
1 | P a g e

Auto Order 2.0
Group 2

Report #1: System Design

Website: https://sites.google.com/site/restautomation/

“The hardest single part of building a software system is deciding what to build. No part of the work so

cripples the resulting system if done wrong. No other part is more difficult to rectify later.”

– Fred Brooks

Group Members:

Praveen Chekuri

Pradnya Pisal

Zachary Brown

Kartik Bhatnagar

Bill Fung

https://sites.google.com/site/restautomation/

2 | P a g e

Individual Contribution Breakdown

Task/Group Member
Praveen Pradnya Bill Kartik Zac

Project Management (15 points) 6 4 3

2

Sec 1: Interaction Diagrams (30 points) 6 10 14

Sec 2: Class Diagram & Interface Specification

(10 Points)
3

 7

Sec 3: System Architecture & Design (15

Points)
3 4 2 6

Sec 4: Algorithms & Data Structures (4 Points) 4

Sec 5: User Interface Design & Implementation

(11 Points)
6

5

Sec 6: Design of Tests (12 Points) 6 6

Sec 7: Plan of Work (2 points) 2

Sec 8: References (1 Point) 1

Individual Point Allocation

Praveen Chekuri 20

Pradnya Pisal 20

Bill Fung 20

Kartik Bhatnagar 20

Zachary Brown 20

3 | P a g e

Table of Contents
Re-Iteration of Report 1 ... 4

Interview ... 4

Use Cases .. 5

Domain Models .. 8

Interaction Diagrams .. 11

Class Diagram & Interface Specification .. 20

Class Diagram .. 20

Data Types & Operation Signatures .. 23

Traceability Matrix ... 26

System Architecture & System Design .. 28

Architectural Styles ... 28

Identifying Subsystems ... 33

Mapping Subsystems to Hardware .. 35

Persistent Data Storage .. 37

 Network Protocol .. 42

Global Control Flow .. 43

Hardware Requirements .. 45

Algorithms & Data Structures .. 47

Algorithms ... 47

Data Structures ... 48

User Interface Design & Implementation .. 50

Design of Tests .. 53

Project Management & Plan of Work ... 61

Project Coordination & Progress Report... 61

Plan of Work ... 63

 Breakdown of Responsibilities ... 64

References .. 65

4 | P a g e

Re-Iteration of Report 1

Interview

- done by Zac Brown
We called the manager of Buffalo wild wings because our use case 8 was confusing and we wanted to
know how it is actually done. And here were the questions we asked (His name was Matt and his phone
number is 732-297-9413):

 How do you add items to the menu?
o All items are chosen by corporate, so manager doesn’t have control of what items go

on the menu.

 What happens if a chef doesn’t know how to cook an item?
o As a manager, he is responsible for knowing everything about the menu including how

to cook each item. He goes through training for this. If a chef does not know how to
cook, then the manager has to step in. From corporate, he also gets a recipe book
about how to cook each item.

 What do you look for in a sales report? How often do you run a sales report?
o Sales reports are run each night at closing. You do a weekly report with each nightly

report to check if it adds up.

 Do you look at each item when you run a sales report?
o No, I just look at net profit and gross profit.

 How often do you restock your inventory?
o Every Wednesday and Saturday regardless of demand. Always have a surplus.

 How do you manage inventory?
o He hates the fact that he has to go in and manually check each ingredient and see

what you need more of for the next shipment by paper and hand.

 How do you make sure you have enough inventory?
o Compares it with last years and depending on that orders. Maintains a surplus.

 Is there anything you would suggest to make your job easier?
o Wants to use tablet menus.
o Automate inventory checking.
o Hardest part about being manager is dealing with customers.

Changes made to the project
 Based on the manager’s feedback we have modified our project to better serve the end-user’s

needs. Firstly looking at his suggestions, we already have two of the three suggestions specified under

our system. For the third part, dealing with customers cannot really be automated at this point. It is

something we cannot really help the manager with. Also using his suggestions, we had to make changes

to Use Case 8 and Use Case 16. For Use Case 8 – Add Item, the chef had to be removed as an initiating

actor since the manager has complete power over this. And for Use Case 16 the addition of the

inventory system to our project has caused a major change to the system side of Use Case 16 as the

system automatically takes into account availability of ingredients and subtracts them as well. As for the

sales report we will be changing how that is implemented in our system in the next iteration.

5 | P a g e

Use Cases

Use Case UC-1 Login

Related Requirements:

Initiating Actor:

Actor’s Goal:

Participating Actors:

Preconditions:

Postconditions:

Failed End Condition:

REQ1

Hostess, Waiter, Manager, Chef

To successfully login to the system and perform restaurant operations

Access to a computer connected to system network

User successfully logged in to system

Login Failed

Flow of Events for Main Success Scenario:

 1. User selects Login button
 2. System prompts for a unique identification number
 3. User enters information into designated field
 4. System validates user input and displays proper interface of that user

Flow of Events for Extensions (Alternate Scenarios):

4 a. System could not validate log information and sends a login failed error

6 | P a g e

Use Case UC-8 AddMenuItem

Related Requirements:

Initiating Actor:

Actor’s Goal:

Participating Actors:

Preconditions:

Postconditions:

Failed End Condition:

REQ9

Manager

To successfully add a new menu item to Menu

Manager receives a new item from corporate to be added to the menu.
User is authorized as Manager and has logged in successfully: Include Login
(UC-1)

System successfully updated Menu

Menu failed to update

Flow of Events for Main Success Scenario:
 1. Manager selects Add Menu Item option from ManageMenu interface.
 2. System prompts manager to fill out information required for creating a new menu item (Name,
description, Side Dishes, Cooking Time, URL where chef can find the recipe, date that item will be added
to the menu)
 3. Manager enters all required information and hits the next button.
 4. (a)System validates the entered data fields. (b)System prompts manager to choose ingredients
required for the meal along with quantities.
 5. Manager enters all required information and hits the Next button.
 6. (a)System confirms all information is valid. (b)System confirms that all ingredients are in inventory.
10. (a)System retrieves the stored data fields (i.e. name, description etc.). (b)System looks up cost of
each ingredient and calculates food cost for the item and displays to the manager. System verifies the
price of the item through the “Uniform System of Accounts for Restaurants” and prints suggested price
along with the profit margin. System also prompts manager to edit the price if necessary.
11. Manager confirms price and hits the Add Item button.
12. (a) System validates new menu item information. (b) Updates Menu on the projected date and
removes item from potential list.

