the first demo and we chose to work on
restaurant automation.

March 30th - April 6th
We began our work on the restaurant automation project by reading reports from previous
years and brainstorming new ideas to contribute to these systems. Our main idea was to
implement an inventory system which will simplify the jobs of restaurant employees and
improve customer service and satisfaction. Then, we formally drafted these ideas into a
theoretical model, which included the reasoning behind our ideas, algorithms/pseudocode,
and specific user scenarios. On April 6th, we submitted this theoretical model to the
professor for feedback, before continuing with the official first report.

April 7th - April 14th
During this time, our group focused on finishing the first report. After receiving positive
feedback on our theoretical model, we refined our ideas and description of our system, as
well as incorporated UML diagrams and use cases to help illustrate the concepts behind our
product. We drafted our Customer Statement of Requirements, Glossary of Terms,
Functional Requirements, Effort Estimation, and Domain Analysis. These sections were
divided amongst individuals in our group to work on and later assembled into our report. On
April 14th, we submitted a draft of our first report.

April 15th - April 16th
The professor responded quickly and provided helpful feedback on our draft of the first
report. On April 16th, after making a number of changes to our draft, we submitted our final
version of the first report for grading.

April 17th - April 19th
During this time, our group furiously programmed to put together a demo. We divided up
the project into 5 individual parts: the chef’s GUI, the customer’s GUI, the waiter’s GUI, the
menu item rating GUI, and the inventory system backend. The customer’s GUI displays the
menu items currently available at the restaurant and allows the customer to select these
items and place his or her order. The order is then submitted and queued so that it can be
made by the restaurant chefs. The chef’s GUI enables customer orders to be viewed by the
chef, who then selects which orders to cook. A notification is given when the order is ready
to be served. The waiter’s GUI enabled waiters to view a list of orders which are finished
cooking and ready to be served. Based on the order, the GUI then informs the waiter which
table the order belongs to. The rating GUI allows customers to rate menu items that they
had ordered. The GUI also allows both managers and customers to view past ratings to
determine the popularity of specific menu items. The ratings are stored in our
database. Our inventory system keeps track of ingredients stored in the restaurant’s
inventory. Notifications for restocking are sent to the manager when a certain item’s stock
is below a predetermined threshold. The system automatically updates item quantities
when a restock is issued or when ingredients expire. The inventory system also keeps
track of ingredient usage rates and sets new restocking thresholds based on this data. Due
to the rushed nature of this demo, many parts of the program were hard-coded and the
individual components did not interact with one another. On April 19th, we presented our
demo to the professor and discussed future work for the final demo.

150

April 20th - April 23rd
During this time, we cleaned up our project code and assembled our work into one unit for
our demo submission. On April 23rd, after documenting the code and placing instructions
and examples in various readme files, we uploaded our Demo 1 submission to
Sakai. During this time, we also began work on our second report.

April 24th - May 5th
During this time, we continued working on the second report. With the end of semester
rapidly approaching, we decided to lump everything together and work on the third report as
well. Our goal was to get all the documentation out of the way so that we would have the
remainder of the semester to work on coding for the final demo. For these reports, we
worked on Interaction Diagrams, Class Diagrams, Interface Specification, System
Architecture, System Design, Algorithms and Data Structures, User Interface
Design/Implementation, Design of Tests, and our References. We divided these sections
for individual group members to complete, and compiled everything into our second report
for submission. Then, we merged the first and second reports and reviewed everything to
create the third report. On May 5th, we submitted both our second report and our final
(third) report.

12.5.2 Current Status

In this section, we will discuss the current status and features of our project after the first
demo and our submission of the three reports.

Our system hasn’t changed much since the first demo. We have implemented the following
features:

 The system keeps track of ingredient inventory and notifies the manager of when an
ingredient restock is needed.

 The system provides the customer with a menu GUI, which displays a list of the
menu items that are currently able to be made at the restaurant, based on ingredient
availability. The customer interacts with this GUI to view ratings on these menu
items, as well as place their order. Afterwards, the customer can submit his or her
own rating of the menu item(s) ordered.

 The system provides the chef with a GUI which displays a queue of orders submitted
by restaurant customers. The chef can select which order(s) he or she wishes to
cook from this queue, and the GUI will display the recipe and ingredients needed to
make the selected item(s). Once the chef is finished making the item(s), a
notification will be sent to the waiter to serve the dish, and the order will be queued
for delivery. The restaurant inventory will also be reduced by the appropriate
amount, based on which ingredients were used.

 The system provides the waiter with a GUI which displays a queue of customer
orders that are cooked and ready to be delivered. The waiter can select which
order(s) to deliver from this queue, and the GUI will display the table to which the
order belongs. Then the order will be dequeued from this list and the customer will
be allowed to rate the item on the customer’s GUI.

151

12.5.3 Future Work

In this section, we will discuss our goals for the final demo, as well as future ideas that can
extend and improve our current system.

For the upcoming final demo, our main priority is to combine all of the individual
components we implemented in our first demo to have a single, integrated system. Some
challenges we face in doing so are:

 Different programming languages. Because we were short on time for the first
demo, we split the work and completed each part individually. Each of us chose
different programming languages and different methods of
implementation. Integrating these components will be a challenge since they were
developed separately. Some parts may even need to be completely redone to make
every piece function together as a cohesive unit.

 Communication between modules. Our system involves many different different
modules which have different responsibilities, but also communicate with each other
extensively. Each module depends on the actions of at least one other module, and
thus we must take care to ensure proper communication between these modules
when integrating our project.

For future work, there are some things that we thought of which would further automate
restaurant service and/or improve the current system:

 Waiter notifications. Even during relatively calm business hours, waiters are not
completely available to service customers’ needs immediately. Usually, customers
must wait for the waiter/waitress to walk by their table before attempting to get their
attention. To facilitate this process, we can implement a notification system that will
allow customers to push a button when they want a waiter to come to their
table. This will be similar to an airline’s flight attendant notification button, and will
eliminate the need for customers to constantly keep an eye out for a waiter when
they require the waiter’s services.

 Automatic delivery. Instead of having a waiter to deliver cooked orders, we
thought of having a automatic delivery system. This is an improvement because
during busy hours, waiters are often have many tables to attend to, and customers
end up having to wait longer to be served despite their food being ready. Having an
automatic delivery system will free up waiters to tend to other customer needs,
improving customer satisfaction and reducing the workload of the waiter. To
implement this, we could integrate our project with the Robotic Delivery System
project from Fall 2012.

 Video reviews. Many online products feature video reviews, which demonstrate
hands-on interaction between the consumer and the product. In order to further
engage our customers and provide better reviews on our menu items in the future,
we could add an optional video reviewing portion to our customer GUI.

152

References

[1] http://www.enewsbuilder.net/peoplereport/e_article000657699.cfm?x=b11,0,w (Robot

Picture)
[2] http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-

report3.pdf (Group 2, 2011 report)

[3] http://en.wikipedia.org/wiki/Event-driven_architecture

[4] http://msdn.microsoft.com/en-us/library/ee658117.aspx

[5] http://codethat.files.wordpress.com/2010/01/scheme.png

http://www.enewsbuilder.net/peoplereport/e_article000657699.cfm?x=b11,0,w
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-report3.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/2012-g11-report3.pdf
http://en.wikipedia.org/wiki/Event-driven_architecture
http://msdn.microsoft.com/en-us/library/ee658117.aspx
http://codethat.files.wordpress.com/2010/01/scheme.png