Flow of Events for Extensions (Alternate Scenarios):
 3 a. End-User selects Cancel option
  1. (a) System does not add menu item to the potential item list. (b) returns to previous Interface

 4 a. System detects a letter element in price data field
  1. System notifies end-user that data field is invalid or missing
 b. System detects a data field is empty
  1. System notifies end-user that data field is invalid or missing
 5 System recognizes a required ingredient is not in the restaurant inventory.
  1. System sends a warning to manager saying that ingredient is not in inventory and make sure to add it
to the next shipment list.

7 | P a g e

Use Case UC-16 OrderFood

Related Requirements:

Initiating Actor:

Actor’s Goal:

Participating Actors:

Preconditions:

Postconditions:

Failed End Condition:

REQ3

Customer

To select desired meal items from the food menu

Chef, Waiter

Customer is seated and ready to order

Customer has placed the order.

Customer decides to leave without completing the order.

Flow of Events for Main Success Scenario:

 1. Customer selects “View Menu” from the main screen
 2. System displays a categorized list of food items available to order based on ingredients available.
 3. Customer (a) selects food item of his/her choice and specifies the desired side meal as well as any
 Notes for the Chef (b) Selects “Add To Order” option
 4. (a)System check availability of ingredients of the order. (b) System adds customer’s meal to order
 list, if ingredients are available.
 5. When finished adding meals, Customer selects “View Order” option.
 6. System displays a list of all meals selected in Customer’s Order with options to Remove individual
 items from the Order.
 7. Customer verifies Order and selects “Order Now” option.
 8. (a)System confirms the order and sends the Table Number, Time Stamp, and each Meal Name, Side
 and Chef Notes from the Order to the Chef’s Order Queue. (b) System subtracts the ingredients
 required by the order from inventory.
9. (a)System stores order information on a database for future payment processing. (b) System
notifies user that the order was placed successfully.

Flow of Events for Extensions (Alternate Scenarios):
3/5 Customer can selects the cancel order option.
  1. System does not send order and returns customer to main screen.

4 (a) Ingredients for the items ordered are unavailable.
  1. System notifies user that item selected cannot be ordered due to a shortage in
 inventory.
  2. System does not add item to the order.

4 (b) System recognizes that customer did not specify a side.
  1. System notifies user to select a side before the item can be added to the order.

7 Customer decides to remove an item from the order by selecting the remove button next to the
 item.
  1. System removes the item from the order.

8 | P a g e

Domain Models

This section contains the detailed domain models which are part of the system. These detailed

domain models help us better understand how the specific use cases perform.

Use Case UC-1: Login

9 | P a g e

Use Case UC-8: AddItem

10 | P a g e

Use Case UC-16: Order Food

11 | P a g e

Interaction Diagrams

Use Case-2: Enter Hours

Responsibilities:

1. Employee begins to login.

2. The system checks the validity of the login by the Employee. If isValid()==True then moves to

next step.

3. Alternative: System failure. Employee login is denied access to the system.

4. Employee selects to input hours for employee using the clockHours() method.

5. The system displays the employee database with the method veiwEmployeeDataBase().

6. Employee enters time information using the method EnterHours() to the complete the

timesheet.

12 | P a g e

Use Case-4: Add Employee

Responsibilities

1. Manager begins to login.

2. The system checks the validity of the login by the Manager. If isValid()==True then moves to

next step.

3. Alternative: System failure. Manager login is denied access to the system.

4. Manager selects to add employee using the addEmployee() method.

5. The system will validate the employee by using the method ValidEmployee().If

ValidEmployee()==True the system will add employee to the database by using the method

addEmployeetoDatabase().

Else if ValidEmployee()==False, then addException() method will be need to be complete before the

manager can add the employee.

13 | P a g e

Use Case-5: Remove Employee

Responsibilities

1. Manager begins to login.

2. The system checks the validity of the login by the Manager. If isValid()==True then moves to

next step.

3. Alternative: System failure. Manager login is denied access to the system.

4. Manager selects to remove employee using the removeEmployee() method.

The system will remove the employee from the database by using the method

removeEmployeefromDataBase().

14 | P a g e

Use Case-7: Manage Menu

Responsibilities

1. Manager begins to login.

2. The system checks the validity of the login by the Manager. If isValid()==True then moves to

next step.

3. Alternative: System failure. Manager login is denied access to the system.

4. Manager selects the edit menu items using the EditMenu() method.

The system will save changes to the menu by using the MenuUpdated() method.

15 | P a g e

Use Case-11 Manage Layout

Responsibilities

1. Manager begins to login.

2. The system checks the validity of the login by the Manager. If isValid()==True then moves to

next step.

3. Alternative: System failure. Manager login is denied access to the system.

4. Manager selects to edit floor by using EditFloorPlan() method.

The system will update with FloorPlanUpdated() method.

16 | P a g e

Use Case-16: Order Food

Responsibilities

1. The Customer begins by viewing the menu by using the method ViewMenu().

2. While viewing the menu the items that are shown are display from ViewItemDateBase() .

3. Tthe Customer will create an order of the items that they prefer with CreateOrder().

4. The order will be saved and sent to the chef for cooking. This is done with the method

SentOrder() to the chef.

17 | P a g e

Use Case-18: CallWaiter

:CustomerInterface :OrderControl

CallWaiter()

:WaiterInterface

AlertsWaiter()

endServiceCall()

Responsibilities

1. The customer wants to call the waiter for help by using the method CallWaiter() thru the

OrderControl system.

2. The system will then notify the waiter to assist the customer in need.

The waiter will assist all needs of the customer and then end the service call on the system by using the

method endServiceCall().

18 | P a g e

Use Case-20: Pay Bill

:CustomerInterface() :Bill

ViewBill()

DisplayBill()

Tip()

CalculateTotal()

PaymentType()

AlertsWaiter()

:Waiter Interface

CollectPayment()

Responsibilities

1. During check out the customer will need to view the bill using the method viewbill().

2. The system will display the bill with displaybill().

3. The customer will use tip() method to calculate the tip amount for their meal.

4. The system will then calculate the total amount with the tip with calculatetotal().

5. Customer will select payment type.

The system will notify the waiter to collect the payment from customer by using collectpayment()

method.

19 | P a g e

Use Case-23: Send Reservation

:CustomerInterface() :ReservationSystem

MakeReservation()

DisplayPreference()

SubmitDetails()

SaveReservation()

Confirmation()

Responsibilities

1. The customer wants to make a reservation by using the PlaceReservation() method.

2. PlaceReservation() is completed, the system will display the preference with

DisplayPerference().

3. Customer views the preferences and submits it by using the Submit() method.

4. The reservation made by the customer will be saved with the SaveReservation().

20 | P a g e

Class Diagram & Interface Specification

Class Diagrams

Use Case UC-1: Login

21 | P a g e

Use Case UC-8: AddItem

22 | P a g e

Use Case UC-16: Order Food

23 | P a g e

Data Types & Operation Signatures
ManagerInterface

 - Buttons : Button[]

 - TextFields : TextField[]

 - DropDowns : ComboBox[]

DisplayMenuClass

 - Form1 : ManagerInterface

 - Form2 : ManagerInterface

 - Form3 : ManagerInterface

MenuController

 - Timestamp : long

 - OperationHours : long

 + checkTime() : bool

Menu

 + get(id : int) : MenuItem

 + add(m : MenuItem) : void

 + next() : MenuItem

 + deletePotential_Item(item : Potential_Item) : void

MenuItem

 - Name : String

 - Price : double

24 | P a g e

 - Description : String

 - Sides : int[]

 - FoodType : int

 - ID : int

 - Ingredients : Ingredient[]

 - CookTime : double

 + calculate() : double

 + getName() : String

 + getPrice() : double

 + getDesc() : String

 + getID() : int

 + getIngredient(index : int) : Ingredient

 + getCookTime() : double

 + CalculateQuantity() : double

 - checkAvailability() : bool

Potential_Item (extends MenuItem)

 - Confirmed : bool[2]

 - EntryDate : Date

 + getConfirmation(index : int) : bool

 + setConfirmation(index : int, value : bool) : void

IngredientStorage

 + getNext() : Ingredient

25 | P a g e

Ingredient

 - Name : string

 - Type : int

 - Measurement : int

 - Amount : double

 - Cost : double

 - UnitCost : double

 + getName() : String

 + getType() : int

 + getMeasure() : int

 + getAmount() : double

 + getCost() :double

 + calculateUnitCost() : double

 - updateAmount() : void

OrderController

 + sendOrder(order : Order) : void

Order

 - order : MenuItem[]

 - tableNumber : int

 - TimeStamp : long

UserInfo

 - UserName : string

26 | P a g e

 - Pin : int

 -TimeStamp : long

Controller (From Login Class Diagram)

 + validateUser(u : UserInfo) : bool

 - callInterface(UserType : int) : void

LoginChecker

 + checkUserInfo(u : UserInfo) : bool

 - compare(u1 : UserInfo, u2 : UserInfo) : bool

UserEntry

 - UserName : String

 - Pin : int

 + login(u : UserInfo) : void

LoginStorage

 + get(id : int) : UserInfo

 + next() : UserInfo

27 | P a g e

Traceability Matrix
Use-Case UC-8: AddItem & Use-Case UC-16: OrderFood

Domain/Class Order
Controller

Order Display
Menu

Display
Menu
Class

Menu
Controller

Validity
Checker

Availability
Checker

Menu Display
 x

Menu
Confirm x

Calculator
 x

Item Checker
 x

Availability
Checker x

Subtractor
 x

Controller
x x

Above is the traceability matrix for part of the class diagram that is part of our first demo. Since we will

be implementing UC-1, UC-8 and UC-16 we emphasized these use cases in both our class diagrams as

well as our traceability matrix. Most of the domain concepts are their own class, except for a certain few

such as the controller which had to be split into multiple classes, otherwise a single class would have too

much to do.

28 | P a g e

System Architecture & System Design

Architectural Styles
1) Client-Server

The style describes system that involves a separate client-server system, and a connecting network. The

client application will run a program that will communicate with a centralized server. The server

application will be accessed by multiple clients, also referred to as a 2-tier architecture style. The client

software will initialize a communication session, while the server will wait request queries from the

client.

Our system will implement the Client-Queue-Client systems. Every user will have a terminal, which will

contain a graphical UI establishing communication with the database server containing much of the

operation logic. Each user terminal will be constantly connected to the database server, where the

server waits for the request queries from the client. Each request query from the client will go through

the server and the server directs the request to the appropriate processing unit. This approach will allow

clients to communicate with other clients through a server-based queue. Clients will be able to read

data and send data to a server that acts simply as a queue to store the data. Figure 1 shows an example

of how the client server architecture is utilized in our system.

29 | P a g e

MANAGER

Database
Server

MANAGER
SUBSYSTEM

Wireless
Connection

1. LOGIN REQUEST
Verifies login info

Initializes communication session

2. Access Menu Manager

3. Sends Request

4. Establishes Connection with
MENU MANAGER
UNIT

DATABASE

 5. Provides Access


 6

. S
h

o
w

s
Se

rv
ic

es
To

 C
lie

n
t

STORES INFO
Simultaneously 

Client

Intranet

3. Sends request

Figure1: Client Server communication process

1. All the clients (users) except for customers will have to login first.

a. The server gets the request to login, where the login information is verified and

communication session is established.

2. The client can then use their subsystem to access provided services: in this case the manager

will have access to menu manager, view employee info, inventory control and floor layout.

a. The client accesses menu manager.

3. The Manager subsystem relays the request to the server.

4. The server establishes connection with the appropriate processing unit, in this case: Menu

Manager Unit

5. The Menu manager unit provides access to the server.

30 | P a g e

6. The server provides access to Menu Manager’s services such as addNewItemRequest,

removeItem, updateItem and so on.

Successful login is required to establish a communication connection with the server and then client can

use any of the services from the unit. The appropriate function unit is basically in the server, the Menu

Manager Unit is shown explicitly to make it easy for the reader to understand the functioning of the

system. Connection between the Unit and the server is through the Enterprise Service Bus (ESB); and the

units use subscribe and publish method of Message Bus to communicate with each other, which is

discussed later in this section. All the information is saved and sent through the server, which is finally

stored into the database simultaneously for backup purposes.

The main benefits of client-server architecture are:

 Higher security – all the data will be stored on the server, offering a greater control of

security than client machines.

 Centralized data access – Since data is stored only on the server, access and updates to the

data are easier to administer than in other architectural styles.

 Ease of maintenance – The roles and responsibilities of the system are distributed among

several aspects of our server and are known to each other through a network. This ensures

that a client remains unaware and unaffected by a server repair, upgrade, or relocation.

A major disadvantage to this system is the tendency for application data and operation logic to be

closely combined on the server, which can negatively impact system extensibility and scalability, and its

dependence on a central server, which can negatively impact system reliability.

2) Message Bus

This particular architecture design describes the principle of using a software system that can receive

and send messages using one or more communication channels, so that applications can interact

without needing to know specific details about each other. Our system will implement ESB and

Subscribe/Publish message bus for designing applications where interaction between applications is

accomplished by passing messages asynchronously over a common bus. In Figure 2, ESB provides

commodity services in addition to translation and routing of a client request to the appropriate

answering service. The request from the Database Server is sent to the ESB, which then routes the

request to the appropriate service unit. The service units utilize another aspect of message bus, that is,

the subscribe/publish method to communicate amongst each other.

31 | P a g e

Figure 2: Implementation of ESB (Message Bus)

Figure 3 is an example of service units utilizing subscribe/publish method to read, write, and update

information amongst each other, without having to go through the server every time. The method

provides quicker results especially with the information that does not need to be stored in the database.

The Message Bus bar in the image is the subscribe/publish passage. The conditions shown in the image

are: “view floor layout” service unit subscribes to the “view table info” unit and vice versa; when the

waiter updates the table status in “view table info” the update message is carried through the message

bus and published to the hostess’ “view floor layout” unit. Second condition shown is that “view

reservation” unit subscribes to the “Reservation center” unit; when a customer makes a reservation

using the “Reservation Center” unit, the message is transferred through the message bus with all the

information and published in the “view reservation” for the hostess.

32 | P a g e

Figure 3: System utilizing Subscribe/Publish method (Message Bus)

As you can see, the client-server and the message bus implementation will be integrated together to

make the system work efficiently. The client-server model will help establish communication sessions

that will allow clients to make requests and the server to process them utilizing Message Bus methods,

which include ESB and Subscribe/Publish. Message Bus will be the medium that completes requests and

provides the desired results. Therefore, the two architecture styles define our system operation and a

network, where clients and server can communicate with each other to generate results.

33 | P a g e

Identifying Subsystems

Figure 4: Identified Subsystems.

Identifying subsystems requires careful extraction of information from the use cases as well as the class

diagrams. A particular criterion was considered to identify the subsystems, such as type of services each

subsystem will provide and most of the interaction should be within a subsystem. Based upon this

analysis, all the subsystems are classes, which provide access to specific functions. For ex: in the “Menu

Manager” class, the appropriate personnel will have access to functions such as “addItemRequest”,

“removeItem”, “updateItem”, etc. Each of these is a separate class because of different functionality. It

is easy to break up the system into smaller pieces for better organization and it will help avoid

overlapping of functions that are similar in their working, but provide different services. Our system

requires loosely-coupled dependency, which is mostly required for service calls and status updates of

tables and orders. The higher the dependency rate, more difficult it is to organize it into simpler

systems. Higher dependency also provides increased risk of complications because if one of the

subsystems is malfunctioning, then the dependent subsystem will have low functionality, resulting in

poor performance of the entire system. Figure 4 depicts the dependency of subsystems as well as the

interaction with the server.

The folders are named customer, manager, hostess etc. to show who will have access to those

subsystems. It is important to show accessibility because specific services are provided by specific

personnel. The reader should also be able to understand who can access what subsystems. The idea of

controlled access is portrayed here, which helps the system operate in an organized manner. The server

34 | P a g e

has access to each subsystem in order to process request queries; user clients request access to certain

functions and the server processes them by directing the request to the appropriate subsystem via ESB.

Important data is stored in the server as well as in another database, which is available for backup

purposes only.

35 | P a g e

Mapping Subsystems to Hardware
The restaurant automation system is set to run on multiple terminals that are also the identified

subsystems. The restaurant subsystems (terminals) will be hardwired to a database server, which is

finally connected to a database where all the information is saved for backup purposes. The subsystems

are also connected to Internet and the database server is connected to a wireless router to convey

information to the tablets. The image below provides an overview of the overall system.

The subsystems (terminals), although not shown in the image below, will incorporate a Windows 7

Professional operating system processing through Intel Core i3 CPU @ 2.10 GHz or higher with 2GB or

higher RAM and 1GB Hard drive. The subsystems will establish communication with each other and the

server through intranet and will also have access to the internet to access information online. The

database server will be operating on SQL Server 2008 R2 as a minimum requirement, where all the

information is stored to be accessed concurrently. The server will process requests at a speed of 1GHz or

higher with a minimum of 2GB RAM and a 100 GB hard-drive. Installing software on the server will allow

distributing it to the other subsystems if needed. The server is also connected to a wireless router to

provide services on the tablets. The server is constantly storing information into another database for

backup purposes, which also has a minimum storage requirement of 100GB. The android tablets will

incorporate Android Froyo (2.2)and will be connected wirelessly to the server processing request

queries at a speed of 1GHz or higher with a 512 MB RAM at the minimum and a 1GB hard-drive.

Therefore, the communication methods used by different components of the system allow the

subsystems to work together as a system.

Figure 5: A high level network model along with hardware allocations is shown is the figure below

36 | P a g e

Figure 6: Subsystems Mapped to Hardware

37 | P a g e

Persistent Data Storage

Our system will use a central database to store and manage the persistent data. Persistent data

is data that is required to be stored permanently in our database. For this sole reason, we

decided to go with the relational database model. All our data will be partitioned into tables,

organized appropriately based on a set of rows and columns. Each column consists of data

attributes, with each row storing different records. Not only does this provide easy access for

our system to retrieve data, but all operations on data will simply be implemented on the

tables. This will work in our favor when writing SQL commands since all the information will be

presented in a systematic manner. It is, also, important to note that each data broken into

smaller pieces is related to one another in one form or another.

Furthermore, we decided to have our relational database be built on a client/server paradigm.

The software applications act as the clients to the server and do not have to deal with the

manipulation of the database directly. Their only task is to make requests for the server to

perform the assigned operations. This holds several advantages as supposed to a database built

without a server. Having a database with a built in server allows the server to maintain a

backup of the data and add sophisticated features.

38 | P a g e

A list of the persistent objects required for our database is presented below.

Employee Data will hold personal information of each employee

MenuItem will maintain a record of all the menu items within the restaurant

Table will keep track of each table displayed on the floor layout, table status, and waiter

currently assigned to that table

Order will keep track of each customer’s orders, its current status, the table that requested the

order and the date the order was made

Receipt will store each food item’s revenue

CustomerID will keep track of each customer’s personal information that makes a request for

reservation

39 | P a g e

 EmployeeData

 firstName

lastName

PIN

Birthdate

Age

hireDate

lastDayWorked

streetAddress

City

zipCode

State

homePhone

cellPhone

 MenuItem

 itemID

itemName

Price

Type

Description

 Table

 Table#

tableStatus

assignedWaiter

 Order

 Order#

orderStatus

Table#

orderDate

40 | P a g e

 Receipt

 itemID

itemName

Price

Quantity

totalCost

(for reservation system)

 CustomerID

 firstName
lastName
phone#
emailAddress
sideNote

Below is a sample of each table within the database.

Employee Data:

Last
Name

First
Name

PIN Birthdate Age Hire Date Last
Day
Worked

Wage Street
Address

City Zip State Home

Cell

Smith John 9820 01/15/91 21 06/02/11 ----- $8.50 21 North
Brunswick

08902 NJ

Menu Item:

Item ID Item Name Price Food Type Description

101003 Chicken Tenders (6) $10.55 Tenders & Shrimps Original all-white chicken Buffalo Tenders TM lightly
breaded and cooked until crispy.

202004 Jerk Chicken
Sandwich

$9.56 Sandwiches Blackened grilled chicken breast topped with our
signature Carribean JerkTM sauce and bleu cheese
dressing.

300003 Grilled Chicken Salad $9.12 Salad Seasoned, grilled chicken served over fresh greens

with tomatoes, onions, a blend of cheeses and

croutons.

41 | P a g e

Table:

Table Number Status Name of Assigned Waiter

03 Occupied Smith, John

01 Reserved -----

08 Open -----

Order:

Order Number Status Table Number Order Date

003 Ready 03 07/03/11

004 Processing 01 07/03/11

005 Processing 05 07/03/11

Receipt:

Customer ID (reservation system):

Item ID Item Name Price Quantity Total Cost

100103 Chicken Tenders (6) $10.55 2 $21.10

202004 Jerk Chicken Sandwich $9.56 1 $9.56

300003 Grilled Chicken Salad $9.12 1 $9.12

Last Name First Name Phone # Email Address Comments

Jordan Mike xxx-xxx-xxx xxxxxx@gmail.com Birthday Celebration

42 | P a g e

Network Protocol
We will be using the Java JDBC protocol to implement our project. Java JDBC provides us with the

interface for accessing relational databases. Via JDBC we can maintain the database connection, issue

database queries and updates and receive the results.

 In our project our primary tasks are to store and update data related to restaurant automation.

This can be done via a SQL database. JDBC allows us to construct SQL statements and embed them

inside Java API calls. JDBC lets us smoothly translate between the world of database and world of Java

application which is why Java JDBC is the perfect match for our software implementation. We will be

installing the Java JDBC driver on our platform in order to transition between Java and MySQL.

 The other communication protocols are well developed and functional. However, they are not

the best match for our software. The reason Java sockets wouldn’t fit in is because there is multiple

communication links required for programs. It is not as simple as client and server sockets. HTTP

protocol might be necessary for the reservation system depending on how we plan on implementing the

reservation system. As of now, we are not sure as to how Android treats applications. Therefore we will

definitely be centering our network communications around Java JDBC.

43 | P a g e

Global Control Flow
Execution Orderness:

The system will follow an event-driven execution system where request can be made by any

user at any point in time. Once a request is made, the system will process it using an appropriate

function, managed by the control structure. Certain requests will have to follow a given procedure once

they are initiated. For ex: when the customer touches submit order, it will follow a procedure – where it

will go through the server and gets recorded, and is then passed on to the chef and the waiter for

further actions. When no actions are being taken, the system will be idle until user-interaction occurs.

Multiple users can make requests simultaneously and each request will be handled accordingly by the

control structure.

Time Dependency:

 Our system will consist of multiple timers for various employees on the system. Our system is

more of an event-response type, with no concern for real time. For example, in terms of response time,

consider the case when the customer touches the “submit order” button on the android tablet; on

average the chef will receive the order list from the customer in less than a minute. If the order list does

not display on the chef’s screen, then the chef will need to refresh the interface, resulting in a minute

delay on average to complete an order. Another example, when the waiter cleans a dirty table and

updates the table status, the response time for the status to show up on the hostess’ display can take up

to a minute. This time delay applies to all the users on the system. The chef is also provided with a

feature where he can post an approximate time he will need to prepare an order. The objective of this

feature is to assist the chef with cooking times, which will help in maximizing kitchen output. The waiter

is also provided with a preset time limit to deliver an order when the status turns to ready. This helps

the manager in evaluating employee performance as well as the overall service experience of the

customers.

The event-response is derived from the fact that the system will only need to react to input from

multiple interfaces. This particular system also utilizes a unique technique, which specifies the syntax of

multi-threaded dialogues. They compactly represent the concurrency needed to implement multi-

threaded dialogues. The support allows interfaces to be structured differently compared to the existing

dialogue specification systems based on state transition specifications or grammar. The flexibility allows

many interfaces, especially direct manipulation interfaces, to be specified with a more modular

structure than most existing systems allow.

 The system is not concerned with real-time response because the required response does not

need to occur instantaneously. Since there are no particular time constraints in the overall system, time

delay of a minute or two would not make a difference in functionality.

Concurrency:

 The system will contain multiple threads, which involves multiple subsystems running

independently of each other. All interactions between subsystems are controlled through a database or

44 | P a g e

through the “control structure”. For example, in terms of multiple threads operating at once, there are

two waiters changing the status of different tables to “ready”, both are contacting the system to change

the certain tables to ready which will show up on the hostess interface showing that the two different

tables are ready for more customers.

From the example above, you can see that no direct communication is done between subsystems. The

entire communication between the subsystems is completed through a check of the information in the

database or “controller”, which also provides means for synchronizing data between subsystems.

45 | P a g e

System Requirements
 The following hardware requirements were decided based on the testing environment we will

be using. Some of the requirements do not necessarily have to be met since the software does not

require all the resources listed below. However, we would rather exceed the expectations for future

software upgrades, rather than replace hardware every time a software upgrade is performed. There

are four key hardware devices in our system:

 Windows Terminals

 Android Tablets

 Android Phones

 Datacenter

Windows Terminals
 Processor: Intel Core i3-2310M CPU @ 2.10GHz or higher.

 Random Access Memory – 2GB or Higher

 Hard Drive: 1GB should be sufficient.

 Operating System: Microsoft Windows 7 Professional

 Display: Screen Resolution of 1366x768 is preferred.

 Mouse & Keyboard for user input.

 Ethernet (10/100) port to support network interaction.

 Universal Serial Bus (USB 2.0 or higher) will be necessary to place and install required files to

enable respective end user interfaces.

 Speakers preferred for future voice commands and playback.

Android Tablets
 Processor: Dual-Core 1 GHz or higher.

 RAM: 512MB or higher preferred.

 Hard Drive: 1GB preferred.

 Micro-USB port to place and install the respective software.

 Operating System: Android Froyo (2.2) or higher.

 WLAN: Wi-Fi a/b/g/n required to transfer data between the server and the tablet.

 Mobile Broadband: Not required since data will be transferred via Wi-Fi.

 Display: 768x1024 pixels, 9.7 inch screen (~132 ppi pixel density).

 Multi-touch capability.

 Adobe Flash capability to play the interactive advertisements.

 Speakers preferred for future voice commands and playback.

46 | P a g e

Android Phone
 Processor: Dual-Core 512 Mhz or higher.

 RAM: 512MB or higher preferred

 Hard-Drive: 100MB or higher as the software for this device is quite meek.

 Access to Android Store in order to download the application.

 Operating System: Android Froyo (2.2) or higher.

 WLAN: Wi-Fi a/b/g/n required to transfer data between the phone and restaurant’s server.

 Mobile Broadband is required in the absence of Wi-Fi hotspots for the end-user.

 Multi-touch capability

 Display: May vary according to end-user’s preference. As long as above requirements are met,

display size will not affect the functionality of the software.

Datacenter
 Operating System: SQL Server 2008 R2 or higher.

 Processor: Recommended 1.0 GHz or faster.

 RAM: Minimum of 2GB. 4GB Recommended.

 Software: Microsoft Windows Installer 4.5 or later; MySQL

 Hard-Disk: A minimum 100GB Hard-Drive to start-off. Size may vary based on restaurant usage.

 CD/DVD Drive for installing software.

 Universal Serial Bus (USB) Driver to place, install and transfer required software/data.

 Display: VGA Display: At least 800x600 pixel resolution.

 Mouse and Keyboard for user input.

47 | P a g e

Algorithms & Data Structures

Algorithms
The algorithms of our sale system will provide help for all the simple usage of our use

cases between the actors and the system. These use cases will require relatively easy algorithms

such as adding, removing, editing, updating items, or calculating bill totals of all different time

frames into one easy complete frame that shows the final results.

 The system also includes some complex algorithms like search/sort items. The search/sort

algorithms will be most likely use when the administrator is in need of an important business

conclusion that needs to search/sort for a certain item, previous records, restaurant data, sales

records, etc.

 Our system contains many algorithms from easy to complex. Algorithms are the most

important thing in the system because it does the task that the all the employees need. Without

algorithms simple things will become harder and more time consuming which will cost the

business more money and time.

48 | P a g e

Data Structures
Data structures are necessity for an efficient software system. Our system has all different types

of complex data structures like arrays, linked lists, stacks, hash tables, and queues. Our system

uses arrays because of their short processing time. Since we are using android devices which are

limited in hardware performance, we concentrate on the performance for all the functions

involving all our android devices. Arrays will help the performance rather than using another

data structure causing the devices to run slower.

 Linked lists are other data structures that our system can implement. Linked lists are an

excellence way for great flexibility performance within the system. We all are familiar with the

advantage that linked lists provide in the dynamic use of memory. Hash table is a data

structure that uses a hash function to map identifying values that is input into the system, known

as keys (person's name), to their associated values (person’s telephone number). Thus, a hash

table implements an associative array. The hash function is used to transform the key into the

index of an array element where the corresponding value is to be sought. The main reason of

hash tables is the ability to search on average with a constant-time just like arrays regardless of

the number of items in the table. Hash tables also allow us to perform different searches over the

same database tables giving us flexibility to provide changes to our statistical data information at

any time as might be needed by the customer’s requests.

 Our system will contain the FIFO (first in first out) method. This applies that the value of

the highest priority in the queue. An example, when deciding which order to place first in the

queue when sent to the chef, the time at which the order was sent is the deciding factor for FIFO.

Queues are necessary so the order will be processed first and removed from the queue after it has

been prepared and ready to serve as shown in the figure below. There are many other data

49 | P a g e

structures that we might implement but as of now these are the main data structures that the

system is running.

50 | P a g e

User Interface Design & Implementation

Android Interface
One aspect of the user interface that may cause confusion when ordering from the menu is how to go

from selecting items off the menu to actually sending the order to the chef. In the original design, to go

from the menu interface to the order confirmation interface, the customer must select the "View Order"

button from the top right corner. The tablet will now have a "Confirm Order" button instead of the

"View Order" button. The new interface has also increased the size of the "Confirm Order" button to

emphasize its importance.

New Android Interface

51 | P a g e

Windows Interface Specification
The following interface specification is that of Use Case 8: Add Item. Most of our other windows

interfaces that we specified in report 1 stay valid. This use case has changed drastically therefore we

have decided to demonstrate this one. The new implementation has improved the usability by reducing

the number of clicks required to perform the task.

This above is the first screen for performing the task. The user starts by clicking the add item button.

This screen requires 1 click.

The above screen is the first form the manager has to fill. Four text fields need to be filled and a single

click. The user effort on this screen is highly dependent on the amount of text that needs to be entered.

52 | P a g e

The above screen is the second form which asks the manager to enter the required ingredients. By

default it has upto 5 ingredients ready to be entered. If the manager wishes he/she may add more

ingredients by clicking the “Add” button. We have reduced user effort by eliminating text boxes for

ingredients.

The above screen is the final screen required from the manager to add an item. The first box shows

production cost which is calculated based on the ingredients the manager has entered. The second box

shows the price based on a 25% profit. The third box is editable by the manager as to what he/she wants

the price to be. By default the price box shows the suggested price to reduce user effort but it can be

edited. Finally the manager has to click “Add Item” to complete the task.

53 | P a g e

Design of Tests

State Diagrams
Below are four state diagrams drawn to give us a visual of how one class transitions from one state to

another. Many of these states are similar to one another except for a slight difference in the attributes.

54 | P a g e

55 | P a g e

Test Cases

Test-case Identifier: TC-1

Use Case Tested: Login (UC-1), main success scenario

Pass/fail Criteria: The test passes if the user enters a pin that is contained in the

 database and system displays the correct interface for user.

Input Data: Keyboard with mouse

Test Procedure Expected Result

Step 1. Type in an incorrect

PIN

System will display a message: “Invalid Pin.”

Step 2. Type in a correct PIN System will direct user to the correct interface

56 | P a g e

Test-case Identifier: TC-2

Use Case Tested: AddMenuItem (UC-8), main success scenario

Pass/fail Criteria: The test passes if the manager adds a menu item to the potential
 item list.

Input Data: Keyboard with mouse

Test Procedure Expected Result

Step 1. Select Add Menu Item

System will prompt user to enter in new menu item

information

Step 2. Leave a text field blank

and hit Next

System will display an error message: “Fill in the missing

text fields”

Step 3. Enter in new menu

item information and hit Next

System will prompt manager to choose ingredients

required for the meal along with quantities and the URL

and the date that item will be added to the menu

Step 4. Leave ingredient text

field blank

System will display an error message: “Must have at least

one ingredient”

Step 5. Enter in an ingredient

not stored in the inventory

System will display a warning: “Ingredient not in

inventory. Add to shipment list”

Step 6. Enter in ingredients

required for the meal along

with quantities and the URL

and the date that item will be

added to the menu and hit

Next

System will display the expected cost for each ingredient

with the option to change price

Step 7. Enter a letter

character in the price text

field

System will display an error message: “Enter in a

number”

Step 8. Enter valid price and

hit Add Item

System will display food item on the potential item list

Step 9. Check potential item

list

System will display list of potential food items plus

recently added food item

57 | P a g e

Test-case Identifier: TC-3

Use Case Tested: OrderFood (UC-16), main success scenario

Pass/fail Criteria: The test passes if the customer selects desired meal items from the
food menu

Input Data:

Test Procedure Expected Result

Step 1. Select view menu from

main screen

System will display a list of food items available to order

Step 2. Select a particular food

category (“chicken”)

System will display a list of all food items for the selected

category

Step 3. Select a particular food

item from the chicken

category

System will display item name, item price, list of available

sides, and text field for “notes for chef”

Step 4. Hit add to order System will display a message: “Food item added”

Step 5. Hit view order System will display a list of ordered food items

Step 6. Hit the remove item

button next to the item just

added

System will removes item and refreshes view order list

Step 7. Hit add to order System will display menu again

Step 8. Hit cancel System will clear order list and display main menu screen

Step 9. Hit view order System will display a message: “No items in order”

Step 10. Hit add to order and

repeat steps 2-5

System will display list of items ordered

Step 11. Hit send order System will send order to chef and to the assigned waiter

and returns to the main menu screen

58 | P a g e

Simple Unit Tests

Unit test deals with each component separately to ensure that a function works correctly. When the

object under each test calls a method on dependency then it will change the state of the dependency as

shown in our state diagrams. Since our main interest is in the state change, our concern is not whether

or not a method is called. Below is a set of standard step procedure for each component to be tested

with its expected result.

For Login:

loginUserName = {valid username, invalid username, empty}

PIN = {valid, invalid, empty}

For Name, when one enters the Name of a food item the test should confirm that 1) Name is a string

and 2) the string Name does not exceed the maxNameLength. If any of these requirements are not met,

the test will signal a failure. This step procedure applies for many similar components such as

‘Description’, ‘URL’, and ‘ChefNotes’ with a slight change in name for the call methods.

Step Expected Result

Enter in a valid username and an invalid PIN Failed to log in

Enter in a valid username and an empty PIN Failed to log in

Enter in an invalid username and a valid PIN Failed to log in

Enter in an invalid username and an empty PIN Failed to log in

Enter in an empty username and an empty PIN Failed to log in

Enter in a valid username with an incorrect valid PIN Failed to log in (PIN does not
match its username)

Enter in a valid username with a correct valid PIN Logged in successfully

Step Expected Result

Call setName(string Name) where Name.length > maxNameLength Name not added

Call setName(string Name) where Name.length <= maxNameLength Name successfully added

Step Expected Result

Call setDescription(string Description) where Description.length >
maxNameLength

Description not added

Call setDescription(string Description) where Description.length <=
maxDescriptionLength

Description successfully
added

59 | P a g e

Price will be tested in the same format. Several tests will be made:

1) Price will not be added if an empty field is called.

2) Price will not be added if Price is set to a string of characters or any other unrecognizable symbols.

3) Price will not be added if the price range exceeds a certain erroneous range.

4) Price will be added successfully if a call to setPrice has a double int Price as its argument.

Once again, this step procedure will be followed thoroughly for other components as well (such as

‘CookTime’, ‘Amount’, ‘Cost’, ‘UnitCost’, etc.)

Step Expected Result

Call setPrice(double Price) where Price.unit is blank Price not added. Must insert
a double int

Call setPrice(double Price) where Price.unit is Price not added (Invalid)

Call setPrice(double Price) where Price.unit > maxPricelength Price not added (Price set to
an unreasonable price)

Call setPrice(double Price) where Price.unit is a double int Price successfully added

60 | P a g e

Test Coverage
The unit tests develop will implement a State-Based Test Coverage Plan. The unit tests were designed so
that dynamic attributes of every class will enter every state possible. Because many of the attributes in
these use cases are TextFields that can be edited by the Manager, most attributes only have 2 states
(Empty-String/Valid-String). Other attributes can also have an infinite number of states such as the order
attribute (OrderItem[]) in the Order Class. Because each state is defined as the number of items in the
array the number of states varies with each customer. The unit test will show that the number of items
in the order is truly dynamic and that the order size can vary to various amounts.

61 | P a g e

Project Management

Progress Report
Our group has already begun setting up the database. As of now, we are dealing with a VB.net

platform and MySQL and hopefully progress from there. It may occur to us to later on to code either in

PHP or Java, whichever will make the task more user friendly for us. For the time being, we want to

experiment with different languages and get a feel of which environment we are more comfortable in.

A simple table has been created to hold Employee Data along with each employee’s username,

PIN number and other personal information. Next, a Login interface was created to allow an employee

to log in successfully. A sample of employees’ information was recorded in our database and from there

we used the username and PIN to successfully log in from the Login interface. All that was required was

now to connect to server and database. After we were able to figure out how to do that, our database

was tested and worked efficiently.

Below is a portion of the written function code:

Friend Function getLoginData() As DataTable

 Dim strUsername = txtUsername.Text
 Dim strPassword = txtPassword.Text
 Dim myConnection As SqlConnection = New SqlConnection("Data Source=PISALS-
PC\PRADNYASQLDB;Initial Catalog=User_Login;Integrated Security=True")

 Dim myCommand As SqlCommand = New SqlCommand("", myConnection)
 Dim sqlParam As System.Data.SqlClient.SqlParameter
 Dim ds As New DataSet
 Dim da As New SqlDataAdapter(myCommand)
 myConnection.Open()
 myCommand.Parameters.Clear()
 myCommand.CommandType = CommandType.Text

 myCommand.CommandText = "select * from User_users where Username = @Username and
password = @Password"

 da.SelectCommand.Parameters.Add(New SqlParameter("@Username", SqlDbType.VarChar))
 da.SelectCommand.Parameters("@Username").Value = strUsername

 da.SelectCommand.Parameters.Add(New SqlParameter("@Password", SqlDbType.VarChar))
 da.SelectCommand.Parameters("@Password").Value = strPassword
 Dim dt As New DataTable
 da.Fill(dt)

 myCommand.CommandTimeout = 120
 myConnection.Close()
 myConnection = Nothing
 myCommand = Nothing

 Return dt

End Function

62 | P a g e

Coding for the Android Menu Application has already begun. The layout scheme for the app is
running in the android emulator. Because the database for the menu has not yet completed, there are
three dummy menu items currently that can be selected. Looking at Android_Image1 below shows the
three menu items and the tablet prompting the user to select an item before continuing. Once the user
has selected an item, the tablet displays the name, description, and price appropriately
(Android_Image2). Beneath the description is a Text Field where the user can add comments for the
chef when preparing the food. There is also an Add button visible at this point, but it does not have any
implementation.

Android Image 1

Android Image 2

63 | P a g e

Plan of Work

March April

11 18 25 1 8 15 22

Legend Entry 1 Planned

Page 1 of 1

Report 3

TASK
End

Date

Start

Date

Product Brochure3/18/20123/17/2012

Demo Preparation3/29/20123/19/2012

Demo3/30/20123/30/2012

Summary of Changes4/1/20123/31/2012

Customer Statement of 4/6/20124/2/2012

Functional Requirements4/6/20124/2/2012

Non-Functional 4/6/20124/2/2012

Effort Estimation4/6/20124/2/2012

Domain Analysis4/13/20124/9/2012

Interaction Diagrams4/13/20124/9/2012

Class Diagram and 4/13/20124/9/2012

System Architecture & 4/13/20124/9/2012

Algorithms & Data 4/20/20124/16/2012

User Interface Design & 4/20/20124/16/2012

History of Work4/20/20124/16/2012

Conclusions and Future 4/22/20124/21/2012

References4/22/20124/21/2012

3/17 3/18

3/19 3/29

3/30 3/30

3/314/1

4/2 4/6

4/2 4/6

4/2 4/6

4/2 4/6

4/9 4/13

4/9 4/13

4/9 4/13

4/9 4/13

4/16 4/20

4/16 4/20

4/16 4/20

4/21 4/22

4/21 4/22

Milestones Professional Trial Version (http://www.kidasa.com).

64 | P a g e

Breakdown of Responsibilities
Here is a temporary breakdown of responsibilities for report 3. Note that this breakdown is temporary

and subject to change.

Task/Group Member
Praveen Pradnya Bill Kartik Zac

Summary of Changes (5) 3

2

Customer Statement of Requirements (6) 5 1

Glossary of Terms (4) 4

Functional Requirements (37) 7 7 7 8 8

Non Functional Requirements (6) 6

Domain Analysis (25)
9 12 4

Interaction Diagrams (30+10) 10 10 20

Class Diagram & Interface Specification

(10+10)
5 15

System Architecture & System Design (22) 8 14

Algorithms & Data Structures (4) 4

User Interface Design & Implementation (8) 8

History of Work (5) 5

Conclusions & Future Work (5) 5

References (3) 3

Project Management (10) 6 4

65 | P a g e

References
Useful Information From:

1. Software Engineering by Ivan Marsic, Rutgers University

 http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

Pictures From:

2. http://www.itechnews.net/2010/04/01/cisco-valet-wireless-routers-with-flips-
simplicity-in-design/
3. http://www.softicons.com/free-icons/system-icons/mac-icons-by-artua.com/intranet-icon
4. http://www.iconarchive.com/show/vista-hardware-devices-icons-by-icons-land/Computer-icon.html
5. http://androidcommunity.com/toshiba-10-1-inch-android-tablet-gets-fully-detailed-20110318/

Links that help with the report:

6. http://en.wikipedia.org/wiki/Intranet

7. http://en.wikipedia.org/wiki/Data_structure

